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Abstract. We present a system of differential equations which abstractly
models neural dynamics and synaptic plasticity of a cortical macrocol-
umn. The equations assume inhibitory coupling between minicolumn ac-
tivities and Hebbian type synaptic plasticity of afferents to the mini-
columns. If input in the form of activity patterns is presented, self-
organization of receptive fields (RFs) of the minicolumns is induced.
Self-organization is shown to appropriately classify input patterns or to
extract basic constituents form input patterns consisting of superposi-
tions of subpatterns. The latter is demonstrated using the bars bench-
mark test. The dynamics was motivated by the more explicit model sug-
gested in [1] but represents a much compacter, continuous, and easier to
analyze dynamic description.
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1 Introduction

The minicolumn is believed to be the smallest neural module consisting of
roughly a hundred neurons which are stacked orthogonal to the cortical sur-
face. Axons and dendrites of pyramidal cells in the same minicolumn bundle
together and are assumed to be strongly interconnected [2, 3]. Connectivity of
inhibitory cells suggests inhibition between the minicolumns. Minicolumns com-
bine together to what is called a macrocolumn or segregate [4]. Minicolumns of
a macrocolumn receive input from the same source, e.g. a patch of the body
surface, but in the adult brain they react differently to different types of stimuli,
i.e., the minicolumns possess different RFs. At birth afferents to cortical columns
are found to be relatively unspecific (see, e.g., [5]). The subsequent specialization
is believed to be mainly driven by synaptic plasticity and to crucially depend on
sensory input.

In this paper a dynamical system is presented which models the neural dy-
namics of minicolumn activities in a macrocolumn and the specialization of
minicolumnar RFs on the basis of Hebbian plasticity.



2 Activity of Minicolumns

Instead of explicitly modeling the neural connectivity within a macro- and mini-
column [1] we consider an abstract dynamics of the activity pα of minicolumn α

in a macrocolumn of k minicolumns3:

d

dt
pα = a pα

(

pα − h(p) − p2

α

)

+ κ Iα + σ ηt , (1)

where a is a time constant, κ the coupling strength to external input Iα, and
where σ2 is the variance of zero-mean Gaussian white noise4 ηt. h is a function
of the activities of all k minicolumns of the macrocolumn p = (p1, . . . , pk).
Dynamics (1) is a simple choice for modeling mini- and macrocolumn properties.
An abstract derivation of (1) and a non-linear analysis of its dynamical properties
can be found in [6]. The different summands on the right-hand-side (rhs) of (1)
can be considered as modeling different neuro-dynamical aspects:

a (pα)2 models self-excitation by excitatory interconnectivity within a mini-
column.

−a (pα)3 models negative feed-back due to neural refraction times which nat-
urally limit the minicolumn activity.

−a pα h(p) models inhibition by the minicolumns of the macrocolumn. The
function h(p) is greater than zero. Note that because of the multipli-
cation with pα this term cannot drive the activity to non-biological
negative values.

If we choose as inhibition function h(p) = ν max
β=1,...,k

{pβ} , it can be shown that

for zero input and zero noise the system possesses exponentially many stationary
points [6]. ν ∈ (0, 1) plays the role of a bifurcation parameter. For ν ∈ (0, 1

2
)

there are (3k − 2k + 1) and for ν ∈ (1

2
, 1) there are 2k stationary points. In the

point of structural instability, 1

2
= νc, 2k − k − 1 non-trivial stable stationary

points loose their stability in subcritical bifurcations. Analytical expressions for
all stationary points and for their stabilities can be derived [6]. The system
qualitatively reproduces the bifurcations observed in the explicit model defined
in [1]: if ν is increased from a value ν < 1

2
to ν > 1

2
and if the macrocolumn

has been in its symmetric stable state (all minicolumns are equally active) the
minicolumns are deactivated via a process of symmetry breakings5 (compare
[1]). For non-zero input the symmetry is broken on the basis of small differences
between the inputs Iα to the minicolumns. The smallest value of ν for which the
deactivation of a minicolumn occurs is a measure for the input strength relative
to the other inputs.

3 pα(t) can be thought of as the fraction of neurons in minicolumn α that have spiked
during a short fixed time-interval around t.

4 which is taken to be different for each α
5 Note that for symmetry breakings infinitesimal perturbations are required, e.g., using

a non-zero noise term with very small standard deviation.



3 Self-Organization of Receptive Fields

We operate the system with oscillating inhibitory gain factor ν. An oscillation or
ν-cycle starts with a ν = 0 interval during which the system stabilizes the sym-
metric stable stationary state under the influence of noise (σ > 0). Subsequently,
ν is increased from a value νmin to a maximal value νmax (see Fig. 1).

The input to the minicolumns originates from a set of input units pE
1

to pE
N

(pE
j ∈ [0, 1]) and is mediated by afferent connections Rαj : Iα =

∑N

j=1
Rαjp

E
j .

The afferent fibers we take to be subject to synaptic plasticity of the form:

d

dt
Rαj =

(

E pα pE
j − (

N
∑

l=1

Epα pE
l )Rαj

)

H(χ − A(t)) , (2)

where H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0 is a step function and
where E is a synaptic growth factor. The positive term on the rhs of (2) models
Hebbian type synaptic plasticity. It is only greater than zero if minicolumn α and
input unit j are simultaneously active. The negative term insures that

∑

j Rαj

converges to one for all α. The RFs, Rα = (Rα1, . . . , RαN ), are only modified if

the over-all activity A(t) =
∑k

α=1
pα falls below a threshold χ which ensures that

learning takes place only after a number of minicolumns have been deactivated.
The system is sketched in Fig. 1 and the complete dynamics now reads:

ν(t) =

{

0 if t̃ < Tinit

(νmax − νmin) t̃−Tinit

T−Tinit

+ νmin if t̃ ≥ Tinit

, (3)

d

dt
pα = a pα

(

pα − ν(t) max
β=1,...,k

{pβ} − p2

α

)

+ κ

N
∑

j=1

Rαjp
E
j + σ ηt , (4)

d

dt
Rαj =

(

E pα pE
j − (

N
∑

l=1

Epα pE
l )Rαj

)

H(χ − A(t)) , E =
ǫ

N
, (5)

where t̃ = mod(t, T ), i.e., t̃ = t − nT where n is the greatest integer satisfying
t − nT ≥ 0. ǫ is the relative synaptic growth factor. Equations (4) and (5) are
a system of non-linear differential equations coupled to an oscillation given by
(3). In simulations the oscillation is chosen to be slow compared to the dynamics
of pα. We study the system behavior by exposing it to different kinds of input.
From a given database with different input patterns P ∈ [0, 1]N we present a
randomly chosen pattern P o during each ν-cycle, i.e., P o defines the values of
the input units for the duration of a ν-cycle, pE = P o. An input pattern P is,
for visualization purposes, displayed as two-dimensional grey-level image.

Before we can start simulating the dynamics we have to choose a suitable
set of parameters. To choose a consider an isolated minicolumn without self-
excitation ( d

dt
p = −a p3). In this case we expect that, e.g., an activity p = 1.00

rapidly decays to a value close to zero, e.g. p = 0.05, in about 1ms (the order
of magnitude of action potentials and refraction times). For the activity levels
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Fig. 1. Sketch of a macrocolumn with k = 3 minicolumns. Interactions are indicated
using arrows. The inhibition between minicolumns is visualized using a symbolic in-
hibitory neuron.

p(0ms) = 1.00 and p(1ms) = 0.05 we get a ≈ 200ms−1. Note that this is a
very coarse estimate due to the arbitrariness in choosing the activities but one
obtains the order of magnitude of a. The value of the coupling κ is taken to be
only a small fraction of the value for a, κ = 1.0ms−1, and standard deviation σ

of the Gaussian white noise is taken to be only a fraction of κ, σ = 0.12ms−1.
For the oscillation of ν (3) we choose a period length of T = 25ms and a time
of Tinit = 2ms with ν = 0 and additional noise to reset the dynamics. After
initialization ν is increased from νmin = 0.3 to a value νmax = 0.55 which is
slightly greater than the critical value νc = 0.5. For the dynamics of Hebbian
plasticity (5) we choose ǫ = 0.2 and a threshold of χ = 0.55.

4 Simulations

Equations (3) to (5) can now be numerically simulated (e.g., using the Eu-
ler method for stochastic differential equations). In the first experiment we use
the set of 42 input patterns displayed in Fig. 2A (compare [1]). By simulating
dynamics (3) to (5) with k = 6 and parameters as given above we get RF self-
organization as can be observed in Fig. 2B. After random initialization the RFs
specialize to different classes of input patterns. If we have fewer minicolumns
than major classes exist, we get coarser RFs (see Fig. 2C) and if we have more
minicolumns we get RFs with higher specialization degrees (see Fig. 2D).

In the second experiment we use the bars test [7] in order to demonstrate
the system’s ability of learning a distributed code for input consisting of sub-
pattern superpositions. We operate the system using the same parameters as in
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Fig. 2. In A the set of input patterns is displayed (N = 16 × 16). During each ν-
cycle one randomly chosen pattern of this set is presented. In B the modification of
the RFs of a macrocolumn with k = 6 minicolumns is displayed. After 1000 ν-cycles
six different pattern classes are represented. The RFs’ degree of specialization further
increases thereafter to a final degree. C RF specialization (after 250 ν-cycles) if an
abstract macrocolumn with k = 3 minicolumns is used with the same input. D RF
specialization (after 10000 ν-cycles) if a macrocolumn with k = 9 is used.

the previous experiment and we use a bars test with b = 8 bars. Each bar occurs
in an image with probability 1

4
(see Fig. 3A). As can be seen in Fig. 3B, RF

self-organization results in a representation of all bars. In 200 considered sim-
ulations with k = 10 minicolumns a bars test with above parameters required
less than 600 ν-cycles in 50% of the cases to represent all bars (less than 410 in
20% and less than 950 ν-cycles in 80% of the simulations). The system found a
correct representation for all bars in all simulations and is robust against vari-
ous perturbations to the bars test. Note that the results for the bars test show
an improvement compared to the explicit system presented in [1] which requires
more ν-cycles for the same bars test. Thus dynamics (3) to (5) represent not only
an abstraction but, at least in the here discussed bars test, also an improvement
of the explicit dynamics in [1] (also compare [8]). Note that already the system
presented in [1] has on the basis of extensive measurements shown to be highly
competitive to all other systems suggested to solve the bars test.

5 Conclusion

On the basis of recurrent activity in cortical minicolumns, oscillatory inhibitory
coupling between the minicolumns, and phase coupled Hebbian synaptic plas-
ticity of afferents we derived a system of coupled differential equations which
models self-organization of RFs of cortical minicolumns. Self-organization allows
a macrocolumn to represent input using distributed activity of its minicolumns
relative to an oscillation. The model combines most often independently dis-



Input patterns:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Fig. 3. A A selection of 22 typical input patterns (N = 16 × 16) of a bars test with 8
different four pixel wide bars. B Typical example of the self-organization of the RFs of
a macrocolumn with k = 10 minicolumns. During each ν-cycle a randomly generated
input pattern of the upper type is presented.

cussed aspects of neural information processing and is functionally competitive
in a standard benchmark test for feature extraction.
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