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Abstract

We study self-organization of receptive fields (RFs) of cortical minicolumns. Input
driven self-organization is induced by Hebbian synaptic plasticity of afferent fibers
to model minicolumns based on spiking neurons and background oscillations. If
input in the form of spike patterns is presented during learning, the RFs of mini-
columns hierarchically specialize to increasingly small groups of similar RFs in a
series of nested group subdivisions. In a number of experiments we show that the
system finds clusters of similar spike patterns, that it is capable of evenly cover the
input space if the input is continuously distributed, and that it extracts basic features
from input consisting of superpositions of spike patterns. With a continuous version
of the bars test we, furthermore, demonstrate the system’s ability to evenly cover
the space of extracted basic input features. The hierarchical nature and its flexibility
with respect to input distinguishes the presented type of self-organization from oth-
ers including similar but non-hierarchical self-organization as discussed in (L ücke
and von der Malsburg, 2004). The capabilities of the presented system match cru-
cial properties of the plasticity of cortical RFs and we suggest it as a model for their
hierarchical formation.
Keywords: Cerebral Cortex, Self-Organization, Columnar Organization, Synaptic
Plasticity, Unsupervised Learning, Cortical Maps
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1 Introduction

Self-organization is believed to play a central role in the development of the cen-
tral nervous system of higher vertebrates. The most prominent example is proba-
bly the ontogenesis of fiber projection systems and especially the development of
retinotectal maps (H äussler and von der Malsburg, 1983). Other examples of self-
organization deal with structures in the barrel field of the rodent cortex or with the
formation of ocular dominance and orientation columns (see Erwin et al., 1995;
Swindale, 1996; von der Malsburg, 2003, for overviews). The idea that self-
organization is also responsible for the formation of interconnection structures in
advanced levels of cortical development has become increasingly popular in the last
decades and gave birth to abstract neural network models based on input driven
self-organization, e.g. (von der Malsburg, 1985; Kohonen, 1995; Fritzke, 1995). In
recent years the development of intra-cortical connections could be monitored in
more and more detail especially in primary sensory areas. In the primary visual
cortex, e.g., interconnections between orientation columns were shown to develop
hierarchically from coarsely specialized to increasingly fine tuned RFs (Callaway
and Katz, 1990; Chapman et al., 1996).

In this paper we discuss a self-organization process which reflects the hierarchi-
cal nature of RF formation. The model is based on a system presented in (L ücke
and von der Malsburg, 2004) and integrates fundamental aspects of neural informa-
tion processing such as Hebbian type synaptic plasticity, columnar interconnection
structure, spiking neurons, and background oscillation. In a number of experiments
we investigate the system’s abilities to form appropriate RFs for very different types
of input. The type of self-organization, hereby, differs from other neural models by
its hierarchical approach and by its high flexibility with respect to the input.

In Sec. 2 we shortly define and discuss the neural dynamics of a model macro-
column. In Sec. 3 we define the dynamics of Hebbian plasticity of afferent fibers to
the macrocolumn and discuss the emerging self-organization. In Sec. 4 the system
is applied to different types of input and in Sec. 5 we discuss the system’s relation to
neuroscience and compare it with other unsupervised neural models.

2 Neural Dynamics of a Model Macrocolumn

Our system is based on a model of the cortical macrocolumn or segregate (Favorov
and Diamond, 1990). Macrocolumns can be identified both anatomically and physi-
ologically (Favorov and Diamond, 1990; Elston and Rosa, 2000; Lubke et al., 2000)
and are shown to process stimuli from the same source such as an area of the vi-
sual field or a patch of a the body surface (Favorov and Whitsel, 1988; Favorov and
Diamond, 1990). The macrocolumn consists of a number of minicolumns1 which
present the smallest neural modules and consist of several tens up to a few hun-
dred neurons (Peters and Yilmaz, 1993) (see Mountcastle, 1997; Buxhoeveden and
Casanova, 2002, for overviews and Jones, 2000, for a critical discussion).

1sometimes also called microcolumns
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In this section we consider the dynamics of a model macrocolumn without Heb-
bian plasticity. This part of the dynamics is essentially the same as the one presented
in (L ücke and von der Malsburg, 2004), except of two technically important differ-
ences: First, intermediate spike rates of input neurons (see below) can encode grey-
level instead of only black-and-white input images and, second, the system can be
operated with a variable number of input neurons and, hence, variable size of input
images.

The macrocolumn is modeled as a collection of disjunct minicolumns. The mini-
columns we take to consist of a collection of � excitatory neurons. As neuron model
we use a McCulloch-Pitts neuron with refraction time:

� ����������	��
�����������
� ��	� � ���������� �������

� ��#� � ���������� � ������� 2 ������ � ���������� - (1)

where ������ is the function, �������
 � for �! � and ������
 � for �!" � .
The neuron

�$#&% � -(')'(' -��+* of minicolumn � #&% � -('('(' - � * is active at time ���,��	� if it receives enough input from neurons active at time step � and if it was not
active the time step before. To activate the neuron the input has to be larger than
a threshold

� ����� which consists of a usual constant threshold
� �

with Gaussian
threshold noise

�����! #" $
and a time depending function

� ����� which indirectly models
inhibition between the minicolumns:

� �����-
 ��� � �����! #" $ � � ����� (2)� �����-
 & .0/21� ���43656565 3 7
% � � ����� * (3)

In (3) � � ������
 �
�
8
��9��� � ��:����� is the over-all activity2 of minicolumn � . All excita-

tory neurons are modeled in this way and possess the same constant threshold and
a threshold noise with the same variance. A neuron receives excitation from two
sources: First, from other excitatory neurons of the same minicolumn, and second
from neurons outside the macrocolumn, denoted � �� . The interconnection within a
minicolumn (

� ��	� ) we take to be fixed and random. The randomness is generated
with the boundary conditions that each neuron receives a number of � synapses with
synaptic weight � 
 �; and that the probability of a synapses to originate from a
specific neuron of the minicolumn is constant. The afferents from external neurons� � ��	�)� can change in time but we require that a neuron receives � synapses of weight�� 
 < ; from external neurons. The ratio between the number of external and the
number of internal connections3,

� 

8
������

� ��	�8
������

� ��	� - (4)

is taken to be significantly smaller than one which means that the internal input of
an active minicolumn is on average significantly larger than the external input.

2The inhibition has to be understood as being implemented by a system of inhibitory neurons
rather than by a single one. A larger number of inhibitory neurons can be expected to average over
incoming activity and to distribute inhibition such that (3) is approximated.

3Note that due to the required boundary conditions = is independent of > and ?
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The external neurons � �� are essentially of the same type as the neurons of the
macrocolumn, i.e., they are either inactive or active, � �� ����� # % � - � * , and they are
refractory for one time step after they have spiked. The external neurons translate
an input vector

� # � � - ��� � into spike rates. A neuron � �� has a probability of��  � to be active. The
�

dimensional vector of all afferent fibers to neuron � �� ,�� ��+
!� � �� � -)'('(' - � ��
�
� , will be called the receptive field (RF) of the neuron and the

sum of the RF vectors of all neurons of a minicolumn � will be called the RF of the
minicolumn,

�� � 
 8
��9���

�� �� (see Fig. 1B,C). In Fig. 1A a sketch of a macrocolumn
with

� 
�� minicolumns is displayed. The input neurons are arranged in a two
dimensional array because we will use two dimensional grey-level images as input
vectors to conveniently display simulation results. Note, however, that the set of
input neurons is not equipped with any neighborhood relationship and can therefore
be arranged in an arbitrary manner.

Figure 1: A Sketch of a macrocolumn with
� 
�� minicolumns, parameters � 
	� ,� 

� , and � 
	� , connected to

� 
��� external neurons. The inhibition is sym-
bolically sketched. The randomly initialized RF,

�� �
, of minicolumn � 
 � is fully

displayed whereas RFs
����

and
�� �

are not. Lines within the input layer are only dis-
played for visualization purposes. B Two dimensional visualization of the RF of one
neuron in minicolumn � 
 � as grey-level image. C Two dimensional visualization
of

�� �
as grey-level image.

The difference equation system (1) together with (2) and (3) defines the neural
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activity dynamics of the macrocolumn. Although analytical predictions of the be-
havior of this highly non-linear system seem difficult, it could be shown in (L ücke
and von der Malsburg, 2004) that, for a large class of parameters, the global and
essential properties of the system can be derived analytically by means of stability
analysis and bifurcation theory4. We operate the system by oscillating the inhibitory
gain factor5 & in (3):

& ������

�� � &  #�  � if

���� �  #�� �
� &��	��
 � &��  #� ��������� ��� ���� � ����� ��� � � &��  #� if

���� �  #�� � - (5)

where
�  #�� �

is the length of an initialization phase and
�� 
 � � .���� � � the remainder

of division by the oscillation’s period length
�

. During one saw tooth like period,
which will be called & -cycle from now one, the system is forced to switch off mini-
columns with comparably weak input. This process, which begins anew for each& -cycle, can be described in terms of structural instability and we refer to (L ücke
et al., 2002) and (L ücke and von der Malsburg, 2004), for further details6 .

3 Self-Organizing Receptive Fields

The afferent fibers � � ��	� � which couple the neuron dynamics (1) to external input in
the form of spike patterns we take to be subject to synaptic plasticity. The change
of an afferent fiber, � � ��#� �����,
 � ��	� ����� � � ��#� ��� � � � , is described by a Hebbian type
dynamics with normalization:

If
� ����� � ) ����� : � � ��	� ����� 
 !#"� � �������� � ������ � �	� (6)

$ � - �&% � �� �������
� ��	�2����� 
 � ' (7)

Here
� ����� is the over-all activity in the macrocolumn,

� ������
 �7
�
8 � 3 � � �� ����� , and) ����� is a dynamical threshold. ! "� is the probability that

� ��	� is increased by
�� 
 < ;

if neuron � �� fires in the time-step proceeding the firing of input neuron � �� . ! "� is a
for each � � - 
 - � � triple different Bernoulli sequence with probability ' � � ��
&��� 9

4For the analysis we first replace dynamics (1) by a dynamics which approximately describes the
minicolumn activities (�) . The approximation is possible because of sufficiently high activity rates
in active minicolumns near to bifurcation points. With a subsequent stability analysis the stationary
points, which are actually observed in directly simulating (1), can be computed. Because of a small= (4) input mediated by afferent fibers is than treated as perturbation of the internal dynamics.

5see, e.g., (K örner et al., 1999) for a discussion of a possible origin of such an oscillation
6Note, that the system behaves qualitatively similar also for refraction times larger than in (1).

The main differences are that minicolumn activities are lower and due to a larger impact of thresh-
old noise hysteresis is less pronounced, i.e., activation of an in the same * -cycle already switched
off minicolumn is more probable. Crucial for the functioning of the system is the non-linear deacti-
vation of minicolumns with weak input induced by an interplay between refraction, excitation, and
inhibition, which can also be expected from a system based on continuous neuron models.
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and ' � �� ��
 9
. The parameter

9
is the synaptic growth factor. If the afferent fiber� ��	� is increased for a given neuron � �� , one randomly chosen (non-zero) fiber

� ��#���
is removed in order to fulfill the normalization condition (7). The main difference
to a usual Hebbian learning rule is the condition

� ����� � ) ����� which has to be
fulfilled in order to enable synaptic modification. If the condition is not satisfied,
the afferent connections remain unchanged. The condition ensures that modification
is only allowed for states of low macrocolumnar activity which are predominant in
the end of a & -cycle. Only than, after what we will call the minicolumn selection
process, the macrocolumnar activity is reflecting properties of the input.

Equations (6) and (7) represent an abstract formulation of synaptic plasticity,
which is suitable for the time-discrete neuron model. More realistic forms of synap-
tic plasticity would have to be based on continuous neuron models and differential
equations for synaptic modification. An interplay between long-term potentiation
(LTP) and long-term depression (LTD) such as spike-timing dependent plasticity
(STDP) can be imagined to implement renormalization similar to (7) and a plas-
ticity similar to (6) including an approximation of condition

� ����� � ) ����� . Action
potentials (spikes) in minicolumns which remain active for higher inhibition have
an increased probability to proceed spikes of input neurons because the incoming
spikes must have positively contributed to keep the column active. In the case of
low inhibition LTD can dominate because of in this case less correlated firing of
minicolumn and input neurons (see Feldman, 2000, for the predominance of LTD
for uncorrelated spikes). Synaptic scaling processes (see, e.g., Abbott and Nelson,
2000; Turrigiano et al., 1998) without or in combination with LTP and LTD can also
be considered for implementing (6) and (7). The in our model essential require-
ment for synaptic plasticity to result in discriminating RFs is the predominance of
LTP for low levels of macrocolumnar activity. Equations (6) and (7) with condition,� ������� ) ����� , can in this respect be regarded as an abstract and simple dynamical
description satisfying this requirement.

To train the macrocolumn network we randomly choose an input pattern
�

from
a given database and present it in the form of input neuron spike patterns for the
duration of one & -cycle. If learning starts with randomly initialized RFs, the se-
lection process during a & -cycle first randomly deactivates a subset of minicolumns
by spontaneous symmetry breakings. If in this way the macrocolumn activity

� �����
falls below the threshold ) ����� , the RFs of the remaining active minicolumns special-
ize to a certain degree to the presented input pattern. If in a later & -cycle a similar
input pattern is shown, these minicolumns are more likely to remain active again
and to further specialize. The RF specialization represents, therefore, the positive
feed-back loop of the self-organization process which amplifies small fluctuations
in the beginning of learning. Together with the competition of the RFs mediated by
the minicolumn selection process, the RFs tend to specialize to different patterns of
the input database. A crucial role is played by the threshold ) . If ) is relatively
high, e.g.,

�� , the minicolumnar RFs start to modify already in the middle of the
selection process and large groups of minicolumns tend to form similar RFs. If )
is relatively small, the RFs avoid specializing for the same input patterns. If we
start learning with large ) which is gradually decreased, the minicolumns first form
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large groups with mutually similar RFs, i.e., RFs of minicolumns of the same group
are more similar to each other than to RFs of other groups. If ) gets smaller, the
RFs of a group specialize to different sub-patterns of the input patterns they have
already been specialized to. The threshold ) can therefore be interpreted as a kind
of reciprocal differentiation pressure.) is only updated at time steps � # % � �&� - � � �&� -('('(' * at the end of each& -cycle. For a time-depending function

�
let us first define the average over the last! & -cycles:

1 � 476 % 
 �!
� � ��� ��� � � � � * � � (8)

At the beginning of learning, the system starts with large ) , ) � � � 
 ) � 
 �� , which
is subsequently decreased by the dynamics7:

) � � � � � 
 ) � � � � 8 � � ��� ) � � � � *,+ � � � ��� - (9)

8 � � � 
 8 ��� .	��
�� % 1 � � 476 *1 � 476 � /0+�� ' (10)

where *,+ and /0+ are scalar parameters and � # % � ��� - � � ��� -('('(' * are time-steps
which always mark the end of a & -cycle (with period

�
). Only at these time steps) and

8
are updated. The function .	��
��� % '(')' * is an average over the least active

minicolumns (see below). For small and positive
8

, ) is monotonously decreased
until it stabilizes around the time average of � * + � � � ��� . The velocity with which
the threshold ) decreases and hence the velocity the differentiation of RFs increases
is controlled by

8
which itself is dependent on the minicolumn activity averages at

the end of the past & -cycles. The time dependent
8

slows down the differentiation
process if some minicolumns are repeatedly quiescent in the minicolumn selection
process and start to cease their RF specialization. For a small number of mini-
columns .���
��� % '('(' * in (10) can be the usual minimum, for arbitrary

�
it has turned

out, however, that the average over all minicolumn activities smaller than a quarter
of the macrocolumn activity

� � � � gives better results:� 6 
 ����� 1 � � 476 � �� � � � � or
1 � � 4 6 
 .	��
�� % 1 �� 4 6 *�� (11)

.	��
��� % 1 � � 476 * 
 �� �� !� ��#" �  1 � � 476 (12)

Hebbian plasticity (6) and (7) together with time-depending and self-controlled
differentiation pressure (9) and (10) results in hierarchical self-organization of mini-
columnar RFs. An example is shown in Fig. 2. When synaptic modification starts
the RFs are modified and fall into two groups after 10 to 50 & -cycles. Group one,
consisting of RFs

�� �
and

����
, specializes to patterns of the upper left corner and

7We demand $&%('*),+-$�. as boundary condition in order to prevent $ from increasing during the
first updates.
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Figure 2: A The five different input patterns of the database. B Outlines of the input
patterns. C Modification of the RFs of a macrocolumn with

� 
  minicolumns.
D RFs of a macrocolumn with

� 
 � minicolumns after � � � � & -cycles. E RFs of a
macrocolumn with

� 
�� minicolumns after � � � � & -cycles.

group two, consisting of RFs
�� �

,
�� �

, and
�� �

, specializes to the patterns of the lower
right corner (in Fig. 2C the RFs are appropriately ordered). In the interval between
50 and 200 & -cycles RFs

�� �
and

����
are sensitive to different mixtures of patterns� �

and
� �

and RFs
�� �

,
�� �

, and
�� �

are sensitive to different mixtures of patterns
� �

,� �
, and

� �
. During this learning period the RFs are repeatedly changing between

sensitivities to different mixtures of patterns of their group but never to mixtures of
patterns of different groups. From about 200 & -cycles on the RFs start to specialize
to one of the patterns their group is sensitive to.

�� �
and

�� �
specialize to patterns� �

and
� �

, respectively, and
�� �

and
�� �

specialize to
� �

and
� �

. RF
�� �

specializes
somewhat slower to pattern

� �
because of the overlap with patterns

� �
and

� �
(see

Fig. 2C). From about 400 & -cycles on, all RFs have specialized for an input pattern
and their degree of specializations further increases to a final value thereafter.

If there are fewer minicolumns than input patterns, the RFs still fall into two
groups and specialize to one or a superposition of two or more input patterns after-
wards (see Fig. 2D). If there are more minicolumns than input patterns available, two
or more RFs specialize to the same input pattern or occasionally to superpositions
of two patterns (see Fig. 2E). Note, that a macrocolumn with more than five mini-
columns usually needs longer than 1000 & -cycles to fully specialize its RFs. In the
experiment of Fig. 2C with

� 
  minicolumns, the case may occur that three RFs
specialize to the upper left corner patterns such that there are only two RFs available
for the lower right. A surplus of minicolumns can therefore be of advantage.
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Hierarchical self-organization is also possible with small and constant
8

. The
RFs would take a longer time to fully differentiate in this case. However, a suitable
constant

8
would still result in hierarchical self-organization which is in general

superior to non-hierarchical. Further, a constant
8

would not require a time average
over minicolumnar and macrocolumnar activities (see (10)).

Possible biological mechanisms for a change of
8

and a change of the thres-
hold for synaptic plasticity ) might be modulations in the efficiency of AMPA- and
NMDA-mediated forms of glutamatergic synaptic transmission (Watt et al., 2000).
As discussed in (Abbott and Nelson, 2000), neurons scale down NMDA currents in
response to enhanced activity, which in turn can make it more difficult to evoke LTP
and easier to induce LTD. In our model the hierarchical formation of RFs essentially
requires a threshold ) which slowly decreases in time. Flexibility and learning time
are significantly enhanced if the change of ) is appropriately coupled to mini- and
macrocolumnar activity. Equations (9) to (12) represent one possibility to realize a
well-working such coupling but it can, of course, only be regarded as an abstract and
maybe more or less exact approximation of the dynamics which is really at work in
cortical neurons.

4 Experiments

Patterns
� �

to
� �

of Fig. 2A represent very simple input. In this section we investi-
gate the system behavior for different kinds of more complex input. In the following,
all input vectors are visualized as two dimensional patterns in order to conveniently
display the vectors as well as the RFs of minicolumns as two dimensional grey-
level images. For all experiments we use a set of parameters which has shown to be
flexible and to result in a good performance in different tests. We will refer to this
set of parameters as the standard set of parameters. Note that the standard set of
parameters was also used in the experiment of Fig. 2.

A macrocolumn with � 
&� � � neurons per minicolumn and a set of
�

external
neurons is used. Each neuron receives � 
 �  synapses from pre-synaptic neurons of
the same minicolumn and � 
 ��

���
extra macrocolumnar synapses where

��� 
 � ' � �
is the average number of afferent fibers originating from an external neuron. The
ratio between external and internal neural input (4) is set to � 
 � '�� � which means
that the internal input to a neuron is for an active minicolumn on average more than
twice as large as the external one. The synaptic strength of the afferents

�� 
 < ; is
determined by the above parameters, � 
 ;

�
�

�
�
	 . The values for � and

���
are chosen

to reproduce settings of earlier experiments (compare L ücke and von der Malsburg,
2004) for

� 
 �������� . The neurons’ constant threshold is
� � 
 �; and the Gaussian

threshold noise
�����! #"%$

has a variance of ��� ���! #"%$ � � 
 � ' � � .
The oscillation of the inhibitory gain factor & is determined by &  #�� � 
 � ' � ,&

�
��� 
 � '  , &

�
��� 
 � ' � , �  #�� � 
 � , and

� 
 �  . For the Hebbian plasticity we
use the parameters

9 
 � ' ��� , ) � 
 �� , 8 � 
 � ' � � , *,+ 
 � ' �  , and /0+ 
 � ' �  .
The time average in (8) is computed over the last ! 
 � � � & -cycles. Note that all
parameters are independent of the number of minicolumns

�
.
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4.1 Input with Hierarchical Similarity Structure

In this section hierarchically structured input is presented, i.e., the input contains
a hierarchy of groups of input patterns which members are more similar to each
other than to patterns of other groups. Using artificial data in Sec. 4.1.1 and hand-
written digits in Sec. 4.1.2, we show that hierarchical self-organization appropriately
learns to represent the input in the case that much less RFs than input patterns exist.
Furthermore, we compare hierarchical and non-hierarchical learning in this section.

4.1.1 Artificial Data

Let us consider a generalized experiment of the one in Fig. 2. As input on a layer
of 16 � 16 input neurons we use a 7 � 7 square at 24 different positions. The squares
are located at all possible positions within the grey region in Fig. 3B. In Fig. 3C RF
self-organization is shown for afferent fibers which are subject to Hebbian plasticity
defined by equations (6) to (12). As in Fig. 2C the RFs first specialize coarsely and
subsequently refine to a final specialization degree. In the experiment of Fig. 3 there
are more input patterns than RFs, however. The RFs, therefore, specialize such that
they nevertheless can, up to a high-degree, distinguish between the different inputs.

In contrast to Fig. 3C non-hierarchical RF self-organization is shown in Fig. 3D.
Dynamics and parameters of the simulation in Fig. 3D are identical to the ones of the
simulation in Fig. 3C except that the dynamical ) ����� in (6) is replaced by a constant
one, ) 
!� ' � �7 . It can be seen that some RFs very quickly specialize to specific
input patterns but that the majority of RFs remains unspecialized. Only after some
time a formerly unspecialized RF specializes to some pattern and competes with
similar RFs thereafter. Even after � � � � � or � � � � � & -cycles the representation is
far from being as accurate as after 2000 or 20000 & -cycles in the hierarchical case.

The principle advantage of the hierarchical dynamics is that it, first, induces
competition between large groups of RFs and only afterwards increases competition
within specialized groups. This ensures that RFs compete with other similar RFs
whereas in the non-hierarchical dynamics unspecialized RFs compete with special-
ized RFs (see Fig. 3D), which makes differentiation qualitatively worse and causes
a much longer learning time.

For the simulation of Fig. 3D we chose the value of ) which was used in (L ücke
and von der Malsburg, 2004). For smaller values of constant ) RFs specialize in
the above experiment even slower than in Fig. 3D. For a larger value of ) the RFs
specialize faster but the system’s ability to discriminate between correlated input
patterns decreases. Even if we adjust the value of the constant ) to the above ex-
periment in order to receive the best possible compromise between velocity of RF
specialization and discrimination strength, we can neither qualitatively nor quantita-
tively reproduce the results of hierarchical self-organization.

The differences between hierarchical and non-hierarchical learning become less
pregnant if the input patterns cover a larger fraction of the input layer or if the num-
ber of minicolumns is smaller. With larger numbers of minicolumns the superiority
of hierarchical self-organization further increases, however.
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Figure 3: A Five of the 24 possible input patterns. B Illustration of possible inputs.
The � � � square can be at any position within the grey region. C Hierarchical self-
organization of

� 
 � � minicolumnar RFs. D Non-hierarchical self-organization of� 
 � � minicolumnar RFs.

4.1.2 Hand-Written Digits

We now investigate RF self-organization for a database of input patterns
�

consist-
ing of the hand-written digits zero, one, and seven. The database used is the freely
available subset MNIST8 of the NIST database. It consists of 60000 � � � � � large
grey-level images. For the experiment we only used the digits zero, one, and seven
(see Fig. 4A for some examples). We have chosen this data because it, first, consists
of two-dimensional patterns and is therefore easily displayable, second, it is com-
monly accessible, and, third, it can be expected to contain a hierarchy of subclasses
of mutually similar patterns. In Fig. 4B RF self-organization is displayed for a set of� 
�� � � � � input neurons and a macrocolumn with standard set of parameters and

8MNIST database of hand-written digits, NEC, yann.lecun.com/exdb/mnist/
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Figure 4: A Subset of input patterns of the hand-written digits zero, one, and seven
of the MNIST database. B RF modification of a macrocolumn with

� 
 � mini-
columns if input of the form as displayed in A is presented. C RFs of a macrocol-
umn with

� 
 � minicolumns after 5000 & -cycles. D RFs of a macrocolumn with� 
 � � minicolumns after 5000 & -cycles. E RFs of a macrocolumn with
� 
 � �

minicolumns and non-hierarchical dynamics with ) 
 � ' � �7 after 5000 & -cycles.
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� 
 � minicolumns. From 0 to 100 & -cycles the randomly initialized RFs specialize
to the region where the input neurons are most active. Some RFs coarsely show
preferences to stimuli in the form of vertical bars, e.g.,

�� �
and

�� �
, and others are

rather sensitive to circular stimuli, e.g.,
�� �

. During the first 100 & -cycles the RFs
are rather unstable and can frequently change between various kinds of input pattern
mixtures. In the period from 100 to 500 & -cycles the RF change is still high but
steadily decreases until, after about 500 & -cycles, two groups of RFs have formed.
Group 1, consisting of

�� �
,
�� �

,
�� �

, and
�� �

, is sensitive to zero-type patterns whereas
group 2 is sensitive to one and seven-type inputs or mixtures of them. The groups
remain stable in the sense that no RF of one group will change such that it becomes
sensitive to a pattern of the other group. From 500 to 1000 & -cycles the RFs of
each group further specialize to sub-patterns of their input type. This is especially
obvious for group 2 where

����
and

�� �
form a subgroup specialized to one-type pat-

terns and
�� �

and
�� �

form a subgroup specialized to seven-type patterns. From 1000
to 5000 & -cycles the specialization continues and the formed subgroups decay into
subgroups themselves. After 5000 & -cycles each RF is sensitive to a different char-
acteristic type of input patterns, e.g., RFs

�� �
and

�� �
are both sensitive to one-type

input but
�� �

is rather sensitive to the subtype of vertical lines whereas
�� �

is sensitive
to diagonal patterns of hand-written ones.

Note, that the course of self-organization is only sensitive to the overlap of input
patterns and that there is no neighborhood relationship between the input pixels.
The experiment would produce the same results if all input pixels were permuted.
Induced by the overlap, a neighborhood relationship only exists between the patterns
themselves and as they are two-dimensional in nature, hierarchical self-organization
is reflecting this relationship.

If we apply a macrocolumn with less minicolumns to the data, the final subdivi-
sion is not as fine, see Fig. 4C for

� 
 � , and if there are more minicolumns available,
the subdivision is finer, see Fig. 4D for

� 
 � � . For
� 
 � the system most often

specialized four, two, and two RFs to patterns of type zero, one, and seven, respec-
tively. Sometimes it specialized three RFs to seven-type input but usually only two
for one-type input.

For comparison, the RFs of non-hierarchical self-organization with constant) 
 � ' � �7 are shown after  � � � & -cycles in Fig. 4E. After  � � � � or  � �(� �& -cycles the number of specialized RFs increases but the representation does not
reach the accuracy as with hierarchical self-organization after 5000 & -cycles.

We have seen that hierarchical RF self-organization works well even for strongly
varying patterns. The RFs form classes of patterns by hierarchically decaying into
increasingly smaller groups. Although the groups solely form on the basis of pattern
overlap they represent abstractions of typical hand-written instances of the different
digits9. The overlap similarity relationship is independent of any n-dimensional
space structure such that the system can during learning be expected to become
sensitive to significant classes of more general three or n-dimensional input or of
input with much more complex topological structure.

9Digit recognition systems are generally using more invariant input representations of hand-
written digits, of course.
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4.2 The Continuous Bars Test

In Sec. 4.1 hierarchical RF self-organization found an accurate representation for the
input patterns although many more input patterns existed than RFs were available.
The RFs specialized to patterns which are, in the sense of pattern overlap, located,
e.g., at about equidistant positions of the subspace of the input space in which the
patterns occur (compare Fig. 3C). In this section we will present a class of input pat-
terns which can only be accurately represented if the system extracts basic features
from the input and uses distributed neural coding for pattern representation.

4.2.1 Overlapping Vertical Bars

Let us first more systematically study the ability of the system to accurately represent
the subspace of training patterns. On a set of

� 
 ��� � ��� input neurons we take an
input vector to consist of exactly one vertical four pixel wide bar (see Fig. 5A). We
use cyclic boundary conditions such that there are 16 different such inputs. Note that
a similar experiment without cyclic boundary conditions was discussed in (Spratling,
1999). In Fig. 6 RF self-organization for the same input database is visualized in

�� � �� � �� � �� � �� � �� � �� � �� �
B

A Input patterns

10

100

1000

* -cycles

Figure 5: A 10 randomly chosen input patterns of vertical four pixel wide bars.
B RF modification of a macrocolumn with

� 
 � minicolumns if input of the form
as displayed in A is presented.

another way. The sensitivity of a RF is displayed as an arrow whose orientation
corresponds to the mean x-axis pixel position of bars the RF is sensitive to,

� 
�� � � � �
�
, and the length of the arrow corresponds to the degree of specialization10.

Both visualizations show that the RFs rapidly cover the input pattern space within
the first 50 & -cycles. After 50 & -cycles the input space is rather unevenly covered,
however, and there are RFs specialized for the same region. From 50 to 500 & -cycles
the specialization degree increases until the input pattern space is evenly covered by
the RFs, a property which is especially well observable in Fig. 6. For a number of
minicolumns smaller or larger than

� 
 � RF self-organization is similar and the
space of input patterns is, respectively, more sparsely or more densely covered.

100 means no bar and 1 means exactly one bar is preferred.
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Figure 6: Visualization of RF specialization for a macrocolumn with
� 
 � mini-

columns if input of the type as in Fig. 5A is presented. Each arrow corresponds
to a RF. An arrow’s angle corresponds to the mean x-axis position of the vertical
RF,

� 
 �� � � � �
�
. An arrow’s length is zero if no bar is preferred and one (the cir-

cles radii) if exactly one bar is preferred. The RFs of one macrocolumn during one
simulation are displayed after 10, 50, and 500 & -cycles.

The experiment shows that even if the input does not contain any prominent
classes of mutually similar patterns, the system organizes its RFs such that the input
patterns can be processed appropriately. The RFs organize in a one-dimensional
fashion, i.e., each RF has exactly two nearest neighbors with respect to RF similarity.
The RFs can therefore be displayed like in Fig. 6. Note that the one-dimensional
nature of the RF self-organization is solely induced by the one-dimensional overlap
relation between the bars. The overlap interrelations of the input patterns themselves
induce the dimensionality or, more general, the topology of the RF self-organization
much like the distance interrelation of a metric space gives rise to its topology. If
the input of a ��� � ��� array of input neurons does not consist of all possible vertical
bars but of all possible squares of a certain size, e.g. � � � , the RFs evenly cover a
two dimensional space11 after learning.

4.2.2 The Continuous Bars Test

We now combine the so called bars test (F öldiák, 1990) and the above demonstrated
ability to represent continuous bars to what we will call the continuous bars test.
The input patterns we use consist of superpositions of horizontal and vertical bars of
a width of four pixels. On an input array of ��� � ��� neurons with cyclic boundary
conditions a total of / 
 � � different bars can occur. Each bar we take to appear
in an input image with probability � � (see Fig. 7A for some examples with � � 
 � �

).
In Fig. 7B RF self-organization is shown for / 
 � � bars with � � 
 ��

and
� 
 � �

minicolumns. In the time from 0 to 500 & -cycles the RFs are not very stable and
their degree of specialization is very low. During learning they become more and
more stable, however, and from about 500 & -cycles on their specialization degree
increases until a final RF configuration is established somewhen between 2000 and

11a two dimensional torus for cyclic boundary conditions
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Figure 7: A 20 randomly chosen input patterns of a bars test with 8 bars and con-
tinuously varying bar positions. B RF modifications of a macrocolumn with

� 
 � �
minicolumns if input of the form as displayed in A is presented. C RFs of a macro-
column with

� 
 � minicolumns after 5000 & -cycles. D RFs of a macrocolumn with� 
 � � minicolumns after 5000 & -cycles. E RFs of a macrocolumn with
� 
 � �

minicolumns and non-hierarchical learning after 5000 & -cycles.

5000 & -cycles. In all simulations with this input and
� 
 �(� the x-axis positions of

the vertical RFs and the y-axis positions of the horizontal RFs were evenly spaced
after 5000 & -cycles (see Fig. 8 for an example). Note that the system is stable against
various perturbations of the bars test’s parameters such as noise, bar width variations
or variations of � � . A macrocolumn with

� 
 � � minicolumns with an array of� 
 ��� � ��� input neurons and standard set of parameters usually converges for
a continuous bars test with / 
 ��� bars and � � 
 ��

to a final RF specialization
within the first 2000 & -cycles. If one RF specializes to a superposition of horizontal
and vertical bars like

�� �

in Fig. 7B, the system needs up to about 3000 & -cycles.
Note that it is not possible to determine a time after which the system has found
a representation of all bars. For other numbers of minicolumns, see Fig. 7C,D for� 
 � and

� 
 � � , the outcome of the experiment is the same, i.e., half of the RFs
evenly cover the space of vertical bars and the other half the space of horizonal bars.
Occasionally, however, the numbers of vertical and horizontal RFs differ by a small
number.

In Fig. 7E the RFs of non-hierarchical self-organization are shown for ) 
 � ' � �7
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Figure 8: Visualization of RF specialization for a macrocolumn with
� 
 � � mini-

columns after 5000 & -cycles if input of the type as in Fig. 7A is presented. Each
arrow corresponds to a RF. An arrow in the left-hand-side (lhs) diagram corresponds
to a vertical RF and an arrows in the right-hand-side (rhs) diagram corresponds to
a horizontal RF. An angle of an arrow in the lhs diagram corresponds to the x-axis
position of a vertical RF,

��� $�� � 
 �� � � � �
�
, and the angle of an arrow in the rhs diagram

corresponds to the y-axis position of a horizontal RF,
���  ��	� � 
 
� � � � �

�
. An arrow’s

length is zero if no bar is preferred and one (the circles radii) if exactly one bar is
preferred.

after 5000 & -cycles. As can be observed, the system does not use all its RFs to
represent the space of input patterns, which leads to a less accurate representation
than in the hierarchical case.

4.2.3 The Classical Bars Test

The system can, of course, also be applied to the classical bars test and we will
shorty put forward some results in order to be able to compare hierarchical RF self-
organization with non-hierarchical and with results of other suggested systems. The
input data of the bars test consist of patterns of superpositions of disjunct horizontal
and disjunct vertical bars. In an input pattern ( ��� � ��� pixel in this case) each bar
occurs with the same probability � � (here � � 
 ��

) and all bars are of equal size (four
pixel width in our case).

On first sight, hierarchical self-organization does not promise to be superior to
non-hierarchical self-organization in this experiment because the input does not con-
tain a hierarchy of similarity classes. However, in all experimental settings the hi-
erarchical approach shows a shorter learning time and smaller variations between
simulations. For / 
 � bars and

� 
 �(� minicolumns there is a 50% probability
that the system has found all bars after about 650 & -cycles. After about 500 & -cycles
there is a 20% probability and after 800 we have a probability of about 80% that
all bars are represented (we used 100 simulations for the measurements). A non-
hierarchical system with constant ) 
 � '   �7 needs longer for learning (about 1000



Hierarchical Self-Organization of Minicolumnar Receptive Fields 20

B
bars

8

0 1000 2000 3000 & -cycles

7

6

5

3

2

4 Non-Hierarchical
Hierarchical

Input patternsA

Figure 9: A 20 randomly chosen input patterns of a bars test with 8 bars. B Hier-
archical and non-hierarchical learning of bars. The plots show self-organization in
the course of a bars test with

� 
!� � minicolumns and / 
 � bars. A bar is taken
to be represented if a minicolumn remains active in at least nine of ten & -cycles if
the bar is shown. The number of represented bars is measured at different time steps
(every 5 & -cycles before 500 & -cycles, every 10 between 500 and 1000, and every
20 after 1000 & -cycles) and the average number of represented bars is computed
using 200 simulations. The black graph shows hierarchical learning and the grey
graph shows non-hierarchical learning with ) 
 � ' � �7 . Left limits of the error bars
show the learning time after which there is a 20% probability that 3, 4, 5, 6, and 7
bars are represented, respectively. Right limits show the time after which there is an
80% probability. Black error bars belong to hierarchical learning and grey bars to
non-hierarchical.
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& -cycles for a 50% probability that all bars are represented) and requires about 2400& -cycles to find all bars with a probability of 80%.
In Fig. 9B RF specialization for / 
 � bars and

� 
 � � minicolumns for hier-
archical and non-hierarchical ( ) 
 � ' � �7 ) learning is plotted. As can be seen, the
learning time average of both systems is comparable until about six bars are rep-
resented. The non-hierarchical system subsequently needs on average a very long
time to represent the remaining bars (see Spratling and Johnson, 2002, for a similar
effect). For other numbers of bars or minicolumns (including perturbations such as
noise of bar width variations) the qualitative differences between hierarchical and
non-hierarchical learning are the same and in all test settings hierarchical learning
has shown to be superior to non-hierarchical learning.

The classical bars test has become a benchmark test for feature extracting sys-
tems since it was introduced in (F öldiák, 1990). In the classical bars test mini-
columnar RF self-organization was shown to be highly competitive to other sug-
gested systems (e.g. F öldiák, 1990; Dayan and Zemel, 1995; Hinton et al., 1995;
Hinton and Ghahramani, 1997; Charles and Fyfe, 1998; Hochreiter and Schmidhu-
ber, 1999; O’Reilly, 2001; Spratling and Johnson, 2002) and, furthermore, proved
to be especially robust with respect to various perturbation. Although hierarchi-
cal self-organization is more suitable for data with hierarchical similarity structure
(see, e.g., Fig. 4B), it was shown in the experiment of Fig. 9 that it also improves
performance in the classical bars test. Learning time is reduced significantly, e.g.,
for

� 
 � � minicolumns hierarchical learning needed about 650 & -cycles12 to find
all / 
 � bars while the system described in (L ücke and von der Malsburg, 2004)
needed about 1150 & -cycles13. For

� 
 � � hierarchical learning needed about 4800& -cycles14 to find / 
 ��� bars whereas the non-hierarchical system in (L ücke and
von der Malsburg, 2004) needed about 9100 & -cycles15. These differences are com-
parably significant for other numbers of minicolumns and bars and under different
perturbations.

5 Discussion

Activity dependent Hebbian plasticity (6)-(10) coupled to dynamics of spiking neu-
rons based on columnar organization and background oscillation was shown to re-
sult in hierarchical self-organization of minicolumnar RFs. Self-organization appro-
priately adapted the minicolumn sensitivities to the patterns of different databases.
Hereby, the database can contain nested similarity classes as in experiments 4.1.1
and 4.1.2, continuously overlapping patterns as in Exp. 4.2.1, superpositions of pat-
terns (Exp. 4.2.3), or superpositions of continuously overlapping patterns (see
Exp. 4.2.2). The experiments further show that hierarchical learning is function-
ally advantageous to non-hierarchical learning as presented in (L ücke and von der

12time after which the bars are found in 50% of 100 considered simulations
13less than about 500 * -cycles in 20% and less than 2400 in 80% of the cases
14less than about 3100 in 20% of the cases and less 8400 in 80% of the cases
15less than 3700 in 20% of the cases and less 18500 in 80% of the cases
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Malsburg, 2004). Hierarchical self-organization develops stronger discriminating
RFs, uses all RFs to represent the input, and is faster than non-hierarchical self-
organization. The superiority of the hierarchical approach is especially significant
for larger numbers (about

� " � � ) of minicolumns, which further supports the ne-
cessity of an hierarchical approach if we consider an estimation of about 80 mini-
columns per macrocolumn, e.g., in primary cortical areas (Favorov and Diamond,
1990; Mountcastle, 1997).

The ability of the hierarchical system to adapt its neuron sensitivities such that
the input pattern space is uniformly covered is similar to the ability of self-organizing
maps (SOMs) (Kohonen, 1990; Kohonen, 1995) to appropriately cover a space of
input data. However, SOMs require a predefined distance measure for the input
space as well as a predefined dimensionality of the SOM output space. The here
presented system forms an appropriate topological representation of the input space
solely on the basis of input pattern overlap. It can, therefore, also process input data
whose topology is not equivalent to the one of an n-dimensional Euclidean space.
Thus, the system is rather comparable to a Growing Neural Gas16 (GNG) (Fritzke,
1995) with respect to its topological flexibility. Note, however, that also for the GNG
a predefined distance measure between points of the input space is used whereas our
system uses overlap of extended patterns.

A second and more significant difference between the system here presented and
SOMs or GNGs is the ability of our system to learn from pattern superpositions
and to extract the basic constituents of the patterns as was demonstrated in the bars
test. Furthermore, the neural architecture of our column based system with spiking
neurons is quite different from the one of SOMs or GNGs and we refer to (L ücke and
von der Malsburg, 2004) for a discussion of functional and neuroscientific aspects
of the macrocolumnar neural dynamics. A system which was applied to feature
extraction and to input like the one in Exp. 4.2.1 was described in (Spratling, 1999).
In contrast to our system, the computational units of that network had to be explicitly
one-dimensionally interconnected in order to solve the task of Exp. 4.2.1.

There are various unsupervised systems able to find clusters of mutually similar
or neighboring input. If the input data is continuously distributed over a manifold
with or without well-defined dimensionality, SOMs and GNGs are, respectively, a
popular choice to appropriately represent the data. Again other systems have suc-
cessfully been applied to the bars test, e.g. (F öldiák, 1990; Dayan and Zemel, 1995;
Hinton et al., 1995; Hinton and Ghahramani, 1997; Charles and Fyfe, 1998; Hochre-
iter and Schmidhuber, 1999; O’Reilly, 2001; Spratling and Johnson, 2002), and thus
demonstrated their ability for distributed neural coding. The hierarchical type of
self-organization presented in this paper results, for Exp. 4.1.2, in a natural nested
series of RF subdivisions and in a high discrimination ability due to competition be-
tween already similar RFs. For continuously overlapping input patterns it results in
RFs which evenly cover the corresponding input space. And, though it is not obvious
on first sight, it also decreases learning time in the classical bars test. Hierarchical
self-organization distinguishes the system from the majority of other especially neu-

16a further development of SOMs
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ronal systems which can be applied to the one or other input type. Only for clustering
in the field of data mining hierarchical approaches are frequently used.

The system presented in this paper was, with one set of parameters, not only
successfully applied to all different input types just discussed but, furthermore, is
able to process input consisting of mixtures of the different types. In Exp. 4.2.2
the system’s RFs formed two groups, one specialized to horizontal and one group
specialized to vertical bars. Simultaneously, each group’s RFs organized such that
they evenly covered the space represented by their group (see Fig. 8). In being able
to pass the continuous form of the bars test the system offers unequaled opportunities
especially if compared to other artificial neural networks.

In this paper we considered self-organization of afferents to a single model macro-
column. In the neocortex, however, a number on the order of, coarsely, � � �

mutually
interconnected macrocolumns is estimated (Mountcastle, 1997). In a large number
of experiments, the interconnection structure between the macrocolumns or rather
between the minicolumns were investigated, see e.g. (Rathjen et al., 2002) for a re-
cent study in the visual cortex. The interconnections were found to change in time
(Callaway and Katz, 1990; Chapman et al., 1996) and to reflect the diversity of the
environment in which the subject grew up, e.g. (Schmidt et al., 1997). The statis-
tical prevalence of collinear contours in real world images (see e.g. Kr üger, 1998;
Kaschube et al., 2001), for instance, is reflected by the prevalence of interconnec-
tions between corresponding orientation sensitive columns in the visual cortex (see,
e.g., Schmidt et al., 1997). In the primary visual cortex the interconnections can be
shown to be unspecific at first, i.e., no specialization to specific columns, which is
measured via the clustering of horizontal interconnections, occurs during the first
postnatal days or weeks (Ruthazer and Stryker, 1996; Chapman et al., 1996). The
interconnections only gradually specialize to form interconnections between orien-
tation tuned columns. They first form coarsely clustered interconnections which
gradually refine in time. The refinement can hereby be shown to be the result of
synaptic plasticity rather than cell death and to be input dependent (Ruthazer and
Stryker, 1996; Chapman et al., 1996). Although the interconnection structure and
its development is best studied in primary sensory areas the same mechanisms are
believed to underly horizontal interconnection organization in all cortical areas.

For the intercolumnar connections to be able to specialize to appropriate cells an
input-driven organization principle can be assumed which has properties similar to
the type of self-organization presented here. In networks of macrocolumns hierar-
chical self-organization of minicolumnar RFs has the advantage to gradually struc-
ture the network from coarse to fine. In non-hierarchical self-organization a newly
(and formerly poorly) specialized RF would cause other inter-macrocolumnar con-
nections to reorganize in order to consider the new RF. Reorganization is much less
efficient than refinement induced by hierarchical learning, however. Furthermore, a
coarse to fine process is not only observed neuroanatomically but is also consistent
with our view of high level learning.

The RFs of biological minicolumns of a macrocolumn have to differentiate to
appropriately represent input which can be expected to consist of superpositions of
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spike patterns with continuous overlaps. E.g., orientation columns in the primary
visual cortex are sensitive to basic constituents of natural images which are often
mathematical abstracted using Gabor wavelet-filters (Jones and Palmer, 1987). An-
other example are columns in MT17 which are sensitive to different directions of mo-
tion (Albright et al., 1984). The biological columns equidistantly cover the space of
all possible orientations and all possible directions of motion, respectively. Natural
input consist, e.g., in the case of orientation columns, of superpositions of stimuli
for different orientations which almost certainly lie in between of the represented
orientations. This is, however, the situation which was studied in the continuous
bars test in which hierarchical self-organization has shown to result in appropriate
RFs. A more detailed analysis, e.g., of natural image processing, would go beyond
the scope of this paper especially if considering advanced preprocessing which is
already done before the optical nerve fibers connect to cortical neurons.

Our system models self-organization of RFs of a single cortical macrocolumn
(Favorov and Diamond, 1990; Mountcastle, 1997) and is therefore not directly com-
parable to large scale models (Baxter and Dow, 1989; Obermayer et al., 1990;
Tanaka, 1990; Niebur and W örg ötter, 1993; Miller, 1994; Bednar et al., 2002;
Prod öhl et al., 2003, and others) which intend to study map creation mainly in the
visual cortex (see Erwin et al., 1995; Swindale, 1996, for overviews). We rather
suggest hierarchical self-organization as an underlying mechanism which can lead
to structured afferent connections as well as to structured inner-cortical connections.
In this context, the presented synaptic plasticity has proven to adapt minicolum-
nar RFs to various kinds of inputs in a for pattern representation especially suitable
and compared to other systems extraordinarily flexible manner. Hierarchical self-
organization matches properties required from the plasticity of biological RFs and
is in particular modeling their hierarchical formation.
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K örner, E., Gewaltig, M. O., K örner, U., Richter, A., and Rodemann, T. (1999). A
model of computation in neocortical architecture. Neural Networks, 12:989 –
1005.
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