Literaturverzeichnis

  1. F. Schöpfer. Linear convergence of descent methods for the unconstrained minimi- zation of restricted strongly convex functions. SIAM J. Optim., 26(3):1883 1911, 2016.

  2. L. Siemer, F. Schöpfer, and D. Kleinhans. Cost-optimal operation of energy storage units: Bene ts of a problem-speci c approach. Journal of Energy Storage, 6:11 21, 2016.

  3. F Binder, F Schöpfer, and T Schuster. Defect localization in bre-reinforced compo- sites by computing external volume forces from surface sensor measurements. Inverse Problems, 31(2), 2015. 22 pages.

  4. D. A. Lorenz, S. Wenger, F. Schöpfer, and M. Magnor. A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. In 2014 IEEE International Conference on Image Processing (ICIP), pages 1347 1351. IEEE, 2014.

  5. D. A. Lorenz, F. Schöpfer, and S. Wenger. The linearized Bregman method via split feasibility problems: Analysis and generalizations. SIAM J. Imaging Sciences, 7(2):1237 1262, 2014.

  6. F. Schöpfer, F. Binder, A. Wösteho , T. Schuster, S. von Ende, S. Föll, and R. Lam- mering. Accurate determination of dispersion curves of guided waves in plates by applying the matrix pencil method to laser vibrometer measurement data. CEAS Aeronautical Journal, 2013. 8 pages, DOI:10.1007/s13272-012-0055-7.

  7. F. Schöpfer. Exact regularization of polyhedral norms. SIAM J. Optim., 22(4):1206 1223, 2012.

  8. T. Schuster, R. Rieder, and F. Schöpfer. The approximate inverse in action: IV. semi-discrete equations in a Banach space setting. Inverse Problems, 28(10), 2012.

  9. F. Schöpfer, F. Binder, A. Wösteho , and T. Schuster. A mathematical analysis of the strip element method for the computation of dispersion curves of guided waves in anisotropic layered media. Mathematical Problems in Engineering, 2010, 2010. 17 pages, doi:10.1155/2010/924504.

  10. T. Schuster and F. Schöpfer. Solving linear operator equations in Banach spaces non-iteratively by the method of approximate inverse. Inverse Problems, 26, 2010.

  11. B. Kaltenbacher, F. Schöpfer, and T. Schuster. Iterative methods for nonline- ar ill-posed problems in Banach spaces: convergence and applications to para- meter identi cation problems. Inverse Problems, 25, 2009. DOI:10.1088/0266- 5611/25/6/065003.

  12. F. Schöpfer and T. Schuster. Acceleration of the generalized Landweber method in Banach spaces via sequential subspace optimization. Journal of Inverse and Ill-posed Problems, 17(1):91 99, 2009.

  13. F. Schöpfer and T. Schuster. Fast regularizing sequential subspace optimization in Banach spaces. Inverse Problems, 25(1), 2009.

  14. F. Schöpfer, T. Schuster, and A. K. Louis. An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Problems, 24, 2008.

  15. F. Schöpfer, T. Schuster, and A. K. Louis. Metric and Bregman projections onto af- ne subspaces and their computation via sequential subspace optimization methods. JIIP, 16(5):479 506, 2008.

  16. T. Bonesky, K. Kazimierski, P. Maass, F. Schöpfer, and T. Schuster. Minimization of Tikhonov functionals in Banach spaces. Abstract and Applied Analysis, 2008. Article ID 192679, 19 pages.

  17. F. Schöpfer, A. K. Louis, and T. Schuster. Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Problems, 22:311 329, 2006.