1. F.Schöpfer, and D. A. Lorenz. Linear convergence of the randomized sparse Kaczmarz method. Mathematical Programming, 2018. doi:10.1007/s10107-017-1229-1.
  2. F. Schöpfer. Linear convergence of descent methods for the unconstrained minimization of restricted strongly convex functions. SIAM J. Optim., 26(3):1883-1911, 2016.
  3. L. Siemer, F. Schöpfer, and D. Kleinhans. Cost-optimal operation of energy storage units: Benefits of a problem-specific approach. Journal of Energy Storage, 6:11-21, 2016.
  4. F. Binder, F. Schöpfer, and T. Schuster. Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements. Inverse Problems, 31(2), 2015.
  5. D. A. Lorenz, S. Wenger, F. Schöpfer, and M. Magnor. A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. In 2014 IEEE International Conference on Image Processing (ICIP), pages 1347-1351, 2014.
  6. D. A. Lorenz, F. Schöpfer, and S. Wenger. The linearized Bregman method via split feasibility problems: Analysis and generalizations. SIAM J. Imaging Sciences, 7(2):1237-1262, 2014.
  7. F. Schöpfer, F. Binder, A. Wöstehoff , T. Schuster, S. von Ende, S. Föll, and R. Lam- mering. Accurate determination of dispersion curves of guided waves in plates by applying the matrix pencil method to laser vibrometer measurement data. CEAS Aeronautical Journal, 2013.
  8. F. Schöpfer. Exact regularization of polyhedral norms. SIAM J. Optim., 22(4):1206-1223, 2012.
  9. T. Schuster, R. Rieder, and F. Schöpfer. The approximate inverse in action: IV. semi-discrete equations in a Banach space setting. Inverse Problems, 28(10), 2012.
  10. F. Schöpfer, F. Binder, A. Wöstehoff , and T. Schuster. A mathematical analysis of the strip element method for the computation of dispersion curves of guided waves in anisotropic layered media. Mathematical Problems in Engineering, 2010.
  11. T. Schuster and F. Schöpfer. Solving linear operator equations in Banach spaces non-iteratively by the method of approximate inverse. Inverse Problems, 26, 2010.
  12. B. Kaltenbacher, F. Schöpfer, and T. Schuster. Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identifcation problems. Inverse Problems, 25, 2009.
  13. F. Schöpfer and T. Schuster. Acceleration of the generalized Landweber method in Banach spaces via sequential subspace optimization. Journal of Inverse and Ill-posed Problems, 17(1):91 99, 2009.
  14. F. Schöpfer and T. Schuster. Fast regularizing sequential subspace optimization in Banach spaces. Inverse Problems, 25(1), 2009.
  15. F. Schöpfer, T. Schuster, and A. K. Louis. An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Problems, 24, 2008.
  16. F. Schöpfer, T. Schuster, and A. K. Louis. Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods. JIIP, 16(5):479-506, 2008.
  17. T. Bonesky, K. Kazimierski, P. Maass, F. Schöpfer, and T. Schuster. Minimization of Tikhonov functionals in Banach spaces. Abstract and Applied Analysis, 2008.
  18. F. Schöpfer, A. K. Louis, and T. Schuster. Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Problems, 22:311-329, 2006.