Handbook of modules
for the
Master of Science programme

Neurocognitive Psychology

Date: February 26th, 2015
Contents:

Introduction: ... 3
Overview: ... 4
Module psy110: Research Methods ... 5
Module psy120: Psychological Assessment and Diagnostics ... 6
Module psy130: Communication of Scientific Results .. 7
Module psy140: Minor .. 8
Module psy150: Clinical Psychology ... 9
Module psy160: Psychophysics of visual perception and illusions ... 10
Module psy170: Neurophysiology .. 11
Module psy180: Neurocognition ... 12
Module psy190: Sex and Cognition ... 13
Module psy200: Neuropsychology .. 14
Module psy210: Applied Cognitive Psychology ... 15
Module psy220: Human Computer Interaction .. 16
Module psy230: Neuromodulation of Cognition ... 17
Module psy240: Computation in Neuroscience ... 18
Module psy250: Internship .. 19
Module psy260: Practical project – Applied Cognitive Psychology ... 20
Module psy260: Practical project – Cognitive Psychology and Psychophysics 21
Module psy260: Practical project – Experimental Psychology ... 22
Module psy260: Practical project – Experimental Neuropsychology ... 23
Module psy260: Practical project -- Functional Neuroimaging ... 24
Module mam: Masters thesis .. 25
Introduction:

The Handbook of modules lists all modules of the MSc programme Neurocognitive Psychology. Each module description gives the following information:

- Name of the module
- Goals of the module
- Contents of the module
- The teaching methods of the module
- Requirements for participation within a module
- The effort for the student
- The number of credit points
- The method of assessment
- The person responsible

The programme is composed of four parts. The general part contains four mandatory modules comprising 36 CP. The specialized part contains ten modules (with a total of 69 CP) from which students are free to choose at least four with a minimum total of 30 CP. Students should be aware that a total of 30 CP can be achieved by choosing either 5 modules worth 6 CP each or 2 modules worth 9 CP each and 2 modules worth 6 CP each. The programme lasts two years or four semesters, during which a total of 120 CP must be achieved. This includes 15 CP for an internship lasting 12 weeks and 30 CP for completing the Masters thesis with the accompanying Masters colloquium. Another 9 CP must be acquired via the practical project which can be carried out in one of the Psychology labs at Carl von Ossietzky Universität, another research lab, or in a clinical institution. The programme is designed in a modular fashion. The number of mandatory modules decreases towards the end of the programme, offering increased flexibility to the students.
Overview:

The Masters programme *Neurocognitive Psychology* has the following structure:

General part (mandatory): 36 CP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>psy110</td>
<td>Research methods</td>
<td>12 CP</td>
</tr>
<tr>
<td>psy120</td>
<td>Psychological Assessment and Diagnostics</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy130</td>
<td>Communication of scientific results</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy140</td>
<td>Minor</td>
<td>9 CP</td>
</tr>
</tbody>
</table>

Specialized part (choose 5*6, or 2*9 + 2*6): 30 CP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>psy150</td>
<td>Clinical Psychology</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy160</td>
<td>Psychophysics of visual perception and illusions</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy170</td>
<td>Neurophysiology</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy180</td>
<td>Neurocognition</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy190</td>
<td>Sex and Cognition</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy200</td>
<td>Neuropsychology</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy210</td>
<td>Applied Cognitive Psychology</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy220</td>
<td>Human Computer Interaction</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy230</td>
<td>Neuromodulation of Cognition</td>
<td>6 CP</td>
</tr>
<tr>
<td>psy240</td>
<td>Computation in Neuroscience</td>
<td>9 CP</td>
</tr>
</tbody>
</table>

Project part (psy250 mandatory; choose 1 practical project): 24 CP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>psy250</td>
<td>Internship or lab visit</td>
<td>15 CP</td>
</tr>
<tr>
<td>psy260</td>
<td>Practical project Applied Cognitive Psychology</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy260</td>
<td>Practical project Cognitive Psychology and Psychophysics</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy260</td>
<td>Practical project Experimental Psychology</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy260</td>
<td>Practical project Experimental Neuropsychology</td>
<td>9 CP</td>
</tr>
<tr>
<td>psy260</td>
<td>Practical project Functional Neuroimaging</td>
<td>9 CP</td>
</tr>
</tbody>
</table>

Masters part (mandatory): 30 CP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>mam</td>
<td>Masters thesis (27 CP) and Masters colloquium (3 CP)</td>
<td>30 CP</td>
</tr>
</tbody>
</table>

Total: 120 CP
Handbook of modules for MSc in "Neurocognitive Psychology"

<table>
<thead>
<tr>
<th>Degree:</th>
<th>Master of Science in Neurocognitive Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module psy110: Research Methods</td>
<td></td>
</tr>
<tr>
<td>Goals of module:</td>
<td>Students will acquire basic knowledge about the planning of an empirical investigation, setting up computer-controlled experiments, multivariate statistical data analysis, and the interpretation, evaluation and synthesis of empirical results.</td>
</tr>
<tr>
<td></td>
<td>Competencies: Ability to analyse, and document, a complex data set in both an explorative manner and guided by hypotheses using appropriate computer programs; competency to think analytically and to critically reflect diverse methodological approaches.</td>
</tr>
<tr>
<td>Contents:</td>
<td>Part 1: Multivariate Statistics I</td>
</tr>
<tr>
<td></td>
<td>• Basic concepts of probability, statistical inference, graphical representation of data</td>
</tr>
<tr>
<td></td>
<td>• Linear regression (simple and multiple) and analysis of variance</td>
</tr>
<tr>
<td></td>
<td>• Logistic regression, multivariate t-test</td>
</tr>
<tr>
<td></td>
<td>Part 2: Evaluation research</td>
</tr>
<tr>
<td></td>
<td>• Methods and paradigms of evaluation</td>
</tr>
<tr>
<td></td>
<td>• Multidimensional Scaling and cluster analysis</td>
</tr>
<tr>
<td></td>
<td>• Decision making, meta-analysis</td>
</tr>
<tr>
<td></td>
<td>Part 3: Computer-controlled experimentation</td>
</tr>
<tr>
<td></td>
<td>• Computer hardware basics</td>
</tr>
<tr>
<td></td>
<td>• Scripting and programming in Presentation</td>
</tr>
<tr>
<td></td>
<td>• Combining stimulus delivery with EEG</td>
</tr>
<tr>
<td></td>
<td>• Temporal precision</td>
</tr>
<tr>
<td></td>
<td>Part 4: Multivariate Statistics II</td>
</tr>
<tr>
<td></td>
<td>• Principal component analysis and factor analysis</td>
</tr>
<tr>
<td></td>
<td>• Classification and discrimination</td>
</tr>
<tr>
<td></td>
<td>• Survival analysis</td>
</tr>
<tr>
<td></td>
<td>• Advanced methods (e.g., Bayesian estimation, ICA, machine learning)</td>
</tr>
<tr>
<td>Teaching methods:</td>
<td>Parts 1 and 4: lecture/lab (2 x 1/1 SWS)</td>
</tr>
<tr>
<td></td>
<td>Parts 2 and 3: 2 seminars (2 x 2 SWS)</td>
</tr>
<tr>
<td>Requirements for participation:</td>
<td>Enrolment in Masters programme.</td>
</tr>
<tr>
<td></td>
<td>The module will be offered every winter term and lasts two semesters.</td>
</tr>
<tr>
<td>Effort:</td>
<td>Attendance: 112 h (8 SWS), learning: 248 h., total: 360 h.</td>
</tr>
<tr>
<td>Credit points:</td>
<td>Total number of credit points for the module: 12 (3 CP for each part)</td>
</tr>
<tr>
<td>Assessment:</td>
<td>The module will be tested with an oral exam (20 min).</td>
</tr>
<tr>
<td></td>
<td>A bonus system will be employed.</td>
</tr>
<tr>
<td>Person responsible:</td>
<td>Prof. Dr. Hans Colonius</td>
</tr>
</tbody>
</table>
Degree:
Master of Science in Neurocognitive Psychology

Module psy120: Psychological Assessment and Diagnostics

Goals of module:
Students will acquire specific knowledge about psychological assessment and shall be able to utilize the knowledge both within a research context and within an applied context.

Competencies:
Ability to analyse a psychological question in terms of psychological assessment, design and plan the assessment process, select appropriate means, techniques and instruments, apply methods and conduct measurements, analyse and combine gathered information, draw conclusions, write reports and deliver expert opinion, reflect on the assessment process, follow ethical and professional rules.

Contents:

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | Introduction to Psychological Assessment | models and approaches
methods, processes, guidelines
theory of testing, approaches to test construction |
| 2 | Psychological Testing | types of tests
exercises in testing / practising tests |
| 3 | Assessment in Clinical Neuropsychology | specific knowledge
exercises in testing / practising tests |

Literature:

Teaching methods:

<table>
<thead>
<tr>
<th>Part</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Requirements for participation:

Enrolment in Masters programme.

The module will be offered every winter term and lasts two semesters.

Effort:

Attendance: 84 h. (6 SWS), learning: 186 h., total: 270 h.

Credit points:

- Total number of credit points for the module: 9 (3 CP for each part)

Assessment:

- The module will be tested by a practical exercise (test application and protocol).
- A bonus system will be employed.

Person responsible:

Dr. Andreas Hellmann
| Degree:
Master of Science in Neurocognitive Psychology |
Module psy130: Communication of Scientific Results |

Goals of module:
Students will acquire specific knowledge about the presentation of scientific results both orally and in writing. Students will learn modern techniques for presentation, literature research and writing skills. They will also be taught about arguing scientifically.

Competencies:
Scientific literacy, team- and group work, presentation techniques, time- and project management.

Contents:
Part 1: Communication of scientific results
- Literature search
- Presentation skills
- Writing skills

Part 2: Psychological colloquium
- Experienced scientists from various psychological disciplines will be giving talks about their experimental results. Speakers will be invited also from other universities. Students are encouraged to discuss the results with the experts.

Literature:

Teaching methods:
Communication of scientific results: 1 seminar (2 SWS)
Psychological colloquium: 1 colloquium (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
Module Part 1 will be offered every winter term.
Module Part 2 will be offered every semester.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module requires an oral presentation that will be evaluated.
- A bonus system will be employed.

Person responsible:
Prof. Dr. Christoph Herrmann
Degree:
Master of Science in Neurocognitive Psychology

Module psy140: Minor

Goals of module:
Students will gain an overview of non-psychological topics related to cognitive neuroscience. This is intended to enable students to see how psychological theories apply in other fields. German speaking students are free to choose a language course not in their mother tongue (maximum of 6 CP for this module). Possible modules are listed below.

Competencies:
Interdisciplinary thinking

Contents:
- Cellular and molecular biology
- Behavioural neurobiology
- Psychophysics and Audiology
- Artificial intelligence and knowledge representation
- Man machine interaction (not in combination with Human Computer Interaction)
- Computational neuroscience
- Evolutionary biology
- Rehabilitation pedagogics (taught in German)
- Linear models
- General linear models and semiparametric models
- Philosophy (taught in German)
- German as a foreign language (for non-German students)
- English, French, or Spanish (if not mother tongue)

Teaching methods:
Lectures and seminars (depends on the chosen modules)

Requirements for participation:
Enrolment in Masters programme.

Effort:
Attendance: 14 h. (1 SWS), learning: 226 h., total: 240 h.

Credit points:
- Total number of credit points for the module: 9 CP

Assessment:
- If grades are earned in the minor, those are counted as pass/fail. Certificates for grades can be separately requested from the examination office.

Person responsible:
Lecturer of the respective module.
Degree:

Master of Science in Neurocognitive Psychology

Module psy150: Clinical Psychology

Goals of the Module:

This module provides students with theoretical and practical knowledge on the clinical-psychological basis of psychological symptoms and methods of interventions (part 1). Part 2 will emphasise neurochemical correlates of mental disorders and approaches to pharmacological treatment. Part 3 and 4 will focus on specific interventions in mental disorders and organic brain diseases from an applied clinical and a neuroscientific approach.

Competencies:

- Scientifically sound, critical thinking regarding the prevention, genesis and treatment of various mental illnesses;
- Decision making based on the medical guidelines, an appreciation of ethical and social issues in diagnosis and treatment of mental disorders.

Contents:

Part 1: Mental Disorders and psychotherapeutic intervention

- Classification of emotional and cognitive disorders
- Approaches to psychotherapeutic intervention within the framework of evidence-based results of psychotherapy research

Part 2: Psychopharmacology

- Basics of neurotransmission and psychopharmacology; behavioural and neural mechanisms of drug abuse and addiction
- Drugs of abuse (psychostimulants, hallucinogenics, legal drugs)
- Neurochemical correlates and pharmacological treatment of mental disorders

Part 3: Abnormal psychology from the perspective of clinical neuroscience

- Conventional and new treatment forms (incl. hands-on sessions)
- Associated complex dysfunctions of the brain within psychopathology

Part 4 (optional, in German): Topics in Clinical Neuropsychology

- Concepts of evidence based treatment
- Treatment of neurodegenerative diseases
- Treatment of acquired dysfunctions of the brain

Literature:

Teaching methods:

- 2 lectures (part 1 and 2, 4 SWS), 1 seminar (part 3, 2 SWS), 1 optional seminar (part 4, 2 SWS)

Requirements for participation:

- Enrolment in Masters programme.
- Part 1 and 2 will be offered every winter term, part 3 and 4 every summer term.

Effort:

- Attendance: 84 h. (6 SWS), learning: 186 h., total: 270 h.

Credit Points:

- Total number of credit points: 9 (3 for module parts 1, 2, 3 each)

Assessment:

- The module will be tested with a written exam (2 h).
- A bonus system will be employed.

Person responsible:

Prof. Dr. Christiane Thiel
Degree:
Master of Science in Neurocognitive Psychology

Module psy160: Psychophysics of visual perception and illusions

Goals of module:
The aim of this module is to provide students with general knowledge on visual perception and psychophysics (part 1). In part 2, an experimental background on how the human brain processes information from the outside world will be provided. To this end, students will not only learn to extract knowledge from scientific articles but also to plan and conduct an experiment on visual perception and to analyse the data.

Competencies:
Scientific literacy, critical and integrative thinking, practice in experimentation, techniques for the presentation of scientific results, analysis of experimental data, communicative competencies.

Contents:
Part 1: Introduction to visual perception and illusions
- Anatomy and physiology of the human visual system
- Theories of vision
- Psychophysics
- Visual illusions

Part 2: Investigating visual illusions
- Defining research questions on a specific illusion
- Planning and conducting an experiment
- Analyzing experimental data

Literature:
- Palmer (1999), Vision Science, MIT Press

Teaching methods:
Part 1: 1 lecture (2 SWS)
Part 2: 1 seminar (2 SWS)

Requirements for participation:
Enrolment in Masters programme
The module will be offered every summer term and lasts one semester.

Effort:
Attendance: 56 h. (4 SWS), **learning:** 124 h., **total:** 180 h.

Credit points:
- Total number of credit points for the module: 6 CP (3 CP for each module part)

Assessment:
- The module will be tested with an oral presentation in the seminar.
- A bonus system will be employed.

Person responsible:
Prof. Dr. Christoph Herrmann
Degree:
Master of Science in Neurocognitive Psychology

Module psy170: Neurophysiology

Goals of module:
Students will acquire specific knowledge about neurophysiology and neuroanatomy, learn the fundamental concepts of multi-channel EEG analysis, and acquire hands-on skills in using EEGLAB, an open-source software toolbox for advanced EEG analysis.

Competencies:
Understanding of basic concepts of biomedical signal processing; using EEG analysis tools interactively and independently; understanding the complete chain of EEG analysis steps, from data import to the illustration of results; ability to use open source tools for EEG analysis; application of theoretical knowledge to practical problems of physiology.

Contents:

Part 1: Neurophysiology and neuroanatomy
- Neurophysiology, EEG, EMG, ECG
- Neuroanatomy
- Time-domain and frequency-domain analysis methods

Part 2: EEG recording and analysis
- Recording and analysis of biomedical signals
- Averaging, filtering, signal-to-noise
- Topographical EEG analysis

Part 3: EEG analysis with Matlab
- EEGLAB file I/O, data structure and scripting
- Preprocessing, artefact rejection and artefact correction
- Statistical decomposition
- Event-related potentials, topographical mapping and power spectra
- Illustration of results

Literature:

Teaching methods:
Part 1: 1 lecture (1 SWS)
Part 2: 1 lab (1 SWS)
Part 3: 1 lab (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
The module will be offered every winter term and lasts two semesters.
Participation in ‘Introduction to scientific programming, part 1’ is recommended.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 CP

Assessment:
- The module will be tested with a written exam of 2 h duration.
- A bonus system will be employed.

Person responsible:
Prof. Dr. Stefan Debener
Degree:
Master of Science in Neurocognitive Psychology

Module psy180: Neurocognition

Goals of module:
Students will first acquire a general understanding of the brain mechanisms of different cognitive functions and the methods used to study these functions. They will then apply this knowledge by discussing current research topics (part 1). General knowledge will be focused on the relation between the development of the human brain and the cognitive processes it supports (part 2). Students should be able to recognize and critically evaluate the value of considering neuroscience in the study of psychological topics.

Competencies:
Understanding of scientific literature and scientific talks; application of knowledge to different subject areas; interdisciplinary and integrative thinking; mastery of techniques for the presentation of scientific results; ability to discuss current research topics.

Contents:
Part 1: Introduction to cognitive neuroscience
- Brain and cognition, methods of cognitive neuroscience
- Attention, learning and memory
- Emotional and social behaviour
- Language, executive functions

Part 2: Neurocognitive development
- Brain development and cortical plasticity
- Effects of early-life stress on brain development
- Development of object recognition, social cognition, memory, and executive functions

Literature:

Teaching methods:
Part 1: 1 lecture (1 SWS) and one seminar including online lectures (1 SWS)
Part 2: 1 seminar (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
The module will be offered every winter term and lasts one semester.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module will be tested with a written exam of 2 h duration in the term holidays (usually March). A bonus system will be employed.

Person responsible:
Prof. Dr. Christiane Thiel
Degree:
Master of Science in Neurocognitive Psychology

Module psy190: Sex and Cognition

Goals of module:
Students will acquire specific knowledge about sex differences in cognitive abilities and social behaviours. They will be able to understand the interrelated impact of social and biological influences on the brain’s control of the (sex-specific) behaviours. Students should be able to critically evaluate behavioural sex differences from different perspectives and to reflect on possible implications for society.

Competencies:
Scientific literacy; critical and integrative thinking; techniques for the presentation of scientific results; communicative competencies.

Contents:

Part 1: Introduction to the study of sex differences
- The measurement of sex differences
- Sex differences in emotion
- Sex differences in aggression
- Sex differences in cognitive abilities
- Hormones, sexual differentiation, and gender identity
- Sex hormones and play preferences
- Sex differences in hemispheric organization
- Brain size and intelligence

Part 2: Sex, brain, and behaviour
- Sex differences in empathy
- The extreme male brain theory of autism (S. Baron-Cohen)
- Sex differences in neuropsychiatric disorders
- Sex differences in stress response
- Social implications of sex differences

Literature:

Teaching methods:
Part 1: 1 lecture (2 SWS)
Part 2: 1 seminar (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
The module will be offered every summer term and lasts one semester.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module requires an oral presentation that will be evaluated.

Person responsible:
apl. Prof. Dr. Daniel Strüber
Degree:
Master of Science in Neurocognitive Psychology

Module psy200: Neuropsychology

Goals of module:
Students will learn to understand changes in thinking and behaviour that may arise from brain dysfunctions (part 1, 4), acquire specific knowledge on multisensory processes (part 2), and learn to understand, communicate and evaluate progress in clinical practice and experimental research in neuropsychology (part 3, 4).

Competencies:
Ability to acquire neuropsychological knowledge and put this into a broader psychological context; ability to communicate and evaluate neuropsychological information

Contents:

Part 1: Introduction to Clinical Neuropsychology
- Cortical lobes (anatomy, functions, lesion symptoms, neuropsychological tests)
- Higher functions (learning & memory, language, emotion, spatial behavior, attention)
- Plasticity and disorders (development, learning and reading disabilities, recovery)

Part 2: Topics in Experimental Neuropsychology
- Neural properties of sensory processing in a multiple sensory systems framework
- Human brain studies of multisensory processes
- Cross-modal plasticity

Part 3: Research Colloquium Clinical and Experimental Neuropsychology
- Presentations covering recent advances in the field of Experimental and Clinical Neuropsychology

Part 4: Topics in Clinical Neuropsychology (in German)
- Clinical neuroanatomy
- Neurodegenerative diseases
- Dementia

Literature:

Teaching methods:

Part 1	1 lecture (2 SWS)
Part 2	1 seminar (2 SWS)
Part 3	1 colloquium (2 SWS)
Part 4	1 seminar (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
The module will be offered every winter term and lasts two semesters.

Effort:
Attendance: 84 h. (6 SWS), learning: 186 h., total: 270 h.

Credit points:
- Total number of credit points: 9 (3 CP for each module part, choose 3 of 4)

Exam:
- The module will be tested with a written exam of 2 h duration.
- A bonus system will be employed.

Person responsible:
Prof. Dr. Stefan Debener
Degree:
Master of Science in Neurocognitive Psychology

Module psy210: Applied Cognitive Psychology

Goals of the module:
The module aims to provide an overview of theories of (Neuro)Cognitive Psychology with potential for application. It will cover core concepts of cognitive psychology, their neuronal basis, basic knowledge of neuroimaging and data analysis techniques. Special emphasis will be put on research aiming at complex real-world settings and translation of basic science into practice. Examples of successful transfers will be analyzed. Parts 1 (lecture) and 2 (seminar) will run in parallel. The lecture provides the theoretical basis. In the seminar the material is consolidated by examples from the literature will be presented and critically analyzed and discussed.

Competencies:
Specific: On completion of this module students should have a repertoire of cognitive psychology concepts relevant for real world situations, be able to transfer the learned theoretical concepts into practical contexts and evaluate potential issues arising in the process of translation. General: Presentation as well as critical evaluation and discussion of scientific literature, application of research methods, transfer of scientific paradigms (concepts and methods) to real-world situations.

Contents:
Part 1: (Neuro)Cognitive Psychology in the wild I (lecture)
- Neurocognitive Psychology with emphasis in real world context
- Methodological considerations: Generalization, validity of theories and research methods
- Information uptake and representation: Sensation, perception, categorization
- Selection of information and capacity: Attention and memory enhancement and failure
- Generation and communication: Language, reading, dyslexia
- Pursuing goals: Thinking, problem solving and acting

Part 2: (Neuro)Cognitive Psychology in the wild II (seminar)
- In the accompanying seminar we will work through recent examples in the literature for topics of the lecture. The goal is to apply novel knowledge from the lecture to understand and critically discuss actual research approaches.

Literature:

Teaching methods:
Part 1: 1 lecture (2 SWS), Part 2: 1 seminar (2 SWS). Both parts will run in parallel.

Requirements for participation:
Enrolment in Masters programme.
The module will be offered in summer terms and should be completed within one semester.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module will be evaluated with a written exam of 2 h duration. A bonus system will be employed.

Person responsible:
Prof. Dr. Jochem Rieger
Degree:
Master of Science in Neurocognitive Psychology

Module psy220: Human Computer Interaction

Goals of module:
In this module we will address human computer interaction (HCI) in its interdisciplinary requirements focusing on the perspective from neurocognitive psychology. The goal of the module is to provide students with basic skills required to plan, implement and evaluate devices for human computer interaction. As a specific goal the module works toward the implementation of a brain computer interface (BCI). BCIs are ideal showcases as they fully span the interdisciplinary field of HCI design, implementation and evaluation.

Competencies:
Specific: The students learn core concepts in Human Computer Interaction plus data recording and analysis techniques related to Brain Machine Interfacing.
General: Interdisciplinary thinking, group work, project management.

Contents:
Part 1: Foundations of HCI and BCI
- Human information processing and models of human cognition (Perception, attention, memory, emotion and individual differences)
- Computer interfaces for interaction
- Data analysis techniques for brain machine interfacing (time series analysis, feature selection, classification)
- Evaluation techniques

Part 2: HCI and BCI in practice.
- The second part of the module builds upon the theoretical concepts elaborated in the first. We will work through recent applications published in the literature and, where applicable, implement parts of a BCI-system and conduct experiments.

Literature:
- Additional literature and material will be provided on the course website.

Teaching methods:
Part 1: 1 lecture (2 SWS)
Part 2: 1 practical course (2 SWS)

Requirements for participation:
Enrolment in Masters program or other programs related to the field (e.g. computer science, physics etc.). Knowledge in statistical data analysis techniques and/or programming (e.g. Module N) is desirable. The module will start every summer term with part 1. Part 2 will be offered in the winter term.

Effort:
Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module will be evaluated with an oral exam (20 min).
- A bonus system will be employed.

Person responsible:
Prof. Dr. Jochem Rieger
Goals of module:
The aim of this module is to provide students with a theoretical background on how cognitive functions can be altered via neuromodulation.

Competencies:
Understanding of the concepts of neuromodulation; application of theoretical knowledge of neurophysiology to the modulation of cognitive functions.

Contents:

Part 1: Neuromodulation of cognition
- Neurotransmitter systems of cognition
- Neuropharmacological intervention
- Neuroenhancement
- Neurofeedback
- Neurostimulation

Part 2: Neurofeedback
- Neurofeedback in control and therapy
- EEG-Neurofeedback
- EMG-Neurofeedback
- Transcranial magnetic stimulation
- Deep brain stimulation
- Patient safety

Literature:

Teaching methods:
Part 1: 1 lecture (2 SWS)
Part 2: 1 seminar (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
The module will be offered every winter term and lasts one semester.

Effort:
- Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.

Credit points:
- Total number of credit points for the module: 6 (3 CP for each module part)

Assessment:
- The module will be evaluated with an oral presentation in the seminar.
- A bonus system will be employed.

Person responsible:
Prof. Dr. Jochem Rieger
<table>
<thead>
<tr>
<th>Degree:</th>
<th>Master of Science in Psychology and Cognitive Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulepsy240: Computation in Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Goals of module:</td>
<td>Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition.</td>
</tr>
<tr>
<td>Competencies:</td>
<td>Analytical thinking and structured problem solving; judging the appropriateness and complexity of computational problems and solutions; independent scientific programming.</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>Part 1: Introduction to scientific programming I</td>
<td></td>
</tr>
<tr>
<td>- Basic data types and structures</td>
<td></td>
</tr>
<tr>
<td>- Flow control (conditions, loops, errors)</td>
<td></td>
</tr>
<tr>
<td>- Functions</td>
<td></td>
</tr>
<tr>
<td>Part 2: Introduction to scientific programming II</td>
<td></td>
</tr>
<tr>
<td>- Classes and objects</td>
<td></td>
</tr>
<tr>
<td>- Graphical user interfaces</td>
<td></td>
</tr>
<tr>
<td>- EEG processing</td>
<td></td>
</tr>
<tr>
<td>Part 3: Machine learning in neuroscience: basics</td>
<td></td>
</tr>
<tr>
<td>- Fundamentals of machine learning</td>
<td></td>
</tr>
<tr>
<td>- Basics of brain-computer-interfaces</td>
<td></td>
</tr>
<tr>
<td>Part 4: Neurocognitive modelling</td>
<td></td>
</tr>
<tr>
<td>- Mathematical models in psychology</td>
<td></td>
</tr>
<tr>
<td>- Discriminability</td>
<td></td>
</tr>
<tr>
<td>Literature:</td>
<td>Mathworks (2009): MATLAB online documentation</td>
</tr>
<tr>
<td>- Dayan, Peter (2005): Theoretical Neuroscience, MIT Press</td>
<td></td>
</tr>
<tr>
<td>Teaching methods:</td>
<td>Part 1: 1 seminar (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Part 2: 1 seminar (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Part 3: 1 seminar (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Part 4: 1 lab (1 SWS)</td>
</tr>
<tr>
<td>Requirements for participation:</td>
<td>Enrolment in Masters programme.</td>
</tr>
<tr>
<td></td>
<td>The module will be offered every winter term and lasts two semesters.</td>
</tr>
<tr>
<td>Effort:</td>
<td>Attendance: 56 h. (4 SWS), learning: 124 h., total: 180 h.</td>
</tr>
<tr>
<td>Credit points:</td>
<td>Total number of credit points for the module: 9.</td>
</tr>
<tr>
<td>Assessment:</td>
<td>The participants will have to independently develop and program a solution for a given neuroscientific problem. Both the written code as well as the documentation of the approach taken will be assessed.</td>
</tr>
<tr>
<td>Person responsible:</td>
<td>N.N.</td>
</tr>
</tbody>
</table>
Degree:
Master of Science in Neurocognitive Psychology

Module psy250: Internship

Goals of module:
The goal of the internship is to provide students with the opportunity to participate in the daily work of professional psychologists in their job. Students will be able to make informed, career-specific decisions.

Competencies:
Career-specific qualifications; application of theoretical knowledge in practice; team work.

Contents:
The students will work in a field of psychology and get to know the daily work routines of a psychologist.

Teaching methods:
Internship

Requirements for participation:
Enrolment in Masters programme.

Effort:
Attendance: 450 h. (37.5 h. / week), total: 450 h.
The internship lasts 12 weeks. It can be split into two parts, with a minimum duration of 4 weeks for each part. A copy of the *Praktikumsordnung und Vertrag* can be found here: http://www.uni-oldenburg.de/fileadmin/user_upload/psycho/download/master/documents/Praktikumsordnung_Oldenburg.pdf

Credit points:
Total number of credit points for the module: 15

Assessment:
The students have to give a written or oral report about their internship and show a certificate from the institution at which they performed the internship.

Person responsible:
Prof. Dr. Hans Colonius
Degree:
Master of Science in Neurocognitive Psychology

Module psy260: Practical project – Applied Cognitive Psychology

Goals of module:
Knowledge of literature search, comprehension of scientific texts, acquisition of skills in conducting experimental research.

Competencies:
Knowledge in planning, performing, and analysis of a neurocognitive study; language skills; arrangement of a scientific report; time management; team- and groupwork; presentation techniques.

Contents:
Part 1: Project work
- The students develop an empirical investigation, carry it out and analyse the results.

Part 2: Project work
- The students discuss a recent topic based on literature and develop an experimental design for a study which could potentially be the topic of their Masters thesis.

Teaching methods:
Part 1: practical work (2 SWS)
Part 2: practical work (2 SWS)

Requirements for participation:
Enrolment in Masters programme.
Students are recommended to enrol for the respective teaching modules.

Effort:
Attendance: 56 h. (4 SWS), **learning:** 214 h., **total:** 270 h.

Credit points:
- Total number of credit points for the module: 9 CP

Assessment:
- Poster presentation about the project work.

Person responsible:
N.N.
<table>
<thead>
<tr>
<th>Degree:</th>
<th>Master of Science in Neurocognitive Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module:</td>
<td>psy260: Practical project – Cognitive Psychology and Psychophysics</td>
</tr>
<tr>
<td>Goals of module:</td>
<td>Knowledge of literature search, comprehension of scientific texts, acquisition of skills in conducting experimental research.</td>
</tr>
<tr>
<td>Competencies:</td>
<td>Knowledge in planning, performing, and analysis of a study in cognitive psychology or psychophysics; language skills; arrangement of a scientific report; time management.</td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>Part 1: Project work</td>
<td>The students develop an empirical investigation, carry it out and analyse the results.</td>
</tr>
<tr>
<td>Part 2: Project work</td>
<td>The students discuss a recent topic based on literature and develop an experimental design for a study which could potentially be the topic of their Masters thesis.</td>
</tr>
<tr>
<td>Teaching methods:</td>
<td>Part 1: practical work (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Part 2: practical work (2 SWS)</td>
</tr>
<tr>
<td>Requirements for participation:</td>
<td>Enrolment in Masters programme. Module takes place every term and is partly offered as a blocked course. Students are recommended to enrol for the respective teaching modules.</td>
</tr>
<tr>
<td>Effort:</td>
<td>Attendance: 56 h. (4 SWS), learning: 214 h., total: 270 h.</td>
</tr>
<tr>
<td></td>
<td>Credit points: Total number of credit points for the module: 9 CP</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Poster presentation about the project work.</td>
</tr>
<tr>
<td>Person responsible:</td>
<td>Prof. Dr. Hans Colonius</td>
</tr>
</tbody>
</table>
Handbook of modules for MSc in "Neurocognitive Psychology"

<table>
<thead>
<tr>
<th>Degree:</th>
<th>Master of Science in Neurocognitive Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module psy260: Practical project – Experimental Psychology</td>
<td></td>
</tr>
<tr>
<td>Goals of module:</td>
<td>Knowledge of literature search, comprehension of scientific texts, acquisition of skills in conducting experimental research.</td>
</tr>
<tr>
<td>Competencies:</td>
<td>Knowledge of planning, performing, and analysis of a neurocognitive study; language skills; arrangement of a scientific report; time management; team- and groupwork; presentation techniques.</td>
</tr>
</tbody>
</table>
| **Contents:** | **Part 1: Project work**
- The students develop an empirical investigation, carry it out and analyse the results.
Part 2: Project work
- The students discuss a recent topic based on literature and develop an experimental design for a study which could potentially be the topic of their Masters thesis. |
| **Teaching methods:** | **Part 1:** practical work (2 SWS)
Part 2: practical work (2 SWS) |
| **Requirements for participation:** | Enrolment in Masters programme.
Students are recommended to enrol for the respective teaching modules.
The module is offered every summer term and lasts 1 semester. |
| **Effort:** | Attendance: 56 h. (4 SWS), learning: 214 h., total: 270 h. |
| **Credit points:** | Total number of credit points for the module: 9 CP |
| **Assessment:** | Poster presentation about the project work. |
| **Person responsible:** | Prof. Dr. Christoph Herrmann |
Degree:
Master of Science in Neurocognitive Psychology

Module psy260: Practical project – Experimental Neuropsychology

Goals of module:
Knowledge of literature search, comprehension of scientific texts, acquisition of skills in conducting experimental research.

Competencies:
Knowledge of planning, performing, and analysis of a neurocognitive study; language skills; arrangement of a scientific report; time management; team- and groupwork; presentation techniques.

Contents:

Part 1: Project work
- The students develop an empirical investigation, carry it out and analyse the results.

Part 2: Project work
- The students discuss a recent topic based on literature and develop an experimental design for a study which could potentially be the topic of their Masters thesis.

Teaching methods:

Part 1: practical work (2 SWS)

Part 2: practical work (2 SWS)

Requirements for participation:
Enrolment in Masters programme
Students are recommended to enrol for the respective teaching modules

Effort:

Attendance: 56 h. (4 SWS), **learning:** 214 h., **total:** 270 h.

Credit points:
- Total number of credit points for the module: 9 CP

Assessment:
- Poster presentation about the project work.

Person responsible:
Prof. Dr. Stefan Debener
Degree:
Master of Science in Neurocognitive Psychology

Module psy260: Practical project - Functional Neuroimaging

Goals of module:
Students will learn to plan, perform and analyse a functional neuroimaging study. They will need to apply statistical knowledge and programming competencies to the analysis of neuroimaging data. Results will be related to the current neurocognitive literature and presented at the end of the module.

Competencies:
Application of knowledge on research methods; project management and independent project work; presentation of results and design of a research poster; time management.

Contents:
- The students learn how to develop an fMRI study and analyse a sample data set.
- The students discuss methodological aspects of data analysis and recent topics related to the subject of the data set

Teaching methods:
Practical work (4 SWS)

Requirements for participation:
Enrolment in Masters programme. Prior enrolment for the module “Neurocognition” is recommended. The module is offered every summer term and lasts 1 semester. Since the module is primarily offered for the Masters programme Biology it has to be offered as a blocked course which always takes place in the last 7 weeks of the summer term. Please contact us if you are interested in the module but have problems with interfering other courses.

Effort:
Attendance: 56 h. (4 SWS), learning: 214 h., total: 270 h.

Credit points:
- Total number of credit points for the module: 9 CP

Assessment:
- Poster presentation about the project work.

Person responsible:
Dr. Carsten Giessing
<table>
<thead>
<tr>
<th>Degree:</th>
<th>Master of Science in Neurocognitive Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module:</td>
<td>Masters thesis</td>
</tr>
</tbody>
</table>

Goals of module:
Students will demonstrate that they are able to perform a psychological experiment according to scientific standards. In addition, they will demonstrate that they are acquainted with the necessary methods and can present their results orally and in written form.

Competencies:
Knowledge in planning, performing, and analysis of a psychological experiment; language skills; arrangement of a scientific report; time management.

Contents:
Part 1: Masters thesis
- The students work on a given topic in cognitive neuroscience using literature research and the appropriate experimental methods.

Part 2: Masters colloquium
- The preparation of the thesis is accompanied by a colloquium in which students present their study design at the beginning of their thesis preparation and their results towards the end. In addition, they listen to the presentations of the other Masters students.

Teaching methods:
Supervision of thesis preparation

Requirements for participation:
Enrolment in Masters programme
Assignment of a topic by thesis supervisor

Effort:
Attendance: 28 h. (2 SWS), thesis work: 872 h., total: 900 h.

Credit points:
- Total number of credit points for the module: 30

Assessment:
- The thesis will be evaluated by the supervisor and an additional reviewer
- The oral presentation of the thesis results will be evaluated

Person responsible:
The professor heading the lab in which the thesis is written.