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Introduction

The common theme of the papers which form the core of this Habilitationsschrift

is the singular analysis. Here, ‘analysis’ means the study of solutions of partial dif-

ferential equations, especially of the spectral problem for elliptic operators; ‘singular’

means the emphasis on phenomena which stem from non-smoothness or non-uniform

ellipticity of the coefficient matrix. In most cases the operators have a geometric

origin, i.e. they are Laplace or Dirac operators; then their singular character comes

from the singular nature of the underlying space.

I now give an overview over the mathematical context surrounding this Ha-

bilitation. On any Riemannian manifold (M, g) several elliptic partial differential

operators are defined naturally: The Laplace (or Laplace-Beltrami) operator ∆,

acting on functions or, more generally, on differential forms on M ; and the Dirac

operators associated to various bundles.

One of the great mathematical problems of the 20th century is to understand

the relations between the analytic properties of these operators and the geometric

and topological properties of M . Assume for the moment that M is compact. Then

some of the interesting analytic properties are:

(a) The eigenvalues 0 < λ1 ≤ λ2 ≤ . . . → ∞ and eigenfunctions u1, u2, . . . of ∆;

their investigation splits into two quite different directions:

(a1) ‘small’ eigenvalues (for example λ1, u1),

(a2) ‘large’ eigenvalues (asymptotic behavior of λi, ui for i→∞).

Some important properties of the eigenfunctions are: The size and location of

the nodal set u−1
i (0) and the critical set |dui|−1(0), the size of the maximum

of |ui| relative to its L2 norm, and concentration phenomena on small sets.

(b) The Fredholm index of the Dirac operators.

Other important analytic properties, which we don’t consider here, are: The

determinant of ∆, the η invariant and the analytic torsion; also the scattering theory

of ∆ which replaces (a) in the case of non-compact M .

Part of the motivation to study these properties comes from physics: The eigen-

values of ∆ are the resonant frequencies of a vibrating body of ‘shape’ M , and the

eigenfunctions describe the form of the vibration; at the same time the eigenval-

ues are the possible sharp values of the energy of a quantum mechanical particle

which moves freely on M , and the eigenfunctions are the corresponding states. The

Fredholm index is important in string theory.
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A prerequisite for dealing with the problems above is an understanding of the

basic properties of elliptic operators. Among these are the following.

(c) Existence and uniqueness, more generally Fredholm theory; regularity; selfad-

jointness of symmetric operators; discreteness of the spectrum.

For compact manifolds with sufficiently smooth metric these things have been un-

derstood for a long time, see [25], for example; this is also true for compact manifolds

with piecewise smooth boundary; among the latter an important special case are

domains in Rn with piecewise smooth boundary, endowed with the Euclidean metric.

There is an extensive literature dealing with the problems above. The inves-

tigation of the eigenvalues of ∆ was often motivated by the attempt to solve the

inverse spectral problem (to reconstruct M from {λ1, λ2, . . .}, [52]) . I now list a

few representative results; in parantheses I put the relevant geometric or topological

properties of M whenever this makes sense:

(a1) Inequalities of Faber-Krahn [31, 54] (volume), Hayman [44, 75] (inradius) and

Cheeger [19] (‘girth’) for λ1, proof of the nodal line conjecture for u2 on convex

plane domains [61] and counterexample in the multiply connected case [45, 33],

(a2) Weyl asymptotics for the eigenvalues [84, 57, 3, 47], trace formula and from this

sharpening of the Weyl asymptotics (dynamics of the geodesic flow) [18, 30],

Lp bounds for the eigenfunctions [83, 38, 82, 39], improvement of the general

bound on eigenfunctions in the arithmetic case [49], bounds for the area of the

nodal set [6, 28, 29] and the dimension of the critical set [43];

on the inverse spectral problem: construction of the heat invariants (curvature

integrals over M) [68, 36] and the wave invariants (curvature integrals along

geodesics) [24, 42], compactness of isospectral sets [7, 64, 74], spectral determi-

nation of generic convex axisymmetric plane domains with analytic boundary

[86], counterexamples to the spectral determination of plane domains [37],

(b) the Atiyah-Singer index theorem (characteristic classes) [2] and (in the case

with boundary) the Atiyah-Patodi-Singer index theorem [1], and their ‘heat

equation proofs’ [34, 67].

There are still many open problems, especially in the areas (a1) and (a2), for

example the spectral determination of convex domains, the nodal line conjecture for

simply connected domains, and the qualitative properties of eigenfunctions of high

energy in the case of chaotic geodesic flow (‘quantum chaos’).

So far I have only talked about the case of compact smooth manifolds, possi-

bly with boundary. Natural generalizations may be obtained in various ways: By
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weakening one of the requirements of compactness or smoothness of the space, or

by considering parameter dependent families of smooth compact (or more general)

spaces which ‘degenerate’ when one approaches certain parameter values.

Important classes of non-smooth spaces are the following:

(A) Algebraic varieties (or more generally subanalytic sets)

(B) Orbit spaces of proper group actions on smooth manifolds.

The question arises how the notions of Riemannian metric and differential operator

should be generalized to such spaces. In this work we take the position that these

are only defined on the smooth part of the space. This is an open dense subset and

a manifold itself, which is not compact in general. The idea is that the singular set

(i.e. the complement of the smooth part) should become ‘visible’ for the analysis

through the form of the metric near it. (A different point of view is taken in [79].)

Natural classes of Riemannian metrics are obtained in case (A) by embedding the

variety in a manifold N and pulling back a smooth metric on N , and in case (B)

by taking the quotient of an invariant metric on the total space. These metrics are

not complete if the space under consideration is actually singular. Some authors

take the position that one should only consider complete metrics instead since then

certain analytic difficulties disappear (see for example [67]; note that any metric is

conformal to a complete metric, therefore these problems are closely related).

Important examples of degenerating families of smooth compact manifolds are

the following:

(C) (‘Adiabatic limit’) A fibration π : M → N with smooth base and fiber with

metrics of the form gε = π∗h + εg0, ε > 0, where h, g0 are metrics on N and

M , respectively; for ε→ 0 the fibers are shrunk to points.

(D) The set of bounded convex domains in R2. (Here the parameter space is

infinite dimensional; the most important degeneration is: eccentricity := di-

ameter/inradius →∞.)

A typical feature of the geometric differential operators in all of these examples

of non-smooth and degenerating spaces is that they are not uniformly elliptic or that

certain coefficients tend to infinity when one approaches the singular set of the space

(or the parameter space). Therefore, I put their investigation under the common

header ‘singular problems’.

An important common feature of examples (A)-(C) is their strong structure:

They are closely related to the smooth compact case in that they may be related to
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it by certain locally finite processes (e.g. resolution of singularities). In particular

these spaces are stratified. However, stratifyability is a much weaker condition.

It is beyond the scope of this introduction to make this vague notion of strong

structure precise. One way to do this was proposed by R. Melrose with his notion

of ‘boundary fibration structures’ [65, 63] (see also [G3]). A typical characteristic

of such problems is the existence of complete asymptotic expansions of the given

and desired quantities (for example in terms of the distance to the singular set).

Accordingly it is natural to adapt the theory of pseudodifferential operators – which

is also highly structured – for such problems.

In contrast, example (D) is only weakly structured, as well as certain other

classes of singular spaces, e.g. those characterized by weak regularity (for example

Lipschitz manifolds). In such problems one may only expect estimates in orders of

magnitude instead of complete asymptotics; this is also reflected in the techniques

that may be used (e.g. maximum principle, convexity).

Singular problems were increasingly investigated since the 1970s; their theory

is much less developed than the theory in the smooth compact case. Even basic

analytic questions, for example those of selfadjointness and discreteness, are still

open for many singular spaces (see [40, 11]). Cheeger, Goresky, and MacPherson

conjectured [23] that for complex projective varieties the L2 cohomology (defined

analytically, with respect to an induced Kähler metric) coincides with the intersec-

tion homology, which is defined topologically. There are many partial results on

this conjecture, see [48, 71, 73, 78, 85]; [81] proves the same claim for orbit spaces.

The conjecture is still open in general. Closely related is the problem of generalizing

the Hodge theorem to the singular case [20, 21, 72, 12, 76, 40]; this is also open

for general varieties. Let me mention a little gem in this context: The analysis of

the Hodge theory of a fibration under the adiabatic limit degeneration ((C) above)

leads to the Leray spectral sequence of the fibration [60].

The simplest singularities are cones and horns; they have locally the form [0, 1)×
N/{0} ×N , with metric dx2 + x2αgN on the smooth part (0, 1)×N , where (N, gN)

is a closed Riemannian manifold and α ≥ 1. For these cases many of the properties

mentioned above have been investigated extensively (see [20, 21, 14, 16, 12, 55, 35, 69]

and [22, 15, 32, 8, 56, 17] for index theorems). Some of these papers also admit spaces

which are locally iterated cones or products Rk× cone.

As I mentioned above, it is natural to try to develop pseudodifferential calculi

for strongly structured problems. This is done systematically by the Melrose [63]

(see also [G3]) and Schulze [80] and their schools. For example, there are pseudod-

ifferential calculi for cones and for the adiabatic limit.

Few authors have considered the eigenvalues and eigenfunctions of the Laplacian
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on singular spaces which are not locally cone- or horn-like. See [41] for semialgebraic

sets and [9, 10] for orbit spaces, and for example [27, 4] for certain weakly structured

situations. Also, there are almost no generalizations of the index theorem for more

complex singularities (see [53] and [58] for certain classes of orbit spaces). One reason

for this is that even the local geometry of induced metrics is poorly understood (but

see the important papers [70, 77])

The behavior of eigenvalues and eigenfunctions has been investigated for numer-

ous forms of degeneration, since such problems often appear in applications (e.g.

vibrations of thin sheet metal). See for example [59]. A method which is used often

in this context is that of ’matched asymptotic expansions’. This is closely related to

the construction of adapted pseudodifferential calculi (see [G3]), but usually simpler

(and with weaker results, which, however, often suffice for the application at hand).

Now I explain how the papers contained in this Habilitationsschrift fit into the

context sketched above. More detailed accounts of each paper are given in the

next chapter and in the introduction to the paper. In the papers [GJ1], [GJ2] we

investigate low eigenvalues and their eigenfunctions, for the Dirichlet Laplacian on

plane convex domains; the goal is to get quantitative results which are optimal in

order of magnitude, uniformly for domains of arbitrarily large eccentricity. This is

a weakly structured problem of degeneration.

In the papers [G1], [G2] I investigate the local geometry of real subanalytic

surfaces with isolated singularities and draw conclusions about the basic analytic

properties of the geometric operators. These papers are mainly geometric.

In [G3], [GG] we describe and discuss general techniques of singular analysis

which are used for strongly structured problems.

The papers [CGIKO], [CGK] deal with an optimization problem for eigenval-

ues: The first eigenvalue is to be minimized over a family of configurations, and the

problem is to understand qualitative properties of the solutions. At first glance, the

problem does not seem to be singular in the sense explained above. However, it con-

tains a free boundary problem whose solutions are generally non-smooth; also, in the

proofs of the central results on symmetry breaking we analyze certain degenerating

families of domains (thin annuli and dumbbells with thin handle).

Acknowledgement. I am grateful to Professor Matthias Lesch and to Professor

Jochen Brüning for their support during my time in Berlin and for their helpful

comments during the preparation of this Habilitationsschrift. Thanks to the other

people in the group, Markus Pflaum, Xiaonan Ma, Michael Gruber, Juan Gil and

Jürgen Tolksdorf, for many interesting discussions on this and other topics. Thanks
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Richard Melrose for his continued interest and his permanent willingness to share
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Summary of the papers

1 The papers [GJ1],[GJ2]

1.1 Problem and previous results

Let Ω ⊂ R2 be a bounded convex domain. Let 0 < λ1 < λ2 be the two lowest

eigenvalues of the Laplacian on Ω, with Dirichlet boundary conditions, and let u1, u2

be associated eigenfunctions. Our goal is to describe λ1/2 and u1/2 as precisely

as possible by geometric data of Ω. The estimates should be optimal in order of

magnitude, uniformly for domains of arbitrarily large eccentricity. (The eccentricity

is defined as the ratio of diameter of Ω and diameter of the largest inscribed circle.)

Before we make this more precise we normalize Ω. The problem is invariant

under dilations and Euclidean motions. Therefore, we may assume:

Normalization:

1. The projection of Ω on the y-axis is the interval (0, 1), and the projection of

Ω on any other line has length ≥ 1.

2. The projection of Ω on the x-axis is the interval (0, N), for some N = N(Ω) ≥
1.

See Figure 1 in [GJ2] (with a = 0, b = N). It is easy to see that

inradius(Ω) =
1

2
+O(N−2) (1)

diam(Ω) = N +O(N−1). (2)

Therefore, the eccentricity roughly equals N . We normalize the eigenfunctions as

follows:

u1 > 0, max
Ω

u1 = 1,

max
Ω
|u2| = 1.

The following facts are well-known:

1. u1, u2 are real analytic functions in the interior of Ω.
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2. The level sets {u1 ≥ c} are convex for any c. In particular (using 1.), u1 attains

its maximum at precisely one point:

u−1
1 (1) =: {(xmax, ymax)}.

3. The nodal line

N := u−1
2 (0)

is real analytic, and it divides Ω in two connected components. (This is true

for any second eigenfunction, in case the multiplicity of λ2 is greater than one.

In the case of interest here, where N is large, the multiplicity equals one, see

Theorem 1.3 below.)

Let C be the set of domains Ω which are normalized as above. For Ω ∈ C and

x ∈ (0, N) set

Jx = {y : (x, y) ∈ Ω}

and define functions f1, f2, h : (0, N)→ (0, 1] by

Jx = (f1(x), f2(x)), h = f2 − f1.

h(x) is the ‘thickness’ of Ω at x. h is a concave function. Furthermore, Ω defines an

ordinary differential operator

L := − d2

dx2
+

π2

h(x)2

on (0, N), with Dirichlet boundary conditions. Let

µ1, µ2

be the lowest eigenvalues of L and φ1, φ2 associated eigenfunctions, normalized by

φ1 > 0, maxφ1 = 1,

max |φ2| = 1,

and define ξmax, ξnod ∈ (0, N) by

φ−1
1 (1) = {ξmax},

φ−1
2 (0) = {ξnod}.

Convexity and positivity of the potential π2/h2 imply that both of these sets have

only one element.
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Definition 1.1 Let l ∈ {0, 1, 2}. A quantity of order l is a function F : C → R
which can be evaluated in an elementary way from the solution of a differential

equation in l variables; the data of the equation (coefficients, domain of definition)

that determines F (Ω) must be directly determined by Ω.

A quantity of order zero is also called a geometric quantity. Since this definition

is used only to formulate the problem, we do not give precise definitions of the

expressions ’in an elementary way’ and ’directly’. Instead, we just give the relevant

examples:

Examples

• Quantities of second order are: λ1/2, xmax, ymax, ‖u1/2‖2 (the L2 norm), the

length of the nodal line of u2.

• Quantities of first order are: µ1/2, ξmax, ξnod.

• Quantities of order zero are: vol (Ω), N .

(Above we assumed that λ2 is simple.) Now we can state our problem more

precisely and more generally:

Main Problem: Determine how well the second order quantities mentioned

above may be approximated by quantites of order one or zero.

As an illustration we consider λ1: Since Ω is contained in an N × 1 rectangle we

have

λ1(Ω) ≥ λ1([0, N ]× [0, 1]) = π2(1 +N−2). (3)

This raises the question whether there may be an estimate of the form λ1 ≤ π2(1 +

CN−2), for some constant C. However, this is not the case: For a circular sector

Ω = KN := {(r cos θ, r sin θ) : r ∈ (0, N), sin θ ∈ (0, N−1)}

one can express the eigenfunctions in terms of Bessel functions, and their asymptotic

behavior shows that

λ1(KN) = π2(1 + c0N
−2/3 +O(N−4/3))

for N →∞ (see [51]).

In [51] D. Jerison defined a geometric quantity that may be used to give a better

approximation for λ1 (and λ2) than (3):
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For Ω ∈ C let L be the length of the longest interval I ⊂ (0, N) satisfying

h ≥ 1− 1

L2
on I. (4)

It is easy to see (see [50]) that

1

2
N1/3 ≤ L ≤ N ;

in particular, large L corresponds to large eccentricity. For the circular sector KN

we have L ∼ N1/3 and for the N × 1 rectangle L = N .

The solution for the Main Problem in the case of λ1/2 was given by D. Jerison:

Theorem 1.2 ([50],[51]) There are positive constants c, C such that for all Ω ∈ C
and i = 1, 2 we have

π2 + cL−2 ≤ λi ≤ π2 + CL−2 (5)

|λi − µi| ≤ CL−3.

In other words, λi may be approximated by quantities of order zero with an error

L−2 and by quantities of order one with an error L−3.

The second main result of [51], together with results from [50], concerns the

nodal line:

Theorem 1.3 ([51]) There is a constant C such that for all Ω ∈ C with L > C the

second eigenvalue is simple and the nodal line N has the following properties:

(a) N ∩ ∂Ω 6= ∅.

(b) Let Nx be the projection of N on the x axis. Then we have

Nx ⊂ [α− CL, β + CL]

where I = [α, β] is the interval in (4).

(c) N may be localized more precisely by

Nx ⊂ [ξnod − C, ξnod + C].

(a) solves the ‘nodal line problem’ for large eccentricity. This problem is the con-

jecture that the nodal line of any second eigenfunction touches the boundary, for

any convex (or even any simply connected) domain. This was proved in the general
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convex case by Melas [62], shortly after publication of [51]. M. and T. Hoffmann-

Ostenhof and N. Nadirashvili [46] gave an example showing that the corresponding

statement for multiply connected domains is false in general.

(b) and (c) show how well the position of N may be approximated by quantities

of order zero and one, respectively. The error in (c) is optimal in order of magnitude,

i.e. C cannot be replaced by CF (L) for a function F tending to zero for L → ∞.

This follows from the analysis of the following example, which we sketch:

For fixed ε ∈ (0, 1] and arbitrary N > 1 let

Ω1(N) = {(x, y) : 0 < y < min{x/ε, 1}, 0 < x < N}.

This is a right triangle (above 0 < x < ε) with an (N − ε) × 1 rectangle attached

on the right. Define Ω2(N) as the symmetrization of Ω1(N) with respect to the line

y = 1/2. The domains Ω1(N) and Ω2(N) have the same function h and therefore

the same function φ1 and the same ξnod. We have h(x) = 1 for x ≥ ε. Now for

any domain having this last property one can show the following: For x ≥ N/10

the second eigenfunction u2 must be very close (exponential in −N) to the second

eigenfunction

sin 2π
x− γ
N − γ

sin πy

of the rectangle (γ,N)× (0, 1), for a certain γ ∈ [0, 1) which is a spectral invariant

of the ‘end piece’ Ω∩{0 < x < ε}; therefore, Nx is very close (uniformly in ε) to the

point (N + γ)/2. Furthermore one can show that the value of γ is different for the

two domains Ω1(N), Ω2(N), at least for small ε. From this it follows immediately

that there is a constant c > 0 such that the nodal lines of Ω1(N) and Ω2(N) have

distance at least c, for large N . This proves the optimality of (c).

1.2 Results

The main results of [GJ1] are:

Theorem 1.4 ([GJ1]) There is a constant C such that for all Ω ∈ C the projection

Nx of the nodal line onto the x axis is an interval of length at most CL−3.

In the case where the derivative of h near Nx is much smaller than L−3 we even get

a more precise estimate, see Theorem 3 in [GJ1].

Note that this estimate for the width of N is better than the estimate which

follows from Theorem 1.3(c). On the other hand, here the position of Nx cannot be

given in terms of a quantity of lower order (as it was the case in Theorem 1.3(c)).

We also show a corresponding pointwise estimate for the slope of N :
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Theorem 1.5 ([GJ1]) Let (η1, η2) be a unit vector tangent to N in the point (x, y).

For any ε > 0 there is C = C(ε) such that for all (x, y) ∈ N having distance greater

than ε from ∂Ω we have

|η1| ≤ CL−3.

Both results are optimal: In the case of the circular sector N is a circular arc

whose radius is of order N , therefore its projection on the x axis has width of

order N−1 = L−3. We conjecture that the estimate in Theorem 1.5 holds up to the

boundary, i.e. that C may be chosen independent of ε.

The paper [GJ2] is about the first eigenfunction. First, we consider the position

of its maximum:

Theorem 1.6 ([GJ2]) There is a constant C such that for all Ω ∈ C we have

|xmax − ξmax| ≤ C.

This corresponds to Theorem 1.3(c), but it is harder to prove, see below. The

same example as above shows that this estimate is sharp. There is also an analogue

to Theorem 1.3(b), but it is comparatively easy to prove, see below.

The second main result of [GJ2] shows how well u1 may be approximated uni-

formly using the first order quantity φ1: Define

α(x, y) = π
y − f1(x)

h(x)
.

Theorem 1.7 ([GJ2]) There is a constant C such that for all Ω ∈ C we have

|u1(x, y)− φ1(x) sinα(x, y)| ≤ CL−1 for x ∈ I ′.

Here I ′ is the interval concentric with I, of half the length.

Note that, for any fixed x, the sine factor occuring here is simply the first Dirichlet

eigenfunction of d2/dy2 on the y-interval Jx.

1.3 Methods, idea of proof

As already in [51], the basic idea is that for large eccentricity one should have an

approximate separation of variables. This means that the eigenfunction u (i.e. u1 or

u2) should be well approximated by a function of the form

ũ(x, y) = e(x, y)ψ(x)
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where e(x, ·) is the L2-normalized first eigenfunction of d2/dy2 on the y-interval Jx.

Since the first eigenvalue of this operator is −π2/h(x)2 and the spectral gap µ2−µ1

tends to zero for N →∞ (see (5)) one expects that a good candidate for ψ is φ1 or

φ2, respectively. This ansatz was used by Jerison in [51].

The essential new idea in [GJ1] and [GJ2] is to use the following function instead:

ψ(x) =

∫ f2(x)

f1(x)

e(x, y)u(x, y) dy.

This means that ψ(x) is the coefficient of the term of lowest frequency in the Fourier

decomposition of u(x, ·) on the interval Jx. In particular, ψ(x) is no longer a quantity

of first order but computed from the eigenfunction u itself. Therefore one may expect

ψ to yield a good approximation ũ of u, in any case a better approximation than φ1

resp. φ2.

At the same time it is more difficult to analyze ψ than to analyze φ1 and φ2.

This analysis becomes possible since one can derive an equation

Lψ = λψ + σ

(λ = λ1 resp. λ2), where the term σ stems from the x-dependence of e (so that

σ(x) = 0 if ∂xe ≡ 0 near x). Near the central interval I the derivative ∂xe is

bounded by the slope of the boundary curves y = f1(x), y = f2(x) of Ω, which

is small for large eccentricity (e.g. of order L−3 near N ). From this and weak a

priori-bounds for u we obtain optimal bounds for σ which then enable us to analyze

ψ.

In the case of the second eigenfunction we show in this way that ψ has a unique

zero; therefore, the zero set of ũ is just a vertical line. Theorem 1.4 then follows

from an upper bound for the ‘error’ u− ũ and a lower bound for the derivative of ψ

near its zero.

In the case of the first eigenfunction we also need to estimate the difference of ψ

and φ1 (suitably scaled). The arguments in the proof of Theorem 1.6 are necessarily

more complicated than those in the proof of Theorem 1.3(c) since the derivative of

the first eigenfunction (of L) vanishes at its maximum (which makes it harder to

localize the maximum) while the derivative of the second eigenfunction at its zero

is of order L−1.

General techniques used throughout these papers are the generalized maximum

principle, the generalized Harnack inequality (‘generalized’ means the theorems for

eigenfunctions instead of harmonic functions) and Carleson’s Lemma which permits

estimates uniformly up to the boundary. See [51].

For more details see the introductions and bodies of the papers [GJ1], [GJ2]. As
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an illustration we sketch the proof of the following result (see Proposition A’ in [51],

where the proof is left to the reader):

Proposition 1.8 There is a constant C such that for all Ω ∈ C we have

xmax ∈ [α− CL, β + CL];

here, I = [α, β] is the interval in (4).

Proof. (sketch) From the normalization of Ω one sees by an elementary geometric

argument (see Lemma 3.1 in [GJ2]) that maxh = 1. Let x0 ∈ I be any point with

h(x0) = 1. By definition of I the inequality h(x) < 1−L−2 holds for x 6∈ I; therefore,

concavity of h and |I| = L imply |h′(x)| > L−3 for x 6∈ I, and so h(x) ≤ 1−|x−x0|L−3

for x 6∈ I. Then the second inequality in (5) implies that there is a constant C0 such

that for all Ω ∈ C one has

π2

h(x)2
− λ1 >

1

L2
for |x− x0| > C0L. (6)

In order to localize xmax we want to show that u = u1 is small far away from I.

For this purpose we first consider the function

ρ(x) =

∫
Ix

u(x, y)2 dy, x ∈ (0, N).

An easy calculation shows (all integrals are over Ix with the measure dy, and ux =

∂xu etc.)

ρ′′ = 2

(∫
uuxx +

∫
u2
x

)
(7)

≥ 2

∫
uuxx = 2

∫
u(−uyy − λ1u) (8)

= 2

∫
u2
y − 2λ1

∫
u2 (9)

≥ 2(
π2

h2
− λ1)ρ. (10)

In the third line we integrated by parts in y, and in the fourth line we used that

π2/h(x)2 is the first eigenvalue on Ix and that this eigenvalue can be characterized

by the Rayleigh quotient.

From (6) we now get

ρ′′(x) ≥ 2L−2ρ(x) for |x− x0| > C0L.
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Using max ρ ≤ 1 and ρ(0) = ρ(N) = 0 we then conclude, using an elementary com-

parison argument (the one-dimensional version of the generalized maximum princi-

ple), that

ρ(x) ≤ e−
√

2 dist (x,I0)/L (11)

where I0 = [x0 − C0L, x0 + C0L].

Finally, we want to estimate u pointwise by its mean ρ. Consider first a point

x with h(x) ≥ 1/2; let I = {x} × Ix and let I ′ ⊂ I be the interval concentric

with I of half the length. The Carleson Lemma shows that maxI u ≤ C maxI′ u,

and Harnack’s inequality yields maxI′ u ≤ C minI′ u for some constant C. Using

minI′ u
2 ≤ |I ′|−1ρ(x) we then get

max
y
u(x, y)2 ≤ Cρ(x) for h(x) ≥ 1/2.

An elementary barrier argument (construction of a comparison function and use of

the generalized maximum principle) yields

max
y
u(x, y) ≤ CL−1 for h(x) ≤ 1/2.

(See [GJ2], Lemmas 3.2 und 3.12 for more details on the last two estimates.) To-

gether with (11) these two estimates give

u(x, y) < 1 for x 6∈ [α− C1L, β + C1L]

for a suitable constant C1 > C0. From this it follows that u must take its maximum

inside this interval.

2 The papers [G1], [G2]

In these papers I analyze the local geometry of sub-analytic surfaces with induced

metric and give some applications to the analysis of the geometric differential oper-

ators on these surfaces.

Let V be a compact sub-analytic subset of a real analytic manifold M . Assume

that V has dimension two everywhere and only isolated singularities. Thus

V = Vreg ∪ {p1, . . . , pk},

where p1, . . . , pk are non-isolated points of V and Vreg is a smooth manifold.

Furthermore, assume that a real analytic Riemannian metric is given on M , and

let g be the induced Riemannian metric on Vreg.
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The first two main results of [G1] give a description of the local geometry of

V . The Riemannian metric on Vreg induces a distance function d on V , the induced

metric. Denote by dist the distance function on M induced by the Riemannian

metric on M . The restriction of dist to V is called extrinsic metric.

Important special cases are given by cones and horns: Let γ ≥ 1 be a rational

number. Define

Vγ = {(x, y, z) : 0 ≤ z < 1, zγ =
√
x2 + y2} ⊂ R3.

On R3 use the Euclidean metric. Then (Vγ, d) is called a cone if γ = 1 and a horn

if γ > 1. Next, let γ1, . . . , γm ≥ 1 be rational and ε > 0, and consider the set

Vγ1,...,γm =
m⋃
i=1

ei ⊗ Vγi ⊂ R3m,

where e1, . . . , em are the standard basis vectors of Rm. When the Euclidean metric

is used on R3m then (Vγ1,...,γm , d) is simply the union of Vγ1 , . . . , Vγm , glued together

at their tips. All these spaces are semi-algebraic, in particular they are sub-analytic.

Two metric spaces (X, d), (X ′, d′) are called quasiisometric if there is a homeo-

morphism φ : X → X ′ such that both φ and φ−1 are Lipschitz maps.

In the first main theorem I classify the spaces introduced above locally, up to

quasiisometry:

Theorem 2.1 (Theorem 1.1 in [G1]) Let (V, d) be as above and p ∈ V . There

is a neighborhood of p in V which is quasi-isometric to one of the spaces Vγ1,...,γm.

In order to render this a classification one needs to show, in addition, that the

spaces Vγ1,...,γm , Vδ1,...,δn are quasiisometric if and only if the multisets {γ1, . . . , γm},
{δ1, . . . , δn} are equal. This follows immediately from a result in [G2]:

Theorem 2.2 (Corollary 3.10 in [G2]) If γ1, γ2 ≥ 1 and Vγ1, Vγ2 are quasiiso-

metric then γ1 = γ2.

Clearly, m = 1, γ1 = 1 for p ∈ Vreg. The spaces Vγ with 0 < γ < 1 do not appear

in the classification since they are quasiisometric to the cone V1 (see Corollary 3.7

in [G2]).

In Theorem 1.2 in [G1] the quasiisometry in Theorem 2.1 is described more

precisely. In particular I show that arc length parametrization along the curves

Sr(p) = {q ∈ V : dist (q, p) = r}

naturally defines such a quasiisometry.

The second geometric theorem in [G1] concerns the length of the curves Sr(p):



17

Theorem 2.3 (Theorem 1.3 in [G1]) Let (V, d) be as above and p ∈ V . For

r → 0 there is a complete asymptotic expansion

length(Sr(p)) ∼
∑
i,j

Ci,jr
i(log r)j, (12)

where i varies over a set of positive rationals with bounded denominator and j over

{0, 1}.

Furthermore, the smallest exponent i that actually appears in the asymptotics

equals γ = min{γ1, . . . , γm} where γ1, . . . , γm are as in Theorem 2.1, and Cγ,1 = 0;

in other words, the leading term in the asymptotics contains no logarithm.

The asymptotics may me differentiated term by term.

The same is true for any connected component of a pointed neighborhood of p since

connected components of sub-analytic sets are sub-analytic.

Using these geometric results I then derive a version of the Gauss-Bonnet The-

orem:

Theorem 2.4 (Theorem 1.4 in [G1]) Let (V, d) be as above. Let l1, . . . , lk be the

coefficients of r in the expansions (12) for all singular points p1, . . . , pk. Let K be

the Gauss curvature of the Riemannian metric on Vreg.

Then K is integrable over Vreg, and the Euler characteristic satisfies

χ(V ) =
1

2π

(∫
Vreg

K +
k∑
i=1

(2π − li)

)
.

Finally I draw some conclusions of an analytic nature. Denote by L2(
∧
Vreg) the

square integrable differential forms on Vreg and by d the exterior derivative. d and

its transpose dt are defined on L2(
∧
Vreg) in the sense of distributions.

Theorem 2.5 (Theorem 1.5 in [G1]) (i) Vreg has the L2 Stokes property; i.e.

if ω, η, dω, dtη ∈ L2(
∧
Vreg) then

(dω, η) = (ω, dη).

(ii) The Gauss-Bonnet operator DGB = d + dt and the Laplace-Beltrami operator

∆ = D2
GB are selfadjoint as operators on L2(

∧
Vreg) with domains D(DGB) =

H1(
∧
Vreg) and D(∆) = H2(

∧
Vreg).

Their spectra are discrete.
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(iii) The L2 Euler charakteristik of V , i.e. the index of DGB considered as operator

from even to odd forms, equals

χ2(V ) = N +
1

2π

(∫
Vreg

K −
k∑
i=1

li

)
,

where N is the total number of cones and horns at all singular points of V .

Concerning the proofs let me just mention that I use the resolution of singularities

for Theorems 2.1 and 2.3. Then the problem is to determine the form of the pull-back

metric on the desingularized space. However, the precise analysis shows that for a

classification modulo quasiisometry a crude knowledge of this metric is sufficient.

For further details and a discussion of related literature see the introduction of

[G1].

The paper [G2] deals with the question when two Riemannian metrics on pointed

neighborhoods of 0 in Rn are quasiisometric, with respect to a diffeomorphism φ

which becomes a homeomorphism when extended by setting φ(0) = 0. In particular

I prove (a generalization of) Theorem 2.2 (see Theorem 3.8 in [G2]). I also prove

that the induced metric on the real Whitney umbrella W = {x2 = y2z} ⊂ R3 is

quasiisometric to a conic metric (when considering the normalization of W ).

3 The papers [G3], [GG]

These papers are about general techniques of singular analysis. [G3] gives an exten-

sive introduction to the basic ideas and concepts of R. Melroses b-calculus. In [GG]

we investigate the precise relation between the Push-Forward Theorem, a central

theorem in the b-calculus, and Brüning and Seeley’s Singular Asymptotics Lemma.

The b-calculus is a theory which generalizes the classical pseudodifferential cal-

culus to certain strongly structured singular situations. It was developed by R.

Melrose and many of his coauthors since the early 1980s and is still being extended.

Thus, it is not a complete theory but rather a collection of ideas and concepts which

can be and was used for the solution of many singular problems.

It would exceed the scope of this synopsis to describe the general class of prob-

lems to which the b-calculus is supposed to be applied (the ‘boundary fibration

structures’). Instead, we give three typical examples:

Typical problems for the b-calculus:
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1. Resolvent expansion: Let X be a compact manifold and P a positive elliptic

differential operator on X.1 Determine the structure of the resolvent

(P + z)−1, z > 0,

uniformly for z →∞.

2. b-calculus in the narrow sense: Let X be a compact manifold with boundary.

Consider an elliptic operator P of Fuchs type (or ‘totally characteristic’ oper-

ator) on X; this means that in local coordinates (x, y = (y1, . . . , yn−1)) : U ⊂
X → R+ × Rn−1 (where R+ = [0,∞)) near an arbitrary boundary point P

takes the form ∑
j+|α|≤m

ajα(x, y)(x∂x)
j∂αy , ajα smooth,

and
∑

j+|α|=m ajα(x, y)λjηα 6= 0 for (λ, η) 6= 0. Then the problem is to con-

struct a parametrix for P and to understand its structure, in order to investi-

gate mapping (in particular Fredholm) properties of P .

3. Adiabatic Limit: Let π : M → Y be a fibration of compact manifolds; let g

and h be Riemannian metrics on M and Y , respectively. For ε > 0 consider

the metric gε = π∗h+ε2g on M . Then the problem is to investigate the behav-

ior of certain invariants which are defined by the Laplace-Beltrami operator

associated with gε, as ε → 0. See [60] for the Hodge cohomology and [26] for

the analytic torsion.

The first two examples were also treated by many other authors. However, the

b-calculus provides a common frame for such problems.

Some essential characteristics of the b-calculus are:

1. Operators are described by their Schwartz kernels.

2. Singular behavior is characterized by geometric constructions (’blowing up’ of

the underlying space), as far as possible.

An operator which operates on (functions on) a space X and depends on parameters

in a space Z has a Schwartz kernel which is a distribution K on X × X × Z. To

understand the structure of the operator then means to find a blow-up β : Y →
X × X × Z such that the pull-back of K under β has a simple structure which

can be described through the geometry of Y . Technically speaking, Y should be a

1To simplify the notation we assume here that all operators are scalar, but this is not essential.
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compact manifold with corners and β∗K should be polyhomogeneous conormal on

Y , in particular have conormal singularities along a submanifold of Y which has

normal crossings with ∂Y . Compactness is imposed to reflect finiteness of structure.

In order to achieve it one may have to compactify X ×X × Z first, for example by

adding z =∞ in the first example.

Let us consider the second example above: Schwartz kernels of operators on X

may be expressed locally as distributions K(x, y, x′, y′) with x, x′ ∈ R+, y, y′ ∈ Rn−1;

an essential step in constructing the parametrix is the insight that Schwartz kernels

of Fuchs type operators have a very simple structure if one writes them using polar

coordinates with respect to x, x′. Geometrically this simply means blowing up the

submanifold ∂X × ∂X in X ×X and looking at the kernels on the blown-up space.

Then the parametrix may be constructed in a way largely parallel to the classical

construction (however one needs to introduce a ’second symbol’ if one wants to make

the error terms Fredholm).

In [G3] these ideas and methods are introduced and motivated by many examples.

Such an introductory exposition of the b-calculus did not exist in the literature

before. We emphasize a few important aspects:

1. Extensive discussion of basic questions connected with asymptotic develop-

ments in several variables: Simultaneous asymptotics vs. asymptotics sepa-

rately in each variable. (Section 2.1)

2. Detailed motivation and discussion of the role of blow-ups in the description of

non-simultaneous asymptotics; notion of asymptotic type. (Sections 2.2–2.4)

3. Discussion of the connection of these ideas with the notions of ‘regimes’ and

‘matching conditions’ which are used mainly in the applied literature. (Section

2.5)

4. Introduction to the classical pseudodifferential calculus. (Sections 3.3, 4.1)

5. Extensive explanation of the roles of the Push-Forward Theorem and of the

Pull-Back Theorem, and sketches of proof. (Sections 3.1, 3.2)

6. Characterization of the central notion of b-fibration (alternative to Melrose’s

original definition in [66]). (Definition 3.9)

7. Detailed exposition of the b-calculus in the narrow sense (example 2 above).

(Chapter 4)

The paper [GG]: We investigate the precise relation between Melrose’s Push-

Forward-Theorem and Brüning and Seeley’s Singular Asymptotics Lemma; we show

that both deal with the same basic problem and solve it in different partial aspects.
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The Push-Forward-Theorem is a far-reaching generalization of the following well-

known theorem: Let µ be a smooth density on a manifold X and f : X → Y a

smooth proper map to a manifold Y ; if f is a submersion (and hence a fibration)

then the push-forward measure f∗µ is a smooth density again. This is generalized

in the following ways:

• X and Y are manifolds with corners, i.e. everywhere locally of the form

Rk
+ × Rn−k (13)

for some n, k.

• f need not be a fibration but only a b-fibration. A b-fibration is a fibration in

the interior (i.e. f maps int(X) onto int(Y ) as fibration), but not necessarily

at the boundary. For the precise definition of a b-fibration see [66] or [G3],

Definition 3.9. The simplest non-trivial example is

f : R2
+ → R+, (x, y) 7→ xy. (14)

• µ is not required to be smooth up to the boundary; instead, the weaker condi-

tion of ‘polyhomogeneous conormality’ is imposed; i.e. µ has complete asymp-

totic developments near all corners (13), simultaneously in all boundary defin-

ing variables x1, . . . xk, in terms of the form
∏k

i=1 x
αi
i (log xi)

βi , with coefficients

depending smoothly on xk+1, . . . , xn.

The Push-Forward Theorem (PFT) then says that f∗µ is also polyhomogeneous

conormal, and calculates the exponents (αi and βi) that appear in f∗µ from those

of µ and from combinatorial data on the boundary behavior of f . For example, for

the map f in (14) and for µ smooth up to the boundary of R2
+ one obtains that the

asymptotics of f∗µ at zero contains logarithmic terms in general.

The Singular Asymptotics Lemma (SAL) ([13]) calculates the asymptotics of the

integral ∫ ∞
0

σ(x, xz) dx

for z → ∞ from the asymptotics of σ(x, ζ) for x → 0 and ζ → ∞, under a cer-

tain integrability condition (near x = ζ = 0). (The ‘classical’ SAL from [13] was

generalized recently in [5].)

In [GG] we show that the problem posed by the SAL may be viewed as special

case of the problem posed by the PFT. Therefore, part of the conclusion of the

SAL may be derived from the PFT: the exponents that appear in the asymptotics.

However, the SAL gives in addition explicit formulas for the coefficients. These
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formulas were used in the treatment of the index problem on spaces with conical

singularities (see [15]). Also, the SAL imposes slightly weaker regularity conditions.

The map f which connects SAL and PFT is defined as follows: Let β : [R2
+, 0]→

R2
+ be the blow-up of 0 ∈ R2

+ and π : R2
+ → R+ the projection onto the first factor.

Then f = π ◦ β : [R2
+, 0] → R+. For the special case where σ vanishes for ζ near

zero one may use the simpler map (14) instead.

A common generalization of PFT and SAL would be obtained by solving the

following problem:

Problem: Let f : X → Y be a proper b-fibration and µ a polyhomogeneous

conormal density. Determine the coefficients in the boundary asymptotics of f∗µ in

terms of regularized integrals over the coefficients of the boundary asymptotics of

µ.

4 The papers [CGIKO], [CGK]

In these papers we investigate the following optimization problem:

Problem: Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. For

α > 0 and measurable D ⊂ Ω consider the operator

Pα,D = −∆ + αχD,

where ∆ is the Laplace operator and χD the characteristic function of D. Let

λΩ(α,D) be the first eigenvalue of the Dirichlet problem for Pα,D.

Denote by |D| the volume of D. Let 0 ≤ A ≤ |Ω|.

For which domains D with |D| = A does the eigenvalue λΩ(α,D) attain its

smallest value?

We call such optimal domains D optimal configurations or solutions; (u,D) is

called an optimal pair if D is an optimal configuration and u is a first eigenfunction

of Pα,D. u is determined up to scalar multiples by D.

We obtain results on the following problems:

• Existence, regularity and uniqueness,

• dependence on the parameters α,A,
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• symmetry preservation and symmetry breaking,

• regularity of the boundary of an optimal configuration,

• convexity,

• connectivity,

• relation with a problem of optimal mass distribution in a membrane.

We cannot explain all results in this synopsis. Rather, we make a few basic

remarks and then focus on the central themes of symmetry and regularity of the

boundary.

We first prove some basics:

Theorem 4.1 (Theorem 1 in [CGIKO]) Fix Ω, α, A as above. An optimal con-

figuration exists. Any optimal pair (u,D) has the following properties:

• Regularity: u ∈ C1,δ(Ω) ∩H2(Ω) for any δ < 1.

• Level set property: There is t ≥ 0 such that

D = {u ≤ t}. (15)

Here we always identify sets which only differ by a null set. In particular we may

always assume (by (15)) that D is closed.

The question of uniqueness is far more complicated: We show that for Ω =

{x : |x| < 1} there is a unique optimal configuration (for arbitrary values of the

parameters α,A), while for certain other domains and certain parameter values there

are several solutions. Both of these claims follow from symmetry considerations: The

uniqueness for the ball follows from the following theorem on symmetry preservation

in convex situations:

Theorem 4.2 (Theorem 4 in [CGIKO]) Assume that Ω is symmetric and con-

vex with respect to a hyperplane, say {x1 = 0}; that is, for any x′ = (x2, . . . , xn) the

set

{x1 : (x1, x
′) ∈ Ω}

is either empty or an interval of the form (−c, c).

Then the following holds for any optimal pair (u,D): u and D are symmetric

with respect to {x1 = 0}, the complement Dc is convex with respect to {x1 = 0}, and

u is decreasing in x1 for x1 ≥ 0.
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On the other hand, one may deduce non-uniqueness from symmetry breaking: For

example, if Ω has a reflection symmetry but a solution D doesn’t then the reflection

of D is also a solution, and it is different from D. We prove symmetry breaking

in two situations: For annular domains and for dumbbells. Annular domains are

rotationally symmetric, dumbbells are symmetric with respect to reflection in the

coordinate axes:

Theorem 4.3 (Theorem 6 in [CGIKO]) Let α > 0 and δ ∈ (0, 1). For b > 0

let Ωb be the annulus of width b,

Ωb = {x ∈ R2 : 1 < |x| < 1 + b}.

There is b0 = b0(α, δ) such that for b < b0 any optimal configuration with parameters

α and A = δ|Ωb| is not rotationally symmetric.

See Figure 2(b) in [CGIKO].

Theorem 4.4 (Theorem 7 in [CGIKO]) For h ∈ (0, 1) define the dumbbell with

handle of width 2h

Ωh = B1(−2, 0) ∪ ((−2, 2)× (−h, h)) ∪B1(2, 0),

where Br(p) = {x ∈ R2 : |x − p| < r}. For any α > 0 and A ∈ (0, 2π) there is

h0 = h0(α,A) such that for all h < h0 we have:

(i) Any optimal configuration D is not symmetric with respect to reflection in the

x2-axis.

(ii) If A > π then the complement of any optimal configuration D is contained in

one of the lobes B1(±2, 0).

See Figure 3 in [CGIKO]. For the proofs of both theorems we use that an optimal

pair (u,D) minimizes the Rayleigh quotient

R(u,D) =

∫
Ω
|∇u|2 + α

∫
D
u2∫

Ω
u2

over all u 6≡ 0 and D with |D| = A. One needs to show that certain unsymmetric

’test pairs’ have a smaller value of R(u,D) than any symmetric optimal pair.

Numerical calculations show that in both theorems the smallness of the parame-

ter (b resp. h) is essential for symmetry breaking: For thick annuli and for dumbbells

with thick handle the (numerically calculated) solutions are symmetric (see Figure
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2 and 3 in [CGIKO]). (All numerical calculations were done by Imai and Ohnishi.

The theoretical results were obtained by Chanillo, Grieser and Kurata.)

We now turn to questions of regularity of the ‘free boundary’. Here the free

boundary is defined as

F = {u = t},

where t is defined by (15). Note that ∂D ⊂ F , but the reverse inclusion is not clear

a priori.

Note first that one may expect that for certain domains Ω and certain values of

the parameters there are solutions with non-smooth free boundary: For example, if

one varies the thickness b of an annular domain continuously and considers solutions

D = D(b) with fixed α and δ = A/|Ω| then the topological type of D(b) will change

with increasing b, according to the (numerically calculated) Figures 2(a) and 2(b)

in [CGIKO]. This suggests that for a certain transition value b = b1 the boundary

is not a smooth curve; instead, it might be a curve that intersects itself. Such a

picture was found indeed in a numerical calculation. (Assuming sufficiently regular

dependance of suitable solutions D(b) on b the existence of such a b1 could also be

proved rigorously.)

On the positive side we have high regularity in certain situations:

Theorem 4.5 (Theorem 8 in [CGK]) Let (u,D) be an optimal pair. Let x ∈ F ,

and assume ∇u(x) 6= 0. Then, near x, F is a real analytic hypersurface and agrees

with ∂D.

The problem in the proof is that the potential χD is discontinuous at ∂D, so that u

is not even C2 there. In order to show that the level set {u = t} is Cω nevertheless,

we introduce suitable coordinates (with u as one coordinate function) and analyze

the resulting non-linear elliptic equation.

Using a perturbation argument and well-known properties of the first Dirichlet

eigenfunction of the Laplace operator we conclude from this:

Theorem 4.6 (Theorem 9 in [CGIKO]) Assume Ω is convex and has C2 bound-

ary. Then there is α0 = α0(A,Ω) such that for any solution D with α < α0 the free

boundary F is a convex and real analytic hypersurface which agrees with ∂D.

It is very difficult to describe the singular set of F (i.e. the set of points x ∈ F
with ∇u(x) = 0) in general. Our results in this direction are based essentially on

Hopf’s Lemma: A function which is positive and superharmonic in a domain G and

vanishes at a boundary point x0 ∈ ∂G must have positive normal derivative at x0,

if there is a ball B ⊂ G with x0 ∈ ∂B.
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In the sequel we fix an optimal pair (u,D) for given data Ω, α, A, and we let t

be the number in (15). Set

D+ = {u > t}, D− = {u < t}.

Let Λ = Λ(α,A) be the optimal eigenvalue.

Applying the Hopf Lemma to u − t and t − u in D+ and D−, respectively, one

obtains:

Lemma 4.7 (Lemma 2 in [CGK]) (a) Let x0 ∈ F . If there is a ball B ⊂ D+

with x0 ∈ ∂B then ∇u(x0) 6= 0; therefore, F is real analytic near x0.

(b) The same is true for D− instead of D+, assuming α ≥ Λ(α,A).

The condition in (b) is satisfied for large α: There is αΩ(A) such that α ≥ Λ(α,A)

if and only if α ≥ αΩ(A) (see Proposition 10 in [CGIKO]).

From this one sees, for example, that F cannot have a ‘cusp’ which points into

D+, and if α is large then it cannot have a cusp pointing into D−. In particular, F
must contain regular points (choose an arbitrary point x in D+, then any point F
which is closest to x must be regular).

Lemma 4.7 is one of the central tools in the proof of our main regularity result on

F . Here we only state the most important claims from Theorem 9 and Proposition

2 in [CGK], assuming α > Λ(α,A) for simplicity:

Theorem 4.8 (Theorem 9 and Proposition 2 in [CGK]) For ε > 0 define

Kε = {z ∈ Ω : dist (z,F) = ε},
Fε = {x ∈ F : dist (x,Kε) = ε}

and

E = F \
⋃
ε>0

Fε

(the exceptional set). Assume α > Λ(α,A). Then we have:

(i) E is a Gδ set.

(ii) F \ E is a real analytic submanifold of Rn and is dense in F .

We conjecture that in two dimensions the singular set of F is finite.
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[14] J. Brüning and R. Seeley. The resolvent expansion for second order regular

singular operators. J. Func. Anal., 73:369–429, 1987.
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