

Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Lightweight Semantic-enabled Enterprise Service-

Oriented Architecture

Dissertation

Submitted in fulfillment of the requirements for the degree of

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

Submitted by

Dipl.-Inform. Tariq Mahmoud

April, 2013

Oldenburg, Germany

First Supervisor: Prof. Dr.-Ing. Jorge Marx Gómez

Second Supervisor: Prof. Dr. Klaus Turowski

Place of the Disputation: Carl von Ossietzky University of Oldenburg

Disputation Date: 05.07.2013

I

Acknowledgements

The years I have spent doing my PhD have come to an end. It is now the time for me to

deliver a few kind words to the people who have strongly encouraged and supported me

during that time.

At the beginning I would like to give my deepest heartfelt thanks to my parents, who

shaped and formed my life, they bestowed in me all the motivation I needed to pursue

my doctorate. Words can’t covey the credit they deserve. All I can do is to say thanks

from the deepest chambers of my heart to my dear Souhel, Nada, Housam and Ayham.

I would also like to take this time to thank my first supervisor Prof. Dr.-Ing. Jorge Marx

Gómez for giving me the freedom needed to conduct my research while also being a

remarkable supervisor. Thanks also go to my second supervisor Prof. Dr. Klaus

Turowski and the PhD examination committee members Prof. Dr.-Ing. Oliver Theel and

Dr. Ute Vogel. Last but not least, I’d like to thank all the members of our Very Large

Business Application (VLBA) group. I believed we formed a very good team, which

always made the work more enjoyable. Thanks to all of you for your help, I achieved so

much in my time spent at the VLBA group.

It has been also a pleasure for me to work with the students at the University of Olden-

burg while supervising their research in bachelors’ and masters’ works.

I’ve spent so much time working hard in delivering this dissertation. This has heavily

influenced my private life. I highly appreciate the support of my friends and family dur-

ing that time. Thanks to all of you again.

At the end, it is hard to use any language to represent my gratitude to the people who

have helped me. You all know how much I love and respect you. Thanks again for your

patience, feedback and support.

Tariq Mahmoud

Oldenburg, July 2013

II

Zusammenfassung

Heutzutage wird es für Anbieter am Markt immer wichtiger Ihre Produkte und ihre

Software auf die Bedürfnisse Klein- und mittlerer Unternehmen (KMU) zuzuschneiden,

da deren Marktanteile enorm gestiegen sind. Dies gilt ebenso für die Erfüllung der An-

forderungen aus dem Business-to-Business (B2B) Bereich, die zur wichtigen Heraus-

forderung wird.

Betrachtet man das Thema Systemintegration neben anderen wichtigen Marktfaktoren,

scheinen Webservices eine der wichtigen Technologien für die Lösung von Integrati-

onsproblemen zu sein. Service-orientierte Architekturen und SOA-fähige Systeme bie-

ten leistungsstarke Applikationen für den KMU-Markt. Jedoch haben bestehende Archi-

tekturen im Unternehmensweb viele Nachteile wie enorm große Datenmengen, eine

wachsende Zahl unverbundener Systeme sowie einen Mangel an Interoperabilität. Wei-

terhin fehlen den SOA-basierten Systemen semantische Dokumentationen für die

Webservice-Schnittstellen.

Semantische Webservices bieten Methoden, die (teil-) automatische Suche, Kompositi-

on und Ausführung von Webservices zu vereinfachen. Jedoch erscheinen diese neu ent-

stehenden semantischen Technologien aufgrund der Komplexität für nicht-technische

Nutzer ungeeignet zu sein, die Kundenanfragen und Webserviceleistungen semantisch

zusammenzuführen.

Diese Dissertation liefert eine semantische Webservice-basierte Referenzarchitektur, die

im Wesentlichen auf der Idee basiert, semantische Ausdrücke mit dem leichtgewichti-

gen Resource Description Framework (RDF) auf Webservices anzuwenden, um effizi-

ente Unternehmenssystemlösungen zu erhalten. In der Dissertation wird diese Refe-

renzarchitektur “Lightweight Semantic-enabled Enterprise Service-Oriented Architec-

ture (SESOA)” genannt. Sie vereint Geschäftsprozesse und SOA-Konzepte, um eine

agile und flexible Unternehmenslösung zu schaffen, deren Geschäftsfunktionalitäten im

Wesentlichen auf Webservices basieren. Darüber hinaus ist das wesentliche Ziel dieser

Arbeit, das gesamte Unternehmensweb zu einem Medium zu gestalten, in dem die Be-

deutung der verwalteten Informationen automatisch verstanden und verarbeitet werden.

III

Abstract

Nowadays, it becomes more and more essential for the vendors in the markets to tailor

their products and software to suit the Small and Medium Enterprises (SME) section

since their market share has been enormously raised. The issues related to Business-to-

Business (B2B) environment are becoming important challenges to be considered in

such area as well.

Talking about system integration among the major market business factors, Web Ser-

vices seem to be one of the powerful technologies to solve the integration problems.

Service-Oriented Architecture and SOA-enabled systems provide powerful applications

to be utilized in the SME market. However, the existing architecture of the enterprise’s

Web has many drawbacks like enormous volumes of unstructured data, growing number

of disconnected systems besides the lack of interoperability. Moreover, SOA-based sys-

tems lack the semantic documentation of the Web Service interfaces.

Semantic Web Services provide methods to ease the (semi-) automatic discovery, com-

position, and execution of Web Services. However, these new emerging semantic tech-

nologies seem to be inaccurate to be used in terms of semanticizing the consumer re-

quests and the capabilities of the Web Services besides its complexity when non-

technical skilled staff is involved.

This dissertation presents a semantic Web Service-based reference architecture that re-

lies mainly on the idea of applying lightweight Resource Description Framework (RDF)

semantic statements to Web Services to have an efficient enterprise system solution. In

this dissertation, the reference architecture is called “Lightweight Semantic-enabled

Enterprise Service-Oriented Architecture (SESOA)”. It merges both business processes

and SOA concepts to provide an agile and flexible enterprise solution in which business

functionalities are mainly implemented using Web Services. Moreover, the ultimate

goal behind this work is to upgrade the entire enterprise Web into a medium where the

meaning of its associated information can be automatically understood and processed.

IV

Table of Contents

List of Abbreviations and Acronyms ... VI

List of Figures ... IX

List of Tables ... XII

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Problem Definition .. 2
1.2.1 General Problem Definition ... 4
1.2.2 Problems of Existing Approaches .. 6

1.3 Thesis Statement .. 10

1.4 Thesis Structure ... 13

2 Main Related Concepts and Technologies .. 17

2.1 Distributed Computing .. 17

2.2 Web Services ... 19
2.2.1 Web Service-enabled SOA ... 20
2.2.2 Service Discovery .. 21

2.3 Business Process Management .. 22

2.4 Workflows ... 24

2.5 Semantic Web Pyramid ... 26

2.6 Summary .. 29

3 Service-Oriented Architecture .. 31

3.1 Service-Oriented Architecture Concept ... 31
3.1.1 Motivation behind SOA ... 31
3.1.2 Architectural Considerations .. 33

3.1.3 Web Service Technology ... 35

3.2 Enterprise SOA and Other Architectures... 39
3.2.1 Enterprise Architecture .. 39
3.2.2 Software Architecture .. 40

3.3 Summary .. 41

4 Research Methods ... 43

4.1 Design Science ... 43
4.1.1 DSRM Process Model .. 43
4.1.2 Information Systems Research Framework ... 47

4.2 Service Design Process .. 50

4.2.1 Top-Down Approach .. 50
4.2.2 Bottom-Up Approach ... 51
4.2.3 Middle-Out approach ... 51

4.3 Summary .. 53

5 Conception and System Requirements ... 55

5.1 Definition of Lightweight Semantic-enabled Enterprise SOA 55

5.2 Semantic Support of Web Services ... 56

5.3 Requirement Definition ... 59

5.3.1 General System Requirements ... 59
5.3.2 Core Functional Requirements ... 60

V

5.3.3 Business Case Requirements .. 73
5.3.4 Non-Functional Requirements ... 75

5.4 Summary .. 77

6 Reference Architecture of Semantic-enabled Enterprise SOA 79

6.1 Semantic-enabled Enterprise SOA .. 79
6.1.1 The Layered Architecture ... 79
6.1.2 Architecture Overview ... 81

6.1.3 The Component-based Architecture ... 85

6.2 Web Services Registration ... 105

6.3 Web Service Validation ... 107

6.4 Web Service Evaluation .. 108
6.4.1 Security Protocol for the Evaluation of Web Services 108
6.4.2 Web Service Evaluation within SEAOA ... 113

6.5 Main System Interactions .. 114

6.6 Business Case Architecture ... 117

6.7 Summary of System Outcomes ... 119

7 Prototypical Implementation and Evaluation ... 121

7.1 General Overview of the Prototype Architecture .. 121
7.1.1 Choice of the Adopted Technologies ... 121

7.1.2 The Selling Process Prototypical Considerations 126
7.1.3 System Configurations ... 127

7.2 SESOA Implementation .. 128

7.2.1 SESOA Web Application ... 129
7.2.2 Validation Services .. 140

7.3 The Business Case Web Application ... 144
7.3.1 WF and WCF ... 145

7.3.2 SPARQL Queries ... 147
7.3.3 Implementation Details .. 149

7.4 Evaluation .. 164

7.4.1 Corporate Environmental Management Information Systems 165

7.4.2 On-Demand Business Intelligence ... 174

7.4.3 CeWeColor AG & Co. ... 177

7.5 Summary .. 179

8 Conclusion and Outlook ... 181

8.1 Research Summary .. 181

8.2 Future Work Directions ... 182
8.2.1 Security Pattern .. 182
8.2.2 Web Services Recommendation System .. 184

8.3 Wrap Up ... 184

References ... 187

Publications ... 209

VI

List of Abbreviations and Acronyms

AES Advanced Encryption Standard

ARP Another RDF Parser

ASCII American Standard Code for Information Interchange

B2B Business-to-Business

BI Business Intelligence

BPM Business Process Management

BPMN Business Process Management Notation

BPMS Business Process Management Systems

BPR Business Process Reengineering

CEMIS Corporate Environmental Management Information Systems

CMS Conceptual Models for Services

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

DAO Data Access Object

DBMS Database Management System

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DEC Digital Equipment Corporation

DES Data Encryption Standard

DSRM Design Science Research Methodology

EA Enterprise Architecture

EAI Enterprise Application Integration

EJB Enterprise Java Beans

ERP Enterprise Resource Planning

EPA Evaluation Processing Authority

EPI Environmental Performance Indicators

ESB Enterprise Service Bus

FERP Federated Enterprise Resource Planning

FTP File Transfer Protocol

GUID Globally Unique Identifier

GUI Graphical User Interface

HTML Hypertext Markup Language

VII

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IIS Internet Information Service

IS Information System

IRI Internationalized Resource Identifier

ISO International Standards Organization

LINQ Language Integrated Query

MAUT Multi-Attribute Utility Theory

OASIS Organization for the Advancement of Structured Information

Standards

OEPI Organizations’ Environmental Performance Indicators

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OMG Object Management Group

ORB Object Request Broker

OWL Web Ontology Language

OWL-S Web Ontology Language for Web Services

PDP Policy Decision Point

PEP Policy Enforcement Point

REST Representational State Transfer

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RIF Rule Interchange Format

RPC Remote Procedure Call

RSA Rivest Shamir Adelman

SAWSDL Semantic Annotations for WSDL and XML Schema

SESOA Semantic-enabled Enterprise Service-Oriented Architecture

SCA Service Composition Architecture

SCM Supply Chain Management

SCXML State Chart XML

SDS Security Decision Service

SES Security Enforcement Service

SHA Secure Hash Algorithm

SLA Service Level Agreement

VIII

SME Small and Medium Enterprises

SMTP Simple Mail Transfer Protocol

SOA Service-oriented architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SSL Secure Socket Layer

SQL Structured Query Language

SWSF Semantic Web Services Framework

SWSL Semantic Web Services Language

SWSO Semantic Web Service Ontology

TLS Transport Layer Security

TPL Task Parallel Library

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

URI Universal Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WCF Windows Communication Foundation

WF Workflow Foundation

WfMC Workflow Management Coalition

WfMS Workflow Management System

WS-BPEL Web Services Business Process Execution Language

WS-CDL Web Service Choreography Description Language

WSCI Web Service Choreography Interface

WSDL Web Services Description Language

WSMF Web Service Modeling Framework

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WWW WorldWideWeb

XML Extensible Markup Language

IX

List of Figures

Fig. 1.1: The Problem of Existing Enterprise Systems ... 3

Fig. 1.2: The Related Research Topics ... 10

Fig. 1.3: The Big Picture ... 13

Fig. 1.4: The Structure of the Thesis ... 14

Fig. 2.1: Web Service-enabled SOA ... 20

Fig. 2.2: Interoperability Using WSDL... 21

Fig. 2.3: The Workflow Reference Model .. 24

Fig. 2.4: Semantic Web Pyramid .. 27

Fig. 3.1: Reasons to adopt SOA .. 32

Fig. 4.1: DSRM Process Model .. 44

Fig. 4.2: DSRM Process for SESOA .. 46

Fig. 4.3: Information Systems Research Framework .. 47

Fig. 4.4: Service Design Approaches .. 52

Fig. 5.1: Web Service Assemblages .. 57

Fig. 5.2: Classification of WS-Assemblage Operations ... 58

Fig. 5.3: Main Interactions between System Components .. 63

Fig. 5.4: System Requirements from User’s Perspective .. 63

Fig. 5.5: Validation Tests .. 68

Fig. 5.6: Integer and Decimal Validation .. 69

Fig. 5.7: String Validation ... 70

Fig. 5.8: DateTime Validation .. 71

Fig. 5.9: Service Evaluation Overview ... 71

Fig. 5.10: Representation of RDF Statements ... 72

Fig. 5.11: Business Process Model for Selling Process .. 74

Fig. 6.1: SESOA-Reference Model as Layered Architecture 80

Fig. 6.2: SESOA-Reference Architecture ... 82

Fig. 6.3: SESOA-Reference Architecture as Component-Based Architecture 85

Fig. 6.4: SESOA Process Definition Meta-model .. 88

Fig. 6.5: Processing System Component Structure ... 89

Fig. 6.6: Consumer System Component Structure .. 94

Fig. 6.7: Provider System Component Structure .. 95

Fig. 6.8: Web Service Directory Component Structure .. 96

X

Fig. 6.9: Sequential Composition of Services ... 96

Fig. 6.10: Parallel Composition of Services ... 97

Fig. 6.11: Semantic Web Service-based System Component Structure 99

Fig. 6.12: Validation System Component Structure ... 100

Fig. 6.13: Semantic Service Repository Component Structure................................... 101

Fig. 6.14: Interfaces of the SESOA Database System .. 102

Fig. 6.15: Web Service Registration Scenario .. 106

Fig. 6.16: Service Reputation in SESOA .. 114

Fig. 6.17: Main SESOA Component Interactions ... 115

Fig. 6.18: Adding Semantic Relation .. 117

Fig. 6.19: Selling Process Component Architecture ... 118

Fig. 7.1: The Prototype Architecture... 125

Fig. 7.2: The Components of the Selling Business Process 126

Fig. 7.3: The SESOA Development Framework GUI .. 129

Fig. 7.4: System’s Main Roles .. 130

Fig. 7.5: Discover Repository ... 131

Fig. 7.6: Discover Repository’s Assemblages .. 132

Fig. 7.7: Discover Repository’s Registered Web Services 132

Fig. 7.8: Add a New Assemblage.. 133

Fig. 7.9: Add a New Web Service... 134

Fig. 7.10: Single Assemblage - Web Service Relation ... 135

Fig. 7.11: Get Assemblage’s Information ... 138

Fig. 7.12: Delete an Assemblage... 138

Fig. 7.13: Delete a Web Service.. 139

Fig. 7.14: The Validation Services .. 140

Fig. 7.15: The Interface of the Integer Validation Test Web Service 141

Fig. 7.16: The Interface of the Decimal Validation Test Web Service 141

Fig. 7.17: The Interface of the String Validation Test Web Service........................... 142

Fig. 7.18: The Interface of the DateTime Validation Test Web Service 142

Fig. 7.19: Complex Validation Test Example ... 143

Fig. 7.20: RDF Validation - Graph Representation .. 144

Fig. 7.21: Result of the Generic RDF Query .. 148

Fig. 7.22: Result of a Specific RDF Query ... 148

Fig. 7.23: The Business Case Web Application .. 150

XI

Fig. 7.24: Business Case GUI Structure.. 151

Fig. 7.25: The Customer Center .. 152

Fig. 7.26: The Database Model for the Selling Business Process 153

Fig. 7.27: Dataflow in the Payment Component ... 157

Fig. 7.28: Payment using an External Web Service .. 159

Fig. 7.29: Component Interactions in the Selling Business Process 161

Fig. 7.30: Coordination Workflow .. 162

Fig. 7.31: Part of the Coordination Workflow - Payment Notification 163

Fig. 7.32: Part of the Coordination Workflow - Shipment Notification 164

Fig. 7.33: CEMIS Next Generation Layered Architecture ... 167

Fig. 7.34: Overview of OEPI’s Architecture .. 170

Fig. 7.35: The OEPI’s Data Adaption Layer... 171

Fig. 7.36: Collaborative CEMIS Realization using SESOA 173

Fig. 7.37: On-Demand BI enhanced by SESOA ... 175

Fig. 8.1: Security as a Service ... 182

Fig. 8.2: SESOA Potential Security Pattern .. 183

XII

List of Tables

Tab. 1.1: Conceptual Frameworks ... 7

Tab. 1.2: Lightweight Annotation Mechanisms .. 8

Tab. 2.1: BPR and BPM Comparison .. 23

Tab. 3.1: Web Service Technology Stack .. 36

Tab. 5.1: List of WS-Assemblage Operations ... 58

Tab. 5.2: Processes, Functions, and Tasks ... 61

Tab. 5.3: The Main System’s Use Cases ... 64

Tab. 5.4: List of Non-Functional Requirements .. 76

Tab. 6.1: Workflow Engine’s Main Functionalities .. 89

Tab. 6.2: Workflow Manager’s List of Functionalities ... 91

Tab. 6.3: System User Types ... 92

Tab. 6.4: Function Set of Database System - Assemblage Unit Interface 103

Tab. 6.5: The Security Algorithms used in this Work ... 109

Tab. 6.6: The Evaluation Criteria... 111

Tab. 6.7: Calculation of the Evaluation Criteria .. 111

Tab. 6.8: The Calculation of a Web Service’s Evaluation Value in the EPA 112

Tab. 6.9: Examples of Data Model Triples .. 117

Tab. 7.1: System’s Enabling Technologies .. 122

Tab. 7.2: List of applied Technologies to SESOA components 124

Tab. 7.3: Distribution of System’s Sites on Ports ... 128

Tab. 7.4: Items of the SESOA Development Framework GUI 129

Tab. 7.5: RDF Statement Triple Example.. 135

Tab. 7.6: RDF Validation - Triple Representation... 143

Tab. 7.7: Business Case’s Sites and their Ports ... 145

Tab. 7.8: Entities Properties ... 149

Tab. 7.9: The Web Service Operations of the Shop Component 154

Tab. 7.10: Implemented Workflow Services in the Logistics Component 156

Tab. 7.11: The Web Service Operations of the Payment Component 158

Tab. 7.12: The Configurations for the Mail Component ... 160

Chapter 1 - Introduction

1

1 Introduction

It is very rare in the last few years to find an enterprise that is based only on one infor-

mation system, rather it has to have bundle of systems that are specialized for different

organizational sections. This is besides the fact that the utilization of information tech-

nology is playing an essential role in the competitiveness between enterprises. Nowa-

days, the duration of the production of goods and service provisioning1 has been notably

decreasing through the increment of automation procedure in almost all the business

work processes. This automation procedure reflects the mapping of the enterprise’s

business processes to be realized as services supplied over a distributed network.

Furthermore, since the digital market is growing drastically and the vendors are control-

ling this market, there is a need for new approaches to deal with that (Brehm et al.,

2008, p. 26) side by side with one of the main troubles that the information systems are

facing that is integration. In other words, software complexity and integration are im-

portant factors to be considered while developing software systems. To handle complex-

ity and integration factors, many frameworks and approaches have been designed and

implemented for enterprise information systems like Enterprise Application Integration

(EAI) (Linthicum, 2000) and Service-Oriented Architecture (SOA) (Erl, 2005).

The main business driver behind EAI is to achieve process integration among third-

party applications2 and legacy systems to make the number of adapters needed to con-

nect systems as less as possible (Haller, Gomez, & Bussler, 2005). SOA and more pre-

cisely enterprise SOA outlines a set of services to align business with IT. These services

are made available for all key players inside an enterprise or even outside it. These ser-

vices conjointly handle all enterprise goals and business processes (Rosen et al., 2008,

p. 78). Enterprise SOA is in turn providing integration between multiple lines of busi-

ness3 by offering standardized services.

This work is devoted to the problems related to information systems complexity and

integration. It examines the extent of the existing integration approaches to provide an

alternative solution that balances between the business technical functionalities and

structural complexity that might accompany its information system(s).

1
 In economics, service provisioning means that the end user does not exclusively own or benefit of a

purchased product unless he/she pays for it or the service is provided for public use.
2
 Third-party applications refer to those applications that are delivered by companies other than the com-

pany that is using them.
3
 “Line of business” refers to an enterprise’s internal organization unit. It is in contrast with the term “in-

dustry” that denotes to an external enterprise that is competing in a similar market.

Chapter 1 - Introduction

2

1.1 Motivation

Recently, the market share of Small and Medium Enterprises (SME)4 section has enor-

mously raised (Armario, Ruiz, & Armario, 2008). Therefore, it becomes more essential

for the vendors to tailor their products and software to suit SMEs in such market. SOA

is classified as a crucial architectural style that aligns business with information tech-

nology at different business levels - especially SMEs. This encouraged several compa-

nies to transfer their entire information infrastructures towards the Web platform, offer-

ing unified and standardized access for their customers, suppliers and employees to the

information and services they offer (Brehm et al., 2008).

Enriching data with semantics made the major shift towards Semantic Web5 (Berners-

Lee, 1998). As mentioned by (Cardoso, Hepp, & Lytras, 2007, p. 4), Semantic Web can

ease the integration and interoperability of intra- and inter-business processes and sys-

tems. It also establishes global infrastructures to share data and documents making the

process of information searching and reusing easier. Web Service-enabled SOA systems

represent powerful applications to be utilized in the SME market (Bieberstein et al.,

2005). By annotating the Web Services supplied to these systems with semantics, the

meaning of information is defined to provide more powerful and efficient discovery,

selection and invocation of the used services.

The connection between enterprise information systems, Semantic Web and Web Ser-

vice-enabled SOA systems are the main concepts related to this work. Moreover, the

integration issues between heterogeneous and monolithic business applications and the

complexity accompanied the semantic conceptual frameworks for Web Services and the

lightweight service description extensions form the motivation of this work to deliver a

lightweight semantic SOA reference architecture.

1.2 Problem Definition

Almost every enterprise has one or more applied information systems serving for its

different organizational sections. This indicates that one of the most problematic issues

that the businesses have to overcome is the software integration. The integration ap-

proaches include EAI software, Enterprise Service Bus (ESB) implementations, service-

oriented implementation, message-oriented middleware, message brokers, etc. In other

words, the main question that can be asked here is how to handle the data exchange

among heterogeneous dissimilar information systems?

4
 It is also known as: SMEs, Small and Medium Businesses or SMBs.

5
 Semantic Web is merely an expansion of the conventional WorldWideWeb (a.k.a. WWW or W3) in

which the semantics - meaning - of Web information and services are defined, processed and under-

stood by both people and machines to use the Web content (Berners-Lee, Hendler, & Lassila, 2001).

Chapter 1 - Introduction

3

Fig. 1.1: The Problem of Existing Enterprise Systems

This question is reflected in Figure 1.1. The main problems that can be observed in this

figure are:

 The problem of redundancy: Nearly in each business domain, many enterprise

systems are employed to achieve enterprise goals. The main problem in such

contexts is that business functionality is duplicated in each enterprise application

that requires it (see the top left side of the figure above). This raises the problem

of having monolithic enterprise system with many application silos. EAI lever-

ages these application silos with the risk of data and function redundancy be-

sides the overlapping of resources and providers. Moreover, the integrated archi-

tecture is always bounded to EAI vendors. This results in having a limited set of

business processes and as a consequence less consumers.

 The problem of lacking semantic descriptions: Any business domain can be split

into different organizational units. Based on SOA concept, different providers

supply services to these units (see the top right side of the Figure 1.1). This indi-

cates that SOA structures any business domain and its systems as a set of capa-

bilities offered as services. Services in this context virtualize how such capabili-

ties are performed, where and by whom the resources are provided. This enables

multiple providers and consumers to participate together in shared business ac-

tivities. The semantic descriptions of services in most of the SOA-based systems

are not taken into consideration. Many approaches concentrate on this issue ei-

ther by providing heavyweight frameworks or lightweight semantic descriptions.

However, both types focus on providing semantics first with less interest on the

business perspectives.

To addresses these problems, a reference architecture have been developed. It offers a

service architecture in which services are grouped based on the organizational unit to

which they belong. The lightweight semantic annotation is made between these services

and groups. The resulted artifact from this architecture is applied to an accompanying

business case to prove its applicability in different business environments.

Chapter 1 - Introduction

4

1.2.1 General Problem Definition

Traditional Enterprise Architecture (EA) concepts in the EAI domain focus on the ex-

post integration of application interfaces by pipelining different middleware technolo-

gies like message queuing or remote method invocations (Bussler, 2003a; Hohpe &

Woolf, 2003; Mahmoud & Marx Gómez, 2008a). However, EAI systems lack in com-

mon the difficulty of applying semantic integration to the systems since no formal inter-

face data definition exists (Bussler, 2003b). This requires that the engineers who are

going to integrate the enterprise application systems need to have an in depth

knowledge regarding the meaning of the low-level data in order to apply a semantically

correct integration (Haller, Gomez, et al., 2005).

On the other hand, the emerging trends in the EAI market as for example SOA and

ESB6 promote the Web Service technology to advertise services based on standards

claiming to solve the integration problems. Before referring to the problems of Web

Service-enabled SOA systems, it is necessary to introduce the lifecycle of Web Ser-

vices. The major phases in the service lifecycle as described in the Web Services con-

ceptual architecture are: build, deploy, run and manage (Kreger, 2001). These phases

deal with service discovery, selection, invocation, composition, and monitoring. The

build phase deals with the development and testing of a Web Service. The publication

of the service interface takes place in the deploy phase. The service is then made availa-

ble to be invoked in the run phase. Finally, managing services is covered in the manage

phase.

Service discovery and publication usually come together. Providers implement Web

Services and publish their descriptions (interfaces) in one or more service registries.

Consumers can then discover these published service descriptions to select a proper

service to invoke. Service selection is based on a set of criteria like binding information,

performance, availability, load balancing, quality of service, etc. As soon as a Web Ser-

vice is selected, the service consumer can invoke it and call its functions.

Since the implementation of a Web Service is considered as a software module, new

Web Services can always be composed from the existing ones. Some composition ap-

proaches are mentioned in Section 6.1.3.4. Finally, monitoring and management of en-

terprise business services are highly needed to ensure that the communications with

these services do not introduce delay and denial failures. If these failures might occur,

proper handling is always recommended.

Based on this short introduction of the Web Service lifecycle, the accompanied prob-

lems to the Web Service-enabled SOA systems can be defined. Relying mainly on Web

Service standards, these systems lack the formal semantic documentation of their under-

6
 Enterprise Service Bus or ESB is a standard-based integration platform that merges several techniques

like Web Services, data transformation and intelligent routing to integrate several applications via

event-driven SOA across a multiprotocol service bus (Chappell, 2004, pp. 1, 2).

Chapter 1 - Introduction

5

lying Web Service interfaces and data structures. This indicates that the already existing

syntactical problem in their antecedent EAI technologies still exists. This comes with

some other accompanying drawbacks like enormous volumes of unstructured data,

growing number of disconnected systems, and the lack of interoperability as well (Hu et

al., 2008, p. 589).

Furthermore, existing SOA-based systems lack the (semi)-automatic service discovery,

(semi)-automatic service composition, data and process interoperability besides the in-

formation sharing, finding, extraction, interpreting, maintaining, and representation

(Mahmoud & Marx Gómez, 2010, p. 2). Annotating Web Services in SOA-based sys-

tems with semantics results in the so-called Semantic Web Services (Studer, Grimm, &

Abecker, 2007; McIlraith, Son, & Zeng, 2001). The main purpose behind Semantic

Web Services research paradigm is to ease the automation process of Web Services dis-

covery, selection, invocation, composition, and monitoring in a distributed and open

environment7 (Payne & Lassila, 2004, p. 14).

One of the promises of the Semantic Web Services is to overcome the heterogeneity

problems of the enterprise Web resources at both data and process levels by providing

methods to ease the (semi-) automatic discovery, composition, and execution of Web

Services (Mahmoud & Marx Gómez, 2008b, p. 791; Mahmoud, 2009, p. 475). On the

one hand, it is complex to use these new emerging semantic techniques in terms of ap-

plying semantics to Web Service capabilities and their consumer requests (they provide

semantics first) (cf. Sabou, 2005). On the other hand, the complexity of these semantic

techniques is an important issue to be considered when non-technical skilled staff is

going to be involved.

From process orientation perspective, Web Service-enabled business processes ease the

interaction of enterprises with markets, competitors, suppliers and customers. They ena-

ble enterprise-level and core cross-sectional business functionalities and support both

intra- and inter-organizational workflows. They are mainly composed of Web Services

as underlying activities. As described in (Cardoso et al., 2007; van der Aalst, 2009), The

main challenges of Web Service-enabled business processes are autonomy and hetero-

geneity that come from the complex interactions rules in B2B and e-commerce in gen-

eral. Business demands like efficient discovery, composition, etc. require dynamic na-

ture of business interactions. Last but not least scalability needs to be taken into account

while dealing with Web Service-enabled business processes.

From service discovery perspective and based on (Sivashanmugam et al., 2003; Sriniva-

san, Paolucci, & Sycara, 2004) the limitations are firstly in the search mechanism where

coarse results with high precision and recall errors might results and secondly in the

XML usage to describe service repositories’ data models that causes syntactic interop-

erability and fails to provide semantic description of its content.

7
 E.g., the Web that presents a disordered and unregulated environment.

Chapter 1 - Introduction

6

More details about the problems of existing approaches are going to be presented in the

following section.

1.2.2 Problems of Existing Approaches

In the last few decades, an increasing number of approaches and researches aimed at the

integration of existing software systems. In this section, some of these related efforts in

the research areas of Web Service-enabled and Semantic Web Services-enabled SOA

are listed and discussed.

1.2.2.1 Web Service-enabled SOA

SOA represents a concept and Web Services are considered merely as a technology to

realize it8. Despite the fact that most building blocks of SOA concept were set up before

Web Services brought into life9, the majority of modern service-oriented architectures

utilize them as underlying technology (Keen et al., 2004). Business applications based

on SOA concept generally wrap their functionalities using standardized Web Service

interfaces10. One example is the Federated Enterprise Resource Planning (FERP) system

that is totally based on SOA standards (Brehm, 2009). It follows the already mentioned

wrapping process. The problem that encounters FERP system is the heterogeneity of its

data models, interfaces and architectural components (Brehm, Lübke, & Marx Gómez,

2007, p. 303). As a contribution to this issue, (Brehm & Marx Gómez, 2005, p. 105)

proposed that these disparate components have to be standardized in order to make

FERP services interoperable with each other. What is still not solved in FERP system is

the lack of semantic definition of its Web Service interfaces besides the traditional

drawbacks inherited from SOA systems (see Section 1.2.1).

1.2.2.2 Conceptual Frameworks

There are many efforts done in the field of Semantic Web Services. The most notable

conceptual frameworks in this domain (Mahmoud & Marx Gómez, 2010, p. 6; cf.

Mahmoud, 2009, p. 476) are listed in Table 1.1: SWSF (Battle et al., 2005a), WSMO

(De Bruijn et al., 2005) and OWL-S (Martin et al., 2005).

8
 Most researchers in distributed computing world agree upon the point that the main roles, operations and

principles of SOA and Web Services are similar.
9
 Any service within SOA concept is totally independent and might have nothing to do with the Web

Service concept.
10

 There are many ways to develop SOA solutions using standards, but all of these standards have to use

Internet protocols.

Chapter 1 - Introduction

7

Tab. 1.1: Conceptual Frameworks

Conceptual Framework Description

Semantic Web Services Framework

(SWSF)

SWSF includes the Semantic Web Ser-

vices Language (SWSL) (Battle et al.,

2005b), that is used to define the Semantic

Web Services Ontology (SWSO) (Battle et

al., 2005c), besides individual Web Ser-

vices.

Web Service Modeling Ontology

(WSMO)

WSMO initiated the standards related to

Semantic Web Services. It represents a

meta-model for the related aspects of Se-

mantic Web Services (De Bruijn et al.,

2005).

Ontology Language for Web Services

(OWL-S)

OWL-S is an ontology to describe the re-

lated aspects of Web Services. It is part of

the OWL-based framework of the Seman-

tic Web (Martin et al., 2004).

As mentioned in (Roman et al., 2005), WSMO represents a formal model for describing

diverse aspects related to Semantic Web Services. It is based on the Web Service Mod-

eling Framework (WSMF) (Fensel & Bussler, 2002). Based on the researches of (De

Bruijn et al., 2005; Fensel et al., 2007, 2011), the main objective of WSMO (see

http://www.wsmo.org) is to define a consistent technology for Semantic Web Services

by providing the means for semi-automated discovery, composition, and execution of

Web Services based on logical inference-mechanisms (Cimpian & Mocan, 2005).

WSMO applies Web Service Modeling Language (WSML) (De Bruijn et al., 2006) as

an underlying language based on different logical formalisms.

Found in (Martin et al., 2005), OWL-S is an ontology11 for describing Semantic Web

Services represented in OWL12 (Patel-Schneider, Hayes, & Horrocks, 2004). It com-

pounds the expressivity of description logics together with the pragmatism related to the

emerging Web Service standards, so that services can be expressed semantically and yet

grounded within a well-defined data typing formalism (Cabral et al., 2004, p. 234).

The abovementioned Semantic Web Services conceptual frameworks represent heavy-

weight semantic systems that are dealing with complex ontology specifications and

rules. They introduce new languages based on expressive formalisms and follow the

11
 In philosophy, an ontology is a systematic account of existence. (Gruber, 1993, p. 1) defined an ontolo-

gy as a formal explicit specification of a shared conceptualization and this definition is adopted when-

ever the term “ontology” is found in this thesis.
12

 OWL stands for Web Ontology Language and it is used to define the meaning of information to ma-

chines as well as to humans (McGuinness & Van Harmelen, 2004).

Chapter 1 - Introduction

8

top-down modeling approach13. This leads to the conclusion that it is difficult to use

such semantic frameworks in running business environments because of their complexi-

ty and the less focus on business values.

1.2.2.3 Lightweight Semantic Annotation Mechanisms

In the field of Web Services and Semantic Web Services, there are many tools, ontolo-

gies and mechanisms to apply lightweight semantic annotations to services. SAWSDL,

WSMO-Lite and MicroWSMO are listed in Table 1.2 with a brief discussion for each of

them. This section then defines some of their problems.

Tab. 1.2: Lightweight Annotation Mechanisms

Annotation Mechanism Description

Semantic Annotations for WSDL14 and

XML15 Schema (SAWSDL)

SAWSDL represents a standard to relate

WSDL documents to semantic descrip-

tions like OWL-S and WSMO (Farrell &

Lausen, 2007).

WSMO-Lite Using SAWSDL annotation mechanism,

WSMO-Lite represents a lightweight set

of semantic service descriptions (Fensel et

al., 2010).

MicroWSMO MicroWSMO represents a microformat-

like mechanism to annotate RESTful Web

Services (Maleshkova, Kopeckỳ, & Pedri-

naci, 2009).

The World Wide Web Consortium (W3C) (see http://www.w3.org) defined and initiated

SAWSDL working group at April 2006. SAWSDL (Kopeckỳ et al., 2007) is based on

the WSDL-S16 W3C member submission (Akkiraju et al., 2005). It provides standardi-

zation methods by which traditional WSDL documents can be extended by a set of

lightweight semantic descriptions, such as those provided by the Semantic Web Ser-

vices frameworks (Martin, Paolucci, & Wagner, 2007).

13
 By following the top-down modeling approach, these frameworks give the full intention just to provide

semantics first.
14

 Web Services Description Language (WSDL) is a W3C recommendation. It is an XML-based language

used for describing Web Services (Christensen et al., 2001). The WSDL acronym has changed from

version 1.1 where the D letter stood for Definition.
15

 XML stands for eXtensible Markup Language.
16

 WSDL-S or Web Service Semantics is based on and extends WSDL by having new elements and ex-

tensions for the existing WSDL elements. In other words, WSDL-S connects WSDL and OWL to-

gether (Herrmann, Dalferth, & Aslam, 2007).

Chapter 1 - Introduction

9

WSMO-Lite (Kopeckỳ & Vitvar, 2008) is a service ontology created on the basis of

SAWSDL as a community effort resulted in the CMS working group17. (Vitvar et al.,

2008, p. 675) stated that WSMO-Lite represents a lightweight service ontology that an-

notates WSDL descriptions using SAWSDL and applies RDFS18 as a main description

language.

(Kopeckỳ, Vitvar, & Fensel, 2008) stated that MicroWSMO adopts the WSMO-Lite

service ontology as a reference ontology to describe services semantically (Pedrinaci et

al., 2010, p. 246). It represents a semantic annotation mechanism for Representational

State Transfer (REST) Web Services19 using the hRESTS microformat20 (Kopeckỳ,

Gomadam, & Vitvar, 2008) to provide machine-readable service descriptions (De Gior-

gio, Ripa, & Zuccalà, 2010, p. 342).

To sum up, SAWSDL annotation is used to describe Simple Object Access Protocol

(SOAP)21 services semantically and MicroWSMO is used to describe the RESTful Web

Services using hRESTS, and together they constitute the WSMO-Lite service ontology

(Fensel et al., 2011, p. 280).

All of these lightweight semantic annotation efforts share the idea of augmenting exist-

ing service specifications with semantic descriptions following the bottom-up modeling

approach. They also cover the other grounding approaches namely: SOAP-based and

RESTful services using their lightweight service ontologies. As discussed in (Lytras &

García, 2008), these efforts extend the existing service descriptions with semantics fo-

cusing just on providing semantics with less effort to address the business values.

1.2.2.4 Other Related Work Problems

To complete the analysis of the state-of-the-art related work problems, there is the re-

search area of component-based software engineering (Heineman & Councill, 2001). By

enhancing this domain with the so-called “business components” (Turowski, 2001), the

main outcomes behind this research domain are shaped and refined in the context of

business application systems (Fellner & Turowski, 2000). As stated in (Conrad &

Turowski, 2001, p. 153), a business component is an application-oriented component

17
 CMS here stands for Conceptual Models for Services (Lambert & Benn, 2010).

18
 Resource Description Framework Schema (RDFS) is a vocabulary description language and W3C rec-

ommendation. While RDF is accorded as a general-purpose language to represent the information in

the Web, RDF Schema is used to describe RDF vocabularies (Brickley & Guha, 2004).
19

 REST as proposed by (Fielding, 2000) in his PhD dissertation is an architectural style of networked and

distributed hypermedia systems. REST-based services or RESTful Web Services (Richardson & Ru-

by, 2007) are Web Services implemented using REST principles.
20

 HyperText Markup Language (HTML) for RESTful Services or hRESTS is an HTML microformat

used to describe the main aspects (inputs, outputs, operations) of the RESTful services.
21

 SOAP (Lafon & Mitra, 2007) is a protocol specification designed to exchange information while im-

plementing Web Services in distributed computing environment. REST differs from SOAP in the

point that it is designed to be employed in communications over Hypertext Transfer Protocol (HTTP).

Chapter 1 - Introduction

10

that provides a specific set of services using well-defined interfaces out of a given busi-

ness domain. Detailed efforts and discussions on how to standardize business compo-

nents had been already provided in (Turowski, 2000). XML offers the opportunity to

standardize the component’s data formats so that the overall software systems interop-

erability can be improved using standard communication protocols and data formats

(Brehm, 2009, p. 5). According to the comparison made by (Schmietendorf et al., 2003,

pp. 31–33), a Web Service can be technically described, provided and registered in cen-

tral directories as a set of business components. However and since they are supplied in

development, Web Services reside within the Internet and can remain within their own

applications as well. This means that an application can be implemented based on a

network of distributed business components called Web Services. Therefore, SOA prob-

lems can still apply to these business components.

1.3 Thesis Statement

The main aim behind this work is the derivation and systematic presentation of a new

approach for the implementation and delivery of a lightweight semantic enterprise sys-

tem by relying on Web Services. This system can be considered as a special form of

business software that enables the proper use of components and application functions

supplied by competing providers. To develop and supply such components, a technical

information infrastructure approach is developed together with a business case that im-

plements and applies its main outputs.

Fig. 1.2: The Related Research Topics

Figure 1.2 represents the main research topics that form the basis of the proposed ap-

proach. It is realized based on the idea of applying lightweight semantic annotations on

Chapter 1 - Introduction

11

Web Services. The output of this work can be applied to different application domains

like Enterprise Resource Planning (ERP) (Monk & Wagner, 2008; Robert Jacobs &

“Ted” Weston, 2007), Customer Relationship Management (CRM) (Grönroos, 2000),

Supply Chain Management (SCM) (Handfield, Nichols, & Ernest, 1999)...

Currently, one of the concepts involved in enterprise integration is the SOA concept.

With the advent of the Semantic Web (Berners-Lee & Hendler, 2001) and its semantic

annotation techniques, the proposed approach is involved in forming the future version

of integration among enterprises. It is considered as a component-based software system

that enables the integration of heterogeneous business application using Web Services.

Moreover, it derives its main aspects from multiple disciplines in enterprise engineer-

ing22: Enterprise Architecture, planning, management and technology. As defined in

(Giachetti, 2010, p. 102), an Enterprise Architecture represents the construction of an

enterprise and its business entities (subsystems), their properties and relationships, the

relationships to the external systems together with the main principles to design and

evolve an enterprise. The main concepts derived from Enterprise Architecture include

business architecture, technical architecture, IT-governance besides modeling, organiza-

tion, and realization of enterprise business processes, visions, and goals. Planning and

management play also an important role in shaping and enhancing the suggested ap-

proach. The main terms derived from planning include strategic and budget planning23,

business case analysis, migration strategies, sourcing together with program and project

scoping. Management science is quite important and plays also an important role in de-

signing and developing the proposed approach starting from how to align business with

IT and ending with marketing and information management.

The proposed solution seems to mediate between the supply and demand of software

components represented as Web Services in an open market. Moreover, several tech-

nologies have been used to realize the desired solution. Web Service technology has

been used to realize the SOA concept. Workflows executed and managed by workflow

management systems have been used to implement business processes. Furthermore,

Database Management System (DBMS) has been used to create, maintain and use the

system’s databases. RDF statements have been used to annotate the relations among

services. Furthermore, the resulted artifacts of this work are implemented as Web appli-

22
 Enterprise engineering in this context can be defined following (Dietz, 2006, p. 71) as an entire

knowledge consistence that represents all the aspects of development, implementation and operational

use of enterprises together with its practical application derived from the engineering projects.
23

 While strategic planning determines to where an enterprise is going to be by time and how it will get

there, budget planning is setting the financial budgets for the enterprise and each of its organizational

units (cf. Steiner, 1997).

Chapter 1 - Introduction

12

cations in which all the involved users can log in and benefit from the offered Web Ser-

vices based on their rights and privileges.

Due to the very high number of functionalities and data types used in enterprise systems

(Brehm, 2009), this study does not describe the actual content of such standards and

specifications, rather it is dedicated to answer the following research questions:

 What is the difference between existing SOA-based systems and the proposed

approach in terms of applying semantic annotations to services?

 How can the existing technologies and concepts of current enterprise systems as

well as the general integration aspects of software systems be utilized and reused

in the suggested approach?

 How the relations among services are annotated and later on made available in

semantic service repository?

 How the validation and automatic evaluation of services can be achieved?

Answering these questions involves the development of a distributed enterprise system

architecture enabled by multiple service providers. The aim of this architecture is to

unify the technical information infrastructure among enterprises to facilitate the com-

mon enterprise system operations, in which each entity can ask the community for the

available functionalities encapsulated and offered as services and/or provide them. Se-

mantic annotations are applied to the service relations within this architecture. Service

validation (cf. Maximilien & Singh, 2004; cf. von der Dovenmühle, 2009) and evalua-

tion (cf. Hasan, 2010) constitute two major outcomes. The overall system in this disser-

tation is called “Lightweight Semantic-enabled Enterprise Service-Oriented Architec-

ture (SESOA)”.

Figure 1.3 shows the big picture of the developed approach. As it can be seen in this

figure, in any enterprise there are bunch of systems that communicate with each other

like SCM, CRM, ERP, accounting, legacy systems, etc. in a daily manner. These sys-

tems have their own way in representing data. This makes enterprise looking like a me-

dium24 in which disparate and heterogeneous systems are collaborating to achieve their

business goals (cf. Hu et al., 2008). The first step in this work is the inspection of the

current use of such conventional enterprise systems (more precisely the SOA-based

ones) and the exploration of their internal structures. In the second step, SESOA is pro-

posed as a service architecture that enables the provision and use of Web Services with-

in a distributed network via its semantic service repository. This approach is developed

to be responsible of splitting the semantic annotation from the core services description

24
 Medium in this context means a production channel that stores and/or supplies information or data to

all its organizational sections.

Chapter 1 - Introduction

13

where both Web Services and Semantic Web Services can be used, evaluated and vali-

dated.

The following points summarize the main objectives that can be derived from this dis-

sertation where some of them are inherited from other related works:

a) to improve the time-to-market via simplified marketing of the system’s sub-

components

b) to reduce system maintenance complexity

c) to open the market to include small, medium and large businesses

d) to validate and evaluate Web Services from both functional and non-functional

perspectives

e) to consolidate business processes and service orientation concepts to effectively

utilize the market’s best practices.

Fig. 1.3: The Big Picture

As a last step in this work, the subsequent prototypical implementations are presented in

details to show the practicability of the proposed approach.

1.4 Thesis Structure

The structure of this thesis is realized in eight chapters as depicted in Figure 1.4. Chap-

ter one is the introductory part of the thesis. It includes the motivation behind this work,

the related work, the problem definition that this work addresses, thesis statement, and a

reader’s guide. The main related concepts and technologies are placed in Chapter two

including a short overview of distributed computing, Web Services, Business Process

Management, workflows, and the Semantic Web pyramid.

Chapter 1 - Introduction

14

Enterprise SOA and other architectures like Enterprise Architecture and Software Ar-

chitecture are explained and compared in Chapter three. Chapter four illustrates the re-

search methods that have been followed in this work. Chapter five illustrates the general

requirements and the semantic support of Web Services together with defining the main

requirements of the accompanying business case.

Fig. 1.4: The Structure of the Thesis

The definition of SESOA and its reference architecture are explained in Chapter six

where the core building components are formally described using various Unified Mod-

eling Language (UML) diagrams. Web Service validation and evaluation and the main

system interactions are explained in this chapter as well.

Chapter 1 - Introduction

15

Chapter seven demonstrates the prototypical implementations of the resulted artifacts. It

gives highlights to the SESOA main Web application together with the Web application

of the accompanying business case. It further shows how SESOA concept has been

evaluated in four different application fields to prove the applicability of this approach

in an industrial context.

Finally, the work’s main contributions together with future work directions are summa-

rized in Chapter eight.

Chapter 2 - Main Related Concepts and Technologies

17

2 Main Related Concepts and Technologies

This chapter provides a holistic background information and overview about the main

traditional and Semantic Web disciplines. From the traditional Web25 perspective, the

main related concepts to this work include distributed computing, Web Services, Busi-

ness Processes Management and workflows. As from the Semantic Web perspective,

the main related concepts to this work include the Semantic Web pyramid and its layers.

2.1 Distributed Computing

One of the important challenges to achieve distributed computing is remoteness and its

abstractions. Services serve as one of the distributed computing’s software systems.

This means that a consumer machine remotely invokes a computer program (service)

that doesn’t reside in the same physical machine. This remoteness is hidden from the

consumer and it is the provider task to select the proper invocation scenario with a suit-

able degree of granularity. Distributed computing infrastructure has been around for

almost three decades. It started with the traditional costly large computers and main-

frames that perform tasks on their own (Brodie, 1992). Later on, the development had

been shifted towards more interactive multi-user systems that enabled the distribution

using terminal devices like DEC VT10026 or the IBM 3270. This distribution was only

from data capturing and display perspectives by sharing just data and output devices (cf.

Krafzig, Banke, & Slama, 2005, p. 19).

In the beginning of the 1970s, the computers became more small and cheap and main-

frames were substituted with these smaller computers. The price/performance ratio ac-

companied with the evolution of small computers paved the way towards distributed

operating systems like UNIX where the use of network was essential part of it. This

enabled the ideas of controlling programs and computers remotely besides providing

services to other computers across the network. Many tools to enable these ideas were

emerged like telnet and the Berkeley r-tools. Moreover, remote printing and storage

space administration were facilitated by the accompanying file systems like for example

the Sun Microsystem’s NFS27 file system. NFS was the main origin of the SUN-RPC

standard that is in turn considered as one of the foremost Remote Procedure Call (RPC)

standards (cf. Krafzig et al., 2005, p. 19).

Lately in the 1990s, the spoke-hub distribution paradigm in which a storage and printing

central system could be accessed by many desktop computer systems had been devel-

oped. The client/server model was another distribution paradigm emerged as the rela-

tional databases became more and more popular. In this model, the server provides a

25
 What is meant by the traditional Web is all of the Web classifications in the pre Semantic Web era.

26
 VT100 is a terminal device created by the Digital Equipment Corporation (DEC) company.

27
 NFS or Network File System developed by Sun Microsystems was one of the first distributed file sys-

tems that enabled users to access files over the network.

Chapter 2 - Main Related Concepts and Technologies

18

service or a resource to a client that requests such service. Big portion of the application

logic was laid at the client side that remotely accessed a database server. The execution

logic was split among the client and the server (Orfali, Harkey, & Edwards, 2007). The

next step in the client/server application development was to make a clear distinction

between the client and the server by developing distribution platforms like Distributed

Computing Environment (DCE) and Common Object Request Broker Architecture

(CORBA) promoted by the OMG28. To save the number of servers needed to serve the

clients, CORBA introduced the approach of breaking down the functionality into

uniquely remote access objects that can manage its own states (Bolton, 2002). These

objects communicate with each other through Object Request Broker (ORB) middle-

ware that supports the interoperability among the objects developed and supplied via

different vendors. Such interoperability had been achieved through the introduction of

abstraction mechanisms like naming services that handled the objects runtime discov-

ery. Likewise to object-oriented programming, CORBA adopted the programming by

interface principle where the objects were developed in several programming language

and their interfaces were described using Interface Definition Language (IDL) (cf.

Krafzig et al., 2005, p. 20).

Another example of distribution frameworks is the DCOM29. It is promoted by Mi-

crosoft Corporation as a technology developed for distributed components. It is an ex-

tension of its COM ancestor. It added the distribution of software components over net-

works. COM and DCOM had been merged then into one runtime that supported and

enabled both local and remote access functionalities (Grimes & Grimes, 1997).

In the mid-1990s and as a result of the complexities accompanied by CORBA and its

IDL language mappings, the need of more stable platforms for Internet applications was

inevitable. Sun Microsystem’s Enterprise Java Beans (EJB) based on distributed object

model is an example of such platforms. EJB supports many types of objects like data-

centric entity beans and session-oriented objects. Moreover, it introduces the container

concept to manage resources making such management as transparent as possible to the

developers. However, while EJB and the numerous number of similar distributed com-

puting platforms tried to solve the application heterogeneity problem, the middleware

heterogeneity problem emerged and new enterprise-wide standards to solve such heter-

ogeneity are needed (cf. Krafzig et al., 2005, p. 21).

XML was the logical successor of this development as a middleware-independent for-

mat to exchange data among heterogeneous applications. It is one of the few standards

upon which the IT industry could agree. In contrast to the aforementioned distributed

computing concepts, XML is independent from technologies and middleware standards.

It represents an ad-hoc format for handling data among heterogeneous middleware plat-

28
 OMG stands for Object Management Group. It is one of the most popular international industry consor-

tiums in business information systems field.
29

 DCOM stands for Distributed Component Object Model.

Chapter 2 - Main Related Concepts and Technologies

19

forms. Moreover, XML is seen as a dominator that solves both the application and the

middleware problems. However, even if it is considered one of the major advantages of

XML, flexibility had been seen as one of its major problems since the call for higher-

levels of data structures and messaging formats (from semantic point of view) becomes

inevitable (Haller, Gomez, et al., 2005; cf. Krafzig et al., 2005, pp. 21–22).

XML-based Web Services have been developed then by Microsoft engineers as a result

of the need for higher-level XML messaging standards. Relying on XML, Web Services

also tried to leverage the omnipresence of Internet. SOAP is then created and used with

Web Services as a lightweight protocol to enable server-to-server besides the browser-

to-server communications. Similar to IDL that describes object interfaces in CORBA,

Microsoft designed the WSDL as an interface definition language. SOAP and WSDL

are developed to solve the middleware heterogeneity problem by the definition of sever-

al bindings to various lower-level communication protocols. XML-based Web Services

are considered as the main technology to implement SOA but this doesn’t mean that it is

the only way. Rather, there are many technologies to realize SOA and Web Service

technology is just the most popular and stable one. Summing up, as object orientation

has been widely considered as the endpoint of the programming development, service

orientation is anticipated to be the most mature and stable outcome from the long evolu-

tionary distributed computing (Bieberstein et al., 2005; cf. Krafzig et al., 2005, p. 22).

2.2 Web Services

Before defining Web Services, it is important to comprehend the concept behind ser-

vices in general. A service as defined by (Katzan, 2008, p. 11) is “a provider/client in-

teraction that creates and captures value. A unique characteristic of services, unlike ag-

riculture and manufacturing, is that both parties participate in the transaction, and in the

process, both capture value. In a sense, the provider and the client co-produce the ser-

vice event, because one can’t do without the other”. As for a Web Service, a variety of

definitions can be found in literature. One of these definitions defines the Web Service

as: “a business function made available via the Internet by a service provider and acces-

sible by clients that could be human users or software applications” (Casati & Shan,

2001). A Web Service as defined by the W3C consortium is “a software system de-

signed to support interoperable machine to machine interaction over a network. It has an

interface described in a machine-processable format (specifically WSDL). Other sys-

tems interact with the Web Service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with an XML serialization in con-

junction with other Web-related standards” (Booth et al., 2004).

These different definitions complement each other and each of them reflects one part of

the Web Service characteristics. As from a technical perspective, a Web Service has two

parts: a contract that specifies its business functionality (purpose, functionality, price,

constraints, usage…), and an implementation of this functionality. Each Web Service is

supplied by a service provider to be discovered and invoked by a service consumer.

Chapter 2 - Main Related Concepts and Technologies

20

From business perspective, Web Services must be programmatically accessible in a

sense that their design enables them to be called and invoked by other Web Service ap-

plications (cf. Medjahed, 2004, p. 49). Moreover, Web Services are designed to follow

the loose coupling principle in a way that the dependencies between the service con-

tract, the service implementation, and the service consumers are as much reduced or

loosened as possible (cf. Erl, 2009, p. 753).

2.2.1 Web Service-enabled SOA

This section illustrates the concept of service orientation enabled by Web Service tech-

nology. The OASIS30 SOA Reference Model group defines SOA as a: “paradigm for

organizing and utilizing distributed capabilities that may be under the control of differ-

ent ownership domains. It provides a uniform means to offer, discover, interact with and

use capabilities to produce desired effects consistent with measurable preconditions and

expectations” (MacKenzie et al., 2006, p. 29). Several technologies are used to realize

SOA but Web Services are considered the most common one31.

Source: Figure 2 in (Mahmoud & Marx Gómez, 2008a)

Fig. 2.1: Web Service-enabled SOA

As explained in (Mahmoud & Marx Gómez, 2008a) and illustrated in Figure 2.1, there

are three main components that constitute the Web Service-enabled SOA:

30
 OASIS stands for the Organization for the Advancement of Structured Information Standards. It is

together with W3C, the main source of Web Service standards and recommendations.
31

 Software agents for example are other technologies to realize SOA.

Chapter 2 - Main Related Concepts and Technologies

21

 Service Provider: It creates Web Services and possibly publishes their interfaces

and access information at the service registry.

 Service Registry32: It is responsible for making the access information of both

Web Service interface and implementation available to any potential service re-

quester by categorizing the results in taxonomies. An example of service registry

is the Universal Description Discovery and Integration (UDDI) by which the in-

formation about Web Services can be published and discovered.

 Service Consumer: It is the Web Service client that locates entries in the service

registry and then binds directly to the service provider to invoke one of its Web

Services.

SOAP, WSDL, and UDDI standardization initiatives were adopted by the W3C consor-

tium to facilitate and enable the interactions between Web Services.

Fig. 2.2: Interoperability Using WSDL

As can be seen in Figure 2.2, the service client searches the UDDI for a Web Service

that might match his needs. It can browse its WSDL description over HTTP connection

to see whether the service fulfills its request or not. Upon selection, the service client

invokes the Web Services and the communications between the client and the service

are achieved in form of request and response SOAP messages. What can be concluded

is that the WSDL represents a contract between the service consumer and the service

provider. It is platform and language-independent to describe the SOAP services. More-

over, WSDL is always seen as an automatic tool to generate client and server code.

Since 2003, WSDL became a W3C standard.

2.2.2 Service Discovery

Service discovery can be classified into centralized and decentralized service discovery.

Last part of the previous section briefed the centralized type of service discovery para-

32
 It is also known as service broker or repository.

Chapter 2 - Main Related Concepts and Technologies

22

digm. In such centralized environment, developers require automated systems for ser-

vice discovery, to enable more Web Service interactions and less human effort. The

traditional UDDI exists precisely for such need. However, it is not always the case that

the service consumer can comprehend in advance the exact form and meaning of the

WSDL description of a specific Web Service. Therefore, the combination of WSDL and

UDDI accompanied by a coarse-grained of business description are not enough to facili-

tate the full- or semi-automated service discovery.

That shows the pitfalls of the centralized service discovery and opens the research for

alternatives like the decentralized service discovery. If Web Services are considered as

resources of peer-to-peer networks, search strategies can be applied to decentralized

enterprise networks in which each peer (enterprise) can benefit of both the usage and the

provision of access points (interfaces). Such provision is made then available to busi-

ness application systems or business components (Brehm, Marx Gómez, & Raut-

enstrauch, 2006) without being dependent on a central control instance. Generally, two

different scenarios are conceivable to make use out of the provision of business applica-

tions based on Web Services in a peer-to-peer network. First possible scenario enables

the Web Services to provide access to enterprise services as part of a supply chain

where companies act either as suppliers or as customers. Based on that, they can either

search for product offerings (e.g. materials) or publish them. The second scenario ena-

bles the enterprises to share professional business functionalities in form of software

components encapsulated and implemented as Web Services (such functionalities can

be for example information resources about the interests of customers) (Brehm & Marx

Gómez, 2007). In both scenarios, finding a suitable service is still problematic. This can

be transferred into the field of peer-to-peer networks in which possible existing solu-

tions can aid to bring the characteristics of open markets to the world of Web Services.

In this sense, the focus behind decentralized Web Service discovery approach is mainly

to increase the marketing value of Web Services and this is why it could be seen better

than the centralized service discovery approach (cf. Brehm et al., 2008, pp. 30–31).

2.3 Business Process Management

This section gives an overview of the Business Process Management (BPM). It starts

with explaining the main ideas behind BPM besides making a distinction between BPM

and Business Process Management Systems (BPMS).

Many concepts were considered as the ancestors of the BPM concept. At the late 1980s

and the beginning of 1990s the term Business Process Reengineering (BPR) was one of

the predecessors of BPM. Starting from the early 1990s and as described in (Hammer &

Champy, 2003), excess number of reengineering and process orientation topics came

into view. These topics were focusing on the delivery of striking business performance

improvements in a relatively short time by doing reinvention of the existing business

processes starting from scratch to create totally new business processes. This had been

seen ineffective because such approaches threw off the old business processes. After

Chapter 2 - Main Related Concepts and Technologies

23

investing a lot of money on BPR, the development became idle because of many rea-

sons like reluctance to change, lack of understanding business models and its underlying

processes among many other reasons (cf. Krafzig et al., 2005, p. 104). Ten years after

BPR, the whole development process had been reactivated under the BPM term umbrel-

la (Frankel, 2003). The main differences between BPR and BPM are shown in Table

2.1.

Tab. 2.1: BPR and BPM Comparison

Business Process Reengineering Business Process Management

Business processes are often created

from scratch

Business processes are transformed from the

existing ones

BPR revealed insufficient change and

process optimization

BPM recommends incremental change and

evolutionary optimization

As defined by (Krafzig et al., 2005, p. 104) BPM is: “a general management topic that

focuses on the strategic and the operational aspects of process orientation in a given

business area”. Speaking about BPM, it is important to distinct between business and

IT. While terms like ISO 9000 or Six Sigma are often related to the business side of

BPM, the more technical terms like process modeling and workflow management are

more related to the IT side of BPM. Business Process Management System (BPMS)

represents the technical platforms that realize the management initiatives of the BPM

and provide business process integration solutions. These technical platforms include

many tools such as BPM engine, business process monitoring, and design tools (cf.

Krafzig et al., 2005, p. 105).

It is important to analyze business processes before using them in production systems.

This detects the early problems that might appear at the design phase like unsatisfied

customers, damage claims, and the need to exceed capacities (van der Aalst, 2009).

Business process analysis represents a major part of BPM. It aims at identifying the

states of current information systems besides pointing out their problems and bottle-

necks. Analyzing a business process can be performed through validation, verification,

and performance analysis. While validation’s main role is to test the business process

whether it behaves as expected or not, verification intends to establish the correctness of

a process definition (cf. Celino et al., 2007; Mahmoud, Petersen, & Rummel, 2012).

To sum up, BPM supports the entire lifecycle of modeling, executing, and monitoring

of business processes. Moreover, BPM introduces the process processing concept and

comprises the aspects of discovering, designing, and deploying business processes be-

sides applying executive, administrative, and supervisory control over these processes to

make sure that they stay compatible with the business objectives (cf. Frankel, 2003; cf.

Krafzig et al., 2005).

Chapter 2 - Main Related Concepts and Technologies

24

2.4 Workflows

This section defines workflows as technical foundations to realize business processes. It

then follows with illustration of the workflow reference model as proposed by the

Workflow Management Coalition (WfMC) (see http://www.wfmc.org/).

In the mid-1990s, WfMC had published a glossary of all terms related to workflows. As

defined by (Hollingsworth, 1995, p. 6), a workflow is: “the computerised facilitation or

automation of a business process, in whole or part” or “the automation of a business

process, in whole or part, during which documents, information or tasks are passed from

one participant to another for action, according to a set of procedural rules” where the

participant represents a resource (either human or machine). Workflow Management

System (WfMS) represents the technical platforms that manage the whole lifecycle of

workflows.

To make the workflow-related aspects unified, WfMC developed the workflow refer-

ence model. This reference model is depicted in Figure 2.3.

Fig. 2.3: The Workflow Reference Model

As can be seen in the figure above, the main and central part of the workflow reference

model is the workflow enactment service. It represents the core component of any

known workflow system. It is comprised of one or more workflow engines in which

each engine deals with bunch of cases (processes). These engines are designed to en-

hance scalability of the systems to which they are applied and they are potentially not

noticed by the user. Based on (Hollingsworth, 1995), the following explains the main

interfaces of the workflow reference model:

Chapter 2 - Main Related Concepts and Technologies

25

The first interface is with the process definition tools. These tools include: process defi-

nition, resource classification, and analysis tools. These tools are responsible of:

 Creating/deleting cases

 Routing access among cases

 Managing case’s attributes

 Managing/handling triggers

 Recording historical data

 Providing a workflow’s summary

 Monitoring the consistency of a workflow

 Starting up application software during activity execution

 Submitting work items to the right resources based on specific resource classifi-

cation.

The second interface with the client applications is used by employees mainly to exe-

cute processes. These applications include standard or integrated workflow handlers that

present the work items and their attributes. These handlers provide relevant properties

of a specific work item, sort and select a work item, and report the completion of an

activity.

The third interface with the invoked applications starts when the tasks are executed.

These applications normally don’t form a part of the workflow management system.

Rather, they belong to the workflow system itself. They are normally classified into

interactive and fully-automatic applications. Interactive applications can be initiated by

the selection of a work item and can be any kind of text processors, spreadsheet, or elec-

tronic form filling tools.

The fourth interface is with the other enactment services. The main responsibility of this

interface is to link several kinds of workflow systems. Via this interface, the cases or

parts of these cases can be transferred from one workflow system to another. This inter-

face is mainly designed and developed to enable workflow interoperability in general.

The last interface in the workflow reference model is with the administration and moni-

toring tools. These tools can be split into operational management tools and recording

and reporting tools. Operational management tools can be case-related or non-case-

Chapter 2 - Main Related Concepts and Technologies

26

related to administer cases and inspect their logistical state33 respectively. The recording

and reporting tools are responsible of collecting historical data for performance analysis.

The workflow reference model motivates the design and development of the “Pro-

cessing System” within the SESOA approach. It is considered as a workflow manage-

ment system. It provides a runtime environment for executing the system’s workflow

instances. The main characteristics of this system are derived from its counterpart of the

WfMC reference model (Hollingsworth, 1995, p. 20). It is explained in details later in

Chapter six (Section 6.1.3.1).

2.5 Semantic Web Pyramid

This section illustrates the main interactions and markup language pyramid in the world

of Semantic Web. As it is widely known, most Web pages nowadays contain them-

selves hyperlinks to other related-pages, downloads, source documents, and other Web

resources. Such a collection of pages that are interconnected via hypertext links is what

was called a “Web” of information (Cooley, Mobasher, & Srivastava, 1997). Making it

available on the Internet initiated what Tim Berners-Lee first called the WorldWideWeb

(Berners-Lee & Cailliau, 1990). Caused by the excessive growth of information in the

Web, a need for a new approach becomes inevitable. Web 2.0 is defined as an extension

to the WorldWideWeb to increase creativity, information sharing, and collaboration

between users. Therefore, the mentality behind Web 2.0 was about aiding users to find

ways to solve a problem among all other possible ways besides the continuous optimi-

zation of that way. However, Berners-Lee stated that “Web 2.0” is “a piece of jargon,

nobody really knows what it means” (Berners-Lee, 2006). He stated also that the Web

was mainly created to connect people. Summing this up in few words leads to the con-

clusion that having people connected to each other enables some of them to benefit from

the others’ experiences, which means that humans are the analyzing power that is forg-

ing best solutions. Machines have much more processing power than humans when the

knowledge could be represented in a correct way to them. This last point can be consid-

ered as a pitfall in the Web 2.0. As a conclusion, the revolution towards new ways of

utilizing machines in the information daily consumption leads to the idea of the Seman-

tic Web (cf. Brehm et al., 2008, p. 27).

The main ingredients of the Semantic Web pyramid are illustrated in Figure 2.4. The

main goal behind Semantic Web is to enable machine-readable intelligence based on the

existing hyperlinked vocabularies that the Web pages use to express their words and

concepts (Cardoso et al., 2007). The existing Web pages are written in Hypertext

Markup Language (HTML) that describes the way the information is displayed and pre-

sented for the humans to read in form of Web pages. Computers are able to parse Web

33
 The logistical state of a case gives the operational management tools information about any problem

and exceptional circumstances that might arise.

Chapter 2 - Main Related Concepts and Technologies

27

pages for layout and routine processing but they are unable to comprehend and process

the meaning of their contents. XML supports the enablement of exchanging the data

across the Web but it is still unable to provide the meaning of such data. Semantic Web

languages are based on XML to structure the meaningful content of the Web pages.

This enables the software agents roving across Web pages to perform automated tasks

(cf. Alesso & Smith, 2005, p. 166).

Source: Figure 5-2 in (Heuser, Alsdorf, & Woods, 2008) & (Bratt, 2006, p. 19)

Fig. 2.4: Semantic Web Pyramid

The figure above shows the evolutionary development of the markup languages from

the traditional XML to RDF to OWL. The first layer in this figure includes the URI34

and Unicode. URIs can be used to identify Web resources like books, locations, etc. As

for the Unicode35, it is defined in (Xu & Peng, 2005) as “a character encoding system,

designed to help developers who want to create software applications that work in any

language in the world”. Unicode provides unique numbers up to one million characters

that are independent from platforms, programs, and languages.

The second layer in the pyramid is the XML layer. XML represents the meta-language

that enables Web users to create and define markups. It provides a clear separation be-

tween content and structure from one side, and formatting from the other side. XML

represents the de facto standard that is used to represent and exchange structured infor-

mation on the Web and it is nowadays supported by a variety of query languages. How-

34
 Sometimes it is referred to as URI/IRI or Uniform Resource Identifier/Internationalized Resource Iden-

tifier (Berners-Lee, Fielding, & Masinter, 2005). Uniform Resource Locator or URL is also part of

URI/IRI where URLs are subsets of URIs and URIs are subsets of IRIs.
35

 American Standard Code for Information Interchange (ASCII) is an example of Unicode character

encoding systems.

Chapter 2 - Main Related Concepts and Technologies

28

ever, tag nesting doesn’t provide any standard meaning and the semantics of XML doc-

uments can be processed just by humans but not by machines (cf. Antoniou & Van

Harmelen, 2004, p. 55).

This calls for new markup languages that try to provide machine-readable way to pre-

sent and process data. RDF had been developed for this reason and became a W3C do-

main-independent standard (Manola, Miller, & McBride, 2004). It has sufficient expres-

sive power by being based on statements that relate subjects to objects using predicates.

It is more extensible than XML in a way that more layers can be built on top of it. RDF

Schema (RDFS) extends RDF vocabularies to provide a primitive ontology language. It

allows expressing facts and defines domain’s semantics including its classes and proper-

ties, class hierarchies and inheritance besides property hierarchies as well. Finally, both

RDF and RDFS allow the inference of explicit knowledge (cf. Antoniou & Van Har-

melen, 2004, p. 104).

The next layer in the Semantic Web pyramid represents the ontology layer. Each ontol-

ogy can be seen as a set of vocabularies with the explicit specifications of their mean-

ing, object classifications, constraints and relations (Gruber, 1993). The main objectives

behind developing ontologies are firstly capturing a kind of shared comprehension of a

specific domain and secondly providing a formal and machine-readable model of such

domain. OWL is one of the languages created to achieve such objectives and became a

W3C standard (McGuinness & Van Harmelen, 2004). Similar to DBMS data dictionary

or schema, OWL is considered as a global and standard syntax to describe ontology

based on RDF/RDFS. However, the main difference between RDF and OWL is that the

latter is capable of defining more complex and graph relationships. Moreover, through

the mapping of OWL on logics like predicate logic and description logic (cf. Hitzler,

Krötzsch, & Rudolph, 2009, p. 159), more formal semantics and reasoning capabilities

can be provided.

The Semantic Web development was accompanied with queries, rules, transformations,

and deployment. As can be seen in Figure 2.4, one of the query languages in the Seman-

tic Web pyramid is the SPARQL Protocol and RDF Query Language (SPARQL). As

defined by (Kjernsmo & Passant, 2009), SPARQL is a “concise query language to re-

trieve and join information from multiple RDF graphs via a single query”. It provides a

standard format to write queries that target RDF data and a set of standard rules to pro-

cess such queries to return the results. It is considered as the de facto query language for

RDF and it is one of the W3C recommendations. SPARQL is not XML-based rather it

is based on a roughly SQL-like syntax in which RDF graphs are represented as triples.

Moreover, it provides a simple communication protocol to be used by clients to apply

SPARQL queries against specific endpoints (cf. Domingue, Fensel, & Hendler, 2011, p.

301).

As for the Rule Interchange Format (RIF), it is a set of W3C standards developed to

ease exchanging rules across different and dissimilar rule engines, especially across

Web-enabled engines. Similar to RDF and OWL, the main goal behind RIF is to make a

Chapter 2 - Main Related Concepts and Technologies

29

revolution in the Web application development field by creating infrastructure dedicated

for truly intelligent Web applications (cf. Domingue et al., 2011, p. 400).

More to be mentioned regarding the Semantic Web pyramid is that semantic query lan-

guages are developed as alternatives to the logic stack and via their functionalities they

are overlapped with the unifying logic layer. The proof layer doesn’t constitute a proper

layer anymore because it overlaps partially with the unifying logic layer as well. The

proof and trust layers have mainly two major functions: firstly to prevent an upper layer

in the Semantic Web pyramid from re-implementing functionality offered by a layer

below and secondly to allow an application that only understands a lower layer to inter-

pret at least parts of the definitions from a higher layer (cf. Domingue et al., 2011, pp.

19–20).

As a conclusion and from a business perspective, both academia and industry have real-

ized that the Semantic Web can ease the integration and interoperability of intra- and

inter-business processes and systems. Moreover, it can also enable the creation of global

infrastructures to share documents and data. Such infrastructure makes searching and

reusing of information far easier and tries to build better business applications than the

existing ones (Cardoso et al., 2007; Brehm et al., 2008).

2.6 Summary

This chapter provided the main information of the most related concepts and technolo-

gies to this work. Since the main output of this work is Web Service-enabled solution,

the importance in this chapter was given in the beginning to the distributed computing.

Different historical developments of distributed technologies were explained to con-

clude that service orientation is commonly considered as the top of distributed compu-

ting development. The Web Service technology then was presented as a mighty solution

to offer machine-to-machine interactions over network. This work goes with the opinion

that Web Services are used as one of the common enabling technologies to realize ser-

vice orientation. The Web Service-enabled SOA concept was then presented in this

chapter and different service discovery scenarios were presented. From business compu-

ting perspective, BPM has also influenced this work. BPM aspects were illustrated in

this chapter to show how proper BPM can ease the road to achieve the enterprise’s stra-

tegic and operational goals. Workflows have been explained as technical implementa-

tions of business processes and the WfMC workflow reference model had been ex-

plained in details.

Finally, the semantic aspects that influence this work were demonstrated as located in

the Semantic Web pyramid. All layers of this pyramid were explained starting from

Unicode and URIs to XML up to RDF and OWL markup languages. Moreover, seman-

tic query languages like SPARQL and rules frameworks like RIF had been introduced.

Chapter 3 - Service-Oriented Architecture

31

3 Service-Oriented Architecture

This chapter gives a detailed overview of Service-Oriented Architecture (SOA) and lists

its architectural considerations and basic principles.

3.1 Service-Oriented Architecture Concept

Service-oriented architecture is a software architecture model that offers services to

end-user applications, executable business processes, or other services by means of pub-

lished and discoverable service interfaces. Section 3.1.2 3.1.1 demonstrates the main

motivation behind SOA and lists its basic principles. Section 3.1.2 points out SOA’s

architectural considerations. Web Service technology as enabler for SOA and the Web

Service stack are explicated in Section 3.1.3. Adding business value to SOA results in

the term business-driven or enterprise SOA is then introduced in Section 3.2. Enterprise

Architecture and Software Architecture are then explained and compared with SOA in

sections 3.2.1 and 3.2.2 respectively. The last section then concludes with a summary of

the ideas presented in this chapter.

3.1.1 Motivation behind SOA

In SOA, business functionalities are realized and encapsulated in form of self-contained,

distinguishable and reusable building blocks called services that:

 Represent high level business concepts

 Can be published and discovered in a network

 Can be reused to build new business applications

Service can be defined as “the means by which the needs of a consumer are brought

together with the capabilities of a provider” where the service provider represents “an

entity (person or organization) that offers the use of capabilities by means of a service”

(MacKenzie et al., 2006, p. 29).

Figure 3.1 illustrates the results of a survey made by the Cutter consortium (Cutter SOA

Survey, 2008) in which the primary drivers that could be seen behind SOA initiatives

have been questioned.

As can be seen in the figure below, the most important factors for the companies to

adopt SOA is to increase IT responsiveness to business demands, reducing the cost of

IT operations besides exploiting strategic competitive opportunities. Less important

factors were: retire legacy technology, legal and regulatory compliance, merger and

acquisitions among some other factors.

Chapter 3 - Service-Oriented Architecture

32

Based on (Cutter SOA Survey, 2008)

Fig. 3.1: Reasons to adopt SOA

Based on the aforementioned survey results and as described in (Rosen et al., 2008, pp.

10–11), the main business and technical motivations behind SOA concept can be sum-

marized as follows:

 Agility, flexibility, alignment: Agility and flexibility comes to mind when busi-

ness processes within an enterprise can be effectively realized and implemented

by benefiting from its available set of services (Erl, 2004; cf. Rosen et al., 2008,

p. 17). Alignment is more complex. It requires the provision of a reference archi-

tecture that provides definitions for both business and information aspects of

SOA. A common semantic model for designing service interfaces is considered

as a main requirement to achieve the alignment (Shishkov, van Sinderen, &

Quartel, 2006). Moreover, model-based techniques to follow up the status of im-

plementing business model besides having processes to activate and validate

conformance are required as well.

 Reusability: SOA achieves effective reusability by the enablement of publishing

and discovery of services besides offering variety of functions that meet wide

range of consumer’s needs. This is in addition to provide capabilities to manage

and maintain service lifecycle across all organizational sectors (Dan, Johnson, &

Carrato, 2008; cf. Rosen et al., 2008, p. 13). Doing that eases the speed and sim-

plicity of project deployment to a great extent. Moreover, the availability and

lifetime of all service’s versions have to be guaranteed as well. Finally, SOA

Chapter 3 - Service-Oriented Architecture

33

must provide the proper mechanisms to decouple the life cycles of service con-

sumers and service providers.

 Data rationalization and master data management: This is applied where data

coming from different existing applications and enterprise systems are rational-

ized to obtain precise information to the services (Dreibelbis et al., 2008; Ina-

ganti & Behara, 2007).

 Integration of applications and data: One of the most promising ideas behind

SOA is to achieve integration of applications and data (Roshen, 2009; Hohpe &

Woolf, 2003). The integration is needed to solve the communication problems

among many heterogeneous systems by offering XML-based standardized ser-

vices.

 Costs reduction: Promoting service reuse makes from SOA an effective concept

to have considerable costs reduction (Channabasavaiah, Tuggle, & Holley, 2003,

p. 18; Rosen et al., 2008, p. 25). This is done by using services across organiza-

tional boundaries that are having variety of business functions that suit all of the

organizational units. This activates service reusability and reduces the develop-

ment costs not just in a short scale, rather in the total cost of ownership behind

the involved IT systems.

 Speed and simplicity of project deployment: When a service is deployed, it can

be circulated over the network to maximize the performance or to get rid of data

redundancy in order to provide optimum availability (Channabasavaiah et al.,

2003, p. 10; Josuttis, 2007).

 External collaborators support: Service providers are considered the main play-

ers in the SOA paradigm. Service provision is not done just internally within the

enterprise boundaries rather external service providers can also offer their ser-

vices. This makes from SOA a sounding concept that initiates external collabo-

rators support besides joining different business lines from various geographical

regions to offer their services to speed up the time needed to enter the market

(Bell, 2008; cf. Rosen et al., 2008, p. 108).

The following section gives an overview about a set of architectural considerations that

have to be taken into account while developing SOA solutions.

3.1.2 Architectural Considerations

To complement the principles explained in the previous section, this section gives an

overview of the architectural considerations that have to be taken into account when

designing SOA. Following (Rosen et al., 2008, p. 30), the most common architectural

principles and practices are as follows:

Chapter 3 - Service-Oriented Architecture

34

 Separation of concerns: As it can be comprehended from the name, the separa-

tion of concerns is a straightforward principle. It is often considered as one of

the most significant architectural principles. The main goal behind separating

concerns is to sustain the independency status of the independent elements (Erl,

2009; Tran, Zdun, & Dustdar, 2007). This means that changing part of the sys-

tem does not influence on the system’s other parts. Good practice accompanied

with this principle is the separation of interface and implementation.

 Architectural views: It contributes also into the separation of concerns. This is

achieved by including or excluding the presentation of information or specific

data to variety of stakeholders. Such views are normally designed to refer to

specific aspects of software development or alliance of enterprise groups and or-

ganizations that play a role in the full life cycle of enterprise solutions. Architec-

tural views (concerns) can be classified as software and enterprise views. Soft-

ware views can be sorted as logical, deployment, process, or network views. En-

terprise views on the other hand can be applied to business, information, applica-

tion, technology, or implementation levels. Fortunately, the implementation and

design of SOA conform well to the before-mentioned set of architectural views

(Newcomer & Lomow, 2004).

 Accommodation of change: It indicates that the architecture should support flex-

ibility in a way that application requirements in the long term perspective can be

fulfilled with less difficulty (Cheesman & Ntinolazos, 2004). This requires the

identification of such long-term requirements and domains that are possibly sub-

ject to change. Reviewing preceding industry drifts can greatly assist in the iden-

tification of domains that are likely to change. Such identification has to be

clearly reflected in the architecture. If such identification is ignored or not

mapped into the architecture, there is a big chance to have difficulties when

change to the ignored requirements and domains become inevitable.

 Abstraction: To accommodate with change, separate concerns and achieve de-

coupling, abstraction is considered as a fundamental architectural principle.

While designing SOA, abstraction eases the functional decomposition. Moreo-

ver, the significant increase of abstraction and encapsulation provided by soft-

ware components supports the concept of service orientation by abstracting

functionalities as service capabilities (cf. Krafzig et al., 2005, pp. 16–17).

 Consistency: This principle has always been seen as main goal of any architec-

ture. It is often that the two terms: consistency and reusability come always to-

gether. In SOA, consistency is achieved by providing services that can be uti-

lized in every part of an enterprise or even across enterprises. The variety of

functions the services provide enables them to be utilized by several families of

enterprise solutions. Therefore, designing SOA has to take into account develop-

Chapter 3 - Service-Oriented Architecture

35

ing business capabilities in a way they can be easily invoked by a wide range of

business processes (cf. Rosen et al., 2008, p. 31).

 Business derivation: The most significant architectural principle that aligns

business and IT is the business derivation principle. It assures that the only rea-

son behind the designed SOA is to achieve enterprise goals and support its busi-

ness strategies (Shishkov et al., 2006). Therefore, enterprises ought to be the on-

ly resource where the requirements for designing SOA are extracted and the re-

sulted artifacts applied to the enterprises have to meet these requirements.

 Patterns: This architectural principle is always considered as a powerful tool to

describe architectures. A pattern represents merely a template for a solution that

has a specific requirement set. Christopher Alexander36 is considered the spiritu-

al father behind the evolution of patterns. The most notable definition of a pat-

tern is: “Each pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that problem, in

such a way that you can use the same solution a million times over, without ever

doing it the same way twice” (Alexander, Ishikawa, & Silverstein, 1977, p. X).

 Facilitation: Generally spoken, an architecture must facilitate building solutions

that are related or conformed to that architecture. This is usually referred to as

facilitation or conformance. In other words, architecture is not only seen as a de-

scriptor of what the system behind does rather it has also to facilitate all the pos-

sible methods and means to build the system and all of its components (cf.

Rosen et al., 2008, p. 32).

 Communications: The last architectural principle that clears the ambiguity be-

hind architectures is the communication principle. This means that the architec-

tures have to offer the involved staff proper mechanisms to communicate and get

common understandings of IT systems (Colombo et al., 2005).

If the aforementioned architectural considerations are employed correctly while design-

ing SOA, the ambiguities that might appear at the different degrees of abstractions are

then cleared. Moreover, these principles place SOA in proper contexts to be compre-

hendible by each involved stakeholder.

3.1.3 Web Service Technology

Web Services represent relatively new means that promote integration of computer sys-

tems across the boundaries of organizations and applications. To realize service-

oriented architectures in inter-organizational scales, the conventional distributed compu-

36
 Just for clarification, Christopher Alexander is a professor of architecture at UC Berkeley. His research

is concerned with buildings and urban planning not software architecture.

Chapter 3 - Service-Oriented Architecture

36

ting technologies are not sufficient because they are centralized and managed often by a

single company and considered more as intra-enterprise technologies. Instead, they need

agreement on means or platforms that can promote kind of global workflow for the en-

tire business processes. In the context of inter-organizational integration, the Web tech-

nologies and standards become more beneficial. They are considered as the essential

elements to achieve integration in B2B environments. One of the early Web enablement

means were the application servers (cf. Oberle, 2005). Web Services extends the Web

enablement and considered as a powerful technology to achieve integration by promot-

ing the loose coupling of software functionalities and providing well-defined program-

matic interfaces (cf. Lamparter, 2007, pp. 16–17).

Based on the definitions of (Lamparter, 2007, p. 17; Papazoglou, 2008, p. 5), this work

defines a Web Service as follows:

A Web Service is a distributed self-described and self-contained software module iden-

tified by a URI to accomplish a task, solve a problem, or handles transaction over a

network (like Internet) as a representative of user or computer program. Transactions

with Web Services are performed using XML-based messages carried out by Internet

protocols. Each Web Service has public interface described in XML and can be discov-

ered over the network by users and applications.

Table 3.1 depicts the layers of the Web Service technology stack. It includes the main

standards and specifications that enable and describe all the aspects of Web Services.

Source: (Papazoglou, 2008, p. 33)

Tab. 3.1: Web Service Technology Stack

Layer Standard

Process - WS-BPEL

- WSCI

- WS-CDL

Discovery - UDDI

Description - WSDL

XML-Messaging - XML-RPC

- SOAP

- XML

Transport - HTTP

- SMTP

- FTP

Chapter 3 - Service-Oriented Architecture

37

The table above might contain further specifications. However, this section introduces

the most popular ones that are related in a way or another to this work37.

In the transport layer, the main notable protocols are HTTP, SMTP, and FTP. HTTP is

used to facilitate communications among Web Services. Other protocols like Simple

Mail Transfer Protocol (SMTP) or File Transfer Protocol (FTP) can still be used for the

same purpose.

The second layer in the Web Service technology stack is the XML-Messaging layer that

contains specifications like: XML, SOAP, and XMP-RPC38. These specifications are

used to describe and validate the messages exchanged between Web Services. The de-

scription layer includes WSDL as the main standard for describing the functionalities of

Web Services. It is an XML-based standard that provides machine-readable descriptions

of how to call a Web Service, what input parameters it requires, and what output data

structures it returns. The discovery layer includes the UDDI as a registry standard to

facilitate the processes of Web Services publishing and discovery. The top layer in the

Web Service technology stack is the process layer in which many standards can be used

to provide mechanisms for Web Service orchestration and choreography. One of the

main standards used for orchestrating Web Services is the Web Services Business Pro-

cess Execution Language (WS-BPEL) (Jordan et al., 2007). It is an OASIS standard

executable language to compose Web Services and serves more to achieve better degree

of data mediation. To achieve process mediation on the behavioral level of Web Ser-

vices, standards like: Web Service Choreography Description Language (WS-CDL)

(Kavantzas et al., 2005) and Web Service Choreography Interface (WSCI) (Arkin et al.,

2002) can be used among other standards to facilitate such task.

The following explains the main SOA principles. These principles had been defined and

quoted39 from the encyclopedia of service design in (Erl, 2007) and later updated in (Erl,

2009). These principles are: standardized service contracts, loose coupling, abstraction,

reusability, autonomy, statelessness, discoverability, and composability.

As mentioned in Section 2.2, each Web Service is composed of a service contract and a

service implementation. Standardized service contracts means that the “Services with-

in the same service inventory are in compliance with the same contract design stand-

ards”. In other words, service contracts are used by a service to express firstly the pur-

pose behind the service and secondly to express its main capabilities (Turner, Budgen,

& Brereton, 2003).

37
 A detailed introduction of all of the Web Service specifications can be found online at:

http://www.ibm.com/developerworks/views/webservices/libraryview.jsp?type_by=standards
38

 RPC stands for Remote Procedure Call.
39

 All the definitions in this section are taken from these two listed references of Thomas Erl: (Erl, 2007)

and (Erl, 2009).

Chapter 3 - Service-Oriented Architecture

38

Loose coupling is widely considered as one of the most fundamental SOA principles. It

means that “service contracts impose low consumer coupling requirements and are

themselves decoupled from their surrounding environment”. Therefore, services are

designed in a way that the dependencies between service contract, implementation, and

consumer are reduced or loosened as much as possible (Josuttis, 2007).

Abstraction of services means that “service contracts only contain essential information

and information about services is limited to what is published in service contracts”.

Therefore, it is always a good practice to design services by hiding as much underlying

details as possible. This assures and complements the previous loose coupling SOA

principle. Therefore, the avoidance of providing any unneeded service information and

meta-data is important in this principle (Erl, 2005).

Reusability means that the services can “contain and express agnostic logic and can be

positioned as reusable enterprise resources”. This means that the logic behind the ser-

vices is designed to be reusable and highly generic. Moreover, the service contracts in

this sense have to be extensible and generic as well and finally the services behind are

designed to be reused and accessed simultaneously sectors (Dan et al., 2008).

Autonomy or service independence means that the “services exercise a high level of

control over their underlying runtime execution environment” (Erl, 2009). This means

that services have to contain their logic apart of any external influence. In other words,

services are designed to be more isolated. This increases service reliability and trigger

its behavioral predictability (Daigneau, 2011, p. 15).

Statelessness means that the services “minimize resource consumption by deferring the

management of state information when necessary”. Hence, the deferral extensions man-

agement must be incorporated within service design to reach three goals: increasing

service scalability, supporting agnostic logic design, and last but not least improving

service reusability (Papazoglou, 2008, pp. 15–16).

Discoverability is another important SOA principle. It indicates that “Services are sup-

plemented with communicative meta-data by which they can be effectively discovered

and interpreted”. Appropriate meta-data about the service’s purpose and capabilities are

provided in service contracts. These contracts are designed to be discoverable to both

humans and other service clients. To be discovered, the service contracts are normally

published in one or more service registries (Arsanjani, 2004, p. 3; Bean, 2009, p. 37).

Composability is the last SOA principle. It means that “Services are effective composi-

tion participants, regardless of the size and complexity of the composition”. As a design

consideration, there is always high possibility that a service can join in various composi-

tion scenarios to produce new services that are able to solve bigger problems and this in

turn boosts the reusability principle (Katzan Jr, 2008, p. 131).

Chapter 3 - Service-Oriented Architecture

39

The aforementioned principles make from Web Services good technology to overcome

application and middleware heterogeneity problems.

Next section explains the business value of SOA by introducing the concept of busi-

ness-driven or enterprise SOA.

3.2 Enterprise SOA and Other Architectures

Business-driven or enterprise SOA is merely representing the concept where bunch of

independent services can be utilized efficiently in many styles to deliver multiple, high-

level business services and workflow-based business processes. To achieve this, a com-

bination of technology and business is always required. Business services have to be

composed out of other services published in an enterprise’s service repository. These

business services have to be fit into the enterprise’s business model and to be effective

part of it. The main goal of business models in enterprise SOAs is to create sets of ser-

vices that can produce higher business values. If enterprise SOA is implemented with-

out having a powerful business model, it will end up with bunch of incompatible ser-

vices that have short lifetime. Therefore, business models have to have higher priorities

at the design time to provide higher-level values to the enterprise SOA solutions (cf.

Rosen et al., 2008, p. 43).

The following two subsections compare enterprise SOA with Enterprise Architecture

and Software Architecture respectively. This comparison is made mainly to show that

SOA can be integrated with both architectures without having serious integration in-

compatibilities.

3.2.1 Enterprise Architecture

Similar architecture to be compared with enterprise SOA is the Enterprise Architecture

(EA). It is composed of several enterprise components that represent different business

entities, their properties and the relationships among these components. EA divides en-

terprises into manageable pieces. These subdivisions can be architectural perspectives,

views, domains, sub-architectures, or perspectives. Generally, EA can be broken down

into business architecture, information architecture, application architecture, and tech-

nology architecture. Based on (Alwadain et al., 2011; Rosen et al., 2008, p. 44;

Kistasamy, Van Der Merwe, & De La Harpe, 2010), there are a lot of similarities be-

tween EA and enterprise SOA. The similarities between these two architectures can be

summarized as follows:

 The business architecture of EA can be mapped to the business model of enter-

prise SOA.

Chapter 3 - Service-Oriented Architecture

40

 The information architecture in EA can be mapped to the common semantics

and data model of enterprise SOA or more precisely to its semantic information

model.

 The EA application architecture can be mapped to most of the enterprise SOA-

based solutions including integration services and enterprise business processes.

 The EA technology architecture can be mapped to the service bus of enterprise

SOA and defines how the service infrastructure meets all SOA-related issues

like distribution, binding, security, performance and so forth.

As a conclusion and if an organization has applied an EA and wants to introduce enter-

prise SOA, there will be no big incompatibility in integrating EA and SOA based on the

previous comparison as a supporting evidence.

3.2.2 Software Architecture

Another architecture that can be compared with enterprise SOA is the Software Archi-

tecture. As defined by (Bass, Clements, & Kazman, 2003, p. 21), the Software Architec-

ture is “the structure or structures of the system, which comprise software elements, the

externally visible properties of those elements, and the relationships among them”. One

of the most common Software Architecture approaches is the “4+1Views” approach that

was primarily developed by Philippe Kruchten (Kruchten, 1995). This Software Archi-

tecture approach is composed of five views namely: logical, component, process, physi-

cal, and use cases views.

The logical view includes the system’s object model supported by class, collaboration,

and sequence diagrams. The component view includes the system’s files and dependen-

cies supported by component diagrams. The process view includes the system’s pro-

cesses and threads supported by deployment diagrams. The physical view includes the

system’s applied network topologies and its diagrams. Finally and as its name indicates,

the use case view includes the system’s main business scenarios supported by bunch of

use case diagrams.

The comparison between the Software Architecture and enterprise SOA is based on

comparing SOA to the “4+1 Views” approach (Ionita, Florea, & Jelea, 2009; Rosen et

al., 2008, pp. 49–50; Zimmermann, Koehler, & Leymann, 2006). This comparison can

be summarized as follows:

 The logical view map to the service design.

 The component view maps to the main interactions between services.

 The process and physical view map to the implementation of services using spe-

cific technologies and their deployment in specific infrastructures.

Chapter 3 - Service-Oriented Architecture

41

 The use case view maps to the main scenarios of enterprise SOA that involve ei-

ther single service or set of services.

3.3 Summary

This chapter explains the main aspects of service orientation. It started with showing the

main motivations behind SOA. It then detailed the most common architectural consider-

ations that have to be taken in account to design efficient service-oriented architectures.

The chapter then explained Web Service technology as one of the most common SOA-

enabling technologies. The Web Service technology stack had been presented as well

together with the common Web Service principles.

The last part of this chapter was dedicated to introduce enterprise SOA and compare it

with similar architectures like Enterprise Architecture and Software Architecture. These

comparisons were to prove that enterprise SOA can be integrated with other architec-

tures without having too much difficulty.

After introducing the main concepts and theoretical foundations related to this work,

Chapter four is dedicated to explain the research methods that are followed in this work

to deliver the SESOA approach.

Chapter 4 - Research Methods

43

4 Research Methods

This chapter explains the research methodologies that have been used as orientation to

deliver the research conducted in this work. The first part of this chapter includes the

selected design science research processes in the research domain of business infor-

mation systems. The second part of this chapter explains the service design process.

4.1 Design Science

This section explains the two research processes adopted in this work. These research

processes are the design science research methodology by (Peffers et al., 2007) and the

design science in information systems research by (Hevner et al., 2004). However, be-

fore diving in the details of these two research processes, some words have to be given

to the literature review process.

One important part of the research method followed in this work is the literature review

process. This process includes reviewing the state of the art in the scientific publications

in the SOA, Web Services, Semantic Web, Semantic Web Services, service discovery,

semantic conceptual frameworks, and lightweight annotation frameworks. The literature

review process is mainly based on the systematic literature review approach proposed

by (Webster & Watson, 2002). Based on this approach, an excessive amount of research

papers were reviewed on the aforementioned research fields to determine the main prob-

lems in the SOA and semantic-enabled SOA solutions. Based on the recommendations

proposed by (vom Brocke et al., 2009), this amount has been eliminated to the top 20%

of the ranked publications in the domain of information systems. The problem definition

had been then initiated based on these ranked publications and that leaded to the process

of requirement definition and the other key activities to produce the main aspects of this

research.

The following parts of this section are dedicated to explain the two selected research

processes in the field of information systems. Each research process is explained and

followed by a brief discussion of how it has been followed in this work.

4.1.1 DSRM Process Model

(Peffers et al., 2007) proposed a generic design science research methodology (DSRM)

for information systems research. The DSRM process model is composed of five main

activities as depicted in Figure 4.1.

The first activity in this process model is problem identification and motivation. In this

activity, the main research problems are identified and well defined to be able to defend

the contributions of the resulted solution. On the one hand, this activity is important

because it motivates the researcher and encourages the community in the targeted re-

Chapter 4 - Research Methods

44

search domain to follow the outputs resulted from the work. On the other hand, this ac-

tivity supports the argumentation the researcher provides in defining the research prob-

lems. The resources needed in this activity are mainly the in-depth knowledge of the

main drawbacks in the targeted research domain besides the potential significance of the

resulted solution (cf. Peffers et al., 2007, pp. 52–55).

Source: Figure 1 in (Peffers et al., 2007, p. 54)

Fig. 4.1: DSRM Process Model

The second activity in the DSRM process model is the object definition. The objectives

that are defined here are derived from the previous activity. The resulted objectives re-

sulted are classified either quantitative if the solution behind could be better than the

existing ones or qualitative if the solution behind would solve problems that are not yet

addressed by other solutions. The resources needed in this activity are the problems’

state knowledge and being familiar with the similar solutions in the targeted research

domain (cf. Peffers et al., 2007, p. 55).

The third activity in the DSRM process model is the design and development. The theo-

ry produced from the object definition activity shapes the main aspects of this activity.

The main goal of this activity is to deliver artifacts including models, architectures, con-

structs, or instantiations (Hevner et al., 2004). The outputs can also include “new prop-

erties of technical, social, and/or informational resources” (Järvinen, 2007, p. 49). The

novelty has to be embedded in the resulted output (even if it is merely a set of objects).

Therefore, the main tasks carried out in this activity are determining the expected func-

tionalities and its architecture from the resulted solution and eventually creating the ob-

jects and artifacts that realize them. The resources needed in this activity are the theory

Chapter 4 - Research Methods

45

knowledge of transforming objectives into artifacts in the resulted solution (cf. Peffers

et al., 2007, p. 55).

The fourth activity in the DSRM process model is the demonstration. This activity in-

cludes the steps needed to apply the resulted artifact from the design and development

activity to solve one or more of the addressed problems. Potential demonstration can

vary from experiments to case studies, proofs, simulations or any other proper demon-

stration. The resources needed in this activity are the “how to knowledge” to show how

the resulted artifact can address the problems in the targeted research domain (cf.

Peffers et al., 2007, p. 55). Moreover and as proposed by (Peffers et al., 2007), the ap-

plicability of the ideas behind the resulted solution can be proved either in a single act

demonstration (Walls, Widmeyer, & El Sawy, 1992) or in a more formal evaluation of

the designed artifact (Eekels & Roozenburg, 1991; Hevner et al., 2004; J. F. Nunamak-

er, Chen, & Purdin, 1990; Rossi & Sein, 2003; Vaishnavi & Kuechler, 2004).

The fifth activity in the DSRM process model is the evaluation. It includes both the ob-

servation and the measurement whether the artifact from the resulted solution supports

well the researched problems or not. Moreover, it is necessary in this activity to com-

pare the solution’s objectives to the recent monitored results of applying the artifact in

the demonstration phase. Based on the nature of both the problem origin and the result-

ed artifact, the evaluation can take different paths like comparing the functionalities of

the artifact with the objectives defined in the second activity, feedback of the solution

users, or simulation. Evaluation might also contain quantifiable measurement of the

system performance (e.g. its availability and response time), or any other empirical

proof. As can be seen in Figure 4.1 and upon the completion of this activity, the re-

searcher decides whether it is necessary to get back to the second and third activities to

enhance the functionalities of the artifact or to continue to the sixth activity in the

DSRM model. The resources needed in this activity are the knowledge and awareness of

the metrics and analysis techniques (cf. Peffers et al., 2007, p. 56).

The last activity in the DSRM process model is the communication. The main target of

this activity is to communicate all the research phases to the scientific community in the

targeted research domain. This communication is normally done in form of scholarly

research publications. (Hevner et al., 2004) stated that this activity is necessary to dis-

seminate the resulting knowledge behind the conducted research. The main resources

needed in this activity are the disciplinary knowledge of how to write and publish co-

herent publications of the different research parts (cf. Peffers et al., 2007, p. 56).

As depicted in Figure 4.1, the DSRM process model can lead to four possible research

entry points namely: problem-centered initiation, objective-centered solution, design-

and development-centered solution, and client-/context-initiated solution. If the re-

searcher goes through the aforementioned six activities sequentially, the resulted re-

search entry point is a problem-centered approach. This means that the model has to

start exactly from the first activity until the sixth activity. This approach is normally

resulted from observing a research problem or from getting ideas from the suggestions

Chapter 4 - Research Methods

46

of future directions from previous researches. If a researcher decides to start the DSRM

process model from the second activity, the research entry point is an objective-oriented

solution (this is the case in this work). Such solution is normally activated by industrial

or research needs that can be collected and identified to develop the resulted artifact. If

the DSRM process model started from the third activity, the resulted research entry

point is a design- and development-centered approach. This approach normally origi-

nates from an existing artifact that had not been formally placed in a solution to solve

the problems in the domain to which it can be applied. This artifact could also be result-

ed from another research domains or it might be even applied to solve the problems in

those domains. Eventually the last research entry point results when the researcher starts

the DSRM process model from the fourth activity. A client-/context-initiated solution

might originate from monitoring a practical solution that already runs. The researcher

gets back to produce more rigor solution after taking into consideration the drawbacks

of the existing ones and making the best use of consulting experience (cf. Peffers et al.,

2007, p. 56).

Based on the abovementioned explanation of the DSRM research process, the rest of

this section explains how this process is mapped to this work. Figure 4.2 shows the

main activities of this process.

Based on (Peffers et al., 2007, p. 54)

Fig. 4.2: DSRM Process for SESOA

As can be seen the figure above, the first activity is to identify the main problems in the

considered field of study. This includes the problem of service discovery and the main

drawbacks of the Web Service-enabled business processes and service repositories. This

forms the motivation behind this work in providing more efficient SOA-based solution

in enterprise context supported by semantic annotation of Web Services relations in a

semantic service repository. This infers the second DSRM process model activity that

defines the research objectives and system requirements. The work’s objectives have

Chapter 4 - Research Methods

47

been listed in Chapter one together with the wider research goal to develop a semantic-

enabled enterprise SOA-based solution. This facilitates the design and development

activity to create the SESOA solution. The demonstration activity represents the proof-

of-concept in which the SESOA artifact has been prototypically implemented together

with an accompanying business case. This prototypical implementation is necessary to

show how the research objectives and the system requirements are met. The resulted

prototypical implementations from this work are then evaluated in the evaluation activi-

ty by applying it to different business domains and applications. Finally, the communi-

cation activity introduces the main concepts in this work to the scientific community.

This activity is actually achieved by writing number of peer-reviewed publications in

conference proceedings, books, and journals (these publications are listed among others

in the Publications Section at the end of this dissertation).

4.1.2 Information Systems Research Framework

Besides the research process explained in the previous section, the research behind this

work employs the design science approach in information systems discipline proposed

by (Hevner et al., 2004). This approach is widely considered as one of the main refer-

ence sources in the whole information systems research because of its high quality,

guidelines and criteria it presents in the design science. The conceptual framework of

the proposed approach is depicted in Figure 4.3.

Source: Figure 2 in (Hevner et al., 2004, p. 80)

Fig. 4.3: Information Systems Research Framework

Chapter 4 - Research Methods

48

The environment represents the targeted problem domain (Simon, 1996) where the re-

search interest resides. As can be seen in the figure above, the environment includes

people, organizations, and technology (Silver, Markus, & Beath, 1995). The business

needs are derived from the environment’s problems, goals, tasks, and motivations that

are comprehended by the organization’s people. Such comprehension is normally en-

riched by the people’s roles, capabilities, and characteristics. The organization’s run-

ning business processes together with its strategies, structure, and culture assess the

business needs. Based on that, it has to be determined which technology infrastructure,

applications, communication architectures, or development capabilities will be required

to define the business needs. Altogether the three ingredients of the environment section

from Figure 4.3 define the problem (the business need) that the researcher comprehend-

ed (cf. Hevner et al., 2004, p. 79).

Based on the business needs, (Hevner et al., 2004, pp. 79–80) argued that the Infor-

mation Systems (IS) research can be done following the two complementary behavioral

and design sciences. While the behavioral science’s goal is truth, the goal of the design

science is utility. On the one hand, behavioral science develops and justifies theories

that explicate the aspects related to the comprehended business needs. On the other

hand, design science builds and evaluates the artifacts that are developed to meet the

comprehended business need. As illustrated in Figure 4.3, justify/evaluate activity

drives the research assessment to identify the main drawbacks of the theory or the arti-

fact in order to be refined and reassessed. Therefore, they are seen in the research meth-

od inseparable (cf. Hevner et al., 2004, p. 80).

The knowledge base in the right side of Figure 4.3 provides the foundations and meth-

odologies to complete the IS research. On the one hand, foundations are useful in the

develop/build phase of the IS research to take benefit from former theories, frameworks,

instruments, constructs, models, methods, and instantiations. On the other hand, meth-

odologies that include data analysis techniques, formalisms, measures, and validation

criteria are considered as the main guidelines resources for IS research. As a conclu-

sion, IS research is considered rigor when the foundations and methodologies that com-

pose the knowledge base are applied appropriately (cf. Hevner et al., 2004, p. 80).

Based on the abovementioned explanation of the information systems research frame-

work, the rest of this section is going to explain how this research process is followed in

this work. The start point is identifying the business needs to ensure that the goal of

relevance in the conducted research is achieved. Therefore, the organizational strategies,

existing business processes, structures and culture elements needed to develop SESOA

system are examined. It is also important to define the target organizations to which this

system is relevant. The business processes used to deliver the artifacts of this research

are more concerned with ERP processes and more precisely, the selling business pro-

cess has been selected to demonstrate the relevance of this work to the target businesses.

The infrastructures and applications that shape SESOA business needs include storing

customer information in the system’s database besides having proper connection to the

Chapter 4 - Research Methods

49

other external available resources. Moreover, the resulted artifact is composed of ser-

vices belonging to different business domains and developed as standardized XML-

based Web Services. The applicable knowledge to this work include reviewing most of

the relevant work published in high ranked scholarly publications about SOA-based

solutions, service discovery and repositories, lightweight semantic annotation mecha-

nisms, Web Service semantic conceptual frameworks, and their execution environ-

ments. This step is necessary to assure that the conducted research is rigor.

In order to make this research following the design science, it has to produce and evalu-

ate a novel artifact (Hevner et al., 2004). This means that the IS research has to be as

cumulative as possible in a way that it is built on the existing similar researches (Kuech-

ler & Vaishnavi, 2008). The develop/build activity in this research is obtained by re-

viewing and considering service discovery and adding semantics to service repositories

(Sivashanmugam et al., 2003; Srinivasan et al., 2004), most of the existing Web Service

conceptual frameworks like (De Bruijn et al., 2005; Martin et al., 2005; Battle et al.,

2005a), their semantic execution environments (Haller, Cimpian, et al., 2005; Elenius et

al., 2005), lightweight semantic annotation mechanisms for Web Services (Kopeckỳ et

al., 2007; Vitvar et al., 2008; Kopeckỳ, Vitvar, et al., 2008), and other related IS re-

searches (Medjahed, 2004; Lamparter, 2007; Brehm, 2009).

All of the abovementioned researches are considered either as heavyweight semantic

solutions focusing on providing semantics first or as lightweight solutions focusing on

extending the service description languages. Moreover, the drawbacks of service dis-

covery and service repositories problems have been investigated. The main distinction

between the research done in this work and the other existing researches is that SESOA

gives the possibility to add the semantic annotation to the services’ relations not to the

services themselves to enhance performance and to trigger interoperability. Moreover,

SESOA tries to overcome the traditional service repositories problems by providing

lightweight semantic service repository in which service relations are semantically an-

notated using RDF statements. This enables the creation of a lightweight semantic-

enabled enterprise Web Service-based artifact making this research cumulative and

novel at the same time.

To make the resulted artifact from SESOA relevant for the practitioners side by side

with making it contributing to the IS knowledge base to be rigorous, it has to pass tight

evaluation and justification. This justify/evaluate activity has been achieved by imple-

menting an ERP case study on top of the SESOA system. This case study represents

how the selling business process can take benefit from the SESOA functions to realize a

semantic-enabled Web Service-based online shop. Based on the results that had been

collected during the development phase of the resulted artifact, different cycles of justi-

fications have been made based on the publication’s feedback coming from the scien-

tific community side by side with the feedback coming from the targeted practitioners.

Finally, more information about how this IS research has been evaluated from industrial

and scientific perspective can be found in Chapter 7.

Chapter 4 - Research Methods

50

Moreover, all design-science research guidelines proposed by (Hevner et al., 2004, p.

83) have been followed in this research from designing an artifact to problem relevance

to design evaluation to research contributions to research rigor to design as a search

process ending up with communication of the conducted research.

To sum up, the business environment and more precisely the enterprise systems envi-

ronment creates the business need behind this IS research. Based on the existing IS re-

searches in this field, this work applies the knowledge harvested from these researches

to perceive the problem scope for the development of the SESOA artifact. This research

can add to the knowledge base and at the same time proves its applicability in an appro-

priate business environment (cf. Hevner et al., 2004).

4.2 Service Design Process

The previous section gave insights to the main selected research deign processes in in-

formation systems. This section provides more low-level information concerning the

core elements behind the artifact of this research: services and more precisely Web Ser-

vices. As defined in the W3C Web Service Glossary: “a service is an abstract resource

that represents a capability of performing tasks that form a coherent functionality from

the point of view of providers entities and requesters entities. To be used, a service must

be realized by a concrete provider agent” (Haas & Brown, 2004). Based on this defini-

tion, it is quite important from a methodological perspective to have a proper service

design process compatible with the aforementioned research processes.

(Rosen et al., 2008, pp. 106–109) discussed in their book the three main service design

process approaches namely: top-down, bottom-up and middle-out approaches. The fol-

lowing subsections give some highlights to each of these approaches. This section then

concludes with a recommendation of which service design approach is selected.

4.2.1 Top-Down Approach

As it can be comprehended from its name, the top-down approach starts from the top of

the enterprise that constitutes the wide scope to end up down with specific enterprise

issues. This service design approach deals usually with the whole set of enterprise needs

over the time. It is concerned of how to adapt specific solution in the enterprise by mak-

ing proper adjustment on it to suit its strategy and roadmap. Moreover, it can also be

considered as a design approach to manage any project in the enterprise together with its

set of tactical requirements. Enterprise system analysis and business process models are

considered as the most common top-down approaches (cf. Bean, 2009, p. 143).

On the one hand, enterprise system analysis deals with enterprise requirements and

business needs to build service repository and initiate a plan to identify which services

are required, the main entities to which these services can be applied, and the service

Chapter 4 - Research Methods

51

groups that support the enterprise’s business goals over time (cf. Daigneau, 2011, p. 15).

On the other hand, another way to handle the enterprise requirement is to develop busi-

ness process models that are usually composed of multiple tasks. With a proper design

of the business process models, its activities are realized as business services that can be

reused across enterprise borders. From this perspective, business process models are

often project-based and they can be seen as an extension to the enterprise system analy-

sis or a more detailed level of the overall business architecture. As a conclusion, the top-

down approach represents proper comprehension of the enterprise context and plans. It

integrates the enterprise roadmap into project-based service design. Therefore, the top-

down service design approach can be applied either on the enterprise level or on one of

its specific projects.

4.2.2 Bottom-Up Approach

In contrast to the aforementioned top-down approach that starts from the enterprise per-

spective, the bottom-up service design approach starts normally from narrower perspec-

tives like the already running systems, technologies, or shared services. It is usually

more concerned with specific projects that have instant set of requirements and must be

realized on a project not on the enterprise level. Utility services and service enablement

are considered as the most common bottom-up approach (cf. Bean, 2009, p. 149).

It is often the case that each enterprise has set of common utilities that are used in all of

its organizational units. Such set can help the service developers trying to realize these

utilities in form of services and this is exactly the motivation behind the utility services.

Examples of utility services can vary from credit card validation to address checking to

any other common day-by-day transactions. However, such utility services are usually

not discovered, underutilized, or not yet hosted in a project and need to be integrated

and here comes the importance behind the utility services approach. The other bottom-

up service design approach is the service enablement that transforms the legacy systems

data and functions into services. However, this approach is considered short-sighted

because it is often in conflict with enterprise requirements (cf. Papazoglou, 2008, p.

650). As a conclusion, one of the bottom-up design approach problems is that it is lim-

ited to a specific scope and can’t consider wider enterprise context. Therefore, this ap-

proach is only used when existing systems need to be integrated or a project needs to be

realized at the earliest possible opportunity (cf. Karakostas & Zorgios, 2008, p. 22).

4.2.3 Middle-Out approach

The top-down approach is considered impractical in providing more value to the enter-

prise including many unnecessary details. On the other hand, the bottom-up approach is

so specific to the point that it might deliver services that are rarely reused in the enter-

prise’s sections. This is somehow in conflict with the SOA reusability principle. There-

fore, it looks like none of these two approaches is perfect and the need for another com-

Chapter 4 - Research Methods

52

promise service design approach is inevitable. This approach is called the middle-out

approach (Usländer, 2010, p. 126). It tries to overcome the drawbacks accompanied

with the other two approaches by pushing up towards the enterprise scope and down

towards the immediate project scope. This is done by creating higher-level business and

information architecture in which the service design process includes activities, arti-

facts, repositories, and governance.

Activities have different goals and can be carried out in the business modeling, service

identification, design, and implementation. The artifacts represent the outputs of the

activities and can vary from specifications to models to executable codes to test plans.

Repositories are merely the storage means in which the artifacts can be stored and man-

aged. Last but not least, the governance is the aspects that manage the activities, the

artifacts, and the repositories. Proper governance indicates for example which artifact is

needed at which section and where it is stored and managed (Braude, 2004).

Based on the abovementioned explanation of the different service design approaches

(see Figure 4.4), the rest of this section is going to explain which of these approaches is

chosen to be adopted in SESOA to design its services.

Based on Figure 3-7 in (Rosen et al., 2008, p. 107)

Fig. 4.4: Service Design Approaches

The central part of the drawing above indicates that the services are created using the

SESOA reference architecture. The main service design approach that is used to create

these services is the middle-out approach. This approach takes into consideration the

requirements that are identified both at enterprise and project levels. It represents the

joint between the top-down and the bottom-up service design approaches. While enter-

prise system analysis and business process model approaches are applied at the enter-

prise scope, legacy systems-based and external services can be integrated at the project

Chapter 4 - Research Methods

53

scope. These considerations enhance the overall system design and make it capable of

being extended or enhanced at any point in the future.

Adopting middle-out approach assures that the implementation of the identified services

is in-line with the Enterprise Architecture and suits its business models. Moreover, it

provides an overall SOA-based solution that supports service reuse.

4.3 Summary

This chapter illustrated the two research methods in information systems science that

have been followed to manage the research behind this work. The design science re-

search method has been followed as the core method in this research. SESOA represents

the main research entry point that is resulted from following the DSRM method in this

work. SESOA is considered as an objective-centered solution. The other research meth-

od followed in this work is the information systems research framework in which the

conducted research reflects the relevance to the business environment and adds to the

knowledge base in information systems science as a whole.

On the service level, three different service design approaches have been investigated.

Top-down and bottom-up approaches lacks the efficiency in fulfilling the requirements

of both enterprise and its individual projects. Therefore, the middle-out service design

approach has been adopted to create SESOA services.

Based on the design considerations derived from the methods and approaches in this

chapter, the following chapter initiates the conception phase of this work and defines all

of its requirements in details. Moreover, the requirements of an accompanying business

case are also defined in Chapter five.

Chapter 5 - Conception and System Requirements

55

5 Conception and System Requirements

One major requirement behind this work is the semantic enablement and organization of

Web Services. In any productive enterprise environment, the number of Web Services is

gradually changing. These services might be implemented internally within an enter-

prise or might be supplied by many external service providers. Since these services are

coming from different business sectors and realize heterogeneous functionalities, de-

mands for techniques to manage, process, and organize these services need to be met.

This chapter starts with a general definition of the proposed system. Web Service group-

ing in assemblages together with semantic enrichment of services are then introduced in

this chapter. Based on the analysis of the existing SOA-based solutions presented in

Chapter one, the general system requirements are then defined. The requirements in this

work are split into core system requirements and accompanying business case require-

ments. These requirements are classified as functional and non-functional requirements.

This represents the first stage of the conception phase behind this work. System model-

ing and the resulted reference architecture are explained in the Chapter six.

The organization of this chapter is as follows: Section 5.1 defines SESOA concept. In

Section 5.2, the term Web Services assemblages and the semantic enrichment of Web

Services are introduced. Section 5.3 defines the requirements of the proposed system.

Brief conclusion that summarizes this chapter is then placed in Section 5.4.

5.1 Definition of Lightweight Semantic-enabled Enterprise SOA

As introduced in (Mahmoud, Marx Gómez, & von der Dovenmühle, 2011; Mahmoud,

Petersen, et al., 2012; Mahmoud & Marx Gómez, 2010; Mahmoud, 2009): Lightweight

Semantic-enabled Enterprise Service-Oriented Architecture (SESOA) is an enter-

prise solution based on Web Services. It links IT-System landscape to external systems

based on business process and SOA concepts. It represents a lightweight Web develop-

ment system that annotates the Web Services coming from different service providers

with semantics. Thereby, the indexing and discovery of these services can be more dy-

namic and comprehensive.

SESOA can be considered as an enhanced SOA concept in which the user system (ser-

vice consumer) consumes the provider’s services after discovering them in the SE-

SOA’s “semantic service repository”. The Web Services are published in this repository

after being annotated using RDF statements. These services can be queried using any

RDF query language like e.g. SPARQL (Prud’Hommeaux & Seaborne, 2008). Further-

more, SESOA enables the traditional Web Service discovery provided by former ap-

proaches like the common UDDI registry (Clement et al., 2004).

In this way, SESOA dynamically adapts to potential changes that might accompany any

enterprise requirements, goals and visions. This is realized by easing the phases of Web

Chapter 5 - Conception and System Requirements

56

Services discovery, selection, invocation, composition and monitoring in a distributed

and open environment.

5.2 Semantic Support of Web Services

Semantic enablement of Web Services is one major output of this work. RDF statements

are utilized to enrich Web Services with semantics. This section explicates the defini-

tion of the term Web Service assemblage (WS-assemblage or assemblage) and depicts

the semantic support of Web Services.

A WS-assemblage is a holder or mini repository that groups Web Services coming from

different providers. This grouping is based on the business sectors or domains to which

these services usually belong.

All Web Services of one WS-assemblage have the same business classification. The

relations between services and assemblages are semantically annotated using RDF

statements. The assemblage’s attributes that are going to be detailed here in this section

are similar to the so called: “communities” proposed by (Medjahed, 2004) in his disser-

tation: “Semantic Web Enabled Composition of Web Services”. While these “communi-

ties” serve in his work to facilitate the dynamic service composition, assemblages in this

work are more related to the design aspects in classifying services based on the business

domain to which they belong. As depicted in Figure 5.1, The WS-assemblage has the

following properties (cf. Medjahed, 2004):

 ID: Is an identifier that contains a unique name and a text description. It indi-

cates the assemblage’s characteristics.

 Category: It specifies the WS-assemblage’s classification within a specific busi-

ness domain. All the Web Services that belong to one WS-assemblage have the

same category. The categories are accessible to all service providers in order to

let them registering their services within it.

 Members: It refers to the list of WS-assemblage members. Being member of a

WS-assemblage, service providers assure that their Web Services are registered

in the respected assemblages.

 Operations (Properties): Are abstract operations that depict the main functions

that the WS-assemblage’s members have to specify. The Web Service developer

in the proposed architecture has the duty of defining WS-assemblage operations.

These operations are implemented by the WS-assemblage members (i.e., the ac-

tual Web Services) that are interested in offering the functionalities assigned by

these operations. The operations (properties) can be classified as syntax, seman-

tic and qualitative operations.

Chapter 5 - Conception and System Requirements

57

Fig. 5.1: Web Service Assemblages

Figure 5.1 above shows that the WS-assemblage’s category has four properties: domain,

synonyms, specialization, and imbrications (cf. Medjahed, 2004). A category’s domain

represents the main WS-assemblage’s business area (e.g., financing). It is possible that

different WS-assemblages adopt different taxonomies to define their category attribute.

Synonyms, the second category’s property, contain similar or optional domain names for

a WS-assemblage. For example, “funding, business finance and public finance” are

synonyms of “financing”. The third category’s property is the specialization that is a set

of WS-assemblage’s domain characteristics. For example, “personal finance” and “em-

ployee” are specialization of “financing”. This means that the WS-assemblage provides

personal financing services for employees. The last category’s property is the imbrica-

tions. Since WS-assemblages can generally have something in common, they are linked

to each other through relationships specified in the imbrications attribute. It contains the

list of WS-assemblages’ categories that overlap with each other. For example, an opera-

tion that belongs to a WS-assemblage with a category domain “personal finance” might

relate to another operation that belongs to a WS-assemblage with a category domain

“temporary contract employees”. This provides personal finance for temporary contract

employees. The Web Service developers are responsible of identifying related catego-

ries to assign them to the imbrications property.

Figure 5.2 shows the WS-assemblage’s operations. As mentioned before, these opera-

tions are classified into syntax, semantic, and qualitative operations. Each of these clas-

ses is specified separately. For the syntactic and semantic operations, they are classified

as messages, operations and as inter- and intra-operations.

Chapter 5 - Conception and System Requirements

58

Fig. 5.2: Classification of WS-Assemblage Operations

In comparison with the classification done by (cf. Medjahed, 2004), Table 5.1 gives an

overview of some of these operations.

Tab. 5.1: List of WS-Assemblage Operations

Operation Type Property Managed By

Syntax

Message

Input
Web Service Developer

Service Provider

Output
Web Service Developer

Service Provider

Number of Parameters
Web Service Developer

Service Provider

Type Web Service Developer

Language
Web Service Developer

Service Provider

Operation

ID Web Service Developer

Name Web Service Developer

Description Web Service Developer

Consumer Type Web Service Developer

Provider Type Web Service Developer

Semantic

Inter-Operations

Pre-Conditions
Web Service Developer

Service Provider

Post-Conditions
Web Service Developer

Service Provider

Intra-Operations Business Logic
Web Service Developer

Service Provider

Qualitative

Runtime

Availability Third Party

Response Time Third Party

Reliability Third Party

Business
Price Service Provider

Rating Third Party

Security/Privacy Third Party

All operation properties (attributes) are listed in the second column. Examples of these

properties are ID, name, and description that are operation-related syntax operations. In

Chapter 5 - Conception and System Requirements

59

addition, the numbers of input and output parameters together with the number of pa-

rameters are accorded as message-related syntax operations. The third column in Table

5.1 summarizes who is the responsible entity that has the right to assign values to the

operation’s properties. In this work, there are three different entities that can do this: the

service developer, the service provider and third parties. Service developers are one of

the system’s main actors, who are mainly responsible of developing the system’s Web

Services. Service providers are the external entities that supply Web Services. The val-

ues of security/privacy properties like encryption, authentication, confidentially and

non-repudiation are normally assigned to third parties.

Each Web Service is member of one or more assemblages. The relationships between

the services and assemblages are semantically annotated using RDF statements. Each

RDF statement is realized as a subject-predicate-object triple in which the subject is the

assemblage, the predicate is the relationship (e.g. “hasMember”) and the object is the

Web Service. Each of these parts can be identified using a distinct URI. These RDF

statements are published in the system’s semantic service repository in which any RDF

query language like SPARQL can be used to query services. An important point that has

to be taken into consideration is that the semantic querying in this system is taking place

at the workflow management system level where the business processes are constructed.

This ensures the dynamicity and consistency of the system and opens the possibilities to

include up-to-date services in the ever-changing business processes.

5.3 Requirement Definition

In this section, the main business needs required to develop the SESOA system are de-

fined. In addition, system goals, boundaries, and sets of functional and non-functional

requirements are described.

5.3.1 General System Requirements

The starting point for developing SESOA is the existence of several software providers.

The common goal of these providers is to provide functionalities in specific enterprise

systems forwarded to a specific target group of end-user companies. These functionali-

ties are realized using the Web Service technology. This cooperation of suppliers pro-

vides a network that serves wide range of users. The main benefits that describe the na-

ture of SESOA over conventional SOA-based systems are:

1. The support of lightweight semantic annotation of Web Services relations using

RDF statements

2. Distribution of software elements over a network

3. Autonomy of service providers through their independent self-administration

Chapter 5 - Conception and System Requirements

60

4. Assembling Web Services in groups based on their business domains

5. Enabling process orientation by implementing business processes as workflows

6. The support of service reuse

Service specifications together with the grouping and annotation of services have to be

listed following the system’s information model40. Service specification includes service

name, description, provided and required interfaces, service protocol, constraints, quali-

ties of service, and the policies for using services.

In the next three sections, functional and non-functional set of requirements are going to

be defined together with defining the requirements for the accompanying business case.

5.3.2 Core Functional Requirements

The essential base to achieve the agile implementation and development of SESOA is

the distribution of its functionalities using lightweight semantic annotated Web Ser-

vices. This distribution is facilitated by having guidelines of the system’s architecture

and the system requirements. For this purpose, the first part in this section defines and

clarifies the basic concepts in SESOA in order to introduce the requirements definitions

in a clearly and comprehensively way. After that, the issues of access control and user

management system are explained. Then, the requirements to handle the interactions

between system components are illustrated. After that, the general requirements for the

entire system from a user perspective are presented. The remaining parts of this section

include further requirements of the different SESOA’s subsystems like workflow man-

agement, GUI, Web Services, semantic annotations and database management.

5.3.2.1 Comprehensiveness: Main Terms

The main terms that are used in developing SESOA are processes, functions, and tasks.

Table 5.2 gives distinct definitions of these terms (cf. Deeken et al., 2007, p. 15). In the

last three decades, the economy and the strategy of enterprises were relatively static

because of many reasons include the stable customers’ needs, the clearly defined na-

tional and regional markets, durable products, and the well-known competitors. Nowa-

days, the core of the enterprise’s strategy does not exist in the structure of its products

and markets, rather in the dynamics of its behavior. This comes from the rapid change

in customers’ needs and the very fast development and desertion of products, markets

and even industries (Stalk, Evans, & Sgulman, 1992). This forms a motivation in this

work to have the shift from functional to process orientation.

40
 The information model has to describe the elemental entities and the relationships between them. It has

to concern about information, documents and actors to create classes and relationships between them.

Chapter 5 - Conception and System Requirements

61

Tab. 5.2: Processes, Functions, and Tasks

Term Characteristics

Process

 Represents object-related complex sequence in the hierarchy level

 Realizes the main SESOA functionalities

 Implemented as a workflow and can be initiated by the user

Function

 Is a complex activity within a process in the hierarchy level

 Represents a functionality provided as a Web Service

 Calling a function represents an activity in a process

Task

 Reflects an interaction as a simple activity within a process in the hi-

erarchy level

 Represents an individual user interaction like for example data entry

 Accomplishing (handling) a task represents an activity within a pro-

cess

Process in this dissertation is a kind of cross-referencing between the definition of

(Nordsieck, 1934) who was the first one referring to this term in the 1930s and the other

definition from (Seidlmeier, 2010, p. 3). Hence, a process is as a mixture of executions

and objects or more precisely the executions of objects. It terminologically defines a

continuable consequence of informational functions (activities) with precisely defined

inputs and outputs. The functions within processes can be defined as occupational ser-

vices. Finally, the tasks in the resulted prototype represent the elementary functions that

implement specific activities that cannot be meaningfully decomposed.

5.3.2.2 User and Access Control Management Requirements

The user and access control management in SESOA permits and allows the administra-

tor to add new users to the system, modify their data, and delete them permanently.

Each user in the system has traditional credentials like a user name and a password.

With the name/password combination, the user can login at the login interface to the

system. Furthermore, the administrator assigns rights to each user in respect to his/her

functional role in the system. For this purpose, a role-based access control is provided.

It contains pre-defined roles that in turn provide information about which users can per-

form what tasks. The system has the following types of users:

 Administrator: An administrator is the key user (super user) who is responsible

of the communication infrastructure within SESOA. He/she can add new users

to the system, modify and delete them. Moreover, administrators have full con-

trol of all system’s functionalities including the management of Web Services,

their semantic annotations and business processes administration.

 Web Service Developer: This user implements different business functionalities

as Web Services. Moreover, he/she groups the services in assemblages based on

Chapter 5 - Conception and System Requirements

62

the business domains to which they belong. Finally, the Web Service developer

is responsible of annotating the relations among these services semantically us-

ing RDF statements.

 Workflow Developer: Workflow developer is responsible of managing all the

workflow aspects within SESOA. Creating and modifying objects as services

within the developed workflows are from this user’s responsibilities. In other

words, the main role of this user is to design more agile communication flows.

The workflow developer uses a workflow editor to realize the business process

functionalities. Designing Workflows is actually based on the main terms ex-

plained in the previous section: processes, functions and tasks.

 End User: Is the user who can access the GUI and can reach all public docu-

ments. This user can be either anonymous or registered user. This means that

help files, general system information and exemplary Web Services are reacha-

ble to all anonymous users. An anonymous provider can use the Web Service

test system to validate its own services to be registered in the system’s reposito-

ry. Furthermore, a provider can read service advertisement entries. Registered

users can reach some areas that are not public based on the rights assigned to

them by the system administrator. Restrictions can vary following the system’s

rules and examples of these restrictions can be system usage or explicit access to

specific areas/functionalities.

5.3.2.3 Main Interactions among System Components

The following figure gives a broad overview of the system architecture. It shows the

various components that make up the whole SESOA system. The main system’s key

users are depicted in Figure 5.3. The system’s core component is the workflow man-

agement system that deals with business processes.

Business processes are excluded from the enterprise’s application scenarios and trans-

lated into a proper workflow format. This is done with the help of the workflow editor

component managed by the workflow developer user. This user is responsible of man-

aging the workflows that represent the enterprise’s business processes. All the work-

flows are administered by the workflow management system. As mentioned in Table

5.2, the processes are composed of functions and tasks. The functions are realized as

Web Services and semantically annotated using the semantic Web Service annotation

system component and published in the semantic service repository. Creating Web Ser-

vices, annotating their relations with semantics, and publishing them in the semantic

service repository are the responsibilities of the Web Service developer user. The se-

mantic service repository, the workflow management system and the semantic Web

Service annotation system have links to the system’s database managed by the adminis-

trator. This user administers the workflow editor and the Graphical User Interface (GUI)

that is made available to the end users.

Chapter 5 - Conception and System Requirements

63

Fig. 5.3: Main Interactions between System Components

To understand the system requirements from a user perspective, use case diagrams are

employed to represent these requirements. These use cases are illustrated in Figure 5.4.

Fig. 5.4: System Requirements from User’s Perspective

The requirements are grouped into three main systems named SESOA system, work-

flow editor, and Web Service development. The administrator manages SESOA system

available to end users. This system has five main use cases: user login, manage user,

Chapter 5 - Conception and System Requirements

64

manage workflow, execute workflow, and perform task. SESOA system together with

the workflow editor and the Web Service development compose the overall solution.

The workflow editor is managed by the workflow developer who deals with one use

case that is build workflow. The Web Service developer controls the Web Service de-

velopment and deals with three use cases. These use cases are: build Web Service, clas-

sify services, and annotate services. Table 5.3 gives a brief description of all of the sys-

tem’s use cases.

Tab. 5.3: The Main System’s Use Cases

Use Case Description

User Login

The end user gets the login screen in this generic use case. If the user

is registered in the system, his/her username and password combina-

tion provide the access to the system.

Manage User

The administrator is responsible of creating and managing users. Dif-

ferent users with distinctive rights interact with SESOA system. The

administrator creates those users and assigns for each of them a user

name and a password. Furthermore, users are created with certain

rights to reflect different responsibilities.

Manage Workflow

Workflow management is part of the administrator duties. Creating,

updating, and deleting workflows (when they are no longer in use) are

done by the system administrator.

Execute Workflow

Most of the workflow activities in the system are realized as Web Ser-

vices. The end user can execute workflows and eventually call their

Web Services. Moreover, the workflow management system controls

calling and locating services.

Perform Task

Business processes in the system are realized as workflows. Parts of

these workflows (tasks) require the intervention of end users. Using

appropriate input fields, needed information can be displayed to the

end user. To perform a task, the user has to fill in these input fields.

Build Workflow
The workflow developer is responsible of transforming the enterprise’s

business processes into workflows using a workflow editor.

Build Web Service

The system’s workflow functions are realized as Web Services. The

Web Service developer is responsible of creating these functions as

Web Services. Some of the workflows themselves can be also realized

as Web Services.

Classify Services

The Web Service developer classifies the services in assemblages.

Only the Web Service developer has the rights to create Web Services.

Moreover, managing service assemblages (add, modify, and delete) is

part of the Web Service developer responsibilities.

Annotate Services

After classifying services in assemblages, the Web Service developer

annotates the relations between the services and the assemblages se-

mantically using RDF statements.

Chapter 5 - Conception and System Requirements

65

5.3.2.4 Graphical User Interface Requirements

Since SESOA is based on Web Service technology, the graphical user interface has

been realized as a Web application that is compatible with wide range of Web browsers.

The main reason behind that is to reduce the deployment’s complexity. Based on the

general functional requirements of the entire system from the user perspective, the de-

rived requirements for the GUI are firstly described and then the possible future re-

quirements for its realization are proposed.

Login Interface View: User authentication module is used to grant access rights and

handles user management. The main argument behind this decision is that many ven-

dors provide it as a standard component. Hence, the user is asked to type his name and

password and then press a login button to access the system to the so called “user con-

trol” view. Registered users in the system have the following user details: login name, e-

mail, password, first name, last name and some optional data.

User Account Information View: Like user identification information, user account in-

formation is realized within the user login component. Moreover, to decouple the sys-

tem from this specific component, an interface for inner-system communication is in-

troduced. After successful login, the user control view is displayed to the user in which

all the admitted functions are shown. The information about user identity is in the data-

base. This information is forwarded via the workflow management system to the GUI to

be shown at runtime in the user control view. User settings are included in this view as

well.

Admin View: The requirements of the admin interface include viewing the current user,

the main groups and roles in the system together with the derived visualization of in-

formation about the current security state of the system, i.e. the distribution of access

rights to different users, groups and/or roles. All of these are viewable and modifiable

using the admin interface. Save and cancel buttons for basic actions in this view are also

available.

Possible Future Requirements: Some of these requirements include the user information

about the current state of the system including system utilization and performance case

studies. In addition, buttons like back, cancel, and possibly save for the simple and in-

tuitive navigation can be always presented. Another functional but optional GUI re-

quirement is to provide a multilingual interface with the possibility of changing between

different languages.

5.3.2.5 Workflow Management System Requirements

In this section, the main tasks assigned to the workflow management system in conjunc-

tion with the other system’s components are described. Based on the general functional

Chapter 5 - Conception and System Requirements

66

requirements of the entire system from the user perspective, the derived requirements

for workflow management system are schematically defined as follows:

Verify Credentials: After the end user enters his/her credentials (user name and pass-

word) to login into the SESOA system, it is verified to check whether the given data are

correct or not. To do so, the workflow management system compares the input data with

the stored data in the database system.

Start Session: When the login data are entered correctly, a certain value is returned. Us-

ing this value notifies the workflow engine to instantiate a new session. Each registered

user runs a session and this requires that these sessions have to be managed. Moreover,

the logged in user has a list of the system available processes. However, the displayed

processes are just the ones that the logged in user is authorized to run. The workflow

management system must provide a function to achieve this.

Create a Workflow: Creating a new workflow includes several sub-requirements like

the list of involved Web Services and the process of adding RDF annotation to these

services. Moreover, many user interfaces have to be designed for the realization of each

individual step. An implemented workflow must be able to get the endpoints of the in-

volved services and the assemblages to which these services belong based on the RDF

representations stored in the database system.

Create a Workflow Instance: From the available list of processes, the user selects a pro-

cess like “place order”. The workflow engine then starts a workflow instance. Using the

provided object data given by the user, individual activities are processed and possible

return values are delivered back to the user.

Modify a Workflow: A workflow can be modified by changing the process description.

It is ensured that the current database can still be adjusted to deal with it.

Terminate a Workflow: In the case of inaccurate data inputs or exceptions, there is a

possibility to terminate a workflow. As a result, the corresponding workflow instances

together with its activities are deleted. Similar to a transaction in database systems, all

object properties have to be recovered in order to get the system’s pre-execution state.

Upload/Delete Workflow: Workflows can be uploaded and removed. Only users with

authorized rights (administrators) are allowed to perform these actions. Deleted work-

flows are marked as “deleted” but they are still available for system’s coherency pur-

poses (the existing users who dealt with such workflows). However, the deleted Work-

flows are not shown anymore.

Assign Activities: Activities in workflows are specified as functions or tasks (see Sec-

tion 5.3.2.1). Tasks are the normal data inputs or transactions provided by end users.

The functions behind the workflows’ activities are actually realized using Web Service

technology. This means that the workflow developer has to specify the properties of the

requested Web Service(s). To implement a function (workflow activity) using a Web

Chapter 5 - Conception and System Requirements

67

Service, specifications of what data - in the context of a workflow instance - are re-

quired by each Web Service parameter. Moreover, the mapping between the return val-

ues of the Web Service back to the workflow activities has to be specified so that the

responses can be reused in other similar activities. The discovery of a desired Web Ser-

vice is done through the workflow management system that locates the service infor-

mation in the semantic service repository and binds the workflow with this service.

Assign a Data Access Activity: Data need to be retrieved from the database system in

the context of a workflow instance and the results from the execution of functions are

stored. Access to the data has to meet the ACID (atomicity, consistency, isolation, dura-

bility) properties as defined in (Haerder & Reuter, 1983, pp. 289–290).

Finally, since the workflow management system comprises the main communication

bridge between all other components in the system, the issues of how to initiate, control,

interrupt and terminate processes’ instances are specified41.

5.3.2.6 Web Services Requirements

In this section, the main requirements for Web Services and the semantic annotations of

their relations are defined. Based on the general functional requirements of the entire

system from the user perspective, the derived requirements for (semantic-) Web Ser-

vices can be schematically defined as follows:

Discover Web Services: After a user runs a specific workflow, all the required Web

Services needed in this process need to be looked up in the service repository. Then, the

requesting component (workflow management system) gets a list of the requested Web

Services with their endpoints (addresses). This list is also provided with all other ser-

vices’ necessary details.

Create an Assemblage: Each assemblage is theoretically specified with four properties:

ID, category, members and operations. A Web Service is grouped as members in an

assemblage that has a distinct ID and category. Services in assemblages implement

some or all of its main operations.

Group Web Services in Assemblages: While registering a Web Service in one or more

assemblages, it is important to firstly load a list of previously registered Web Services

with all their related data to avoid duplicating service entries in the repository and re-

spectively in the assemblages. A Web Service can be registered twice42 in one or more

assemblages and published in the semantic service repository. Upon service registration,

41
 Windows Workflow Foundation (WF) is used in the prototypical implementations to manage the sys-

tem’s workflows (cf. Collins, 2009).
42

 If a Web Service is registered twice in one or more assemblages, it must have different IDs to ensure

the uniqueness of the Web Services.

Chapter 5 - Conception and System Requirements

68

RDF statements that annotate relations between assemblages and services as entities are

created automatically.

Define Web Service Description: Each Web Service has to be well defined before being

published in the service repository. This definition is done by assigning RDF triples to

the service’s and the assemblage’s information. Thereafter, each Web Service can be

semantically queried by all requesting components.

Invoke Web Services: To run a workflow successfully, it is imperative that all necessary

Web Services are made available. As soon as their endpoint information is available, the

Web Service can be invoked (called) directly by the workflow management system.

5.3.2.7 Validation and Evaluation Requirements

Web Services within SESOA system can be validated and evaluated. From the valida-

tion perspective, the requirements are:

Validate Assemblage Data: Each assemblage utilizes validation tests to validate its data

(from technical perspective). A validation test has to check data types and ranges. Incor-

rect data have to be identified within each test. As a result, the test must identify failures

and exceptions (like out of range exceptions) and try to handle them.

Validate Web Service Data: A Web Service may allow validation tests to run in order to

validate the correctness of its properties. Figure 5.5 illustrates how such validation tests

are applied to properties of both assemblages and Web Services.

Fig. 5.5: Validation Tests

Chapter 5 - Conception and System Requirements

69

Validation tests (von der Dovenmühle, 2009) are applied to some of generic data types.

The investigated data types are Integer, Decimal, String, and DateTime where primitive

validation tests are applied. For the validation purposes, the Integer data type is further

split into four sub-data types. The validation of these sub-data types is realized as a set

of Web Services. As depicted in Figure 5.6 A, these sub-data types are positive, non-

negative, negative and non-positive Integers. While the positive Integer includes all the

positive Integer values except zero, the non-negative Integer is the generalization of

positive Integer data type. It includes all the positive Integer values plus the zero value.

Opposite to the positive Integer, the negative Integer includes all the negative Integer

values except zero. Eventually, the non-positive Integer is the generalization of negative

Integer data type and it includes all the negative Integer values with the zero value in-

cluded. The generic Integer data type with its sub-data types are associated with valida-

tion tests delivered by the Integer validation Web Service.

Similar to Integer, the Decimal data type is also split into four sub-data types. Decimal

validation is also realized as a set of Web Services. As depicted in Figure 5.6 B, these

types are positive, non-negative, negative and non-positive Decimals. While the positive

Decimal sub-data type includes all the positive Decimal values except the zero value,

the non-negative Decimal is the generalization of the positive Decimal data type. It in-

cludes all the positive Decimal values plus zero. The negative Decimal includes all the

negative Decimal values except the zero. Finally, the non-positive Decimal is the gener-

alization of the negative Decimal data type. It includes all the negative Decimal values

plus the zero value.

Fig. 5.6: Integer and Decimal Validation

Chapter 5 - Conception and System Requirements

70

Figure 5.7 illustrates how the String data type is organized for validation. A Web Ser-

vice is used to validate this data type.

Fig. 5.7: String Validation

The String data type is split into four sub-data types namely alpha, numeric, alpha nu-

meric, and non-alpha numeric Strings. The alpha string sub-data type includes all the

String values that contain just alphabetical letters. The numeric string values include

just number values (plain numbers with “-” to indicate the negative numbers or “.” to

indicate the decimal separator) without any other special characters. Alphanumeric sub-

data type generalizes both alpha and numeric data types and its values include both let-

ters and numbers without special characters. The last String sub-data type is the non-

alpha numeric. Its values include String values with special characters. This distinction

between the String sub-data types is quite helpful for validating different fields and in-

puts like names, numbers, emails…

Finally, the last data type investigated for validation is the DateTime. Checking the va-

lidity of this data type is realized by the DateTime validation Web Service. The

DateTime data type values are either valid or invalid. It can be classified into two sub-

data types: future date or past date as depicted in Figure 5.8. These two types can be

tested together with testing the generic DateTime data type. Range of DateTime formats

are supported for validation like (MM/YY, MM.YY, DD/MM/YY, DD.MM.YY,

DD/MM/YY HH:MM:SS, DD.MM.YY HH:MM:SS or easily HH:MM:SS)43.

43
 HH stands for hour, MM for minute, SS for second, DD for day, MM for month and YY for year.

Chapter 5 - Conception and System Requirements

71

Fig. 5.8: DateTime Validation

From the evaluation perspective, a security protocol is designed and implemented to

evaluate Web Services. After each Web Service call, the evaluation process must be

carried out automatically based on a security protocol developed in the master work of

(Hasan, 2010). In comparison with the work done by (Brehm & Marx Gómez, 2010),

the secure service rating protocol used here is based on this work and updated to have a

machine-to-machine evaluation protocol. It meets the confidentiality, integrity and au-

thentication aspects. Using this protocol, the evaluation is done automatically based on

two Web Service’s criteria namely the response time and availability. The service’s

evaluation values are controlled by a third party called Evaluation Processing Authority

(EPA). As depicted in Figure 5.9, the service consumer is bound with a service supplied

by specific service provider. Upon invoking the service, the consumer’s machine auto-

matically rates the service based on the abovementioned two criteria, and sends the rat-

ing value to the EPA.

Fig. 5.9: Service Evaluation Overview

Using this evaluation protocol, the service provider cannot manipulate the service rating

value because it resides at the EPA side. Eventually, what the provider can do is just to

check the current value of its services’ ratings.

5.3.2.8 Database Requirements

Data access time is crucial factor for the system’s overall performance. However, there

are many join-operations in the system’s data. All RDF statements are represented as in-

memory stores copied to the database and retrieved from it when needed.

Chapter 5 - Conception and System Requirements

72

Fig. 5.10: Representation of RDF Statements

As illustrated in Figure 5.10, each assemblage is related with its members (Web Ser-

vices) through “hasMember” relationship. The “Assemblage hasMember Web Service”

relation is realized as in-memory RDF statement. This statement object is implemented

as a memory store that splits the statement into three entities parts namely assemblage,

relation, and Web Service and stores them in the core system database.

Based on the general functional requirements of the entire system from the user per-

spective, the derived requirements for the database system are schematically defined as

follows:

Retrieve Requested Data: Running a workflow instance requires the process-specific

data to be retrieved from the database. To do so, the workflow management system

sends a request to the system database that delivers the process-specific data needed to

execute the workflow instance.

Verify User Input: When a user logs in, his/her input data is compared with the stored

information in the database to verify whether the user is authorized to have access to the

system or not. In the case of conflict between the input and stored data, the access to the

system is denied.

Manage User Data: The user management system is part of the system database re-

sponsible of managing users’ with roles and rights. Required user-specific data within

the system are stored and retrieved from the system database.

Store Data: All users’ inputs must be stored persistently in the system database. The

“assign a data access activity” (Section 5.3.2.5) set by the workflow management sys-

tem achieves this keeping in mind that the existing stored data will be overwritten by

the new inputs.

Supply Requested Data to the Workflow Management System: This is to provide data as

results to the queries coming from the workflow management system. Workflow data

are stored in the SESOA database. The request to retrieve data from the database is done

by the workflow itself.

Chapter 5 - Conception and System Requirements

73

Delete Data: Existing data in the system database can be deleted by the user who has

the authorized permissions. Workflow-specific data can be deleted from the system da-

tabase as well. However, only administrators who have rights to manage workflows are

permitted to delete such data. Without backup, the deleted data cannot be retrieved.

5.3.3 Business Case Requirements

Enterprise systems or more specifically ERP systems have normally three business pro-

cesses clearly connected to create and deliver products and services (Magal & Word,

2011). These processes are the buying (or procurement) process, the producing (or pro-

duction) process and the selling (completion or fulfillment) process. This work is more

concerned about modeling and implementation of one of these processes that is the sell-

ing business process depicted in Figure 5.11. This business process is considered as the

accompanying business case to SESOA. It is mainly implemented to utilize the system’s

functionalities. This section here is dedicated to define the main requirements of the

selling business process.

The main goal of this process is to design and implement a generic completion business

process on top of the system’s prototype. Most of the activities in this process have been

realized using service orientation concept and Web Servicers technology. This enables

individual services to be exchanged quickly and easily without huge costs of change.

One more virtue behind realizing this process using Web Services is the enablement of

using services supplied by external service providers. Therefore, process outsourcing

can be effectively performed.

Figure 5.11 shows the business process model of the investigated business case where

Business Process Modeling Notation (BPMN) (White & Miers, 2008; White, 2004) had

been used as a business process modeling language. The resulted prototype implements

this selling process as an online shop that is made available to customers for ordering its

products. The process starts once a customer places an order. The sales and accounting

department receives this order and creates a sales order waiting for the customer’s pay-

ment. The payment is checked by an external payment company. Upon charge approval,

a shipping employee from the warehouse department packs the order and requests a

shipment pickup number from another external shipping company. Eventually, the ship-

ping company picks up the order and finally delivers it to the customer.

Some of the functions implemented in this business case are:

 Show product information

 Show customer-product information record

 Show pricing conditions like discounts, offers etc.

 Create quotation for a specific product

 Create customer purchase order

Chapter 5 - Conception and System Requirements

74

 Create sales order based on the customer purchase order

 Process payment for a sales order

 Process shipment for a sales order

 Process billing for a sales order

 Display document flow that shows all of the documents associated with the steps

that have been accomplished for an order

 Display work lists that associate the tasks that are ready for completion

 Display online lists that can show some documents like list of sales orders for a

specific combination of customers and products or list of delivery documents for

a specific customer.

Source: Based on Figure 4-6 in (Rosen et al., 2008, p. 139)

Fig. 5.11: Business Process Model for Selling Process

All of these functions have been implemented taking into account that products have to

be always available to the customer who has to register and login to the system. Moreo-

Chapter 5 - Conception and System Requirements

75

ver, the consumer can add, modify or delete items in a shopping cart. The user can set

his/her invoice and shipping address for each order and can also choose between differ-

ent payment methods (credit card, bank debit, advance payment) and different shipping

companies to ship the bought goods. Furthermore, the user’s order processing notifica-

tion together with historical browsing of the purchased products are made also available

to the customer.

The whole selling process is realized using workflows and Web Services. The activities

of these workflows are following the core system’s requirements (presented in Sec-

tion 5.3.2). For example, both workflow’s payment and shipment activities are executed

by calling Web Services in payment and shipping WS-assemblages respectively. Many

similar services can be found in those assemblages and it is the decision of the work-

flow developer to choose which service to call based on specific rules and criteria.

5.3.4 Non-Functional Requirements

The system together with its accompanying business case must take into account a set of

non-functional requirements to be defined and met accordingly. The individual non-

functional requirements are grouped and sorted as either mandatory or optional re-

quirements. Below is the list of the non-functional requirements that have been taken

into account in this work:

Modularity: The overall system is composed of different components that collaborate

together to provide the system’s functionality. Most of the system’s functions are real-

ized using standardized RDF-enriched Web Services. Therefore, modular software de-

sign is a mandatory requirement. This leads to an appropriate customized software solu-

tion in which components can interact, connect and share resources by using modular or

standardized interfaces.

Usability: It is a mandatory requirement. An intuitive and coherent design of system’s

GUI is crucial. Each user interface must be designed in a clear and unambiguous way.

These interfaces should be based on common usability concepts, so that all system parts

can be easily used without a need for long time training.

Performance and Efficiency: While creating the first versions of the prototype, system

functionalities are actually appearing in the foreground. Therefore, system’s perfor-

mance and efficiency accorded as optional requirements. The same applies to the sys-

tem’s effectiveness and efficiency in terms of resource consumption.

Scalability: Based on the aforementioned modular software design requirement and the

fact that the system’s components can be easily replicated or even replaced, the entire

system can cope with the changes that might accompany any enterprise requirements,

goals and visions. Hence, the scalability is a mandatory requirement. Likewise, down-

sizing is enabled by removing any unnecessary component(s).

Chapter 5 - Conception and System Requirements

76

Reliability: The resulted prototype has to be as error-free as possible. If necessary, oc-

curring errors must be handled in a way that the system can still working or permit a

(partial-) shutdown. Error messages should be meaningful and documented. System data

must not get lost or left inconsistent because of these errors. User input errors caused by

system’s users must be intercepted and checked immediately so that any invalid input is

handled with a meaningful notification message back to the user who caused it.

Correctness: Data correctness is a mandatory requirement of the system. In the context

of the planned application, correctness means that the delivered data values and results

(following the system’s rules) are adequate and conform in quality with defined busi-

ness requirements and criteria.

Security: It is a mandatory requirement. System’s users with their rights provide a rea-

sonable degree of security. Web Services rating and securing the communication chan-

nel between service providers and consumers provide another level of security. The

prototypical implementation tries to protect existing data against unauthorized access.

Furthermore, it tries to protect data sources against unauthorized access and modifica-

tion. When the system runs in a production environment, this requirement must take a

higher priority.

Internationalization and localization: This is an optional requirement. The already de-

signed user interfaces and the prototype as a whole are initially implemented using the

English language (font encoding, date formats, etc.). A later productive system has to

meet with subsequent internationalization and localization (i18n) requirements. Based

on these requirements, multilingual interfaces with possibility to switch between differ-

ent languages have to be provided.

Maintainability: Several technologies have been used to implement the system. The

created software components are well defined and their interfaces are fully documented.

At run-time, new components can be added and/or other active components can be de-

activated and potentially removed using a pre-defined process. Therefore, maintaining

the resulted prototype with its accompanying business case is important. However, the

maintainability requirement in this work is partially optional because maintenance is

done just on some administrative GUIs and at the database level (by the system admin-

istrators).

Table 5.4, summarizes the aforementioned non-functional requirements and sort them as

mandatory, partially optional or optional requirements.

Tab. 5.4: List of Non-Functional Requirements

Number Non-Functional Requirement Sort

1 Modularity Mandatory

2 Usability Mandatory

3 Performance and Efficiency Optional

Chapter 5 - Conception and System Requirements

77

4 Scalability Mandatory

5 Reliability Partially Optional

6 Correctness Mandatory

7 Security Mandatory

8 Internationalization and localization Optional

9 Maintainability Partially Optional

5.4 Summary

In this chapter, the conception phase behind this work has been presented. The concept

of lightweight Semantic-enabled Enterprise Service-Oriented Architecture (SESOA) has

been defined. An introduction to the semantic support was then presented. The idea of

grouping Web Services in assemblages and the definition of the later has been then ex-

plicated.

Core system requirements divided into functional and non-functional requirements to-

gether with accompanying business case requirements have been defined. The resulted

system based on these requirements is a process-oriented system in which business pro-

cesses are realized as workflows. Some of the activities within these workflows are im-

plemented using Web Services. Specifications of the SESOA reference architecture for

Web Services are presented in details in the next chapter.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

79

6 Reference Architecture of Semantic-enabled Enterprise SOA

This chapter is the central part of the thesis and proposes semantic Web-based architec-

ture for Web Services (Mahmoud et al., 2011; Mahmoud, Petersen, et al., 2012;

Mahmoud & Marx Gómez, 2010; Mahmoud, 2009). It explicates in details the reference

architecture of the lightweight Semantic-enabled Enterprise Service-Oriented Architec-

ture (SESOA) together with the internal architecture of its core building components.

Moreover, the main interactions between these components, scenario of registering ser-

vices within WS-assemblages, service validation and evaluation are detailed in this

chapter.

The detailed layered architecture, the architecture overview and the component-based

architecture of SESOA are explained in section 6.1 with highlights to the internal sys-

tem’s components. Section 6.2 explicates the scenario in which Web Services are regis-

tered within assemblages. Following that, service validation and evaluation are detailed

in sections 6.3 and 6.4 respectively. Section 6.5 illustrates the semantic annotation of

Web Services relations using RDF statements together with the main interactions

among the system’s components. Section 6.6 shows how the business case architecture

is modeled in context of the system architecture. Then, Section 6.7 lists the main out-

comes that can be obtained from this work. Finally, this chapter briefly summarizes the

main issues explained in its sections.

6.1 Semantic-enabled Enterprise SOA

6.1.1 The Layered Architecture

This section illustrates the system’s reference model as a logical software architecture

that does not refer to any specific technology. A reference model as defined by (Mac-

Kenzie et al., 2006, p. 29) is: “an abstract framework for understanding significant rela-

tionships among the entities of some environment that enables the development of spe-

cific architectures using consistent standards or specifications supporting that environ-

ment. It is independent of specific standards, technologies, implementations, or other

concrete details”. SESOA architecture is designed as a tier architecture that applies the

separation of concerns architectural principle by separating presentation from logic, and

logic from data. This layered architecture arranges the system’s logical tiers (layers or

views) and the relationships among them. As any other tier-based architecture, the SE-

SOA layered architecture has the presentation, business and resource tiers. From an ar-

chitectural point of view, the only difference in this architecture is the division of its

business tier into two sub-tiers namely: service and process layers.

Figure 6.1 illustrates the layered architecture of SESOA with its three main tiers. The

presentation layer is mainly the system GUI by which user can login to the system using

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

80

different devices (computers, smart phones…). User authentication is required at this

point. Based on his/her rights, the system provides the user with a list of workflows.

Execution of workflows is initiated by the user who can choose the desired workflow to

execute. These workflows are managed by the workflow management system (WfMS).

Fig. 6.1: SESOA-Reference Model as Layered Architecture

Most of workflows’ activities are implemented as Web Services. Upon workflow execu-

tion, the WfMS discovers the service repository to fetch a list of Web Services required

to execute the workflow’s activities. These services are supplied by service providers as

data sources (refer to Figure 6.1).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

81

The results of executing workflows are presented back to the user via the system’s front

end. All the necessary connections to the databases are realized in the Data Access Ob-

ject’s interface (DAO component) that links the WfMS to the SESOA’s different set of

databases. SESOA data are stored and managed by four main databases. These data-

bases are:

 The core database in which all user management, system-relevant data like Web

Services data (IDs, endpoints, and description…) are stored.

 The workflows database that manages the workflows data to enable persisting

and tracking of the workflow’s instances.

 The semantic database that includes all the RDF statements required to represent

the relations between Web Services and their WS-assemblages. It stores them in

form of subject-predicate-object statements where subjects, predicates, and ob-

jects RDF entities are stored using unique IDs.

 Business cases database that includes the relevant and needed data to create and

run the business cases that use the system’s functionalities.

Moreover, different external systems (from the data source layer) like ERP or SCM sys-

tems might be integrated with the system. Just authorized external systems with proper

rights can use SESOA data. To achieve this integration, a specific business scenario

includes the involved external system is realized in form of workflow. The resulted

workflow is then managed by the WfMS to process interactions (inputs and outputs)

with the intended external system.

6.1.2 Architecture Overview

This section describes the main aspects of the proposed reference architecture with its

components (Mahmoud et al., 2011). The main idea behind this section explains the

semantic-enabled architecture for Web Services that has the role of dealing with Web

Services and the semantic annotations of their relations. As mentioned in Chapter five,

the Web Services are grouped in WS-assemblages. Service classification is based on

enterprise’s business domains or areas of interest. In designing the proposed architec-

ture, the main aspects in designing service interface and implementation have been de-

fined respectively. Firstly, the general concepts, goals and concerns related to this archi-

tecture have been specified. Other related concepts of what processes, channels, external

systems, services and WS-assemblages are defined as well. Secondly, the system’s

business requirements are identified and illustrated using some use case, sequence, and

detailed scenario (activity and partitioned activity) diagrams.

Based on the reference model described as layer architecture in the previous section,

this section shows how this reference model can be transformed into reference architec-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

82

ture. The term architecture generally describes the wide term Software Architecture that

represents the structure of a software system. This structure comprises the software el-

ements (components), their properties and their relationships (Clements et al., 2010). As

defined in (MacKenzie et al., 2006, p. 29), a reference architecture is “an architectural

design pattern that indicates how an abstract set of mechanisms and relationships realiz-

es a predetermined set of requirements”. The aim of describing reference architecture is

to provide an abstract architectural template in a specific problem domain. By consider-

ing general requirements that are identified in a particular domain, reference architec-

ture provides the possibility of conceptual adoption or adaptation of system structures.

To conclude, the reference architecture described in this thesis is an abstract software

architecture that can be applied to multiple business domains. The limitation applied to

this reference architecture is that by adopting it, the operational flow logic is explicitly

done in form of workflows. The activities within these workflows are realized as Web

Service calls that execute available operational functions provided by many organiza-

tional structures of a company and/or set of companies. Figure 6.2 depicts the SESOA

reference architecture.

Source: Figure 2 in (Mahmoud, Petersen, et al., 2012, p. 186)

Fig. 6.2: SESOA-Reference Architecture

The overall system consists of five main subsystems besides the three typical SOA sub-

systems (consumer, provider, and Web Service directory). These subsystems are con-

nected to each.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

83

The overall architecture is built on top of SOA concept in consolidation with business

processes and semantic enrichment of Web Services. The architecture’s subsystem can

be described briefly as follows:

The Consumer System is actually the system’s end user who discovers, selects and in-

vokes the available Web Services. Moreover, the consumers are able to discover some

WS-assemblages (based on their rights and privileges) to locate potential Web Services.

Consumers can also initiate workflows that reflect the actual business processes man-

aged by the processing system.

The Front End represents the system’s GUI through which users can access the system

and use its functionalities. Logged in users are provided with list of available Web Ser-

vices, WS-assemblages, and workflows. The workflow execution is initiated by the user

and managed by the processing system that is connected to the front end. Set of valida-

tion tests at the data type level are provided to the users as Web Services to check the

validity of the user’s inputs. Semantic RDF statements validation is also available using

the W3C RDF validation service.

The Provider System is merely a Web Service provider. It creates Web Services and

publishes them in one or more Web Service registries (UDDI or any other registry) in

which service consumers can locate services to potentially consume them. Whereas ser-

vice provider implements some the services functional (like messages and binding) and

non-functional (like price) properties, third parties assign values to the rest set of prop-

erties (like reputation, availability, confidentiality…).

The Web Service Directory represents the big container of services supplied by different

service providers. It is the medium between service consumers and providers. On the

one hand, consumers discovers directories to find potential services and get direct bind-

ing with the providers of these services. On the other hand, service providers publish

their services in service directories to market and make them available to wide ranges of

service consumers.

In other words and following SOA concept, the consumer system (via the system’s front

end) discovers the Web Service directory to find some services meeting his/her needs

(passed as keywords or highly defined requests). Upon finding a service capability ful-

fills its request the consumer system binds directly to the provider system that supplied

this service in order to invoke it.

The Processing System is the centric subsystem that encapsulates and realizes the busi-

ness logic in this reference architecture. It represents the SESOA’s workflow manage-

ment system that manages the system’s workflows. Several business processes can be

translated into workflows and steered by this subsystem. The translated business pro-

cesses, i.e. the workflows, include several activities that are going to be executed by

calling the other architecture’s subsystems connected to the processing system. Via data

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

84

connections, the processing system is connected to the following architecture’s subsys-

tems:

 Consumer system via the front end

 Database system

 Semantic Web Service-based system

 Provider system via the validation system

All the system’s workflows are provided to the user based on their rights and privileges.

Most of the workflows activities are realized as Web Services. The consumer system

can discover, find and invoke services via the processing system. This system controls

the data flow among the reference architecture’s subsystems.

The Semantic Web Service-based System is the subsystem that handles the grouping of

Web Services in assemblages and the semantic annotation of their relations. The assem-

blage unit manages all the WS-assemblages by creating, modifying and deleting assem-

blages based on changes at the business needs. Moreover, the relations between WS-

assemblages and services are semantically annotated in this subsystem using RDF

statements. The statements entities are stored in the database system. These RDF state-

ments are also made available at the semantic service repository. A data connection be-

tween this subsystem and the processing system is necessary to provide the latter with

list of services (from the semantic service repository) needed for executing the system’s

workflows.

The Semantic Service Repository includes the basic information about WS-assemblages

and their actual Web Services exposed as RDF statements. When service providers reg-

ister their services in the system in one or more WS-assemblages, an automatic RDF

statement is created indicating this relationship. The entities of this statement are stored

in the database system. The semantic service repository is then updated to include this

statement. Moreover, several RDF semantic query languages like SPARQL can query

this semantic repository to locate service information.

The Validation System provides set of validation tests for Web Services. It has the rank-

ing, the annotation provider, the announcement, and the service test units. The ranking

unit provides secure Web Service rating based on automatic machine-to-machine evalu-

ation protocol. The annotation provider manages the semantic annotation of relations

between Web Services and WS-assemblages in which they are registered. The an-

nouncement unit has an interface with the provider system to advertise for new func-

tionalities the system’s services cannot provide. Finally, the service test unit provides

some data type validation set of tests.

The Database System gathers all the system’s databases. It includes user management,

semantic, workflow, and business cases databases. Different set of users can access and

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

85

maintain these databases. While executing workflows, many activities read and/or write

data in one of the database system’s databases. Therefore, most of the database interac-

tions are performed by the processing system

6.1.3 The Component-based Architecture

This section provides an overview of the system’s component-based architecture. Gen-

erally, component architectures aim at making clear separation of technical and business

requirements of an information system. Component architecture has the advantage that

different implementations of the same type of components can be supported simultane-

ously. Business requirements are realized through the implementation of accompanying

business cases that utilize this component architecture.

Fig. 6.3: SESOA-Reference Architecture as Component-Based Architecture

Figure 6.3 depicts the SESOA reference architecture as a component-based architecture.

As a modeling language, Unified Modeling Language (UML) has been chosen (OMG,

2009). Component diagrams are used also to model the internal subsystems of SESOA

reference architecture. Moreover, in all parts of this work UML version 2.2 (see

http://www.omg.org/spec/UML/2.2/) has been used. In the following sections, more

details are given to the interfaces among the system’s components

As mentioned in the layered architecture, the main entity in the process layer is the

WfMS that manages the workflows. In this component-based architecture, the pro-

cessing system component has this responsibility. It provides four main interfaces:

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

86

 Interface with the system’s front end: Consumer system initiates the process of

workflow execution. While executing workflows, several requests are tunneled

via the system’s front end to the processing system. After processing the execu-

tion of the workflow with its activities, the processing system generates the cor-

responding response back to the consumer system via the front end. In case of

failures, the processing system generates a response back to the consumer sys-

tem indicating proper failure message.

 Interface with the semantic Web-Service-based system: Executing workflows by

the processing system requires fetching list of workflow-relevant Web Services.

This is achieved by the interface with the semantic Web Service-based system

where Web Services are grouped in WS-assemblages. The list of services is then

retrieved by the processing system to complete the workflow execution. In case

of failures, proper handling is done by the processing system.

 Interface with the provider system via the validation system: The connection to

the external (and internal) service providers is established via this interface. The

services supplied by different provider systems are tested by the validation sys-

tem before being called by the processing system. Moreover, absent functionali-

ties that do not exist yet in the system are forwarded to service providers by the

validation system’s announcement unit.

 Interface with the database system: Executing some of the workflow’s activities

requires transactions with the system’s databases. These interactions are handled

using this interface.

Requests for Web Service are handled by the semantic Web Service-based System. It

uses semantic-annotated Web Services that are published in the semantic service direc-

tory to fulfill users’ requests or to orchestrate new services using the existing ones. It

notifies and updates the processing system about the services’ availability in order to

reduce the overall response time. This subsystem implements also four main interfaces:

 Interface with the semantic service repository: The assemblage unit within this

subsystem creates the WS-assemblages and registers the services as members

within these assemblages. Moreover, the process of annotating the relations be-

tween assemblages and their services is done by this system. The whole seman-

tic RDF description is then published at the semantic service repository using

this interface.

 Interface with the processing system: The main role of this interface is to form a

communication bridge with the processing system to receive service requests.

Proper response is then sent back to the processing system indicating either list

of services or a failure response.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

87

 Interface with the provider system via the validation system: As mentioned be-

fore, the services supplied via different service providers are registered within

WS-assemblages managed by the assemblage unit in the semantic Web Service-

based system. The service providers may benefit from the validation system to

validate their services before registering them in desired WS-assemblages. The

validation system offers data type tests and secures service rating.

 Interface with the database System: All data managed by this subsystem are

stored in the database system. WS-assemblages and services data are stored in

the core database. RDF statements of the relations between these assemblages

and their services are stored in the semantic database. In these RDF statements,

each of these assemblages is accorded as a subject entity, the relationships with

the services are accorded as predicate entities, and the actual Web Services are

accorded as object entities. Subject, predicate, and object entities are then stored

in the semantic part of the database system. This storage is done automatically

upon registering Web Services in assemblages.

The next following sections illustrate the internal component-based architectures of

each of the abovementioned subsystems.

6.1.3.1 Processing system

Main design issue in the processing system component is the process definition and how

can business processes be transferred to workflows. Based on (Hollingsworth, 1995, p.

30), Figure 6.4 shows the SESOA basic process definition meta-model in which each

workflow is defined as set of activities and assigned to different roles (cf. Brehm, 2009,

p. 111). Workflow type definition includes the main workflow properties like workflow

process name, process start and termination conditions, version number, security and

other control data. Different set of users can execute different types of workflows.

Roles in this meta-model refers to the name or the organization entity that can execute

the workflow. Moreover, each workflow has its own workflow relevant data (like data

name and path, data types…) that its activities use. Each activity has a name, type, pre-

and post-conditions besides some other scheduling constraints. As mentioned before,

many workflow activities are realized as Web Services and therefore each activity is

assigned to some SESOA subsystems and may have some transition (flow or execution)

conditions. SESOA consumer, database, and semantic Web Service-enabled systems are

the subsystems that deal with workflow activities. Consumer system initiates the pro-

cess of workflow execution and gets back responses from the processing system via the

system’s front end. While executing activities, several interactions with the database

system are required. More specific, the workflow database provides the workflow-

relevant data, the semantic database provides RDF statements of Web Services-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

88

assemblages relations and the core database provides the required information to locate

those Web Services.

Based on Figure 10 in (Hollingsworth, 1995, p. 30)

Fig. 6.4: SESOA Process Definition Meta-model

As mentioned before, different business processes are realized as workflows to be man-

aged by the processing system component. The following part explicates the internal

architecture of this component in relation to the other SESOA components. The main

tasks of the processing system component include modeling and managing process

models in the form of process definition and execution of workflow instances. Figure

6.5 shows the component structure of the processing system. The following sections

clarify this structure by describing its individual components.

The processing system component represents the SESOA’s WfMS. As depicted in Fig-

ure 6.5, it is composed of the workflow engine, workflow manager, workflow editor and

the associated Data Access Object (DAO) subcomponents. Moreover, it is linked with

the SESOA’s front end, semantic Web Service-enabled system, semantic service reposi-

tory, validation, and database system components.

The Workflow Engine subcomponent represents the heart of the processing system. It

provides a runtime environment for executing the system’s workflow instances. The

main characteristics of this subcomponent are derived from the workflow reference

model (Hollingsworth, 1995, p. 20) developed by the Workflow Management Coalition

(WfMC) (see http://www.wfmc.org/).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

89

Fig. 6.5: Processing System Component Structure

In accordance with (Hollingsworth, 1995, p. 22), Table 6.1 summarizes the list of main

functionalities covered by the processing system’s workflow engine. These functionali-

ties include the process definition interpretation, workflow instances controlling, navi-

gation between workflow activities, work items identification, workflow data mainte-

nance, external applications support, participant management, and last but not least the

supervisory actions.

Tab. 6.1: Workflow Engine’s Main Functionalities

Name Description

Process Definition

Interpretation

Interpretation of process models is enabled following the

specification of the used process description language and

the management of workflow control data.

Workflow Instances

Controlling

Includes the control of workflow instances creation, acti-

vation, suspension, termination, etc.

Workflow Activity

Navigation

Indicates the navigation between different workflow ac-

tivities, which may involve sequential or parallel opera-

tions, deadline, scheduling, interpretation of workflow

relevant data, etc.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

90

Work Items

Identification

This functionality deals with the identification of work

items for user attention and provides an interface to sup-

port user interactions.

Workflow Data

Maintenance

Is responsible of workflow control data and workflow rel-

evant data maintenance. This functionality enables the

process of passing workflow relevant data to/from applica-

tions or users.

Support External

Applications

The support of external applications is enabled by provid-

ing an interface to invoke external applications and link

any workflow relevant data.

Participant Management
Provides the sign-on and sign-off management of specific

participants.

Supervisory Actions
This functionality comprises supervisory actions for con-

trol, administration and audit purposes.

As a conclusion, the processing system’s workflow engine is mainly responsible of exe-

cuting set of workflow activities, sub-activities, or instances. Since some of the activi-

ties are realized as Web Services, the workflow engine connects via two interfaces with

both the semantic service repository and the semantic Web Service-based system to

discover the required services within WS-assemblages and locate these services to call

them as part of workflow execution. Therefore, there is an indirect connection between

this subcomponent and the provider system that supplies these services. Finally, the

workflow engine interacts via the DAO interface with the database system that provides

the required basic database functions required for workflow execution.

The Workflow Editor subcomponent is used as a process modeling tool. Following the

SESOA process definition meta-model (see Figure 6.4), the workflow editor creates

workflows out of business processes. It translates company’s business scenarios and

processes into workflows. Any workflow editor can be used to realize this subcompo-

nent’s functionalities (e.g. graphical or textual editors). In other words, the main task of

the workflow editor is to support the workflow developer who is responsible for trans-

lating business processes into the internal representation format used for describing

workflows. In this work, workflows are represented graphically and can be edited to

include hardcoded custom activities on demand. These workflows are then managed by

the workflow manager.

The Workflow Manager administers the already created workflows by the workflow

editor. It organizes the workflows and assigns IDs to them in order to be stored in the

workflow part of the database system via the DAO interface. Moreover, the workflow

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

91

engine can load the workflows based on their IDs to be executed44. Workflow manager

provides set of functions covering workflow administration besides main functions pro-

posed by (Hollingsworth, 1995, p. 45) including user, role, and audit management oper-

ations, resource control operations, process supervisory and process status functions.

Table 6.2 lists the workflow manager’s main functionalities:

Tab. 6.2: Workflow Manager’s List of Functionalities

Name Description

Workflow

Administration

This functionality includes adding, modifying or deleting

workflows from the workflow part in the database system.

User Management

Operations

Includes establishment, deletion, suspension or amendment

of privileges of system’s users or workgroups.

Role Management

Operations

Reflects the management of the participant relationships in-

cluding defining, deletion or amendment of roles besides

setting or unsetting role attributes.

Audit Management

Operations

This is optional functionality to query, print, start, or delete

audit trail or event log.

Resource Control

Operations

Process or activity concurrency levels in this functionality

can be set, unset or modified. Moreover, it interrogates re-

source control data (like counts, thresholds, usage parame-

ters, etc.).

Process Supervisory

Functions

Workflow definition and/or its instances may change their

operational status using this functionality. It manages work-

flow definition different versions and enables the manage-

ment (change, assign attributes or terminate) of all process or

activity instances states that are from a specified type.

Process Status Functions

In enables management of workflow or activity instances

status queries in addition to retrieve details of such instances

using special filtering criteria.

What can be concluded from the abovementioned details is that the workflow manager

enables workflow-related administrative tasks such as adding, updating, and deleting

workflows and their instances. The DAO encapsulates all required operations to access

the workflow part of the SESOA database system.

By realizing the processing system component, standard workflow extensions used for

persisting and tracking the system’s workflow activities are enabled. Custom extensions

as code activities can be also implemented to add operations to the already existing ones

44
 Workflow engine is designed primarily to process just the registered workflows within the system. The

semantic service repository and the provider system support the workflow engine to execute work-

flow’s activities that are realized as Web Services.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

92

in the workflow editor. This brings the benefit of using such extensions in enhancing the

resulting prototype. Moreover, the usage of database transactions across activities is

enabled to ensure that the system’s data are updated consistently.

Persistence of workflow instances or more precisely SQL persistence to a DBMS is

enabled as well. The states of all workflow instances coming from the workflow engine

can be stored in the workflow part of the SESOA database system.

Another type of workflow extensions are the tracking ones that are utilized to track

events as workflow executes. This is helpful to monitor the execution of workflows, to

trigger external processing, and to leave audit trails for future diagnostics. Moreover, a

mechanism to enlist the system’s workflow activities on the same database transaction

to ensure that updates are performed in a consistent manner is supported as well.

Finally, implementing workflows themselves as Web Services is also enabled in this

system. Further technical details are provided in Chapter seven that gives insights to the

SESOA prototypical implementation.

6.1.3.2 Consumer system

The consumer system component represents the system’s end user who can initiate and

execute workflows, and benefit from the business cases implemented on top of SESOA

reference architecture. It implements all the necessary functions that are called by the

end user interfaces and contains the schema definitions and functions that are needed for

discovering and calling Web Services provided by different service providers. This sub-

system is able to generate user screens at runtime. Via the system’s front end, this com-

ponent is linked with the processing system component that deals with the business pro-

cesses that are described in an appropriate XML-based workflow language. This front

end provides the consumer system with an interface that can graphically call all the sys-

tem’s functionalities to the end user. The view that the consumer system has differs

from one user to another based on the rights and privileges the user has. The delivered

SESOA system differs between three types of users namely the end user, the service

provider and the system administrator. Table 6.3 details the main characteristics of these

three types of users:

Tab. 6.3: System User Types

User Type Description

End User

 Can access the public services published in the se-

mantic service repository

 Can benefit from the business cases built on top of

SESOA

 Can initiate and execute public workflows or other

workflows if having proper rights.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

93

Service Provider

 Can publish services in the semantic service reposito-

ry

 Can register services in WS-assemblages

 Can modify service information in the semantic ser-

vice repository

System Administrator

 Has full control on the system and its business cases

 Manages the system users

 Can modify or delete service and/or WS-assemblage

information

 Administers the SESOA database system

 Can modify or delete the semantic annotations of

service relations

Figure 6.6 depicts the internal architecture of the consumer system component. It has

one subcomponent called GUI manager that is connected to the processing system com-

ponent via the system’s front end. Moreover, the consumer system includes all the re-

quired business and administrative functions related to the user’s communications.

The GUI Manager is responsible of generating graphical user interfaces for the afore-

mentioned types of users. There are different types of interfaces that are shown to the

user. These types include dynamic user interfaces without user interactions or user inter-

faces with user interactions and exceptions. The interface generation depends on the

workflow activity that the user deals with. Proper exception handlings with user-

friendly responses are generated back to the user in case of improper user inputs or sys-

tem failures.

The generic user interface is available to all user types with different views depending

on the user type. System administrators have all the graphical elements to manage and

control the overall SESOA prototype. Service providers have restricted views where

they can query all services information, the semantic description of service relations,

and access set of validation tests. System administrators can add, modify, or delete ser-

vice and assemblage information from the semantic service repository and database

system besides having full control on the overall system.

As depicted in Figure 6.6, the consumer system is linked to the processing system via

the system’s front end. User information is retrieved via the DAO interface from the

database system. The users can initiate then the workflows using the GUI available to

them (managed by the GUI manager).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

94

Fig. 6.6: Consumer System Component Structure

The interactions between the SESOA consumer system and the processing system can

be either static or dynamic interactions. Static interactions can be for example calls to

specific Web Services retrieved from the semantic service repository where services’

end points are important to achieve such static call. Dynamic interactions are done au-

tomatically while the user executes some workflow activities that do not require any

user interaction.

6.1.3.3 Provider system

Most of the SESOA business process functionalities are realized using Web Services

technology. These services are supplied by different service providers. Therefore, the

provider system in SESOA represents all the internal and external service providers that

are supplying Web Services to the system. It deals with HTTP45 incoming and outgoing

user's requests and contains functions required for providing Web Services. In addition,

it has two interfaces with the Web Service directory and the semantic service directory

to allow service publishing. The first interface with the external service directory is di-

rect and any XML-based registry like UDDI can be used. It has also interfaces with the

SESOA semantic service directory, the validation system and the semantic Web Ser-

vice-based system or more precisely its assemblage unit. The interface between the pro-

vider system and validation system is to optionally validate the supplied Web Services.

Web Services are registered in WS-assemblages and their relations are then annotated

using RDF statements to be published in the semantic service directory.

45
 HTTP stands for Hypertext Transfer Protocol (Fielding et al., 1999).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

95

Figure 6.7 illustrates the internal component architecture of the provider system. It dif-

ferentiates between internal and external service providers. On the one hand, the internal

service provider delivers business-specific and foundation services. These internal ser-

vices are hosted on a Web Server and connected to SESOA database system via DAO

interface. On the other hand, the SESOA reference architecture enables external service

providers to supply their services to the system. These providers are also hosted by in-

dividual Web Servers and have access to their own databases via DAO interfaces. Both

types of service providers publish their services at the system’s semantic service reposi-

tory and other traditional Web Service registries.

Fig. 6.7: Provider System Component Structure

The process of adding Web Services to the system starts by creating a Web Service,

registering it in WS-assemblage to be later published at the semantic service repository.

6.1.3.4 Web Service Directory

This section illustrates the internal structure of the Web Service directory component.

This component is part of the typical service-oriented paradigm and it is not part of the

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

96

SESOA system, rather it is together with the provider system considered as external

components. Web Service directory represents the yellow pages where advertised Web

Services coming from different service providers can be published and then discovered

by service consumers. Upon service publishing, service consumers can discover the

Web Service directory component to consume the services that fulfill their needs. Fig-

ure 6.8 shows the internal architecture of the Web Service directory component. It is

hosted by a Web server that has a unique address. This address is known by all the ser-

vice providers (SPs) that are linked to the “look-up/registry” Web Service directory’s

internal component. All service information can be located at this component. Service

consumers can be bound to the services supplied by service providers after discovering

them in this component.

Fig. 6.8: Web Service Directory Component Structure

Since the system is based on different business processes and services using workflows

and Web Services, the processing system contacts the look-up/registry subcomponent to

fetch list of services needed to execute workflows. Moreover, all information the Web

Services advertised in the Web Service directory component are stored in the SESOA

database system via DAO interface. Finally, the Web Service composition editor can

discover the registry subcomponent to determine at design time what are the required

functionalities offered by the existing Web Services needed for composing new Web

Services. A service that is registered in the Web Service directory can be used as input

for a composition of new services. Figures 6.9 and 6.10 show the sequential composi-

tion and the parallel composition of Web Services respectively.

Fig. 6.9: Sequential Composition of Services

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

97

In the sequential Web Service composition, the output of a Web Service can be used as

input for the next one. In the above example of Figure 6.9, the output of Web Service 1

is used as input for Web Service 2 and so forth until the sequence of services ends.

Fig. 6.10: Parallel Composition of Services

In contrast to the sequential composition, in the parallel composition of Web Services

outputs of several services can be used as input for one or more subsequent service as

depicted in Figure 6.10.

Composing Web Services requires making clear distinction between service orchestra-

tion and service choreography. While service orchestration describes the organization of

service interactions including the business logic and the interactions order, service cho-

reography describes the sequence of messages between participants focusing more on

the public exchange of messages and conversational state.

Service Composition Architectural Styles: This section lists some common architectur-

al styles used for service composition as they are implemented in SOA (Rosen et al.,

2008, pp. 279–292). The two styles that are commonly investigated are firstly the hier-

archical and conversational composition and secondly the conduct-based and peer-to-

peer composition.

Hierarchical and Conversational Composition: In the hierarchical service composition,

the composition implementation is entirely hidden from service consumers. It is seemed

to be more as a “black box”. This composition style is used to implement solutions that

do not have human or any other interactions from the solution invoker. As for the con-

versational composition, the implementation is still hidden from the consumer but se-

lected execution results when the consumer needs to have control on the execution are

exposed. This composition approach is often used when the path of composition execu-

tion cannot be determined without additional inputs from the service consumer based on

intermediate execution results.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

98

Conductor-based and peer-to-peer composition: In the conductor-based composition

approach, there is a conductor interacts with the service consumer. The whole execution

control of the different services needed in this composition style is managed by the con-

ductor. As for the peer-to-peer composition approach, every service involved in the

composition has a specific orchestration responsibility in the overall composition pro-

cess. Relying on the individual rules of each service in the composition process, a cen-

tral coordinator is not required.

There are common approaches used for the implementation of the abovementioned ser-

vice composition styles. These approaches include programmatic composition that is

taking usage of statically writing and compiling code in general-purpose languages like

C#, Java, etc. Other approaches are event-based, Service Composition Architecture

(SCA), and orchestration engine-based compositions.

6.1.3.5 Semantic Web Service-based System

The semantic Web Service-based system represents the SESOA component in which

the semantic annotation management of Web Service relations is the main task. This

subsystem handles Web Service requests required to execute workflow activities com-

ing from the processing system component (the execution of workflow activities is initi-

ated by the consumer system via the SESOA’s front end). This component coordinates

the semantic annotation of Web Services relations and publishes these annotations in the

semantic service repository. The responses to the processing system with the services’

availability and information are managed by this component as well. This is done using

the assemblage unit subcomponent that has an interface with the processing system

component to assist it in executing workflows by responding with services’ endpoints. It

has another interface with the semantic service repository to publish the semantic anno-

tations. Moreover, assemblages and Web Services information are stored in system’s

database via the DAO interface between the assemblage unit and the SESOA database

system. The internal architecture of this component is depicted in Figure 6.11.

The management of Web Service registration as assemblages’ members within the as-

semblage unit subcomponent is done with the help of two operators namely the mem-

bership operator and the assemblage operator. Via the validation system, each service

provider sends a request to register his services within a desirable assemblage to the

membership operator. This operator updates the assemblage list that contains a list of all

assemblages with the registered services coming from this service provider. The mem-

bership operator forwards then the register request to the assemblage operator that al-

lows the service to join the members list that contains all the assemblage-members (the

registered services) information. Upon successful registration, the membership operator

updates the description of the assemblage in the assemblage unit and the new infor-

mation is made available in the semantic service repository. More information about the

service registration is provided in Section 6.2.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

99

Fig. 6.11: Semantic Web Service-based System Component Structure

Finally, the membership operator has an interface with the rule database. This database

actually contains all the required rules that enable this operator to react to potential

changes that might arise in the definitions of assemblages.

6.1.3.6 Validation System

SESOA’s validation system component provides set of validation tests to the Web Ser-

vices supplied by different service providers. It is liable to adapt external Web Services

provided by the provider system to enrich them with the correct semantic annotation.

Four subcomponents within this system realize its functionality. The internal architec-

ture of the validation system is depicted in Figure 6.12.

The subcomponents in the validation system are the service test unit, the announcement

unit, the semantic annotation provider and the validation repository. The service test

unit subcomponent provides an interface to the provider system for testing the adapted

Web Services at quantitative and qualitative levels. Quantitative tests are compatible

with the classical availability tests like checking the maximum load, response times or

availability of a specific Web Service. Qualitative tests are validating the Web Service’s

compliance. If a Web Service passes the validation test, a service identifier is given to

the annotation provider unit to start the process of registering the service as member in

one or more assemblages and to annotate their relations with proper RDF statements.

This annotation process can be done optionally either before or after validating the Web

Service using the annotation provider unit. Unlike other approaches, annotations pro-

vided by Web Services themselves are ignored and the system deals only with the anno-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

100

tations made by the annotation provider unit subcomponent. The main benefit behind

this is to enable Web Services reusability within the system.

Fig. 6.12: Validation System Component Structure

Web Service registration in assemblages in form of workflow execution is enabled us-

ing the interface between the annotation provider unit and the SESOA processing sys-

tem component. Ranking unit subcomponent is used to provide automatic ranking of

provider system’s Web Services based on secure rating machine-to-machine evaluation

protocol. This protocol is based on two criteria: the response time and the availability of

Web Services.

Via the interface with the provider system, the announcement unit subcomponent ex-

poses new functionalities (that are not available in the system) and implementation re-

quests to the service providers. This opens the road to SMEs and even individuals to

implement such functionalities and make profit out of that.

Finally, testing RDF statements that annotate the relations between Web Services and

assemblages can be achieved using the semantic validator that applies RDF validation

using the RDF validation service provided by the World Wide Web Consortium (see

http://www.w3.org/RDF/Validator/).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

101

6.1.3.7 Semantic Service Repository

The SESOA semantic service repository is the component responsible for publishing the

lightweight semantic Web Services annotations to make them available to both service

providers and consumers. Unlike traditional Web Service directories, what is stored in

the semantic service repository is the semantic representation in form of RDF state-

ments for the Web Services’ relations. The semanticized relations are advertised in this

repository because typical UDDI registries do not handle the semantic representations

done by the annotation provider unit within the validation system.

Fig. 6.13: Semantic Service Repository Component Structure

As illustrated in Figure 6.13 above, the RDF store subcomponent within the semantic

service repository is responsible of representing the semantic RDF statements of Web

Services-assemblages relations and exposes them in RDF-readable format.

While executing workflows in the processing system component, some activities need

to be executed in form of calling Web Services published at the semantic service reposi-

tory. The semantic Web Service-based system (the assemblage unit subcomponent) gets

the Web Service call requests, look up in the RDF store to find the service information

and responds back to the processing system. Furthermore, the provider system can allo-

cate in the RDF store, via the validation system, the assemblages in which its Web Ser-

vices are going to be registered. New Web Services that are registered in assemblages

are also published in this repository.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

102

6.1.3.8 Database System

This section describes some of the SESOA database system’s interfaces as illustrated in

Figure 6.14. The main focus in this section is given to the semantic representation of

Web Services and assemblages relations.

Fig. 6.14: Interfaces of the SESOA Database System

As shown in the previous figure, the database system offers several interfaces to the

assemblage unit subcomponent of the semantic Web Service-based component. In this

latter, three main entities are used to interact with the database system. These entities

are the assemblage, the RDF relation and the service. The main functions that are im-

plemented at the database system’s interface are listed and described in Table 6.4. It

includes just some functions that are used to create the semantic relations as RDF state-

ments between assemblages and Web Services and does not include all of the database

system’s functions.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

103

Tab. 6.4: Function Set of Database System - Assemblage Unit Interface

Function Name Description

AddAssemblageEntry
Only system administrators can add as-

semblages to the system

AddServiceEntry

Service providers can add their services’

information to the system and register

them within suitable assemblages

AddRDFRelationEntry

Upon service registration, automatic se-

mantic RDF-based relation is created be-

tween the Web Service and the assemblage

in which it has been registered

DeleteAssemblageEntry

Only system administrators can delete

assemblages from the system taking into

account that deleting assemblage includes

the deletion of all the registered services

within it

DeleteServiceEntry
Delete service information is performed by

system administrators

DeleteRDFRelationEntry
Relations are deleted automatically when

services or assemblages are deleted

SelectAssemblageEntries Query for a specific assemblage

SelectServiceEntries Query for a specific Web Service

SelectRDFRelationEntries
Query for a specific relation between as-

semblage and Web Service

Similar functions are available at the assemblage unit to achieve the semantic annota-

tion. However, what have been explained so far includes just the highlights to the im-

portant functions required to apply the semantic annotation at the SESOA database sys-

tem. In the following parts of this section, some details are given regarding user man-

agement with user rights together with the main data model.

User Management

As mentioned before, the whole management-related data of system users are stored in

the SESOA database system. Based on that, an appropriate component for managing the

users with their roles and rights constitutes an integral component of the system proto-

type. User management supports the system administrator to create, modify and main-

tain user accounts and it enables also the allocation of rights for selected users and

groups (roles). Each registered user in the system has to be assigned with at least one

role or user group. Group permissions can be inherited by individual registered users.

When a new service is registered within the system, it will be assigned with the suitable

rights.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

104

Data Model

In the following the terms user, workflow, activity, service, assemblage are going to be

formally defined. Any user in this system has a user ID, name, password, email, and

other optional data. Proper authorization method and roles to be assigned to each user

have to be defined as well. To summarize that, the user is defined as follows:

Workflows in this system are also defined in a way in which each workflow has work-

flow ID, name, description, hierarchy, and status. The formal definition of system’s

workflow is defined as follows:

Hierarchy here represents [0...n] activities that constitute the workflow with links be-

tween them. As for a workflow status, it can be running, sleeping, bookmarked, or

stopped and is defined as follows:

The workflow status guarantees the robustness of the system and enhances its respon-

siveness while users interact with the system. As mentioned above, each workflow con-

tains activities that form transient members, depend on user interactions, and can be

realized as Web Services. A workflow activity is defined as follows:

Based on activity definition, the Web Service definition can be excluded. Every Web

Service can be registered as a member in one or more specific assemblages [1…n].

Generally, each Web Service has an ID, name, description, assemblage ID, and end-

point. The data model gives the possibility that authorization can be applied on the ser-

vice level. Service Definition is described as follows:

Service description includes detailed description of the functionality besides detailed

description of the formal parameters and return values (including error cases) of this

service. Service grounding whether to use SOAP-based or RESTful-based grounding

approaches is determined here as well. Eventually, service endpoint is set by the service

provider to locate the service information (service contract) based on specific URL.

Finally, the assemblages in which the Web Services are grouped are defined where each

assemblage has assemblage an ID, name, description, and domain. WS-assemblage is

defined as follows:

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

105

Assemblage’s domain represents the wide business domain in which broad set of ser-

vices can be registered. This makes it easier for the service providers to decide in which

assemblage their services have to be registered.

The main focus in this section was given to the organization of Web Services and as-

semblages and how the data model handles them. User management was also discussed

in this section. Other data that are managed and stored in the SESOA database system

are the business case data together with the entities resulting from the assemblages and

Web Service RDF statements.

The following sections of this chapter explain the Web Service registration scenario and

give some details on how the services are annotated using semantic RDF statements.

Furthermore, service validation and evaluation are described as well.

6.2 Web Services Registration

This section explains the scenario in which Web Services are registered within assem-

blages. The whole registration scenario is depicted in Figure 6.15. System administrator

creates assemblages that cover different business domains within the enterprise to which

the system is going to be applied. These assemblages are published in the semantic ser-

vice repository and made available to the service providers via the validation system’s

interface.

Service provider can search this repository via the validation system interface to find the

suitable assemblage(s) that fulfill the provider’s business needs. Service providers regis-

ter then the Web Services in one or more desired WS-assemblages after passing an op-

tional validation process. In the case that there is no assemblage matches what a service

provider seeks a request to the system administrator via the assemblage unit interface

within the semantic Web-Service-based system will be created. Upon proofing this re-

quest, the system administrator creates a new assemblage and advertises it in the seman-

tic service repository to be made available to all service providers via the validation

system’s interface.

In the case that the service provider finds the desired WS-assemblage that suits his in-

terests and after passing an optional validation process, a registration request is for-

warded to a membership operator. The membership operator is responsible of the fol-

lowing tasks:

 It negotiates another operator called the assemblage operator to complete the

registration process.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

106

 It updates WS-assemblages list that includes all the assemblages in which the

Web Services of this specific service provider are registered.

 It has a link to the rule database that contains set of rules enabling the member-

ship operator to react to any changes might be issued by the semantic Web-

Service-based system (more specifically, the assemblage unit).

Fig. 6.15: Web Service Registration Scenario

As for the assemblage operator, it has the following responsibilities:

 It receives the registration request from the membership operator to finalize the

Web Service registration within the desired assemblage.

 It updates the assemblage’s member list that contains all the already registered

Web Services.

 It updates the WS-assemblage’s description to be re-published in the semantic

service repository.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

107

6.3 Web Service Validation

One goal behind the SESOA reference architecture is to annotate information with se-

mantic meta-data. From semantic annotation point of view and in comparison with other

annotation concepts like the ones in (Handschuh & Staab, 2003), the annotation used in

this work is not a part of the Web Service itself. Instead of this, the annotation is done at

the relation level between the services and the assemblages. An optional requirement in

this work is to validate the Web Services based on specific validation criteria. These

criteria were focusing mainly on the functional level of services including some data

types (like Integer, String…) that the services use to realize their functionalities. Differ-

ent sets of validation tests were built following specific type of Web Service compli-

ance. Based on (Mahmoud, von der Dovenmühle, & Marx Gómez, 2009), the Web Ser-

vices compliance can be classified into four main different types:

 Exact compliance in which a Web Service is able to comply with the predefined

requirements (Web Service properties)

 Over-exact compliance in which a Web Service has a higher compliance than

expected

 Partial compliance where a Web Service is able to comply with the predefined

requirements fractionally

 Improper compliance where a Web Service fails in complying with the prede-

fined requirements.

An exact compliance is the ideal situation in which a Web Service fulfills exactly all the

expectations. An over-exact compliance happens when the Web Service provides a

higher level of quality more than what expected by the service consumer.

The partial compliance of a Web Service happens when the requirements can be divided

into logical parts. If the Web Service complies with a part, then it can be used to handle

the information in collaboration with another Web Service. Eventually, failure compli-

ance happens when a Web Service does not comply at all with the request or even with

parts of that request.

The following example clarifies ideas behind Web Service compliance types: suppose a

customer data set that has to be validated and stored. It contains his first name, last

name, email address, and birth date. The validation of the email address and the birth

date can be done partially and independently from storing the customer’s information.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

108

The following Web Services: WS1 and WS2 are partially complaint with the request

where WS1 complies with the customer’s email address and WS2 complies with his

birth date. They are used to handle the validation. Another Web Service WS3 is an exact

match since it complies with all of the customer’s information.

From a provider’s perspective, this gives a possibility to integrate low capacity Web

Services into ambitious requests by making crossing among the possible requests. How-

ever, the challenge in such context is to analyze the structure of the information not only

by humans, rather by humans and machines. To do so, the person object itself has to be

broken down into properties.

Typically, literals are used to store information like the name of a person and in this

way, a first name can be everything described as an array of characters. However, in the

real world this is not totally true because there are small quantities of character combi-

nations that are valid to be first names. Considering this, the correct data type for the

property first name would be an enumeration or an object that contains a table of valid

entries. The person’s email address is not a random literal too and the previous example

showed that the design of the object has to start at the level of the properties not the lev-

el of entities.

6.4 Web Service Evaluation

This section illustrates how the secure Web Service evaluation is applied within the

SESOA prototype. This evaluation is based on a machine-to-machine security protocol.

This security protocol has been developed in the thesis of (Hasan, 2010) to evaluate

Web Services in SOA-based systems. The main aspects of this protocol are derived

from the one designed by (Brehm & Marx Gómez, 2010) and adapted to meet the re-

quirements of the new SESOA service reputation. The evaluation process must guaran-

tee that the service provider can’t make any manipulation to the reputation value of any

of its Web Service.

6.4.1 Security Protocol for the Evaluation of Web Services

Since different criteria are taken into account in the process of calculating the reputation

value of an invoked Web Service, this security protocol uses the Multi-Attribute Utility

Theory (MAUT) algorithm to determine this value (Schäfer, 2001). This section de-

scribes this protocol with its main participants. Moreover, it determines which security

algorithm is selected to be applied within this protocol.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

109

Three participants are involved in this security protocol. These participants are the ser-

vice provider, service consumer and the Evaluation Processing Authority (EPA). The

service provider makes the service URL and the EPA’s public key available to the ser-

vice consumer. The consumer measures the response time value of the called Web Ser-

vice and sends it to the EPA. This value is sent only if the Web Services is available;

otherwise the service consumer notifies the EPA that the Web Service is not available.

This is also applied to the availability of the called Web Service. These entries (the ser-

vice’s response time and availability) are then encrypted using the EPA’s public key.

The EPA represents a trusted third entity for both service consumer and provider. It

receives the encrypted entries that are sent by different service consumers and then de-

crypts these entries using its own private key. Eventually, using the decrypted values,

the EPA calculates the final reputation value of the corresponding Web Service using

the MAUT algorithm.

This security protocol makes use of many security algorithms that are necessary to ful-

fill the security objectives. These algorithms are briefly presented in Table 6.5.

Tab. 6.5: The Security Algorithms used in this Work

Algorithm Name Description Usage in This Work

AES46 A symmetric encryption algorithm XML Encryption

RSA47 An asymmetric encryption algorithm
XML encryption

XML digital signature

SHA-148 A cryptographic hash algorithm XML digital signature

The AES algorithm is used in this security protocol because compared with Data En-

cryption Standard (DES) and Triple-DES algorithms, it is accorded faster and more se-

cure (Pachghare, 2009). RSA is used in this protocol as an asymmetric encryption algo-

rithm. Moreover, SHA-1 is used in this work to calculate the hash values because re-

cently this algorithm is widely used as the standard hash algorithm (Stallings, 2010).

The main concept of this security protocol is divided into three different phases. In the

first phase, the inputs are calculated to be sent to the EPA. During the invocation of a

Web Service, the consumer calculates the values (the inputs like response time) that are

required to determine the evaluation value in the EPA. The calculation of the evaluation

value is done at the EPA using different evaluation (reputation) criteria. Examples of

46
 Advanced Encryption Standard (AES) was developed in 2000 by Joan Daemen and Vincent Rijmen

(Daemen & Rijmen, 2002).
47

 RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who defined this algorithm firstly in

1978. According to (Kaliski Jr & Redwood City, 1991), RSA is part of the Public-Key Cryptography

Standards (PKCS).
48

 SHA-1 stands for Secure Hash Algorithm (Eastlake & Jones, 2001).

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

110

these criteria are the Web Service’s response time, availability, and reliability. Howev-

er, this security protocol considers only the response time and the availability as evalua-

tion criteria.

Based on that, the service consumer calculates the response time as an evaluation crite-

rion. The response time is measured by determining the difference between the time

when the request was sent and the time in which the response has been received. The

response () time is defined as follows:

Where () is the time of SOAP-request and () is the time of SOAP-

response. Using an encrypted SOAP message, the service consumer sends then the

value as a parameter to the EPA in the case that the Web Service is available. If calling

the Web Service was not successful (with failures like “timeout” or “HTTP status code

(404) not found”), the service consumer assigns zero (0) to the value referring that

the Web Service was not available and sends this value to the EPA. To sum up the first

phase activities, the service consumer:

 Assigns the zero value to the response time:

 Calculate the of the invoked Web Service

 Generates a symmetric key k

 Conducts XML encryption using k and by encrypting an XML el-

ement in the SOAP message that represents the response time. This results in an

encrypted SOAP message that contains the encrypted response time.

 Sends this encrypted SOAP message to the EPA

While calculating the response time, one of two values is sent:

 The Web Service is available or

 The Web Service is not available.

In the second phase, The EPA receives the inputs calculated in the first phase as en-

crypted SOAP messages. It uses its private key to decrypt the messages. Therefore, the

EPA firstly decrypts the symmetric key that was used by the Web Service consumer to

encrypt the XML element using his private key. Then the EPA uses this symmetric key

to decrypt the encrypted XML element.

Upon having the decrypted response time of the invoked Web Service, the EPA calcu-

lates the reputation value for the Web Service based on the response time and availabil-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

111

ity as evaluation criteria. Table 6.6 presents the evaluation criteria considered in the

security protocol used in this work.

Tab. 6.6: The Evaluation Criteria

Criteria Parameter Evaluation Value

Response Time 1 to 5

Availability 1 to 5

On the one hand, the EPA evaluate the response time if using a scale of 1 to 5

that represents excellent, very good, good, satisfactory, and unsatisfactory respectively.

The EPA increases (by one) the number of successful requests and the total number of

requests for the corresponding invoked Web Service. Then the Web Service availability

 as defined by (Zeginis & Plexousakis, 2010) is measured by the EPA as follows:

On the other hand and if the the EPA sets the worst rating (5) for the evaluation

value of the corresponding Web Service’s response time. The EPA then increases only

the total number of requests of the corresponding Web Services by 1. Subsequently, the

availability of Web Services is calculated as mentioned in the previous equation.

As a result, the EPA has the rating for the response time. What applies for the response

time is applied one-to-one to the availability using the same 1 to 5 scale where 1 is the

best availability and 5 is the worst availability.

As listed in Table 6.7 and upon having the evaluation value for each of the evaluation

criteria (the response time and the availability), the EPA can calculate the evaluation

value (score) for the invoked Web Service using the MAUT algorithm.

Tab. 6.7: Calculation of the Evaluation Criteria

Availability

 5 4 3 2 1

Response Time

 in milliseconds

 1 2 3 4 5

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

112

Similar to the formula written by (Schäfer, 2001), the evaluation value of a Web Ser-

vice’s single call is defined as follows:

 ∑

Where:

 is the evaluation of a Web Service’s single call

 is the evaluation of the criterion

 is the weight assigned to the criterion

 is the total number of evaluation criteria

Assigning weights to the evaluation criteria is up to the service providers and may fol-

lows specific business needs. However, whatever method used to assign weights to the

evaluation criteria, the weights have to follow the following condition:

∑

Based on that the overall evaluation value of the corresponding Web Service is:

Where: represents the total number of individual evaluations.

The procedure for determining the evaluation value of a Web Service and all the steps

used in this phase are summarized in the Table 6.8.

Tab. 6.8: The Calculation of a Web Service’s Evaluation Value in the EPA

Step Number Step Description Action

1 Set the evaluation criteria

2 Evaluate each evaluation criteria

3 Weight each evaluation criteria
 ∑

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

113

4 The EPA calculates the evaluation

value for a single call ∑

5 The EPA Calculates the evaluation

value of a Web Service using the

individual values of the single calls

The third phase in this security protocol is updating the evaluation value of the invoked

Web Service in the semantic service repository. The sending of this value is done using

a SOAP message digitally signed by the EPA. To illustrate this phase, the EPA:

 Calculates a hash value using the algorithm SHA-1

 Encrypts this hash value using its private key ()

 Identifies the XML Signature element

 Adds this signature to the SOAP message

 Sends the signed SOAP message to the semantic service repository

 The semantic service repository verified this SOAP message by using SHA-1

algorithm and the EPA’s public key ()

 If the SOAP message is valid, the semantic service repository changes the eval-

uation value for the corresponding Web Service.

As a result, the evaluation value for each Web Service is published in the semantic ser-

vice repository and can be controlled only by the EPA. Therefore, this protocol guaran-

tees that service providers can’t manipulate the evaluation values of their own Web Ser-

vice at any rate. The application of this security protocol with its three phases to the

SESOA system is explained in the following section

6.4.2 Web Service Evaluation within SEAOA

As mentioned in Section 5.3.2.7, the reputation is managed by the EPA. The new archi-

tecture including EPA is presented below in Figure 6.16. The first four steps belong to

the conventional SOA where the service provider publishes a description for each Web

Service in the semantic service repository.

This description contains the required information to call the Web Service. The Web

Service consumer searches the repository for a desired Web Service. Upon finding the

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

114

Web Service with the desired functionality, he/she can call this service directly from the

service provider.

Fig. 6.16: Service Reputation in SESOA

After calling a Web Service, the consumer machine calculates the response time of this

Web Service (step 5), and sends the calculated response time as an input to the EPA

(step 6). The same applies to the availability criterion. EPA calculates then the reputa-

tion of the invoked Web Services based on these two criteria. After calculating this rep-

utation instance, the EPA calculates the reputation value of the called Web Services as

an average of all its individual reputation instances (step 7). The last step is to update

the reputation value of the corresponding Web Service in the semantic service reposito-

ry. The Steps (5-8) are based on the security protocol for the evaluation of Web Services

(see Section 6.4.1).

6.5 Main System Interactions

This section gives a holistic overview of the system’s interactions and how the interac-

tions between its components are initiated using two sequence diagrams. Whereas the

first sequence diagram shows the interactions among the SESOA components, the sec-

ond one depicts the management of Web Services semantic annotation using RDF

statements.

Figure 6.17 explicates how the main business logic is carried out within SESOA. It

shows the message exchange between the main components in the reference architec-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

115

ture. The communication flow starts from the workflow engine subcomponent of the

processing system. The reason behind that is that the business logic is represented as

business processes and these processes are realized using workflows that are executed

using the workflow engine.

Fig. 6.17: Main SESOA Component Interactions

The system’s workflows have many activities that are realized using Web Services and

the workflow engine needs to get the location information about these services in order

to invoke them. For this purpose, the workflow engine sends a request to semantic ser-

vice repository to locate the required services. More precisely, the look-up/registry sub-

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

116

component receives this request and checks whether the required service(s) information

exists or not.

If the service is available, the request is forwarded to the assemblage unit of the seman-

tic Web-Service-based system in order to check the RDF statement to know in which

assemblage the service(s) located and to extract the endpoint information. The assem-

blage unit creates then an object instance request to be sent to the workflow engine to

initiate the process of calling the service(s). At this point, the workflow engine sends a

processing request to the service test unit within the validation system that in turn calls

the external Web Service and gets the response from it. Eventually, the service test unit

generates processing response back to the workflow engine that in turn continues exe-

cuting the running workflow. In the case that the requested functionality is not fulfilled

or offered by any existing service, the workflow engine gets this response from the se-

mantic service repository and handles it with proper response by having a compensation

activity or even by stopping the workflow execution. In parallel, the workflow engine

forwards a publish request of the absent functionality to the announcement unit within

the validation system. This request is then published by the announcement unit and

made available to the different service providers connected to the system to potentially

offer such functionality as a Web Service. As mentioned before, this opens the way to

the SMEs and even the individuals to make profit out of the system by offering new

services on demand.

The second general sequence diagram that complements the previously described one is

the enrichment of relations between Web Services and assemblages with semantic anno-

tations. Figure 6.18 depicts the process of adding semantic annotations to service rela-

tions illustrated as UML sequence diagram. When a service provider wants to register a

Web Service in an assemblage, an automatic creation of RDF statements composed of

assemblage, relationship, and Web Service entities is done. This is shown in the below

figure and the process starts by checking the assemblage unit to see whether such rela-

tion does not already exist to prevent unnecessary duplication. Another checking at the

semantic service repository component takes place to see whether the target assemblage

exists and valid. These both functions return Boolean values and can be true or false.

If the relation exists in the assemblage unit or the assemblage in which the Web Service

is going to registered does not exist, this means that the “addSemanticRelation” function

will not be executed. Otherwise and if the relation does not exist and the assemblage

exist, a new semantic relation between the Web Service and the assemblage is added to

the assemblage unit. This relation is mainly RDF statement in which the subject is the

assemblage, the predicate is the relationship (e.g. “hasMember”), and eventually the

object is the actual Web Service that is already registered within the assemblage. The

last step in this sequence diagram is storing the relation’s different entities in the SE-

SOA database system

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

117

Fig. 6.18: Adding Semantic Relation

Some RDF statements examples are listed as triples in Table 6.949 that reflects the se-

mantic data model. Different assemblages like logistics, payment or shipping are se-

mantically linked via the “hasMember” relationship with Web Services like for example

“getOpenPurchases”, “sendInvoice”, and “createShipment” respectively. Service pro-

viders firstly registers these services within the aforementioned assemblages and the

automatic semantic relations are then generated as listed in the below table.

Tab. 6.9: Examples of Data Model Triples

Number Subject Predicate Object

1 Logistics hasMember getOpenPurchases

2 Payment hasMember sendInvoice

3 Shipping hasMember createShipment

The previous examples are excluded from the business case that is going to be explained

more in details in the following section.

6.6 Business Case Architecture

Following the requirements defined in Section 5.3.3, the selling process (the business

case used in this work) is divided into several components. This division helps in facili-

49
 In this work:

- All entity names of subjects are prefixed with: “http://asbl.wi-ol.de/sesoa/assemblage/”

- All entity names of predicates are prefixed with: “http://asbl.wi-ol.de/sesoa/”

- All entity name of objects are prefixed with: “http://asbl.wi-ol.de/sesoa/services/”

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

118

tating the overall implementation procedure by assigning individual tasks for each com-

ponent following the main SESOA reference architecture.

Source: Figure 3 in (Mahmoud, Petersen, et al., 2012, p. 189)

Fig. 6.19: Selling Process Component Architecture

Figure 6.19 depicts the component architecture of the selling business process in com-

pliance with SESOA reference architecture. The components of the selling business

process are the website, shop, coordination, shop database and external Web Services

supplied by the provider system. The Website component represents the front end of a

fictional online shop that sells watches. It is responsible for the interaction with the end

customer. All information displayed on the website (e.g. product information or cus-

tomer information) are stored in a database, which is controlled by the shop component.

This latter is fully realized as a set of Web Services which read or write data into the

shop database. For example, if the front end wants to display product information or

create a new customer, it calls one of the shop’s Web Services to write the data into the

database or to send the requested information back to the front end.

Upon creating a new order by the customer, the front end calls another Web Service that

sends all information about this newly created order to the coordination component that

uses a workflow engine to execute the selling business process. External payment and

shipment services supplied by different service providers are used by the coordinator

component to complete the selling business process.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

119

All the services coming from external service providers have to comply with the SE-

SOA requirements (see Section 5.3). Optional validation may be applied to these ser-

vices before registering them within the SESOA’s assemblage unit in one or more de-

sired assemblages (like logistics, payment, shipment…). These services are then pub-

lished in the semantic service repository to be discovered, selected and invoked by the

selling business process or any other process. Insights to the implementation of this

business process are presented in the next chapter.

6.7 Summary of System Outcomes

After explaining the main requirements of the SESOA reference architecture together

with the internal architecture of its components, this section lists the main outcomes

behind them both. The main added values can be summarized as follows:

Lightweight Semantic-enabled Solution: on the one hand, the problems of traditional

SOA solutions can be enhanced by using the proposed reference architecture presented

in this work. This is done by creating RDF statements of Web Services relations and

enabling semantic query language to have better matchmaking of service requests. On

the other hand, applying lightweight semantic annotation in this reference architecture

reduces the overall complexity in the existing heavy-weighted semantic SOA frame-

works.

Process Orientation: SESOA reference architecture is designed to provide a process-

oriented solution based mainly on business processes and Web Services. This design

aspect was taken into consideration because most enterprises nowadays are fully relying

on several business processes. Implementing these processes using workflows and Web

Services will ease the integration of different application to execute these processes side

by side with enabling their reusability among departments or even enterprises.

Reusability: The proposed reference architecture resulted from this work offers the high

ability of reusing the functionality since each component in this architecture can be con-

sidered as a standalone system and can be reused in other systems. This makes the pro-

posed architecture generic enough to be applied in many business domains as a whole or

enables some of its components to be reused in many applications. Some highlights to

apply the SESOA reference architecture or some of its components to some business

domains are presented in Chapter eight.

Open the Market to SMEs: Using this reference architecture is not restricted to the mo-

nopolized enterprises in service market. Each company regardless of its size can register

its services in the system’s assemblages to be offered to the customers. Furthermore,

several business processes and scenarios can take benefit of this architecture to be real-

ized in any company. The simplified marketing of the system’s subcomponents helps in

opening the market to include SMEs and improves the time-to-market factor.

Chapter 6 - Reference Architecture of Semantic-enabled Enterprise SOA

120

Registration of Web Services in Assemblages: All Web Services supplied by different

service providers are registered in the system’s assemblages in order to organize the

semantic annotation of service relations. This provides another level of service classifi-

cation together with the traditional one offered in the service directories. Both tradition-

al requests and semantic-enabled requests can be initiated in the system. As a result, this

enhances the overall Web Service searching mechanism and improves the response time

of the discovery phase activities.

Service Validation and Evaluation: Other important outcomes from this reference archi-

tecture are the validation and evaluation of Web Services. Service validation is optional.

It is offered to service providers to validate mainly the data types used to implement

their services. Service evaluation is done automatically at the consumer side based on

secure service ranking protocol. This protocol is machine-to-machine protocol and takes

two evaluation criteria namely the response time and the availability of the correspond-

ing invoked Web Service. To prevent service providers from manipulating the value of

their services’ evaluations, all the values are controlled by a third party called EPA that

calculates the evaluation values and updates them in the system’s semantic service re-

pository.

Advertisement of New Web Services: In the case that a desired functionality requested

by a service consumer is absent and not offered in the system, advertisements for a new

Web Service that implements such functionality is forwarded via the SESOA validation

system’s interface to the service providers. This enhances the point of opening the mar-

ket to include SMEs or even individuals to make profit out of it.

To conclude, this chapter illustrated the main concepts of the SESOA reference archi-

tecture and gave an in-depth explanation for the internal architecture of its component.

Web Service registration scenario with the semantic annotation of service relations were

explicated. System interactions together with service validation and evaluation were

presented as well. Finally, system outcomes were listed at the end of this chapter. Im-

plementation aspects and highlights of the ideas and concepts presented in this chapter

are presented in Chapter seven.

Chapter 7 - Prototypical Implementation and Evaluation

121

7 Prototypical Implementation and Evaluation

The fourth phase of the research methodology described in Chapter four is the demon-

stration phase. It demonstrates the characteristics of the system by producing -as a proof

of concept- the prototype that demonstrates the SESOA reference architecture together

with implementation of an accompanying business case. Based on the conceptual speci-

fications of Chapters five and six, a concrete SESOA system is shaped and developed.

This system contains a selected set of application elements and dynamic components

(Web Services and business processes). Following the demonstration phase in the

adopted research process, this chapter is devoted to describe the main characteristics of

the final SESOA prototype together with the description of the accompanying business

case (the selling business process) that have been implemented on top of it. Moreover,

the evaluation aspects of the prototypical implementations in different business domains

are going to be listed here as well.

This chapter starts with an overview of the selected techniques used to produce the pro-

totype together with the architecture of the prototype itself. Based on that, a short expla-

nation the technologies adopted in this work is provided. The following sections in this

chapter are then dedicated for the SESOA prototype and its accompanying business case

respectively. Highlights to the implementation of the validation services are then ex-

plained. The chapter then shows the possible directions to evaluate this work in different

business domains. Finally, this chapter summarizes the main implementation issues ex-

plained in its sections.

7.1 General Overview of the Prototype Architecture

This section shows what techniques have been used to implement SESOA prototype.

Insights to the prototype are then described to show how the internal components of the

SESOA reference architecture have been realized. Moreover, some implementations

highlights are going to be given then to the selling business process that had been de-

scribed in the previous two chapters.

7.1.1 Choice of the Adopted Technologies

The choice about which specific technologies and products to use in developing the

system prototype depended actually on different factors like compatibility, performance,

licensing, availability, etc. Since the resulted prototype has to be used by different con-

sumers that have disparate operating systems and platforms, it has to be rich enough to

support all types of consumers.

From compatibility point of view, most of the enterprises nowadays are using Microsoft

products. That pushes the decision for this prototype version to be implemented using

Microsoft products as well. However, the resulted prototype is actually a set of Web-

Chapter 7 - Prototypical Implementation and Evaluation

122

based applications that can be accessed using different Web browsers like Microsoft

Internet Explorer, Mozilla Firefox, Opera, etc. This makes the underlying implementa-

tions of the system just details differs from one enterprise to another. The same proto-

type that is going to be described here can be implemented differently using any other

software products or vendors. This is because it is totally based on the Web Services

technology and its underlying semantic annotations.

The main base for achieving the agile implementation and development of the SESOA

prototype is the distribution of its functionalities using lightweight semantic annotated

Web Services. Microsoft Visual Studio 2010 has been used as the main IDE50 with its

.NET framework to implement the final prototype. Using the technologies provided by

them both, most of the system’s functionalities have been realized. From a compatibility

perspective, Microsoft SQL Server 2008 R2 has been used as relational database server

and Microsoft IIS51 as a Web server. Furthermore, SemWeb.NET (Tauberer, 2010) has

been used as RDF library supporting C#.NET to provide the semantic annotation in

form of RDF statements to the system’s Web Services. Moreover, W3C validation ser-

vice52 has been used to validate the system’s RDF semantic annotations. Last but not

least, Twinkle53 has been used as to load, edit and save SPARQL queries.

Table 7.1 lists all the technologies that have been utilized in the proof of concept phase

to implement the system’s prototype with short description for the role of each of them.

Tab. 7.1: System’s Enabling Technologies

Technology Version Role

Microsoft Visual

Studio 2010 Ultimate

10.0.40219.1 - SP1Rel It is the IDE used to realize the SESOA

reference architecture.

.NET Framework 4.0.30319.1 It provides extensive libraries to bridge

the interoperability gab among applica-

tions.

Microsoft IIS 7.5.7600.16385 It is the Web server that has many ex-

tension modules that serve to share the

information among the system’s users

in any distributed network.

Microsoft Visual

C# 2010

4.0 Visual C# has been used as the main

programming language to support ob-

ject and component orientation.

Microsoft Visual 10.0.30319.1 Visual Basic.NET has been used in the

50
 IDE is an acronym for Integrated Development Environment.

51
 Microsoft IIS is an acronym for Internet Information Services and it was formerly known as the Inter-

net Information Server.
52

 The W3C validation service is based on Another RDF Parser (ARP) that is part of the Jena toolkit (Car-

roll et al., 2004). It is embedded within the resulting SESOA prototype and is available online at:

http://www.w3.org/RDF/Validator/.
53

 Twinkle (http://www.ldodds.com/projects/twinkle/) is a SPARQL query tool.

Chapter 7 - Prototypical Implementation and Evaluation

123

Basic .NET prototype to support the Web pro-

gramming.

ASP.NET 4.0.30319.1 (4.0) ASP.NET is used to build the main

Web applications, Web sites and some

of the system’s Web Services.

Microsoft WCF54 4.0 WCF is used in this prototype to design

and deploy the system’s distributed

applications following SOA paradigm.

Microsoft WF55 4.0 WF has been adopted in the system as

the main in-process workflow engine to

realize the long-running business pro-

cesses as workflows.

Microsoft SQL

Server 2008 R2

10.50.2500.0 - SP 1 Microsoft SQL Server has been used as

a relational database server to store and

retrieve the system’s data.

SemWeb.NET 1.0.7 SemWeb.Net C# library has been used

to facilitate the automatic semantic

annotation and storage of Web Ser-

vices’ relations.

Twinkle 2.0 Twinkle has been used as a SPARQL

query tool to query the system’s RDF

documents and data.

W3C RDF Validation

Service

2-alpha-1 W3C RDF validation service is embed-

ded within the system to validate the

resulting RDF annotations.

As mentioned above and as a proof of concept, several applications have been imple-

mented to deliver the prototype. These include the SESOA main Web application that

implements all the system’s functionalities and the accompanying business case Web

application that uses these functionalities. The resulted prototype, developed in Mi-

crosoft Visual Studio 2010 Ultimate Edition (C# 4.0 and Visual Basic.NET as pro-

gramming languages and ASP.NET 4.0 as Web application framework), accesses the

databases (Microsoft SQL Server 2008 R2) to retrieve and store the information of the

system’s assemblages, Web Services and the accompanying business case data. On the

one hand, the system’s main Web application facilitates the process of creating WS as-

semblages and Web Services, registering external and internal Web Services within the

assemblages, annotating the assemblages-Web Services relations, besides service vali-

dation. On the other hand, the accompanying business case (developed using ASP.NET

4.0 as well) is built on top of the main Web application to represent the selling business

54
 WCF is an acronym for Windows Communication Foundation which was known previously as Indigo.

55
 WF is an abbreviation for Windows Workflow foundation.

Chapter 7 - Prototypical Implementation and Evaluation

124

process from creating orders by customers till the end of product delivery. To realize the

activities within this business process, several workflows have been designed and im-

plemented (using WF 4.0) and several Web Services have been used to “wrap” these

workflows’ activities. WSDL description language has been used to describe the sys-

tem’s Web Services. All the Web Services, developed using ASP.NET 4.0 and WCF

4.0, are published in the system’s semantic service repository. Querying these services

based on their RDF semantic descriptions has been achieved using Twinkle 2.0. Seman-

tic annotation of these services with predefined WS-assemblages is automatically done

with the help of the SemWeb library. Table 7.2 reflects the already explained technolo-

gies (listed in Table 7.1) on the SESOA reference architecture’s components (see Chap-

ter six, Section 6.1.3).

Tab. 7.2: List of applied Technologies to SESOA components

Component Name Applied Technology

Front End ASP.NET 4.0

 Visual Basic .NET

 WCF 4.0

 Twinkle 2.0

Processing System WF 4.0

 C# 4.0

Database System MSSQL Server 2008 R2

Semantic Web Service-based System SemWeb 1.0.7

 WCF 4.0

Semantic Service Repository LINQ to SQL56

 SemWeb 1.0.7

Validation System WCF 4.0

 W3C RDF Validation Service

 ASP.NET

To have a kind of big picture behind these enabling technologies, Figure 7.1 depicts the

prototype architecture and shows how the technologies were applied to each individual

component of the SESOA reference architecture. To implement the processing system

component, WF 4.0 and C# 4.0 as underlying programming language have been used.

The accompanying selling business process has been realized as a set of workflows to

be processed by WF 4.0. Several activities within the resulted workflows have been

56
 Language Integrated Query (LINQ) to SQL also known as DLINK is a provider converts normal LINQ

query into SQL query to be sent to Microsoft SQL Server to be processed.

Chapter 7 - Prototypical Implementation and Evaluation

125

implemented as custom code activities57 using C#. The system’s front end is built using

ASP.NET 4.0 and C# 4.0/Visual Basic.NET as underlying programming languages.

Fig. 7.1: The Prototype Architecture

The interface between the processing system and the semantic Web Service-based sys-

tem component to retrieve the semantic annotation of the system’s Web Services is real-

ized using Twinkle 2.0. Assemblage and Web Service management and registration in

the assemblage unit within the semantic Web Service-based system component are done

using the SemWeb library and WCF 4.0. Some of the Web Services are implemented

using the conventional ASP.NET Web Services (ASMX) for compatibility reasons.

ASP.NET 4.0, WCF Web Services, and W3C RDF Validation Service are the used

technologies to realize the validation system component with its four subcomponents.

SemWeb library and LINQ to SQL technologies are used to realize the semantic service

repository component. Microsoft SQL Server 2008 R2 has been used as a database en-

gine to realize the database system.

Since consumer system, provider system and Web Service directory components are

external components, it is indifferent which technology is used to realize them. What

really matters is that these components can access both the SESOA main and accompa-

nying business case Web applications. Finally, all of these technologies can be substi-

57
 Custom activities normally are not included in the main functions provided inWF4.0. Rather they han-

dle and process application-specific data.

Chapter 7 - Prototypical Implementation and Evaluation

126

tuted by other ones (like Java-based technologies) because big portions of the prototypi-

cal implementation are Web Service (in other words XML-based).

The following sections give more details and insights about the realization of each com-

ponent supported by screenshots, code snippets and modeling diagrams.

7.1.2 The Selling Process Prototypical Considerations

The selling business process that has been built on top of the SESOA reference architec-

ture has been divided into several components (see Figure 7.2). The separation of the

selling process into individual components eases the management tasks and inevitably

supports more agile implementation. The resulted Web application represents a ficti-

tious online shop that sells watches. The application’s has the following components:

website, shop, logistics, payment, shipping, mail, and coordination.

The website component represents the online shop Web application for the selling busi-

ness process. It is responsible for the interaction with the system’s end users (the cus-

tomers). All information that is displayed on the website (e.g. product or customer in-

formation) is stored in the selling process’s database that is part of the SESOA database

system. This database is controlled by the shop component.

Fig. 7.2: The Components of the Selling Business Process

The shop component offers several Web Services, which read or write data from the

selling process’s database. For example, when the website displays the product infor-

Chapter 7 - Prototypical Implementation and Evaluation

127

mation or creates a new customer, the website calls a Web Service implemented by the

shop component and this Web Service writes the data into the selling process’s database

or sends the requested information back to the website.

Upon creation new orders by a customer on the website, it calls a specific Web Service

from the shop component and this service sends all information about the order to the

coordination component. The coordination component is responsible for processing the

customers’ orders. Depending on the chosen payment method (implemented at the pay-

ment component), the coordination component first calls the payment component and

afterwards the logistic components to check the product availability in the warehouse or

vice versa.

The payment component represents an external payment company that checks the cus-

tomer’s payment data. It creates an invoice for a given order and sends it back to coor-

dination component to continue processing customer’s order. The coordination compo-

nent then calls the mail component to send the already created invoice to the customer.

The mail component represents the customer notification system.

The logistics component represents the warehouse of the fictitious company behind this

business process. As soon as the order is ready for shipping, it calls the shipping com-

ponent that is responsible for the order shipment. Once an order has been shipped, using

an external shipping company via the shipping component, the coordination component

sends another email via the mail component to notify the customer.

The realization of this business case is based on the same technologies mentioned be-

fore in Table 7.1. One primary requirement behind this business case was to use tech-

nologies under the umbrella of Microsoft Visual Studio 2010 to be compatible with SE-

SOA prototype. Visual Studio includes several possibilities to realize this business case

and its subsequent workflow applications.

7.1.3 System Configurations

The Internet Information Services provided with Microsoft Windows Server 2008 R2

are needed to host all developed applications (the main SESOA and the accompanying

business case Web applications). Every application has its own directory. The overall

prototype is hosted on a single Windows Server computer with only one IP address.

This leads to the decision of using different ports for every application. Table 7.3 shows

the distribution of all components sites (applications) to their specific ports on the Web

server.

Chapter 7 - Prototypical Implementation and Evaluation

128

Tab. 7.3: Distribution of System’s Sites on Ports

Site Name Port

Number

Description

SESOA 1234 This site hosts the main SESOA Web Application

Validation 8099 This site hosts the system’s different validation

Web Services

Website 8088 This site hosts the main business case’s website

Item Images 8086 This sites is used just to host the products images

that are used by the business case’s website

Shop 8080 This site hosts the business case’s application that

manages the database interactions

Logistics 8082 This site hosts the main logistics application that

deals with the business case’s warehouse

Payment 8084 This site hosts the business case’s application that

deals with the company’s internal payment applica-

tion

External Payment 8085 This site hosts Web Services that represent an ex-

ternal payment application

Shipping 8081 This site hosts Web Services that represent an ex-

ternal shipping application

Mail 8087 This site hosts the business case’s application that

deals with customer notification

Coordination 8090 This site hosts the business case’s application that

manages all of its applications

In the following sections, all implementation details of the SESOA main Web applica-

tion and the business case applications are detailed using bunch of screenshots, listings,

and UML diagrams.

7.2 SESOA Implementation

SESOA is built with a holistic perception of enterprise Web Services as part of work-

flows that represent different enterprise’s business processes. It aims at providing a se-

mantic-enabled Web Service middleware that allows different business stakeholders to

access bunch of business services via uniform, rich, and flexible interfaces. The main

design and development process of SESOA implementation is directed by four key

guidelines: the realization of enterprise’s business processes to be managed by an in-

process workflow engine, the use of Web Service standards (e.g., WSDL, SOAP), the

semantic enrichment of these services (using RDF statements), and extensibility (i.e.,

the ability to add new functionalities). The main focus in SESOA prototype is on im-

plementing the automatic semantic annotation techniques proposed in this dissertation.

Chapter 7 - Prototypical Implementation and Evaluation

129

7.2.1 SESOA Web Application

All of the functionalities listed at the phase of requirement definitions (see Chapter 5)

are implemented in the SESOA Web application. The main GUI is shown in Figure 7.3.

Fig. 7.3: The SESOA Development Framework GUI

This application has been implemented as a Web application using ASP.NET 4.0 and all

its functions have been realized using C# 4.0, Visual Basic.NET, WCF 4.0, WF 4.0, and

SemWeb1.0.7. Microsoft SQL Server 2008 R2 has been selected to realize the SESOA

databases. A list of the menu items with their webpages that host the system functionali-

ties delivered by this application is detailed in Table 7.4.

Tab. 7.4: Items of the SESOA Development Framework GUI

Root Item Child Item Description

Home - The SESOA development

framework welcome page

Semantic

Service

Repository

Discover Repository Show all assemblages and

their services in the service

repository

Discover Assemblages Show the available assem-

blages in the repository

Discover Services Show only the Web Ser-

vices in the repository

Add Assemblage Add a new assemblage to

the repository

Chapter 7 - Prototypical Implementation and Evaluation

130

Add Service Information Add a new service as a

member of one of the as-

semblages in the repository

Show Assemblage Service Relations Show RDF annotation be-

tween a selected Web Ser-

vice and the assemblage to

which it belongs

Show All Assemblage Service Relations Show all RDF relations

between repository’s as-

semblages and Web Ser-

vices

Delete Assemblage Delete permanently an as-

semblage with its services

from the repository

Delete Service Delete a service from the

repository

Validation

Services

RDF Validation To validate the system’s

RDF relations

Primitive Data type Validation Apply validation on a prim-

itive data type level

Complex Validation Apply validation on a com-

plex data type

Business

Case

- The main site of the ac-

companying business case

About - About information

These items are made available to the system users based on their rights. As mentioned

before, there are three main types of users in the system: the administrator, the Web

Service provider, and the end user. To realize that, ASP.NET Web Site Administration

Tool has been used to create three roles as shown in Figure 7.4 in which users can be

added or removed to permit or deny access on the items listed in Table 7.4.

Fig. 7.4: System’s Main Roles

System administrators have full access to all items listed in Table 7.4. Web Service pro-

viders don’t have access to the following items: add assemblage, delete assemblage, and

delete service. As for the end users, they can only see the home, business case, and

about items. By default, any created user is placed in the end user role. Only system

Chapter 7 - Prototypical Implementation and Evaluation

131

administrator can assign the Web Service provider role to new users following specific

criteria. The following sections explain each item individually.

7.2.1.1 Discover Repository

This item shows all the available assemblages in the service repository. Upon choosing

an assemblage, all its members (i.e. the actual Web Services) can be seen. When select-

ing a Web Service, a button called “Show Service URI” can be clicked to show the ad-

dress of this service. This is shown in Figure 7.5.

Fig. 7.5: Discover Repository

An example for that is as shown above, the “ERP Services” assemblage is selected from

a dropdown list. All the registered services within this assemblage can be seen at the

right dropdown list. In this example, the “Check Payment” service had been selected.

Clicking on the “Show Service URI” is showing the address of the selected service and

in this example it is: “http://localhost:8085/ExternalPaymentServices.asmx”.

7.2.1.2 Discover Assemblages

This semantic service repository’s functionality is implemented to list all the assem-

blages within the repository.

As shown in Figure 7.6, service providers can see list of assemblages available in the

repository including “ID”, “Category”, and “Domain” attributes.

A navigation toolbar is also provided to browse all the available assemblages. Sorting is

enabled as well and it can be applied on all of the assemblage’s attributes.

Chapter 7 - Prototypical Implementation and Evaluation

132

Fig. 7.6: Discover Repository’s Assemblages

The site of discovering assemblages is made available to the users who have the Web

Service provider role in order to choose which assemblage suits at most their Web Ser-

vices. System administrator is the only user who can add assemblages. In the case that

service providers don’t find any assemblage suits their services, they can contact the

system administrator to create it.

7.2.1.3 Discover Services

This site provides similar functionality like the one provided in the previous section.

What is retrieved in this site (webpage) are the actual Web Services that are registered

in the assemblages and published in the semantic service repository.

Fig. 7.7: Discover Repository’s Registered Web Services

Chapter 7 - Prototypical Implementation and Evaluation

133

As shown in Figure 7.7, “Service ID”, “Assemblage ID”, “Name”, “Description”, and

“Service URI” are the retrieved information. A Web Service can be a member of one or

more assemblages and this is done at the process of adding a service to the system (see

following section). Navigation toolbar is also provided in this site to browse all availa-

ble and registered Web Services. Sorting the system’s services is enabled as well and it

can be applied to all of the service’s attributes.

7.2.1.4 Add an Assemblage

In this site, new assemblages can be added. The information required for adding a new

assemblage includes: “Assemblage ID”, “Category”, and “Domain”. Figure 7.8 shows

how to add a new assemblage.

Fig. 7.8: Add a New Assemblage

One issue has to be taken into consideration while adding new assemblages is that only

the system administrator can add new assemblages into the system. If a service provider

doesn’t find an assemblage suiting its needs, it can contact the system administrator to

add new assemblage meeting its requirements.

7.2.1.5 Add Service Information

In this site, new Web Services can be added to the system. This means that the services

are registered in the system’s assemblages and advertised in the semantic service reposi-

tory. The information required for adding a new Web Service includes: “Service ID”,

“Service Name”, “Service Description”, “Service URI”, and “Member of Assemblage”.

The last attribute indicate the assemblage in which the service is member of, i.e. regis-

tered. To register a service with more than an assemblage, the adding process has to be

repeated. Figure 7.9 shows the page in which new Web Services can be added to the

system. System administrators and Web Service providers are the users who can add

new Web Services to the system.

Chapter 7 - Prototypical Implementation and Evaluation

134

Fig. 7.9: Add a New Web Service

 Upon clicking the “Add & Show Relation” button, the Web Service is registered in the

chosen assemblage, an RDF statement between the service and the assemblage is creat-

ed, the service is stored in the RDF database as an entity with ID and value and these

two attributes are linked with their counterparts in the assemblage, and finally this rela-

tion is published at the semantic service repository. Listing 7.1 shows this automatic

created relation between the newly added service and the assemblage in which this ser-

vice is registered. This relation can be shown at any time upon request.

Listing 7.1: Assemblage - Service Semantic-annotated Relation

<?xml version="1.0"?>
<rdf:RDF xmlns:assemblage="http://asbl.wi-ol.de/sesoa"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sesoa="http://asbl.wi-ol.de/sesoa/">
 <rdf:Description rdf:about="http://asbl.wi-
 ol.de/sesoa/assemblage/Shipping">
 <sesoa:hasMember rdf:resource="http://asbl.wi
 ol.de/sesoa/services/GetShippingType" />
 </rdf:Description>
</rdf:RDF>

The above listing shows an example of a new service “GetShippingType” (object) that

is related with the assemblage “Shipping” (subject) with the “hasMember” relation

(predicate). This subject-object-predicate RDF statement represents the semantic-

annotated relationship between the assemblage and its member, i.e. the actual Web Ser-

vice. Table 7.5 lists the triple of this RDF statement.

Chapter 7 - Prototypical Implementation and Evaluation

135

Tab. 7.5: RDF Statement Triple Example

Entity Value

Subject http://asbl.wi-ol.de/sesoa/assemblage/Shipping

Predicate http://asbl.wi-ol.de/sesoa/hasMember

Object http://asbl.wi-ol.de/sesoa/services/GetShippingType

As mentioned before in last chapter, all entity names of the subjects within the system’s

RDF statements are prefixed with: “http://asbl.wi-ol.de/sesoa/assemblage/”, all entity

names of predicates are prefixed with: “http://asbl.wi-ol.de/sesoa/” and all entity names

of the objects are prefixed with: “http://asbl.wi-ol.de/sesoa/services/”.

7.2.1.6 Show Assemblage Service Relation

This site enables the process of displaying the semantic-annotated relation of an assem-

blage with one of its members (a Web Service). As shown in Figure 7.10, a service can

be chosen in an assemblage to show the semantic relation among them.

Fig. 7.10: Single Assemblage - Web Service Relation

After choosing the assemblage from the left dropdown list, all the services registered

within this assemblage can be located and only one can be chosen from the right

dropdown list. Upon choosing an assemblage and a registered service within it and

clicking on the “Show Service Relation” button, the RDF statement that links between

the assemblage and service entities is displayed. In the example shown in Figure 7.10,

the assemblage “Payment” is having the service “CreateInvoice” as a member.

Chapter 7 - Prototypical Implementation and Evaluation

136

7.2.1.7 Show All Assemblages Services Relations

This site enables displaying the relations among all system’s assemblages with their

members (the services). SESOA prototype offers two views for showing the semantic

relations: the simplified and the full views. Listing 7.2 shows a subset of the simplified

view of the overall system’s RDF annotations. This view represents merely the tradi-

tional subject-predicate-object RDF statement. The example depicted in the listing be-

low shows that an assemblage called “Logistics” (subject) has eight registered services

(objects) as members (predicates) within it.

Listing 7.2: Subset of the Simplified RDF View

<?xml version="1.0"?>
<rdf:Description rdf:about="http://asbl.wi-ol.de/sesoa/assemblage/Logistics">

<assemblage:hasMember rdf:resource="http://asbl.wi-Ol.de/sesoa/services
 /CreateShipment">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /CreateShipmentAsmx">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /GetDateAvailability">
</assemblage:hasMember>

<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /GetItemAmount">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /GetItems">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /GetLongTermAmount">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /GetOpenPurchases">
</assemblage:hasMember>
<assemblage:hasMember rdf:resource="http://asbl.wi-ol.de/sesoa/services
 /PurchaseItems"/>
</rdf:Description>

While the simplified view shows neither the other attributes of the assemblages nor the

other attributes of the services, the full view shows all attributes. Listing 7.3 shows a

subset of the full view of the overall system’s RDF annotations. It shows the same ex-

ample depicted before in Listing 7.2. However, the example below shows all the attrib-

utes for both the “logistics” assemblage and its services. The assemblage in the below

example has the ID “1”, the category “Logistics”, and the domain “ERP Logistics Ser-

vices”. It has eight services registered within it.

Chapter 7 - Prototypical Implementation and Evaluation

137

Listing 7.3: Subset of the Full RDF View

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:assemblage="http://sesoa.wi-ol.de/" xmlns:service="http://sesoa.wi-

ol.de/services/" xmlns:sesoa="http://asbl.wi-ol.de/sesoa/"

xmlns:services="http://asbl.wi-ol.de/sesoa/services/">
 <rdf:Description rdf:about="http://asbl.wi-ol.de/sesoa/assemblage/1">
 <sesoa:hasCategory>Logistics</sesoa:hasCategory>
 <sesoa:hasDomain>ERP Logistics Services</sesoa:hasDomain>
 <sesoa:hasMember>
 <rdf:Description rdf:about="http://asbl.wi-ol.de/sesoa/services
 /CreateShipmentAsmx">
 <services:hasID>5</services:hasID>
 <services:hasName>CreateShipment</services:hasName>
 <services:hasDescription> The logistics workflow service that

 has the responsibility to ship an order from the warehouse

 </services:hasDescription>
 <services:hasURI>

 http://localhost:8082/Workflows/CreateShipment.xamlx
 </services:hasURI>

 </rdf:Description>
 </sesoa:hasMember>

 ...

 <sesoa:hasMember>
 <rdf:Description rdf:about="http://asbl.wi-ol.de/sesoa/services

 /PurchaseItems">
 <services:hasID>11</services:hasID>
 <services:hasName>PurchaseItems</services:hasName>
 <services:hasDescription>Workflow service for placing and
 processing a company order to refill the stock

 </services:hasDescription>
 <services:hasURI>

 http://localhost:8082/Workflows/PurchaseItems.xamlx

 </services:hasURI>
 </rdf:Description>
 </sesoa:hasMember>
 </rdf:Description>

In the listing above, all the attributes for the eight registered services are shown. For

example the first service shown in the above listing has the ID “5”, the name “Create-

Shipment”, the description “The logistics workflow service that has the responsibility to

ship an order from the warehouse”, and finally it has the URI

“http://localhost:8082/Workflows/CreateShipment.xamlx”. The listing does not show

all the eight services registered in the “Logistics” assemblage, rather just the first and

the last registered services.

7.2.1.8 Delete an Assemblage

This functionality is mainly designed for the system administrator to delete the assem-

blages that are no more needed. Figure 7.11 shows the page from which an assemblage

can be deleted.

Chapter 7 - Prototypical Implementation and Evaluation

138

First of all the administrator needs to check which assemblage is going to be deleted and

gets its information to be sure that this assemblage is the correct one. When the adminis-

trator enters a value in the “Assemblage ID” field in the page shown in the below figure

and clicked on the “Get Assemblage Info” button, all attributes of this assemblage to-

gether with its Web Services are retrieved. The administrator can first discover the sys-

tem’s assemblages to retrieve the ID of the assemblage that is going to be deleted (see

Section 7.2.1.2).

Fig. 7.11: Get Assemblage’s Information

Since each assemblage has a set of registered Web Services as members within it, delet-

ing an assemblage means that all the members of this assemblage are going to be delet-

ed as well. An example can be seen in Figure 7.12. The administrator types “1” in the

“Assemblage ID” field and clicks on the “Get Assemblage Info” button.

Fig. 7.12: Delete an Assemblage

Chapter 7 - Prototypical Implementation and Evaluation

139

Then it is shown that this assemblage has the category “Logistics” and the domain “ERP

Logistics Services”. It is also shown that this assemblage has eight registered Web Ser-

vices as members. All the attributes of these services are also retrieved and shown in red

color to enable better decision from the administrator to be taken. If the deletion deci-

sion is final, the administrator clicks then on the “Delete Assemblage” button. Then the

assemblage and its services are permanently deleted from the system.

One last issue to mention here is that it is recommended that the assemblages are delet-

ed just when all the registered services within it can’t be reused anymore. Therefore the

lifecycle of an assemblage is considered relatively long in comparison with a Web Ser-

vice’s lifecycle.

7.2.1.9 Delete a Service

This site enables the system administrator to delete the system’s registered Web Ser-

vices. When a Web Service is no more needed and not used anymore, the site shown in

Figure 7.13 provides the service deletion functionality. As it is in the assemblage site,

the service that is going to be deleted is retrieved based on its ID. System administrators

can always discover the registered services in the system (see Section 7.2.1.3) to ensure

their deletion decision. For example if the system administrator types “22” in the “Ser-

vice ID” textbox and clicks on the “Get Service Info” button, all the other attributes of

the service are retrieved including the “Service Name”, “Service Description”, and fi-

nally “Service URI”.

Fig. 7.13: Delete a Web Service

Upon retrieving the service information, the authorized user can click on the “Delete

Service” button to delete the service permanently from the system.

Chapter 7 - Prototypical Implementation and Evaluation

140

7.2.2 Validation Services

This site of the SESOA’s Web application provides a set of validation services. These

validation services as shown in Figure 7.14 are used to validate data on a functional

level based mainly on data type (primitive and complex data types). RDF validation

service is also provided to validate RDF statements.

Fig. 7.14: The Validation Services

Data type validation services are made available to the service providers so that they can

use them as a kind of supporting services to build their own Web Services on top of

them. Therefore, their data types can be unified because they use the same validation

services. As for the RDF validation service, it is used by the system administrators and

the service providers to validate the automatically created RDF relations that link the

assemblages and their registered services. The following subsections explain in details

all types of validation services.

7.2.2.1 Primitive Validation Services

Integer Validation Test Service: This Web Service checks the validity of the integer

data type. In this work, the integer data type is split into four sub-data types namely:

positive integer, non-negative integer, negative integer and non-positive integer. These

sub-data types are defined as follows:

 Positive integer includes all positive integer values excluding zero.

 Non-negative integer is the generalization of the positive integer data type. It

includes all positive integer values plus zero.

 Negative integer includes all negative integer values excluding zero

 Non-positive integer is the generalization of negative integer data type. It in-

cludes all negative integer values plus zero.

Chapter 7 - Prototypical Implementation and Evaluation

141

Fig. 7.15: The Interface of the Integer Validation Test Web Service

As depicted in Figure 7.15, the interface of the integer validation test service provides

four types of tests to validate the above mentioned four integer sub-data types. In addi-

tion to these tests, a generic integer data type validation test is provided.

Decimal Validation Test Service: This Web Service checks the validity of the decimal

data type. Like integer, the decimal data type in this work is split into four sub-data

types namely: positive decimal, non-negative decimal, negative decimal and non-

positive decimal. These sub-data types are defined as follows:

 Positive decimal includes all positive decimal values excluding zero.

 Non-negative decimal is the generalization of the positive decimal data type. It

includes all positive decimal values plus zero.

 Negative decimal includes all negative decimal values excluding zero

 Non-positive decimal is the generalization of negative decimal data type. It in-

cludes all negative decimal values plus zero.

Fig. 7.16: The Interface of the Decimal Validation Test Web Service

As depicted in Figure 7.16, the interface of the decimal validation test service provides

four types of tests to validate the above mentioned four decimal sub-data types. In addi-

tion to these tests, a generic decimal data type validation test is provided.

String Validation Test Service: This Web Service checks the validity of the string data

type. In this work, the string data type is split into four sub-data types namely: alpha,

numeric, alpha numeric and non-alpha numeric. These four sub-data types are defined

as follows:

 Alpha string includes all string values that contain just alphabetical letters.

Chapter 7 - Prototypical Implementation and Evaluation

142

 Numeric string includes just numeric values (plain numbers with the minus “-”

or the floating point “.” symbols but excluding any other special character).

 Alpha numeric string includes both alpha and numeric values (letters and num-

bers respectively) excluding any special character.

 Non-alpha numeric string includes special characters (rest of string characters).

As illustrated in Figure 7.17 below, the interface of the string validation test service

provides four types of tests to validate the above mentioned four string sub-data types.

In addition to these tests, a generic string data type validation test is provided by this

interface.

Fig. 7.17: The Interface of the String Validation Test Web Service

For example and as shown above, an email address is valid as a non-alpha numeric

string data type and as a generic string data type.

DateTime Validation Test Service: This Web Service checks the validity of the

DateTime data type. In this work, the DateTime data type values are either valid or in-

valid and can be classified into future DateTime or past DateTime values.

Fig. 7.18: The Interface of the DateTime Validation Test Web Service

These two formats can be tested as shown above in Figure 7.18 together with testing the

generic DateTime data type.

7.2.2.2 Complex Validation Services

This site shows an example of how to use the validation services explained in the previ-

ous section. It can be seen as a mixture where all the previous validation tests Web Ser-

vices are included. For example and as shown below in Figure 7.19, the complex valida-

tion can have an interface that validates the employee’s data. These data include the

employee’s first, middle, and last names besides basic information like birthdate, em-

ployee ID, email address and salary.

Chapter 7 - Prototypical Implementation and Evaluation

143

Fig. 7.19: Complex Validation Test Example

What can be concluded from the above figure is that the values of each employee’s first,

middle and last names are from the alpha string data type. The employee’s birthdate

value has to belong to the past DateTime data type, the employee ID value belongs to

the positive integer data type. Furthermore, the email address value belongs to the non-

alpha numeric string data type (since it is validated against the “@” special character)

and finally the salary value belongs to the positive decimal data type.

7.2.2.3 RDF Validation Service

In this work and to validate the generated RDF statements, the known W3C RDF vali-

dation service has been used. This service accepts URI or easily RDF/XML document

as input and produces a 3-tuple representation or a graphic visualization as output. This

service is based on the java-based Another RDF Parser (ARP). The version that has

been used in this work is the 2-alpha-1 version. Table 7.6 shows the output of parsing

the RDF part of the “Validation” assemblage.

Tab. 7.6: RDF Validation - Triple Representation

Number Subject58 Predicate59 Object60

1 Validation hasMember IntegerValidation

2 Validation hasMember DecimalValidation

3 Validation hasMember StringValidation

4 Validation hasMember DateTimeValidation

Changing the output style of parsing the same part to a graphical visualization results in

the graph depicted in Figure 7.20.

58
 The full entity name is: http://asbl.wi-ol.de/sesoa/assemblage/Validation

59
 The full entity name is: http://asbl.wi-ol.de/sesoa#hasMember

60
 The full entity name is prefixed by: http://asbl.wi-ol.de/sesoa/services/

Chapter 7 - Prototypical Implementation and Evaluation

144

Fig. 7.20: RDF Validation - Graph Representation

The triples and the graph both shows that the assemblage “Validation” represents the

subject, the predicate is the “hasMember” relation, and the object is one of the data type

validation services. Using the RDF validation service helps in detecting any error that

might appear in the automatic generation of the assemblage-Web Service relations.

Moreover having the triples and graph representations can help the system administrator

in managing the system’s assemblages in a better way.

7.3 The Business Case Web Application

The architecture of the implemented business case has been already introduced in the

Section 6.6. The main components of this architecture have been then depicted in Figure

7.2 in Section 7.1.2. In this section, the implementation details of these components are

explained. The business case implementation was done by a group of students in

“VLBA Seminar: SOA and Business Processes” at the department of Business Infor-

mation Systems in Oldenburg University (Denker et al., 2011)61. This business case has

implemented on top of the SESOA prototype. It is workflow-based Web application and

its workflows have been implemented as WCF workflow services that can be discov-

ered and invoked as Web Services. Most of activities that build the system’s workflows

have been implemented as Web Services. These Web Services published in the SESOA

semantic service repository as members of its assemblages can be called while the

workflows are executed.

 Before going deep into the implementation details, some words about the business case

itself are good to get the idea behind it. This business case represents a fictional online

shop for selling watches. This case has been implemented using several technologies

including C#, ASP.NET, Visual Basic.NET, Windows Server 2008 R2, Microsoft SQL

Server 2008 R2, and Microsoft Internet Information Service (IIS Version 7). By using

IIS as can be seen in Table 7.7, different sites have been created on different ports to

realize the business case’s functionalities.

61
 The handout of this seminar is internal document. It is available at the Business Information Systems I

department at Oldenburg University.

Chapter 7 - Prototypical Implementation and Evaluation

145

Tab. 7.7: Business Case’s Sites and their Ports

Number Site Name Port

1 Website (GUI) 80

2 Shop 8080

3 Shipment 8081

4 Logistics 8082

5 Payment 8084

6 ItemImages 8086

7 Mail 8087

8 Coordination 8090

The first site “Website” represents the main front end for this business case. “Shop” site

represents the link with the system’s database. The “Shipment” site links the business

case to external shipment services and similarly the “Payment” site links it to external

payment services. The “Logistics” site constitutes the backend of this fictional shop

where the material planning together with the inventory and warehouse management are

the main responsibilities. The “ItemImages” site is where the shop images are stored.

The “Mail” site is responsible of contacting the shop’s customers to notify them with

the state of their orders. Finally, the “Coordination” site is the backbone site in which

the main coordinating workflow is executed. This site put the parts from all the other

sites together to finalize a customer order. Moreover, it is responsible of contacting the

semantic service repository to call the Web Services involved in executing the other

sites’ workflows. This is done using a SPARQL query tool like Twinkle to query the

RDF statements of the semantic service repository and then to give the control back to

the running workflow. More information about this query tool is presented in the Sec-

tion 7.3.2.

7.3.1 WF and WCF

This section explains briefly the main features of Microsoft Windows Workflow Foun-

dation (WF) and Microsoft Widows Communication Foundation (WCF) technologies.

WF is used in this business process as an in-process workflow engine for modeling and

executing its workflows. Since all the components in the business case’s architecture are

implemented using Web Services, Workflow Foundation technology can be easily re-

placed by any alternative workflow engine, like IBM WebSphere Process Server62 or

even the W3C’s SCXML63.

62
 IBM WebSphere Process Server has similar properties in comparison to Microsoft Workflow Founda-

tion. One of these properties allows exposing workflows as Web Services. This is the key feature that

allows replacing Workflow Foundation used in this work with IBM WebSphere Process Server. More

Chapter 7 - Prototypical Implementation and Evaluation

146

Since all SESOA applications have been implemented using Microsoft technologies,

WF 4.0 has been adopted as the main workflow engine to implement workflows in this

business case. WF consists of the actual workflow engine besides an extension to the

Visual Studio 2010 IDE to model workflows. This extension is a graphical editor

through which all the activities that make up the workflow can be used using drag and

drop technique. Alternatively, workflows can be modified by editing their underlying

XAML64 code, which is Microsoft XML-based notation used to describe WF workflows

(Scott Allen, 2006, p. 25).

Implemented using WF, Workflows consist of a mixture of predefined and custom ac-

tivities. A predefined activity allows for standard operations and flows like conditional

branches, loops, or sends and receives. They all have the same “Activity” base class in

common. This class defines all the necessary methods like for example “Execute” and

“Cancel” that are required by the workflow engine. Custom activities are treated the

same way as the predefined activities (Scott Allen, 2006, pp. 11–12). They are derived

from the same “Activity” base class. An example for a custom activity is a code activi-

ty, which is derived from the “CodeActivity” class (which is in turn derived from the

common “Activity” base class) and implements some logic using C# code.

As mentioned in (Scott Allen, 2006, pp. 17–19), WF workflow engine offers set of dif-

ferent services to support the controlling and execution of its workflows. These services

are the runtime, scheduling, transaction, persistence and tracking services:

 The Runtime Service offers only basic functionality for executing a workflow.

This service is extendable by other services that add new features to enhance the

workflow execution.

 The Scheduling Service controls the runtime threads. The default scheduling

runtime delivered with WF creates new threads for each workflow. Therefore,

the workflows can be executed in parallel.

 The Transaction Service keeps the internal state of a workflow in synchroniza-

tion with a database. By default, multiple activities of a single workflow instance

can share the same transaction context.

 The Persistence Service allows saving the internal state of a workflow in a work-

flow instance store. This is useful for long-running workflows that can be per-

sisted and restored from the workflow instance store whenever they are needed.

information about the features of IBM WebSphere Process Server is available online at: http://www-

01.ibm.com/software/au/integration/wps/features/
63

 State Chart XML (SCXML): State Machine Notation for Control Abstraction represents a general-

purpose event-based state machine language. More information about SCXML can be found online at:

http://www.w3.org/TR/scxml/
64

 XAML stands for Extensible Application Markup Language.

Chapter 7 - Prototypical Implementation and Evaluation

147

 The Tracking Service allows monitoring and tracking of workflow instances.

SQL tracking to store data in SQL Server databases is also enabled by WF 4.0.

After this brief explanation of the WF basic features, this section explicates in short

Microsoft Windows Communication Foundation technology. WCF can be considered as

successor to various older inter-process communication technologies like COM+65,

DCOM, and .NET Remoting.

In this implemented business case, most of the WF workflows’ activities have been im-

plemented as Web Services using WCF. As mentioned in (Sharp, 2010, p. 42), WCF

represents the ideal platform to implement SOA and Web Services. Therefore, WCF is

used in this work to provide the necessary tools for building Web Services. Last but not

least, WCF achieves interoperability by supporting open standards like the W3C Web

Service standards.

7.3.2 SPARQL Queries

To call a Web Service, the corresponding component66 communicates with the semantic

service repository to locate the desired assemblage in which the service is registered and

then retrieves its endpoint. Selecting service depends usually on the user’s preferences

based on its Service Level Agreement (SLA)67. The system’s workflows can discover

the SESOA semantic service repository using any kind of RDF query language tools. In

this work, SPARQL has been used as a query language and Twinkle 2.0 as a SPARQL

query tool. Listing 7.4 shows how RDF queries have been used.

Listing 7.4: Generic SPARQL Query

PREFIX sesoa:<http://asbl.wi-ol.de/sesoa/>
PREFIX WS:<http://asbl.wi-ol.de/sesoa/services/>
SELECT *
WHERE
{
?Assemblage sesoa:hasCategory ?Category.
?Assemblage sesoa:hasDomain ?Domain.
?Assemblage sesoa:hasMember ?Service.
?Service WS:hasID ?ServiceID.
?Service WS:hasName ?Name.
?Service WS:hasDescription ?Description.
?Service WS:hasURI ?URI.
}

65
 COM+ is the successor of Microsoft Component Object Model (COM) standard. DCOM is a Mi-

crosoft’s proprietary technology used to ease software components’ communication in distributed

networks.
66

 All the system’s workflows have to contact the SESOA semantic service repository to locate the ser-

vices needed to execute their activities.
67

 SLA represents the service contract that helps the consumer in deciding whether to use the service or

not. SLA normally defines service’s availability, performance, price…

Chapter 7 - Prototypical Implementation and Evaluation

148

The listing above applies a general RDF query to the SESOA semantic service reposito-

ry to retrieve a list of all its assemblages and their registered Web Services. Figure 7.21

shows the results of applying the query to the SESOA semantic service repository. As

shown in the figure below, the result can be obtained either in text or table forms.

Fig. 7.21: Result of the Generic RDF Query

Another and more concrete example of applying SPARQL RDF queries to the SESOA

semantic service repository is shown in the Listing 7.5. It is written to retrieve all the

registered Web Services within the “Validation” assemblage.

Listing 7.5: Specific SPARQL Query

PREFIX sesoa:<http://asbl.wi-ol.de/sesoa/>
PREFIX WS:<http://asbl.wi-ol.de/sesoa/services/>
SELECT *
WHERE
{
?Assemblage sesoa:hasCategory "Validation".
?Assemblage sesoa:hasMember ?Service.
?Service WS:hasName ?Name.
?Service WS:hasURI ?URI.
}

Figure 7.22 shows the results of applying this query to the SESOA semantic service

repository. As can be seen in this figure, there are four Web Services registered in the

“Validation” assemblage.

Fig. 7.22: Result of a Specific RDF Query

Every assemblage, Web Service, or relation in the SESOA database system is stored as

RDF entity composed of ID and value pair. For example the aforementioned “Valida-

tion” assemblage is stored in the SESOA database system using the value:

http://asbl.wi-ol.de/sesoa/assemblage/Validation besides a unique ID. This applies to the

Web Services and their relations as well. The IDs of the assemblages, relations, and

services are used to create the subjects, predicates, and objects in the RDF statements

Chapter 7 - Prototypical Implementation and Evaluation

149

respectively. Table 7.8 shows an example of an RDF statement stored in the SESOA

database. The values in this table are shortened for presentation reasons and the full

values can be seen as footnotes. The assemblage “Validation” (ID 48) relates using the

“hasMember” relation (ID 4) to the “DecimalValidation” Web Service (ID 51). The IDs

of the subjects, predicates, and objects forms an RDF triple that is stored in the system’s

database. All the attributes of the assemblages, relations, and the Web Services are pub-

lished in the semantic service repository and can be retrieved using SPARQL query tool

like Twinkle.

Tab. 7.8: Entities Properties

 Subject68 Predicate69 Object70

ID 48 4 51

Value Validation hasMember DecimalValidation

The following section gives some highlights to the implementation of the business

case’s workflows and how these workflows used the abovementioned query tool to get

the necessary information to call the Web Services published in the SESOA semantic

service repository.

7.3.3 Implementation Details

The following subsections give some implementation details regarding the components

of the business case and its accompanying online shop. The linkage to the SESOA Web

application is also illustrated.

7.3.3.1 The Website Component

All of the functionalities assigned to the business case that are detailed at the require-

ment definitions phase (see Chapter 5) are implemented in the business case’s Web ap-

plication. GUI elements of the fictional online shop can be seen in Figure 7.23. The site

structure of this GUI is depicted in Figure 7.24. The GUI is used to handle purchases

done by the customers. It gives them the possibility to browse the product catalogue and

accomplish the ordering process. If the potential customers open the Web page, it offers

them a default start page with a welcome message and an introduction of products of-

fered in the Web shop. Using the navigation on the header, the customer is able to navi-

68
 The subject here represent an assemblage called: “Validation” that has the ID 48 and its actual value is:

http://asbl.wi-ol.de/sesoa/assemblage/Validation
69

 The predicate here represent a relation called: “hasMember” between an assemblage and a registered

Web Services. This relations has the ID 4 and its actual value is http://asbl.wi-ol.de/sesoa/hasMember
70

 The object here represent a Web Service called: “DecimalValidation” that has the ID 51 and its actual

value is: http://asbl.wi-ol.de/sesoa/services/DecimalValidation

Chapter 7 - Prototypical Implementation and Evaluation

150

gate through the whole website. He/she has the possibility to show the product list be-

sides logging into his/her account. If logged in, he/she is able to view the customer cen-

ter in which the functionality to show the previous completed orders is provided.

Fig. 7.23: The Business Case Web Application

Independent from the status of login, all the website’s visitors are able to fill the shop-

ping cart by choosing items from the products page. The cart is accessible using the link

placed in the header on the right side. If a user filled the cart, he/she is able to start the

checkout process. The first step then is to prove if the user already logged in using an

existing account. If not, the system asks the user to login or to create a new account. The

next step is to let the user choose invoice and shipping addresses. The possibility to add

more invoice or shipping addresses is also possible. Selecting a shipping service from a

list of available shipping services is then provided. The system gives then the customer

the estimated delivery time and fees for each selected shipping service. After that, the

user should select one of the system’s payment methods. These methods request input

data from the customer like credit card or bank account data. Upon providing the system

with the needed data, the final possibility to prove the order before making it final is

given to the customer. By accepting the current terms and conditions of the Website

with a final click on the proceed button, an order is placed in the system. The customer

is then able at any time to see the history of his/her orders besides order status using the

customer center. While executing the selling process, several updates will be applied to

Chapter 7 - Prototypical Implementation and Evaluation

151

the order. The customer center gives the user the opportunity to get an overview about

the updates of his order. The same updates are sent to the user email address as well.

Fig. 7.24: Business Case GUI Structure

The implementation of the abovementioned GUI has been realized using ASP.NET and

VB.NET. One of the most interesting features in developing this GUI is that the Web

front end has no direct database connection. To read and process data, it uses a Web

Service imported from the shop component. Therefore, database changes do not affect

the changes on the Web front end. As a consequence, the whole front end design can be

easily substituted with another one that will use the same Web Service accessing the

system’s database. The process of requesting any data starts from the browser of a po-

tential customer. It actually starts with a user request, for example viewing the product

list. The IIS handles the received HTTP request and forwards it to the called ASP.NET

page. Fulfilling the user request, the ASP.NET page calls the implemented VB.NET

class that sends a request to the Web Service that has a connection to the database to

retrieve the product information. To realize the shopping cart functionality, .NET ses-

sion objects are used. Using session objects makes it possible to transport user given

inputs over the whole Web application’s pages.

Chapter 7 - Prototypical Implementation and Evaluation

152

Fig. 7.25: The Customer Center

ASP.NET provides master pages and site navigation feature in which the whole layout

is written in one master file that is included in the header of every page. Master pages

and site navigation feature allows defining several content placeholders that can be

filled by every webpage separately.

Every registered customer has the possibility to access his customer center that is direct-

ly shown to the user after a successful logging. It gives the user an overview of his/her

entered addresses and shows him/her a list of previous orders as depicted in Figure 7.25.

7.3.3.2 The Shop Component

The shop component has two roles in the selling business process. On the one hand, it

acts as a backend for the website component (the front end) and on the other hand it

handles order proceeding after a customer has created a new order by communicating

with the coordination component. This is the only component that has direct connection

to the system’s database and is therefore responsible for all database transactions. It

offers the other components a variety of Web Services that read from or write data into

the database. This component is implemented in three phases:

1. Design a database model specific for the selling business process

2. Implementation of this database model and filling it with exemplary data

Chapter 7 - Prototypical Implementation and Evaluation

153

3. Implementation of all necessary Web Services needed for the communication

with the other component’s workflows

The designed database model is shown in Figure 7.26 as UML class diagram. The cen-

ter of this model is an order. An order is connected to a list of items. Each item in an

order has a specific price. Prices are always valid for a specific period of time. If the

price for an item needs to be changed, a new entry to the price table has to be added and

the validation period for the old price must be changed. Furthermore an order is con-

nected to a customer. Each customer consists of several attributes like for example the

login email address and password. A customer is also connected to one or more ad-

dresses. An address can be either a billing or a shipping address. The address table is

connected to the shipping and payment tables. The shipping represents a shipment of an

order and therefore has attributes like shipping date and tracking link. Shipping is con-

nected to one or more shipping types that can be for example international shipment via

DHL or national shipment via Hermes.

Fig. 7.26: The Database Model for the Selling Business Process

Chapter 7 - Prototypical Implementation and Evaluation

154

The payment table represents a payment for an order and therefore has attributes like

payment date. Each payment is connected to one or more payment companies. A pay-

ment company offers payment methods like for example MasterCard or bank transfer.

Depending on the chosen payment method, an order can be connected to credit card or

bank transfer payments. If the customer has chosen to pay via MasterCard, American

Express, or VISA, his credit card information will be stored in the credit card table. If

the customer wants to pay via direct debit, the bank debit table will contain his/her ac-

count information. The database model shown above is implemented using Microsoft

SQL Server 2008 R2 and its tables have been filled with exemplary values.

The last phase in the realization of this component was the implementation of its Web

Services. This component consists of 37 Web Service operations encapsulated in three

ASP.NET Web Services. Most of these operations are used for the communication with

the website component. Each time the website needs specific information or wants to

store specific information in the database, it calls an appropriate Web Service operation.

Table 7.9 lists all operations implemented at the shop component.

Tab. 7.9: The Web Service Operations of the Shop Component

Operation Name Description

GetItem Return an item object

ListAllItems Returns list of all items

AddItemToOrder Adds an item to the current shopping cart

CreateCustomer Creates a new customer

GetCustomer Returns a customer object

AuthenticateCustomer
Returns true value for a valid email/ pass-

word combination

GetCustomerOrders List all orders for a given customer

SendOrder
Sends an order to the coordination compo-

nent

CreateOrder Creates a new (empty) order

GetOrder Returns an order object

GetCart Returns the current cart content

GetOrdersCustomer Returns the customer info of a given order

GetOrdersShipping Returns the shipping info of a given order

GetOrdersPayment Returns the payment info of a given order

GetOrdersPaymentCompany
Returns the payment company of a given

order

GetOrdersShippingType Returns the shipping type of a given order

GetOrdersBankdebit Returns the bank debit info of a given order

GetOrdersCreditcard Returns the credit card info of a given order

SetOrderPaymentToBankDebit Sets the payment method to bank debit

SetOrderPaymentToMasterCard Sets the payment method to MasterCard

SetOrderPaymentToVisa Sets the payment method to Visa card

Chapter 7 - Prototypical Implementation and Evaluation

155

SetOrderPaymentToAmericanExpress
Sets the payment method to American Ex-

press card

SetOrderPaymentToBankTransfer Sets the payment method to bank transfer

SetOrderShipping Sets the shipping for a given order

GetAvailableShippingTypes
List the available shipping types for a list of

items

GetShippingType Returns the shipping type object

GetCurrentItemPrice Returns the current price for an item

GetOrderItemPrice Returns the price of an item in a given order

GetOrderPrice Returns the price for an order

GetOrdersPaymentPrice Returns the payment price of an order

GetOrdersShippingPrice Returns the shipping price of an order

GetPaymentPrice
Returns the current price of using a pay-

ment method

GetShippingPrice
Returns the current price of using a ship-

ping type

CreateCustomerAddress Creates a new address for a given customer

ListCustomerAddresses
Returns all addresses associated to a given

customer

GetShippingAddress Returns the shipping address of an order

GetInvoiceAddress Returns the invoice address of an order

GetAvailabilityDate

Returns the date when an item will be

available (or the current date for items al-

ready available in stock)

GetAmount
Returns the amount of a specific item avail-

able in stock

SetShippingTrackingLink Sets the order’s tracking link

SetShippingDate Sets the order’s shipping date

SetPaymentDate Sets the order’s payment date

An example of such operations is the “ListAllItems” Web Service operation that reads

from the database. It reads all information from all products in the database including

their current price. It is invoked when the customer wants to see all offered products in

the shop. Another Web Service operation example of writing data in the system’s data-

base is the “CreateCustomer”. When a customer fills in the registration form his/her

information, this operation is invoked to add a new entry to the customer table. Upon

creating a new order, the website invokes the “SendOrder” Web Service operation. It

reads all information from the order table and sends them to the coordination compo-

nent. While the coordination component processes an order, it calls three other Web

Service operations. These operations were implemented to set the order’s payment date,

shipping date, and tracking link so that the customer is able to track his/her order.

Chapter 7 - Prototypical Implementation and Evaluation

156

7.3.3.3 The Logistics Component

This implementation of the logistics component handles mainly all interactions with the

stock of the online shop using workflows. All workflows in this component are imple-

mented as workflow services and published in the SESOA semantic service repository.

Therefore, these workflows can be discovered and invoked as Web Services. These

workflows are registered in the “Logistics” assemblage in the SESOA semantic service

repository. RDF queries can be executed on this repository using “Twinkle” tool based

on the assemblage name, the service (workflow service) name, or the assemblage-

service relation to retrieve the workflows’ information. Table 7.10 lists the implemented

workflows in the logistics component indicating the workflow name and a short descrip-

tion.

Tab. 7.10: Implemented Workflow Services in the Logistics Component

Name Description

CreateShipment The main logistics workflow for shipment process

GetAmount Returns the amount of a specific item available in the stock

GetAvailabilityDate Returns the date when an item will be available (or the current

date for items available in the stock)

GetLongTermAmount Returns the amount of an item available in the stock plus the

amount of the company orders for this item

GetOpenPurchases Returns the company orders that are currently pending waiting

for the ordered items to arrive to the stock

PurchaseItems Creates a new company order to replenish the stock

The main functions implemented in this component include: adding and removing items

from the stock, marking items as reserved, preparing items for shipping, and placing

item orders to replenish the stock. The logistics solution is split into three projects: the

logistics main project, the logistics client project, and the logistics policy project.

 The Logistics Main project represents the main logic of the entire logistics solu-

tion. It contains workflows and services that prove the availability of an item in

stock and determine the estimated delivery date of that item if it is out of stock.

The biggest two workflows: “CreateShipment” and “PurchaseItems” are imple-

mented in this project. The “PurchaseItems” workflow is just used internally (by

the “CreateShipment” workflow and the logistics client project). “CreateShip-

ment” workflow is wrapped to a W3C-compliant standard Web Service to be

used internally in this project and externally by the other system’s components.

 The Logistics Client Project is implemented mainly to handle the online shop’s

logistics actions. For instance, it can be used to request the amount of an availa-

ble item in the stock. Furthermore, all the shop’s backbone functions are imple-

Chapter 7 - Prototypical Implementation and Evaluation

157

mented in this project. Examples of these functions include placing and pro-

cessing item orders to replenish the stock.

 The Logistics Policy Project represents a rule engine that decides whether the

stock has to be replenished or not. If it needs replenishment, item order needs to

be placed automatically. This project has been implemented using a predefined

activity called the “PolicyActivity”. It represents set of rules in which a rule

merely represents a constraint and an action to handle this constraint. The rules

(and the actions to handle these rules) to check the stock status have been creat-

ed in this project using this predefined activity.

7.3.3.4 The Payment Component

The payment component is internal billing system in this business case that issues in-

voices out of given data. In order to issue an invoice, the billing Web Service receives a

data set contains customer, product, shipping and payment details. Based on the data in

this data set, the total is calculated considering the price summation of all ordered items,

a possible discount added to the payment and shipping prices. The shipping, payment,

and discount are order-dependent details. Issuing an invoice is finished after the inclu-

sion of the order-dependent details. The sequence diagram in Figure 7.27 below illus-

trates the data flow in the payment component.

Source: Figure 24 in (Denker et al., 2011, p. 40)

Fig. 7.27: Dataflow in the Payment Component

Chapter 7 - Prototypical Implementation and Evaluation

158

After receiving order-dependent data, the coordination workflow in the coordination

component finalizes the data set and sends it to the payment component. The invoice is

then calculated and formatted successively. As a result the coordination workflow re-

ceives back the invoice formatted by the payment component as object. This object is

further processed by the coordination workflow and the invoice including this object is

sent as email body to the customer via the mail component. Table 7.11 lists all the Web

Service’s operations implemented at the payment component.

Tab. 7.11: The Web Service Operations of the Payment Component

Operation Name Description

DoInvoice Creates invoice out of given data set

GetPriceForItem Returns items price out of given data set

and for a given item ID. It is used by the

“DoInvoice” operation

BanktransferReceived Checks whether a transfer to the shop’s

bank account was received or not

CheckSchufa Checks whether customer’s bank account

is solvent or not

CheckMasterCard Checks whether customer’s MasterCard is

solvent or not

CheckVisaCard Checks whether customer’s Visa card is

solvent or not

CheckAmericanExpress Checks whether customer’s American Ex-

press card is solvent or not

WithdrawFromCreditCard Used to withdraw money from a specific

customer’s credit card.

WithdrawFromBankAccount Used to withdraw money from a specific

customer’s bank account

The Web Services operations that simulate the real financial institutions were imple-

mented as dummy external services. The business case Web application includes the

Visa, MasterCard, American Express, and bank debit services. The credit card operation

enables the shop to check whether a customer’s credit card is solvent. It enables the

shop to withdraw money from a customer’s credit card. The bank debit operation ena-

bles the shop to directly withdraw money from a customer’s bank account (direct debit).

It checks whether a bank transfer is received by a customer (advance payment) and

checks whether the bank account is solvent. The process of withdrawing money from a

customer’s bank account is depicted in Figure 7.28.

Chapter 7 - Prototypical Implementation and Evaluation

159

Source: Figure 26 in (Denker et al., 2011, p. 42)

Fig. 7.28: Payment using an External Web Service

As shown above, the coordination workflow from the coordination component calls the

external payment Web Service operation to make the withdrawing process from a cus-

tomer’s bank account. The coordination workflow passes the customer’s name, account

and bank numbers, the withdrawal amount and a reference string as input parameters to

process the payment.

7.3.3.5 The Shipment Component

The shipping component simulates the services provided by the external shipping com-

panies like DHL Express or Hermes. Its main responsibility is to inform these external

shipping companies to pick up ordered packages and deliver them directly to the cus-

tomers’ delivery addresses. This component provides only one Web Service called:

“CreateShipment”. This service implements shipment functions. It expects a customer’s

first name, surname, and delivery address besides shipping type (DHL or Hermes) as

input parameters for its operation. Based on these input parameters, the service gener-

ates a GUID71 shipping code that identifies the pick-up number for a specific order. For

each order, the service returns a shipping code and a tracking link back to the customer.

7.3.3.6 The Mail Component

The mail component provides a Web Service to send notifications via emails to the reg-

istered customers’ email addresses. These notifications are related to customers’ orders.

71
 GUID or the Global Unique Identifier is used in implementing the shipping Web Service to make sure

that each shipping code is totally unique and never repeated.

Chapter 7 - Prototypical Implementation and Evaluation

160

The implemented Web Service is called “SendMail” and it expects three input parame-

ters: the recipient’s email address, the subject and the body of the message. This Web

Service gets the values of the input parameters from the coordination component to con-

stitute the emails that will be sent to the customers. The implemented version of this

Web Service sends the message as text only. Other formats could be easy added when

desired. Due to security considerations, this component is only allowed to be called

from the other business case’s internal components. What is also needed to make this

service functioning properly is to set the internal system’s email configuration. The con-

figuration consists of the from email address, the email’s password needed to send an

email via SMTP72, the SMTP server, its port besides the option to use an SSL73 encrypt-

ed connection. Table 7.12 below shows the configuration used in implementing the mail

component.

Tab. 7.12: The Configurations for the Mail Component

Variable Value

From Email Address vlbaws@googlemail.com

Password ********

SMTP Outgoing Mail smtp.googlemail.com (use authentication)

Port for TLS/STARTTLS 587

Enable SSL True

One last thing to be mentioned is that the aforementioned configurations are hardcoded

within the implementation of the mail component. However, it could be easily stored

and loaded from any kind of configuration files like “.INI” or “.XML” files, or even

from a database.

7.3.3.7 The Coordination Component

The coordination component is the central component in this business case. The coordi-

nation component includes a long-running workflow called “Coordination”. This work-

flow actually coordinates the payment and shipment processes, returns the status up-

dates to the shop interfaces and notifies the customers about updates using the mail

component’s functions. The main interconnections among this component and the other

business case’s components are shown in Figure 7.29.

72
 SMTP or the Simple Mail Transport Protocol is the protocol used for transferring the online shop

emails via the Internet.
73

 SSL or Secure Socket Layer and its successor, TLS or Transport Layer Security are security protocols

to secure the communication over the Internet. In this work, the SMTP configuration enables the use

of TLS and SSL cryptographic protocols.

mailto:vlbaws@googlemail.com

Chapter 7 - Prototypical Implementation and Evaluation

161

Source: Figure 5 in (Denker et al., 2011, p. 17)

Fig. 7.29: Component Interactions in the Selling Business Process

The shop component sends asynchronous “CreateOrder” message to the coordination

component. This latter communicates with an external payment Web Service to check

the validity of the customer’s payment data. If this checking is successful, the coordina-

tion component asks the invoice component to issue the invoice and waits for acknowl-

edgment from the payment service. The coordination component then asks the mail

component to notify the customer that the payment was successful and creates a pickup

request to be sent to the logistics component. Upon successful product shipment, the

coordination component asks the mail component to notify the customer that the ship-

ping process started providing the tracking link and the shipping date at which the or-

dered product has been shipped.

The “Coordination” workflow and the other system’s workflows have a connection to

the SESOA semantic service repository using the “Twinkle” query tool. They firstly

have to know the assemblage in which the desired Web Service is registered. This is

easily done by discovering the assemblages in the SESOA main Web application GUI

(see Section 7.2.1.2). After that, “Twinkle” tool is used as described before in Sec-

tion 7.3.2 to apply queries to the SESOA repository’s URL (in which the RDF state-

ments are published) to retrieve the Web Services’ information. The “Coordination”

workflow has been implemented as a workflow service using WF 4.0. This means that

the workflow itself can be discovered and invoked as a Web Service. Moreover, it can

be registered in an assemblage and published in the SESOA semantic service repository.

Chapter 7 - Prototypical Implementation and Evaluation

162

Most of the activities in the system’s workflows have been realized as Web Services as

well. This method of implementing this business case using a mixture of workflow ser-

vices and Web Services has been decided to take as much benefit from the SESOA pro-

totypes as possible74.

Source: Figure 6 in (Denker et al., 2011, p. 18)

Fig. 7.30: Coordination Workflow

The activities of the “Coordination” workflow are depicted in Figure 7.30. This work-

flow starts by checking the payment details provided by the customer. The already im-

plemented prototype enables either bank transfer or credit card payment. If the payment

data provided by the customer for one of these two methods are wrong or invalid, the

workflow stops executing. Otherwise and based on the payment method, the invoice

will be created and sent to the customer. Upon payment, the customer will be notified

that the payment process was successful. Finally, the workflow initiates the shipment

process and notifies the customer as soon as this process is finished.

Upon placing an order, the first action to be done before executing the “Coordination”

workflow is collecting the order’s different business objects: address, shipping type,

bank debit, credit card, customer info, item, payment type, payment service, price, pur-

chase order, and shipping.

74
 The most important advantage from this decision is to achieve the highest degree of system reusability.

Chapter 7 - Prototypical Implementation and Evaluation

163

Source: Figure 18 in (Denker et al., 2011, p. 34)

Fig. 7.31: Part of the Coordination Workflow - Payment Notification

Figure 7.31 depicts a part of the WF “Coordination” workflow that is responsible for the

payment notification. Before that, the first step in this workflow is to check the payment

method of the current order needed to collect the money from the customer in order to

pick up the order for shipment. Afterwards the “PaymentRequest” custom activity is

invoked (see the figure above). This activity is imported from the payment component

and returns a payment object. Based on this object the workflow is able to notify the

customer about the receipt of the money. Customer notification is done through the in-

vocation of the “SendPaymentMail” custom activity. This activity communicates with

the mail component and sends an email to the customer including the payment details.

The “SetPaymentDate” custom activity imported from the shop component is then in-

voked to update the payment date in the database. After executing this activity, the cus-

tomer is able to see the payment information in the customer center GUI of the website.

Chapter 7 - Prototypical Implementation and Evaluation

164

Subsequently, the next activity to be invoked in this workflow is the “CreateShipment”

activity imported from the logistics component.

Source: Figure 19 in (Denker et al., 2011, p. 35)

Fig. 7.32: Part of the Coordination Workflow - Shipment Notification

Figure 7.32 shows basically how the WF “Coordination” workflow waits for the re-

sponse of the “CreateShipment” custom activity. Within a while loop, the “ShipmentIs-

Prepared” activity imported from the logistics component is invoked. This activity

checks the current state of the order shipment and it gets called repetitively until it re-

turns that the package has been sent. Afterwards, the workflow continues executing by

sending a shipping notification to the customer using the “SendShippingMail” activity

imported from the mail component. This step represents the end of the coordination

workflow and thus the end of the selling business process.

7.4 Evaluation

Based on the research methods presented in Chapter 4, this section gives the final dis-

cussion about the SESOA concept evaluation in different business domains. The last

two phases in that research process are the evaluation and communication. This section

gives an overview of how SESOA concept has been applied on an industrial scale.

Chapter 7 - Prototypical Implementation and Evaluation

165

Moreover, this section also illustrates how the concept has been communicated with

other researches as part of the evaluation process.

Besides the implemented business case (see Section 7.3), SESOA approach has been

applied to Corporate Environmental Business Information Systems (CEMIS) and on-

demand business intelligence research domains. Furthermore, a workshop had been

conducted in the company “CeWeColor75 AG & Co.” to potentially apply the SESOA

prototypical implementation in one of its organizational units. However, before evaluat-

ing the approach in the aforementioned business domains, set of questions need to be

answered:

 What requirements are already designed, covered and implemented?

 What artifacts in the system have particular importance?

 How does the prototype change from its previous versions?

 Which elements of other partial subsystems are affected by changes on a particu-

lar artifact?

 What percentage of completion for the implementation can be adopted based on

outcomes-objectives relations?

The following subsections try to answer these questions and depict how SESOA ap-

proach can be evaluated in different business domains.

7.4.1 Corporate Environmental Management Information Systems

This section illustrates the applicability of the SESOA approach to CEMIS research

field from both practical and scientific points of view. The concept is applied to CEMIS

project called: “IT-for-Green”. It is also communicated to another project called: “Or-

ganizations’ Environmental Performance Indicators” and to collaborative CEMIS in

general. The following three subsections introduce the projects and the ideas behind

collaborative CEMIS and shows how SESOA concept is applied to or can be applied to

them.

7.4.1.1 IT-for-Green

All the details described here in this subsection are derived from the publications: (Rapp

et al., 2011; Marx Gómez et al., 2011; Gräuler et al., 2012, 2013). IT-for-Green (Next

75
 http://www.cewecolor.de/de/home.html

Chapter 7 - Prototypical Implementation and Evaluation

166

Generation CEMIS for Environmental, Energy and Resource Management)76 is a funded

by the European Regional Development Fund (grant number W/A III 80119242) in the

period from April 2011 till October 2014.

This project is considered related to the CEMIS research domain. It aims at establishing

open source software modules that are able to deal with current stakeholder demands.

Moreover, these modules have to be flexible and adaptable for any of these stakehold-

ers’ future demands. The core approach behind this project is developing a Web-based

software using service-oriented platform that handles the generation process of struc-

tured reports besides supporting the required company-specific business processes in

this software. This project represents actually one of the ideal places to prove the ap-

plicability of SESOA approach.

The resulted system from this project will integrate three modules that map any product

life cycle from input (energy efficiency measurement), going on with transformation

processes (production and green logistics), ranging up to the output side (company

communication and sustainability reporting) (Rapp et al., 2011, pp. 574–579; Marx

Gómez et al., 2011, p. 19). A previously accomplished feasibility study has already il-

lustrated a list of requirements to achieve this (cf. Teuteberg & Marx Gómez, 2010).

Similar to SESOA layered architecture illustrated in Chapter 6 (Section 6.1.1) the coun-

terpart initial architecture of CEMIS next generation that will result from the IT-for-

Green project has been designed. This architecture is depicted in Figure 7.33.

This figure shows that the CEMIS layered architecture is composed of five layers.

These layers are: presentation, service, process, data and data sources layers. The

presentation and data sources layers do not belong directly to CEMIS architecture and

therefore they are detached by hatched lines in the above figure. Information flows and

function calls are indicated by the directed lines. The presentation layer primarily repre-

sents the system’s GUI by which users can login to the system via different devices

(computers, tablets, smart phones…). User authentication is required while logging in to

the system. This authentication is part of the access control located in the service layer.

Based on user’s rights, a list of workflows will be provided. These workflows are entire-

ly managed by the workflow management system (the process layer). Some details

about CEMIS workflows are explained in (Bremer, Mahmoud, & Rapp, 2012).

Similar to SESOA, many workflows’ activities are implemented using Web Service

technology. The service mall in Figure 7.33 belongs to the service layer and represents a

traditional Web Service directory in which Web Services are published and discovered

by service consumers. The step of executing workflows is initiated by the user. After-

wards, the workflow management system discovers the service mall to fetch a list of

Web Services required to execute the workflow. These Web Services are provided ei-

76
 Information about the IT-for-Green project is available online at: http://www.it-for-green.eu

Chapter 7 - Prototypical Implementation and Evaluation

167

ther externally by authorized service providers or internally by the system’s modules

(located in the service layer).

Source: Figure 3 in (Gräuler et al., 2013)

Fig. 7.33: CEMIS Next Generation Layered Architecture

As can be seen in the above figure, CEMIS next generation has three modules:

 Module 1 or the “Green IT”: This module captures and automatically measures

energy consumption of different ICT77 realized by data centers;

77
 ICT stands for Information and Communication Technologies.

Chapter 7 - Prototypical Implementation and Evaluation

168

 Module 2 or the “Green Logistics and Sustainable Product Development”: This

module provides functions for automatic determination of CO2-emissions along

the supply chain;

 Module 3 or “Sustainability Reporting and Communication”: This module sets

up a Web-based reporting solution using the SOA paradigm.

Authorized users in each of the abovementioned modules design and implement differ-

ent domain-related Web Services and applications in a straightforward manner. This

means that, each module has embedded domain-specific knowledge that is managed by

the domain experts (Gräuler et al., 2013).

The workflow management system uses the services developed by the abovementioned

modules. As can be seen in Figure 7.33, the workflow management system is connected

to the so-called: “Event Engine”. The event engine represents the system’s monitoring

tool by which different indicators can be calculated to capture the status of different

tasks of the system’s modules. Since this engine is not thematically related to SESOA

concept, it will not be further explained. However, further details about the event engine

are explained in (Rapp & Bremer, 2012).

Via data access object, the workflow management system is connected to the CEMIS

database system. This database system composed of the CEMIS databases namely: the

core database, module-specific, services, and workflows. Moreover, the system can be

also connected and integrated to other external resources like ERP, SCM… via a data

access object too.

SESOA reference architecture had been investigated to choose the proper components

that can be transferred to the CEMIS next generation architecture. After defining the

general requirements for the IT-for-Green project, it has been decided to adapt some of

the components of the SESOA reference architecture’s to design the project’s service-

oriented infrastructure. These components include: the consumer system, the provider

system and the service repository (the green service mall). Moreover, a workflow man-

agement system will be applied to the CEMIS next generation. The difference here from

SESOA is that an open source workflow system will be applied to the CEMIS next gen-

eration instead of the Microsoft Windows Workflow Foundation utilized in SESOA. It

had been decided also that all the business processes included in the resulted software

from the project will be implemented as workflows with environmental context. These

workflows are designed to include activities implemented as Web Services. These Web

Services will be published in the system’s repository that is called “Service Mall”.

As a conclusion, SESOA components had been seen as the basis to create the project’s

service-oriented infrastructure that integrates its three modules. This resulted system

from the IT-for-Green project enables its users based on their rights and roles to access

its green service mall to discover and invoke its Web Services. The user management

has been considered as a clear requirement in designing the system’s database schema.

Chapter 7 - Prototypical Implementation and Evaluation

169

The semantic part of the SESOA reference architecture is not seen as part of the proto-

types resulted from the project. However, the RDF semantic enrichment of the resulted

software from the IT-for-Green project can constitute an outlook for a potential exten-

sion of the system.

7.4.1.2 OEPI

The details described here in this subsection are derived from the publication: (Meyer-

holt, Mahmoud, & Marx Gómez, 2011) that tried to find the link between SESOA con-

cept and the European financed OEPI project. This section will firstly introduce the

OEPI project and then gives a brief explication of how SESOA concept can be applied

to it.

Since most sustainability reports are handled in a one shot process to produce an annual

report for example, the environmental information managed by a CEMIS stays normally

unused in the daily business tasks improvement (e.g. production or the procurement

process of businesses). To overcome this shortcoming, the EU funded the research pro-

ject “Solution and Services Engineering for Measuring, Monitoring and Management of

Organizations’ Environmental Performance Indicators” (OEPI) project78. This project

aims to improve the traditional CEMIS by e.g. reintegrating Environmental Perfor-

mance Indicators (EPIs) into enterprise systems. Doing that improves directly the envi-

ronmental impact of the product design or the procurement process by improving the

overall environmental footprint of a company (Meyerholt et al., 2010).

OEPI architecture relies upon the SOA approach and is composed of many separate

components and subsystems. This architecture is shown in Figure 7.34. As can be seen

from the figure below, there are three different types of clients that utilize different

types of components. These clients are ranging from the OEPI client application to mo-

bile clients to mashups & widgets and the components are exposed as Web Services.

They are either directly embedded into the OEPI platform which serves as the Service

Runtime or they access the OEPI platform through a service integration layer. What is

important to observe here is the data adaption layer. This layer is responsible of access-

ing different types of data (mainly EPIs) that are coming from various data sources.

Therefore, the data adaption layer represents a bridge that can be utilized by OEPI’s

components to arbitrary access underlying data sources.

The exchanged data are mainly EPI-based data. However, it can also be in structure

forms like for example hierarchies, stakeholder information or even documents. It has

been suggested in this project to create a mediator to deal with this diverseness of in-

formation in terms of data access and interpretation. This mediator serves as the main

component in the data adaption layer (see Figure 7.35). The overall design in this pro-

78
 More details about OEPI project are available online at: http://www.oepi-project.eu/

Chapter 7 - Prototypical Implementation and Evaluation

170

ject is largely influenced by the structure of an ontology used for describing the EPIs

main aspects.

Source: Figure 1 in (Meyerholt et al., 2011, p. 303)

Fig. 7.34: Overview of OEPI’s Architecture

The figure below depicts the data application layer in the project. OEPI components are

represented in the upper right corner. These components just request to consume a spe-

cific EPI (and its associated data structures) from an EPI registry. The registry looks up

the desired information needed to create a specific request to the data adaption layer that

provides the EPI in the backend. Moreover, this registry may provide a thin layer of

caching in order to reduce the traffic needed to retrieve the EPI again from its sources. It

is advisable to distinguish EPIs using a unique RDF Identifier. This RDF tuple should

be attached to the requested EPI in the EPI registry to have unique mapping (Meyerholt

et al., 2011, p. 304). This is another place where SESOA concept can be used.

As can be seen in Figure 7.35, the EPIs, its data sources, and the accompanying metada-

ta will be described by the OEPI’s core ontology. Using the EPI’s related RDF tuple,

the mediator component is able to lookup how to access the specific EPI data by having

its own resource repository. The mediator then decides how to handle that specific type

of resource. The access to the data itself must be handled in a plug-in manner for each

type of resource. For example, such a plug-in may provide the mediator with extracted

data values of: a document (e.g. PDF file), an Excel spread sheet, databases in general,

or Web Service provided data.

Chapter 7 - Prototypical Implementation and Evaluation

171

Source: Figure 2 in (Meyerholt et al., 2011, p. 304)

Fig. 7.35: The OEPI’s Data Adaption Layer

Another approach had been exploited in the data adaption layer is the application of a

data filter chain to the extracted data. A variety of data filters can be applied to the EPI

values. These filters may include:

 Data Cleaning: This filter is used to remove erroneous or unneeded data;

 Data Standardizing: This filter is used to recalculate the gathered values to have

for example a common unit or to standardize the percentage values to values be-

tween from 0 to 1;

 Data Optimization: This filter is used to complete tasks like for example sorting

data or reordering them to improve the performance in the later processes.

Since there is no common agreement in handling environmental performance indicators

across available software systems, OEPI project leverages achievements of the field of

Semantic Web technologies to overcome this shortcoming. This is exactly the place

where SESOA reference architecture can be seen and considered as a potential architec-

ture for delivering semantics to handle such a shortcoming.

As mentioned before in this section, most of the EPIs in the OEPI project are realized as

Web Services. From the service provider’s perspective, these services can be registered

in desired assemblages in SESOA framework to constitute RDF statements. This means

that the relations between the EPIs services and the SESOA assemblages will be seman-

tically annotated. On the other side and from a consumer’s perspective, the objects in-

Chapter 7 - Prototypical Implementation and Evaluation

172

cluded in the Web Service request will be stored in semantic dictionaries that are linked

with the assemblages using similar RDF statements as the one used by assemblages-

EPIs relations. The matchmaking process between the request objects and the service

capabilities is done using the RDF annotations between the “semantic dictionary - as-

semblage” and the “assemblage - Web Service” relations. The result will make the

proper data source available to the consumer if these sources are available.

One last thing to be mentioned here in this section is that the evaluation of SESOA in

OEPI project is considered more as research-oriented evaluation. The details explained

in this section were communicated to the scientific community as a peer-reviewed paper

in the 5
th

 international symposium on Information Technologies in Environmental En-

gineering ITEE 201179 that took place in Poznan, Poland from 6-8 of July 2011.

7.4.1.3 Collaborative CEMIS

All the details described here in this subsection are derived from these two publications:

(Allam, Mahmoud, & Marx Gómez, 2011; Allam, Mahmoud, Marx Gómez, et al.,

2011). The main goal behind the collaborative CEMIS is firstly to overcome the short-

coming of having rare use of CEMIS in the German-speaking region and secondly to

strengthen the efforts of having collaborative work among companies to gain the bene-

fits of industrial symbiosis. Being based on Web Services, collaborative CEMIS pro-

vides powerful integration of environmental applications and data. Instead of being

connected to several dissimilar environmental applications, Web Services-enabled col-

laborative CEMIS solution provides a medium by which these heterogeneous applica-

tions can communicate.

Before explaining how SESOA can be evaluated on collaborative CEMIS, brief intro-

duction about this latter is quite necessary. A collaborative CEMIS concept is exempla-

ry developed to control the usage of hazardous materials. Based on the German law80 on

chemical substances, enterprises that deal with hazardous materials have to provide pre-

ventive measures and up-to-date information about it. To achieve that, a register of haz-

ardous materials is required. The important data needed are:

 The storage place and quantity

 The utilization place

 Instruction for use81

79
 More information about this symposium is available online at: http://www.itee2011.put.poznan.pl/

80
 Further details can be found in the German Hazardous Material Law, Paragraph 14-3-B.

81
 The Instruction for use is normally delivered as a document. This document should be checked at least

once every year.

Chapter 7 - Prototypical Implementation and Evaluation

173

 Risk assessment82

 The danger classification for human, animals, and environment.

Every company should normally regulate the storage and utilization information. All

other data are normally company independent. Therefore, a network of companies can

give an effort to manage this. To make the idea more clear assume that three companies

work with some hazardous materials. Instead of the situation that each company updates

its data alone, applying a central data storage approach helps to reduce the efforts to

manage the data that must be updated yearly. Moreover, it gives these companies better

opportunities to exchange information (Allam, Mahmoud, Marx Gómez, et al., 2011).

One possible way to realize the collaborative CEMIS concept is to realize most of its

functionalities as Web Services and orchestrate these services in form of workflows. For

this purpose SESOA sounds a good candidate. Figure 7.36 represents the realization of

Collaborative CEMIS (CCEMIS) using SESOA system. By relying on the workflow

system (processing system), the market best practices can be used by storing workflows

in the database system. The workflow system is linked to the collaborative CEMIS con-

sumer and provider systems. Consumer requests’ can be annotated as RDF objects.

Source: Figure 1 in (Allam, Mahmoud, & Marx Gómez, 2011, p. 186)

Fig. 7.36: Collaborative CEMIS Realization using SESOA

The services supplied by the collaborative CEMIS providers are registered in desired

assemblages in the assemblage unit. These assemblages are annotated as RDF subjects.

The assemblage unit links these subjects and objects to compose RDF statements. These

82
 Risk assessment is normally delivered in form a work sheet (document). It should be also checked at

least once every year.

Chapter 7 - Prototypical Implementation and Evaluation

174

statements are then published in the SESOA semantic service repository and made

available to all providers.

Using SESOA concept in collaborative CEMIS can enable the sharing of bigger amount

of data taking into consideration that the identities of the collaborative CEMIS players

must be hided if requested. In this way, these players can hide their identity or reveal it

depending on their policies and the sensibility of their data values.

The evaluation of SESOA in collaborative CEMIS is also considered more as research-

oriented evaluation. The details explained in this section were communicated to the sci-

entific community as two peer-reviewed papers. The first paper: (Allam, Mahmoud, &

Marx Gómez, 2011) was presented in the 5
th

 international symposium on Information

Technologies in Environmental Engineering ITEE 2011 that took place in Poznan, Po-

land from 6-8 of July 2011. And the second paper: (Allam, Mahmoud, Marx Gómez, et

al., 2011) was presented in the EnviroInfo 201183 conference that took place in Ispra,

Italy from 5-7 of October 2011.

7.4.2 On-Demand Business Intelligence

The details on how SESOA can be evaluated in the on-demand business intelligence

systems are derived from the publication: (Mahmoud, Marx Gómez, et al., 2012). Be-

fore showing how SESOA can be evaluated in business intelligence domain, some

words about this latter are necessary. The current value of Business Intelligence (BI) for

companies is generally affected by two main improvements namely: the improvement

of process management and the improvement of operational processes.

BI systems are generally considered as an extension of a data warehouse that transfers

data from an operative system using online transaction processing (OLTP) towards a

decision support and reporting system via online analytical processing (OLAP). The

main idea behind BI constitutes a generic concept and a strategy that aims at supporting

the following fields: technology, users, and expert knowledge (cf. Marx Gómez, Raut-

enstrauch, & Cissek, 2009, p. 13).

This section presents a linkage between BI to service-oriented architectures in general

and SESOA specifically. BI applications can be considered as service consumers to the

services published in the SESOA semantic service repository. Therefore they can dis-

cover, select and invoke all services supplied by external providers published in this

repository. In this way, SESOA can fill the gap between SOA and BI concepts to enable

the delivery of the “on-demand” data as services in real time. These services can be

supplied from companies of any size. This can open the BI market to include SMEs

83
 Information about this conference is available at: http://www.ec-gis.org/Workshops/EnviroInfo2011/

Chapter 7 - Prototypical Implementation and Evaluation

175

besides huge enterprises to be potential resources of such services. The BI architecture

can be enhanced using SESOA semantic service repository as depicted in Figure 7.37.

Source: Figure 2 in (Mahmoud, Marx Gómez, et al., 2012)

Fig. 7.37: On-Demand BI enhanced by SESOA

By integrating SESOA semantic service repository in BI architecture the main potential

data processing can be facilitated using the available Web Services published in this

repository. Services can be discovered in this repository and eventually invoked when-

ever there is a need for a resource not available internally. Moreover, Web Services

published in this repository are annotated with RDF statements so that the proper data

can be retrieved at the right time to the right user. As described many times in this work,

the semantic annotation is applied to the relations between services and assemblages to

which they belong. Using SPARQL as an RDF query language, the BI application can

query the repository’s RDF statements to find the proper service based on the domain to

which it belongs (business domain). As a result, this will enhance the BI decision sup-

Chapter 7 - Prototypical Implementation and Evaluation

176

port process by enabling another service classification level (the semantic allocation of

services) besides the conventional service discovery techniques.

Data in BI systems are not just stored. Rather, the data must be collected, administered,

filtered, analyzed, and controlled. This whole data management chain requires high cost

of ownership in terms of hardware (storage sizes, network, etc.), software, and last but

not least human resources. For many businesses (especially start-ups and medium-

sized), these costs represent a real challenge. By introducing the BI-enhanced SESOA

system, SMEs can make use of data that can be retrieved from multiple external re-

sources without the traditional BI limitation of using just their in-house data.

Semantic service-enabled BI infrastructure will lead both SOA and BI concepts to a

new era. IT-for-Green project (see Section 7.4.1.1) represents a perfect place for the

realization of the BI-enhanced by SESOA concept. This project links analyzing and

reporting of environmental information via Web Services. One potential added value

from employing on-demand BI concept in this project is to administer the environmen-

tal sustainability reporting using BI functionalities. This will enable the processes of

analyzing and generating EPIs to be placed in sustainability reports. Such reports are

normally based on social, economic and ecologic aspects. The calculation of EPIs can

be mainly done with the help of the published Web Services in the SESOA semantic

service repository. All external service providers can offer their Web Services to be reg-

istered in this repository’s assemblages. This will enhance the usability of these services

by enabling other applications (in this case, the BI ones) to use it in a collaborative

manner. Examples of such services include: energy efficiency measurement, carbon

footprint measurement, eco balancing creation services…

To sum up, the main outcomes that can be harvested from merging BI and SESOA con-

cepts can be seen as follows:

 Opening the BI market to include SMEs as potential “on-demand” data sources

so that they don’t only use their in-house data, rather any kind of available data

supplied by external providers.

 Supporting the semantic annotation of BI-related Web Services’ relations as it is

applied in the SESOA prototype.

 Enriching BI ad-hoc reports with the “on-demand” data. These reports can also

be provided as Web Services published in the semantic service repository. This

will reasonably enhance the reusability of these services.

Last but not least, the evaluation of SESOA in BI domain is considered research-

oriented evaluation as well. The vision mentioned in this section was communicated to

the scientific community as a peer-reviewed publication: (Mahmoud, Marx Gómez, et

al., 2012). This paper was presented in the 20
th

 European Conference on Information

Chapter 7 - Prototypical Implementation and Evaluation

177

Systems, ECIS 201284 conference that took place in Barcelona, Spain from 10-13 of

June 2012.

7.4.3 CeWeColor AG & Co.

Another possible evaluation of the SESOA concept was the potential application of the

resulted prototype in the “CeWeColor85 AG & Co.” company. The CeWeColor AG &

Co. OHG is a company located in Oldenburg, Germany. Its main revenue is with the

production of digital images, CeWe Photo Books, personalized gifts, analog film devel-

opment and online printing. This company is the Europe's largest photo finisher. The

company has 12 photofinishing operations and over 2000 employees.

Since the company has already different applied information systems, it has been decid-

ed to conduct a workshop in the company to discuss the possibilities of applying the

SESOA prototypical implementations in one of its organizational units. Managers and

software developers were invited to this workshop. It was decided to have different key

staff from the company to have more deep discussion of the potential use of SESOA

resulted prototype and how it can be applied in the company.

The invited key persons to the workshop were namely as follows:

 Dr. Joachim Marz: The leader of IT department

 Dr. Peter Hartz: The leader IT Infrastructure department

 Mr. Herbert Nase: From the software development department

 Mr. Manfred Neugebauer: The leader of software development department

 Mr. Josef Tapken: from the production system department

The workshop was divided into two parts: the theoretical and the practical parts. In the

theoretical part, the SESOA reference architecture had been presented together with

short presentation of the used background information including SOA, Web Services,

and semantic annotations. Moreover, the main harvested outcomes behind SESOA had

been listed. After a short break, the practical part of the workshop took place. In this

part, the prototypical implementations resulted from this work had been demonstrated.

That included the main SESOA Web application with all its features including how to

manage assemblages and Web Services and how to administer the semantic service re-

pository. The implemented selling business process had been also demonstrated with

more insights of how it had been built on top of the SESOA concept.

84
 More information about ECIS 2012 conference is available online at: http://www.ecis2012.es/

85
 http://www.cewecolor.de/de/home.html

Chapter 7 - Prototypical Implementation and Evaluation

178

The discussion round took place after the presentation sessions of the abovementioned

two parts. The comments from the invited key staff were as follows:

 The company is having on its future plans a possibility to adapt new solutions

like the one presented in this workshop. However, due to time and budget limita-

tions, this couldn’t be done directly.

 There is a clear requirement to introduce semantics to the internal company’s da-

ta. However, they have just one central data repository and all the semantics

have to be applied to the data stored in this repository.

 The SESOA concept is good related to the major set of products the company

provides. This means that the possibility of applying SESOA concept to the in-

ternal departments is fairly needed.

 There was also a discussion of how such concept can be applied on a larger

business model than the one presented in the business case. This means how to

make revenue of applying SESOA concept in the company. The answer was that

the company can develop its services to make more profits on an international

scale based on the Web Service technology.

 It has been agreed upon that the introduction of such new concept needs to be

accompanied with proper training of the main personnel who will interact with

its prototype.

Finally, this workshop had the conclusion that the best place where SESOA concept can

be applied is the customer care service department. This means that the entire custom-

er’s complains and opinions will be grouped based on a specific internal classification

in the SESOA assemblages. Different automatic responses will be also developed in

form of Web Services to be registered in these assemblages. This is side by side with

the automatic semantic annotation of the assemblages and Web Services relations. In

this way, the semantic service repository can be used also in this department. What

needs to be developed is a proper interface to this repository so that the requests of the

customers can be directly routed to the proper assemblages and then to the exact ser-

vices to provide the proper responses.

Other communication channels have been initiated with other companies inside and

outside Germany that are seen as potential collaborates to validate the prototype resulted

from this work. The requirements of such companies have to be taken into consideration

to adapt the SESOA prototype to make it applicable within their departments.

Chapter 7 - Prototypical Implementation and Evaluation

179

7.5 Summary

In this chapter, the main SESOA implementation details had been presented. The main

evaluation and design criteria together with the configurations of the adopted technolo-

gies were then listed. This chapter then gave detailed insights about the resulted SESOA

Web applications. Firstly, the SESOA main Web application had been demonstrated

with details of how to manage the assemblages, the Web Services, the semantic RDF-

enablement of their relations, and the semantic service repository. Set of validation ser-

vices had been implemented also in this Web application. The other explained Web ap-

plication in this chapter was the one implemented to realize the accompanying business

case. It explicated the main aspects of the ERP’s selling business process and how this

business process had been implemented on top of the SESOA concept.

The last section of this chapter was dedicated to the evaluation aspects of this work.

Five evaluation possibilities had been discussed. Three of these evaluation possibilities

were in the CEMIS research domain.

A potential application of the SESOA concept is to the business intelligence domain.

The details of how such evaluation can be done were explained at the end of this chap-

ter. The last section of this chapter was related to the practical evaluation of the SESOA

approach on an industrial scale. It has been explained that a workshop had been con-

ducted at CeWeColor AG & Co for this purpose.

The next chapter is the final chapter in this thesis. It sums up the main contribution that

can be harvested from this work and try to give an outlook of possible future directions.

Chapter 8 - Conclusion and Outlook

181

8 Conclusion and Outlook

This chapter is the final chapter of this work. It summarizes all the ideas, concepts and

approaches presented all over this dissertation. In addition, it provides the summary of

contributions and opens the direction for the future work directions that can be derived

from this research.

The first section of this chapter summarizes the conducted research with its major con-

tributions. The last section of this chapter gives some highlights on the potential future

directions like the introduction of a security pattern and a proposal of Web Service rec-

ommendation system.

8.1 Research Summary

The research conducted in this work explains all the related aspects of the lightweight

semantic-enabled enterprise service-oriented architecture. SESOA deals with semanti-

cally-annotated Web Services in an enterprise context and shows how these services can

be applied to different business environments.

One of the main purposes of SESOA is to group Web Services in assemblages based on

the actual domains to which they are related (business domains). The main outcomes

that can be harvested from using SESOA are:

 Open the market to include SMEs

 The high reusability of its components where each component can be seen as a

standalone reusable module

 Provision of a second classification level of Web Services based on the assem-

blage-Web Services relations

 The lightweight semantic annotation of Web Services relations using RDFS

statements

 The creation of workflow host services

 Web Service validation and evaluation

 The advertisement for new Web Services

This set of contributions has been explained in details throughout this dissertation.

Therefore, they have been listed here without lengthy details.

Chapter 8 - Conclusion and Outlook

182

8.2 Future Work Directions

This section tries to give some ideas for future works that can be derived from the con-

cept of SESOA. The main domain that is recommended to be researched in extending

this work is security. Moreover, a Web Service recommendation system for business

applications sounds also as an interesting research idea. These two potential research

entry points are discussed in the next two sections. The last section of this chapter is

dedicated to give a short overview of the conducted researches that were directly or in-

directly based on this work and wrap up this dissertation.

8.2.1 Security Pattern

Managing security in SESOA is still an open point. At the moment, SESOA resulted

artifacts enable just the embedded WS-Security extensions (Lawrence et al., 2006).

However when individual business processes intend to implement and include their own

security decision services, this will result in the duplication of information and admin-

istration among applications in the sense of identities and permissions.

One possible approach to unify the security support in SESOA is the usage of security

as a service model. It supports applications and services that require security functions

and don’t have them internally. International Standards Organization (ISO) had adopted

this model (ISO 10181) and implemented it through a Policy Decision Point (PDP) and

a Policy Enforcement Point (PEP). The equivalent SOA security as a service model is

depicted in Figure 8.1. As can be seen in the figure below, the Security Decision Service

(SDS) and the Security Enforcement Service (SES) are the counterparts of PDP and

PEP respectively. SDS is responsible of the decision at access control level for allowing

or denying access to specific resources. SES on the other hand is responsible of decision

enforcement. Such decision allows or denies access in reaction to the access control

decision requested by the decision service (cf. Williams, 2009, pp. 7–8).

Source: Figure 5 in (Williams, 2009, p. 7)

Fig. 8.1: Security as a Service

Chapter 8 - Conclusion and Outlook

183

The separation of enforcement and decision has the benefit of allowing different en-

forcement points to reuse the same decision point functionality. This will in turn support

the reuse of SESOA components accordingly. Applying security as a service model to

SESOA will move the decision service to its semantic service repository so that all

business processes that will use the enforcement service can call the decision service

and take benefit of its security functions (cf. Williams, 2009, p. 8).

By the extension of single decision-enforcement approach for SESOA, the SDS can be

seen as a service-based PDP that is placed in the semantic service repository to be in-

voked as implementation-independent service. Such service will be offered only as a

single service that can be replicated and distributed where it is needed. Such suggestion

is helpful to make SDS providing the PDP functionalities for all of the service enforce-

ment points that will be used in different business processes across enterprises.

When the SESOA semantic service repository will offer the SDS to the processing sys-

tem and the other components, the resulted security pattern will be similar to the one

depicted in Figure 8.2.

Fig. 8.2: SESOA Potential Security Pattern

In this pattern, the security administration will be centralized at the semantic service

repository level where all enforcement services will request for the SDS security func-

Chapter 8 - Conclusion and Outlook

184

tions. This decision to go to a centralized security pattern will be taken internally within

the enterprise. If the provision of services in an automated manner will serve the busi-

ness needs of the enterprise, then the SDS service can be configured to be called auto-

matically from the enforcement services. On the other hand, enterprises can still initiate

the security decision making via employees or contractors if it finds it suiting more to

its business needs.

The automated scenario is as the one depicted in the figure above where the task of in-

voking the SDS is done from the SES via the processing system. Therefore, it is the

business process designer’s decision to include the security service at design time. Fur-

thermore, if the semantic service repository will be globalized and can be accessed via

external systems, each business application that wants to invoke such SDS can send a

request via its SES to be permitted or denied based on some specific criteria that have to

be defined if such approach sees the light.

8.2.2 Web Services Recommendation System

Another possible future research entry point that can result from the work done in this

dissertation is developing a recommendation system for Web Services. Since the seman-

tic service repository can be made available internally in an enterprise or globally, it is a

very attracting idea to build a recommendation system for it.

This includes firstly building a catalogue of criteria needed to provide recommenda-

tions. This depends on where SESOA will be applied. However, a generic recommenda-

tion system is always favorable. It can be applied firstly to an open environment and

then adjusted to enterprises based on their requirements.

The design of such recommendation system has to be done after analyzing all of the

implemented business processes so that the algorithms needed to achieve recommenda-

tions can be initially trained. Moreover, it is always good practice to consult the busi-

ness process designers to have a holistic view of the business needs that will form the

requirements for building such system.

8.3 Wrap Up

Other possible future direction behind SESOA concept is the utilization of the Task

Parallel Library (TPL) along the prototypical implementation to scale up the system to

have a better performance on multi-core processors. From a semantic perspective, only

RDF statements have been used in the implementation of the system’s artifacts and oth-

er future work can enhance the semantic annotation to support higher level ontologies

like e.g. OWL.

Chapter 8 - Conclusion and Outlook

185

Many researches had been already conducted based on this work like (von der

Dovenmühle, 2009; Hasan, 2010; Denker et al., 2011; Neemann, 2012). The bachelor

work of (von der Dovenmühle, 2009) had the goal of applying validation to SESOA

services. The master work of (Hasan, 2010) dealt with applying a machine-to-machine

evaluation protocol to the services supplied in SESOA. The seminar work of (Denker et

al., 2011) had one major goal of realizing the accompanying selling business process

that had been built on top of SESOA concept. The master work of (Neemann, 2012)

focused on the comparison between object-oriented business process management, au-

tomatic building blocks, workflows, and service-oriented architecture approaches. The

result from this work was to point out the main differences between these approaches

and to give a recommendation on which approach is considered the “best” in different

business contexts. Furthermore, there are still ideas for two ongoing researches related

to this research. They will end in the mid of 2013.

To sum up this dissertation, the main focus was to present SESOA concept with an ac-

companying business case built on top of it. SESOA is a SOA-based architecture that

manages Web Services and semantically annotates their relations. Generally spoken,

SESOA enables the realization of business processes as Web Service-based workflows

to take as much benefit from the market’s best practices as possible. Moreover, one of

the main purposes behind SESOA is to group Web Services in assemblages based on

their actual business domain. All the details of the overall framework development had

been presented together with the implementation of an accompanying business case.

References

187

References

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M. T., Sheth, A., & Verma,

K. (2005). Web Service Semantics - WSDL-S. W3C, 7.

Alesso, H. P., & Smith, C. F. (2005). Developing Semantic Web Services. Natick, Mas-

sachusetts: A K Peters, Ltd.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns,

Buildings, Construction. USA: Oxford University Press.

Allam, N., Mahmoud, T., & Marx Gómez, J. (2011). Web Service-enabled Collabora-

tive Corporate Environmental Management Information Systems. In P. Go-

linska, M. Fertsch, & J. Marx Gómez (Eds.), Information Technologies in Envi-

ronmental Engineering: New Trends and Challenges (pp. 179–188). Presented

at the ITEE 2011, Poznan, Poland: Springer (Heidelberg).

Allam, N., Mahmoud, T., Marx Gómez, J., & Junker, H. (2011). A Central Collabora-

tive CEMIS. In EnviroInfo 2011 - Innovations in Sharing Environmental Obser-

vations and Information (pp. 683–691). Presented at the EnviroInfo Ispra 2011 -

25
th

 International Conference Environmental Informatics, Ispra, Italy: Shaker

Verlag.

Alwadain, A., Rosemann, M., Fielt, E., & Korthaus, A. (2011). Enterprise Architecture

and the Integration of Service-Oriented Architecture. In Proceedings of 15
th

 Pa-

cific Asia Conference on Information Systems (PACIS 2011).

Antoniou, G., & Van Harmelen, F. (2004). A Semantic Web Primer. The MIT Press.

Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S.,

Riemer, K., Struble, S., Takacsi-Nagy, P., & others. (2002). Web Service Cho-

reography Interface (WSCI) 1.0. World Wide Web Consortium (W3C). Retrieved

September 2, 2012, from http://www.w3.org/TR/wsci/

Armario, J. M., Ruiz, D. M., & Armario, E. M. (2008). Market Orientation and Interna-

tionalization in Small and Medium-Sized Enterprises. Journal of Small Business

Management, 46(4), 485–511.

Arsanjani, A. (2004). Service-Oriented Modeling and Architecture. IBM developer

works.

References

188

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd

ed.). Addison-Wesley Professional.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-

tin, D., McIlraith, S., McGuinness, D., & others. (2005a). Semantic Web Ser-

vices Framework (SWSF) Overview.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-

tin, D., McIlraith, S., McGuinness, D., & others. (2005b). Semantic Web Ser-

vices Language (SWSL). W3C Member Submission, 9.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-

tin, D., McIlraith, S., McGuinness, D., & others. (2005c). Semantic Web Ser-

vices Ontology (SWSO). W3C Member Submission.

Bean, J. (2009). SOA and Web Services Interface Design: Principles, techniques, and

standards. Morgan Kaufmann.

Bell, M. (2008). Service-Oriented Modeling: Service Analysis, Design, and Architec-

ture. Wiley.

Berners-Lee, T. (1998). Semantic Web Road Map. World Wide Web Consortium

(W3C). Retrieved August 22, 2012, from

http://www.w3.org/DesignIssues/Semantic.html

Berners-Lee, T. (2006). developerWorks interviews: Tim Berners-Lee. Retrieved from

http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html

Berners-Lee, T., & Cailliau, R. (1990). WorldWideWeb: Proposal for a HyperText Pro-

ject. World Wide Web Consortium (W3C). Retrieved August 27, 2012, from

http://www.w3.org/Proposal.html

Berners-Lee, T., Fielding, R., & Masinter, L. (2005). Uniform Resource Identifier

(URI): Generic Syntax. RFC 3986, IETF. Retrieved September 2, 2012, from

http://merlot.tools.ietf.org/html/rfc3986

Berners-Lee, T., & Hendler, J. (2001). Scientific Publishing on the Semantic Web. Na-

ture, 410, 1023–1024.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific Ameri-

can Magazine.

References

189

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., & Shah, R. (2005). Service-

Oriented Architecture Compass: Business Value, Planning, and Enterprise

Roadmap. IBM Press.

Bolton, F. (2002). Pure CORBA. SAMS publishing.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., & Orchard,

D. (2004). Web Services Architecture. World Wide Web Consortium (W3C). Re-

trieved August 22, 2012, from http://www.w3.org/TR/ws-arch/

Bratt, S. (2006). Emerging Web Technologies to Watch. W3C (MIT, ERCIM, Keio).

Retrieved from http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/

Braude, E. J. (2004). Software Design: From Programming to Architecture. J. Wiley.

Brehm, N. (2009). Föderierte ERP-Systeme auf Basis von Web-Services (PhD Thesis).

Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.

Brehm, N., Lübke, D., & Marx Gómez, J. (2007). Federated Enterprise Resource Plan-

ning Systems. In P. Saha (Ed.), Handbook of Enterprise Systems Architecture in

Practice (pp. 290–305). London, UK: IGI Global.

Brehm, N., Mahmoud, T., Memari, A., & Marx Gómez, J. (2008). Towards Intelligent

Discovery of Enterprise Architecture Services (IDEAS). Journal of Enterprise

Architecture, 4(3), 26–37.

Brehm, N., & Marx Gómez, J. (2005). Standardization Approach for Federated ERP

Systems based on Web Services. In Proceedings of the First International

Workshop on Engineering Service Compositions (WESC’05) (pp. 101–109).

Amsterdam, Netherlands: IBM Research.

Brehm, N., & Marx Gómez, J. (2007). Web Service-Based Specification and Implemen-

tation of Functional Components in Federated ERP-Systems. In Proceedings of

the 10
th

 International Conference on Business Information Systems (Vol. 4439,

pp. 133–146). Presented at the BIS 2007, Poznan, Poland: Springer-Verlag Ber-

lin Heidelberg.

Brehm, N., & Marx Gómez, J. (2010). Secure Service Rating in Federated Software

Systems Based on SOA. In C. A. Gutiérrez, E. Fernández-Medina, & M. Piattini

(Eds.), Web Services Security Development and Architecture: Theoretical and

Practical Issues (pp. 83–98). IGI Global.

References

190

Brehm, N., Marx Gómez, J., & Rautenstrauch, C. (2006). An ERP Solution Based on

Web Services and Peer-to-Peer Networks for Small and Medium Enterprises. In-

ternational Journal of Information Systems and Change Management (IJISCM),

1(1), 99–111.

Bremer, J., Mahmoud, T., & Rapp, B. (2012). Implementing CEMIS Workflows with

State Chart XML. In H. K. Arndt, G. Knetsch, & W. Pillmann (Eds.), EnviroInfo

2012 - Part 2: Open Data and Industrial Ecological Management (pp. 749–

757). Presented at the 26
th

 International Conference on Informatics for Environ-

mental Protection, Dessau, Germany: Shaker Verlag.

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation. Retrieved July 27, 2011, from

http://www.w3.org/tr/rdf-schema/

Brodie, M. (1992). The Promise of Distributed Computing and the Challenges of Lega-

cy Systems. In Advanced Database Systems (Vol. 618, pp. 1–28). Springer Ber-

lin / Heidelberg. Retrieved from http://dx.doi.org/10.1007/3-540-55693-1_29

Bussler, C. (2003a). B2B Integration: Concepts and Architecture (1 Edition.). Secaucus,

NJ, USA: Springer-Verlag New York, Inc.

Bussler, C. (2003b). The Role of Semantic Web Technology in Enterprise Application

Integration. IEEE Data Engineering, 26(4), 62–68.

Cabral, L., Domingue, J., Motta, E., Payne, T., & Hakimpour, F. (2004). Approaches to

Semantic Web Services: an Overview and Comparisons. In The Semantic Web:

Research and Applications: First European Semantic Web Symposium, ESWS

2004, Heraklion, Crete, Greece, May 10-12, 2004: proceedings (Vol. 1, pp.

225–239).

Cardoso, J., Hepp, M., & Lytras, M. D. (2007). The Semantic Web: Real World Appli-

cations from Industry (1st ed.). Springer.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K.

(2004). Jena: Implementing the Semantic Web Recommendations. In Proceed-

ings of the 13
th

International World Wide Web Conference on Alternate Track

Papers & Posters (pp. 74–83). New York, NY, USA: ACM.

References

191

Casati, F., & Shan, M. C. (2001). Models and Languages for Describing and Discover-

ing E-Services. In SIGMOD Conference 2001 Proceedings (p. 626). Presented at

the International ACM SIGMOD RECORD Conference on Management of Da-

ta, Santa Barbara, California, USA.

Celino, I., de Medeiros, A. K. A., Zeissler, G., Oppitz, M., Facca, F., & Zoeller, S.

(2007). Semantic Business Process Analysis. In Proceedings of the Workshop on

Semantic Business Process and Product Lifecycle Management (Vol. 251). Pre-

sented at the SBPM 2007, Innsbruck, Austria. Retrieved from http://ceur-

ws.org/Vol-251/paper6.pdf

Channabasavaiah, K., Tuggle, E., & Holley, K. (2003). Migrating to a Service-Oriented

Architecture. IBM DeveloperWorks.

Chappell, D. A. (2004). Enterprise Service Bus. O’Reilly Media, Inc.

Cheesman, J., & Ntinolazos, G. (2004). The SOA Reference Model. CBDI Journal.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., & others. (2001). Web

Services Description Language (WSDL) 1.1. W3C.

Cimpian, E., & Mocan, A. (2005). WSMX Process Mediation Based on Choreographies

(pp. 130–143). Presented at the 1st International Workshop on Web Service

Choreography and Orchestration for Business Process Management, Nancy,

France.

Clement, L., Hately, A., von Riegen, C., & Rogers, T. (2004). UDDI Version 3.0. 2.

UDDI Spec Technical Committee Draft. Retrieved August 9, 2011, from

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

Clements, P., Bachmann, F., Bass, L., Garlan, D., Merson, P., Ivers, J., Little, R., Nord,

R., & Stafford, J. (2010). Documenting Software Architectures: Views and Be-

yond. Addison-Wesley Professional.

Collins, M. (2009). Beginning WF: Windows Workflow in. NET 4.0. Apress.

Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., & Zuccalà, M. (2005). Speaking

a Common Language: A Conceptual Model for Describing Service-Oriented

Systems. In B. Benatallah, F. Casati, & P. Traverso (Eds.), Service-Oriented

Computing - ICSOC 2005 (Vol. 3826, pp. 48–60). Springer Berlin / Heidelberg.

Retrieved from http://dx.doi.org/10.1007/11596141_5

References

192

Conrad, S., & Turowski, K. (2001). Temporal OCL Meeting Specification Demands for

Business Components. In T. Halpin & K. Siau (Eds.), Unified Modeling Lan-

guage: Systems Analysis, Design and Development Issues (pp. 151–165). IGI

Global.

Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web Mining: Information and Pat-

tern Discovery on the World Wide Web. In Tools with Artificial Intelligence,

1997. Proceedings of the Ninth IEEE International Conference on (pp. 558–

567).

Cutter SOA Survey. (2008). Cutter Consortium, Benchmark Review Vol. 8, No. 1, Jan-

uary 2008, Graph 10, P. 25. Retrieved June 14, 2011, from

http://www.cutter.com.mx/pdfs/cbr0801.pdf

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES–The Advanced Encryp-

tion Standard. Springer.

Daigneau, R. (2011). Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional.

Dan, A., Johnson, R. D., & Carrato, T. (2008). SOA Service Reuse by Design. In Pro-

ceedings of the 2nd international workshop on Systems development in SOA en-

vironments (pp. 25–28). New York, NY, USA: ACM.

doi:10.1145/1370916.1370923

De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., König-Ries,

B., Kopecky, J., Lara, R., Oren, E., & others. (2005, June 3). Web Service Mod-

eling Ontology (WSMO). W3C Member Submission. Retrieved October 17,

2011, from http://www.w3.org/Submission/WSMO/

De Bruijn, J., Lausen, H., Polleres, A., & Fensel, D. (2006). The Web Service Modeling

Language WSML: An Overview. In Proceedings of the 3rd European Semantic

Web Conference, ESWC 2006, June 11-14, 2006 (pp. 590–604). Budva, Mon-

tenegro: Springer-Verlag Berlin Heidelberg.

De Giorgio, T., Ripa, G., & Zuccalà, M. (2010). An Approach to Enable Replacement

of SOAP Services and REST Services in Lightweight Processes. In Proceedings

of the 10
th

 International Conference on Current Trends in Web Engineering (pp.

338–346). Vienna, Austria: Springer-Verlag Berlin Heideberg.

References

193

Deeken, W., Eberhard, I., Grohmann,, M., Martens, A., Mesick, T., Peters, D., Schön-

bohm, T., Schwitschkowski, M., Stolarek, C., Thobe, A., Wang, Y., Wang,, Y.,

Wülpern, T., Xu, H., & Ziesenitz, A. (2007). The Report of the “Förderierte

ERP-Systeme auf der Basis von Web Services und P2P-Systemen” Project

Group. Oldenburg, Germany.

Denker, C., Gerken, C., Holtmann, R., Petersen, M., & Rummel, D. (2011). Handout of

the VLBA Seminar: SOA and Business Processes.

Dietz, J. L. G. (2006). Enterprise Ontology: Theory and Methodology. Springer Verlag.

Domingue, J., Fensel, D., & Hendler, J. A. (2011). Handbook of Semantic Web Techno-

logies (1st ed.). Springer-Verlag Berlin Heideberg.

Dreibelbis, A., Hechler, E., Milman, I., Oberhofer, M., van Run, P., & Wolfson, D.

(2008). Enterprise Master Data Management: An SOA Approach to Managing

Core Information. IBM Press.

Eastlake, D., & Jones, P. (2001). US Secure Hash Algorithm 1 (SHA1). RFC 3174.

Eekels, J., & Roozenburg, N. F. M. (1991). A Methodological Comparison of the Struc-

tures of Scientific Research and Engineering Design: Their Similarities and Dif-

ferences. Design Studies, 12(4), 197–203.

Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., & Senanayake,

R. (2005). The OWL-S Editor - A Development Tool for Semantic Web Ser-

vices. In Proceedings of the Second European conference on The Semantic Web:

research and Applications (pp. 78–92). Berlin, Heidelberg: Springer-Verlag.

doi:10.1007/11431053_6

Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and

Web Services. Prentice Hall PTR.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Pren-

tice Hall.

Erl, T. (2007). SOA: Principles of Service Design. Prentice Hall Press.

Erl, T. (2009). SOA Design Patterns (The Prentice Hall Service-Oriented Computing

Series from Thomas Erl). Prentice Hall PTR.

References

194

Farrell, J., & Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema.

W3C Recommendation. Retrieved September 13, 2012, from

http://www.w3.org/TR/sawsdl/

Fellner, K. J., & Turowski, K. (2000). Identifying Business Components Using Concep-

tual Models. In Information Resources Management Association International

Conference (pp. 161–165). Anchorage, Alaska, USA: IDEA Group Publishing.

Fensel, D., & Bussler, C. (2002). The Web Service Modeling Framework WSMF. Elec-

tronic Commerce Research and Applications, 1(2), 113–137.

Fensel, D., Facca, F. M., Simperl, E., & Toma, I. (2011). Semantic Web Services. Sprin-

ger-Verlag Berlin Heideberg.

Fensel, D., Fischer, F., Kopeckỳ, J., Krummenacher, R., Lambert, D., & Vitvar, T.

(2010). WSMO-Lite: Lightweight Semantic Descriptions for Services on the

Web. W3C Member Submission. Retrieved September 13, 2012, from

http://www.w3.org/Submission/WSMO-Lite/

Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman, D., & Domingue,

J. (2007). Enabling Semantic Web Services: The Web Service Modelling Ontolo-

gy. Springer-Verlag New York Inc.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures (PhD Thesis). University Of California, Irvine, USA.

Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-

Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. Retrieved

from http://tools.ietf.org/html/rfc2616

Frankel, D. S. (2003). BPM and MDA: The Rise of Model-Driven Enterprise Systems.

Business Process Trends. Retrieved from

http://www.businessprocesstrends.com/

Giachetti, R. E. (2010). Design of Enterprise Systems: Theory, Architecture, and Meth-

ods. CRC Press.

Gräuler, M., Teuteberg, F., Mahmoud, T., & Marx Gómez, J. (2012). Anforderungsprio-

risierung und Designempfehlungen für Betriebliche Umweltinformationssyste-

me der nächsten Generation – Ergebnisse einer explorativen Studie. In

References

195

MKWI2012 (pp. 1531–1543). Presented at the Multikonferenz Wirtschaftsin-

formatik 2012, Braunschweig, Germany: GITO mbH Verlag Berlin.

Gräuler, M., Teuteberg, F., Mahmoud, T., & Marx Gómez, J. (2013). Requirements

Prioritization and Design Considerations for the Next Generation of Corporate

Environmental Management Information Systems - A Foundation for Innova-

tion. International Journal of Information Technologies and the Systems Ap-

proach (IJITSA) - Special Issue on “IT Goes Green: Systemic Approaches to IT

Policy Making, Design, Evaluation and Management.”

Grimes, R., & Grimes, D. (1997). Professional DCOM Programming. Birmingham,

UK: Wrox Press Ltd.

Grönroos, C. (2000). Service Management and Marketing: A Customer Relationship

Management Approach. John Wiley & Sons Inc.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5(2), 199–220.

Haas, H., & Brown, A. (2004). Web Services Glossary. World Wide Web Consortium

(W3C). Retrieved July 13, 2012, from http://www.w3.org/TR/ws-gloss/

Haerder, T., & Reuter, A. (1983). Principles of Transaction-Oriented Database Recov-

ery. ACM Computing Surveys, 15(4), 287–317.

doi:http://doi.acm.org/10.1145/289.291

Haller, A., Cimpian, E., Mocan, A., Oren, E., & Bussler, C. (2005). WSMX - A Seman-

tic Service-Oriented Architecture. In Proceedings of the IEEE International

Conference on Web Services (pp. 321–328). Washington, DC, USA: IEEE

Computer Society. doi:10.1109/ICWS.2005.139

Haller, A., Gomez, J. M., & Bussler, C. (2005). Exposing Semantic Web Service Prin-

ciples in SOA to Solve EAI Scenarios. In Web Service Semantics: Towards Dy-

namic Business Integration Workshop. In conjunction with The 14
th

 Internation-

al World Wide Web Conference (WWW 2005).

Hammer, M., & Champy, J. (2003). Reengineering the Corporation: A Manifesto for

Business Revolution. HarperBusiness.

Handfield, R. B., Nichols, E. L., & Ernest, L. (1999). Introduction to Supply Chain

Management. Prentice Hall Englewood Cliffs, NJ.

References

196

Handschuh, S., & Staab, S. (2003). Annotation for the Semantic Web. Amsterdam,

Netherlands: IOS Press.

Hasan, B. (2010). Konzeption und Umsetzung eines Sicherheitsprotokolls zur Bewer-

tung von Web Services in SOA-basierten ERP-Systemen (Master Thesis). Carl

von Ossietzky University of Oldenburg, Oldenburg, Germany.

Heineman, G. T., & Councill, W. T. (2001). Component-Based Software Engineering:

Putting the Pieces Together (Vol. 17). Addison-Wesley USA.

Herrmann, M., Dalferth, O., & Aslam, M. A. (2007). Applying Semantics (WSDL,

WSDL-S, OWL) in Service Oriented Architectures (SOA). In 10
th

 International

Protégé Conference - July 15-18, 2007. Budapest, Hungary.

Heuser, L., Alsdorf, C., & Woods, D. (2008). The Web-Based Service Industry-

Infrastructure for Enterprise SOA 2.0, Potential Killer Applications-Semantic

Service Discovery. In International Research Forum. Evolved Technologist

Press.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), 75–105.

Hitzler, P., Krötzsch, M., & Rudolph, S. (2009). Foundations of Semantic Web Tech-

nologies (1st ed.). Chapman & Hall - CRC Press.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

Hollingsworth, D. (1995). Workflow Management Coalition: The Workflow Reference

Model. Workflow Management Coalition.

Hu, Y., Yang, Q. P., Sun, X., & Wei, P. (2008). Applying Semantic Web Services to

Enterprise Web. In The 6
th

 International Conference on Manufacturing Re-

search (ICMR08), Brunel university, UK, 9-11
th

 September 2008. pp. 589-595.

Inaganti, S., & Behara, G. K. (2007). Service Identification: BPM and SOA Handshake.

BPTrends, 3, 1–12.

References

197

Ionita, A. D., Florea, M., & Jelea, L. (2009). 4+1 Views for a Business Cooperation

Framework Based on SOA. IAENG International Journal of Computer Science,

36(4), 332–343.

J. F. Nunamaker, J., Chen, M., & Purdin, T. D. M. (1990). Systems Development in

Information Systems Research. Journal of Management Information Systems,

Winter1990/91, 7(3), 89–106.

Järvinen, P. (2007). Action Research is Similar to Design Science. Quality & Quantity,

41(1), 37–54.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,

Curbera, F., Ford, M., Goland, Y., & others. (2007). Web Services Business

Process Execution Language Version 2.0. OASIS | Advancing open standards

for the information society. Retrieved September 2, 2012, from docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Josuttis, N. (2007). SOA in Practice (1st ed.). O’Reilly.

Kaliski Jr, B. S., & Redwood City, C. (1991). An Overview of the PKCS standards.

RSA Data Security, Inc, 3.

Karakostas, B., & Zorgios, Y. (2008). Engineering Service Oriented Systems: A Model

Driven Approach. IGI Global.

Katzan, H. (2008). A Manager’s Guide to Service Science. USA: iUniverse.

Katzan Jr, H. (2008). Foundations of Service Science: A Pragmatic Approach. iUni-

verse.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., & Barreto, C. (2005).

Web Services Choreography Description Language Version 1.0. W3C Candidate

Recommendation. Retrieved September 2, 2012, from

http://www.w3.org/TR/ws-cdl-10/

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R.,

Adams, J., & Verschueren, P. (2004). Patterns: Implementing an SOA Using an

Enterprise Service Bus. IBM RedBooks.

Kistasamy, C., Van Der Merwe, A., & De La Harpe, A. (2010). The Relationship be-

tween Service Oriented Architecture and Enterprise Architecture. In 14
th

 IEEE

References

198

International Enterprise Distributed Object Computing Conference (pp. 129–

137). Presented at the EDOC 2010, Vitória, Brazil: IEEE Computer Society

2010.

Kjernsmo, K., & Passant, A. (2009). SPARQL New Features and Rationale. World

Wide Web Consortium (W3C). Retrieved August 28, 2012, from

http://www.w3.org/TR/sparql-features/

Kopeckỳ, J., Gomadam, K., & Vitvar, T. (2008). hRESTS: An HTML Microformat for

Describing RESTful Web Services. In 2008 IEEE/WIC/ACM International Con-

ference on Web Intelligence and Intelligent Agent Technology (pp. 619–625).

Sydney, Australia.

Kopeckỳ, J., & Vitvar, T. (2008). WSMO-Lite: Lowering the Semantic Web Services

Barrier with Modular and Light-Weight Annotations. In Proceedings of the 2008

IEEE International Conference on Semantic Computing (pp. 238–244).

Kopeckỳ, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). SAWSDL: Semantic Annota-

tions for WSDL and XML Schema. IEEE Internet Computing, 11(6), 60–67.

Kopeckỳ, J., Vitvar, T., & Fensel, D. (2008). MicroWSMO: Semantic Description of

RESTful Services. WSMO Deliverable. Retrieved June 14, 2011, from

http://www.wsmo.org/TR/d38/v0.1

Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: Service-Oriented Archi-

tecture Best Practices. Prentice Hall PTR.

Kreger, H. (2001). Web Services Conceptual Architecture (WSCA 1.0). IBM Software

Group. Retrieved from

www.csd.uoc.gr/~hy565/newpage/docs/pdfs/papers/wsca.pdf

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–

50.

Kuechler, B., & Vaishnavi, V. (2008). On Theory Development in Design Science Re-

search: Anatomy of a Research Project. European Journal of Information Sys-

tems, 17(5), 489–504.

Lafon, Y., & Mitra, N. (2007). SOAP Version 1.2 Part 0: Primer (Second Edition).

World Wide Web Consortium (W3C) Recommendation. Retrieved from

http://www.w3.org/TR/soap12-part0/

References

199

Lambert, D., & Benn, N. (2010). Deliverable 3.1 - Standardisation Activity Report. Ser-

vice Web 3.0 FP7 Project. Retrieved from

http://www.serviceweb30.eu/cms/index.php/resources/doc_view/100-d31-

standardization-activity-report-m24ace7.pdf?tmpl=component&format=raw

Lamparter, S. (2007). Policy-based Contracting in Semantic Web Service Markets. Uni-

versity of Karlsruhe (TH), Karlsruhe, Germany.

Lawrence, K., Kaler, C., Nadalin, A., Monzillo, R., & Hallam-Baker, P. (2006). Web

Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS

Standard Specification. Retrieved September 3, 2012, from https://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-

soapmessagesecurity.pdf

Linthicum, D. S. (2000). Enterprise Application Integration. Addison-Wesley Longman

Ltd. Essex, UK, UK.

Lytras, M. D., & García, R. (2008). Semantic Web Applications: A Framework for In-

dustry and Business Exploitation – What Is Needed for the Adoption of the Se-

mantic Web from the Market and Industry. International Journal of Knowledge

and Learning, 4(1), 93–108.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., & Metz, R. (2006). Refer-

ence Model for Service Oriented Architecture 1.0. OASIS | Advancing open

standards for the information society. Retrieved August 29, 2012, from

docs.oasis-open.org/soa-rm/v1.0/soa-rm.doc

Magal, S. R., & Word, J. (2011). Integrated Business Processes with ERP Systems. John

Wiley & Sons.

Mahmoud, T. (2009). Semantic SOA-Based Model to be applied in Business Environ-

ments. In CENTERIS 2009 Conference of Enterprise Information Systems Pro-

ceedings (pp. 473–482). Ofir, Portugal.

Mahmoud, T., & Marx Gómez, J. (2008a). Integration of Semantic Web Services Prin-

ciples in SOA to Solve EAI and ERP Scenarios - Towards Semantic Service

Oriented Architecture. In Proceedings of the 3rd International Conference on

Information & Communication Technologies: from Theory to Applications (IC-

TTA-2008) (pp. 957–958). Damascus, Syria: IEEE.

References

200

Mahmoud, T., & Marx Gómez, J. (2008b). Semantic Web Services Process Mediation

Using WSMX Concepts. In Proceedings of the 20
th

 International Conference on

Systems Research, Informatics and Cybernetics (InterSymp-2008) - Engineering

and Management of IT-Based Organizational Systems: A Systems Approach (pp.

28–32). Baden Baden, Germany.

Mahmoud, T., & Marx Gómez, J. (2010). Applying Semantic SOA Based Model to

Business Applications. In M. M. Cruz-Cunha & J. Varajao (Eds.), Enterprise In-

formation Systems Design, Implementation and Management: Organizational

Applications (pp. 1–20). IGI Global.

Mahmoud, T., Marx Gómez, J., Rezgui, A., Peters, D., & Solsbach, A. (2012). En-

hanced BI Systems with On-Demand Data Based on Semantic-Enabled Enter-

prise SOA. In Proceedings of the 20
th

 European Conference on Information Sys-

tems, Paper 184. Presented at the ECIS 2012, Barcelona, Spain. Retrieved from

http://aisel.aisnet.org/ecis2012/184

Mahmoud, T., Marx Gómez, J., & von der Dovenmühle, T. (2011). Functional Compo-

nents Specification in the Semantic SOA-based Model. In S. Smolnik, F. Teute-

berg, & O. Thomas (Eds.), Semantic Technologies for Business and Information

Systems Engineering: Concepts and Applications (pp. 277–291). IGI Global.

Mahmoud, T., Petersen, M., & Rummel, D. (2012). Business Process Integration within

Lightweight Semantic-Enabled Enterprise Service-Oriented Architecture. In P.

O. de Pablos, J. M. Cueva Lovelle, J. E. Labra Gayo, & R. Tennyson (Eds.), E-

Procurement Management for Successful Electronic Government Systems (pp.

181–192). E-Procurement Management for Successful Electronic Government

Systems.

Mahmoud, T., von der Dovenmühle, T., & Marx Gómez, J. (2009). Web Service Vali-

dation within Semantic SOA-Based Model. In D. Davcev & J. Marx Gómez

(Eds.), Proceedings of the ICT Innovations Conference 2009 (pp. 295–303).

Presented at the ICT2009, Ohrid, Macedonia: Springer (Heidelberg).

Maleshkova, M., Kopeckỳ, J., & Pedrinaci, C. (2009). Adapting SAWSDL for Semantic

Annotations of RESTful Services. Presented at the On the Move to Meaningful

Internet Systems: OTM 2009 Workshops, Vilamoura, Portugal.

References

201

Manola, F., Miller, E., & McBride, B. (2004). RDF Primer. W3C Recommendation.

Retrieved August 27, 2012, from http://www.w3.org/TR/rdf-primer/

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Nara-

yanan, S., Paolucci, M., Parsia, B., Payne, T., & others. (2004). OWL-S: Seman-

tic Markup for Web Services. W3C Member Submission. Retrieved September

13, 2012, from http://www.w3.org/Submission/OWL-S/

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.,

Parsia, B., Payne, T., Sabou, M., Solanki, M., & others. (2005). Bringing Se-

mantics to Web Services: The OWL-S Approach. In Semantic Web Services and

Web Process Composition: First International Workshop, SWSWPC 2004, San

Diego, CA, USA, July 6, 2004 (pp. 26 – 42).

Martin, D., Paolucci, M., & Wagner, M. (2007). Toward Semantic Annotations of Web

Services: OWL-S from the SAWSDL Perspective. In OWL-S: Experiences and

Directions-Workshop at 4
th

 European Semantic Web Conference (ESWC). Inns-

bruck, Austria.

Marx Gómez, J., Rapp, B., Solsbach, A., Mahmoud, T., Memari, A., & Bremer, J.

(2011). Projekt IT-for-Green: Umwelt-, Energie- und Ressourcenmanagement

mit BUIS der nächsten Generation. Ökonomikuss Sommerausgabe 2011, 18–20.

Marx Gómez, J., Rautenstrauch, C., & Cissek, P. (2009). Einführung in Business Intel-

ligence mit SAP NetWeaver 7.0. Berlin, Heidelberg: Springer Verlag.

Maximilien, E. M., & Singh, M. P. (2004). Toward Autonomic Web Services Trust and

Selection. In ICSOC’04: Proceedings of the 2nd International Conference on

Service Oriented Computing (pp. 212–221). New York, NY, USA: ACM.

McGuinness, D. L., & Van Harmelen, F. (2004). OWL Web Ontology Language Over-

view. W3C Recommendation. Retrieved August 28, 2012, from

http://www.w3.org/TR/owl-features/

McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic Web Services. Intelligent

Systems, IEEE, 16(2), 46–53.

Medjahed, B. (2004). Semantic Web Enabled Composition of Web Services (PhD The-

sis). Virginia Polytechnic Institute and State University, Falls Church, Virginia,

USA.

References

202

Meyerholt, D., Mahmoud, T., & Marx Gómez, J. (2011). Administrating Environmental

Performance Indicators Utilizing Lightweight Semantic Web Services. In P. Go-

linska, M. Fertsch, & J. Marx Gómez (Eds.), EnviroInfo 2011 - Information

Technologies in Environmental Engineering: New Trends and Challenges (pp.

301–309). Presented at the ITEE 2011, Poznan, Poland: Springer (Heidelberg).

Meyerholt, D., Marx Gómez, J., Dada, A., Bremer, J., & Rapp, B. (2010). Bringing Sus-

tainability to the Daily Business: The OEPI project. In Proceedings of the Work-

shop “Environmental Information Systems and Services-Infrastructures and

Platforms”. CEUR workshop proceedings (Vol. 679, pp. 1613–0073).

Monk, E. F., & Wagner, B. J. (2008). Concepts in Enterprise Resource Planning (3rd

ed.). Course Technology.

Neemann, H. (2012). Objektorientierte Softwareentwicklung im Kontext des Geschäfts-

prozessmanagements. Carl von Ossietzky University of Oldenburg, Oldenburg,

Germany.

Newcomer, E., & Lomow, G. (2004). Understanding SOA with Web Services (Inde-

pendent Technology Guides). Addison-Wesley Professional.

Nordsieck, F. (1934). Grundlagen der Organisationslehre. Nihon Shoseki.

Oberle, D. (2005). Semantic Management of Middleware. University of Karlsruhe (TH),

Karlsruhe, Germany.

OMG. (2009). OMG Unified Modeling Language
TM

 (OMG UML), Superstructure -

Version 2.2. Object Management Group. Retrieved from

www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Orfali, R., Harkey, D., & Edwards, J. (2007). Client/Server Survival Guide, 3rd Edition.

Wiley India.

Pachghare, V. K. (2009). Cryptography and Information Security. Prentice-Hall Of In-

dia Pvt. Ltd.

Papazoglou, M. (2008). Web Services: Principles and Technology. Pearson - Prentice

Hall.

References

203

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004). OWL Web Ontology Language

Semantics and Abstract Syntax. W3C recommendation. Retrieved July 28, 2011,

from http://www.w3.org/TR/owl-semantics/

Payne, T., & Lassila, O. (2004). Semantic Web Services. Intelligent Systems, IEEE,

19(4), 14–15.

Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J., & Krummenacher,

R. (2010). Adaptive Service Binding with Lightweight Semantic Web Services.

In S. Dustdar & F. Li (Eds.), Service Engineering: European Research Results

(pp. 233–260). SpringerWienNewYork.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Sci-

ence Research Methodology for Information Systems Research. Journal of

Management Information Systems, 24(3), 45–77. doi:10.2753/MIS0742-

1222240302

Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C

Recommendation. Retrieved August 9, 2011, from http://www.w3.org/TR/rdf-

sparql-query/

Rapp, B., & Bremer, J. (2012). Design of an Event Engine for Next Generation CEMIS:

A Use Case. In H. K. Arndt, G. Knetsch, & W. Pillmann (Eds.), EnviroInfo 2012

- Part 2: Open Data and Industrial Ecological Management (pp. 759–766). Pre-

sented at the 26
th

 International Conference on Informatics for Environmental

Protection, Dessau, Germany: Shaker Verlag.

Rapp, B., Solsbach, A., Mahmoud, T., Memari, A., & Bremer, J. (2011). IT-for-Green:

Next Generation CEMIS for Environmental, Energy and Resource Management.

In EnviroInfo 2011 - Innovations in Sharing Environmental Observations and

Information (pp. 573–581). Presented at the EnviroInfo Ispra 2011 - 25
th

 Interna-

tional Conference Environmental Informatics, Ispra, Italy: Shaker Verlag.

Richardson, L., & Ruby, S. (2007). RESTful Web Services. O’Reilly Media.

Robert Jacobs, F., & “Ted” Weston, J. (2007). Enterprise Resource Planning (ERP)—A

Brief History. Journal of Operations Management, 25(2), 357 – 363.

doi:10.1016/j.jom.2006.11.005

References

204

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,

Feier, C., Bussler, C., & Fensel, D. (2005). Web Service Modeling Ontology.

Applied Ontology, 1(1), 77–106.

Rosen, M., Lublinsky, B., Smith, K. T., & Balcer, M. J. (2008). Applied SOA: Service-

Oriented Architecture and Design Strategies. Wiley.

Roshen, W. (2009). SOA-Based Enterprise Integration: A Step-by-Step Guide to Ser-

vices-Based Application. McGraw-Hill/Osborne.

Rossi, M., & Sein, M. K. (2003). Design Research Workshop: A Proactive Research

Approach. Presented at the Twenty-Sixth Information Systems Research Semi-

nar in Scandinavia, Information Systems Research in Scandinavia Association,

Haikko, Finland.

Sabou, M. (2005). Learning Web Service Ontologies: Challenges, Achievements and

Opportunities. In Dagstuhl Seminar.

Schäfer, R. (2001). Rules for Using Multi-Attribute Utility Theory for Estimating a Us-

er’s Interests. In Online-Proceedings des 9. GI-Workshops: ABIS-Adaptivität

und Benutzermodellierung in interaktiven Softwaresystemen. Presented at the

ABIS-Workshop 2001, Dortmund, Germany.

Schmietendorf, A., Lezius, J., Dimitrov, E., Reitz, D., & Dumke, R. (2003). Aktuelle

Ansätze für Web Service basierte Integrationslösungen. Magdeburg, Germany:

Otto-von-Guericke-Universität.

Scott Allen, K. (2006). Programming Windows Workflow Foundation: Practical WF

Techniques and Examples Using XAML and C# (1st ed.). Packt Publishing Ltd.

Seidlmeier, H. (2010). Prozessmodellierung mit ARIS®: Eine beispielorientierte Ein-

führung für Studium und Praxis. (3rd ed.). Vieweg+ Teubner Verlag | Springer

Fachmedien Wiesbaden GmbH.

Sharp, J. (2010). Microsoft® Windows® Communication Foundation 4 Step by Step (1st

ed.). Microsoft Press.

Shishkov, B., van Sinderen, M., & Quartel, D. (2006). SOA-Driven Business-Software

Alignment (pp. 86–94). Presented at the IEEE International Conference on e-

Business Engineering (ICEBE 2006), Beijing, China.

References

205

Silver, M. S., Markus, M. L., & Beath, C. M. (1995). The Information Technology In-

teraction Model: A Foundation for the MBA Core Course. MIS quarterly, 19(3),

361–390.

Simon, H. A. (1996). The Sciences of the Artificial (Third.). Cambridge, MA: MIT

Press.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003). Adding Semantics to

Web Services Standards. In Proceedings of the International Conference on

Web Services (pp. 395–401).

Srinivasan, N., Paolucci, M., & Sycara, K. (2004). Adding OWL-S to UDDI, Imple-

mentation and Throughput. proceeding of Semantic Web Service and Web Pro-

cess Composition 2004.

Stalk, G., Evans, P., & Sgulman, L. E. (1992). Competing on Capabilities: The New

Rules of Corporate Strategy. Harvard Business Review.

Stallings, W. (2010). Cryptography and Network Security: Principles and Practice

(Vol. 998). Prentice Hall.

Steiner, G. A. (1997). Strategic Planning. Simon & Schuster.

Studer, R., Grimm, S., & Abecker, A. (2007). Semantic Web Services: Concepts, Tech-

nologies, and Applications. Heidelberg, Germany: Springer Verlag.

Tauberer, J. (2010). SemWeb.NET. SemWeb.NET: Semantic Web/RDF Library for

C#/.NET. Retrieved January 3, 2012, from

http://razor.occams.info/code/semweb/

Teuteberg, F., & Marx Gómez, J. (2010). Green Computing & Sustainability - Status

Quo und Herausforderungen für BUIS der nächsten Generation. HMD - Praxis

Wirtschaftsinform., 274(47).

Tran, H., Zdun, U., & Dustdar, S. (2007). View-Based and Model-Driven Approach for

Reducing the Development Complexity in Process-Driven SOA. In Business

Process and Services Computing: 1st International Working Conference on

Business Process and Services Computing (Vol. 116, pp. 105–124). Presented at

the BPSC 2007, Leipzig, Germany.

References

206

Turner, M., Budgen, D., & Brereton, P. (2003). Turning Software into a Service. Com-

puter, 36(10), 38–44.

Turowski, K. (2000). Establishing Standards for Business Components. In K. Jakobs

(Ed.), Information Technology Standards and Standardization: A Global Per-

spective (pp. 131–151). Hershey: Idea Group Publishing.

Turowski, K. (2001). Fachkomponenten: Komponentenbasierte betriebliche Anwen-

dungssysteme. Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germa-

ny.

Usländer, T. (2010). Service-Oriented Design of Environmental Information Systems.

KIT Scientific Publishing.

Vaishnavi, V., & Kuechler, B. (2004). Design Science Research in Information Sys-

tems. Association for Information Systems. Retrieved July 4, 2012, from

http://desrist.org/desrist

Van der Aalst, W. M. P. (2009). Challenges in Business Process Analysis. In J. Filipe, J.

Cordeiro, & J. Cardoso (Eds.), Enterprise Information Systems (Vol. 12, pp. 27–

42). Springer Berlin Heidelberg.

Vitvar, T., Kopeckỳ, J., Viskova, J., & Fensel, D. (2008). WSMO-Lite Annotations for

Web Services. In Proceedings of the 5
th

 European Semantic Web Conference on

The Semantic Web: Research and Applications (pp. 674–689). Tenerife, Canary

Islands, Spain.

Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., & Cleven, A.

(2009). Reconstructing the Giant: On the Importance of Rigour in Documenting

the Literature Search Process. In Proceedings of the 17
th

 European Conference

on Information Systems (pp. 1–13). Presented at the ECIS 2009, Verona, Italy.

Von der Dovenmühle, T. (2009). Validierung adaptierter Web Services innerhalb eines

Semantic SOA (Bachelor Thesis). Carl von Ossietzky University of Oldenburg,

Oldenburg, Germany.

Walls, J. G., Widmeyer, G. R., & El Sawy, O. A. (1992). Building an Information Sys-

tem Design Theory for Vigilant EIS. Information Systems Research, 3(1), 36–

59.

References

207

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writ-

ing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii.

White, S. A. (2004). Introduction to BPMN. IBM Cooperation.

White, S. A., & Miers, D. (2008). BPMN Modeling and Reference Guide. Future Strate-

gies Inc.

Williams, M. (2009). Technology Policy Level 1 - Security as a Service. Highways

Agency. Retrieved from

http://www.highways.gov.uk/business/documents/Technology_Policy_L1_Secur

ity_as_a_Service_2.doc

Xu, L., & Peng, B. (2005). An Intelligent Retrieval Framework in Semantic Web Based

on Agents. In D. Li & B. Wang (Eds.), Artificial Intelligence Applications and

Innovations II. Springer.

Zeginis, C., & Plexousakis, D. (2010). Monitoring the QoS of Web Services using SLAs

(Technical Report No. 404).

Zimmermann, O., Koehler, J., & Leymann, F. (2006). The Role of Architectural Deci-

sions in Model-Driven SOA Construction. In International Conference on Ob-

ject-Oriented Programming, Systems, Languages, and Applications, Best Prac-

tices and Methodologies in Service-Oriented Architectures. Portland: ACM.

Publications

209

Publications

Journals

Gräuler, M., Teuteberg, F., Mahmoud, T., & Marx Gómez, J. (2013). Requirements

Prioritization and Design Considerations for the Next Generation of Corporate Envi-

ronmental Management Information Systems - A Foundation for Innovation. Interna-

tional Journal of Information Technologies and the Systems Approach (IJITSA) - Spe-

cial Issue on “IT Goes Green: Systemic Approaches to IT Policy Making, Design, Eval-

uation and Management.”

Marx Gómez, Jorge, Rapp, B., Solsbach, A., Mahmoud, T., Memari, A., & Bremer, J.

(2011). Projekt IT-for-Green: Umwelt-, Energie- und Ressourcenmanagement mit BUIS

der nächsten Generation. Ökonomikuss Sommerausgabe 2011, 18-20.

Brehm, N., Mahmoud, T., Memari, A., & Marx Gómez, J. (2008). Towards Intelligent

Discovery of Enterprise Architecture Services (IDEAS). Journal of Enterprise Architec-

ture, 4(3), 26-37.

Conferences

Mahmoud, T. (2013). CEMIS Next Generation Supported by Semantic Enterprise Ser-

vice-Oriented Architecture. In F. Gargouri & W. Mahdi (Eds.), Proceedings of the 5
th

International Conference on Web and Information Technologies (pp. 21–30). Presented

at the ICWIT’13, Hammamet, Tunisia.

Bremer, J., Mahmoud, T., & Rapp, B. (2012). Implementing CEMIS Workflows with

State Chart XML. In H. K. Arndt, G. Knetsch, & W. Pillmann (Eds.), EnviroInfo 2012 -

Part 2: Open Data and Industrial Ecological Management (pp. 749–757). Presented at

the 26
th

 International Conference on Informatics for Environmental Protection, Dessau,

Germany: Shaker Verlag.

Mahmoud, T., Marx Gómez, J., Rezgui, A., Peters, D., & Solsbach, A. (2012). En-

hanced BI Systems with On-Demand Data Based on Semantic-Enabled Enterprise SOA.

Proceedings of the 20
th

 European Conference on Information Systems, Paper 184. Pre-

sented at the ECIS 2012, Barcelona, Spain. Retrieved from

http://aisel.aisnet.org/ecis2012/184

Gräuler, M., Teuteberg, F., Mahmoud, T., & Marx Gómez, J. (2012). Anforderungs-

priorisierung und Designempfehlungen für Betriebliche Umweltinformationssysteme

der nächsten Generation – Ergebnisse einer explorativen Studie. MKWI2012 (pp. 1531–

1543). Presented at the Multikonferenz Wirtschaftsinformatik 2012, Braunschweig,

Germany: GITO mbH Verlag Berlin.

Publications

210

Rapp, B., Solsbach, A., Mahmoud, T., Memari, A., & Bremer, J. (2011). IT-for-Green:

Next Generation CEMIS for Environmental, Energy and Resource Management. Inno-

vations in Sharing Environmental Observations and Information (pp. 573–581). Pre-

sented at the EnviroInfo Ispra 2011 - 25
th

 International Conference Environmental In-

formatics, Ispra, Italy: Shaker Verlag.

Allam, N., Mahmoud, T., Marx Gómez, J., & Junker, H. (2011). A Central Collabora-

tive CEMIS. Innovations in Sharing Environmental Observations and Information (pp.

683–691). Presented at the EnviroInfo Ispra 2011 - 25
th

 International Conference Envi-

ronmental Informatics, Ispra, Italy: Shaker Verlag.

Allam, N., Mahmoud, T., & Marx Gómez, J. (2011). Web Service-enabled Collabora-

tive Corporate Environmental Management Information Systems. Information Technol-

ogies in Environmental Engineering: New Trends and Challenges (pp. 179-188). Pre-

sented at the ITEE 2011, Poznan, Poland: Springer (Heidelberg).

Meyerholt, D., Mahmoud, T., & Marx Gómez, J. (2011). Administrating Environmen-

tal Performance Indicators Utilizing Lightweight Semantic Web Services. Information

Technologies in Environmental Engineering: New Trends and Challenges (pp. 301-

309). Presented at the ITEE 2011, Poznan, Poland: Springer (Heidelberg).

von der Dovenmühle, T., Mahmoud, T., & Marx Gómez, J. (2010). Energy Saving

through User Scheduled Load Balancing within Service Oriented Architectures. Pro-

ceedings of the ISEE 2010 Conference, Advancing Sustainability in a Time of Crisis (p.

147). Presented at the ISEE 2010 Conference, Oldenburg & Bremen, Germany.

Mahmoud, T. (2009). Semantic SOA-Based Model to be applied in Business Environ-

ments. CENTERIS 2009 Conference of Enterprise Information Systems Proceedings

(pp. 473-482). Ofir, Portugal.

Mahmoud, T., von der Dovenmühle, T., & Marx Gómez, J. (2009). Web Service Vali-

dation within Semantic SOA-Based Model. Proceedings of the ICT Innovations Confer-

ence 2009 (pp. 295–303). Presented at the ICT2009, Ohrid, Macedonia: Springer (Hei-

delberg).

Mahmoud, T., & Marx Gómez, J. (2008). Integration of Semantic Web Services Prin-

ciples in SOA to Solve EAI and ERP Scenarios - Towards Semantic Service Oriented

Architecture. Proceedings of the 3rd International Conference on Information & Com-

munication Technologies: from Theory to Applications (ICTTA-2008) (pp. 957-958).

Damascus, Syria: IEEE.

Mahmoud, T., & Marx Gómez, J. (2008). Semantic Web Services Process Mediation

Using WSMX Concepts. Proceedings of the 20
th

 International Conference on Systems

Research, Informatics and Cybernetics (InterSymp-2008) - Engineering and Manage-

ment of IT-Based Organizational Systems: A Systems Approach (pp. 28-32). Baden

Baden, Germany.

Publications

211

Mahmoud, T., & Marx Gómez, J. (2008). Towards Semantic Federated Enterprise Re-

source Planning (SFERP) System. Discussion paper. Presented at the Modellierung be-

trieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany.

Book Chapters

Mahmoud, T., Petersen, M., & Rummel, D. (2013). Business Process Integration with-

in Lightweight Semantic-Enabled Enterprise Service-Oriented Architecture. In P. O. de

Pablos, J. M. Cueva Lovelle, J. E. Labra Gayo, & R. Tennyson (Eds.), E-Procurement

Management for Successful Electronic Government Systems (pp. 181–192). E-

Procurement Management for Successful Electronic Government Systems.

Mahmoud, T., Marx Gómez, J., & von der Dovenmühle, T. (2011). Functional Com-

ponents Specification in the Semantic SOA-based Model. Semantic Technologies for

Business and Information Systems Engineering: Concepts and Applications (pp. 277-

291). IGI Global.

Mahmoud, T., & Marx Gómez, J. (2010). Applying Semantic SOA Based Model to

Business Applications. Enterprise Information Systems Design, Implementation and

Management: Organizational Applications (pp. 1-20). IGI Global.

Mahmoud, T., & Marx Gómez, J. (2009). Towards Process Mediation in Semantic

Service Oriented Architecture. Handbook of Research on Social Dimensions of Seman-

tic Technologies and Web Services (Vol. I). 780-801: IGI Global.

	Acknowledgements
	Zusammenfassung
	Abstract
	Table of Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.2.1 General Problem Definition
	1.2.2 Problems of Existing Approaches
	1.2.2.1 Web Service-enabled SOA
	1.2.2.2 Conceptual Frameworks
	1.2.2.3 Lightweight Semantic Annotation Mechanisms
	1.2.2.4 Other Related Work Problems

	1.3 Thesis Statement
	1.4 Thesis Structure

	2 Main Related Concepts and Technologies
	2.1 Distributed Computing
	2.2 Web Services
	2.2.1 Web Service-enabled SOA
	2.2.2 Service Discovery

	2.3 Business Process Management
	2.4 Workflows
	2.5 Semantic Web Pyramid
	2.6 Summary

	3 Service-Oriented Architecture
	3.1 Service-Oriented Architecture Concept
	3.1.1 Motivation behind SOA
	3.1.2 Architectural Considerations
	3.1.3 Web Service Technology

	3.2 Enterprise SOA and Other Architectures
	3.2.1 Enterprise Architecture
	3.2.2 Software Architecture

	3.3 Summary

	4 Research Methods
	4.1 Design Science
	4.1.1 DSRM Process Model
	4.1.2 Information Systems Research Framework

	4.2 Service Design Process
	4.2.1 Top-Down Approach
	4.2.2 Bottom-Up Approach
	4.2.3 Middle-Out approach

	4.3 Summary

	5 Conception and System Requirements
	5.1 Definition of Lightweight Semantic-enabled Enterprise SOA
	5.2 Semantic Support of Web Services
	5.3 Requirement Definition
	5.3.1 General System Requirements
	5.3.2 Core Functional Requirements
	5.3.2.1 Comprehensiveness: Main Terms
	5.3.2.2 User and Access Control Management Requirements
	5.3.2.3 Main Interactions among System Components
	5.3.2.4 Graphical User Interface Requirements
	5.3.2.5 Workflow Management System Requirements
	5.3.2.6 Web Services Requirements
	5.3.2.7 Validation and Evaluation Requirements
	5.3.2.8 Database Requirements

	5.3.3 Business Case Requirements
	5.3.4 Non-Functional Requirements

	5.4 Summary

	6 Reference Architecture of Semantic-enabled Enterprise SOA
	6.1 Semantic-enabled Enterprise SOA
	6.1.1 The Layered Architecture
	6.1.2 Architecture Overview
	6.1.3 The Component-based Architecture
	6.1.3.1 Processing system
	6.1.3.2 Consumer system
	6.1.3.3 Provider system
	6.1.3.4 Web Service Directory
	6.1.3.5 Semantic Web Service-based System
	6.1.3.6 Validation System
	6.1.3.7 Semantic Service Repository
	6.1.3.8 Database System

	6.2 Web Services Registration
	6.3 Web Service Validation
	6.4 Web Service Evaluation
	6.4.1 Security Protocol for the Evaluation of Web Services
	6.4.2 Web Service Evaluation within SEAOA

	6.5 Main System Interactions
	6.6 Business Case Architecture
	6.7 Summary of System Outcomes

	7 Prototypical Implementation and Evaluation
	7.1 General Overview of the Prototype Architecture
	7.1.1 Choice of the Adopted Technologies
	7.1.2 The Selling Process Prototypical Considerations
	7.1.3 System Configurations

	7.2 SESOA Implementation
	7.2.1 SESOA Web Application
	7.2.1.1 Discover Repository
	7.2.1.2 Discover Assemblages
	7.2.1.3 Discover Services
	7.2.1.4 Add an Assemblage
	7.2.1.5 Add Service Information
	7.2.1.6 Show Assemblage Service Relation
	7.2.1.7 Show All Assemblages Services Relations
	7.2.1.8 Delete an Assemblage
	7.2.1.9 Delete a Service

	7.2.2 Validation Services
	7.2.2.1 Primitive Validation Services
	7.2.2.2 Complex Validation Services
	7.2.2.3 RDF Validation Service

	7.3 The Business Case Web Application
	7.3.1 WF and WCF
	7.3.2 SPARQL Queries
	7.3.3 Implementation Details
	7.3.3.1 The Website Component
	7.3.3.2 The Shop Component
	7.3.3.3 The Logistics Component
	7.3.3.4 The Payment Component
	7.3.3.5 The Shipment Component
	7.3.3.6 The Mail Component
	7.3.3.7 The Coordination Component

	7.4 Evaluation
	7.4.1 Corporate Environmental Management Information Systems
	7.4.1.1 IT-for-Green
	7.4.1.2 OEPI
	7.4.1.3 Collaborative CEMIS

	7.4.2 On-Demand Business Intelligence
	7.4.3 CeWeColor AG & Co.

	7.5 Summary

	8 Conclusion and Outlook
	8.1 Research Summary
	8.2 Future Work Directions
	8.2.1 Security Pattern
	8.2.2 Web Services Recommendation System

	8.3 Wrap Up

	References
	Publications

