The Relevance of Computational Models of Knowledge Acquisition for the Design of Helps in the Problem Solving Monitor ABSYNT

Claus Möbus

Department of Computational Sciences
University of Oldenburg
D-2900 Oldenburg, F.R. Germany
E-mail: moebus@uniol.mcp

Computational models of knowledge acquisition are indispensable for the design of intelligent tutoring systems. They give advice how to design instructions, helps and explanations. We want to show how two kinds of models (external and internal) are useful for the design of problem solving monitors (PSMs). Especially the quality of helps is crucial for the acceptance of a PSM. To put it short: "When are helps useful and when are they confusing or pose new problems to the learner?"

1. Introduction

This paper offers a contribution to ICAI in the framework of the problem solving monitor ABSYNT. Our system - a special variant of an Intelligent Tutoring System (ITS) - is designed with respect to a sequence of 37 programming tasks which are to be solved by students in the visual functional computer language ABSYNT (ABstract SYntax Trees). Besides providing the learner with a friendly problem solving environment including a help component, it serves us as a testbed for research in the domain of intention-based diagnostics, plan-parsing and design of helps for problems solvers.

Research in these domains cannot be done without studying the knowledge acquisition process of the student. Learning processes are modelled by computational learning models (e.g. [1], [2]). In the domain of PSMs we distinguish external and internal computational models. An internal model is an integrated part of the PSM and is usually termed "student model" [3]. Its main purpose is the user-tailored generation of instructions, helps and explanations. An external model is not a functional component of a PSM but is developed in parallel using a broad data basis to gain a more complete insight into the learning process of the subject. At the present state of art these models will represent the knowledge acquisition process and the knowledge state of the student at different grain sizes and ranges. One of the reasons for this discrepancy is the fact that PSMs are at the present moment unable to analyse the full range of problem solving behavior which includes verbal data [4]. Internal models are based on data which the PSM can gather online, whereas our external models are based on videotaped problem solving sessions of dyades, which contain verbal episodes.

* ABSYNT was made reality by K.D.FRANK, O.JANKE, K.KOHNERT, O.SCHRÖDER and H.J.THOLE
** This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology of Knowledge under grant no. MO 292/3-3
We think that the development of PSMs or ITSs should include both questions: First, how should the learning process be modelled with an external model to develop hypotheses for the design of optimal helps and second how should the student model acquire knowledge to generate actual user-tailored helps. Modeling the knowledge acquisition process of students with external models has led us to the conclusion that learning processes in our domain can be adequately described by a combination of an impasse-driven (IDL) [5] and success-driven (SDL) [6]-[7] learning theory (IDL-SDL-Theory) [8]-[10].

IDL-SDL makes predictions when the student will accept information as help, when s/he even actively will search for new information and what content of information will suit the students needs. This has practical consequences for the construction of PSMs. The design of interactive and adaptive helps requires the successful solution of a synchronization problem between the knowledge state of the learner and the diagnosis of the PSM concerning this state: the student model. So in our PSM the update of the internal student model and the provision of help information follows IDL-SDL-Theory developed with external models.

2. The Problem-Solving Monitor ABSYNT

PSMs provide the learner with a problem-solving environment including a diagnosis but no curricular component. ABSYNT is used to communicate knowledge about a visual, purely functional, tree-like visual programming language based on ideas published in german school [11] and university text books [12]. Further motivation for the design of ABSYNT is given in [13]. Basic research dealing with the design of the system from a psychological point of view is described in [14] - [17].

ABSYNT provides an iconic environment and is aimed at supporting the acquisition of functional programming concepts up to recursive systems. A program consists of a head and a body tree. Also there is a start tree from which programs can be called. The nodes of the trees are constants, parameters, primitive and self-defined operators. The connections between the nodes are the "pipelines" for control and data flow. Programs are edited by taking nodes with the mouse from a menu bar and connecting them.

On demand there is also a visual trace which was implemented according to the runnable specification of the interpreter [15]. Additionally the user can test hypotheses about the correctness of her/his implementations. Figures 1 and 2 depict snapshots of the interface when a student has programmed a wrong solution of the problem "even" and tries to propose some hypotheses about the usefulness of parts of his program. The answers to her/his hypotheses are generated by rules defining a goals-means-relation (GMR; more details below). This feedback can be viewed as helps from the system on the language level.

3. Rule-based Help for the Acquisition of Semantic and Planning Knowledge

It is standard theory in cognitive science to assume that programming requires the activation and application of at least four knowledge sources:

1. mathematical and algorithmical preknowledge
2. knowledge about the syntax of the language
3. knowledge about the semantics of the language
4. planning knowledge about the pragmatical use of the language

It is quite natural to design helps accordingly. In our research we confine ourselves to the two last knowledge sources.
We designed:

ad 3: 2-D-rules describing the operational semantics of the ABSYNT-language [16],[18]
ad 4: Planning rules which describe programming knowledge in ABSYNT [19]

Figure 1: A snapshot of the ABSYNT-interface showing an incorrect program with a user hypothesis (bold) and the system's feedback.

Figure 2: The ABSYNT-interface showing another user hypothesis. The system returns the hypothesis (lower half on the left) to indicate its correctness. On demand (bold line) the system shows the next node of a complete solution (lower half on the right).
The behavior of the ABSYNT-interpreter can be predicted by the knowledge of 18 "state-centered" semantic rules. They were represented as two-dimensional visual rules which serve as help material for ABSYNT-users. The complete set can be found in [18].

Planning knowledge for 37 tasks is represented in 462 rules which define the GMR. The GMR can be looked at as a rule-based inference system, a grammar or an AND/OR-Graph with parametrized nodes. The rules are similar but more powerful than those found in [1],[2],[20]. The GMR is able to analyse and synthesize several millions of solutions even if the height of ABSYNT-trees is restricted to five nodes. Because nodes of the AND/OR graph can be parametrized for subgoals, the relation enables analysis and synthesis of even partial solutions which enables the testing of user hypotheses (Figures 1, 2). An example for the graphical and natural language compilation of one planning rule is given in Figure 3.

Rule: "Planning a Recursion on the Goal level"

IF the main goal is to program the even predicate which can be applied to a subgoal

THEN the solution of this goal comprises the following step:

* leave space in the worksheet of the ABSYNT environment for the yet to be programmed ABSYNT tree

AND

IF your next planning step creates the more differentiated AND-goal tree branching(...)

THEN the solution of this new goal is a ABSYNT tree which can be inserted in the solution of the main goal

Figure 3
The GMR is defined by the planning rules and represents the core of the help system at the language level, which is designed according to some postulates. It should:

- offer the environment to check various hypotheses about the usefulness of several parts of the program proposed by the student
- embody expert knowledge to generate helps or solution proposals
- diagnose goals, intentions and the knowledge state of the problem solver
- communicate new knowledge (helps) only in sensitive time periods, where the problem solver is willing to accept such information [5]
- gather data from the hypothesis-testing process online to adapt the internal student model continuously
- deliver only minimal information so that the student is able to leave the impasse situation by his own thus improving his problem solving skills

This interactive hypothesis driven approach is rather different from other systems known from literature [1], [21]-[25] and is a direct consequence of IDL-SDL-Theory (see below).

4. External and Internal Computational Models of Knowledge Acquisition

4.1 An External Model for the Acquisition of Rule Knowledge on the Basis of Visual Helps

A necessary prerequisite of programming is some knowledge about the syntax and semantics of the language. We studied the acquisition of semantic knowledge. The semantics of programming languages can be defined in three ways: (a) the operational approach, (b) the denotational approach and (c) the axiomatic approach. We chose the operational approach because it seemed to us more suitable for novices than the others. The behavior of the ABSYNT-interpreter is represented by two-dimensional (2-D) visual rules which were supplied as help material in case of difficulties or impasses. We asked subjects to predict the actions of the ABSYNT-interpreter [8]-[10]. The results dealing with knowledge acquisition can be described by an iterative two-stage simulation model which is capable of predicting 60% of continuous portions of encoded protocols [10]:

1. Knowledge acquisition by impasse-driven learning:
 Difficulties [26], [27] or impasses [5], [28] lead to problem solving by the application of weak heuristics. With the help of the visual rules new knowledge about the semantics of ABSYNT is stored in memory.

2. Knowledge optimization by success-driven learning:
 Due to practice, the knowledge is reorganized so that it can be used more efficiently. In the simulation model this is done by the composition of rules to compound rules [29],[30] and macro-operators like rule nets [31].

The data show that the subjects predicted the behavior of the interpreter and the computation of programs on the basis of mental rules or mental macro-operators. They used help information only in nonoptimization stages of the process. The question is, whether to adapt the help material accordingly. That is to offer visual rules and visual macro-rules synchronized to the mental operators the students use.
An Internal Model for the Acquisition of Rule Knowledge on the Basis of Checking Users Hypotheses

Our domain makes it absolutely necessary to constrain the overwhelming large feedback space by an internal model (student model) which is not implemented yet. It is not unusual that a user hypothesis can be completed by a hundred solutions. Even when only the next node is shown there are too many possibilities to choose from. IDL-SDL-Theory tells us to propose only helps which the user can assimilate according to his knowledge state. Generation of appropriate helps must be done by the student model which has to be learned automatically.

A knowledge state is viewed as a set of rules, malrules, and their composites. The student model consists of that set of rules which can generate the implementations and which can be derived from the student's proposals of hypotheses.

The acquisition of rules and their composites is easy. Those rules which were used for successful parsing make a chain of partially instantiated planning rules. These rules can be composed and generalized according to [29, 30] to higher planning schemes. Composing n successive rules results in an n-th order scheme. The highest scheme is a rule which relates a programming task to a complete solution: an example.

The acquisition of malrules is a bit trickier. Programs are trees. Selecting a subtree for a hypothesis is equivalent to cut the tree (Figure 4 left). With our GMR it is possible to reconstruct various goals depending on which tree is used for the reconstruction of the goals. We can reconstruct the root goal of the whole tree, the root goal Z_A of the selected tree, the root goal Z of the not selected tree and the context of Z_A in the not selected but automatically completed tree which is $<Z_A,Z_B,Z_C>$. These Z's are goals of the subtrees within the right side of the same planning rule. If Z_A' is not equivalent to Z_A then the selected tree implements a wrong goal. From this information (goal conflicts) we can generate malrules, their composites, and error explanations.

![Figure 4: A schematic ABSYNT-program and the corresponding goal trees](image-url)
5. Conclusions for the Design of Helps in PSMs

In the near future we will convert the rules of the GMR into visual planning helps (see Figure 3 as an example) on the goal level. But additional design features are necessary, which are recommended by our external and internal model:

Our external model allowed the further development of IDL-SDL-Theory. That theory gives two main advices to PSM-builders:

- The content of helps has to be synchronized to the knowledge state consisting of rules and macrooperators.
- Helps should only be offered at impasse time. Best is to let the user ask for help.

Our internal model (yet to be implemented) will

- automatically learn rules and malrules at impasse time (hypothesis test time)
- constrain the feedback space
- explain errors on the basis of goal conflicts or goal collisions: implementations vs. task requirements

Both models give valuable information for the design of PSMs: The external model for general design decisions, the internal model for concrete help generation.

REFERENCES

[29] VERE, S., Relational Production Systems, Artificial Intelligence, 1977, 8, 47-68