
Matlab for PhD students – Advanced Topics 6 –
WS 2010/11
"Object oriented programming"

General consideration

• General ideas of object oriented programming (in any language):
o Objects: Data that belongs together is grouped into a single object.

(Same idea as for structures and cell arrays: No need to carry around
several variables.)

o Classes: Objects belong to classes. Classes define the common
properties of all objects.

o Methods: Functions are specifically designed for classes of objects.
The user can use these functions without knowing how they are
implemented (higher level programming).

o Overloading: Different classes can use methods with the same name
but different function, e.g. the commands plot or disp can do
different things for objects of different types.

o Inheritance: Classes can have hierarchies, in which sub-classes inherit
properties and methods of super-classes.

o Control flow: In contrast to traditional procedural programming, the
sequence of steps to solve a problem is not the central point in object
oriented programming. Here, objects interact in a network of methods,
properties and events. Therefore, e.g. flow charts do not work very well
for object oriented programming. However, it is possible to combine
classical control flow with the use of objects.

• Matlab classes:
o In Matlab, every data value is assigned to a class. (I have referred to

classes as “data types” in this course, because this is the more general
name, used in all kinds of languages.)

o A class is a definition that specifies certain characteristics that all
instances of the class share. These characteristics are determined by
the properties and methods (and some classes also events) that define
the class and the values of attributes that modify the behavior of each
of these class components.

o Class definitions describe how objects of the class are created and
destroyed, what data the objects contain, and how you can manipulate
this data.

o You can create your own classes. Since the Matlab release 2008a this
is possible in a relatively convenient way, making it possible to use
object oriented programming techniques like in other modern
languages. (Older Matlab versions required very complicated things to
create objects. Their use is strongly discouraged!)

o The User Guide in the Matlab help provides a very good introduction
and detailed explanations about object oriented programming in Matlab.

• Objects:
o A class is like a template for the creation of a specific instance of the

class, which is called an object. This object contains actual data for a
particular entity that is represented by the class.

o Objects are not just passive data containers. Objects actively manage
the data contained by allowing only certain operations to be performed,
by hiding data that does not need to be public, and by preventing
external clients from misusing data by performing operations for which
the object was not designed. Objects can even control what happens
when they are destroyed.

• Class hierarchies:
o It sometimes makes sense to define a new class in terms of existing

classes. This enables you to reuse the designs and techniques in a
new class that represents a similar entity.

o You accomplish this reuse by creating a sub-class. A sub-class defines
objects that are a subset of those defined by the super-class.

o A sub-class inherits properties and methods of the super-class.
o A sub-class is more specific than its super-class and might add new

properties, methods, and events to those inherited from the super-
class.

o A big advantage of inheritance is that code is re-used very efficiently.
This reduces the efforts to write, test and modify similar code several
times for slightly different applications. E.g. it is easy to apply global
changes.

• Overloading:
o It is convenient for the user to use well-known names of functions (e.g.

plot, length, disp…) also for your new objects.
o However, these functions often need to do different (or at least more

specific) things than the standard functions defined for double precision
floating point matrices.

o Overloading means that a function name that is already defined for
other data types is re-used as method of a new class. Matlab will
distinguish between the previously existing (maybe built-in) function
and the new class method depending on the input arguments passed to
the function.

• Advantages of objects compared to structures in Matlab:
o Objects have their own methods.
o Users cannot accidentally misspell a field name without getting an

error. In a structure, a misspelled field name simply adds a new field,
whereas an object returns an error if the property is not defined for
objects of a class.

o A class can validate individual field values when assigned, including
class (data type) or value.

o A class can restrict access to fields, for example, allowing a particular
field to be read, but not changed.

o A class is easy to identify. A class has a name so that you can identify
objects with the whos and class functions and the Workspace
browser. (A variable is not just some structure, but an instance of your
particular class.) The class name makes it easy to refer to records with
a meaningful name.

o A class is easy to reuse. Once you have defined the class, you can
easily extend it with subclasses that add new properties.

Nomenclature
Matlab classes use the following words to describe different parts of a class definition
and related concepts:

• Class definition: Description of what is common to every instance of a class.
• Properties: Data storage for class instances
• Methods: Special functions that implement operations that are usually

performed only on instances of the class
• Events: Messages that are defined by classes and broadcast by class instances

when some specific actions occur
• Attributes: Values that modify the behavior of properties, methods, events and

classes
• Listeners: Objects that respond to a specific event by executing a callback

function when the event notice is broadcast
• Objects: Instances of classes which contain actual data values stored in the

objects' properties
• Sub-classes: Classes that are derived from other classes and that inherit the

methods, properties and events from those classes (sub-classes facilitate the
reuse of code defined in the super-class from which they are derived)

• Super-classes: Classes that are used as a basis for the creation of more
specifically defined classes (i.e., sub-classes)

• Packages: Folders that define a scope for class and function naming (will not be
discussed in this course).

Definition of a class

• Header:
o A function definition file must start with the keyword classdef
o The header line defines the name of the new class, e.g.
classdef TimeSig
o The file must have the same name as the class, e.g. TimeSig.m
o Sub-classes of existing classes are specified by < e.g.
classdef SoundSig < TimeSig
o The header line should be followed by comment text about the class.

This text can be displayed as help text.
o It is possible to specify class attributes in the classdef header. They

modify the behavior of the class, e.g. a class with attribute Hidden=true
does not appear in the output of Matlab commands or tools that display
class names. (For more information see class attributes in the help).

• Definition of properties:
o The first block of code in the object definition file defines which data the

objects of the class contain.
o The block starts with the keyword properties and ends with the

keyword end
o The names of the properties (corresponding to the names of the fields

of a structure) are specified in this block.
o Default values can be assigned to the properties in the function

definition block.
o Example:

properties
 vData % measurement data

 SampRate % sampling rate
 sName % name of the time series
 TimeUnit=’s’; % unit used for time axis,

% default value is ‚s’ (seconds)
end

o Property attributes: Attributes enable you to modify the behavior of
properties.

o Matlab supports several attributes. See help text for property attributes
for a complete list. Some important attributes are:

 Abstract % Logical value. Default: false
 % If true, the property has no implementation,
 % but a concrete subclass must redefine this
 % property without Abstract being set to true.
 SetAccess % Enumeration value. Default: public
 % Restricts the access from where an attribute
 % can be set. Possible values:
 % public — unrestricted access
 % protected — access from class or derived
 % classes
 % private — access by class members only
 GetAccess % Same as SetAcces, but for reading property
 % values.
 Hidden % Logical value. Default: false
 % Determines whether the property should be
 % shown in a property list
 Dependent % see below

o Attribute values apply to all properties defined within the properties
block that specifies the non-default values.

properties (SetAccess=protected)
ImportantNumbers=[pi eps i]; % define a protected

 % property and set default values
end

• Dependent properties: The property attribute Dependent is probably the most
important one. The value of a dependent property cannot be assigned directly
and is not stored in the object. Instead, it is calculated by a class method
whenever the dependent property is requested (e.g. to display the object or to
calculate with the property).

o This is a convenient way to keep several properties up-to-date when
they depend on a property that changes values when you work with the
object.

o Dependent properties are defined by a block started with the keyword
properties with the logical attribute Dependent set to true.
Properties (Dependent=true)

o Example:
properties (Dependent=true)
 vTimeAxis % time axis in seconds, compute from
 % sampling rate and length of the data

% vector with method get.vTimeAxis(obj)
end

o If a property is marked to be dependent, an error will be issued if a user
tries to set it directly. If you want to have a specific error message, you
can define also set property method (see below) for the dependent
property.

• Definition of methods:

o The second mandatory block of code in the object definition file defines
the functions used to work with objects of the class.

o The block starts with the keyword methods and ends with the keyword
end

o Methods are defined as functions which have objects of the class as
input and / or output arguments. The functions can have any number of
additional input and output arguments. It is possible to use varargin
and varargout.

o Ordinary methods: Class methods can perform any operations you can
express with Matlab code. E.g. you can create and destroy objects,
read and write object properties, compare objects, display them as text
or graphics, perform calculations based on property values…

o Constructor method: Each class should at least have a constructor

method for creating new objects of the class. The constructor method
has the same name as the class.

o A constructor method can have any number of input arguments and
returns an object of the class.

o The constructor method sets the properties to the values specified in
the function call. Dependent properties are usually not set by the
constructor method but by specific get property functions (see below).

o Example:
methods

function obj = TimeSig(sFileName, sSigName)
% load signal and sampling rate
[vX fs] = wavread(sFileName);
% store in object properties

 obj.vData = vX;
obj.SampRate = fs;

 obj.sName = sSigName;
 end

% Usually more functions will follow here…

end
o A TimeSig object can be created e.g. with

oSig1 = TimeSig(‚bill_sig1_8kHz.wav’, ‚Signal 1’);

o Destructor methods: For many applications it also makes sense to
specify a method to destroy an object, usually a function
delete(object). Since Matlab will not delete the data contained in
an object when the name of the object is used for a variable of a
different type, the memory can become overcrowded if you do not use
a destructor to clear the memory.

o Set property methods: A property can be restricted to data of specific
data types (classes) or a specific range of values by defining a set
method for this specific property.

o A set property function should get (at least) the object and the value for
the property as input and return the changed object as output.

o The name of the function must be set.PropertyName

o In the body of the function the desired value is checked to be in the
allowed range of values. If it is in the allowed range, the property is set
to the new value. Otherwise, an error should be issued.

o The set property function is called every time the user attempts to
change the value of the property, including the creation of the object.

o Example:
function obj = set.TimeUnit(obj,timeunit)
 if ~ischar(timeunit) % wrong class
 error(‘TimeUnit must be a string!’)
 elseif ~(strcmpi(timeunit,’ms’) ||...

strcmpi(timeunit,’s’) || ...
strcmpi(timeunit,’min’) || ...
strcmpi(timeunit,’h’))

 % wrong values
 error(‚Unknown value for TimeUnit!’)

else % set property to new value
 obj.TimeUnit=timeunit;
 end
end

o The value of the property TimeUnit can be changed e.g. with
 oSig1.TimeUnit=’ms’;

o Get property methods: The value of a dependent property is calculated
every time it is needed. This is done by a function
get.PropertyName

o Get property methods expect (at least) the object as input and give
back the value of the dependent property.

o Example:
function vTimeAxis = get.vTimeAxis(obj)

 vTimeAxis = [0:length(obj)-1]/obj.SampRate;
 end

o Overloading methods: You can specify methods for your objects which
have the same name as built-in functions (or other Matlab functions),
but which are specifically designed for the class.

o It is even possible to overload operators like + by defining a method
plus(a,b) (see implementing operators for your class in the help).

o Matlab will determine based on the input and output arguments whether
to look for the function in the class definition file or on the Matlab search
path.

o Example:
% class method to compute length (number of time points)

 % note that this is different from the Matlab built-in
% length function

 function Npoints = length(obj)
 Npoints = size(obj.vData, 1);
 End

o Method attributes: Methods also have attributes, which modify the behavior
of the method – very much like it is the case for properties. For a complete
list see help method attributes. Some important attributes are:

 Abstract % Logical value. Default: false
 % If true, the method has no implementation,
 % The method has a syntax line that can include
 % arguments which subclasses use when

 % implementing the method.
 Access % Enumeration value. Default: public
 % Determines what code can call the method.
 % Possible values:
 % public — unrestricted access
 % protected — access from class or sub-classes
 % private — access by class members only
 Hidden % Logical value. Default: false
 % When false, the method name shows in the list
 % of methods displayed using the methods or

 % methodsview commands. If set to true, the
 % method name is not included in these listings

o Method values apply to all methods defined within the methods block
that specifies the non-default values.

methods (Access = 'private') % Access by class members only
 function m = CalcModulus(td)
 % Over-simplified calculation of Elastic Modulus
 ind = find(td.Strain > 0); % Find nonzero strain
 m = mean(td.Stress(ind)./td.Strain(ind));
 end % CalcModulus
end

Work with your class

• Creation of an object: To create an instance of your class, you need to give it a
name and to call the constructor method, e.g.
oSig1 = TimeSig('bill_sig1_8kHz.wav', 'Signal 1');

• Access public property values: You can assign values to public properties
(properties which have the default attribute value SetAccess=public) and
read values of public properties (properties which have the default attribute
value GetAccess=public) by using the dot notation that is also used for
structures, e.g.
oSig1.TimeUnit='ms';
a=oSig1.vTimeAxis;

• Use public methods: You can call public methods (methods which have the
default attribute value access=public) from your programs to work with your
objects (e.g. perform calculations based on property values, compare objects,
manipulate objects, create and destroy objects…)

Creating class hierarchies

• Designing class hierarchies: Before you start to write code you should think
about all the objects you want to organize. Objects represent real world
concepts or things. You should group them according to their similarities and
differences in properties (“what and how are the objects?”) and in methods
(“what can the objects do and what can be done to the objects?”)

o Identify a super-class: Super-classes define the properties and
methods that are common to all objects.

o Identify sub-classes: Sub-classes inherit the data and actions from the
super-class. In addition, they contain properties and / or methods that
are unique to their particular purposes. A sub-class object is a super-
class object, but it is a specialized one.

• Example: Represent all members of a university.

o All members have common properties like date of birth, sex and email
address. (Even though each member of the university has a different
email address, all have the property to have one.)

o All members have common methods, e.g. they can enter the university,
leave the university, eat mensa food, borrow books in the library etc.

o However, there are some fundamental differences between students
and employees.

o Students have additional properties like number of semesters studied
and matriculation number.

o Students have additional methods like taking courses, writing exams, or
paying administration fees.

o Employees, however, have additional properties like office phone
number, office room number.

o An additional method of all employees is to receive wages.

• Advantages of class hierarchies:
o You avoid duplicating code that can be common to all classes.
o You can add or change subclasses at any time without modifying the

super-class or affecting other derived classes.
o If the super-class changes (for example, all members of the university

are assigned a Stud.IP account), then the sub-class automatically picks
up these changes.

• Definition of subclasses:
o To define a class that is a subclass of another class, add the super-

class to the classdef line after a < character:
 classdef classname < superclassname

• Inheritance of properties:

o Usually, a sub-class inherits all properties of its super-classes.
o You can re-define super-class properties in a sub-class object, if the

value of the super-class property Abstract attribute is true. In this
case, the super-class is just requesting that you define a concrete
version of this property to ensure a consistent interface.

o You also can re-define super-class properties in a sub-class object, if
the values of the super-class property SetAccess and GetAccess
attributes are private. In this case, only the super-class can access
the private property, so the sub-class is free to re-implement it in any
way.

• Inheritance of methods:
o There are two ways how sub-classes can inherit methods of super-

classes:
o Interface inheritance: Abstract super-classes define the methods and

properties that you must implement in the subclasses, but do not
provide an implementation, in contrast to implementation inheritance.
Abstract super-classes provide a common interface of methods of their
sub-classes, but their implementation can be individually different.

o Implementation inheritance: A method is implemented in the super-
class and can be used as it is from within the sub-class without
duplicating the code.

o Extending super-class methods: Sub-class methods can call super-
class methods of the same name by calling
methodname@superclassname. This fact enables you to extend a
super-class method in a subclass without completely redefining the
super-class method.
classdef sub < super
 methods
 function foo(obj)
 % preprocessing steps
 foo@super(obj); % Call superclass foo method
 % postprocessing steps
 end
 end
end

o Completing super-class methods: A super-class method can define a
process that executes in a series of steps using a protected method for
each step (Access attribute set to protected). Subclasses can then
create their own versions of the protected methods that implement the
individual steps in the process.
classdef super
 methods
 function foo(obj)
 step1(obj)
 step2(obj)
 step3(obj)
 end
 end
 methods (Access = protected)
 function step1(obj)
 % superclass version
 end
 ...
 end
end
The subclass does not re-implement the foo method, it re-implements
only the methods that carry out the series of steps (step1(obj),
step2(obj), step3(obj)). That is, the sub-class can specialize the
actions taken by each step, but does not control the order of the steps
in the process. When you pass a sub-class object to the super-class
foo method, Matlab calls the subclass step methods because of the
dispatching rules.
classdef sub < super
 ...
 methods (Access = protected)
 function step1(obj)
 % subclass version
 end
 ...
 end
end

• Subclassing multiple classes:
o When inheriting from multiple classes, use the & character to indicate

the combination of the super-classes:
 classdef classname < super1 & super2

o When you create a subclass derived from multiple classes, the
subclass inherits the properties, methods, and events defined by all
specified superclasses.

o If more than one superclass defines a property, method, or event
having the same name, there must be an unambiguous resolution to
the multiple definitions. You cannot derive a subclass from any two or
more classes that define incompatible class members. (See
subclassing multple classes in the Matlab help.)

• Some rules:
o Methods defined in the super-class can operate on sub-class objects.
o Methods defined in the sub-class cannot operate on super-class

objects.
o A sub-class object is a super-class object. Therefore the function isa

will return true when called with the name of a super-class of an
object. However, the function class will return the most specific class
the object belongs to.

Handle classes and value classes

• Matlab supports two kinds of classes — handle classes and value classes. The
kind of class you use depends on the desired behavior of the class instances
and what features you want to use.

• Value classes
o Use value classes to represent entities that do not need to be unique,

like numeric values.
o For example, use a value class to implement a polynomial data type.

You can copy a polynomial object and then modify its coefficients to
make a different polynomial without affecting the original polynomial.

o Instances of value classes behave like structures.
o Value objects are always associated with one workspace or temporary

variable and go out of scope when that variable goes out of scope or is
cleared. So when a value object is passed to a function it is copied to
the function workspace.

o The built-in classes for numeric values (e.g. double, int32…) are
examples for value classes.

o Value classes are the standard classes that are created with a
classdef file.

• Handle classes
o Use a handle class when you want to create a reference to the data

contained in an object of the class, and do not want copies of the object
to make copies of the object data. So each object of a handle class is
unique.

o For example, use a handle class to implement an object that contains
information for a phone book entry. Multiple application programs can
access a particular phone book entry, but there can be only one set of
underlying data.

o The reference behavior of handles enables these classes to support
features like events, listeners, and dynamic properties.

o When you copy a handle object, Matlab copies the handle, but not the

data stored in the object properties. The copy refers to the same data
as the original handle. If you change a property value on the original
object, the copied object reflects the same change.

o When a handle object is passed to a function as input argument, only
the handle is copied to the function workspace. The function can
change the underlying data of the object, without having the object as
output argument(!).

o A creator function of a handle object does not return the object but a
handle, a unique identifier pointing to the object.

o To create a handle class you must indicate < handle in the header
line of the classdef file:
classdef myClass < handle

o handle is an abstract super-class (meaning that it is not possible to
create an instance of this class directly).

o Handle objects inherit methods from the handle class, e.g.
 delete(H) % destroys a handle object
 b=isvalid(H) % true if H is a valid handle

o Properties of handle classes are usually accessed by set and get
methods.

o Handle graphics are an example for Matlab built-in handle classes (will
be discussed next lecture).

• Events and listeners in handle classes
o Events: Events are notices that handle object broadcasts in response to

something that happens, such as a property value changing or a user
interaction with an application program. You can use events to report
things that happen in your program to other objects, which then can
respond to these events by executing the listener's callback function.

o Definition and triggering of events: Events are defined by a events …
end block between the properties and methods blocks in the
definition of handle classes. Events are triggered from within methods,
usually using the function notify.

classdef SimpleEventClass < handle
% Must be a subclass of handle
 properties
 Prop1 = 0;
 end
 events
 Overflow
 end
 methods
 function set.Prop1(obj,value)
 orgvalue = obj.Prop1;
 obj.Prop1 = value;
 if (obj.Prop1 > 10)
 % Trigger the event using custom event data

 notify(obj,'Overflow',SpecialEventDataClass(orgvalue));
 end
 end
 end
end

o Listeners: Listeners execute functions when notification of the event of

interest occurs. The addlistener method of the handle class is used to

create a listener. You also need to define a callback function for the
listener to execute when the event is triggered.

function sec = setupSEC
 % Create an object and attach the listener
 sec = SimpleEventClass;
 addlistener(sec,'Overflow',@overflowHandler)
 % Define the listener callback function
 function overflowHandler(eventSrc,eventData)
 disp('The value of Prop1 is overflowing!')
 disp(['It''s value was: 'num2str(eventData.OrgValue)])
 disp(['It''s current value: 'num2str(eventSrc.Prop1)])
 end
end

Homework:
• Think about your own projects: Would it be useful to define objects with specific

properties and methods (and maybe also events)? Can you define super-
classes and sub-classes?

