
Matlab for PhD students – Advanced Topics 4 –
WS 2010/11
"Speeding up"

General consideration:

• Memory vs. time: Optimally, you want to write code, which is efficient, both for
the usage of memory and CPU time. However, there is a tradeoff. For
example, it usually is better not to perform the same complicated computation
twice. But if the result is so big that it cannot be kept in memory, it may be the
better way to do so. It depends on the amount of data you are processing and
on the computer system you are using if you should try to optimize memory or
processing time in the first place.

• Do not overburden your computer: In general, if you want to perform very time
or memory consuming computations, it is better not to run other programs in
parallel on the same computer.

• Optimize your code as last step of implementation: Premature optimization
can increase code complexity unnecessarily without providing a real gain in
performance. Your first implementation should be as simple as possible. Then,
if speed is an issue, use profiling to identify bottlenecks.

• Matlab is an interpreted language: Matlab interprets programs each time they
are started. This feature makes Matlab easy and convenient to use (you just
start your program as you write it), but it requires additional time, e.g. for
checking the syntax every time a program is started. In contrast, programs
written in other languages like C, python or java have first to be translated into
machine code. This compiled version of the program can then be started and
is executed directly by the CPU without the need of an additional interpreter
program. In Matlab, exceptions of the rule that all code is interpreted are built-
in functions and MEX-files and compiled standalone applications, which were
written in Matlab.

Memory management:

• How Matlab uses memory:
o It is possible that Matlab runs out of memory.
o Matlab allocates memory for variables as they are created and for M-

file functions as they are used.
o When variables are copied, at first both names point to the same block

of data. Only when one of the variables is changed, Matlab duplicates
the data in the workspace and modifies one of the data blocks.

o Similarly, the content of function input arguments is only copied to the
function workspace if its content is changed. Exception: if input and
output arguments have the same name, Matlab copies the variable
immediately.

o The clear command frees up memory. I would strongly recommend
the frequent use of this command ;-)

o It is possible that memory becomes fragmented over time, in particular
if you increase the size of existing arrays (e.g. in loops). For garbage
collection use the pack command. It saves all workspace variables to
disk, clears everything and reloads the variables.

• Tips to save memory:
o Load only as much data as you need from files. If you load mat-files

containing several variables, you can selectively load only the variables
you need with load(filename, variables). To find out which
variables of which size are contained in the file you can use the
command whos with the option ‘-file’ (The syntax will become clear
when you know structures):
S=whos('-file','testdata') % returns a structure
 % with 9 fields, in which

% the properties of each
% variable in the file
% testdata.mat are listed
% (including name and
% size)

 n3=S(3).name % name of the third
% variable in the file

s1=S(1).size % size of the first
% variable in the file

o Do not define variables or function arguments if you do not need them.
o Pre-allocate sufficient memory for your variables by initializing them

with the command zeros or ones before you fill them in loops. This
will help to minimize fragmentation.

o Clear variables as soon as they are no longer in use.
o If you have to process very large amounts of data, it may be necessary

to divide them into smaller pieces, store them to the hard disk and
process them only piecewise.

o Use sparse matrices where possible.

• Sparse matrices:
o Idea: Sparse matrices are a special data type to reduce memory

requirements. The use of sparse matrices makes sense for big matrices
(e.g. max(size(A))>100) which contain a high percentage of zero
elements. In sparse matrices only the nonzero elements are stored
together with two sets of indices identifying the row and column position
of these elements.

o Symbol in workspace window: box with three diagonal lines
o Working with sparse matrices: All Matlab array manipulations and most

operations work equally well and with equal syntax on sparse and on
full matrices (e.g. e=s(5,9)). Operations on sparse matrices in
general produce sparse matrices. If full and sparse matrices are
combined by operations, a sparse matrix will be generated unless it
becomes too densely populated.

o Generation: Sparse matrices are generated by the Matlab function
sparse. E.g.

 A=[0 0 0; 0 9.5 0; 1 0 0]; S1=sparse(A)
 Results in:
 S1 =

 (3,1) 1.0000
 (2,2) 9.5000
o Conversion: The Matlab function full converts a sparse matrix to a

conventional full matrix. E.g. F=full(S1) gives
F =
 0 0 0

 0 9.5000 0
 1.0000 0 0

o Test function if a matrix is sparse: issparse(s)
o Some useful functions for sparse matrices:

find % find indices of nonzero elements
 % (like in full matrices)
nonzeros % values of nonzero matrix elements
 % (like in full matrices)
speye % creates sparse identity matrix
spfun % apply function to nonzero elements
spones % replaces nonzeros with ones
sprand(S) % has the same sparsity structure as Matrix S,
 % but uniformly distributed random entries
sprandn(S) % sparse normally distributed random matrix
spy % visualize sparsity pattern

 % (useful for raster plot!)
o Caution! Sparse matrices are limited to two dimensions!

Time management:

• Initialize variables: It takes time to allocate memory. Therefore, initialize
variables before using them in loops to save time (but you may not want to
allocate more memory than potentially needed if memory usage is critical).
Example: It is much faster to use
vec=zeros(1,1000);
for z=1:1000
 vec(z)=myfunction(z);
end
than to use
vec=[];
for z=1:1000
 vec=[vec myfunction(z)];
end
But if the function myfunction could be applied to a vector it would of course
be best to use
z=1:1000;
vec=myfunction(z);
See script random_numbers_tictoc.m (download from course homepage,
included in updown.zip) for comparison of different ways to generate a big
matrix.

• Vectorized solutions: In general, it is always better to use vectorized solutions
than to use loops. Matlab is optimized to solve matrix problems quite
efficiently. Vectorized solutions are the “Matlab way” of programming! You will
see the difference when running the script updown_performance.m
(download from course homepage, included in updown.zip, see below)

• JIT-Accelerator: Matlab provides the so-called JIT-Accelerator for for-loops,
making them (almost) as fast as vectorized code. The for-loop has to fulfill
these requirements:

o The loop contains only the data types logical, character string, double-
precision and less than 64-bit integer.

o Arrays are three-dimensional or smaller .
o All variables used in the loop are defined prior to loop execution.

o For all variables used in the loop the memory needs to be pre-allocated
and maintain constant size and data type for all loop iterations.

o Loop indices are scalar quantities, such as index z in z=1:27.
o Only built-in Matlab functions (see below) are called within the loop.
o Conditional statements (if-then-else or switch-case) involve scalar

comparisons.
o All lines within the block contain no more than one assignment

statement.

• Built-in functions:
o Functions that are frequently used are often implemented as

executable files in Matlab. They were compiled by Mathworks to
produce fast-running machine code that does not need to be
interpreted for every function call. These functions are called built-ins.

o To identify built-in functions, you can use the exist function. It returns
the number 5 if it is applied to the name of a built-in function, e.g.
exist reshape
ans =
 5
or:
if exist('reshape','builtin')==5

disp('Built-in function!')
end
(Some other outputs of exist are: 0: name does not exist, 1: name is
a variable in the workspace, 2: name is a file on the search path (so
also regular functions will return 2), 7: name is a folder; see help for
more information)

o You can read the code of “regular” Matlab functions by using the type
command (e.g. type factorial). However, for built-in functions (e.g.
type reshape), Matlab will only display that it is a built-in function
(because Mathworks wants to sell licenses and it would be too easy
just to copy all programs…).

o With the command which you can see the path of the program code
file (e.g. which factorial), so you can open, read and copy the
program. For built-in functions, you will also find a program, but it
consists mainly of the help text and only calls the executable built-in
function at the very end.

• Tips to save CPU time:

o Use vectorized solutions or JIT-acceleration if possible!
o Avoid changing the size of variables. Pre-allocate all memory you need

for a variable.
o Avoid unnecessary steps of computations. Make sure that all steps in

loops have to be performed in all iterations of the loop. E.g. if a variable
is set to a fixed value, you should do so before the loop starts and not
over and over again.

o Function calls take time (e.g. because a new workspace has to be
generated and closed again). Sometimes it is faster to re-code a simple
function in your program than to call the function. (But for the sake of
clarity of your code you should only avoid the function if it turns out to
be really critical for the performance of your program!)

o The find function is slower than the use of logical indexing.

o Built-in functions are usually faster than other functions.
o [] consumes time, () does not. [] is slower than the cat command to

concatenate arrays.
o Loading and saving data to hard disk is time consuming and should be

limited to the necessary amount.
o The most time consuming aspect of many Matlab programs are

outputs: drawing (and opening!) figures and writing outputs to the
command line considerably slows down the program.

Tools to improve the performance:

• Time watch: tic starts a time watch, toc reads the time elapsed since the
last tic command and displays it on the screen. The result depends e.g. on
the time used for opening figures or displaying text between the two
commands. However, the CPU time also can increase when the computer is
busy with other programs.
Example: tic; plot(rand(50,5)); toc
(See script random_numbers_tictoc.m from the course homepage for an
extensive example.)

• CPU time: The function cputime returns the amount of CPU time in seconds
that Matlab has used since the current session was started.
Example: t0=cputime; plot(rand(50,5)); t1=cputime-t0

• Debugging tools: The debugging command mlint and the code analyzer
report (see script of lecture 2) both give tips to improve the performance of
your programs concerning CPU time and memory usage.

• Profiler: Matlab provides a specific tool with graphical user interface to
optimize the execution of M-file functions, the profiler.

o The profiler identifies which lines consume the greatest amount of time
relative to the rest of the code.

o Very often, it is not obvious which lines are the most time-consuming,
because many commands call other functions, which in turn call
functions etc. If one of the called functions consumes a lot of time, the
profiler will show that to you.

o You can start the profiler window either from the Matlab desktop
(click desktop -> profiler) or use the profile command to start
profiling and the command profile viewer to open the profiler
window.

o Example:
clear all % make sure that no memory is

% used
profile on; % starts to record CPU time

 for i=1:100 % it is a good idea to run your
% program several times to
% average out effects of other
% tasks your computer performs
% additionally.

 out=myfunction(in); % your function
end
profile viewer % opens the profiler GUI or
 % refreshes the window if it

% is already open.

o If you click in the profiler window on the name of program you are
interested in, the profiler shows the lines where the most time was
spent and additionally displays the mlint results.

o The profiler is also a great debugging tool, because it also works for
programs terminating with an error message (and program interrupted
with Ctrl-c). So you can keep track of what was going on prior to the
error.

o Optimize your code with the profiler:

 Start the profiler
 Run your program (if possible several times)
 Look at the profile summary report in the profiler window, click

on the name of the program you want to optimize
 Look at the detail report to see which lines consume most time.
 Click on the links to get to the lines in the Matlab editor.
 Try to optimize the most offending lines
 Use clear all
 Run your program again by calling it from the “run this code” line

in the profiler window to see if the performance increased.
 You might want to keep a copy of your original profiler window

for comparison.

Matlab and C
• MEX-files: You can call your own C or Fortran subroutines from Matlab as if

they were built-in functions. Matlab callable C and Fortran programs are
referred to as MEX-files. MEX-files are dynamically linked subroutines that the
Matlab interpreter can automatically load and execute. Applications of MEX-
files include:

o Large pre-existing C and Fortran programs can be called from Matlab
without having to be rewritten as M-files.

o Bottleneck computations that do not run fast enough in Matlab (usually
computations requiring complicated loops) can be recoded in C or
Fortran for efficiency

MEX-files are platform specific and also have platform specific extensions,
e.g. mexmac (mac), maxw32 (32 bit windows) and mexglx (32 bit linux). It is
not possible to use a MEX-file on a different platform than on the one it was
compiled on.
You can call a MEX-file in Matlab exactly like an M-file.
To consider which compiler to use and to learn how to build MEX-files please
refer to the help page “Building MEX-files”.

• Matlab Engine: The Matlab-engine allows the use of M-files from within C. So
you can use specific functions in a faster environment.

• Matlab Compiler: Matlab provides a compiler to create standalone applications
and shared libraries for C and C++. The Matlab compiler is not part of the
standard Matlab, but needs to be paid separately like a toolbox. The compiler
works with all Matlab functions and most toolboxes. The compiler comes with
a graphical user interface to build and package components for deployment on
a different computer.

Example for speeding up Matlab code and using the profiler

• Task: Up-Down Sequence: Let N be a positive integer. If N is even, divide it by
2. But if it is odd, multiply it by 3 and add 1. Repeat until N becomes 1.

• This algorithm converts always to 1, but it takes different numbers of iterations
to converge. We calculate the numbers of iterations required to achieve
convergence for each elements of a vector Nums.

• Example programs: Example programs are on the course homepage in
updown.zip. They are modified from the book “Mastering Matlab 7”. You will
find several versions of the algorithms described below. The script
updown_performance.m calls all of these versions with the profiler to compare
the performance of the different versions of the algorithm.

• First approach: Algorithm based on a for-loop: updown2.m (see file for full
version, only the main algorithm is shown here, without test for correct function
input etc…)

function Counts=updown2(Nums)
% parts are missing here...
%% calculate lengths of up-down sequences for each vector element
for z=1:length(Nums)
 N = Nums(z); % number to test in this iteration of for loop
 count = 0; % while loop iteration count
 while N>1
 if rem(N,2)==0 % even numbers
 N = N/2; % are divided by 2
 count = count+1;
 else % odd numbers
 N = 3*N+1; % are multiplied by 3 and 1 is added
 count = count+1;
 end
 end

 Counts(z) = count; % attach current count of iterations to
% the list

end

This algorithm is used in the functions updown2, updown2f (calling
updown1) to show the performance difference between using function calls
versus including the code into the main program. On my computer there is not
much difference between the performances of these versions.

• Optimization of algorithm: This algorithm can be made faster by using the fact
that for an odd number N the computation N = 3*N+1; always yields an
even number N. Therefore, the case for odd numbers can be replaced by

else % odd numbers: do next two steps together
N = (3*N+1)/2;

 count = count+2;
end

This algorithm is used in the functions updown2a, updown2af (calling
updown1a), updown2nestedfunc and updown2subfunc to show the
performance difference between using function calls, calls of sub functions
and calls of nested functions versus including the code into the main program.
Again, there is not much difference between all of these versions on my
computer. However, all of these versions show a clear reduction in processing

time compared to the first approach.

• Optimization of implementation: Due to the command Counts(z) = count;
the variable Counts changes size in each iteration of the for loop. Matlab
should be able to use JIT acceleration for the for-loop when all variables are
pre-allocated. Therefore, the following code cell is added to the program prior
to the for-loop:

%% pre-define variables:
Counts = zeros(size(Nums)); % preallocate array. This should make
 % a big difference for speed!
N = Nums(1); % predefine N data type and dimension
count = 0; % predefine count data type and

 % dimension
This algorithm is used in the function updown2a_predef. According to
“Mastering Matlab 7” this addition should make a big difference in
performance. However, on my computer it does not…

• Vectorized solution: The more elegant way to solve this task in Matlab is (as
usual) to use a vectorized solution instead of the for-loop. However, it is not
trivial to deal with the entire vector Nums instead of its individual elements,
because different numbers of iterations are needed for each vector element.
The idea is to use logical indexing to extract a vector of elements that are
larger than one and odd and a vector of elements that are larger than one and
even and to process all of these elements in one step:

%% pre-define variables:
N = Nums; % duplicate numbers
Counts = zeros(size(N)); % preallocate array
not1 = N>1; % True for numbers greater than one

%% lengths of up-down sequences for all vector elements together

while any(not1) % true if any element of vector not1

% is a nonzero element
 odd = rem(N,2)~=0; % Vector with 1 for odd values and 0

% for even
 odd_not1 = odd & not1; % Vector with 1 for odd values

% greater than one
 even_not1 = ~odd & not1; % Vector with 1 for even values

% greater than one
 N(even_not1) = N(even_not1)/2; % Process evens
 Counts(even_not1) = Counts(even_not1)+1;
 N(odd_not1) = (3*N(odd_not1)+1)/2; % Process odds, next

% two steps together like in
% updown2a

 Counts(odd_not1) = Counts(odd_not1)+2;
 not1 = N>1; % Find remaining numbers
end

This algorithm is implemented in the function updown_vector. The
improvement in processing speed compared to the for-loop algorithm is
striking. On my computer it only takes ~1/60 of the CPU time!

• Optimized vectorized solution: Profiling shows that the line

odd = rem(N,2)~=0;
takes a lot of the total CPU time used by function updown_vector. The
reason is the call of the function rem, even though this is a built-in function.

“Mastering Matlab 7” suggests the replacement of the line by
odd = (N-2*fix(N/2))~=0;
This algorithm is implemented in the function updown_vector_opt, which
indeed shows a small additional improvement (on my computer 20%)
compared to updown_vector.

Homework:

• Test the processing times of the different examples of updown and the
generation of random numbers on your own computer.

• Use the profiler to optimize the code of your own project.

