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Abstract

Standard probabilistic sparse coding assumes
a Laplace prior, a linear mapping from la-
tents to observables, and Gaussian observ-
able distributions. We here derive a solely
entropy-based learning objective for the pa-
rameters of standard sparse coding. The novel
variational objective has the following fea-
tures: (A) unlike MAP approximations, it
uses non-trivial posterior approximations for
probabilistic inference; (B) the novel objec-
tive is fully analytic; and (C) the objective
allows for a novel principled form of anneal-
ing. The objective is derived by first showing
that the standard ELBO objective converges
to a sum of entropies, which matches simi-
lar recent results for generative models with
Gaussian priors. The conditions under which
the ELBO becomes equal to entropies are
then shown to have analytic solutions, which
leads to the fully analytic objective. Numeri-
cal experiments are used to demonstrate the
feasibility of learning with such entropy-based
ELBOs. We investigate different posterior
approximations including Gaussians with cor-
related latents and deep amortized approxi-
mations. Furthermore, we numerically inves-
tigate entropy-based annealing which results
in improved learning. Our main contributions
are theoretical, however, and they are twofold:
(1) we provide the first demonstration on how
a recently shown convergence of the ELBO to
entropy sums can be used for learning; and
(2) using the entropy objective, we derive a
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fully analytic ELBO objective for the stan-
dard sparse coding generative model.

1 INTRODUCTION AND RELATED
WORK

Sparse coding seeks to represent data vectors x by la-
tent vectors z. Sparse coding requires the vectors z to
be sparse, i.e., on average only few of the values zh sig-
nificantly contribute in representing any given vector x.
Our main focus will be the (by far) most standard data
model for probabilistic sparse coding (Williams, 1995;
Olshausen and Field, 1996; Seeger et al., 2007). The
model assumes a Laplacian (a.k.a. double-exponential)
prior distribution for latents z ∈ RH , and a Gaussian
noise distribution for observables x ∈ RD,

p(z) =

H∏
h=1

1

2
exp

(
− |zh|

)
and

pΘ(x | z) = N
(
x |Wz, σ2I

)
,

(1)

where weight matrix W ∈ RD×H and observation noise
σ2 > 0 are the model parameters Θ = (W,σ2). The
sparse coding model, and in particular the Laplace
prior distribution, are closely related to deterministic
sparse coding approaches that use the l1-objective (e.g.,
Hastie et al., 2015). A standard form of deterministic
sparse coding addresses the optimization problem

min
z(1),...,z(N)

{ N∑
n=1

∥∥x(n) − W̃z(n)
∥∥2

︸ ︷︷ ︸
reconstruction

+ γ̃

N∑
n=1

H∑
h=1

∣∣z(n)h

∣∣
︸ ︷︷ ︸

sparsity

}
,

(2)

where z(1), . . . , z(N) are deterministic latent vectors
corresponding to data vectors x(1), . . . ,x(N), and where
W̃ ∈ RD×H with columns of unit length. The constant
γ̃ (often also denoted λ) weights the sparsity term vs.
the reconstruction term of the objective.
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For more than two decades, sparse coding approaches
have been very thoroughly investigated with large num-
bers of papers dedicated to theoretical investigations of
the respective optimization problems, and with many
papers using different (including deep) forms of sparse
coding for numerous tasks. Such tasks included (to
name a few) denoising, inpainting, compression, dis-
entanglement, or super-resolution (e.g. Mairal et al.,
2014; Yao et al., 2022; Cheng et al., 2022; Drefs et al.,
2023).

For the standard probabilistic data model, given in
Eq. (1), the presumably most common way to derive
algorithms for parameter optimization is maximum
likelihood (ML) estimation. That is, we seek those
parameters of the model that maximize the (marginal)
log-likelihood LLL(Θ) in dependence of the likelihood
parameters Θ = (W,σ2) with

LLL(Θ) =
1

N

N∑
n=1

log
(∫

pΘ(x
(n)|z) p(z) dz

)
. (3)

In order to facilitate the challenging problem of max-
imizing LLL, approximations to ML optimization are
very commonly applied. One of the most common ap-
proximation methods applied for probabilistic sparse
coding (and probabilistic generative models in general)
is variational approximation (e.g. Jaakkola and Jordan,
1997). Concretely, instead of maximizing the likelihood
directly, a lower bound of the log-likelihood is max-
imized, which is referred to as free-energy or ELBO
(e.g., Neal and Hinton, 1998; Jordan et al., 1999):

LEL(Φ,Θ) =
1

N

N∑
n=1

[ ∫
q
(n)
Φ (z) log pΘ(x

(n) | z)dz

− DKL

(
q
(n)
Φ (z) ∥ p(z)

)]
.

(4)

Given the data model in Eq. (1), the ELBO is defined
by the family of variational distributions q(n)Φ (z) used
to approximate the true posteriors of a given model.
The standard choice for probabilistic sparse coding
are Gaussian variational distributions to approximate
the analytically intractable posteriors of the model.
For sparse coding as in Eq. (1), the true posteriors
are known to be mono-modal (Olshausen and Field,
1996; Seeger et al., 2007) due to log-concavity. There-
fore, Gaussian approximations (by matching mode and
correlations) can be considered as capturing the most
essential structure of the model’s true posteriors.

The optimization of lower bounds such as the ELBO
usually represents an easier optimization problem than
optimizing the likelihood itself. However, the crucial
challenge for both of these optimizations is posed by
the integrals over potentially high-dimensional latent
spaces. For the standard sparse coding model, no ana-
lytic solutions have been reported, so far. In particular,

no analytic solutions have been reported for the com-
mon case of using Gaussians as the family of variational
distributions.

It could be argued that deterministic algorithms are,
nonetheless, available if much more simplifying approx-
imations than Gaussians are used for optimization.
The arguably most common approach is given by maxi-
mum a-posteriori (MAP) training (Olshausen and Field,
1996). From a probabilistic perspective, MAP approxi-
mations may be interpreted as a limit case of variational
approximations in which the family of variational distri-
butions are delta-distributions. The high-dimensional
integrations over latent space are then trivially solved.
As a source for its high popularity, MAP approxima-
tions allow for linking the standard probabilistic model
in Eq. (1) to the deterministic l1-sparse coding objec-
tive in Eq. (2). That is, the sparse coding objective in
Eq. (2) can be recovered if the MAP approximation
is applied. Another source of the ongoing popularity
of MAP (also in general) is the resulting closed-form
objective (cf. Eq. 2), i.e., no high-dimensional integrals
have to be numerically estimated.

However, from a probabilistic machine learning perspec-
tive, delta-distributions do not represent theoretically
well-grounded approximations. One consequence of
using MAP is, for instance, that the ELBO objective is
rendered non-finite and thus cannot be considered as
a learning objective anymore (see, e.g., Barello et al.,
2018, for a discussion); also the meaning of the ELBO
as a lower bound of the log-likelihood ceases to provide
meaning in the MAP case. Moreover, severe degenera-
cies are introduced: optimization of W tends to yield
infinite entries (Olshausen and Field, 1996), which has
to be manually corrected, and data noise σ2 and spar-
sity are not learnable independently of one another.
More generally, no probabilistic encoding is provided,
i.e., neither can a probabilistic objective be used for
tasks such as model selection nor is there uncertainty
information available for data encoding (with all the
negative consequences for downstream tasks one may
seek to address). Such major drawbacks have, con-
sequently, resulted in substantial research efforts to
allow for appropriate uncertainty estimation in sparse
coding. Strategies that were followed include (i) the ap-
plication expectation propagation (Seeger et al., 2007),
(ii) sampling-based fully Bayesian approaches (Mo-
hamed et al., 2012), (iii) amendments of the original
data model (Berkes et al., 2007; Sheikh et al., 2014)
such that non-trivial variational optimizations could be
applied, (iv) the use of amortized variational distribu-
tions for the original data model (Barello et al., 2018),
or (v) amendments of both data model and variational
distributions (Tonolini et al., 2020; Drefs et al., 2023).
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2 ELBO CONVERGENCE TO
ENTROPY SUMS

There are many ways to rewrite the ELBO and re-
late it to Kullback-Leibler divergence, entropies, cross-
entropies, mutual information, and expected recon-
struction error (e.g. Alemi et al., 2018; Hoffman and
Johnson, 2016; Zhao et al., 2017). In contrast, we in this
work seek to rewrite the ELBO as a sum of entropies.
The reformulation is obtained through assuming con-
vergence of a subset of the model parameters, i.e., our
reformulation is valid on a submanifold in the space
of all model parameters. Our reformulation is conse-
quently different from previously known reformulations
that are valid for the entire space of parameters.

We will first show that the ELBO for the sparse coding
model given in Eq. (1) converges to a sum of three en-
tropies given optimization of specific model parameters.
The derived results will apply to general variational dis-
tributions, the specific variational family of Gaussian
distributions will only be used later. Our derivations
are based on recent results for variational autoencoders
(VAEs) that show convergence of standard (Gaussian)
VAEs to entropy sums (Damm et al., 2023). These
results have deeper roots in the exponential family
property of Gaussians (Lücke and Warnken, 2023) and
we here, for the first time, show that the ELBO of
standard sparse coding converges to entropy sums.

Our main focus will be on learning, which contrasts
with previous work (Damm et al., 2023; Lücke and
Warnken, 2023) that investigated the properties of the
ELBO at stationary points. The focus on learning
means that we will exploit properties the ELBO in
Eq. (4) attains if a subset of model parameters have
converged. To specify those parameters we will first
reparameterize the sparse coding model introduced in
Eq. (1) before we investigate convergence to entropy
sums.

2.1 Reparameterization of Sparse Coding

Consider an elementary Bayesian network (Fig. 1, left)
for probabilistic latent variable models, that covers
models such as sparse coding, as in Eq. (1), probabilistic
PCA (Tipping and Bishop, 1999), and VAEs (Kingma
and Welling, 2014). For our derivations of the entropy-
based ELBO, we will use a slightly altered form of the
model with learnable prior parameters (Fig. 1, right).
Concretely, we constrain the columns of the weight
matrix (now termed W̃ ) to be of unit length but we
use parameterized Laplace distributions for the prior
(instead of the parameterless standard choice).

z

xθ′

N

z

x

λ

θ

N

Figure 1: Latent variable model. Left: graphical
model representation corresponding to many popular la-
tent variable models, including VAEs. Right: graphical
model with learnable prior parameters and constrained
likelihood parameters as used in this work.

The sparse coding model is thus given by

pΘ(z) =

H∏
h=1

1

2λh
exp

(
−|zh|
λh

)
and

pΘ(x|z) = N
(
x | W̃z, σ2I

)
,

(5)

where ∀h :
∑

i

(
W̃ih

)2
= 1, such that Θ now reads

Θ = (λ, W̃ , σ2) ∈ RH
+ × RD×H

norm × R+. The prior pa-
rameters λh are commonly referred to as scales.

It is straightforward to show that the reparameterized
model in Eq. (5) parameterizes the same family of
distributions pΘ(x) as the original model in Eq. (1),
with a one-to-one mapping between their respective
parameters. This parameterization is important in
order to show that the ELBO of sparse coding becomes
equal to entropy sums under certain conditions.

2.2 Equality of ELBO and Entropy Sums

Motivated by previous work (Damm et al., 2023), we
now investigate if the ELBO of the model in Eq. (5)
becomes equal to entropy sums during learning. Damm
et al. (2023) did show equality of ELBO and entropy
sums for Gaussian models (Gaussian prior and Gaus-
sian noise model) at all stationary points. For this
work, we will show equality to entropy sums for the
ELBO of sparse coding. But, furthermore, it will be
important for this work to explicitly note that only the
parameters λ and σ2 have to be at stationary points
in order to realize equality to entropy sums.

Theorem 1 (ELBO converges to a sum of entropies).
Consider the ELBO in Eq. (4) for the sparse coding
model in Eq. (5) with parameters Θ = (λ, W̃ , σ2). If
the parameters λ and σ2 are at a stationary point, i.e.,

∂
∂λL

EL(Φ,Θ) = 0 and ∂
∂σ2LEL(Φ,Θ) = 0 , (6)

then it applies for any variational distributions qΦ(z)
and for any matrix W̃ (with unit column lengths) that:

LEL(Φ,Θ)

= 1
N

∑
n H[q

(n)
Φ (z)]−H[pΘ(z)]−H[pΘ(x|z)] . (7)
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Proof. The ELBO objective in Eq. (4) can be rewritten
to consist of three summands, i.e.,

LEL(Φ,Θ) =

1

N

∑
n

H[q
(n)
Φ (z)] +

LEL
1 (Φ,Θ)︷ ︸︸ ︷

1
N

∑
n

∫
q
(n)
Φ (z) log pΘ(z)dz

+ 1
N

∑
n

∫
q
(n)
Φ (z) log pΘ(x

(n)|z)dz︸ ︷︷ ︸
LEL

2 (Φ,Θ)

.

The first summand is already in the form of an (average)
entropy. The last summand, LEL

2 (Φ,Θ), has the form

LEL
2 (Φ,Θ) = 1

N

∑
n

(
− D

2
log
(
2πσ2

)
− 1

2σ2

∫
q
(n)
Φ (z) ∥x(n) − W̃z∥2dz

)
.

If ∂
∂σ2L(Φ,Θ) = 0, we get LEL

2 (Φ,Θ) = −H[pΘ(x|z)],
which can be shown analogously to the Gaussian noise
distribution used in Gaussian variational autoencoders
(Damm et al., 2023).1

To show that Eq. (7) holds, it is therefore left to show
that the summand LEL

1 (Φ,Θ) has the form of an en-
tropy under the conditions of the theorem. We invoke
the factorization q(n)Φ (z) = q

(n)
Φ (z/h|zh)q

(n)
Φ (zh) to sim-

plify the integral LEL
1 (Φ,Θ) such that LEL

1 (Φ,Θ) =∑
h

(
− log(2λh)−

1

N

∑
n

1

λh

∫
|zh| q(n)Φ (zh) dzh

)
.

(8)

As only the term LEL
1 (Φ,Θ∗) of the ELBO depends on

λ, we obtain at stationary points of Eq. (8) w.r.t λh:

0 =
∂

∂λh
LEL(Φ,Θ) =

∂

∂λh
LEL
1 (Φ,Θ)

= − 1

λh
+

1

N

∑
n

1

λ2h

∫
|zh| q(n)Φ (zh) dzh

=
1

λh

(
−1 +

1

N

∑
n

1

λh

∫
|zh| q(n)Φ (zh) dzh

)
,

for all h. As λh ̸= 0, it follows that

1

N

∑
n

1

λh

∫
|zh| q(n)Φ (zh) dzh = 1. (9)

Now we insert Eq. (9) into Eq. (8) and obtain:

LEL
1 (Φ,Θ) = −

∑
h

log(2eλh) = −H[pΘ(z)].

1For completeness, we reiterate the derivation for our
case in Appendix A.3.

In Appendix A.1 we present a simple but more gen-
eral theorem that constructively proves convergence to
entropies for a small class of exponential family distribu-
tions. More general convergence criteria were presented
by Lücke and Warnken (2023), see Appendix A.2.

3 ENTROPY-BASED ELBOS AS
LEARNING OBJECTIVES

The entropy sum expression in Theorem 1 does by itself
not represent a learning objective because it requires
the conditions in Eq. (6); and these are usually not
satisfied during optimization. However, do note that
the conditions only concern a subset of the parameters
of the ELBO, i.e., λ and σ2. No conditions have to
be fulfilled for the parameters W̃ and the variational
parameters Φ. Importantly, this means that the expres-
sion in Eq. (7) can potentially be used as a learning
objective if we can derive solutions for λ and σ2 that
satisfy the conditions stated in Eq. (6). For our spe-
cific choice of variational distributions q(n)Φ (z) we can,
notably, find analytic such solutions.

Theorem 2 (Optimal scales and variance). For
the sparse coding model in Eq. (5) consider the
ELBO in Eq. (4) defined with Gaussian distribu-
tions q

(n)
Φ (z) = N (z |ν(n), T (n)), for n = 1, . . . , N ,

as family of variational distributions. The varia-
tional parameters are consequently given by Φ =
(ν(1), . . . ,ν(N), T (1), . . . , T (N)) with ν(n) ∈ RH and
positive semi-definite matrices T (n) ∈ RH×H . For
arbitrary such variational distributions and for an ar-
bitrary matrix W̃ (with unit length columns), we can
then find the values for λ and σ2 that satisfy Eq. (6).
The solutions for λ and σ2 are unique and are given by

σ2
opt

(
Φ, W̃

)
=

1

N

∑
n

1

D

[
tr(W̃TW̃T (n)) (10)

+ (W̃ν(n) − x(n))T(W̃ν(n) − x(n))

]
,

∀h : λopth

(
Φ
)
=

1

N

∑
n

√
T (n)
hh M

(
ν
(n)
h√
T (n)
hh

)
(11)

with M(a) =

√
2

π
exp

(
−1

2
a2
)
+ a erf

(
a√
2

)
. (12)

Proof sketch. We solve the arising integrals analytically
to find the corresponding parameters at stationary
points. Appendix B.1 contains the full derivations.
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3.1 Entropy-based Learning Objective for
Standard Sparse Coding

We can now consider the subspace of all parameters Θ
with optimal λ and σ2. These are all parameters that
can be obtained from parameters Φ and W̃ through
the following function:

Θopt(Φ, W̃ ) =
(
λopt(Φ), W̃ , σ2

opt(Φ, W̃ )
)
, (13)

where λopt(Φ) and σ2
opt(Φ, W̃ ) are provided by Theo-

rem 2. As for all Θopt(Φ, W̃ ) the conditions for Theo-
rem 1 are fulfilled, it applies for all Φ and W̃ that

LEL
(
Φ,Θopt(Φ, W̃ )

)
=

1

N

∑
n

H[q
(n)
Φ (z)]

−H[pΘopt(Φ,W̃ )(z)]−H[pΘopt(Φ,W̃ )(x|z)] .
(14)

The entropy-based right-hand-side of Eq. (14) only
depends on Φ and W̃ , and it suggests itself as a novel
objective for these remaining parameters. Importantly,
as the entropies in Eq. (14) are all given in closed-form,
and as λopt(Φ) and σ2

opt(Φ, W̃ ) are analytic functions,
the novel objective is an analytic function as well. Using
the expressions for the entropies in Eq. (14) and the
solutions λopt(Φ) and σ2

opt(Φ, W̃ ), the objective is given
by (see Appendix B.1 for intermediate steps):

LH(Φ, W̃ ) =
1

N

N∑
n=1

1

2
log
(
| 2π e T (n) |

)
−

H∑
h=1

log

(
2 e

1

N

N∑
n=1

√
T (n)
hh M

(
ν
(n)
h√
T (n)
hh

))

− D

2
log

(
2π e

1

N

N∑
n=1

1

D

[
tr(W̃TW̃T (n))

+
(
W̃ν(n) − x(n)

)T(
W̃ν(n) − x(n))

])
,

(15)

where M
(
·
)

is the analytic function from Eq. (12).

Considering the new objective LH, there is, however, a
subtle but important difference compared to LEL: the
solutions for λ and σ2 introduce dependencies between
model parameters Θ and variational parameters Φ.
As a consequence, the standard lower-bound relation
between log-likelihood (only depending on Θ) and LH

becomes more intricate away from stationary points.
We can, however, show that the objective LH(Φ, W̃ )
has the same stationary points (together with λopt(Φ)

and σ2
opt(Φ, W̃ )) as the original ELBO LEL(Φ,Θ).

Theorem 3. Consider the sparse coding model
formulated in Eq. (5) with model parameters
Θ = (λ, W̃ , σ2) ∈ RH

+ × RD×H
norm × R+, and variational

parameters Φ = (Φν ,ΦT ) that parameterize mean

ν(n) ∈ RH and covariance T (n) ∈ RH×H (in amor-
tized or non-amortized fashion) where Φν ∩ ΦT = ∅.
Then, the set of stationary points of the original objec-
tive LEL(Φ,Θ), given in Eq. (4), and of the entropy-
based objective LH(Φ, W̃ ), given in Eq. (15), coincide.
Furthermore, at any stationary point it holds

LEL(Φ⋆,Θ⋆) = LH(Φ⋆, W̃ ⋆) . (16)

Proof sketch. As all stationary points must satisfy
Eq. (6), Eq. (16) holds directly by Theorem 1. To
show that any stationary point of one objective is also
a stationary point of the other we show that the gradi-
ents of both objectives coincide whenever Eq. (6) holds.
The full proof is deferred to Appendix C.

In virtue of Theorem 3, LH(Φ, W̃ ), given in Eq. (15),
can be used as novel objective for standard sparse
coding with Laplace prior. Note that also the error
function is known to be an analytic function, which
can be seen, e.g., by considering its representation
by the Bürmann series (Schöpf and Supancic, 2014).
The series representations also highlight that for all
practical reasons, very accurate (and readily available)
closed-form approximations of the error function can
be used for optimization (see Appendix D.1).

3.2 Properties of the New Objective

Equation (15) represents the most general form of the
novel objective. In case of diagonal covariance ma-
trices, q(n)(z) = N

(
z |ν(n),diag

((
τ
(n)
1

)2
. . .
(
τ
(n)
H

)2)),
Eq. (15) simplifies significantly as tr(W̃TW̃T (n)) be-
comes

∑
h

(
τ
(n)
h

)2, and the log-determinant of T (n) is
easy to compute (see Appendix B.2 for the details).

Also note that the entropy objective is fully compati-
ble with amortized inference, i.e., if the variational
parameters are functions (usually deep neural net-
works) of data points: ν(n) = DNNν(x

(n); Φ) and
T (n) = DNNT (x

(n); Φ). In this context, the functions
can map to diagonal covariance matrices (as is stan-
dard), to full rank covariance matrices, or to intermedi-
ate low-rank versions. The entropy-ELBO remains an
analytic function in all these cases. As a consequence,
we can use standard gradient-based approaches for ana-
lytic functions to optimize all parameters. Without an
analytic ELBO, sampling-based estimation of integrals
and the reparameterization trick, or similar approaches
to estimate ELBO gradients are required (Sec. 4 and
Appendix D.3 for details and experiments).

3.3 Entropy Annealing

Direct optimizations of ELBO objectives often result
in locally optimal solutions. This observation is a main
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motivation to use annealed versions of the ELBO ob-
jective. A very prominent example is β-annealing (Hig-
gins et al., 2017; Huang et al., 2018). In β-annealing,
the KL-divergence term is weighted: L(Φ,Θ) =∫
qΦ(z) log pΘ(x|z)dz − βDKL

(
qΦ(z) ∥ pΘ(z)

)
.2 The

here derived entropy-based ELBOs invite to new types
of annealing. As all terms of the ELBO are of the same
principled type (i.e., entropy) it is straightforward to
reweight the entropy contributions for annealing. The
annealed objective thus becomes:

LH
γ,δ(Φ,Θ) =

1

N

∑
n

H[q
(n)
Φ (z)]

− γH[pΘ(z)]− δH[pΘ(x|z)] .
(17)

Notice that we can effectively anneal equivalently to
β-annealing by setting δ = 1

β and γ = 1. By using
γ = δ ≥ 1, we recover energy tempering (a.k.a., α-
annealing) (Katahira et al., 2008; Huang et al., 2018).
Equation (17) suggests a third alternative using γ ≥ 1
and δ = 1, which we will call prior annealing.

3.4 Relation to l1-Sparse Coding

Eq. (15) as well as the ELBOs for less general Gaussian
distributions (see Appendix B.2), represent analytic
learning objectives for sparse coding. Therefore, it may
be of interest to study the relation of entropy-ELBOs
to objectives for standard l1 sparse coding, which are
likewise analytic functions. And l1-objectives have
extensively been researched (Daubechies et al., 2004;
Lee et al., 2006; Beck and Teboulle, 2009; Gregor and
LeCun, 2010; Hastie et al., 2015). At first sight, the
similarity between entropy-ELBOs and l1-objectives
does not seem to go very far because the intricate
ELBO in Eq. (15) seems very different from objectives
like Eq. (2). At closer inspection, the similarity to l1-
objectives is higher than it first seems, however. In this
context, consider the entropy-based ELBO for Gaussian
distributions with diagonal covariance matrix (derived
in Appendix B.2). If we use an annealed version in
analogy to Eq. (17), the resulting objective function is
given by Eq. (109) in the appendix. We set δ = 1 to use
prior annealing. If we now focus on the optimization of
variational parameters ν(n), then just the latter two of
the three entropies are relevant (the first is independent
of ν(n)). Removing constant terms of these remaining
entropies then results in the following objective for ν(n)

2In terms of entropies the KL-divergence corresponds
– at optimality – to the gap between prior entropy and
average variational entropy.

that has to be minimized:3

D

2
log
(
σ2
opt(Φ, W̃ )

)
︸ ︷︷ ︸

reconstruction

+ γ

H∑
h=1

log
(
λopth (Φ)

)
︸ ︷︷ ︸

sparsity

. (18)

Considering the result of Theorem 2 for σ2
opt(Φ, W̃ ) for

diagonal covariances, we obtain

σ2
opt(Φ, W̃ ) =

1

D

1

N

N∑
n=1

∥W̃ν(n) − x(n))∥2 + H

D
τ̄2,

where τ̄2 is just the average of
(
τ
(n)
h

)2 across data
points and latent dimensions (see Eq. (105)). Hence,
the first term of Eq. (18) is (a monotonic function
of) a mean squared reconstruction error. Using again
Theorem 2, this time for λopth (Φ), we can now more
closely inspect the second term. For this, we define a
smoothed magnitude function | · |∗ using the function
M(a) of Eq. (12) such that the solutions for the prior
parameters become:

λopth (Φ) =
1

N

∑
n

∣∣ν(n)h

∣∣⋆ with
∣∣ν(n)h

∣∣⋆ = τ
(n)
h M

(ν(n)h

τ
(n)
h

)
.

Observe that for small τ (n)h compared to ν(n)h , we indeed
obtain that

∣∣ν(n)h

∣∣⋆ ≈
∣∣ν(n)h

∣∣, see Appendix E. Hence,
the second term of Eq. (18) penalizes large values of
ν
(n)
h according to a (logarithmic) l1 sparsity penalty.

Taking gradients w.r.t. ν(n) of the objective in Eq. (18)
makes the similarity to classical l1-objectives like Eq. (2)
still more salient because the logarithms disappear as
well as the τ̄2-offset in σ2

opt(Φ, W̃ ). However, gradients
of the reconstruction and sparsity term will be weighted
by 1/σ2

opt(Φ, W̃ ) and 1/λopth (Φ), respectively.

In the next section, we will use different values of γ ≥ 1,
i.e., prior annealing to investigate resulting encodings,
e.g., for image patches. This will allow us to numerically
investigate the similarity of (annealed) entropy-ELBOs
and l1-objectives. From a theoretical perspective, a
notable difference to standard l1-objectives is, how-
ever, that Eq. (18) is derived from the standard ELBO
objective. That ELBO is itself an approximation for
maximum likelihood parameter estimation. As a con-
sequence, the optimal γ is known in our case (γ = 1),
while for classical l1-sparse coding the weighting factor
is an important free parameter that has to be tuned.

4 EXPERIMENTS

We use numerical experiments to verify the feasibility of
the novel entropy-based objectives. Our main interests

3Minimization is the convention for l1-objectives.
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will be convergence speed and insights into the effects
of entropy annealing on sparsity. The source code for
the experiments is available at https://github.com/
Learning-with-Entropies/sparse-coding.git

4.1 Verification on Artificial Data

We first investigated learning based on entropy-based
ELBOs using artificial data with ground-truth. Data
consisted of N = 1000 data points with horizontal and
vertical bars (Földiák, 1990; Hoyer, 2002) on a 5 × 5
grid (D = 25). We used (unamortized) Gaussian vari-
ational distributions with full covariance matrix (i.e.,
variational parameters for all data samples) to opti-
mize the model given in Eq. (5) with H = 10. Using
Eq. (15), the variational parameters were then opti-
mized jointly with W̃ ∈ RD×H by applying L-BFGS
(Liu and Nocedal, 1989), which is readily available
in PyTorch (Paszke et al., 2017). After convergence,
each recovered generative field (GF; i.e., each column
of W̃ ) contained one bar (Fig. 2). Convergence was
fast: after approximately 100 L-BFGS calls to optimize
the entropy-ELBO, ELBO values were already close
to values of the ELBO for (ground-truth) generating
parameters (for details, see Appendix D.2).

(a) Training data samples (b) Learned generative fields

Figure 2: Artificial sparse bars dataset. (a) Exam-
ple data which is constructed by Laplace-distributed
activation of horizontal and vertical bars. (b) Optimiz-
ing LH recovers the bars and their activations (up to
signs of generative fields).

4.2 Natural Image Patches, Sparsity and
Entropy Annealing

After verification on artificial data, we investigated
entropy-ELBOs using the presumably most standard
application of sparse coding models: natural image
patches. Learning sparse codes for image patches based
on Eq. (1) is also the most common approach to ex-
plain neuronal receptive fields in cortical area V1 (Ol-
shausen and Field, 1996). Originally estimated with
MAP approximation, further extensions were devel-
oped to employ, e.g., VAE-style training with stochastic
estimation of the ELBO gradient using the “reparam-
eterization trick” (e.g. Barello et al., 2018; Tonolini
et al., 2020). Here we used analytic entropy-ELBOs to
optimize the model in Eq. (5) on whitened images (Ol-
shausen and Field, 1996) withN = 204 800, D = 16×16
and H = 100 and 400 (Appendix D.5 for experiments
with H = 400). We explored different versions of the

entropy-ELBO, Eq. (15), in order to investigate the
effect of entropy-based annealing and to compare it to
amortized optimization. To allow for sufficient com-
putational efficiency, we used variational distributions
with diagonal (see Eq. (108)) or low-rank covariance ma-
trices. Concretely, we used (A) an entropy-ELBO with-
out annealing; (B) an entropy-ELBO (Eq. (109)) with
prior annealing (γ ≥ 1, δ = 1); (C) an entropy-ELBO
using amortized variational distributions with diagonal
covariance; and (D) the same amortized entropy-ELBO
as in (C) but with low-rank approximation of the co-
variance matrices. For (D) we also use prior annealing
(γ ≥ 1, δ = 1). For (A) and (B) we used EM-like
updates: for every minibatch, we optimized variational
parameters with L-BFGS and then took a gradient
step to update W̃ . For (C) and (D) neural networks
were used to map data to means and to (diagonal or
low-rank) covariances, and for parameter optimization
we used Adam-based gradient ascent provided by the
standard PyTorch implementation (Paszke et al., 2017).

For all four different versions of entropy-ELBOs, opti-
mization ultimately resulted in the familiar Gabor-like
generative fields: Figure 3 shows ELBO-optimization
for the different versions, Appendix D.4 shows final
GFs for H = 100 and H = 400. However, salient
quantitative differences could be observed (see Fig. 3
and Fig. 4). Prior annealing of non-amortized entropy-
ELBOs resulted in the fastest convergence and the high-
est ELBO values. Without annealing, non-amortized
entropy-ELBOs finally resulted in very similar ELBO
values but required longer to converge. Using also diag-
onal encoder covariances but amortized optimization,
entropy-ELBOs converged more slowly and showed
lower final ELBO values (see Fig. 3). Final ELBOs im-
proved using low-rank covariance approximations and
prior annealing (again Fig. 3). Low-rank covariances
had a stronger effect on improvements (Wipf, 2023, for
a related analysis) than prior annealing. In general,
we observed that annealing has a comparably smaller
effect for the amortized ELBO versions, which may be
due to an interaction between annealing and standard
Adam optimizers (Appendix D.3 for details).

Next, we were interested in the different types of anneal-

Table 1: Different entropy annealings. No anneal-
ing (top), prior annealing (middle) and β-annealing
(bottom) are compared (Appendix D.4 for details).

ANNEALING H[pΘ(z)] H[pΘ(x|z)] H[qΦ(z)] ELBO Gini(z)±SD

No annealing 32.40 -234.70 -98.97 103.33 0.47± 0.04

H[pΘ(z)]
γ = 10.0 -218.72 10.71 -365.22 -157.21 0.59± 0.09
γ = 2.0 -17.29 -144.81 -112.68 49.41 0.58± 0.10
γ = 1.0 29.65 -235.50 -99.67 106.18 0.48± 0.05

H[pΘ(x|z)]
δ = 0.14 -228.33 30.59 -234.02 -36.27 0.55± 0.03
δ = 0.50 -17.77 -115.24 -72.77 60.24 0.62± 0.04
δ = 1.0 29.74 -234.98 -99.43 105.80 0.47± 0.05

https://github.com/Learning-with-Entropies/sparse-coding.git
https://github.com/Learning-with-Entropies/sparse-coding.git
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Figure 3: Optimization of entropy-ELBOs. Two
non-amortized optimizations and two amortized opti-
mizations are shown. Two optimizations use annealing.

ing suggested by entropy-ELBOs, see Eq. (17). Prior
annealing (γ ≥ 1, δ = 1) very quickly resulted in a
sparse encoding and localized GFs (see Fig. 4). This
is consistent with the role of γ in weighting a sparsity
penalty term, see Eq. (18). Hence, it is prior annealing
with γ ≥ 1 which is analogous to high weights for the
sparsity penalty in l1 sparse coding. That prior anneal-
ing results in sparser encodings is also confirmed when,
e.g., using the Gini index (Hurley and Rickard, 2009)
as a measure of sparsity (both Gini values and ELBO
values are high, see Table 1). In contrast, β-annealing
(used in β-VAEs), represents a type of regularization
different from prior annealing resulting in much less
localized GFs (Appendix D.4 and Fig. 11).

Finally, our analytic objective also allows for easy esti-
mation of ELBO values for sparse coding models opti-
mized using standard MAP-based approaches. To show
this, we used the original “sparsenet” code of Olshausen
and Field (Olshausen, 1996). After optimization, we
used the resulting W matrix, normalized its columns,
and optimized only the variational parameters of Gaus-
sians (means and diagonal covariances). The obtained
ELBO values of 94.719 with Gini(z) = 0.464 ± 0.041
indicates underfitting due to a manually selected weight-
ing of the sparsity penalty.

5 DISCUSSION

Our main contributions are Theorems 1 to 3. Taken
together, these three theorems ensured that the here
derived analytic objective in Eq. (15) can be used to
optimize model parameters of standard probabilistic
sparse coding. Apart from MAP-based approximations
with known shortcomings for uncertainty encoding (cf.
Section 1), there are many other approaches for sparse
coding that maintain non-trivial posterior approxima-
tions. It could, of course, be argued that for those
approaches at least the optimization algorithms (if not
the objectives) are described by analytic or closed-form
equations. Examples are work by Seeger (2008), who

(a) No annealing, epoch 10 (b) Prior annealing, epoch 1

(c) Prior annealing, epoch 10 (d) Amortized, epoch 200

Figure 4: Learned generative fields on natural im-
age patches. Without annealing, the convergence is
slow (a). With the prior entropy annealing, even after
one epoch, we observe the familiar localized Gabor
filters (b). The final GFs (c) comprise a set of Gabors
and higher frequency texture-like images. Learning
with amortized posterior results in similar GFs (d).

used expectation propagation to derive a learning algo-
rithm, or by Berkes et al. (2007), who used a student-t
prior and Gaussian scale mixture ideas to facilitate
variational optimization. The approach by Sheikh et al.
(2014) also provides an analytic objective for proba-
bilistic sparse coding but at the cost of a combinatorial
discrete optimization. We also state work by Challis
and Barber (2013). The contribution focuses theo-
retically and empirically on fully Bayesian models in
which weights are sparse, and the optimization bound
is therefore different. But models and bound are closely
related to probabilistic sparse coding (we elaborate in
Appendix B.1).

In contrast to these and other previous approaches, we
here remain with the most standard choices for prob-
abilistic sparse coding. And it is for this setting that
we show the ELBO to have an analytic solution. Con-
cretely, we remain (A) with the (by far) most standard
model, Eq. (1); we use (B) the presumably most stan-
dard optimization framework (ELBOs for approximate
maximum likelihood); and we use (C) the most stan-
dard posterior approximations (Gaussians). The here
derived objective, presented in Eq. (15), then shows
that all (high dimensional) integrals that emerge can
be solved analytically. To the knowledge of the authors,
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this has previously not been shown and/or empirically
used. However, we remark the similarity to problems
emerging for probabilistic inference using sparse weights
(Challis and Barber, 2013) (Appendix B.1), and we re-
mark that analytic solutions for standard ELBOs can
also be derived without knowledge of entropy conver-
gence (see Appendix B.3).

The results here derived do, notably, apply very gener-
ally. We have, for instance, numerically verified that
potentially intricate deep neural networks (DNNs) can
be used as encoders. The analytic objective then rep-
resents a deterministic DNN objective, and such ob-
jectives can conveniently be optimized with standard
DNN tools. Equation (7) of Theorem 1 is still more
general by applying for any decoder (linear or non-
linear) with Gaussian observables. Theorem 1 thus
extends to sparse VAEs which are of recent interest
(Fallah and Rozell, 2022; Drefs et al., 2023; Chen et al.,
2023). Future work can consequently investigate the
here presented approaches like entropy annealing for
such deep sparse coding models.

Conceptually maybe most relevantly, we here for the
first time investigated how an ELBO objective can be
reformulated as a solely entropy-based objective. From
a theoretical perspective, entropies are more deeply
rooted in the foundations of probabilistic machine learn-
ing, mathematical statistics, and information theory.
Furthermore, for the class of distributions usually used
to define generative models (exponential family, con-
stant base measure), entropies are closed-form and are
equipped with potentially convenient properties (via
their log-partition function). Also, the derivatives of
entropies (that are used for learning) have similarly
convenient properties, and future work can link those
to information geometry. Entropy convergence has pre-
viously only been considered for analysis (Lücke and
Henniges, 2012; Damm et al., 2023), and, so far, it has
been unclear if or how entropy convergence can be used
for learning. In this work, we provided the first demon-
stration that solely entropy-based objectives can be
used for learning, and there is no principled obstacle to
extending this general approach to further generative
models in the future.
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A CONVERGENCE CRITERIA AND PROOFS

This section contains an additional theorem, which allows a quick check of whether a model ELBO possesses the
convergence to entropies property. Additionally, we provide a more detailed proof of convergence to entropies
sums for the sparse coding models using the general conditions derived in (Lücke and Warnken, 2023).

A.1 Factorization Criteria for Natural Parameters

Here, we provide a simple theorem that gives a set of sufficient conditions, under which the ELBO converges to a
sum of entropies.
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Theorem 4. Consider a model pΘ(x, z) = pΘ(x|z, θ)pΘ(z|λ). We assume that prior and observable (likelihood)
distribution belong to an exponential family with constant base measure. If the model can be stated with the
following factorization of the natural parameters,

pΘ(z|λ) =
1

Z(λ)
exp(−TT(z)ηλ(λ))) , (19)

pΘ(x|z, θ) =
1

Z(θ)
exp(−TT(x)(ηz(z)⊙ ηθ(θ))) , (20)

and if the Jacobians ∂ηθ(θ)
∂θ and ∂ηλ(λ)

∂λ of the parameter mappings are invertible, then the model ELBO converges
to the following sum of entropies:

LH =
1

N

N∑
n=1

H[q
(n)
Φ (z)]−H[pΘ(z|λ)]−H[pΘ(x|z, θ)] . (21)

We emphasize that, unlike the general conditions (Lücke and Warnken, 2023), this theorem, although being more
restrictive, allows us to not only check, but also to easily construct probability distributions for models that
converge to entropies sums. If conditions from the Theorem 4 do not hold, one still has to check the more general
conditions (Lücke and Warnken, 2023).

Proof. Here we spell out the proof by introducing the above requirements to the model distributions and checking
the convergence at stationary points. First, we write the ELBO of such models with approximate posterior q(n)Φ (z)
and prove the convergence for the LEL

2 (Φ,Θ) term:

L(Φ,Θ) = 1
N

∑N
n=1 H[q

(n)
Φ (z)] + 1

N

∑N
n=1

∫
q
(n)
Φ (z) log pΘ(z)dz︸ ︷︷ ︸

LEL
1 (Φ,Θ)

+ 1
N

∑N
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z)dz︸ ︷︷ ︸
LEL

2 (Φ,Θ)

.

We consider a class of distributions that belong to the exponential family with constant base measure Z(z, θ) and
a factorizable negative energy term E(x(n); z, θ). It can be written as follows:

pΘ(x
(n)|z, θ) = 1

Z(z, θ)
exp(E(x(n); z, θ)) , (22)

E(x(n); z, θ) =
〈
T (x(n)), η(z, θ)

〉
. (23)

Here we introduce the following assumptions from the theorem:

Z(z, θ) = Z(θ) , (24)
η(z, θ) = ηz(z)⊙ ηθ(θ) . (25)

Then the LEL
2 (Φ,Θ) term reads:

LEL
2 (Φ,Θ) =

1

N

N∑
n=1

∫
q
(n)
Φ (z)

〈
T (x(n)), ηz(z)⊙ ηθ(θ)

〉
dz− logZ(θ) (26)

=
1

N

N∑
n=1

〈
ηθ(θ),

∫
q
(n)
Φ (z)T (x(n))⊙ ηz(z)dz

〉
− logZ(θ) (27)

=

〈
ηθ(θ),

1

N

N∑
n=1

∫
q
(n)
Φ (z)T (x(n))⊙ ηz(z)dz

〉
− logZ(θ) . (28)
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We are interested in stationary points of LEL
2 (Φ,Θ) w.r.t. θ, which means that:

0 =
∂LEL

2 (Φ,Θ∗)

∂θ
=

1

N

N∑
n=1

∫
q
(n)
Φ (z)

∂E(x(n); z, θ∗)− logZ(z, θ∗)

∂θ
dz (29)

=
1

N

N∑
n=1

∫
q
(n)
Φ (z)

(
∂
〈
T (x(n)), η(z, θ∗)

〉
∂θ

− ∂ logZ(z, θ∗)

∂θ

)
dz . (30)

Applying the assumptions (24) and (25), it can be rewritten as follows:

0 =
∂LEL

2 (Φ,Θ∗)

∂θ
=

1

N

N∑
n=1

∫
q
(n)
Φ (z)

(
∂
〈
T (x(n)), ηz(z)⊙ ηθ(θ

∗)
〉

∂θ
− ∂ logZ(θ∗)

∂θ

)
dz (31)

=
∂ηθ(θ

∗)

∂θ

1

N

N∑
n=1

∫
q
(n)
Φ (z)T (x(n))⊙ ηz(z)dz−

∂ logZ(θ∗)

∂θ
. (32)

If the ∂ηθ(θ
∗)

∂θ Jacobian is invertible, it follows that:

1

N

N∑
n=1

∫
q
(n)
Φ (z)T (x(n))⊙ ηz(z)dz =

[
∂ηθ(θ

∗)

∂θ

]−1
∂ logZ(θ∗)

∂θ
(33)

=
∂ logZ(θ∗)

∂ηθ(θ)
. (34)

Plugging (33-34) into (28) we get the final entropy representation:

LEL
2 (Φ,Θ∗) =

〈
ηθ(θ

∗),
∂ logZ(θ∗)

∂ηθ(θ)

〉
− logZ(θ∗) = −H[pΘ(x|z, θ∗)] . (35)

The last equation is a common form of entropies for exponential family distributions, see e.g. (Nielsen and Nock,
2010).

Now we take the parameterized prior distribution pθ(z) and consider the LEL
1 (Φ,Θ) term:

LEL
1 (Φ,Θ) =

1

N

N∑
n=1

∫
q
(n)
Φ (z) log pθ(z)dz . (36)

Similarly to the likelihood distribution, we require it to belong to the following class of exponential family
distributions:

pλ(z) = exp(ηTλ (λ)η(z)− logZ(λ)) . (37)

Then we can rewrite the integral over the prior (36) as:

LEL
1 (Φ,Θ) =

1

N

N∑
n=1

∫
q
(n)
Φ (z) log pλ(z)dz =

〈
ηλ(λ),

1

N

N∑
n=1

∫
q
(n)
Φ (z)η(z)dz

〉
− logZ(λ) . (38)

We are interested in stationary points w.r.t. the λ parameters. Thus, setting the derivative to zero:

0 =
∂LEL

1 (Φ,Θ∗)

∂λ
=
∂ηλ(λ

∗)

∂λ

1

N

N∑
n=1

∫
q
(n)
Φ (z)η(z)dz− 1

Z(λ)

∂Z(λ∗)

∂λ
⇒ (39)

1

N

N∑
n=1

∫
q
(n)
Φ (z)η(z)dz =

[
∂ηλ(λ

∗)

∂λ

]−1
∂ logZ(λ∗)

∂λ
=
∂ logZ(λ∗)

∂ηλ(λ)
. (40)
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Inserting it into (38) we get:

LEL
1 (Φ,Θ) =

〈
ηλ(λ

∗),
∂ logZ(λ∗)

∂λ

〉
− logZ(λ∗) = −H[pΘ(z|λ∗)] , (41)

which completes the proof.

Now we show that the Laplace prior sparse coding model fulfills these sufficient conditions. The mapping functions
read:

ηλ(λ) = vec[− 1

λ1
, · · · ,− 1

λH
] , (42)

ηz(z) = vec[W̃z,−1

2
] , (43)

ηθ(θ) = vec[− 1

σ2
] , (44)

T (x) = vec[x,xxT ] . (45)

Jacobians ∂ηθ(θ)
∂θ and ∂ηλ(λ)

∂λ are diagonal (with non-zero elements) and thus clearly invertible, which satisfies the
conditions.

A.2 Proof of Convergence to Three Entropies Using the General Conditions

Here we prove the convergence to three entropies for the sparse coding model with Laplace prior, using the
general conditions (Lücke and Warnken, 2023). For this, we have to show that the parametrizations of the prior
and the likelihood distributions fulfill the corresponding criteria.

Prior distribution parametrization criterion. Let ζ(Ψ) be a function that maps model parameters to the natural
parameters of pΘ(z), I(Ψ) = [∂ζi(Ψ)

Ψj
] is the Jacobian matrix of the mapping function. Then the following criterion

should be met for the ELBO integral to be equal to entropy at convergence, for any function f(Φ,Ψ):

IT
(Ψ)f(Φ,Ψ) = 0 =⇒ ζ(Ψ)Tf(Φ,Ψ) = 0 . (46)

The Laplace prior has a very simple mapping into the natural parameter space: ζ(ψ) = − 1
λ . The Jacobian is a

diagonal matrix and reads:

IT
(Ψ) =


1
λ2
1

· · · 0

...
. . .

...
0 · · · 1

λ2
H

 . (47)

Now we can check that the parametrization criterion holds:[
1
λ2
1

· · · 1
λ2
H

]
f(Φ,Ψ) = 0 (48)

=⇒ f(Φ,Ψ) = 0 (49)

=⇒ ζ(Ψ)Tf(Φ,Ψ) = 0 . (50)

Likelihood distribution parametrization criterion. Let η(z,Θ) be a function that maps model parameters to the
natural parameters of pΘ(x|z), J(z,Θ) = [∂ηi(z,Θ)

Θj
] is the Jacobian matrix of the mapping function. Then the

following criterion should be met for the ELBO integral to be equal to entropy at convergence for any function
g(z,Φ,Θ) and a subset of parameters θ ∈ Θ:∫

J T
(z,θ)g(z,Φ,Θ)dz = 0 =⇒

∫
η(z,Θ)Tg(z,Φ,Θ) = 0 . (51)



Learning Sparse Codes with Entropy-Based ELBOs

Let’s check if Gaussian likelihood in the sparse coding model fulfills this criterion. The function to map z and
Θ = {W̃ , σ2} to natural parameters reads:

η(z,Θ) =

[
W̃z
σ2

− 1
2σ2

]
(52)

We choose the subset θ = {σ2}. Then the Jacobian of the mapping w.r.t. θ reads:

J T
(z,θ) =

[
− W̃1,:z

σ4 , · · · , − W̃H,:z
σ4 , 1

2σ4

]
. (53)

Check the criterion:

0 =

∫
J T
(z,θ)g(z,Φ,Θ)dz (54)

=

∫ [
− W̃1,:z

σ4 , · · · , − W̃H,:z
σ4 , 1

2σ4

]
g(z,Φ,Θ)dz (55)

= − 1

σ2

∫ [
W̃1,:z
σ2 , · · · , W̃H,:z

σ2 , − 1
2σ2

]
g(z,Φ,Θ)dz . (56)

We can recognize the entries of the mapping function η(z,Θ) in the argument of the integral. We can, therefore,
rewrite and conclude:

1

σ2

∫
η(z,Θ)Tg(z,Φ,Θ)dz = 0 (57)

=⇒
∫
η(z,Θ)Tg(z,Φ,Θ)dz = 0 , (58)

where the last step follows from σ2 being unequal to zero. Thus, the parametrization criterion is fulfilled.

A.3 Likelihood Convergence Proof (Gaussian)

To have this paper self-contained we here reiterate the argument that the log-likelihood term L2(Φ,Θ) in the
ELBO (see Theorem 1) with optimal observation noise reduces to the negative entropy of the likelihood (see, e.g.,
Damm et al. (2023), their Theorem 1 for a slightly different derivation).

The expectation of the log-likelihood under the variational posterior, denoted as L2(Φ,Θ) in Theorem 1, reads

L2(Φ,Θ) = − 1

N

∑
n

( 1

2σ2

∫
q
(n)
Φ (z) ∥x(n) − W̃z∥2dz

)
− D

2
log
(
2πσ2

)
. (59)

Note that this is the only term in the ELBO, given in Eq. (4), that depends on the observation noise σ2.
Consequently, the derivative of the ELBO, denoted as L, w.r.t. σ2 is given by

dL(Φ,Θ)

dσ2
=

dL2(Φ,Θ)

dσ2
= − 1

N

∑
n

(
1

2σ4

∫
q
(n)
Φ (z)∥x(n) − W̃z∥2dz

)
− D

2σ2
. (60)

As σ2 > 0, we conclude the whenever dL(Φ,Θ)
dσ2 = 0 the following holds

1

N

∑
n

(
1

2σ2

∫
q
(n)
Φ (z)∥x(n) − W̃z∥2dz

)
− D

2
= 0 (61)

=⇒ 1

N

∑
n

(
1

2σ2

∫
q
(n)
Φ (z)∥x(n) − W̃z∥2dz

)
=
D

2
. (62)

So, at optimality the high-dimensional integral in Eq. (59) has a particularly simple solution and by plugging
Eq. (62) into Eq. (59) we obtain

L2(Φ,Θ) = −D
2

− D

2
log
(
2πσ2

)
= −D

2
log
(
2eπσ2

)
= −H[pΘ(x|z)] , (63)
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that is, L2 becomes equal to the (negative) entropy of pΘ(x|z), which concludes the argument.

B ELBOS FOR LAPLACE PRIOR SPARSE CODING

B.1 Deriving Analytic ELBO for Laplace Prior Sparse Coding Model

Here we discuss sparse coding defined as a linear latent variable model with Laplace prior defined as:

pΘ(z) =

H∏
h=1

1

2λh
exp

(
−|zh|
λh

)
, (64)

pΘ(x|z) = N (x|W̃z, σ2I) , (65)

||W̃:,h|| = 1 . (66)

For convenience we will use a more extended notation pΘ(x
(n)|z, W̃ , σ2) for the noise distribution in Eq. (65).

The ELBO with variational distribution q(n)Φ (z) for N data points reads:

log pΘ(x) ≥ LEL =
1

N

N∑
n=1

∫
q
(n)
Φ (z) log

pΘ(x
(n)|z, W̃ , σ2) pΘ(z)

q
(n)
Φ (z)

dz . (67)

We can rewrite it as:

LEL =
1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z, W̃ , σ2)dz (68)

+
1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(z)dz (69)

− 1

N

N∑
n=1

∫
q
(n)
Φ (z) log q

(n)
Φ dz . (70)

At stationary points for parameters {λ, σ2}, it converges to the following expression of entropy terms:

LH = −H[pΘ(x|z, σ2)]−H[pΘ(z|{λi})] +
1

N
H[q

(n)
Φ (z)] . (71)

For the sparse coding model, it reads:

LH = −D
2
log(2πeσ2)−

H∑
h=1

log(2λhe) +
1

N

∑
n

H[q
(n)
Φ (z)] . (72)

Detailed, from the derivation of the convergence to entropies, recall that at stationary points it holds that:

1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z, W̃ , σ2)dz =
D

2
log(2πeσ2) (73)

1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(z|λ)dz =

H∑
h=1

log(2λhe) . (74)

Now we can analytically solve the integrals and obtain expressions for optimal λh and σ2 at stationary points.
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We use a Gaussian distribution with full covariance as the variational distribution for each data point x(n):

q
(n)
Φ (z) = N (z|ν(n), T (n)) . (75)

Let us start to with Eq. (73) and solve the integral analytically to obtain σ2:

1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z, W̃ , σ2)dz (76)

= − log[Z(Iσ2)]− 1

N

N∑
n=1

1

2σ2
Eq(n)(z)

[
(W̃z− x(n))T(W̃z− x(n))

]
(77)

= −D
2
log(2πσ2)− 1

2σ2

1

N

N∑
n=1

[
tr(W̃TW̃T (n)) + (W̃ν(n) − x(n))T(W̃ν(n) − x(n))

]
. (78)

The last equation can be obtained by carefully expanding the quadratic form and taking the corresponding
expectations w.r.t. the Gaussian density q(n)(z).

Taking derivative w.r.t. σ2 and setting it to zero:

0 =
∂ 1

N

∑N
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z, W̃ , σ2)dz

∂σ2
(79)

= − D

2σ2
+

1

2(σ2)2
1

N

N∑
n=1

[
tr(W̃TW̃T (n)) + (W̃ν(n) − x(n))T(W̃ν(n) − x(n))

]
. (80)

Solve it w.r.t. σ2:

σ2 =
1

DN

N∑
n=1

[
tr(W̃TW̃T (n)) + (W̃ν(n) − x(n))T(W̃ν(n) − x(n))

]
. (81)

Next, we solve for the optimal prior scales λh. As Eq. (69) is the only term of the ELBO that depends on λ, the
condition for a stationary point for λh yields:

0 =
∂ 1

N

∑N
n=1

∫
q
(n)
Φ (z) log pΘ(z|λ)dz
∂λh

(82)

=
1

N

N∑
n=1

∫
q
(n)
Φ (z)

(
− 1

λh
+

|zh|
λ2h

)
dz (83)

=
1

λ2h

1

N

N∑
n=1

∫
q
(n)
Φ (z)(|zh| − λh)dz (84)

=⇒ 0 =
1

N

N∑
n=1

∫
q
(n)
Φ (z)|zh|dz−

1

N

N∑
n=1

∫
q
(n)
Φ (z)λhdz (85)

=
1

N

N∑
n=1

∫
q
(n)
Φ (z)|zh|dz− λh (86)

=⇒ λh =
1

N

N∑
n=1

∫
N (z |ν(n), T (n)) |zh| dz (87)

=
1

N

N∑
n=1

∫
N (zh | ν(n)h , T (n)

hh ) |zh| dzh . (88)
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The h-dimensional integral (87) w.r.t. z can be simplified to (88) because we can rewrite the Gaussian distribution
as a product of a marginal and a conditional Gaussian q(n)Φ (z) = q

(n)
Φ (z\h|zh)q

(n)
Φ (zh):

=

∫
N (z\h|ν

(n)
\h (zh), T (n)

\h (zh))N (zh|ν(n)h , T (n)
hh )|zh|dz (89)

=

∫
N (zh|ν(n)h , T (n)

hh )|zh|
∫

N (z\h|ν
(n)
\h (zh), T (n)

\h (zh))dz\hdzh (90)

=

∫
N (zh|ν(n)h , T (n)

hh )|zh|dzh . (91)

To solve this integral we now make use of another integral that is known to have an analytic solution:∫ +∞

0

z exp
(
− (az + b)2

)
dz =

√
π b

2a2
(
erf(b)− 1

)
+

(−b2)
2a2

for a > 0 . (92)

The analytic solution of the integral is, e.g., stated in Eq. 2.1.2 by (Korotkov and Korotkov, 2020). The book
is itself based on two earlier books by the same authors (Korotkov and Korotkov, 2012) and (Korotkov, 2002).
Rewriting the integral to a proper Gaussian integral by substituting mean and covariance and by multiplying by
the normalizing coefficient gives:∫ +∞

0

zN (z|ν, σ2) dz =
σ√
2π

exp

(
−1

2

ν2

σ2

)
− ν

2

[
erf

(
− ν√

2σ

)
− 1

]
. (93)

The integral over the complementary set of the support reads:∫ 0

−∞
(−z)N (z|ν, σ2) dz =

∫ +∞

0

zN (z| − ν, σ2) dz (94)

=
σ√
2π

exp

(
−1

2

ν2

σ2

)
+
ν

2

[
erf

(
ν√
2σ

)
− 1

]
. (95)

The full integral over the magnitude of z therefore reads:∫
N (z|ν, σ2) |z| dz = 2σ√

2π
exp

(
−1

2

ν2

σ2

)
+
ν

2

[
erf

(
ν√
2σ

)
− erf

(
− ν√

2σ

)]
(96)

=
2σ√
2π

exp

(
−1

2

ν2

σ2

)
+ ν erf

(
ν√
2σ

)
. (97)

Therefore we obtain for λh the expression:

λh =
1

N

N∑
n=1

∫
N (zh|ν(n)h , T (n)

hh ) |zh| dzh (98)

=
1

N

N∑
n=1

2
√
T (n)
hh√
2π

exp

(
−1

2

(ν
(n)
h )2

T (n)
hh

)
+ ν

(n)
h erf

 ν
(n)
h√
2T (n)

hh

 (99)

=
1

N

N∑
n=1

√
T (n)
hh M

 ν
(n)
h√
T (n)
hh

 , (100)

where M(a) =
√

2
π exp

(
− 1

2 a
2
)
+ a erf

(
a√
2

)
as defined in the main text, Eq. (12). So the important ob-

servation is that the integral Eq. (87) has an analytic solution, Eq. (100). In this context, we remark that
integrals such as Eq. (87) emerged in other contexts of probabilistic machine learning. Concretely, Challis
and Barber (2013) investigated integrals of Gaussians with different ‘potential functions’ including integrals
with potential functions exp(−|x|) (while also other potential functions were treated). The same authors point
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out (Barber and Bishop, 1998; Kuss and Rasmussen, 2005) for procedures to reduce high-dimensional to one-
dimensional integrals analogously to how Eq. (88) is obtained from Eq. (87) (but marginalizations involving
Gaussians are also generally well-known).

All models treated in (Challis and Barber, 2013) (theoretically and empirically) consider fully Bayesian learning
using sparse weight matrices. Consequently, the used approximation bound is different from the here considered
ELBOs for sparse coding (for both the entropy-based version Eq. (72) as well as the classical ELBO Eq. (111) to
Eq. (113)). The emerging problems are closely related, however, and the bound treated by Challis and Barber
(2013) could be reformulated to relate to the probablistic sparse coding problem using the classical ELBO Eq. (111)
to Eq. (113) (which is also explicitly stated by the authors in the introduction). The integral that emerges for
Laplace potentials in their site potential term of the bound is the same as the integral required to solve for λh in
our context (see Eq. (87)); and Challis and Barber (2013) also provide an analytic soltuion for the integral. In
the context of fully Bayesian approaches, entropy convergence results could, visa versa, also be applied to the
bound of Challis and Barber (2013) albeit some algebraic transformations would be required. Convergence to
entropy sums could then potentially be useful for models such as Gaussian process regression etc.

In principle, the analytic integral solutions that emerge in standard probabilistic sparse coding Eq. (1) are known
since still earlier. For instance, Korotkov (see 2002); Korotkov and Korotkov (see 2012) provided analytic solutions
of integrals that can be used for the here emerging integrals (and we used these solutions in our derivation above).
Hence, analytic solutions could have been used, e.g., for work by Seeger (2008) or (Barello et al., 2018), and may
prove useful in future work in these direction.

B.2 Sparse Coding. ELBO for Other Versions of Gaussian Variational Distributions

If the variational posterior is an uncorrelated Gaussian q(n)(z) = N (z|ν(n),diag(
(
τ
(n)
1

)2
, . . . ,

(
τ
(n)
H

)2
)), the

entropy-based ELBO objective can be further simplified. First, we exploit that the columns of W̃ are normalized,
and consider the term

tr(W̃TW̃ diag(
(
τ
(n)
1

)2
, . . . ,

(
τ
(n)
H

)2
)) = diag(W̃TW̃ )T vec(

(
τ
(n)
1

)2
, . . . ,

(
τ
(n)
H

)2
) (101)

=

H∑
h=1

W̃T
:,hW̃:,h

(
τ
(n)
h

)2 (102)

=

H∑
h=1

(
τ
(n)
h

)2
, (103)

which removes the dependency on W̃ here. The optimal λopt,h and σ2
opt then read:

λopt,h(Φ) =
1

N

N∑
n=1

τ
(n)
h M

(
ν
(n)
h

τ
(n)
h

)
(104)

σ2
opt(Φ, W̃ ) =

H

D
τ̄2 +

1

D

1

N

N∑
n=1

(W̃ν(n) − x(n))T(W̃ν(n) − x(n)), where τ̄2 =
1

N

N∑
n=1

1

H

H∑
h=1

(
τ
(n)
h

)2
, (105)

which gives us a simplified entropy-based objective:

LH(Φ, W̃ ) =
1

N

N∑
n=1

H∑
h=1

1

2
log
(
2πe
(
τ
(n)
h

)2)− H∑
h=1

log(2eλopt,h(Φ))−
D

2
log(2πeσ2

opt(Φ, W̃ )) (106)

=
1

N

N∑
n=1

H∑
h=1

1

2
log
(
2πe
(
τ
(n)
h

)2)− H∑
h=1

log

(
2e

1

N

N∑
n=1

τ
(n)
h M

(
ν
(n)
h

τ
(n)
h

))
(107)

− D

2
log

(
2πe

[
H

D
τ̄2 +

1

D

1

N

N∑
n=1

(W̃ν(n) − x(n))T(W̃ν(n) − x(n))

])
. (108)
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If the objective is annealed as suggested in Eq. (17), then the objective reads:

LH(Φ, W̃ ) =
1

N

N∑
n=1

H∑
h=1

1

2
log
(
2πe
(
τ
(n)
h

)2)− γ

H∑
h=1

log
(
2eλopt,h(Φ)

)
− δ

D

2
log
(
2πeσ2

opt(Φ, W̃ )
)
. (109)

B.3 Sparse Coding. Classical Variational Inference Objective

Having obtained the analytic solution of the ELBO in Eq. (15), it could be asked how much the results rely on
the entropy convergence results. For this, we here consider the original ELBO of the sparse coding model defined
as in Eq. (1). The ELBO with variational distribution q(n)(z) for N data points reads:

log pΘ(x) ≥ LEL(Φ,Θ) =
1

N

N∑
n=1

∫
q
(n)
Φ (z) log

pΘ(x
(n)|z,W, σ2)pΘ(z)

q
(n)
Φ (z)

dz . (110)

We can rewrite it as:

LEL(Φ,Θ) =
1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(x

(n)|z,W, σ2)dz (111)

+
1

N

N∑
n=1

∫
q
(n)
Φ (z) log pΘ(z)dz (112)

− 1

N

N∑
n=1

∫
q
(n)
Φ (z) log q

(n)
Φ (z)dz . (113)

Similarly, as for the entropy-based ELBO, we use full covariance Gaussian q(n)(z) = N (z|ν(n), T (n)) as a
variational posterior distribution. The integral over the likelihood function (Eq. 111) then reads:∫

q
(n)
Φ (z) log pΘ(x

(n)|z,W, σ2)dz (114)

= − log[Z(Iσ2)]− 1

2σ2
Eq(z)

[
(Wz− x(n))T(Wz− x(n))

]
(115)

= −D
2
log(2πσ2)− 1

2σ2

[
tr(WTWT (n)) + (Wν(n) − x(n))T(Wν(n) − x(n))

]
. (116)

Now consider the integral in Eq. (112). We can rewrite it as follows:∫
q
(n)
Φ (z) log pΘ(z)dz =

∫
N (z|ν(n), T (n))

(
H log

(1
2

)
−

H∑
h=1

|zh|
)
dz (117)

= H log
(1
2

)
−
∫

N (z|ν(n), T (n))

H∑
h=1

|zh|dz (118)

= H log
(1
2

)
−

H∑
h=1

∫
N (zh|ν(n)

h , T (n)
hh )|zh|dzh (119)

= H log
(1
2

)
−

H∑
h=1

2
√
T (n)
hh√
2π

exp

(
−1

2

(ν
(n)
h )2

T (n)
hh

)
+ ν

(n)
h erf

 ν
(n)
h√
2T (n)

hh

 . (120)

That is, we can use the result obtained for the entropy ELBO and also for the classical ELBO.

Equation (113) is just a Gaussian entropy:

−
∫
q
(n)
Φ (z) log q(z)dz = H[q

(n)
Φ (z)] (121)

=
1

2
log(|2πeT (n)|) . (122)
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Thus, the classical ELBO objective can be reformulated as follows:

LEL(Φ,Θ) =− D

2
log(2πσ2)− 1

2σ2

1

N

N∑
n=1

[
tr(WTWT (n)) + (Wν(n) − x(n))T(Wν(n) − x(n))

]
(123)

+H log
(1
2

)
− 1

N

N∑
n=1

H∑
h=1

√
T (n)
hh M

 ν
(n)
h√
T (n)
hh

 (124)

+
1

N

N∑
n=1

1

2
log(|2πeT (n)|) . (125)

C PROOF OF THEOREM 3

In this section, we lay out the details of the proof for Theorem 3. For completeness, we first restate the
entropy-based ELBO (given equivalently in Eq. (15)), which reads

LH(Φ, W̃ ) =
1

N

N∑
n=1

1

2
log
(
| 2π e τ (n)h |

)
−

H∑
h=1

log
(
2 e

1

N

N∑
n=1

τ
(n)
h M

(ν(n)h

τ
(n)
h

))
− D

2
log
(
2πe

1

DN

N∑
n=1

E
q
(n)
Φ (z)

∥x(n) − W̃z∥2
)
,

where we again use τ2h = Thh as a short-hand for the diagonal elements of the covariance (and, accordingly,
τh =

√
Thh for their positive square root). To prove Theorem 3 we rely on the following Lemma which establishes

the equality of gradients on the manifold of optimal scales and variances, i.e., all points in parameter space that
satisfy Eq. (6) for non-amortized and amortized parametrizations.
Lemma 1 (Equality of gradients on manifold of optimal scales and variance). Consider the learning objectives
LEL(Φ,Θ), given in Eq. (4), and LH(Φ, W̃ ), given in Eq. (15), for the probabilistic sparse coding model formulated
in Eq. (5) with Θ = (W̃ , σ2,λ) ∈ RD×H

norm × R+ × RH
+ , and variational parameters Φ = (Φν ,ΦT ) that parameterize

mean ν(n) ∈ RH and covariance T (n) ∈ RH×H (in amortized or non-amortized fashion). We assume Φν ∩ΦT = ∅.

Then, whenever Eq. (6) holds, it holds that

∇ΦLEL(Φ,Θ) = ∇ΦLH(Φ, W̃ ) ,

∇W̃LEL(Φ,Θ) = ∇W̃LH(Φ, W̃ ) .
(126)

Proof. We need to prove that the gradients for Θ and Φ for both objectives are equal at all points in parameter
space whenever Eq. (6) is fulfilled, i.e., whenever the scales λ and the variance σ2 are optimal.

Recall that the ELBO, given in Eq. (4), can be written as (using the notation of Theorem 1)

LEL(Φ,Θ) =

regularization (neg. KL-divergence)︷ ︸︸ ︷
1

N

N∑
n=1

H[q
(n)
Φ (z)] + LEL

1 (Φ,Θ)

reconstruction︷ ︸︸ ︷
+LEL

2 (Φ,Θ) (127)

and whenever the condition of Theorem 1 (i.e., Eq. (6)) is satisfied, we observe the term-wise convergence to
entropies such that the ELBO decomposes into three entropies

=
1

N

N∑
n=1

H[q
(n)
Φ (z)]−H[pΘ(z)]︸ ︷︷ ︸

regularization (neg. KL-divergence)

−H[pΘ(x|z)]︸ ︷︷ ︸
reconstruction

. (128)
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Note that the entropy-based objective LH, given in Eq. (15), is merely the sum of entropies above with analytically
optimal scale and variance parameters obtained from Theorem 2.

We need to investigate the gradients with respect to the parameters of the model Θ = (W̃ , σ2,λ) and the
variational parameters Φ = (Φν ,ΦT ). We start by addressing the model parameters Θ.

Model Parameters Θ: Considering Θ, only the parameters w ∈ W̃ are of interest.4 Thus, only the reconstruction
terms, LEL

2 and its counterpart −H[pΘ(x|z)], contribute to the gradients for W̃ . We consider a general parameter
w ∈ W̃ . Regarding the standard ELBO LEL, the gradient is given by

∂

∂w
LEL(Φ,Θ) =

∂

∂w
LEL
2 (Θ,Φ) (129)

= − 1

2σ2

∂

∂w

[
1

N

N∑
n=1

E
q
(n)
Φ (z)

∥∥x(n) − W̃z
∥∥2] (130)

= − 1

σ2

1

N

N∑
n=1

E
q
(n)
Φ (z)

(
x(n) − W̃z

) ∂

∂w
W̃z . (131)

Similarly, for the entropy-based ELBO LH we obtain

∂

∂w
LH(Φ, W̃ ) = − ∂

∂w
H[pΘ(x|z)] (132)

= −D
2

∂

∂w
log
(
2πe

1

ND

N∑
n=1

E
q
(n)
Φ (z)

∥∥x(n) − W̃z
∥∥2) (133)

= −D
1
N

∑N
n=1 Eq

(n)
Φ (z)

(
x(n) − W̃z

)
1
N

∑N
n=1 Eq

(n)
Φ (z)

∥∥x(n) − W̃z
∥∥2 ∂

∂w
W̃z , (134)

and with σ2
opt(Φ, W̃ ) = 1

ND

∑N
n=1 Eq

(n)
Φ (z)

∥∥x(n) − W̃z
∥∥2 (as derived in Theorem 2) we conclude

= − 1

σ2
opt

1

N

N∑
n=1

E
q
(n)
Φ (z)

(
x(n) − W̃z

) ∂

∂w
W̃z . (135)

Observe that both objectives yield the same gradient information for any w ∈ W̃ , just scaled by a ratio that
reflects how far σ2 is from its optimal value σ2

opt, such that

∇W̃LH(Φ, W̃ ) =
σ2

σ2
opt

∇W̃LEL(Φ, (λ, W̃ , σ2)) . (136)

Importantly, both objectives give rise to the same gradients for W̃ whenever σ2 = σ2
opt, i.e., when Eq. (6) is

satisfied.5

Variational Parameters Φ: It remains to investigate how the gradients for the variational parameters Φ are
affected when training with LEL or LH. We consider ϕ ∈ Φ for which the gradient decomposes into three terms

∂

∂ϕ
LEL(Φ,Θ) =

∂

∂ϕ

1

N

N∑
n=1

H[q
(n)
Φ (z)] +

∂

∂ϕ
LEL
1 (Φ,Θ) +

∂

∂ϕ

N∑
n=1

LEL
2 (Φ,Θ) , (137)

∂

∂ϕ
LH(Φ, W̃ ) =

∂

∂ϕ

1

N

N∑
n=1

H[q
(n)
Φ (z)]− ∂

∂ϕ
H[pΘ(z)]−

∂

∂ϕ
H[pΘ(x|z)] . (138)

4The remaining parameters σ,λ will be learned in case of LEL, or set to optimality in case of LH. However, as Eq. (6)
holds in both cases they always yield zero gradients.

5Note that the same constraints on W̃ are imposed for both objectives. That is, any additive regularization terms of
the form L+R(W̃ ) would consequently yield the very same gradient updates for L ∈ {LEL,LH}.
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The average encoder entropy (the first term in Eqs. (137) and (138), respectively) is part of both objectives and
consequently provides the same gradient information for any ϕ ∈ Φ (regardless of the concrete parametrization in
terms of Φ). We continue with the gradient updates arising from the reconstruction score, i.e., LEL

2 (Φ,Θ) vs.
−H[pΘ(x|z)], the last term in Eqs. (137) and (138), respectively. Starting with the latter we get

− ∂

∂ϕ
H[pΘ(x|z)] = −D

2

∂

∂ϕ
log
(
2πeσ2

opt(Φ, W̃ )
)

(139)

= −D
2

1

σ2
opt(Φ, W̃ )

∂

∂ϕ
σ2
opt(Φ, W̃ ) (140)

and by invoking σ2
opt(Φ, W̃ ) = 1

ND

∑N
n=1 EqΦ(z|x(n))

∥∥x(n) − W̃z)
∥∥2,

= − 1

2σ2
opt

∂

∂ϕ

[
1

N

N∑
n=1

Eq(z|x(n))

∥∥x(n) − W̃z
∥∥2] . (141)

Considering the corresponding counterpart, LEL
2 (Φ,Θ) in the classical ELBO, the gradient is directly given by

∂

∂ϕ
LEL
2 (Φ,Θ) = − 1

2σ2

∂

∂ϕ

[
1

N

N∑
n=1

Eq(z|x(n))

∥∥x(n) − W̃z
∥∥2] , (142)

such that gradient updates are again scaled depending on how close σ2 is to σ2
opt

− ∂

∂ϕ
H[pΘ(x|z)] =

σ2

σ2
opt

∂

∂ϕ
LEL
2 (Φ,Θ) . (143)

We are left with the middle terms in Eqs. (137) and (138), i.e., ∂
∂ϕL

EL
1 (Φ,Θ) vs. − ∂

∂ϕH[pΘ(z)]. To enable

the gradient computations we first need to derive a closed-form expression for LEL
1 (Φ,Θ) with q

(n)
Φ (z) =

N (z;ν(n), T (n)
)
, again with diagonal elements τ2h = Thh, and a Laplace prior with learnable scales λh, i.e.,

pΘ(z) =
∏H

h=1
1

2λh
exp

(
− |zh|

λh

)
.

Recall that LEL
1 (Φ,Θ) = 1

N

∑
n

∫
q
(n)
Φ (z) log pΘ(z)dz for which the individual summands evaluate to∫

q
(n)
Φ (z) log pΘ(z)dz =

∫
N (z|ν(n), T (n))

( H∑
h=1

log
( 1

2λh

)
−
∑
h=1

|zh|
λh

)
dz (144)

=

H∑
h=1

log
( 1

2λh

)
−
∫

N (z|ν(n), T (n))
∑
h=1

|zh|
λh

dz (145)

= −
H∑

h=1

log(2λh)−
H∑

h=1

1

λh

∫
N (zh|ν(n)h , T (n)

hh )|zh|dzh (146)

= −
H∑

h=1

log(2λh)−
H∑

h=1

1

λh

√ 2

π
τ
(n)
h exp

−1

2

(
ν
(n)
h

τ
(n)
h

)2
+ ν

(n)
h erf

(
ν
(n)
h√
2τ

(n)
h

) . (147)

With help of the statistic M(a) =
√

2
π exp

(
− 1

2 a
2
)
+ a erf

(
a√
2

)
, introduced in Eq. (12), we get

= −
H∑

h=1

log(2λh)−
H∑

h=1

τ
(n)
h

λh
M
(ν(n)h

τ
(n)
h

)
(148)

such that

LEL
1 (Φ,Θ) = − 1

N

N∑
n=1

H∑
h=1

[
log(λh) +

τ
(n)
h

λh
M
(ν(n)h

τ
(n)
h

)
+ c

]
(149)
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for some constant c (that does not influence any gradients). Note that now the functional dependency for mean
and variance parameters matters for the gradient calculations, such that we need to consider ϕ ∈ Φν and ϕ ∈ ΦT
separately.

Before proceeding we need to address the different parametrization that arises for non-amortized vs. amortized
approaches. In the non-amortized setting, the variational parameters Φ = (Φν ,ΦT ) directly parameterize mean
and covariance of q(n)Φ (per data point x(n)), i.e., Φν = (ν(1), . . . ,ν(N)) and ΦT = (T (1), . . . , T (N)). In amortized
approaches, we take Φ = (Φν ,ΦT ) to parameterize the two functions6 νΦ : RD → RH and TΦ : RD → RH×H

such that mean and covariance are given as the respective function outputs, i.e,

ν(n) = νΦ(x
(n)) , (150)

T (n) = TΦ(x(n)) . (151)

The derivations in the sequel cover both settings, as we only need to compare the resulting gradients in terms of

functions of partial derivatives ∂ν
(n)
h

∂ϕν
or ∂τ

(n)
h

∂ϕτ
, which clearly differ in amortized vs. non-amortized parametrizations,

but are the same for both objectives.

Variational Parameters: Mean

Let us continue with the gradient updates for the variational mean νΦ, so just the mean parameters ϕν ∈ Φν are
of interest here. Considering LEL first, the updates for ν from LEL

1 (Φ,Θ), in the form of Eq. (149), result in

∂

∂ϕν
LEL
1 (Φ,Θ) = − 1

N

N∑
n=1

H∑
h=1

τ
(n)
h

λh

∂

∂ϕν
M
(ν(n)h

τ
(n)
h

)
(152)

= − 1

N

N∑
n=1

H∑
h=1

1

λh
erf
( 1√

2

ν
(n)
h

τ
(n)
h

)∂ν(n)h

∂ϕν
, (153)

where we made use of the following derivative which invokes the fact that ∂M(a)
∂a = erf

(
a√
2

)
,

∂

∂ϕν
M
(ν(n)h

τ
(n)
h

)
=

1

τ
(n)
h

erf
( 1√

2

ν
(n)
h

τ
(n)
h

)∂ν(n)h

∂ϕν
. (154)

Now, the respective gradient updates from the prior entropy of the entropy-based objective LH are given as

− ∂

∂ϕν
H[pΘ(z)] = − ∂

∂ϕν

H∑
h=1

log(2eλopt,h(Φ)) (155)

= −
H∑

h=1

1

λopt,h

∂

∂ϕν
λopt,h(Φ) (156)

= − 1

N

N∑
n=1

H∑
h=1

1

λopt,h(Φ)
erf
( 1√

2

ν
(n)
h

τ
(n)
h

)∂ν(n)h

∂ϕν
. (157)

The line above makes use of the following derivation

∂

∂ϕν
λopt,h(Φ) =

∂

∂ϕν

1

N

N∑
n=1

τ
(n)
h M

(ν(n)h
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)
(158)

=
1

N

N∑
n=1

τ
(n)
h

τ
(n)
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erf
( 1√
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(n)
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τ
(n)
h

)∂ν(n)h

∂ϕν
(159)

=
1

N

N∑
n=1

erf
( 1√

2

ν
(n)
h

τ
(n)
h

)∂ν(n)h

∂ϕν
. (160)

6Commonly, artificial neural networks are utilized here, such that Φν denotes the parameters of the neural net that
predicts the mean, and ΦT the parameters of the neural net that predicts the covariance. The independence assumption
in this Lemma does not allow for parameter sharing between those networks. Often, the covariance is restricted to be a
diagonal matrix such that TΦ : RD → RH .
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By comparing Eqs. (153) and (157) we again conclude that the gradients just differ in the scaling by 1/λh vs.
1/λopt,h. That is, for optimal scales λ = λopt the gradients of the regularization term for the variational mean ν
coincide.

Variational Parameters: Variance

A similar result holds for (the parameters of) the variational variances. We consider ϕτ ∈ ΦT and start with the
prior entropy in LH. The gradient w.r.t. ϕτ reads

− ∂

∂ϕτ
H[pΘ(z)] = − ∂

∂ϕτ

H∑
h=1

log(2eλopt,h(Φ)) (161)

(11)
= − ∂
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(163)

= − 1
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)∂τ (n)h
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, (164)

where the last line makes use of the following derivation
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Lastly, for LEL we consider the remaining term LEL
1 (Φ) which gradients evaluate to7
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= − ∂

∂ϕτ

1

N

N∑
n=1

H∑
h=1

[
τ
(n)
h

λh
M
(ν(n)h

τ
(n)
h

)]
(169)

and with the derivations in Eq. (165) – Eq. (167) we get

= − 1
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(
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)∂τ (n)h

∂ϕτ
. (170)

Again, the resulting gradients in Eqs. (164) and (170) just differ in the scaling 1/λh vs. 1/λopt,h.

Note that Theorem 3 can be generalized to allow for parameter sharing, i.e., the additional assumption Φν∩ΦT = ∅
can be dropped. However, we invoked this additional assumption as it (slightly) simplifies and shortens the
equations and the overall proof. With the assumption Φν ∩ΦT = ∅, we can now summarize the term-wise gradient

7Recall that for LEL, λ is just a learnable parameter and consequently no function of Φ (in contrast to LH).
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calculations by completing Eqs. (137) and (138)
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Overall, at points in parameter space that satisfy Eq. (6), each pair of terms gives rise to the same gradients at
stationary points as all scaling coefficients (highlighted in light red) coincide (or the respective terms already
provide the very same gradient information regardless of whether Eq. (6) is satisfied). Consequently, the full
gradients for all trainable parameters, i.e., the sum of all constitutive terms as given in Eqs. (171) and (172) for Φ
and Eq. (136) for W̃ , are equivalent whenever Eq. (6) holds, or simply: Eq. (6) implies

∇ΦLEL(Φ⋆,Θ⋆) = ∇ΦLH(Φ⋆, W̃ ⋆) and ∇W̃LEL(Φ⋆,Θ⋆) = ∇W̃LH(Φ⋆, W̃ ⋆) .

We are now ready to prove Theorem 3 from the main paper.
Theorem 3 (Restated from main paper). Consider the sparse coding model formulated in Eq. (5) with model
parameters Θ = (W̃ , σ2,λ) ∈ RD×H

norm × R+ × RH
+ , and variational parameters Φ = (Φν ,ΦT ) that parameterize

mean ν(n) ∈ RH and covariance T (n) ∈ RH×H (in amortized or non-amortized fashion) where Φν ∩ ΦT = ∅.

Then, the set of stationary points of the original objective LEL(Φ,Θ), given in Eq. (4), and of the entropy-based
objective LH(Φ, W̃ ), given in Eq. (15), coincide. Furthermore, it applies at any stationary point of LEL(Φ,Θ) or
LH(Φ, W̃ ) that

LEL(Φ⋆,Θ⋆) = LH(Φ⋆, W̃ ⋆) . (173)

Proof. To prove that the sets of stationary points of LEL and LH are equal it suffices to show the following two
statements:

A (Φ⋆,Θ⋆) is a stationary point of LEL(Φ,Θ) ⇒ (Φ⋆, W̃ ⋆) is a stationary point of LH(Φ, W̃ ),

B (Φ⋆, W̃ ⋆) is a stationary point of LH(Φ,W ) ⇒ (Φ⋆, (λopt, W̃
⋆, σ2

opt)) is a stationary point of LEL(Φ,Θ).

We start with statement A . Let (Φ⋆,Θ⋆) be an arbitrary stationary point of LEL(Φ,Θ). By definition of fixed
points, Eq. (6) holds such that Θ⋆ = (W̃ ⋆, σ2

opt,λopt).8 As (Φ⋆,Θ⋆) is a stationary point of LEL(Φ,Θ) we have

∇W̃LH(Φ⋆, W̃ ⋆) = ∇W̃LEL(Φ⋆,Θ⋆) = 0 ,

∇ΦLH(Φ⋆, W̃ ⋆) = ∇ΦLEL(Φ⋆,Θ⋆) = 0

8Recall that any local optima for λ and σ2 are in fact the (respective) global optima as both problems are convex (see
Theorem 2, which also provides the analytic solutions).
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as the gradients w.r.t. Φ and W̃ for both objectives are equal by Lemma 1 (which accounts for the technicalities
of different parameterizations, that arise from amortized vs. non-amortized approaches). Consequently, (Φ⋆, W̃ ⋆)
must also a stationary point of the entropy-based objective LH(Φ, W̃ ).

To show the opposite direction, formulated in statement B , we assume that (Φ⋆, W̃ ⋆) is a stationary point of
LH(Φ, W̃ ). By design of the entropy-based objective, Eq. (6) is satisfied as scales and variance are chosen to be
optimal for LH(Φ, W̃ ) in each iteration. We can therefore invoke Lemma 1 again and get

∇W̃LEL(Φ⋆,Θ⋆) = ∇W̃LH(Φ⋆, W̃ ⋆) = 0 ,

∇ΦLEL(Φ⋆,Θ⋆) = ∇ΦLH(Φ⋆, W̃ ⋆) = 0 .

Therefore, (Φ⋆, (W̃ ⋆, σ2
opt,λopt)) must also be a stationary point of LEL(Φ,Θ).

Note that the objective functions LEL and LH are continuous and continuously differentiable functions. From
Lemma 1 we can also conclude that the Hessians of LEL and LH in Φ and W̃ coincide at stationary points as
they admit the very same functional dependencies in Φ and W̃ . This implies the same convergence behavior in
the vicinity (ϵ-ball) around the fixed points such that both objectives have the same stationary points (with same
signature).

Eventually, by Theorem 1 also the function values coincide whenever Eq. (6) holds, which concludes the proof.

D NUMERICAL RESULTS – DETAILS AND ADDITIONAL RESULTS

The numerical experiments were run on a desktop computer with Intel i9-9900k 3.6GHz CPU, 32GB RAM, and
Nvidia GeForce GTX 1070 8GB. We used CUDA numerical backend for PyTorch whenever possible. The default
floating point precision was set to float32. On average, optimization of one epoch of 204 800 image patches of size
16× 16, with latent dimensionality of 100, by minibatches of 512 with EM-like updates took 156s. One epoch of
optimization with stochastic updates by Adam took on average 12s.

D.1 Approximating the error function

While the exact erf(·) evaluation requires the summing of an infinite number of terms, e.g. of its Taylor series
expansion, its approximate computation is heavily optimized in common numerical libraries. To get a closed-form
objective, we experimented with a simple second-order Bürmann approximation (Schöpf and Supancic, 2014):

erf(x) ≈ 2√
π

√
1− e−x2

(√
π

2
+

21

200
e−kx2

− 341

8000
e−2kx2

)
. (174)

We did not find any significant difference in optimization results when compared to erf(·) implemented in numerical
libraries, but our naïve implementation led to 20-30% longer run time. In all our experiments we always used the
erf(·) implementation provided by numerical libraries.

D.2 Bars dataset

We generated the training data according to the model defined in Eq. (1). That is, we sampled activation vectors
z(n) from a Laplace distribution with λh = 1 (for all h), linearly combined the weighted generative fields, and
added Gaussian noise with standard deviation σ = 0.1. Each ground truth generative field W:,h contained exactly
one (horizontal or vertical) bar (value 1 for ‘bar’, value 0 as the background).

For this experiment, we used full covariance Gaussian variational posterior. We observed good convergence and
complete recovery of the bars in approximately 70% of runs (7 out of 10). When the model converged to a local
optimum, some of the recovered generative fields usually contained two bars, and the final ELBO was slightly
lower. During the optimization ELBO values quickly approach the value computed with ground truth W̃ , then
ELBO values asymptotically converge. Fig. 5 illustrates the typical trajectories of the LH and different entropies
during the optimization.
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Figure 5: Learning the artificial sparse bars dataset. While the entropy-based ELBO is monotonously
increasing, different entropy terms may undergo complex dynamics during the optimization.

D.3 Amortized learning

Our entropy-based objective can be combined with amortized inference and stochastic updates. We used a deep
neural network that comprises two ResNet-like nonlinear mappings (parametric automorphisms) and separate
linear readout maps for the mean and the diagonal covariance variational parameters of the posterior (Fig. 6),
optimized by stochastic updates (Adam with lr = 10−3). We compared the convergence speed to the previously
suggested (non-amortized) EM-like updates, and considered cases with and without prior entropy annealing (Fig.
3). The EM updates with annealing allow the ELBO to be optimized faster and reach a better optimum. We also
observe a minor gap (presumably an amortization gap) due to the limited neural network capacity. All three
optimization methods finally result in a set of similar generative fields (Fig. 8).

Low-rank approximation of full covariance matrices for the variational posterior (Fig. 7) helps to diminish the
amortization gap. To construct a low-rank convariance matrix, the DNN produces a set of r vectors V ∈ RH×r,
and a separate vecor of diagonal covariances σ2. The covariance matrix is then computed as T = V V T+diag(σ2).
We used r = 5 in our experiments.

We did not observe parameters convergence in reasonable time when we trained Laplace-prior sparse coding
model with unamortized Gaussian posterior and used reparameterization trick and stochastic updates with even
100 samples (no analytic solutions of the ELBO integrals).
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Figure 6: Deep encoder architecture. First, the input data x is linearly projected to a higher dimensional
space, and then two ResNet-like transformations are applied. The variational parameters ν and σ2 are obtained
by separate linear mappings. Posterior diagonal covariance is then constructed as T = diag(σ2).
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Figure 7: Encoder architecture for variational posterior with a low-rank approximation of full
covariance. The covariance matrix is constructed as T = V V T + diag(σ2).

(a) EM, annealing (b) EM, no annealing (c) Adam, amortized

Figure 8: Learned bases with different optimization methods where the generative fields were obtained
after 200 epochs of optimization. All methods result in practically the same set of filters, but the prior entropy
annealing facilitates fast convergence.

D.4 Comparing annealing schemes

We used a basic linear annealing scheme for prior entropy annealing: γi = max(1.0, 2 ∗ (5− i)) for epoch i. For
the likelihood entropy annealing, we set δi = min(1.0, 1/(7− i)). While prior (Fig. 10) and likelihood (Fig. 11)
entropy annealing result in similar generative fields after convergence, the trajectories of the optimization of
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generative fields and latent codes differ. With prior entropy annealing, all the latent dimensions are used for
the encoding from the very beginning of the optimization. In the case of the likelihood annealing, the latent
dimensions start contributing gradually to the reconstruction.

Table 1 provides numerical details and gives some insights into how the model parameters behave during the
above-mentioned annealing. The table shows ELBOs, Gini coefficients, and contributions of different entropies to
the entropy-based ELBO. To compute the ELBO, after every epoch, we evaluated the non-annealed ELBO for the
learned parameters and the full dataset. Thus, the highest (and also the only proper) ELBO can be obtained only
when a non-annealed objective is used for the optimization. We selected some of the annealing epochs, for which
the contribution of the annealing coefficient causes a quantitatively similar balance of the contributing entropies to
the annealed ELBO, that is, e.g., for the epochs when γ = 2 and δ = 0.5 the corresponding contributing entropies
are close. Despite the similarity in the values of the entropies, the learned generative fields are qualitatively very
different (Fig. 10 and Fig. 11). Next, we provide an explanation of what causes such a qualitative difference.

Notice that the Gini coefficient of the latent codes is high during the annealing, which indicates high sparsity of
the posterior. Here we have to remember that the likelihood annealing trades off the reconstruction quality to
Kullback-Leibler divergence between the prior and the variational posterior. With small δ we can largely ignore
the reconstruction term and focus only on the Kullback-Leibler divergence. Our reparameterized model allows
two ways to minimize the Kullback-Leibler divergence term: by adjusting the variational posterior parameters,
and by changing the prior scales. We observe both phenomena in the case of the likelihood entropy annealing,
which leads to noisy and non-localized generative fields and posterior collapse of some of the latent dimensions.
That is, some of the latent dimensions do not participate in the encoding, their corresponding scale parameters
λh shrink to very small values, the corresponding contribution to the Kullback-Leibler divergence may become
arbitrarily close to 0, and the corresponding generative fields do not contribute to the data reconstruction. Fig. 11
illustrates such noisy generative fields, which do not contribute to the reconstruction. Noisy and non-localized
generative fields entirely disappear as the annealing ends.
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Gini(z), no annealing
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Figure 9: Prior entropy annealing on natural image patches dataset. Gini coefficients (mean ±SD bars)
of the latent codes (Fig. 4 for example generative fields) stay marginally higher if the prior entropy annealing is
used even after the annealing ends after epoch 5. The bottom plot shows the annealing schedule.

The qualitative difference of prior entropy annealing can be seen by comparing the generative fields we obtain
during the optimization (Fig. 10). Even after one epoch with high weight on the prior entropy, the generative
fields already resemble localized Gabor filters. As the annealing decays, more generative fields that represent
high-frequency Gabors emerge. Fig. 9 shows the linear annealing schedule and how the Gini coefficient changes
during the prior entropy annealing.
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(a) Epoch 1 (b) Epoch 2 (c) Epoch 3

(d) Epoch 4 (e) Epoch 5 (f) Epoch 6

(g) Epoch 7 (h) Epoch 8 (i) Epoch 9

Figure 10: Learned generative fields during optimization with prior entropy annealing. The annealing
stops after epoch 5.
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(a) Epoch 1 (b) Epoch 2 (c) Epoch 3

(d) Epoch 4 (e) Epoch 5 (f) Epoch 6

(g) Epoch 7 (h) Epoch 8 (i) Epoch 9

Figure 11: Learned generative fields during optimization with likelihood annealing of entropy-
ELBOs. The annealing stops after epoch 6. It is equivalent to β-annealing, which is a popular scheme to tune
reconstruction–embedding quality trade-off for VAE training.
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D.5 Learning overcomplete basis

Prior entropy annealing significantly improves the quality of the learned dictionary and the sparseness of the
latent codes (see Fig. 12). When after annealing the prior entropy weight is set to 1, approximately half of
the generative fields converge to high-frequency textures and contribute only marginally to the reconstruction.
Emphasizing the prior allows us to learn a rich dictionary of localized Gabor-like generative fields that span a
wide range of frequencies, positions, and orientations, positively contributing to the sparsity of the latent codes.
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(a) Prior entropy weight: 2
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(b) Prior entropy weight: 1

Figure 12: Learned overcomplete bases for the image patches dataset. 400 generative fields are learned
from 16× 16 image patches. Different generative fields were obtained with prior entropy weight set to 2 (a), and
with the original ELBO (b). The bottom histograms illustrate how this reweighting affects the prior scales λi. In
(b) more than 200 prior coefficients are close to 0, which hints to the posterior collapse. The generative fields are
sorted according to their λi scale.
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E PROPERTIES OF THE FUNCTION M AND SOFTENED MAGNITUDE

We study the properties of M(a) in Eq. (12). We find for very small and for very large arguments a of the
function that:

lim
a→∞

M(a) = |a| and lim
a→−∞

M(a) = |a| . (175)

So M(a) approximates the “l1” magnitude function |a| if a has large or small values. Furthermore, the function
upper-bounds the magnitude function everywhere, and the largest difference of M(a) compared to |a| is at zero:

for all a ∈ R: M(a) > |a| and M(0) =
√

2/π . (176)

Turning back to the relatively intricate expression for λopth in Theorem 2, we can now define a ‘softened’ magnitude
function (cf. Sec. 3.4) that formally simplifies the expression significantly:

λopth =
1

N

N∑
n=1

∣∣ν(n)h

∣∣⋆ where
∣∣ν(n)h

∣∣⋆ = τ
(n)
h M

(ν(n)h

τ
(n)
h

)
. (177)

Using the properties of M, it can directly be observed that |ν(n)h |⋆ ≈ |ν(n)h | whenever ν(n)h ≫ τ
(n)
h , so for small

τ
(n)
h the function |ν(n)h |⋆ essentially represents the l1 magnitude. We have to keep in mind, however, that |ν(n)h |⋆

depends on τ
(n)
h (which we have omitted in the notation for convenience). As a principled difference between

|ν(n)h |⋆ and |ν(n)h | it remains that ultimately the derived function |ν(n)h |⋆ does (in contrast to |ν(n)h |) not vanish for
vanishing νh. So while many entries ν(n)h will be pushed towards zero, the minimum of |ν(n)h |⋆ will not be at zero.
The derived objective is, therefore, genuinely different from l1-sparse coding. It may be used, however, to relate
to recent threshold-based variants of the sparse coding objectives (Rozell et al., 2008; Fallah and Rozell, 2022).

The derivative of the function M(a) has a particularly simple form, which we already discussed in Theorem 3:

∂M(a)

∂a
= erf

(
a√
2

)
. (178)
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