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Abstract
We introduce a dynamical approach for the determination of power curves for wind turbines
and compare it with two common methods—among them the standard procedure due to IEC
61400-12-1, i.e. the international standard prepared and published by the International
Electrotechnical Commission. The main idea of the new method is to separate the dynamics of
a wind turbine’s power output into a deterministic and a stochastic part, corresponding to the
actual behaviour of the wind turbine and external influences such as the turbulence of the wind,
respectively. In particular, the governing coefficients are reconstructed from the data, and the
power characteristic is extracted as the stationary states of the deterministic behaviour. Our
results prove that a dynamical approach enables one to grasp the actual conversion dynamics of
a wind turbine and to gain most accurate results for the power curve, independent of
site-specific influences.

Keywords: wind energy conversion, power curve, dynamical approach, stochastic process,
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1. Introduction

With increasing importance of wind as a sustainable energy
source and, consequently, the spreading of wind turbines
as wind energy converter systems (WECS), wind energy
research has become a new orientation. Physical findings
have to be combined with technical know-how. An improved
understanding of the performance of a WECS, as well as of
e.g. the loads affecting certain parts of a wind turbine, can
only be achieved if we comprehend its fuel, the wind, in more
detail.

In the centre of our research stands the assessment of the
wind turbine’s power performance, i.e. the description of the
wind energy conversion process. The so-called power curve,
the electric power output versus the wind speed, summarizes
the technical characteristics of the whole turbine and is
approved to be the most important testimony for the wind
turbine’s performance in the view of the operator. The shape
of a power curve is governed by the cubic relation between the
wind speed and the corresponding power in the wind up to the
so-called rated wind speed where the power takes a constant

value until the turbine cuts out. The actual energy density of the
wind is reduced by the energy not usable due to a physical limit
and additional losses due to several technical characteristics
(see e.g. [1]). The correct and effective determination of these
effects is of central interest.

A standard method for the determination of wind turbine
power curves is given by [2], referred to as IEC 61400-
12-1. This norm is an averaging procedure, easily applicable
if enough data are available. The resulting IEC curve is
the common tool to estimate a wind turbine’s energy yield.
However, it cannot be used to display e.g. the short-time
fluctuations of the electrical power output induced by turbulent
wind conditions or to explain the orographic dependences of a
wind turbine’s performance.

Recently, an alternative method for the estimation of
wind power characteristics has been established in [3, 4].
The main idea is to reconstruct the short-time dynamics of
the power conversion process and to determine the power
curve as the stationary states or fixed points of this process—
these stationary results represent nothing else than the ideal
performance for non-fluctuating laminar wind conditions.

1748-9326/08/015005+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/1748-9326/3/1/015005
mailto:julia.gottschall@forwind.de
mailto:peinke@uni-oldenburg.de
http://stacks.iop.org/ERL/3/015005


Environ. Res. Lett. 3 (2008) 015005 J Gottschall and J Peinke

Therefore, we have introduced the term dynamical power
curve. In detail, the dynamics of the WECS is considered
as a Markovian stochastic process, and the wind speed is
interpreted as a noisy driving force. The crucial point of this
method is to divide the dynamics into a deterministic and
a stochastic part. The stochastic part, given by dynamical
noise, summarizes all the otherwise unseizable microscopic
interactions and enables a macroscopic description of the
considered open complex system. I.e. it also takes into account
that the scalar wind speed, measured at the met mast, cannot
represent the complete wind field actually acting on the wind
turbine. Following Haken [5], this can be regarded as a
synergetic approach to complexity. For details about the
general method and other applications see [6].

The aim of this paper is to show the advantages
of the recently introduced method of the dynamic power
curve estimation, comparing it with two other determination
methods, namely the common IEC standard and the maximum
principle proposed by Rauh et al [7], and going back to certain
examples of measured and simulated data. Therefore, we first
introduce the three considered methods in more detail, perform
then the comparison of methods and conclude with a short
discussion.

2. Dynamical power curve

The dynamical power curve approach is based on highly
sampled data in order to reconstruct the actual process
dynamics—for more details on the conversion dynamics on
small timescales see [8]. Its basic idea is to describe the
electrical power output P of the wind turbine as a diffusion
process, i.e. a stochastic process that satisfies the Markovian
property and that can be separated into a drift and a diffusion
part. Then, a typical time series can be presented as P(t) =
Pstat(u) + p(t), where Pstat denotes a stationary power value
dependent on the wind speed u (or rather a non-fluctuating
stationary or mean value of u, not further specified here),
and p(t) refers to the corresponding short-time fluctuation
around this value caused by the wind turbulences and the
response of the WECS to these. The time series P(t) is
assumed to be stationary with respect to a certain wind speed
interval. Therefore, the dynamics of P(t) is analysed for
each selected wind speed interval or bin separately. (Note
that the mapping of the power values P(t) to the single wind
speed bins is defined by the actual wind speed u(t). A
split-up of the wind speed into a mean value and short-time
fluctuations is not considered here. Fluctuations are analysed
in terms of increments. In the end, the reconstructed value of
Pstat is mapped to the average of all values u(t) lying in the
corresponding bin.)

For the evolution in time of the variable P we formulate a
Langevin equation

d

dt
P(t) = D(1)(P; u) +

√
D(2)(P; u)�(t). (1)

D(1) is called drift coefficient and represents the deterministic
part of the process, whereas the diffusion coefficient
D(2) together with the Langevin force �(t) representing

δ-correlated Gaussian white noise (〈�(t)〉 = 0 and
〈�(t1)�(t2)〉 = 2δ(t1 − t2)) describes its stochastic part. The
units of D(1) and D(2) are [P] s−1 and [P]2 s−1, respectively,
with [P] as the unit of P . The unit of �(t) arises from
�(t) dt = dW (t) and dW (t)2 = dt , where dW (t) is a Wiener
process (see [9]). A simple relaxation model, as proposed
in [7], would follow the equation

d

dt
P(t) = −α [P(t) − Pstat(u)] +√

β�(t), (2)

where α is a constant relaxation factor that quantizes a
relaxation around the stationary value Pstat driven by the wind
speed variation and β the strength of additive dynamical noise.

A reconstruction of this dynamics enables the estimation
of the values Pstat(u) and with it the determination of the
power characteristic. Following [10], the coefficients D(n) for
n = 1, 2 are given by the conditional moments M (n) that can
be directly calculated from the data according to

D(n)(P; u) = 1

n! lim
τ→0

1

τ
M (n)(τ, P; u) (3)

with

M (n)(τ, P; u) := 〈
[P(t + τ ) − P(t)]n

〉 |P(t)=P (4)

where 〈· · ·〉 denotes the ensemble average and |P(t)=P the
condition that the stochastic variable P(t) is in the state P at
time t .

For small and finite τ , we make the approximation

M (n)(τ, P; u) ≈ n!τ D(n)(P; u) + O(τ 2), (5)

applying an Itô–Taylor series expansion. Depending on the
process it might be necessary to consider further higher-order
terms. An exact derivation is given in [11].

If additional measurement noise is present, D(n) is best
estimated by the extrapolation

D(n)(P; u) = 1

n!
M (n)(τ2, P; u) − M (n)(τ1, P; u)

τ2 − τ1
(6)

for suitable τ1 and τ2 or a corresponding linear fit [12].
Corresponding errors are calculated according to [13] with

σ
[
D(1)(P, τ ; u)

] =
√

2

τ

D(2)(P, τ ; u)

N
−
[
D(1)(P, τ ; u)

]2

N
(7)

and for D(2) similar, considering a finite time increment τ > 0
and a finite number of data points N in the bin.

Finally, a deterministic fixed-point analysis for each
speed bin yields the stationary points Pstat(u), defined by
D(1)(P; u) ≡ 0, and with it the dynamic power curve.

3. Comparison with other determination methods

3.1. The IEC standard

In short, the standard method according to IEC 61400-12-1
(in the revised version, see [2]) is characterized by relating
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Figure 1. Reconstructed power curves for simulated data, (a) complete curve and (b) cutout, for different values of turbulence intensity.
Results according to IEC standard are given by open symbols, stationary states according to dynamical method by full symbols (rectangle for
ζ = 0.10 and circle for ζ = 0.20). The solid line (red) denotes the exact power curve, i.e. the input characteristic for our model.

the averages of wind speed and power output over 10 min,
i.e. 〈u(t)〉10 min �→ 〈P(t)〉10 min, and averaging in a second
step all values lying in a wind speed bin of the width of
normally 0.5 m s−1. Already in [14] it has been argued that this
procedure does not account for the nonlinearity of the power
characteristic. Expressing the wind speed as u(t) = V + v(t)
where V is the mean value, i.e. V = 〈u(t)〉, and v(t) the
corresponding short-time fluctuation around this value with
〈v(t)〉 = 0, the power output P as a function of u can be
expanded in the Taylor series

P(u) = P(V ) + ∂ P(V )

∂u
v + 1

2

∂2 P(V )

∂u2
v2 + O(v3). (8)

Assuming that the fluctuations v(t) are symmetric around V ,
which is in general questionable for experimental data (see the
discussion in section 3.3), and neglecting the terms O(v3), one
obtains for the averaged power output

〈P(u)〉 = P(V ) + 1

2

∂2 P(V )

∂u2
· σ 2 (9)

with σ 2 = 〈v2(t)〉.
It follows 〈P(u)〉 �= P(〈u〉) for a nonlinear function P(V )

and non-vanishing σ . Defining the turbulence intensity ζ =
σ/V , one rather finds a correction term proportional to ζ 2 for
P(V ) known. The inequality above indicates that symmetric
wind speed fluctuations, as they are assumed, are transferred
to asymmetric power fluctuations due to the nonlinearity of the
power curve. It follows that a linear averaging procedure does
not give exact results.

To illustrate this discrepancy, we simulated wind speed
and power output data, using a simple relaxation model as
given by (2) with typical parameter values we obtained from
the analysis of measured data. We performed the simulation
for different values of turbulence intensity, and reconstructed
the power characteristic according to both the IEC standard
procedure and the dynamical method. Results are shown in
figure 1.

The systematic deviations of the results following the IEC
recommendations from the real power curve, i.e. the input
characteristic for our model, are evident. Even though the
result of the dynamical method is not affected by the mentioned
averaging problem, there is similarly a small discrepancy.
This is due to a non-stationarity of the data induced by the
predetermined wind speed binning, and increases with the
turbulence intensity. However, it is much smaller than the
errors of the IEC method, and for our set of measured data
(see section 3.3.) it is negligible.

3.2. Maximum principle according to Rauh

Rauh et al propose in [7] an even simpler method to determine
the power curve for a wind turbine. The idea is to define an
empirical power curve by the location where, in a given wind
speed bin, the maximal density of points P(ti ) is found. I.e. the
power curve is given by the points {u j , Pk( j)}, where j is the
number of the speed bin and k( j) denotes the power bin with

Nk :=
∑

i


(P(ti ) − Pk)
(u(ti ) − u j )

and Nk( j) � Nk , (10)

where 
(x) is a Heaviside function defined by


(x) =

⎧
⎪⎨

⎪⎩

1 if −�/2 � x < �/2

with the particular bin width �

0 else.

(11)

In words, we determine for each power bin k the number of
events Nk , counting the points P(ti ) lying in the respective bin.
The largest number of points is denoted by Nk( j) , where k( j) is
the sought bin with the extremal property and, correspondingly,
Pk( j) the point of the power curve. (The values u j and Pk can
be defined either by the middle of the bin or by the mean value
of the points lying in it.) Rauh et al argue that this extremal
property is expected if the power curve is an attractor.
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Figure 2. Simulated data and reconstruction of its dynamical coefficients to show the weakness of Rauh’s maximum principle—(a) drift
coefficient D(1)(x), (b) diffusion coefficient D(2)(x) and (c) histogram of data. The fixed point is marked with a solid line, the maximum with
a dashed line, both in red.

To show the weakness of this method, we assume again
that P(t) can be described by a diffusion process and follows
an equation as given by (1). As alternative to the Langevin
equation, a diffusion process can also be described by a
Fokker–Planck equation (see [10])

∂p(P, t)

∂ t
=
{
− ∂

∂ P
D(1)(P) + ∂2

∂ P2
D(2)(P)

}
p(P, t)

= − ∂

∂ P
S(P, t) (12)

D(1)(P) and D(2)(P) are the coefficients defined in (1), the
additional parameter u is omitted here. The specific kinds
of description by a Fokker–Planck equation and a Langevin
equation are equivalent. While the Langevin equation is
a stochastic differential equation for the state variable and
describes the actual trajectory of this variable, the Fokker–
Planck equation is a partial differential equation for the
probability density p(P, t) of the state variable evolving in

time. For S = const, we obtain the stationary solution

pstat(P) = N
D(2)(P)

exp

(∫ P D(1)(P̃)

D(2)(P̃)
dP̃

)

(13)

with the normalization constant N .
The procedure is now to investigate under which

conditions the point of maximal density Pmax is equal to the
stationary state Pstat, i.e. the dynamical power curve equals the
power curve according to Rauh’s maximum principle. For this
purpose, we differentiate pstat(P) with respect to P and set it to
zero. Since the exponential term is always > 0 and assuming
that the lower integration term vanishes, we end up with

N
(D(2)(Pmax))2

[
D(1)(Pmax) − ∂

∂ P
D(2)(Pmax)

]
= 0. (14)

Because D(2)(P) > 0 essentially, Pmax has to fulfil
D(1)(Pmax) = ∂/∂ P{D(2)(Pmax)}. The definition of the
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Figure 3. Reconstructed power curves for simulated data, (a) complete curve and (b) cutout. Results according to Rauh’s maximum principle
are given by open symbols and dotted line, stationary states according to dynamical method by full symbols. The solid line (red) denotes the
exact power curve, i.e. the input characteristic for our model. The turbulence intensity of the simulated wind speed data is 0.10.

stationary fixed point provides D(1)(Pstat) ≡ 0. That means
that the point of maximal density Pmax equals only the
stationary state if its derivative with respect to P vanishes,
i.e. for D(2)(P) = const or if D(2)(P) has an extremum
for Pstat. We call this type of dynamical noise ideal noise.
Consequently, if a diffusion function D(2) does not satisfy this
condition, the corresponding noise is called non-ideal.

The consequences for the reconstructed points of the
power curve are, first, to be demonstrated with a one-
dimensional example of simulated data, see figure 2. We
integrated the Langevin equation for a process with D(1)(x) =
−0.1x + const, and a step function for D(2)(x) as realization
of non-ideal noise. This behaviour is motivated by our
observations for experimental data (see section 3.3). The
original functions as well as the reconstructed points,
according to (3)–(7), are shown in figures 2(a) and (b).
Looking at the probability density function, shown in
figure 2(c), we find that the point of maximal density does
not equal the actual fixed point of relaxation, but is affected
essentially by the shape of D(2). The reconstruction of D(1),
however, is not influenced and provides the correct result for
the fixed point. Large errors of the reconstructed coefficients
for small x are due a small amount of data (see histogram)—
errors are proportional to 1/

√
N , where N is the number of

considered data points.
To transfer this one-dimensional example to a two-

dimensional model for the power characteristic, we use
again the relaxation model given by (2), and replace the
constant diffusion coefficient β by a step function as shown
in figure 2(b) with a decrease of diffusion strength to one
tenth behind the step. As shown in figure 3, Rauh’s maximum
principle overestimates the points of the power curve in the
region of transition to the rated power, and seems overall to be
less accurate than the dynamical method.

3.3. A look at real data

To show the actual impact of the effects explained in the last
two subsections, we refer to a set of measured wind speed and
power output data of a wind turbine. The data were obtained
from a commercial MW-class turbine, located in a wind park in
the mid-western part of Germany. The wind speed data were
recorded by an ultrasonic anemometer placed on a met mast,
satisfying the requirements stated in the IEC 61400-12-1 norm.
The analysed data set consists of approximately 1800 000 data
points, the averaged turbulence intensity of the wind speed data
is 0.135.

The sampling frequency of the data is 1 Hz, defined by
the recording of the power data. Our analyses showed that it
is sufficient to reconstruct the drift coefficient, following (4)–
(6), but too low to capture the diffusion coefficient accurately.
As remarked in [11], the estimated diffusion coefficient in
particular has to be corrected for finite or not sufficiently small
values of τ to get the correct functional relation D(2)(P),
depending otherwise also on the drift coefficient D(1)(P).

At first, we compare the power curve estimated due to the
IEC 61400-12-1 standard method with the reconstructed fixed
points. Applying both methods to the measured data, we do not
observe the expected results according to 3.1 (see figure 4(a)
in comparison to figure 1). The deviations are rather directly
opposed—for small wind speeds and a positive curvature of
the power curve the fixed points lie above the IEC curve, for
large wind speeds up to the rated value and a negative curvature
they lie below. In figure 4(a), we have additionally compared
the IEC curve with a power curve that is obtained by simply
averaging the high-frequency data in each wind speed bin
instead of taking the average values over 10 min. The result of
this alternative approach fits much better with our expectations.
At least for high wind speeds, the influence of the nonlinearity
on the averaging procedure can be clearly seen in comparison
to the fixed points. From this we conclude that there is another
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Figure 4. Schematic comparison of power curves due to IEC standard (solid line), reconstructed fixed points (full symbols) and
(a) bin averages of 1 Hz data (dashed line), respectively, (b) maxima according Rauh’s method (crosses) for measured data.

Figure 5. Histograms of power output data for the bins (a) u = (5.75 ± 0.25) m s−1 and (b) u = (12.25 ± 0.25) m s−1. Distribution of
average values over 10 min in dark grey, and of the high-frequency data (red) behind.

aspect, in addition to the nonlinearity of the power curve, that
influences the results due to the IEC standard substantially. In
figures 5(a) and (b), we have compared the distribution of the
original power data sampled at 1 Hz to the distribution of the
averages over 10 min (binned according to the corresponding
wind speed averages) for two different values of wind speed.
The histograms for the high-frequency data are in both cases
highly asymmetric. For low wind speeds, there is an additional
peak at the left side of the spectrum, for high wind speeds at
the right side—corresponding to the cut-in and rated values of
the power curve. The averaging procedure seems to cut off the
part of the other side of the distribution in each case. Hence,
the mean value of the averages over 10 min is shifted to the
peak value.

To inspect the application of Rauh’s maximum principle,
we estimated the probability distribution of the highly sampled

power output data for each single wind speed bin, as
exemplarily shown in figures 5(a) and (b). For wind speeds
in the range of the rated value, the histograms have basically
the same shape as the one for the simulated data in figure 2
(see figure 5(b)). The additional peaks result in a distinctive
kink for the whole power curve, that is not present for the other
approaches (see figure 4(b)).

For the simulated data, the additional peak in the his-
togram has been traced back to non-ideal noise, implemented
as a step function for the diffusion coefficient. Our observa-
tions let us suppose that similar dynamics underlie the mea-
sured data. An explanation for this specific diffusion dynam-
ics are the control mechanisms of the wind turbine, especially
at the point of transition to the rated power. As stated above,
we could not investigate the diffusion function D(2) in more
detail due to the (at least for this analysis) too low sampling
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frequency of the data. But we can conclude that D(2) captures
the transfer of the wind fluctuations to the short-time fluctua-
tions of power output, while the drift coefficient D(1) describes
the response behaviour of the wind turbine. In other words,
the dynamics of the system is separated into a fast and a slow
varying part, and both parts provide valuable information on
the complex system wind turbine.

4. Conclusions and discussion

To describe the performance of a WECS in an appropriate
manner, that is the main conclusion of our investigations,
it is essential to grasp the actual dynamics of the process.
As demonstrated, the location of both the maximum and the
mean value is substantially influenced by the shape of the
distribution of data. Simple sample statistics seems not to
be sufficient to capture its specific characteristics; a detailed
analysis of the underlying dynamics and a more flexible
definition of a characteristic stationary state is rather necessary.
Therefore, we have introduced a so-called dynamical approach,
estimating this stationary state or fixed point by extracting the
actual deterministic dynamics of the wind turbine. Stochastic
influences are handled as noise and separated from this
information. The dynamical approach corresponds to a generic
procedure, i.e. it is flexible in application. It not only promises
more accurate results than the two other presented methods.
Beyond the stationary states of the process, i.e. the power
curve, it provides additional relevant information, namely the
complete drift characteristic, and potentiates e.g. a detailed
analysis of the short-time dynamics of the WECS (see [8]).
Just for this reason, the dynamical method is of another type
than the IEC standard and cannot replace it without further
adjustment. Instead of mean values we estimate fixed points,
which has essential implications on the application of the
resulting power curves.
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