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Abstract

We discuss the accuracy of the prediction of the aggregated power output of wind farms
distributed over given regions. Our forecasting procedure provides the expected power out-
put for a time horizon up to 48 hours ahead. It is based on the large scale wind field pre-
diction which is generated operationally by the German weather service. Our investigation
focuses on the statistical analysis of the power prediction error of an ensemble of wind
farms compared to single sites. Due to spatial smoothing effects the relative prediction er-
ror decreases considerably. Using measurements of the power output of 30 wind farms in
Germany we find that this reduction depends on the size of the region. To generalize these
findings an analytical model based on the spatial correlation function of the prediction er-
ror is derived to describe the statistical characteristics of arbitrary configurations of wind
farms. This analysis shows that the magnitude of the error reduction only weakly depends
on the number of sites and is mainly determined by the size of the region. Towards a cor-
rection of systematic prediction errors an analysis of the temporal structure of the forecast
error is performed. For this purpose the correlation of the errors for consecutive forecasts
is analyzed for single sites and ensembles.
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1 Introduction

The contribution of wind energy to the public electricity supply has grown rapidly
in countries like Denmark, Germany and Spain over the last decade. In some re-
gional grids the installed capacity of wind turbines is of the order of magnitude of
the minimal electrical load (approx. 30 % of max. load). In contrast to conventional
electricity production the availability of wind energy depends on fluctuating me-
teorological conditions posing new challenges to grid operators and utilities. The
feed in of electricity from wind turbines acts as a negative load leading to increased
variations of net load patterns. Due to the uncertainty of the temporal development
of the wind fields additional spinning reserves have to be kept ready in conven-
tional power plants to replace the wind energy share in case of suddenly decreasing
wind speeds. To permit an efficient integration of the fluctuating wind energy into
the existing supply system the expected wind turbines’ output has to be known
in advance. For this purpose different wind power prediction systems with a time
horizon of up to 48 hours have been established in recent years.

A common approach to short term wind power prediction is refining the output
of numerical weather prediction (NWP) models operated by weather services to
obtain the local wind conditions. This concept was used to develop reliable op-
erational prediction systems in Denmark [1] and Germany [2,3]. Prediction tools
using advanced statistical methods are operated on a daily basis at a utility in Den-
mark [4] (recently been replaced by a new system that also includes input from
NWP models [5]) and are under development in Ireland [6].

A major issue regarding the operational use of wind power prediction tools is, of
course, the quality of the forecast. As the accuracy of a given NWP model output
is not known the uncertainty of the wind field is directly transfered to the power
prediction procedure. Unfortunately, the nonlinearity of the wind turbines’ power
curves leads to a further amplification of the error, i.e. small deviations in the wind
speed may result in large deviations in the power. For single sites this can lead to
considerable prediction errors. However, in operational use a wind power prediction
system is supposed to provide the combined power production of many wind farms
installed in a region with some 100 km in diameter. The error of the prediction of
this regional power output is expected to decrease due to spatial smoothing [7]. In
this paper we focus on the two major variables determining the magnitude of this
statistical effect which are the spatial extension of the region and the number of
wind farms it contains.

For comparison, we use measurements from 30 wind farms in Germany to form
typical regions with different extensions corresponding to a medium and large util-
ity supply area and sum up the according measured power output. Fictitious model
ensembles together with the correlation function based on the measured data allows
us to shed some light on the general statistical behaviour of distributed wind farms
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regarding the prediction error. As a special case the reduction of the prediction error
is calculated for the real distribution of all German wind farms.

2 Forecasting method

The principle scheme of our prediction system can be seen in figure 1, for a detailed
description see [2,3]. As input the result of an operational numerical weather pre-
diction model is used. The German weather service (DWD) currently operates the
“Lokalmodell” which replaced the “Deutschlandmodell” in November 1999. Two
main runs are started every day at 00 UTC and 12 UTC. Our calculations are based
on the wind speed and direction forecast up to 48 hours coming from the “Deutsch-
landmodell” (00 UTC run). The resolution of the data is 14� 14 km2 (newer NWP
models use resolutions up to 5� 5 km2), i.e. rather sparse, so a spatial refinement is
necessary to predict the wind power at a specific site. We calculate the wind speed
at hub height using the geostrophic drag law and the logarithmic wind profile. Ther-
mal stratification of the boundary layer, roughness around the site, orography and
wind farm shadowing effects are included.

numerical weather prediction
wind speed

6h,12h,...,48h prediction
+

refinement to local site
roughness,stability,orography

+

model output statistics
correction of

systematic errors
+

wind turbine
power curve

wind farm effects
+

local prediction of
power output

Fig. 1. Principle of the spatial refinement of the numerical weather prediction leading to a
local prediction of wind conditions and wind power.
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3 Prediction error of single sites

The accuracy of the power prediction for a single site is determined by comparing
the results of the locally refined prediction with measurements [3].

For this purpose archived NWP data for the years 1996 to 1999 was provided by
the German weather service. In particular, we use the 6, 12, 18, 24, 36, and 48 h
predictions of the 00 UTC run. Measured data for the same period of time was
collected in the framework of the German Scientific Measuring and Evaluation
Programme (WMEP) carried out by ISET, Kassel [8].

Figure 2 shows a comparison between prediction and measurement for the power
output of a wind turbine in the North German coastal region. In general the pre-
dicted and the measured time series show a good agreement. Significant differences
can be seen mainly for the 36 and 48 h prediction. In particular, the beginning of a
storm on day 326 is not correctly predicted and on day 330 the prediction shows a
time shift of several hours.
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Fig. 2. Typical time series of measured and predicted power output for one site. There is
a good agreement between prediction and measurement. On day 325 the beginning of a
storm was not correctly predicted by the 36 and 48 h forecasts. The prediction of the storm
around day 330 is several hours too late.

For our investigation the quality of the prediction is quantified by the standard
deviation of the difference between predicted and measured power normalized to
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the installed powerPinst of the wind turbines in the period of time to be considered:

� =
1

Pinst

vuut 1

M

MX
i=1

[(Ppred;i � Pmeas;i)� (Ppred � Pmeas)]2 (1)

Ppred is the predicted power output,Pmeas the measurement andM the number of
data points. We choose the standard deviation,�, instead of the commonly used
root mean square error (rmse) in order to compare the results to a statistical de-
scription based on a correlation function (section 4.2) which naturally involves�.
The difference between these two error measures is that the bias, i.e.Ppred�Pmeas,
is not subtracted in the rmse. In our case this bias is quite small leaving the rmse
values only slightly higher than the� values.

Figure 3 summarizes the results of the comparison between measured data and pre-
dictions for single sites. The standard deviation normalized to the installed power
and averaged over 30 wind farms rises from 12% for the 6 h prediction to 18% for
48 h. The increase of the prediction error with increasing time horizon might be due
to the growing systematic error in the numerical weather forecast for longer predic-
tion times. For comparison figure 3 also shows the performance of the persistence
forecast, i.e. the prediction for a point of time in the future is set to the current mea-
surement. For short prediction times below 6 h the persistence is comparable to or
even better than the prediction based on NWP models. With increasing prediction
horizon persistence gives a significant higher error.

The correlation between predicted and measured time series measures the similarity
of the two signals. As shown in figure 4 the correlation for our system decreases
from 0.84 for the 6 h to 0.70 for the 48 h prediction while the persistence shows a
rapidly decaying correlation.

4 Spatial smoothing

Under operational conditions a prediction of the combined power output of many
wind farms distributed over a large region, e.g. the supply area of a utility, is needed.
By integrating over a region the errors and fluctuations underlying the measurement
and the forecast at single sites cancel out partly. These statistical smoothing effects
lead to a reduced prediction error for a region compared to a local forecast. The
size of the region and the number of sites it contains are the main parameters that
determine the magnitude of the error reduction. The analysis of measured data very
clearly shows this effect but is constrained to a fixed ensemble of sites. To general-
ize our findings we use model ensembles which require a statistical description of
the regional prediction error in terms of spatial correlations.
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Fig. 3. Normalized standard deviation versus prediction time averaged over 30 wind farms
for our prediction system and persistence. For prediction times below 6 h the error of the
persistence forecast is smaller than or comparable to the prediction. For larger times the
prediction system performs much better.

4.1 Ensembles of Measurement Sites

Our first approach is to investigate the spatial smoothing effect using data from an
ensemble of 30 wind farms in the Northern part of Germany. The sites are divided
into regions of two different types according to typical areas covered by a medium
and a large utility. The smaller regions with a diameter of approximately 140 km
(see figure 5) contain three to five measurement sites each. The larger regions are
about 350 km in diameter with five to seven sites each. For comparison we form a
very large region containing all sites which has a size of about 730 km.

The predicted and measured power output of a region is calculated by summing
up the time series for every wind farm located in the region and dividing them by
the number of wind farms. Similar to the analysis of single sites the standard devi-
ation of the difference between these two ensemble time series gives the regional
prediction error. Figure 6 shows the results for the different region sizes and var-
ious prediction times. The standard deviation,�ensemble, of the ensemble, i.e. the
regional prediction error, is normalized to the mean standard deviation of the single
sites,�single according to section 3, and averaged over all regions of the same size.
For the given ensemble this ratio decreases with increasing region size, e.g. the 6 h
prediction gives an average ratio of 0.79 for the 140 km region, 0.68 for the 350 km
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Fig. 4. Correlation of predicted and measured power time series over prediction time for
our prediction system compared to persistence. Again persistence performs well for small
prediction times but its correlation decreases very rapidly while for the prediction system
the correlation remains on a rather high level.

region, and 0.50 for the 730 km region (figure 6). In all cases the reduction of the
regional prediction error is less pronounced for larger prediction times.

4.2 Model ensembles

The analysis for the specific set of measurement sites shows a significant decrease
of the prediction error compared to a single site. In order to draw general conclu-
sions concerning other configurations of wind farms we analyze random ensembles
of sites. This allows us to vary the size of the regions and the number of wind farms
over large ranges to see how the reduction of the error depends on these parameters.
For this purpose we need a proper statistical description of the regional prediction
error.

The key element connecting the spatial distribution of sites with the regional pre-
diction error are the cross-correlation coefficientsrxy of the difference between
prediction and measurement, i.e.Ppred(t) � Pmeas(t), for the single sites. Ifrxy
is known for all pairs of sites, the standard deviation,�ensemble, of the differences
between measurement and prediction can easily be calculated using the� of the
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Fig. 5. Regions in Northern Germany with 140 km in diameter. The points denote the
measurement sites.

individual sites by

�2
ensemble =

1

N2

X
x

X
y

�x�yrxy (2)

whereN is the number of sites in the region,�x the standard deviation of the single
sites.

To obtain an analytic function describing the dependence ofrxy on the site dis-
tance the following procedure is applied. For each pair of the 30 wind farms the
cross-correlation coefficient between predicted and measured time series is calcu-
lated and ordered according to the distance between the two sitesx andy. Figure
7 shows cross-correlation coefficients versus distance for the various forecast hori-
zons where the data points have been averaged over 25 km bins. For small predic-
tion times (6 and 12 h) the cross-correlation decreases rather rapidly within 150 km
while for longer times (36 and 48 h) the decrease is much slower. This might be
due to the growing systematic errors for increasing forecast horizon which give rise
to higher spatial correlations.

Note that the cross-correlation coefficients of the measured power alone decay con-
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Fig. 6. Ratio between standard deviation of ensemble and single time series
(�ensemble/�single) for various region sizes and forecast horizons for the ensemble of mea-
surement sites.�ensemble/�single decreases with increasing region size. In all cases the re-
duction of the regional prediction error is less pronounced for larger prediction times.

siderably slower with increasing distance than the cross-correlation of the devia-
tions. As shown in [9] the cross-correlation of the power output of wind turbines is
about 0.7 at 130 km while at the same distancerxy drops to approx. 0.2 for the 6 h
prediction (figure 7).

We obtain a proper description of the cross-correlation by fitting analytic functions
of the formrxy = a � e�d=b (a andb are fit-parameters andd is the distance between
the two sites) to the cross-correlation coefficients derived from the measured data.
It turns out that piecewise exponentials lead to a suitable fit to the data points. With
the correlation functionrxy based on the fitted data we can now use equation (2) to
calculate the prediction error,�ensemble, of the model regions. We normalize the�x
of the fictitious wind farms to 1 which means that they all have the same weight.

The geographical coordinates of the model ensembles are chosen randomly. Each
result given in the following represents an average value over ten realizations of
ensembles with fixed size and number of sites.

Figure 8 shows the ratio between the regional error and the mean of single sites
�ensemble/�single for two regions with different sizes versus the number of sites in
the region. The cross-correlation functionrxy based on the 36 h forecast was used.
Obviously,�ensemble/�single approaches a saturation level for increasing number of
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Fig. 7. Spatial cross-correlation of prediction deviations for various prediction times. The
cross-correlation coefficients have been averaged over 25 km bins.

wind farms. This limit is already reached for a rather small number of wind farms.
Beyond that point the error reduction does practically not depend on the number of
sites, e.g. for the size of a typical large utility (approx. 370 km) less than 50 sites
are sufficient to have a constant level of 0.63.

The experimental data of section 3 agrees very well with these calculations. Com-
paring the 36 h data in figure 6 with the values corresponding to the same number
of sites in figure 8 we find�ensemble/�single=0.71 for the 360 km region for both en-
sembles. For the 730 km this ration is 0.53 for the ensemble of measurement sites
and 0.52 for the model ensembles.

As expected the saturation level decreases with increasing size of the region. This
is illustrated in figure 9 where the limit values for regions with different exten-
sions containing 4000 sites are shown. There is a rapid decay for extensions below
500 km.

The distribution of distances within the ensemble of wind farms plays a crucial role
in explaining the saturation level. Figure 10 shows typical frequency distributions of
the distances in a 360 km region for different numbers of randomly distributed wind
farms. The distributions correspond to specific ensembles, i.e. another realization
has a different distribution. Figure 10 clearly indicates that the distribution func-
tions converge for an increasing number of wind farms. Beyond a certain number
of wind farms in the region the characteristic distribution of distances approaches a
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Fig. 8. Ratio�ensemble/�single versus number of sites for the model ensembles. Each
data-point represents an average over 10 ensembles. The fitted cross-correlation function
for the 36h forecast was used. A saturation level is reached for a small number of sites.

limit distribution such that the regional error given by equation (2) does no longer
change. If the region has a certain “population density” of wind farms it contains
enough pairs to represent all possible correlations which contribute to�ensemble.
Therefore, adding more sites to the region does not reduce the regional error, as
would be expected for uncorrelated sites, and a saturation is reached.

The limit distribution has a mean value which is typically about half the diameter
of the region. As the distribution is concentrated around the mean most contribu-
tions to�ensemble come from this interval. For increasing region size this leads to
a decreasing saturation level due to the exponential decay of the cross-correlation
function (figure 7).

4.3 Distribution of German wind farms

Finally, we consider the real distribution of the wind farms in Germany (in 1999)
as a special model ensemble and compare the regional error to a single site as
above. For the 36 h prediction this gives�ensemble/�single = 0.43. Note that this ratio
for an equivalent region of the size of Germany with randomly distributed wind
farms would be lower because the real ensemble shows a strong imbalance in the
distribution of sites in the North and South (figure 11).
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data-point represents an average over 10 ensembles.

5 Analysis of the temporal structure of the forecast errors

For a further improvement of the forecast quality, methods to correct the actual
forecasts using knowledge of comparison to previously measured data (so called
model output statistics) are discussed (see e.g. [3]). A basic approach in this con-
text is the analysis of the auto-correlation structure of the errors. A typical scatter
diagram for the single site forecast errors of consecutive days is shown in figure 12
(left). The respective inspection shows that the auto-correlation coefficient is about
0.2 only. Thus the application of a simple linear correction procedure based on the
deviation between prediction and measurement from the previous day will not lead
to any remarkable improvements of the forecast.

Looking again for the change of the structure of the forecast errors when going from
single sites to ensemble data gives the result that the temporal correlation of the
errors is slightly but noticeable increased. In figure 12 (right) the scatter-plot for the
errors of the ensemble forecast for all sites under investigation is represented. For
this set the correlation coefficient is increased to about 0.4. It has to be remarked,
that due to missing values in the data sets these do not always refer to identical
ensembles of sites.

To approve the range of the auto-correlation value for the ensemble the same type of
statistical modelling as in equation (2) for the inspection of the standard deviation
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Fig. 10. Frequency distribution of distances in the region with a diameter of 360 km. The
curves represent randomly chosen coordinates of 20, 100 and 500 wind farms.

of the forecast errors is used. As key parameters the cross-correlation values of the
forecast errors between pairs of sites for a time lag of one day,rxy(�t), has to be
taken into account here. The auto-correlation of the forecast error of the ensemble,
rensemble(�t), is then given by:

rensemble(�t) =
1

�2
ensemble

1

N2

X
x

X
y

�x�yrxy(�t) (3)

For simplicity the temporal average of the forecast errors is assumed to be neglible
here. From this information the auto-correlation of the forecast errors with a one
day time lag is recalculated for the ensemble of 30 sites. For the 6 h prediction the
ensemble error is in good accordance with the respective parameter gained from
the scatter plot in figure 12 (right). The dependence of the auto-correlation of the
prediction error on the forecast horizon is shown in figure 13 for both the ensemble
and a typical single site.

Summing up these findings, it may be stated that, again due to the levelling out of
purely stochastic contributions to the single site forecast errors, at least for the 6 h
forecasts a somewhat stronger linear link between the ensemble forecast errors of
subsequent days exists. However, for the basic ensemble of 30 sites, the respective
auto-correlation coefficients are small (below 0.5). As this is still a small value the
procedures for an exploitation of this effect have to be refined.

13



Fig. 11. Distribution of wind turbines in Germany in 1999. The crosses denote ZIP-code
areas of the site locations.
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Fig. 12. Left: Example for a scatter diagram of normalized deviations between predicted
and measured power for a single site for pairs of 2 consecutive days. Right: Corresponding
scatter diagram for normalized ensemble data. Each point refers to the ensemble output of
15-30 sites, depending on data availability.

6 Conclusions

We investigate the statistical smoothing effects of the prediction uncertainty that
arise if a wind power prediction is made for a region with spatially distributed wind
farms. As expected we find a reduction of the prediction error of the aggregated
power prediction compared to a single site. For an ensemble of wind farms where
the analysis is based on measured data the improvement of the prediction is no-
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ticeable even for small regions and only few sites. Using model ensembles with
randomly chosen locations allows us to generalize the results to identify the impact
of the two main parameters, namely the spatial extension of the region and the num-
ber of sites it contains together with their distribution. We find that the magnitude
of the reduction does strongly depend on the size of region, i.e. the larger the re-
gion the larger the reduction. Concerning the number of sites contained in the area
we observe a saturation level which is already reached for a comparatively small
number of wind farms. This means that only few sites are sufficient to determine
the magnitude of the improvement of the power prediction.

The results of our analysis show that for regions with a sufficient number of prefer-
ably equally distributed wind farms it is now possible to estimate the regional
smoothing effect of the wind power prediction error by just considering the size
of the region in question.

As an additional effect of regarding regionally averaged power forecasts a some-
what stronger link between the forecast errors of consecutive days can be identified.
This may be beneficially used in the refinement of procedures to correct the actual
ensemble power forecast using knowledge on previous errors.
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