

An Introductory Lecture

by Detlev Heinemann

What's (Solar) Energy Meteorology for ?

ENERGY METEOROLOGY

Precise information on various aspects of the new 'fuels' wind and solar are key elements for an efficient use of these technologies

- Characterization of performance of wind and solar energy systems under influence of fluctuating energy fluxes
 - Interface fuel power plant **
- Providing specific data sets and methods for analysis, planning and operation (spatial/temporal statistics, ..)

Job of Energy Meteorology

ENERGY METEOROLOGY

WE NEED TO ...

 characterize the relevant atmospheric energy fluxes in various spatial and temporal scales

model their influence on the performance of energy systems

highly interdisciplinary approach

Overview of this Lecture

- Scientific Basis: Radiation Laws, Extinction Processes and Radiative Transfer
- Solar Climatology
- Solar Irradiance Modeling

Emission of Radiation

All matter with T > 0 K shows a lot of changes of energetic levels mainly due to molecular activities

Reminder: moving charge carriers, electric dipole, ..

Emission of electromagnetic radiation

Questions:

- ▶ How can this emission be described?
- Which are the relevant parameters?
- Radiation laws

Kirchhoff's Law

Assumption: A body emits radiation \mathbf{E}_{λ} [Wm ⁻² sr ⁻¹ μ m ⁻¹] in a certain direction (from its unit area and per wavelength interval) and absorbs radiation from the same direction in relative amounts α_{λ} .

- **Experiments showed:** $E_{\lambda} / \alpha_{\lambda} = f(\lambda,T)$
- Emissions only occur for wavelengths for which absorption occurs
- For complete absortion ($\alpha_{\lambda} = 1$) it is: $E_{\lambda} = E_{max} = f(\lambda,T)$
- A body showing this behavior ($\alpha_{\lambda}=1$, $E_{\lambda}=E_{max}$) is called a **blackbody**

Question: Explicit form of f (λ ,T)

Radiation Laws

$$L(\lambda, T) d\lambda = \frac{2 h c^2}{\lambda^5} \left(\exp \left(\frac{h c}{\lambda k T} \right) - 1 \right)^{-1} d\lambda$$

Stefan-Boltzmann (Stefan's) law

Wien's law

```
L(\lambda,T) spectral radiance (Wm<sup>-2</sup>sr<sup>-1</sup>\mum<sup>-1</sup>)
         specific emittance of a blackbody (Wm<sup>-2</sup>)
        wavelenght of radiation (μm)
```

absolute temperature (K)

 $= 2898 (\mu m K)$

k Boltzmann-Konstante 1.381 · 10-23 (JK ⁻¹)

Planck-Konstante 6.626 · 10-34 (Js)

velocity of light in vacuum 2.9979 · 108 (ms⁻¹)

Stefan-Boltzmann constant 5.67 · 10-8 (Wm⁻²K ⁻⁴)

Planck's Law

$$u_{\nu}(T)d\nu = \frac{8\pi h}{c^3} \frac{v^3}{e^{h\nu/kT} - 1} d\nu$$

Spectral photon energy density, i.e. per volume element

$$L_{\nu}(T)d\nu = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1} d\nu$$

Spectral radiance per frequency interval

$$L_{\lambda}(T)d\lambda = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$

Spectral radiance per wavelength interval

$$M_{\lambda}(T) = \pi L_{\lambda}(T)$$

Spectral radiant flux density per wavelength interval

Planck's Law

Intensity radiated by a blackbody as a function of frequency (left) or wavelength (right)

Solar and Terrestrial Spectrum

Source: Vogt

Atmospheric Extinction Processes

Atmospheric Scattering

Rayleigh scattering

particle size << wavelength

 $\sim \lambda^{-4}$

directionality: $(1 + \cos^2 \alpha)$

Mie scattering

particle size ≥ wavelength

 $\sim \lambda^{-1.3}$

directionality: very strong foreward scattering

large variability by nonuniform particles (aerosols!)

Atmospheric Scattering

Mie scattering

Mie Scattering, larger particles

Direction of incident light

Selective Absortion in the Atmosphere

Spectral Solar Radiant Flux Density

Standard Solar Spectrum

AM 1.5, 37° tilt

ASTM Standards (E-891) and (E-892)

Spectral Irradiance depending on Air Mass

Air Mass

RADIATION QUANTITIES

Definition: Radiant flux density

Energy flux density F

defines the radiant energy dQ passing through an area dA in the time interval t, t+dt:

$$d^2Q = F dA dt$$

Units of F are Wm⁻².

RADIATION QUANTITIES

Definition: Radiance

Radiance L

defines the radiant energy flux $d\Phi = dQ/dt$ passing through an area dA perpendicular to the direction Ω into by the solid angle $d\omega$:

$$d^3Q = L dA dt d\omega$$

Units of ∠ are Wm⁻²sr ⁻¹.

RADIATION QUANTITIES

Relation between Radiance and Radiant Flux Density

According to the cosine law, the radiance crossing a surface dA^* , whose normal n makes an angle θ with the beam axis Ω , is:

$$L^* = \cos\theta L$$

and the radiant flux density calculates to

$$F = \iint_{4\pi} L \cos\theta \, d\omega$$

Macroscopic description of energy transfer by radiation

- parameterization of elementary processes: absorption, scattering, emission by equally distributed gases, ozone, water vapor, aerosols, clouds
- characterization of the radiation field by mean quantities

- radiance completely describes radiation field (location, direction)
- all energetically essential quantities can be derived from here!

$$\frac{dL_{\lambda}(\vec{r},\vec{s})}{ds} = -\sigma_{e\lambda}(\vec{r}) \left[L_{\lambda}(\vec{r},\vec{s}) - J_{\lambda}(\vec{r}) \right]$$

$$J_{\lambda,sc}(\vec{r},\vec{s}) = \frac{\sigma_{sc}}{\sigma_e} \frac{1}{4\pi} \int_{4\pi} P_{\lambda}(\vec{r},\vec{s},\vec{s}') L_{\lambda}(\vec{r},\vec{s}') d\omega'$$

Large numerical efforts necessary (Integro DE)

→ approximations:

plan-parallel atmosphere (horizontally homogeneity) good approximation, because mostly it is: d/dz << d/dx, d/dy But: finite clouds, heterogeneous surface, low solar altitude necessary:

- extinction coefficient for all interactive processes
- wavelength dependency of absorption
- phase functions for scattering processes
- validity of approximations

Example 1:

Directional distribution of reflected solar irradiance at top of atmosphere for low thin (left) and high thick clouds (right)

Example 2:

Monochromatic solar surface irradiance ($\mu = 550$ nm, $\theta_z = 30^\circ$)

Solar Constant

Conservation of energy requires that the total energy flux coming out of the sun must also pass through a sphere at 1 AU.

The energy flux density at 1 AU is

$$\frac{L}{4\pi r^2}$$
 = 1367 Wm⁻².

This is the **Solar Constant**.

Extraterrestrial Radiation

Ecliptic

Solar Declination

Declination angle $\delta = 23.45^{\circ}$

Variation of the declination angle:

$$\delta \cong 23.45 * \sin [360 / 365 * (284 + n)]$$
 with n = day of the year

Equation of Time

Extraterrestrial Solar Spectrum

Source: C. Wehrli, 1985

Extraterrestrial Solar Irradiance Solar Spectral Irradiance at Sea Level

Average Daily Extraterrestrial Radiation on a Horizontal Surface

Global Mean Radiative Energy Budget

Numbers are given in percent of the mean solar input.

 $100 \% = 342 \text{ Wm}^{-2}$

Mean Meridional Radiation Profiles

extraterrestrial radiation G_o global radiation G direct radiation G_b diffuse radiation G_d on a horizontal surface.

The scales are average irradiance (left, in Wm⁻²) and annual solar radiation (right, in GJm⁻²).

Global Average Annual Solar Radiation

Spectral Response of Solar Cells

Spectral Irradiance and Solar Cell Response

Spectral Response: Daylighting, Photosynthesis

Spectral Response: Daylighting, Photosynthesis

- V: Relative luminous efficiency of equal incident radiant fluxes as a function of wavelength, for the C. I. E. Standard Photometric Observer (C.I.E., 1970)
- **P:** relative photosynthetic efficiency of equal absorbed quantum fluxes, as a function of wavelength, for an average green leaf (McCree, 1972)

Conversion to Arbitrarily Oriented Surfaces

Conversion to Arbitrarily Oriented Surfaces

Diffuse Fraction Models

- Calculation of tilted radiation needs diffuse fraction
- but: depends heavily on empirical tuning
- available for various time scales
- nonlinear!
- mainly related with: clearness index (global irradiance),
 solar elevation, turbidity, hour-to-hour-variability, surface albedo
- important: proper probability distribution of diffuse fraction

The mystery of Solar Geometry: angle of incidence θ

```
\cos \theta = \sin \delta \sin \phi \cos s - \sin \delta \cos \theta \sin s \cos \gamma
+ \cos \delta \cos \phi \cos s \cos \omega + \cos \delta \sin \phi \sin s \cos \gamma \cos \omega
+ \cos \delta \sin s \sin \gamma \sin \omega
```

with: latitude ϕ

solar declination δ

hour angle ω

slope s

surface azimuth γ

Diffuse Irradiance Modeling

Problem: Directionality of diffuse radiation

Isotropic approximation only acceptable – if at all – for cloudy skies!

Diffuse Irradiance Modeling

- Part of transposing radiation from available horizontal components
- strongly depends on number and quality of input data
- ground reflected radiation important for tilt > 45°
- simplest approach: isotropic model (Liu/Jordan) o.k. for low quality input and/or longer averages
- accounting for circumsolar diffuse component next step to increase accuracy
- horizon brightening effect, if both radiation components are available

Example: Perez Diffuse Irradiance Model

Representation of the three radiation components seen by a tilted plane (direct, diffuse and reflected) and representation of the sky dome used in the Perez algorithm.

Sky radiance is respectively equal to L, F_1L , and F_2L for the main, the circumsolar, and the horizon zone.

Highly empirical approach!

Modeling of Clear Sky Irradiance

Simple broadband clear sky model for direct and diffuse irradiance (Bird)

Basic equations:

$$I_{dir} = I_o (\cos \theta) (0.9662) \tau_{Rayl} \tau_{O3} \tau_{MolAbs} \tau_{H2O} \tau_{Aer}$$

$$\begin{split} I_{atm_sc} &= I_o \left(\cos \theta \right) \, \left(0.79 \right) \tau_{O3} \tau_{H2O} \tau_{MolAbs} \tau_{H2O} \tau_{AerAbs} \\ & \left[0.5 \, \left(1 - \tau_{Rayl} \right) + B_a \, \left(1 - \tau_{AerSc} \right) \right] / \, 1 - m + (m)^{1.02} \\ I_g &= \left(I_{dir} + I_{atm_sc} \right) / \, \left(1 - r_g r_s \right) \end{split}$$

with I_0 : extraterrestrial irradiance, τ : atmospheric transmittances

2

Modeling of Clear Sky Irradiance

Model input:

Solar constant, zenith angle, surface pressure, surface albedo, precipitable water content, total ozone column, turbidity, aerosol foreward scattering ratio

SOLAR ENERGY METEOROLOGY

RESEARCH TOPICS

- Remote sensing of surface solar irradiance
- Satellite-based surveillance of PV systems
- Solar irradiance forecasting
- Spatial and temporal variability of the solar resource

ENERGY METEOROLOGY

SUMMARY

- Use of renewable energies adds new challenge for meteorology (methods, data)
- integrated, interdisciplinary approach necessary (various sources, various systems)
- detailed knowledge of 'fuel' is key to integration of RE technologies (information as energy source, high economic benefits)
- both, applied and fundamental research is necessary

ENERGY METEOROLOGY

www.energy-meteorology.de