

UNIT 1: Basics of Radiation

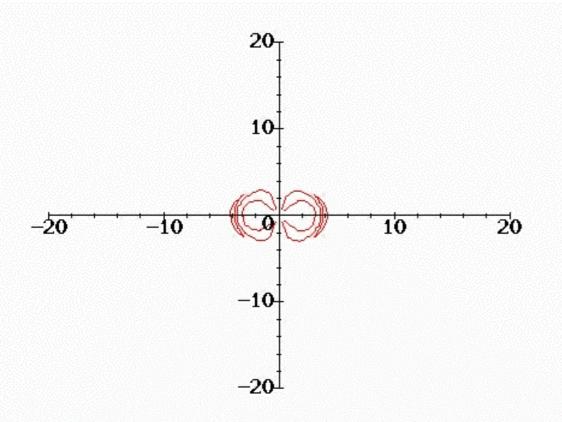
- Energy transfer through radiation
- Concept of blackbody radiation, Kirchhoff's law
- Radiation laws of Planck, Stefan-Boltzmann and Wien
- Radiation quantities
- Examples

Radiative energy transfer

- Radiation is one of three basic energy transfer processes
- Transfer is performed by electromagnetic waves
- expressed in terms of photon energy
- Quantum mechanics: Photon energy is quantized and related to discrete energy states in the emitting source

Electromagnetic Radiation

Light can be characterized by


- Wavelength λ , measured in μ m, nm, Å
- Frequency v, measured in s⁻¹ (Hz)
- Energy E, measured in J, eV
- Temperature T, measured in K

These quantities are related by

 $\lambda v = c$ whereE = hv $c = 2.9979245800 \times 10^8 \text{ ms}^{-1}$ $h = 6.62606876 \times 10^{-34} \text{ Js}$ T = E/k $k = 1.3806503 \times 10^{-23} \text{ JK}^{-1}$

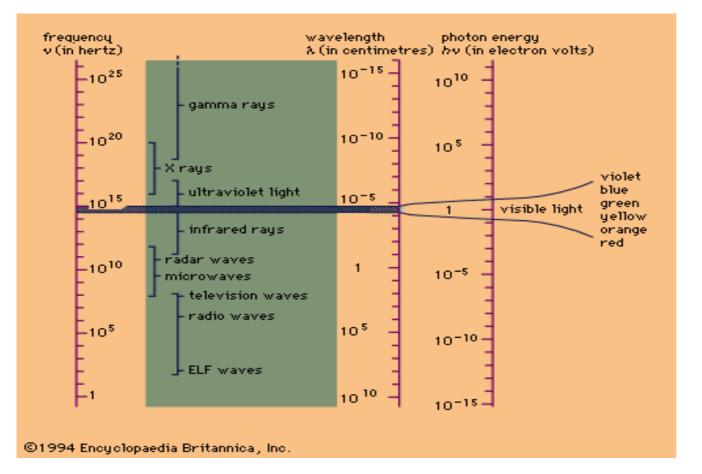
Radiation from an Oscillating Electric Dipole

Electric field lines due to an electric dipole oscillating vertically at the origin.

Near the dipole, the field lines are essentially those of a static dipole leaving a positive charge and ending up at a negative charge. At a distance greater than half the wavelength, the field lines are completely detached from the dipole. The radiation field propagates *freely* (without being attached to charges) in free space at the speed *c*.

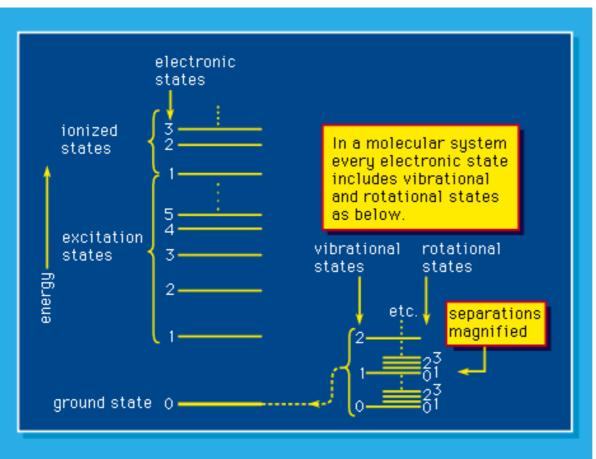
Maxwell Equations

governing the the behavior of electric and magnetic fields

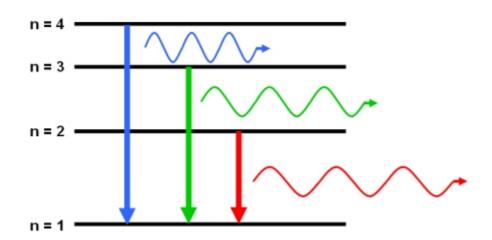

- $abla \cdot \varepsilon \mathbf{E} =
 ho$
- $\nabla \cdot \mu \mathbf{H} = 0$
- $\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$
- $\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$

- E electric field
- H magnetic field
- ρ free electric charge density
- J free current density
- ε electrical permittivity of the material
- μ magnetic permeability of the material

Maxwell's theory describes light as an electromagnetic oscillation.



Electromagnetic spectrum


Energy states in molecular systems

©1994 Encyclopaedia Britannica, Inc.

Photon Emission

The **spectrum** of a material in an excited state shows **emission lines** at discrete frequencies.

Photons with specific energies will be emitted by an atom, ion or molecule in an **excited state**. The energy is equal to the difference between the higher and lower **energy levels**. In this example, three different photon energies are emitted as electrons move from excited states (n=2,3 and 4) to the ground state (n=1).

Emission of radiation

All matter with T > 0 K shows a lot of changes of energetic levels mainly due to molecular activities

Emission of radiation

Questions:

How can this emission be described?

Which are the relevant parameters?

Radiation laws

Kirchhoff's law

- Assumption: A body emits radiation E_{λ} [Wm ⁻² sr ⁻¹ μ m ⁻¹] in a certain direction (from ist unit area and per wavelength interval) and absorbs radiation from the same direction in relative amounts α_{λ} .
 - Experiments showed: $E_{\lambda} / \alpha_{\lambda} = f(\lambda,T)$
 - Emission only occurs for wavelengths for which absorption occurs
 - For complete absortion ($\alpha_{\lambda} = 1$) it is: $E_{\lambda} = E_{max} = f(\lambda,T)$
 - A body showing this behavior ($\alpha_{\lambda}=1$, $E_{\lambda}=E_{max}$) is called a **blackbody**

Question: Explicit form of f (λ ,T)

Radiation laws

$$L(\lambda, T) d\lambda = \frac{2 h c^{2}}{\lambda^{5}} \left(\exp\left(\frac{h c}{\lambda k T}\right) - 1 \right)^{-1} d\lambda$$
Planck's law
$$M = \sigma T^{4}$$

$$I = \sigma T^{4}$$

$$I = 2898 (\mu m K)$$

$$I = 2898 (\mu$$

С

 σ

- M(T) specific emittance of a blackbody (Wm⁻²) h
- λ wavelenght of radiation (µm)
- *T* absolute temperature (K)

 Boltzmann-Konstante
 1.381 · 10-23 (JK ⁻¹)

 Planck-Konstante
 6.626 · 10-34 (Js)

 velocity of light in vacuum
 2.9979 · 108 (ms⁻¹)

 Stefan-Boltzmann constant
 5.67 · 10-8 (Wm⁻²K ⁻⁴)

Planck's Law

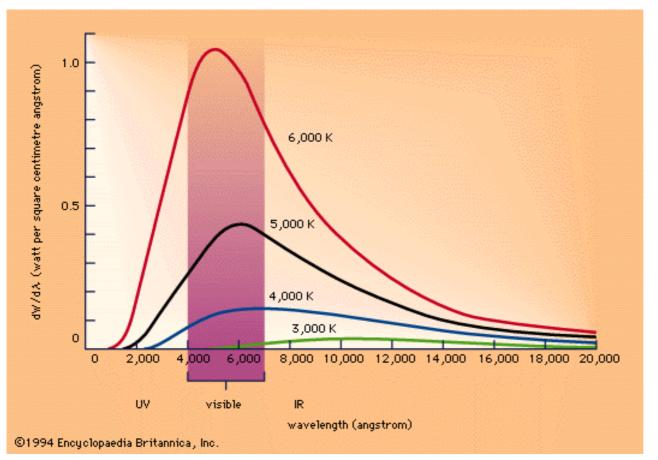
$$u_{\nu}(T)d\nu = \frac{8\pi h}{c^{3}} \frac{\nu^{3}}{e^{h\nu/kT} - 1} d\nu$$

$$L_{\nu}(T)d\nu = \frac{2h}{c^{2}} \frac{\nu^{3}}{e^{h\nu/kT} - 1} d\nu$$

$$L_{\lambda}(T)d\lambda = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$

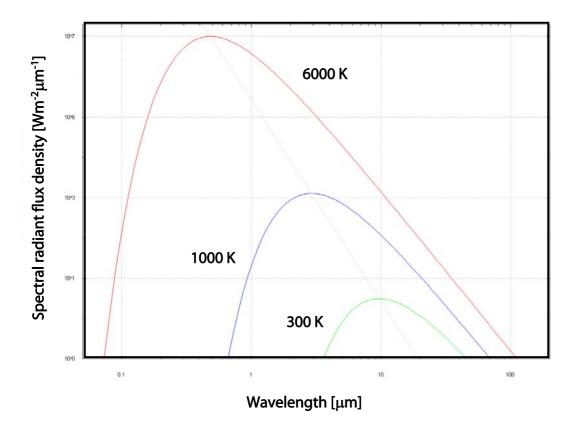
 $M_{\lambda}(T) = \pi L_{\lambda}(T)$

Spectral photon energy density, i.e. per volume element

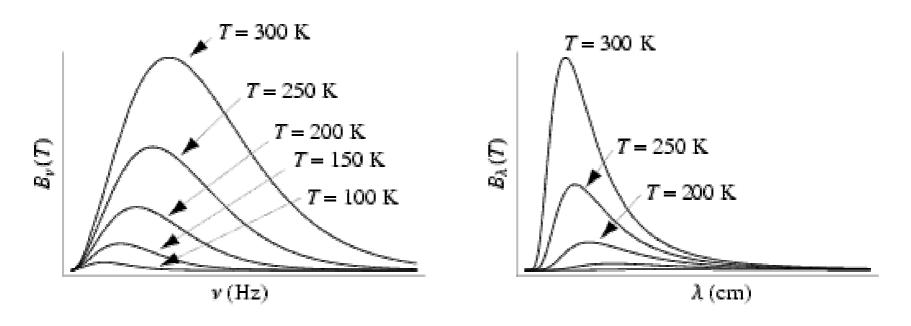

Spectral radiance per frequency interval

Spectral radiance per wavelength interval

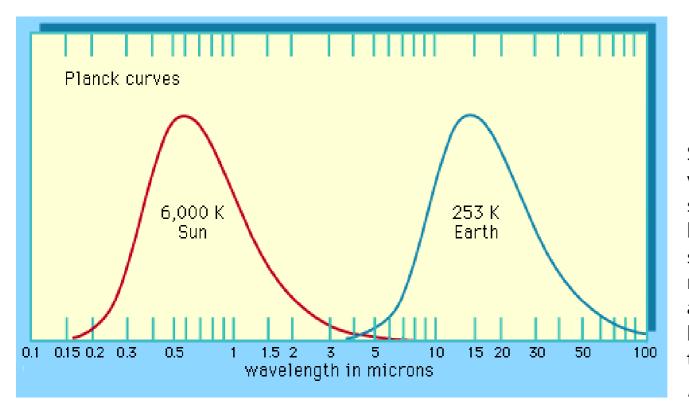
Spectral radiant flux density per wavelength interval


Blackbody Radiation

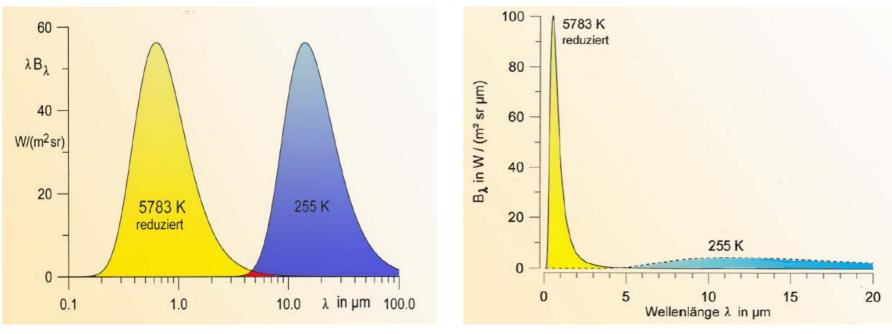
Electromagnetic energy dWemitted per unit area and per second into a wavelength interval, $d\lambda = 1$ Å, by a blackbody at various temperatures between 3000 and 6000 K as a function of wavelength.



Blackbody Radiation


Planck's Law

Intensity radiated by a blackbody as a function of frequency (left) or wavelength (right)

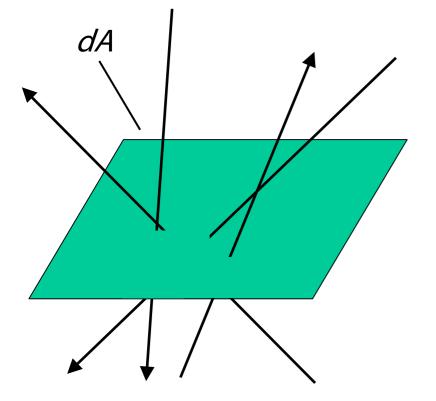

Solar and terrestrial spectrum

Spectrum of the Earth as viewed from space showing distinction between reflected sunlight and planetary radiation. The Earth is assumed to emit as a blackbody at an average temperature of 253 K. *Royal Meteorological Society.*

Solar and terrestrial spectrum

logarithmic

linear

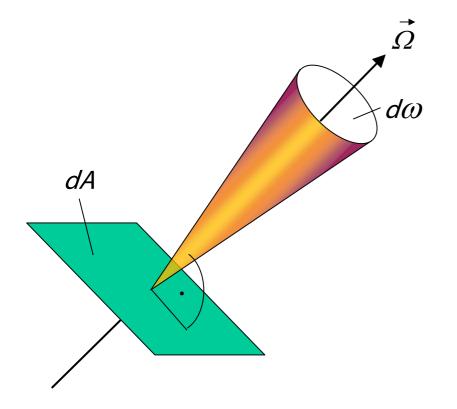


Radiometric Quantities

	Symbol	Unit	
Wavelength	λ	m, μm, nm, Å	λ.
Frequency (ν= <i>c</i> /λ)	ν	s ⁻¹	
Wavenumber ($k=1/\lambda$)	k	m ⁻¹ , cm ⁻¹	
Dedicates			
Radiant energy	Q, W	J = Ws	
Radiant flux	Φ	W	$\Phi = dQ/dt$
Radiant flux density (general)	F	Wm ⁻²	$F = d\Phi/ds$
Irradiance (incident onto a surface)	E	Wm -2	
Radiant exitance, emittance			
(emerging from a surface)	Μ	Wm ⁻²	
Solar radiant flux density			
(global irradiance)	G	Wm ⁻²	
Radiant intensity (radiant flux propagating			
in a given direction within a solid angle)		Wsr ⁻¹	$= d\Phi/d\omega$
Radiance (same, but for radiant flux density)	L	Wm ⁻² sr ⁻¹	$L = d^2 \Phi / d\omega ds$

Definition: Radiant flux density

Energy flux density F

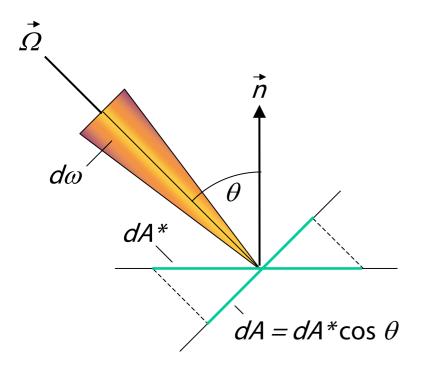

defines the radiant energy dQpassing through an area dAin the time interval t, t+dt:

 $d^2Q = F dA dt$

Units of *F* are Wm⁻².

Definition: Radiance

Radiance *L*


defines the radiant energy flux $d\Phi = dQ/dt$ passing through an area dA perpendicular to the direction Ω into by the solid angle $d\omega$:

 $d^{3}Q = L dA dt d\omega$

Units of *L* are Wm⁻²sr⁻¹.

Relation between Radiance and Radiant Flux Density

According to the cosine law, the radiance crossing a surface dA^* , whose normal n makes an angle θ with the beam axis Ω , is:

$$L^* = \cos\theta L$$

and the radiant flux density calculates to

$$F = \iint_{4\pi} L \, \cos\theta \, d\omega$$