Fachtagung Energiemeteorologie 2016

1-Minuten-Variabilität der Strahlung innerhalb einer Stunde – aus Bodendaten und Satellitendaten

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Earth Observation Center (EOC) German Remote Sensing Data Center (DFD)

Marion Schroedter-Homscheidt, Sandra Jung, Miriam Kosmale

Today's satellite-based time series

global horizontal irradiance

Typical variability in 1 min ground observations

Idea

- 1 min observations from satellites not feasible
- Can we create a 1 min time series with a good artificial variability inside an hour?
- What kind of variability do we have?
- We need a reference dataset of hours.
- How can we quantify/detect this from ground observations?
- We know the cloud situation from satellites (cumulus, cirrus, scattered clouds, overcast,...) every 15 minutes
- Can we quantify/detect variability in irradiances from satellites?

What kind of variability in 1 min is important?

Definition of 8 variability classes

red boxes = hours classified as variability class i, i = 1..8

Generation of a reference data set

- visual interpretation
- Sandra Jung, Marion Schroedter-Homscheidt, Jan Kleissl
- definition of classes

- search for hours having such characteristics
- 1 year 1 min resolved observations, BSRN, Carpentras, only between 9-14 UTC, whole hour one class
- visual classification

Class characteristics (DNI)

	class	Average kc DNI	Direction changes DNI	Description for DNI
	1	0.99	0-2	Very High Height, Low Irradiance Changes
	2	0.95	0 – 7 (mean 1)	High Height, Low Irradiance Changes
	3	0.93	0 – 18 (mean 8)	High Height, Medium Irradiance Changes
	4	0.71	6 – 33 (mean 16)	High Height, High Irradiance Changes
	5	0.67	0 – 13 (mean 6)	Medium Height, Medium Irradiance Changes
	6	0.41	6 – 23 (mean 15)	Medium Height, High Irradiance Changes
9	7	0.18	0 – 20 (mean 8)	Low Height, Medium Irradiance Changes
	8	0.00	0 – 1	Very Low Height, Low Irradiance Changes

Classes characteristics (GHI)

	class	Average kc	Direction changes GHI	# overshootings > 5% clearsky	# overshootings > 10% clearsky value
	1	0.97	0 – 2	0	0
	2	0.96	0 - 6 (mean 1)	0-41 (mean 2)	0-14 (mean 1)
	3	0.96	0 - 15 (mean 8)	0-18 (mean 4)	0-9 (mean 1)
	4	0.86	6 - 33 (mean 16)	0-34 (mean 11)	0-24 (mean 5)
	5	0.88	0 - 12 (mean 6)	0-30 (mean 4)	0-26 (mean 2)
	6	0.77	4 - 22 (mean 15)	0-34 (mean 11)	0-27 (mean 8)
M _L	7	0.64	0 - 18 (mean 8)	0-13 (mean 3)	0-10 (mean 1)
	8	0.20	0 - 7 (mean 1)	0	0

Now we have a reference data base

How can we find the classes in ground data?

Manual/visual search is not the future !!!!

Automatic?

Quantitative variability indices under review

- Variability after Perez et al. (2011): $|\Delta k c_{\Delta t}|$, $\sigma |\Delta k c_{\Delta t}|$, $\max |\Delta k c_{\Delta t}|$
- Variability Index after Skartveit et al. (1998):

$$\rho = \sqrt{\frac{(kc(t) - kc(t-1))^{2} + (kc(t) - kc(t+1))^{2}}{2}}$$

Variability Index (VI) after Stein et al. (2012):

$$VI = \frac{\sum_{k=2}^{n} \sqrt{(GHI(k) - GHI(k-1))^2 + \Delta t^2}}{\sum_{k=2}^{n} \sqrt{(CSI(k) - CSI(k-1))^2 + \Delta t^2}}$$

- Variability Index after Coimbra & Kleissl (2013): $V = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (\Delta kc)^2}$
- Number of overshootings
- Number of direction changes Kraas et al. (2011)
- Envelope for minima and maxima

Automated classification from ground data

Reference database:

Automatic classification vs. manual classification

Can we get the classes from satellite information?

Spatial structures satellites

Automatic variability class detection for the hour

Long term cloud/snow statistics

green = clear
blue = overcast/broken clouds
yellow = cirrus, thin ice
red = scattered clouds

number of cases

Spatial satellite based cloud parameters used

- VIS and IR channels of MSG satellites
- APOLLO parameter like cloud optical depth (talk N. Killius)
- cloud coverage
- fractal box dimension

Glas 2014, S. 19.

- number of cloud/cloud free changes among pixels in window
- cloud fraction in window in %
- number of clouds in window
- cloud area type in window (broken/overcast, scattered, thin ice, clear)

Classification based on cloud structural indicators

Classification based on cloud structural indicators

Preliminary result: How good is the satellite-based variability class detection?

15 min data

52 % correctly identified

88% if we accept 1 class deviation

1 year
BSRN Carpentras
and
MSG SEVIRI/
APOLLO

How to validate with respect to irradiances?

- We know typical patterns in each variability class.
- We can super-impose them on the time series.
- But we can't get exact 1 min values, of course.
 We hope to get good representation of variability.
- How to validate? Give any 1 sigma of DNI within the hour around the point in time of the nowcast value?
- Can you evaluate KSI to assess distributions in 1 hour?

Conclusions

- Variability class reference data base
- Review on variability as in literature performed
- automatic classification of ground observations per hour
- automatic classification from the satellite
 - every 15 minutes
 - variability inside an hour

Thanks to EC for funding of

, grant agreement 608623

Additional slides

Compare indices

BSRN Carpentras, 2012

