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ABSTRACT 

We compare quantitative phase-measuring techniques in ESPI, using temporal and spatial phase shifting (TPS and SPS). 
The latter is less susceptible to time-dependent disturbances but inherently yields higher noise in the results due to the spatial 
intensity and phase variations of the object speckle field. Moreover, the necessity of larger speckles limits the light 
efficiency in SPS. Based on an evaluation of phase errors in sawtooth images, we compare both of the methods 
quantitatively in various ESPI configurations. By varying quantities like speckle size and shape and sawtooth fringe density, 
we find out characteristic behaviours of the methods. Some strategies to optimise the accuracy of the SPS method are 
explored to estimate how competitive SPS can be in ESPI systems. 
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1. INTRODUCTION 

The application of the phase shifting technique has made ESPI a versatile quantitative tool in non-destructive testing, with 
numerous scientific and industrial applications. A drawback of the widespread temporal phase-shifting method (TPS), where 
the phase-shifted data are acquired in a temporal sequence of camera frames, is the susceptibility to external disturbances 
like vibrations, turbulences in the optical medium, or rapid motion of the test object itself. There have been attempts to 
minimise the influence of time-dependent parameter fluctuations in TPS1,2; there is however another very simple way to get 
rid of problems with instability. This method is known as spatial phase shifting (SPS), where the data required are recorded 
simultaneously, either by several cameras with the appropriate static phase shift for each of the images3 or encoded by a 
carrier fringe pattern on one video target4,5. Particularly the latter approach is quite attractive thanks to its simple 
implementation that needs neither costly optics nor electronics nor moving parts. Fig. 1 shows the principle. 
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Fig. 1: Principle sketch of an ESPI system with spatial phase shifting. Image on left side: magnified part of actual SPS interferogram. 

The set-up resembles a quite conventional ESPI configuration, except for one modification: the reference wave’s source 
point is given a slight lateral offset ∆x from the centre of the aperture, which generates a quasi-linear phase ramp α(x) on the 
sensor5. Thus, provided the speckle size is appropriately increased, the phase-shifted data are arranged on adjacent sensor 
pixels. This facilitates phase retrieval out of one frame, so that even very fast transients can be frozen and/or tracked. 
Unfortunately, these advantages are accompanied by some restrictions in ESPI. Let us briefly review why. Phase-shifting 
formulae are derived from a set of interferometric equations that read for TPS: 
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and for SPS: 
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The I i are the measured intensities in the ith phase sample (frame or pixel), I0 is the bias intensity, γ  the modulation or 
contrast, ϕs, speckle phase, ϕo, object phase to be found, and αi, additional phase shift in the ith phase sample. Usually ϕs 
cancels out by subtraction of two phase maps representing two object states, and we have three unknowns, I0, γ, and ϕo, 
which is why this approach requires three or more I i. In solving for ϕo, one relies on the constancy of I0, γ, ϕs and ϕo 
throughout the set of data. Problems with TPS arise from time-dependent fluctuations in ϕo, while the other unknowns may 
be assumed constant for each pixel (x,y) and hence play no role in the pixelwise phase calculation. In SPS however, the I i 
come from adjacent sensor pixels (xi,y), and the I0, γ, ϕs are not at all constant, since the object wave is a speckle field, 
known to consist of spatial phase and intensity variations. 

While TPS measurements are even possible with unresolved speckles6 and a wide open aperture, SPS tends to make 
uneconomic use of the object light: the mean speckle size in the direction of the phase shift must be about three pixels to 
assure sufficient spatial correlation in the ϕs(xi,y) for phase shifting to make sense. Even then, phase retrieval algorithms that 
can compensate for intensity and/or phase variations, as known from TPS7, are highly desirable and have been implemented 
in simple versions with three or four phase samples8. The larger speckle size is also associated with a lower spatial 
resolution. So, while very good TPS measurements are possible when ϕo is reasonably stable, the measurement accuracy 
achieved by SPS can be expected to be somewhat inferior. This brings up the question whether the theoretical disadvantages 
of SPS constitute any relevant practical shortcomings, and if so, whether SPS can be improved to equal the accuracy of TPS. 

The present study is an attempt to settle this question by providing quantitative performance data in terms of the rms phase 
error in unfiltered sawtooth images. To obtain comparable data, the TPS and SPS measurements were done with the very 
same laboratory interferometer. This environment is perfectly suitable to apply both TPS and SPS under optimal conditions. 
For all except the Fourier-technique phase calculations, we use a simple standard 3-bucket 120° algorithm, 
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and test the influence of various experimental parameters on the rms phase error in the sawtooth phase maps obtained. 

2.  EXPERIMENTAL SET-UP 

Our goal is to collect displacement data by TPS and SPS from out-of-plane and in-plane displacements with the respective 
interferometer configurations. The results that we wish to compare must of course be obtained under the same experimental 
conditions, which is easiest to achieve with the same set-up. Therefore we designed a speckle interferometer capable of TPS 
and SPS with only one minor change. Fig. 2 depicts the arrangement. The light from a 50-mW HeNe laser is split by BS1; 
for a compact set-up, BS2 guides the reference light path close to the one of the object. The object light is expanded by MO1 
and collimated by a large lens of 250 mm focal length, L1, which serves to obtain a uniform field of sensitivity. M3 directs 
the light onto the object at an angle of � 7.5° to the surface normal, which gives a quasi-out-of-plane set-up. The light spot 
on the object has a diameter of some 10 cm, of which only 28.5x21.5 mm² are imaged onto the CCD sensor by L2 with a 
magnification of M = 0.26. The object is an aluminium plate sprayed matt white that can be tilted about all three spatial axes. 
By the piezo-driven mirror M2, we have a possibility to use TPS. The polarisation filter PF attenuates the reference light to 
the extent required. By MO2 the reference wave is coupled into a fibre. The fibre is held in place by a bent syringe cannula 
and guides the reference light onto the sensor. As the aperture A, we used laser-cut aluminium plates with circular or elliptic 
holes. The distance ∆x of the fibre end relative to the aperture’s centre determines the spatial phase shift αx(x). It is set to 
zero (∆x = 0) for the TPS measurements and to αx(x)=120°/column for SPS and calibrated by the Fourier method5 for either 
setting. 

For TPS, a control bit from the PC triggers a sawtooth waveform generator that drives the piezo via an HV amplifier. The 
voltage ramp is chosen so as to generate a nominal phase shift of αt(t)=120°/frame. While the sequence is in progress, four 
consecutive camera frames are stored, of which the first and the last one are subtracted. If their mean brightness difference 
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exceeds a certain threshold, an external mechanical or thermal disturbance is present, the frames are discarded and the 
sequence is repeated. Otherwise the phase shift of all recorded frames was assumed to be correct; additional tests confirmed 
it to be accurate within � 5%. This is the well-known „dark frame“ calibration method9. Note here that both of the 
techniques are implemented as integrating-bucket versions. 
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Fig. 2: Optical set-up used for TPS and SPS. Abbreviations: M, mirrors, BS, beam splitters, L, lenses, MO, microscope objectives, PF, 
polarisation filter, PZT, piezo actuator, A, aperture. 

For the other configurations, changes of rather different extent are necessary that are not drawn here for the sake of clarity. 
The mixed in-plane/out-of-plane configurations (henceforth referred to by this term) are realised by additional mirrors close 
beside and above the object, allowing displacement measurement of the x or y co-ordinate, respectively. They are 
illuminated one at a time by adjusting M3 appropriately to direct the light onto the object at oblique incidence. Their 
positions are chosen to give a sensitivity vector inclined by 26.6° to the surface normal, so that the in-plane sensitivity is half 
the out-of-plane sensitivity. For the pure in-plane TPS experiments, the illumination arrangement was a largely different 
one10; however the imaging geometry could be maintained. The pure in-plane measurement by SPS requires a completely 
different set-up11 and has little in common with the other experiments. 

3. DATA EVALUATION 

Often when accuracies of ESPI are given, we encounter rough estimates of, say, λ/10 without and λ/30 with phase shifting; it 
is seldom stated to what stage of data processing the data refer. Hence we need a tool to obtain more precise values. To 
standardise and simplify our results, we omit any kind of low-pass filtering or unwrapping of the sawtooth images and work 
with raw data. We handle these by a long-known and widespread fitting algorithm called the “downhill simplex method“12 to 
calculate the rms displacement error from sawtooth images. The quantity the fitting routine actually uses are the pixels´ grey 
values; these are however easily mapped onto phase and displacement by knowledge of the interferometer geometry. In its 
present version, the algorithm works on images with straight and equispaced fringes only. This is however sufficient for our 
purpose, since we can generate such fringe patterns by tilt or rotation of the test object for out-of-plane and in-plane 
configurations, respectively. 

The idea of data fitting is as follows. A sawtooth image with straight and equispaced fringes is defined by three parameters 
only: (i) number of fringes per sensor width (1024 pixels) in x-direction, Nx ; (ii) number of fringes per sensor height (1024 
pixels) in y-direction, Ny ; and (iii) phase offset ϕ0 at some arbitrary point (in fact, the upper left corner that is interpreted as 
(0,0) by computer graphics, cf. Fig. 1). This constitutes a three-dimensional parameter space. The ideal data set is assumed 
to be a noise-free sawtooth function in x and/or y, from which the real data deviate more or less. For a given input image, the 
fitting algorithm takes the initial guess of the parameter set (Nx, Ny, ϕ0), generates a noise-free fringe system from it and 
calculates its rms deviation from the input image. As the rms is minimised, the point (Nx, Ny, ϕ0) is moved through the IR3, 
and its final location defines the parameters of the best-matching ideal fringe system. The remaining errors eventually 
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include large- and small-scale, random and deterministic errors and allow a quantitative statement about a measurement´s 
accuracy. Fig. 3 gives an example of the algorithm at work, just executing the last iteration. 

 

Fig. 3: Downhill simplex algorithm during last iteration; upper half, best-fit fringe system, laid over real data still visible in lower half. 

This fitting method can be easily extended to greater dimensionality. If, for instance, a cosine profile is to be evaluated, two 
degrees of freedom, bias intensity and fringe modulation, are added and the algorithm can determine the fringe visibility in 
IR5. More complicated fringe structures could also be treated. In any case, the output is an average over the whole image and 
therefore statistically very reliable. The minimum possible rms error (digitisation alone) is 0.29 grey values, and as can be 
expected, the maximum error (trying to find a fringe system in random noise, e.g. a speckle phase map) amounts to 73.9 grey 
values. This is the rms of a uniform distribution within the range [-128,128[, corresponding to phase in the range [-π,π[. The 
error is confined to [-π,π[ because phase errors larger than π, i.e. of �(π+c), 0<c<π, are wrapped back onto �(π–c) due to 
the cyclic nature of the phase. 

4. PARAMETER OPTIMISATION 

Although the best intensity ratio of reference and object wave (defined as beam ratio) has been thoroughly investigated13,14, 
it has also been stated that the minimum modulation depth can be set quite low, i.e. at some 8 grey levels15. Consequently, 
phase shifting in ESPI yields reasonable results for quite a large range of the beam ratio. In what concerns TPS, we can 
expect the errors to remain approximately constant in the high-modulation range. With growing intensity of the reference 
wave, the modulation drops and electronic noise and digitisation errors gradually gain the upper hand over the signal. For 
SPS however, we encounter a different situation: increasing the reference intensity can diminish the errors from intensity 
variations in the object speckles significantly. To understand why this is so, we first give a short intuitive reasoning. The 
measured (superscript m) intensities at three adjacent pixels are given by 
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where Oi is the object irradiance at pixel xi and the reference intensity R is assumed spatially constant. We have omitted all 
spatial dependencies that are of no concern in this discussion. The range of i is restricted here for simplicity; in practice, the 
pixel triplet moves sequentially from (1,2,3) to (N-2, N-1, N), where N is the column count of the CCD array. Clearly, it is 
the variation in the Oi that gives rise to bias and contrast mismatch in the pixel triplet. If we assume O1=O2=O3, the ideal 
expected (superscript e) intensities would be 
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The difference between measured and expected intensities is 
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and we find the relative error of the intensities to be 
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which approaches zero as R��. 
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After this intuitive consideration, let us turn towards a more analytical but still simplified treatment. The quantity of interest 
is the rms phase error caused by the ∆I i. The propagation of statistical intensity errors into the calculated phase is described 
by Eq. (12) in Ref. 5, and in this context we can write 
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with σϕ denoting the standard deviation of the calculated phase averaged over all ϕ, σO2,Oj denoting the standard deviation 
of the object intensity at adjacent pixels, and σn modelling the electronic noise (2.5 grey values rms is realistic here). Now, 
σO2,Oj depends on the degree of coherence16, µ(x2,xj), of the points (x2,x1) or (x2,x3) apart by 1/3 speckle diameter. For a 
circular aperture, we find µ(x2,xj) � 0.81. Moreover, σO2,Oj is conditioned on O2, which relationship is analytically known17. 
We can generalise Eq. (8) in Ref. 17 to read 
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where �O� is the average intensity of the speckle field. The average (9) is inserted into (8) and has to be appropriately re-
scaled like the modulation 2��O2�R as we let R��, for the measurement is confined to 256 intensity units. (In practice we 
reduce the video signal amplification as R grows; consequently the modulation and speckle intensity readouts drop.)  

These considerations account for intensity errors only and neglect the phase structure of the speckle field completely so that 
the predicted error will be too small. Therefore we have shifted the calculated curve in Fig. 4 upwards by 0.05 λ to see better 
whether the error depends on the beam ratio in the expected way. The experimental results shown in Fig. 4 were obtained 
from sawtooth images with Nx =10 and 3 pixels/speckle for both SPS and TPS. The electronic system used for image pick-up 
was a full-frame camera (ADIMEC MX12P) with analogue, pixel-clocked output, attached to a Data Translation DT3852 
frame grabber with 8-bit A/D conversion. 
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Fig. 4: rms phase errors measured with SPS and TPS, and calculated for SPS, at different beam ratios. 

From Fig. 4 we see that TPS measurements function well from a beam ratio of 1:1 on, and only start to deteriorate when we 
drive it to 100:1, where the object intensity in the speckle field is already weaker than the electronic noise. For SPS, the rms 
displacement error first decreases as the reference wave gets stronger, and has its minimum between 10:1 and 30:1. With 
fading data modulation, the influence of electronic noise grows and so does the error. 

Besides the variation of the beam ratio, we have described another possibility of reducing errors by incorporating the 
individual speckle intensities into a modified phase calculation formula5,8. But we found that its best performance is almost 
reached in the minimum error region shown here, and therefore chose a beam ratio of 10:1 for the experiments, at which 
settings both of the methods work almost optimally. 
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5. COMPARISON OF TPS AND SPS 

5.1 Zero-displacement measurements 

Of the results of phase measurements that will be presented here, those with zero displacement gradient are the most general 
ones, since they do not depend on the specific assembly’s parameters but should be comparable for any set-up with only the 
speckle size as the relevant quantity. The way to obtain such measurements is to leave the object untouched and to compare 
two nominally identical object states, differing only by a controlled or random global phase offset ∆ϕ. Unfortunately, in SPS 
the value of ∆ϕ influences the rms phase error strongly due to the ample intensity and phase gradients in the object speckle 
field. An example of this behaviour is shown for three different speckle sizes and 120 measurements for each of them in 
Fig. 5.  
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Fig. 5: Dependency of the rms displacement error as determined by SPS on the global phase offset for three different speckle sizes.  

When set in relation to previous results from TPS9,18, the qualitative appearance of the graphs suggests that the underlying 
phenomenon could mainly a linear miscalibration of phase shift: when we subtract one phase map from another, the errors 
thus produced theoretically cancel at phase differences of 0 and π, and add up in between these values. If we consider the 
phase gradients in speckle fields19, leading to substantial local detuning of the carrier fringes, this explanation of Fig. 5 
seems reasonable. The lowest phase error occurs at global phase shifts near zero where, except for electronic noise, both 
interferograms simply look the same irrespective of phase shift distortions. Then with the phase offset, the error increases, 
depending on the speckle size. Around a phase offset of π, the error does not reach the minimum again, which tells us that 
there are more error sources than wrong phase shift. 

We have calculated the average zero-displacement error from fitting suitable functions (given in the figure as well) to the 
data points and determining their mean values, since the distribution of the measured values themselves would not be 
uniform enough to obtain the average directly. The values finally obtained constitute the entries for “0 fringes/1024 pixels“ 
appearing in the following plots. The error profiles of Fig. 5 also occur within displacement fringes (in which ∆ϕ progresses 
deterministically from -π to π), so that the rms phase error that we assign to sawtooth images is in itself an average over all 
∆ϕ. Fortunately though, we find the least error near the most critical regions of the sawtooth images, namely the 2π jump 
boundaries that are so crucial to the less sophisticated unwrapping algorithms. 

With TPS, none of these detours is necessary; the phase error does not depend on the global phase offset, provided the phase 
shift is calibrated exactly enough. Consequently, one measurement with zero displacement gradient is sufficient to determine 
the corresponding error. Furthermore, the displacement error is uniformly distributed in sawtooth fringes from TPS, and 
there is no such thing as an error fringe profile in this case. 
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5.2. Out-of-plane configuration 

In order to come to a statement about the fringe quality delivered by the methods, we first repeated a series of out-of-plane 
tilt measurements with varying speckle sizes. Tilts about the y-axis, producing 5, 10, 20, 30, and 40 vertical fringes per 1024 
pixels, were adjusted in the SPS and TPS configurations for each speckle size. Appropriate combinations of the measured 
speckle phase maps enabled the error values for higher fringe counts to be found. The results are displayed in Fig. 6. 
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Fig. 6: rms displacement error of SPS (left) and TPS (right) as a function of speckle size. The parameter for each curve is the number of 

fringes per 1024 pixels, as indicated in the legend boxes. 

The SPS experiments confirm a speckle size of about 3 pixels to be most suitable for SPS. Small tilts can be measured with 
very large speckles; denser fringes however are badly resolved. With too small speckles, i.e. a mean speckle size below some 
2.5 pixels, the phase error increases steeply, especially for low fringe densities. From this we see that the SPS method is not 
very tolerant against low spatial coherence of the data points. In the TPS experiments, a speckle size around 1 pixel turns out 
to yield the lowest error for lower fringe densities; yet at larger tilts, we obtain better measurements with larger speckles. 
From this it gets clear that we encounter two effects here: (i), speckle field decorrelation, which progresses faster for small 
apertures (large speckles) as we increase the tilt; (ii), speckle pattern displacement due to object tilt, which leads to an 
increasing pixel position mismatch. But the same speckle displacement introduces less noise when the speckles are larger, 
although the pattern in itself decorrelates faster. Generally, TPS is significantly more accurate at low fringe densities; 
however its advantage fades quickly with increasing displacement. 

5.3 In-plane configurations 

When carrying out in-plane displacement measurements by SPS and assessing its performance, the reference is the ingenious 
symmetrical pure-in-plane TPS configuration10 with its excellent sensitivity. A pure-in-plane SPS configuration using a 
double aperture has been established11, and we will investigate its merits, but it also seems worthwhile to modify the set-up 
of Fig. 2 for more oblique object illumination (as described in Section 2) and to gain in-plane sensitivity in this way, since 
this arrangement is by far easier to handle. The sequence of experiments described consists of object rotations about the z 
axis (which also generates straight and equidistant fringes, only for the in-plane displacement now), again with speckle sizes 
varying from 10 to 0.5 pixels. For the purely in-plane sensitive configurations, only the x-displacement was measured. As the 
mixed-sensitivity set-up for SPS is easy to change, we recorded x- and y-displacements with it, which showed the same 
behaviour. Fig. 7 gives an overview of the performance of the different methods. 
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Fig. 7: rms displacement errors for in-plane measurements with pure in-plane symmetrical set-up: TPS (all white, bold lines) and SPS 

(white lines, black symbols), and SPS with mixed-sensitivity set-up (all black). Note the augmented ordinate scale. 

For the TPS measurement, the phase error is quite similar to that from the TPS out-of-plane configuration. The pure-in-plane 
SPS set-up was arranged to give the same sensitivity (1.4 sawtooth fringes per wavelength of displacement) as the pure-in-
plane TPS configuration; however the speckle size is restricted to 3 pixels or larger, because the diameter of the two 
apertures needed (determining the speckle size) cannot exceed their distance (determining the spatial phase shift). The beam 
ratio for the (speckled-reference) pure-in-plane set-ups is of course unity, which makes SPS fall behind, as explained in 
Section 4. Besides, in the SPS system we generate the carrier frequency by oblique superposition of two speckle patterns, 
which results in an even greater carrier fringe distortion than in the SPS out-of-plane configuration. Consequently, a speckle 
size of not 3 but 6 pixels turns out to give the best results. Still, the errors thus produced are considerably larger than those of 
TPS; moreover the apertures have to be very small to generate 6-pixel speckles, so that the issue of light economy is very 
critical here. 

The mixed-sensitivity SPS configuration does produce smaller phase errors in the sawtooth image; but due to the lower 
in-plane sensitivity (0.8 sawtooth fringes per wavelength of displacement), the conversion to displacement yields a higher 
error. Also, it takes about twice the displacement in the mixed configuration to generate the same fringe density, which is 
why the error rises so rapidly for higher fringe counts: it comes mainly from speckle displacement. Nevertheless it may 
prove better to use the mixed-sensitivity set-up: since displacement data are eventually retrieved after unwrapping, the raw 
data must have low phase error to make unwrapping easy. On the whole, the results presented here show an advantage for 
TPS when in-plane displacement measurements are concerned. For moderate fringe densities, an rms error of λ/20 is 
realistic, while both of the SPS approaches yield λ/6 to λ/7. 

6. IMPROVEMENTS ON SPS 

In this chapter we switch back to the out-of-plane configuration to test two approaches of error reduction in SPS. 

6.1 Improved light efficiency by using elliptical aperture 

In the present study, we did not encounter problems with collecting object light: the laser is powerful and the image field is 
rather small. In practical applications however, it is likely that the small aperture needed for SPS will cause problems: by 
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increasing the mean speckle size from one to three pixels, the available object light is reduced by almost one order of 
magnitude. This can be partly circumvented by enlarging the speckles only in the direction of the spatial phase shift, which is 
easy to achieve by using an elliptical imaging aperture. The idea is sketched in Fig. 8. Case a) shows the situation when 
using a circular aperture: 2/3 of the coherence area are superfluous for the phase calculation and the speckle field appears 
rather dark. In case b) an elliptical aperture generates elliptical speckles that are just large enough to allow for phase 
calculation; the speckle intensity is greater by a factor around three, indicated by the speckle spot in lighter grey. 

xx1 x2 x3

I2I1 I3

x1 x2 x3 x

I2I1 I3

 a) b)  
Fig. 8: Adjustment of speckle width suitable for SPS, retaining optimal light economy. Direction and spacing of the carrier fringes are 

indicated by the vertical black bars; small squares: sensor pixels, irregular filled shapes: mean speckle size and orientation. The I i 
are given by Eq. (2). a): mean speckle size 3x3 pixels; b) mean speckle size 3x1 pixels. 

At this point the question arises what improvement the change to elliptic speckles can bring about. On the one hand, we 
collect more object light, which gives better fringe contrast or allows to reduce the gain of the camera amplifier; on the other 
hand, the non-circular speckle shape causes the measurement to become anisotropic with respect to displacement fringe 
orientations. Moreover, the orientation of the elliptic speckles plays a role now: since their structure is much finer in the 
vertical direction, the phase calculation is less tolerant against deviations of speckle slant or shape from the ideal situation 
depicted in Fig. 8 b). 

In the experiments, we studied the behaviour of the rms phase error for an object intensity range from the first turning up of 
signal to the optimum where further increase of the illumination power did not improve the measurements anymore. The 
actual power densities on the object surface ranged from 5�10-5 to 0.1 mW/cm². At the lowest light level the interference is 
just detectable whilst the speckle pattern alone is completely immersed in noise. The reference light was always adjusted so 
as to obtain a high average brightness of the interferograms, which reduced the noise a bit. Even so, we have high noise and 
low modulation due to beam ratios of more than 1000:1. The results of these measurements are plotted in Fig. 9. 
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Fig. 9: Comparison of SPS measurements with circular aperture (data graphed in black) and 1:3-elliptical aperture (white) for vertical 

(left) and horizontal (right) sawtooth fringes. 
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The graphs show that at low object light levels, electronic and digitisation noise are indeed the most significant error 
sources: the fringe density influences the phase error only weakly. With increasing laser power however, we again get the 
familiar relationship of fringe density and error. Obviously, the use of an elliptical aperture does improve the measurements 
a bit; the error reduction amounts to as much as 15% for some regions of illumination power density. 

When comparing the phase error in vertical displacement fringes against that in horizontal fringes, i.e. for displacement 
gradients parallel/perpendicular to the phase shift, we note that the curve arrays for the circular aperture are very similar. The 
elliptical aperture on the other hand causes a high error for denser horizontal fringes. Again, this comes from the speckle 
pattern displacement, and since now the vertical dimension of the speckles is only 1/3 of the horizontal one, the accuracy is 
affected more by vertical speckle displacement. This is why the initial improvement coming from the brighter speckle 
pattern does not last long in this case. Hence the decision for or against elliptic speckle is not a general one: it depends on 
the expected outcome of the experiment, as well as on the amount of light actually available. Surprisingly little power is 
necessary to reach the plateau of constant errors, so that there is a good amount of situations where the “primitive“ set-up 
with a circular aperture is completely sufficient. Of course, in a TPS set-up we still get at least three times more light, which 
would give another 15% step of improvement. Under light conditions problematic for TPS, SPS will lead to worse SNR, but 
probably not fail completely. 

6.2 Evaluation of SPS interferograms by the Fourier transform method 

Due to the multitude of small-scale disturbances in the speckle interferogram, the spatial carrier fringe pattern is locally 
frequency-modulated and tilted, and even disrupted at speckle boundaries and phase singularities19 (cf. Fig. 1). From these 
deviations originates a relevant broadening of the sidebands in the interferogram´s spatial frequency spectrum. This is 
disadvantageous for phase retrieval by means of Eq. (3), which has been shown to be a digital filter functioning correctly 
only within a narrow frequency band20. It discards or even falsifies part of the information contained in the spatial frequency 
sidelobe around the carrier frequency, νx = 1/(3 pixels), because of different frequency and phase transfer functions of 
numerator and denominator in Eq. (3). Decreasing the speckle size aggravates this shortcoming even more. How to deal 
correctly with sidelobes in this context has been demonstrated by Takeda et al.21 with the invention of the Fourier-transform 
method (FTM). It has the advantage that the complete sidelobe generated by the carrier can be selected by a filter window 
and used for phase retrieval, i.e. while SPS works locally by a moving 3x1-pixel window, all the image information is 
simultaneously available to the FTM. 

Although it would require sophisticated hard- and software even today to maintain the real-time capability of an SPS system 
with FT phase calculation, we do investigate the effect of it as a possible means of a posteriori data processing that still can 
run entirely automatically. The sizes of the sidebands to be enclosed by the frequency filter follow directly from the speckle 
sizes; they are half as large as the speckle halo in the frequency plane22. Their centres lie at (�1/(3 pixels), 0) in the 
frequency plane when the phase-shift is correctly adjusted. In the experiments, these theoretical parameters were met quite 
well. In Fig. 10, the results of the FT evaluation are compared with those from usual SPS (left) and TPS (right). 
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Fig. 10: Comparison of SPS (left, black) and TPS (right, black) with FTM (white, left and right identical) for vertical sawtooth fringes. 

Of course, for the left plot the very same interferograms (the same as for Fig. 6) were used as input data for SPS and FTM. 
We see that the FTM reduces the phase error greatly for low fringe densities, while the advantage vanishes rapidly with 
higher fringe densities, i.e., the onset of speckle decorrelation. From a speckle size of 3 pixels downwards, there are spatial 
frequencies above the Nyqvist limit present in the interferograms, so that the phase reconstruction loses accuracy. Moreover 
the signal sidebands are no more separated from the speckle halo at small speckle sizes. Reducing the filter size does not 
improve the results significantly then; instead, the smaller the filter is, the coarser gets the noise structure on the sawtooth 
fringes, and the harder to avoid are unwrapping errors.  

Comparing only the black curves in Fig. 10, we see that TPS outperforms SPS most distinctly in the region of low fringe 
density, as already stated in Section 5.2. This deficiency of SPS can be compensated by using the FTM. On comparing the 
best TPS data (around 1 pixel speckle size) with the best data from the FTM (around 3.5 pixels speckle size), we find very 
similar error minima from 10 fringes upwards. Hence we conclude that, provided enough object light is available, TPS can 
be replaced by SPS with a little extra effort: If the simple SPS evaluation yields too high an error, the images can be post-
processed by the FTM and a performance very close to that of TPS can be achieved. It seems reasonable to claim an rms 
phase error of approximately λ/20 in raw sawtooth images for both SPS and TPS as long as out-of-plane measurements are 
concerned and the fringe densities do not get too high. 

7. SUMMARY 

There are measuring tasks in ESPI where the use of TPS is very difficult or impossible. These situations are the typical field 
for SPS. Its ease of use however recommends SPS more generally and also for those tasks that are accessible to TPS 
measurements. To assess the performance of the methods, we have compared TPS and SPS in terms of the rms error in 
displacement sawtooth images. To do so, a fitting routine capable of working on unfiltered images was developed. We used 
a multi-purpose interferometer to maintain the experimental parameters as constant as possible. The reference-to-object 
beam intensity ratio was set to 10:1 so as to obtain near-optimum performance for both TPS and SPS. A peculiarity of SPS, 
namely the inevitable dependence of the rms phase error on the phase itself, is briefly discussed. For the quasi out-of-plane 
configuration, we found that TPS performs better than SPS for low fringe densities and that the methods yield comparable 
accuracies at larger displacements. Considering pure in-plane set-ups, the situation favours TPS because of the easy-to-
assemble and very sensitive pure-in-plane configuration that can hitherto not be reproduced as an equally versatile SPS 
version. We then address the problem of light efficiency and investigate the error reduction in SPS brought about by 
changing to elliptic speckles, with the result that this step should be done only when the corresponding measurement 
anisotropy is acceptable. Finally we investigate the help of the Fourier transform method in possible post-processing of 
spatially phase-shifted interferograms, and find that this facilitates an SPS performance comparable to that of TPS for out-of-
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plane measurements. This study demonstrates that careful tuning of experimental parameters and appropriate use of the 
Fourier transform technique can help SPS in some applications to approach the performance of TPS rather closely. 
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