Spatial versus temporal phase shifting in electronic speckle-pattern interferometry: noise comparison in phase maps

Jan Burke and Heinz Helmers

Temporal and spatial phase shifting in electronic speckle-pattern interferometry are compared quantitatively with respect to the quality of the resultant deformation phase maps. On the basis of an analysis of the noise in sawtooth fringes a figure of merit is defined and measured for various in-plane and out-of-plane sensitive electronic speckle-pattern interferometry configurations. Varying quantities like the object-illuminating intensity, the beam ratio, the speckle size and shape, and the fringe density allows characteristic behaviors of both phase-shifting methods to be explored. © 2000 Optical Society of America

OCIS codes: 120.6160, 120.5050, 120.2650.

1.	Introduction					laterally by Δx	from	the cen	ter of th	e system'	s imag-
The	application	of	phase-shifting	techniques	has	ing aperture.	This	lateral	shift g	enerates	the re-
ma	d										r in
(ES	I										Γhis
ing	t										ions
spr	e										
whi	ic										om-
por	a										lefly
exte	e										ived
fluc	t										ead,
Att	e										
ban	10										
way	7				_						
spa	L.			For fi	irther	information:					
aat	a										
can	h			· • • • • •	\sim	• • • •	1				(1)
frin			H	einz.Helm	ers(<i>a</i>)	uni-oldenburg	g.de				
tor	2										
the	r)
res											
whi	d										(0)
											(2)
	-										nase
TI	16										with
man	v										or a
olde	n										$2 \leq$
Re	eo										the
2000						vibibility, 110	- temp	orar an	a une op	ana pna	se s hift

0003-6935/00/254598-09\$15.00/0 © 2000 Optical Society of America angles in the *i*th phase sample are $i\alpha_t$ and $i\alpha_x$, respectively, and Φ_t and Φ_x are the phase-shift angles