Fragen zur Vorlesung *Quantenmechanik* (SoSe 2019)

Quickies 1

https://uol.de/condmat/teaching/qm/

- 1. Wie werden der thermische Erwartungswert $\langle E \rangle_{\rm cl}$ der Energie eines klassischen harmonischen Oszillators und sein quantenmechanisches Gegenstück $\langle E \rangle_{\rm qm}$ konkret berechnet?
- 2. Rekapitulieren Sie die Konstruktion der spektralen Zustandsdichte für die Hohlraumstrahlung!
- 3. Was versteht man unter der "Ultraviolettkatastrophe"? Warum tritt diese Katastrophe in der Natur nicht auf?
- 4. Sei $\psi(x) = \mathcal{N} \exp{(-\alpha x^2/2)}$, wobei $\alpha > 0$. Bestimmen Sie die "Normierungskonstante" \mathcal{N} derart, dass die Gleichung

 $\int_{-\infty}^{\infty} \mathrm{d}x \, |\psi(x)|^2 = 1$

erfüllt wird. Berechnen Sie dann die Fourier-Transformierte $\hat{\psi}(k)$ der Funktion $\psi(x)$.

5. Fassen Sie die oben bestimmten Funktionen $|\psi(x)|^2$ und $|\hat{\psi}(k)|^2$ als Wahrscheinlichkeitsverteilungen für Zufallsvariablen x bzw. k auf und diskutieren sie deren Standardabweichungen in Abhängigkeit von α . Dazu müssen die Integrale

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} dx \, x^2 |\psi(x)|^2$$
 bzw. $\langle k^2 \rangle = \int_{-\infty}^{\infty} dk \, k^2 |\hat{\psi}(k)|^2$

berechnet werden. Betrachten Sie schließlich auch das Produkt der beiden Standardabweichungen. Was fällt Ihnen auf?