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Abstract

Landau’s approach to continuous phase transitions provides an effective theory for the description around the critical point but falls short in correctly establishing non-trivial critical
exponents. Using the example of the Mott-insulator to superfluid transition of the Bose-Hubbard model, we derive from the microscopic properties a Landau-like description not restricted

by this limitation and correctly reproduce the best known value for the critical exponent β of the XY universality class.

Landau’s approach

Continuous phase transitions are often described by Landau’s approach [Lan69]: As-
sume that the thermodynamical potential Γ of a given system possesses the form

Γ = a0 + a2ψ
2 + a4ψ

4 , (1)

where the coefficients a0, a2, a4 depend on a control parameter j, and the system
adopts, for each fixed value of j, that value ψmin of ψ for which the potential (1) takes on
its minimum. If then a4 is positive and thus guarantees stability, and if one may further
neglect the dependence of a4 on j, while a2 crosses zero at some value jc, being positive for
j < jc and negative for j > jc, one finds ψmin = 0 for j < jc, whereas

ψmin =

(−a2

2a4

)1/2

for j > jc . (2)

In particular, if a2 varies linearly with j according to a2(j) = −α
(
j − jc

)
with α > 0, one

obtains

ψmin =

√
α

2a4

(
j − jc)

1/2 for j > jc . (3)

Thus, ψmin serves as an order parameter of the transition, emerging with the mean-field
exponent β = 1/2 at the transition point jc.

The Bose-Hubbard model

The Bose-Hubbard model is an
archetypal description of Bose parti-
cles on a lattice which incorporates
nearest neighbor tunneling as well as
a repulsive on-site interaction and has
the grand-canonical Hamiltonian

µ µ µ

−J
U U

U U

ĤBH =
1

2

∑

i

n̂i(n̂i − 1)− µ
/
U
∑

i

n̂i − J
/
U
∑

〈i,j〉
b̂†i b̂j . (4)

Derivation of the effective potential

We extend the Bose-Hubbard model by adding spatially homogeneous sources and drains,
as expressed by the extended Hamiltonian

Ĥ =
1

2

∑

i

n̂i(n̂i − 1)− µ
/
U
∑

i

n̂i − J
/
U
∑

〈i,j〉
b̂†i b̂j +

∑

i

η
(
b̂†i + b̂i

)
. (5)

Then the linear response

2 · ψ(η) :=
∂E
∂η

(6)

of the intensive ground state energy E := 〈Ĥ〉gs

/
M with respect to the source strength η

has the characteristic of an order parameter and the Legendre transformation

Γ
(
µ
/
U, J

/
U, ψ

)
= E

(
µ
/
U, J

/
U, η(ψ)

)
− 2ψ η(ψ) , (7)

allows us to derive an effective potential Γ as a function of ψ. The system then adopts,
for each combination of fixed values of (µ

/
U, J

/
U), that value ψmin for which the effective

potential (7) takes on its minimum; in perfect analogy to Landau’s approach.
To evaluate the effective potential we have expanded the intensive ground state energy

E(µ
/
U, J

/
U, η) = e0(µ

/
U, J

/
U) +

∞∑

k=1

c2k(µ
/
U, J

/
U) η2k . (8)

Inserted into equation (7) the effective potential Γ then becomes

Γ = e0 −
1

c2
ψ2 +

c4

c4
2

ψ4 +

(
c6

c6
2

− 4c2
4

c7
2

)
ψ6 +O(ψ8) . (9)

Hypergeometric analytic continuation

The sought-after zero of the coefficient a2 := −1
/
c2 corresponds to the denominator’s

radius of convergence. This means that we have to combine our perturbation theoreti-
cal expansion of the coefficients c2k with an analytic continuation. We have shown that
hypergeometric functions are an excellent candidate for this task [SH17b]:

c2k = α
(0)
2k · 2F1

(
a, b; c;

J
/
U(

J
/
U
)

c

)
= α

(0)
2k

∞∑

ν=0

(a)ν (b)ν
ν! (c)ν

(
J
/
U(

J
/
U
)

c

)ν

. (10)

This, in particular, implies that the asymptotics of the coefficients are given by

c2k(µ
/
U, J

/
U) ∼

(
J
/
U −

(
J
/
U
)

c

)−ε2k(µ/U)

(11)

at the phase boundary with divergence exponents ε2k(µ
/
U).

Results

We have found that, in contrast to the simplistic form in equation (1), we are not entitled
to neglect terms of order O(ψ6), and have to consider the effective potential in the form

Γ = e0 + a2ψ
2 + a4ψ

4 + a6ψ
6 , (12)

with its minimum given by

ψ2
min =

−a4

3a6

(
1±

√
1− 3a2a6

a2
4

)
. (13)

For the truncation (12) to be bounded from below, we have to ask for a6 to be positive.
Under the validity of this assumption we can deduce that ε6 ≥ 2ε4 − ε2 [SH17a]. In case,
this is indeed an equality the exponent can be written as

β =
ε4 − 3ε2

2
(14)

To check this premise, we have to study the coefficient a6 = c6
c62
− 4c24

c72
in detail. As unfor-

tunately, we lack reliable data for the coefficient c6 we are restricted to the investigation
of the term c2

4/c
7
2. The results for the two-dimensional Bose-Hubbard (left) as well as for

comparison the three-dimensional Bose-Hubbard model (right), which is above the critical
dimension, are displayed below.
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For the two-dimensional Bose-Hubbard model only we find the intriguing equality

ε4 =
7

2
ε2 at the tips of the lobes , (15)

which inserted into relation (14) yields the simpler formula

β =
ε2

4
(16)

for the critical exponent β at the multicritical tips of the lobes. This enables us to obtain
the following estimates to the critical exponent β and compare them to the best known
estimate β = 0.3485(2) for the three-dimensional XY universality class.

lobe index g β relative deviation

1 0.3475 - 0.30%
2 0.3483 - 0.06%
3 0.3485 0.00%
4 0.3489 0.12%
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