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Abstract

We study the Bose-Hubbard model with a varying number of coupled two dimensional layers, and present the corresponding crossover from two to three dimensions exhibited by its phase
diagram. In addition, we shortly introduce the method utilized, called process-chain approach.

Model

The pure Bose-Hubbard model descri-
bing Bose particles on a lattice which
are allowed to tunnel between neigh-
boring lattice sites with tunneling
strength J , while repelling each
other when occupying the same site
with interaction energy U has the
grand-canonical Hamiltonian
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Fig. 1: Schematic display of the Bose-Hubbard model

ĤBH =
1

2

∑
i

(n̂i (n̂i − 1)− µ/U n̂i)− J/U
∑
〈i,j〉

b̂†i b̂j. (1)

The Hamiltonian cannot be solved analytically, but for the limits of vanishing and diverging
tunneling strength one can obtain the following results:

• for J/U → 0: the Bose particles are localized at lattice sites and the first excited
state is separated from the ground state by a finite energy gap (Mott insulator)

• for J/U → ∞: every Bose particle is homogeneously distributed over the lattice
occupying the same state (BEC, superfluid)

Varying the ratio J/U leads to a critical value (J/U)c at which the energy gap between
ground state and first excited state closes and the system exhibits a quantum phase
transition from Mott insulator to superfluid.
In this work the phase diagram, i.e. the dependency of (J/U)c on the chemical potential
µ/U, is studied in general, and in particular the differences between two and three dimen-
sions. To this intent, systems with multiple two dimensional Bose-Hubbard layers allowing
tunneling between neighboring layers as described by (1) are examined.

Methods

In order to calculate the critical value (J/U)c the system’s response to the attempt of
coupling particles into or out of the lattice through spatially homogeneous sources and
drains, as expressed by the extended Hamiltonian

Ĥ =
1

2

∑
i

(
n̂i (n̂i − 1)− µ/U n̂i

)
− J/U

∑
〈i,j〉

b̂†i b̂j +
∑
i

(
η b̂†i + η∗ b̂i

)
(2)

is studied, as suggested in [3].
The intuitive idea behind this is that in the Mott insulator state the system should resist
sufficiently small source strength η while in the superfluid state some response for arbitrarily
small values of η is expected.
At zero temperature, the free energy F is given by the ground state expectation value of
the Hamiltonian, F(J/U, µ/U, η, η∗) = 〈Ĥ〉 and can be expanded in the form

F(J/U, µ/U, η, η∗) = M

f0(J/U, µ/U) +
∞∑
k=1

c2k(J/U, µ/U) |η|2k
 . (3)

It can be shown that the critical value (J/U)c is given by the radius of convergence of
c2(J/U, µ/U). The calculation of the coefficient c2(J/U, µ/U) is accomplished by means of the
process-chain approach devised by Eckardt [2], that utilizes Kato’s explicit formulation
of perturbation theory. The occurring terms can be visualized by diagrams as done up to
second order in J/U in Fig. 2.

Fig. 2: Diagrams for determining c2 up to second order in J/U

Results

As a measure of quality the phase di-
agram obtained with the process-chain
approach is compared with Quantum
Monte Carlo (QMC) data, here dis-
played for a 3d lattice and compared
with data taken from [1].
In Fig. 4 one can see the excellent agree-
ment between both methods.
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Fig. 3: The phase diagram for a 2d lattice
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Fig. 4: Comparison between the phase diagram obtained with

the process-chain approach and QMC data for a 3d lattice

The process-chain approach makes use of the
indistinguishability of the Bose particles re-
sulting in a vanishing influence of the filling
factor on the computational load, so that the
process-chain allows one to reach arbitrarily
high filling factors. This is in contrast to and
a major advantage over QMC-simulations,
that scale very poorly with the number of
bosons, restricting the analysis in [1] to a fill-
ing factor of one.
In Fig. 3 the phase diagram for a 2d lattice
is displayed with a filling factor ranging from
three up to nine.

Last the phase diagrams in two and three dimensions as well as the diagrams for mul-
tiple layers are presented; in Fig. 5 displayed are two, three, five, ten and twenty layers.
As is to be expected, the diagrams vary from the two dimensional diagram monotonously
with increasing number of layers to the three dimensional diagram.
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Fig. 5: Comparison of phase diagrams for various numbers of layers

Outlook

The interest in the transition from the two dimensional to the three dimensional Bose-
Hubbard model originates from the fundamental change in the model expressed by the
change from the non-trivial critical exponent in two dimensions to the trivial critical
exponent in three dimensions (upper critical dimension). The presented method might lead
to a better understanding of the underlying physics.
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