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We consider a discrete-time random walk on a one-dimensional lattice with space and time-
dependent random jump probabilities, known as the Beta random walk. We are interested in the
probability that, for a given realization of the jump probabilities (a sample), a walker starting at
the origin at time t = 0 is at position beyond ξ

√
T/2 at time T . This probability fluctuates from

sample to sample and we study the large-deviation rate function which characterizes the tails of its
distribution at large time T � 1. It is argued that, up to a simple rescaling, this rate function is
identical to the one recently obtained exactly by two of the authors for the continuum version of
the model. That continuum model also appears in the macroscopic fluctuation theory of a class of
lattice gases, e.g. in the so-called KMP model of heat transfer. An extensive numerical simulation
of the Beta random walk, based on an importance sampling algorithm, is found in good agreement
with the detailed analytical predictions. A first-order transition in the tilted measure, predicted to
occur in the continuum model, is also observed in the numerics.

PACS numbers: 05.40.-a, 02.10.Yn, 02.50.-r

I. INTRODUCTION

The macroscopic fluctuation theory (MFT) [5] pro-
vides a coarse grained continuum description of the fluc-
tuations of the density and current [6] for a broad class
of discrete stochastic systems in one dimension with a
diffusive scaling at large time. One important example
is the symmetric exclusion process, where particles per-
form symmetric jumps onto neighboring unoccupied sites
on a lattice. Another example is the Kipnis-Marchioro-
Presutti (KMP) model [27], a lattice model where each
site has an energy and whose the dynamics is described
by a random exchange of energy between neighbors.
Upon introduction of an asymmetry or a driving, such
as in the asymmetric exclusion process [7], the diffusive
scaling breaks down above some scale, and the large scale
behavior of the model is usually described by the Kardar-
Parisi-Zhang (KPZ) universality class [8]. It was shown
that there is a natural crossover from the MFT to the
so-called weak noise theory (WNT) of the KPZ equation
as the asymmetry is increased [1].

The MFT and theWNT allow to reduce the calculation
of the large deviations of density and current to solving a
system of two coupled non-linear differential dynamical
equations, with prescribed boundary conditions both at
initial and final time. Recently, starting with the WNT
for the KPZ equation [14, 15, 56], exact solutions to these
systems were obtained [1–4, 39, 44]. This was achieved
by using the close connection of these systems to the non-
linear Schrodinger equation (NLS), or to the derivative
NLS equation (DNLS), and extending the inverse scat-
tering methods of [16–18] to mixed-time boundary con-
ditions. Another largely equivalent method used exact
closure schemes [3, 39]. This allows one to compute large

deviations for observables such as the integrated current
or of the position of a tracer.

Here we will focus on the case where the MFT takes
the form of a linear stochastic equation for a space-time
coarse-grained density field qη(y, τ)

∂τqη(y, τ) = ∂2
yqη(y, τ)− ∂y(

√
2η(y, τ)qη(y, τ)) , (1)

where η(y, τ) is a standard space-time Gaussian white
noise. It was proved in [29] that at large time the
large deviations for the discrete KMP model are iden-
tical to those of the continuum stochastic model (1). At
large time the dynamical action associated to model (1)
is controled by a saddle point, and the corresponding
saddle point equations define the MFT for this model.
These MFT equations were studied in a number of works
[5, 28, 30–40]. We noted in [1] an interesting connec-
tion to a continuum model of diffusion in a time de-
pendent random environment, previously considered in
[20, 23, 64–66, 72]. Indeed, Eq. (1) can also be seen as
the Fokker-Planck equation for the probability distribu-
tion function (PDF) qη(y, τ) of the position y(τ) at time
τ of a particle convected by the random field η(y, τ), de-
scribed by the Langevin equation

dy(τ)

dτ
=
√

2η(y(τ), τ) + χ(τ) , (2)

where χ is a standard white noise in time. The sub-
script in qη emphasizes that it depends on the realiza-
tion of the random field η, i.e. the sample. In [1] (see
also [2, 44]) we solved the MFT equations and derived
the large-time large-deviation function associated to qη
for the continuum model (1), with applications to diffu-
sion of extremes in time-dependent continuum random
media. This solution was obtained by inverse scattering
methods on a non-linear system interpolating between
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the DNLS and NLS equations. We also obtained the
same result by performing the large-time expansion of
an exact Fredholm determinant formula obtained in [23]
using the Bethe ansatz.

It is thus natural to investigate whether the MFT as-
sociated to (1) can describe a discrete model of a ran-
dom walk in a random environmnent (RWRE). The nat-
ural example which we will consider here is the so-called
Beta random walk, introduced and studied in [19]. This
model was later studied in relation to the KPZ equation
in Refs. [20–24, 65, 66]. In the present paper we will
first argue that the large-time large-deviations tails for
the Beta polymer are indeed identical, up to some simple
rescaling that we can predict, to those of the continuum
model. Next, we will perform an extensive numerical
study of these large deviations for the Beta random walk,
using an importance sampling algorithm, to test our an-
alytical predictions.

The outline is as follows. In Section II we define the
model of the Beta random walk, introduce the observ-
ables of interest and define the associated large-deviation
rate functions. In Section III we sketch the argument
which allows to relate the large deviation of the discrete
model to those of the continuum model. In Section IV we
explain the numerical method used here, notably the im-
portance sampling method which allows to explore the
deep tails of the large-deviation regime. In Section V
we give the main numerical results and discuss how they
compare to the analytical predictions.

II. MODEL AND OBSERVABLES

The model of the Beta random walk is defined as fol-
lows [19]. One defines first the "environment" or sam-
ple, by choosing for each x ∈ Z and t ∈ N a variable
wx,t ∈ [0, 1]. The wx,t are chosen as i.i.d random vari-
ables taken from the beta distribution with parameters
α, β > 0 and density

P(w) =
Γ(α+ β)

Γ(α)Γ(β)
wα−1(1− w)β−1 (3)

x − 1 x x + 1

wx,t

1 − wx,t

Figure 1. Lattice representation of the Beta random walk.

One now considers a particle at position X(t) ∈ Z,
which starts at the origin at time zero, X(0) = 0, and
which performs a random walk defined by the following
transition probabilities (see Fig. 1)

P(X(t+ 1) = x+ 1|X(t) = x) = wx,t

P(X(t+ 1) = x− 1|X(t) = x) = 1− wx,t
(4)

We will denote by 〈X(t)〉w, or more simply 〈X(t)〉 the
mean position in a given sample, and by · · · the averages
over samples. It is easy to see that the sample averaged
bias and diffusion coefficient, defined as 〈X(t)〉 = v̄t and
〈X(t)2〉c = D̄t are equal to

v̄ = 2〈w〉 − 1 =
α− β
α+ β

, D̄ =
4αβ

(α+ β)2
(5)

One can show that at large time the typical walk in a
typical sample is also characterized by the same bias and
diffusion coefficient. We will choose from now on α = β,
i.e v̄ = 0 and D̄ = 1.

Since at large time the typical motion is diffusive ref ?
we will be interested in the following probability, which
will be our observable

Z = Zξ(T ) = P

(
X(T )√
T/2

> ξ

)
, (6)

where ξ is an asymmetry parameter (here chosen positive
ξ ≥ 0) which describes how the position of the random
walker deviates from its mean in a given sample. Keep
in mind that Z is a random variable with respect to the
sample. We will thus be interested in the PDF’s of Z
w.r.t. the sample, denoted P (Z), equivalently of H =
logZ denoted (abusively) as P (H). At large time T they
are expected to take the large-deviation forms

P (Z) ∼ e−
√
T Φ̂RW

ξ (Z) (7)

P (H) ∼ e−
√
TΦRW

ξ (H) (8)

and we will determine the rate functions Φ̂RW
ξ (Z) and

ΦRW
ξ (H), both through an analytical argument, and

through extensive numerics.

III. ANALYTICAL PREDICTIONS

A. Continuum model observables

One can define a similar observable for the continuum
model (1)-(2), namely

Z̃ = Z̃ξ(T̃ ) =

∫ +∞

ξ
√
T̃

dy qη(y, T̃ ) = P

(
y(T̃ )√
T̃
> ξ

)
, (9)

where the particle is at the origin at time zero, y(0) = 0.
Note that here and below the tilde variables are associ-
ated to the continuum model. We have shown in Ref. [1]
that at large time the PDF’s of Z̃ and H̃ = log Z̃ take
the large-deviation forms

P (Z̃) ∼ e−
√
T̃ Φ̂ξ(Z̃) (10)

P (H̃) ∼ e−
√
T̃Φξ(H̃) (11)

and we have obtained the analytical expressions of the
rate functions Φ̂ξ and Φξ, which will be recalled below.
These were obtained by considering the following gener-
ating function, which takes the large-deviation form at
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large time

e−z̃
√
T̃ Z̃ ∼ e−

√
T̃Ψξ(z̃) (12)

The two rate functions are related by a Legendre trans-
form. Indeed one has

Ψξ(z̃) = min
Z̃∈[0,1]

(zZ̃ + Φ̂(Z̃)) (13)

In Ref. [1] we obtained the expression of Ψξ(z̃) by two
different methods, one of them will be recalled in the next
section. From it we obtained the rate functions Φ̂ξ and
Φξ through Legendre inversion. The explicit formula for
these rate functions will be given in Section III E.

B. Main prediction

Our main prediction is that the discrete model is de-
scribed by the same rate functions as the continuum one,
up to some scale factors, hinting to a form of universality.
More precisely we claim that

Φ̂RW
ξ (Z) =

α√
2

Φ̂ξ(Z) , ΦRW
ξ (H) =

α√
2

Φξ(H) (14)

and

ΨRW
ξ (z) =

α√
2

Ψξ

(
z̃ =

z
√

2

α

)
(15)

We will now explain the origin of this prediction. To this
aim we first need to recall one method to obtain the rate
function Ψξ in the continuum. Next we show how an
extension of the same method for the discrete case leads
to the predictions above.

C. Fredholm determinant method for the
continuum model

In [23] a mathematically well posed version of the con-
tinuum model, called the sticky Brownian motion, was
defined. An exact formula was derived for the Laplace
transform of the PDF of Z̃ for any T̃ , ξ in terms of a
(complicated) Fredholm determinant. For u ≥ 0 one has
[23, Thm 1.11]

e−uZ̃ξ(T̃ ) = Det(I −Ku)|L2(C) (16)

where the kernel Ku(v, v′) acts on functions defined on a
contour C in the v complex plane, where C is a positively-
oriented circle centered at R with radius R. The kernel
reads

Ku(v, v′) =
1

2iπ

∫
1/2+iR

πus

sinπs

g(v)

g(v + s)

ds

s+ v − v′
(17)

where the function g(v) is

g(v) = gc(v) := eξ
√
T̃ψ0(v)+T̃ψ1(v)Γ(v) (18)

where ψ0,1 denote polygamma functions (see [1, Supp
Mat Sec. X] for more details and correspondence of
conventions).

In Ref. [1, Supp Mat Sec. X] we have studied in detail
the large time limit T̃ � 1 of the kernel Ku (17) and
of the Fredholm determinant (16) when u is scaled as
u = z̃

√
T̃ for the continuum model (recalling that here

the observation time in the continuum model is denoted
by T̃ ). From (12) and (16) this provided an independent
method to obtain the rate function Ψξ(z̃). The impor-
tant point is that we showed there that the only relevant
quantity is the asymptotic form at large T̃ of the function
g(v) under the rescaling

v = w
√
T̃ (19)

More specifically one finds that this asymptotic form
reads [1, Supp Mat Eqs. (S206)-(S210)]

log gc(v) =
√
T̃
(
φ(w) + (w + ξ) log

√
T̃
)

(20)

+χ(w)− 1

2
log(

√
T̃ ) + o(T̃ )

where we defined

φ(w) =
1

w
− w + (w + ξ) log(w)

χ(w) =
1

2w2
− ξ

2w
+

1

2
log(2π/w)

(21)

where we corrected a misprint in the last term in [1]. The
knowledge of φ(w) in this asymptotic form then allows
to obtain the explicit form of Ψξ(z̃) in Eq. (A2), see [1,
Supp Mat Sec. X] for details. In particular, subdominant
terms such as χ(w) are irrelevant.

D. Discrete to continuum universality

To obtain the rate functions for the discrete Beta ran-
dom walk model, we can consider, similarly to (12), the
generating function associated to the observable Z =
Zξ(T ) which takes the form at large time

e−z
√
TZ ∼ e−

√
TΨRW

ξ (z) (22)

One method to obtain ΨRW
ξ (z) is to use the result from

[19] which we now recall. Reference [19, Theorem 1.13]
gives an exact formula for the Laplace transform (22) of
the PDF of Z for any T, ξ in terms of a (complicated)
Fredholm determinant. For u ≥ 0 one has

e−uZξ(T ) = Det(I −Ku)|L2(C) (23)

where the kernel Ku(v, v′) acts on functions defined on a
contour C in the v complex plane, where C is a positively-
oriented circle centered at R ≥ 0 with radius R+ε so that
0 < ε ≤ min(1, α+ β). The kernel has the same form as
for the continuum case, namely

Ku(v, v′) =
1

2iπ

∫
1/2+iR

πus

sinπs

g(v)

g(v + s)

ds

s+ v − v′
(24)
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except that now for the Beta random walk one has

g(v) = gRW(v)

=

(
Γ(v)

Γ(α+ v)

)T−ξ
√

T
2

2
(

Γ(α+ β + v)

Γ(α+ v)

)T+ξ

√
T
2

2

Γ(v)

(25)

where we recall that from now on we restrict to the case
β = α.

It is interesting to note that there is a way to obtain
the continuum model from the discrete one, by taking
the limit α→ 0. Indeed if one sets

T = 2T̃ /α2 (26)

one has, with the same value of ξ

lim
α→0

gRW(v) = gc(v) (27)

This corresponds to the convergence of the discrete ran-
dom walk to the continuum one, which can be expressed
as the convergence [23]

αX(2α−2τ) →
α→0

y(τ) (28)

recalling that X(t) corresponds to position in the Beta
random walk with index α, and y(τ) to the position of
the particle in the continuum model (2).

However this is not what we are interested in here.
Instead we want to keep α fixed and take the time T of
the Beta random walk to be large. We now argue that
it leads to the same large-deviation rate functions as for
the continuum model, up to the rescaling (26).

Since the form of the kernel is quite similar in both
cases, to obtain the asymptotics of Ku in (24) and of the
Fredholm determinant (23) for the Beta random walk, in
the limit T → +∞ with u = z

√
T , we also only need

to study the large time limit of the function gRW (v) un-
der the same rescaling (19). Although we are working
here for an arbitrary fixed α, we will choose the corre-
spondence between the discrete and continuous time as
in (26). Let us use the expansion at large v

vb−a
Γ(a+ v)

Γ(b+ v)
= 1 +

(a− b)(a+ b− 1)

2v
+

(a− b− 1)(a− b)
(
3b2 + 6ab− 5b+ a(3a− 7) + 2

)
24v2

+O
(

1

v3

)
(29)

for any a, b = O(1). Let us consider (25) with β = α,
express it as a function of T̃ using (26), and insert the
rescaling (19). In the large T̃ limit one finds

log gRW (v) =
√
T̃
(
φ(w) + (w + ξ) log

√
T̃
)

+ χRW (w)− 1

2
log(

√
T̃ ) + o(T̃ )

(30)

with

χRW (w) = (1− 2α)(
1

2w2
− ξ

2w
) +

1

2
log(2π/w) (31)

and the function φ(w) being identical to the one for the
continuum model in (21).

Thus, in the large time limit we can identify Z = Z̃,
i.e. the two random variables

Zξ(T ) ≡ Z̃ξ(T̃ ) (32)

and identify separately each sides of (22) and (12) re-
spectively which leads to

z
√
T ≡ z̃

√
T̃ (33)

√
TΨRW

ξ (z) =
√
T̃Ψξ(z̃) (34)

which using the correspondence between continuum and
discrete time in (26), finally leads to the prediction (14)
and (15) for the rate function of the Beta random walk.

E. Explicit formula for the rate functions

We now recall the analytical prediction from [1] for the
rate functions of the continuum model. Since Z = Z̃ and
H = H̃, see section above, we use below only the nota-
tions Z and H in place of Z̃ and H̃. The rate function
Φ̂ξ(Z) is obtained from the parametric representation{

Φ̂ξ(Z) = Ψξ(z)− z̃Z,
Z = Ψ′ξ(z̃) .

(35)

where Ψξ(z̃) for ξ ≥ 0 is given by

Ψξ(z̃) = −−
∫
R

dq

2π

Li2(z̃(iq − ξ
2 )e−q

2− ξ
2

4 )

(iq − ξ
2 )2

(36)

where the principal value is required only for ξ = 0.

We now consider here only the case ξ = 0 where for
any real value of z̃, the dilogarithm in the integrand of
(36) does not have any branch cut on the real axis for q.

This expression for the rate function Ψξ=0(z̃) then al-
lows to obtain Φ̂ξ=0(Z) for any Z ∈ [0, 1]. From this one
obtains the rate function Φξ=0(H) = Φ̂ξ=0(Z) by the
simple change of variable H = logZ for any H ≤ 0. This
is summarized in the Table I.

The case ξ > 0 is more involved and is given in the
Appendix A 2. However one can give for any ξ the typical
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interval of H interval of z̃ H = Φξ(H) =

H ∈ R− z̃ ∈ R log Ψ′0(z̃) Ψ0(z̃)− z̃Ψ′0(z̃)

Table I. Case ξ = 0

value

Ztyp = Z = Ψ′ξ(0) =
1

2
Erfc

(
ξ

2

)
and the variances of the PDF’s P (Z) and P (H) for the
continuum model [1]

Z2
c

=
1

4
√

2πT̃
e−ξ

2/2 (37)

H2
c

=
1√
2πT̃

e−ξ
2/2(Erfc(

ξ

2
))−2 (38)

The corresponding variances for the Beta random walk at
large time are obtained by the correspondence T̃ = α2

2 T .

IV. METHODS

Next, we describe our numerical approaches. In Sub-
section IVA, we first state how we obtain, for each given
sample ω = {wx,t}, as drawn from the beta distribu-
tion (3), the quantities Z according to (6) and therefore
H = logZ. We are interested in the distributions P (Z)
and P (H). In Subsection IVB we explain how we achieve
this over a large range of the support down to very small
probability densities such as 10−50 or even smaller.

A. Random walk on a lattice

For each of the samples ω = {wx,t}, corresponding to
the probabilities (4) to move left and right, we calcu-
late the probability Q(X|t) of reaching site X at step t.
For this purpose we apply a dynamic programming, i.e.,
transfer matrix, approach by calculating

Q(0|0) = 1

Q(X|0) = 0 for X 6= 0 (39)
Q(X|t+ 1) = wX−1,tQ(X − 1|t) +

(1− wX+1,t)Q(X + 1|t)

for t = 0, 1, . . . , T−1. For a walk of T steps, these proba-
bilities can be calculated in O(T 2) time. This allows one
to obtain the cumulative probability R of being right of
some point X by simply summing

R(X|T ) =
∑
X′>X

Q(X ′|T ) , (40)

which is achieved in O(T ) steps, which is negligible com-
pared to the O(T 2) steps to compute the (half) transfer

matrix Q(X|t). The value Z of (6) we are interest in is
obtained by

Z = R(
√
T/2 ξ |T ) (41)

where we round
√
T/2 ξ to the next lowest integer. Note

that for small values of ξ, not all values of the matrix
Q(X|t) contribute. But even for ξ = 0, where walks
contribute which reach X = T/2 and return to X = 0,
one needs half of Q. Thus, the total computation time is
always O(T 2).

The corresponding value of H is obtained simply by
H = log(Z). Note that H is completely determined by
the sample ω, so we can write H = H(ω).

B. Introduction to importance sampling

For the purpose of the introduction of the idea of im-
portance sampling, we retain some elements of the pre-
sentation made in Ref. [95]. In principle one could obtain
an estimate of the probability distribution P (H) numer-
ically from direct sampling. For this, one generates many
disorder samples and calculates H = logZ for each one
according to Eq. (41). Then the distribution is estimated
by the suitably normalized histogram of the values of H.
Nevertheless, this limits the smallest probabilities which
can be resolved to the inverse of the number of samples,
hence reaching probabilities as small as 10−50 is strictly
impossible. Therefore, a different approach is required.

To estimate P (H) for a much larger range, where prob-
ability densities as small as 10−50 may appear, we use a
more powerful approach, called importance sampling as
discussed in Refs. [75, 76]. This approach has been suc-
cessfully applied to many problems in statistical physics
and mathematics to obtain the tails of distributions aris-
ing in equilibrium and non-equilibrium situations [77–
86]. The idea behind importance sampling is to sam-
ple the different disorder samples with an additional bias
exp(−θH(ω)) where θ is an adjustable parameter inter-
preted as a fictive temperature. If θ > 0 the samples with
a negative H become more likely, conversely if θ < 0 the
samples with a positive H are favored. Now, it is not
possible to sample the disorder samples ω directly when
the bias is included. For this reason, a standard Markov-
chain Monte Carlo simulation is used to sample according
to the biased distribution [88, 89]. Here, one has a dis-
order sample ω as current configuration of the Markov
chain, and the configurations change only slightly from
step to step. In detail, at each step of the Markov chain,
a new disorder sample ω∗ is proposed by replacing on
the current sample ω a certain fraction r of the random
numbers ω = {wx,t} by new random numbers which are
drawn according to Eq. (3). The new disorder sample is
then accepted with the usual Metropolis-Hastings prob-
ability

pMet = min{1, e−θ[H(ω∗)−H(ω)]}, (42)
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otherwise the old configuration is kept [90]. By construc-
tion, the algorithm fulfils detailed balance and is ergodic,
since within a sufficient number of steps, each possible
sample may be constructed. Thus, in the limit of in-
finitely long Markov chains, the distribution of biased
disorder samples will follow the probability

qθ(ω) =
1

W (θ)
Pdis(ω)e−θH(ω) , (43)

where Pdis(ω) is the original disorder distribution, i.e.,
the product of the Beta distributions for all disorder val-
ues, andW (θ) =

∑
ω Pdis(ω)e−θH(ω) is the normalisation

factor. Note thatW (θ) also depends on the walk length T
because of finite-size effects. W (θ) is generally unknown
but can be determined, see below. The output of this
Markov chain allows one to construct a biased histogram
Pθ(H). In order to get the correct empirical probability
density P (H) one should unbias the result such that

P (H) = eθHW (θ)Pθ(H). (44)

Hence, the target distribution P (H) can be estimated,
up to a normalisation constant W (θ). For each value
of the parameter θ, a specific range of the distribution
P (H) will be sampled and using a positive (respectively,
negative) parameter allows one to sample the region of a
distribution at the left (respectively, at the right) of its
center.

For suitably chosen sets of temperature values θ, the
ranges of support for neighboring densities Pθi(H) and
Pθi+1(H) will overlap. Since after rescaling with W (θi)
and W (θi+1), respectively, they must be equal to P (H).
Thus, in particular they have to be in equal to each
other, up to statistical fluctuations, for those values of H
where they overlap. This allows one to determine rations
W (θi)/W (θi+1) for all neighboring pairs of temperatures,
and finally all absolute values W (θi) through the over-
all normalisation of P (H), for details and examples see
Appendix B and Ref. [75, 76]. Most accurately, the de-
termination of the normalisation factors can be achieved
using the Multi Histogram approach [96], see also the
convenient tool of Peter Werner [97].

V. COMPARISON OF THE THEORETICAL
PREDICTIONS WITH THE SIMULATIONS

We now compare the theoretical predictions of Section
III with the numerical simulations of the finite-time ran-
dom walks on a lattice, for various values of ξ. We insist
on the fact that the comparison will be done without any
fitting parameter.

A. Presentation of the simulations

The numerical simulations were run for walks of length
T ∈ {64, 128, 256, 512, 1024}, the largest lengths only for
some cases. Most of the walks are for distribution param-

eter α = 1, which corresponds to a uniform U(0, 1) dis-
tribution, but in the beginning we also show some simple
sampling results for other values of α, which indicate the
universality with respect to α subject to simple scaling
of the number of steps. We have evaluated the cumu-
lative distribution of positions for several values of the
asymmetry parameter ξ = {0, 1, 2, 3, 4, 5}.

For the large-deviation simulations, we have to make
sure that the Markov chain is equilibrated. This can be
confirmed by running the Markov chain for very different
initial configurations of the sample ω. Extreme samples
where all entries ωx,t are close to 0, or all values are close
to 1, correspond to extreme values of H. An impres-
sion of the convergence of the Markov chain is obtained
monitoring H(tMC) as a function of the number tMC of
Monte Carlo steps and observing where these values agree
within fluctuations for different initial configurations of
ω, see Fig. 2. Evidently, the equilibration is obtained
rather quickly, within few thousand MC steps.

-12
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-6

-4

-2

 0

 0  2000  4000  6000  8000  10000

H

tMC

ξ=5.0 θ=-0.001

top
random

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  5000  10000

Figure 2. Equilibration of the Markov chain: Measured value
of H as function of the number tMC of Markov steps for the
case ξ = 5, T = 128 and sampling temperature Θ = −0.001
which corresponds to the very tail of the distribution which
is hardest to reach. Two initial starting configurations ω re-
sulting in very different initial values of H were chosen: one
just typical random one, and one where wx,t = 0.999 for all
values ("top"). The inset enlarges the top part.

B. Variance for the case ξ = 0

First, we consider the probability distribution P (H)
as obtained by simple sampling for ξ = 0 and several
values of the distribution parameter α. We determine
its variance σ2 = H2

c
as a function of the total length

of the random walk T , up to T = 2048. Our analytical
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Figure 3. Variance σ2 of the distribution P (H) for different
values of α, as a function of the scaled parameter T̃ = α2T

2
where T is the number of steps of the Beta random walk. It
is compared to the analytical prediction (45) (solid line).

prediction at large T is, see (37)

σ2 ' 1√
2πT̃

' 1√
2π

√
2

α2T
(45)

In Fig. 3 we show the variance σ2 as a function of the
scaled time parameter T̃ = α2T

2 . As visible, the data
points fall nicely on one line, proving the universality
with respect to α.

To see how well the expected limiting behavior (45)
is reached, we plot in Fig. 4 the combination σ2T̃ 1/2 =
σ2(α2T/2)1/2. For all considered values of α, a conver-
gence to the expected value 1/(2π)1/2 is visible. The
convergence seems to be faster for smaller values of α,
i.e., for more flat step distributions of the samples ω.

C. Distribution P (H)

The distribution of H is shown in Fig. 5 for T = 128
and three values of the asymmetry parameter ξ. As vis-
ible, with the large-deviation approach, here small prob-
abilities such as 10−50 are reached. For increasing values
of ξ, the probability of a walk ending beyond ξ

√
T/2 will

decrease, which is reflected by a shift of P (H) to more
negative values. For a more detailed analysis and com-
parison with the analytic results, we consider from now
on the rate functions.

 0.37
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 10  100  1000

σ
2
 (

α
2
 Τ

/2
)1

/2

T 
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α=2
α=4
α=6

1/(2π)
1/2

Figure 4. The variance σ2 scaled by the expected limiting
behavior, as function of step size T . The prediction 1/

√
2π

from (45) is also shown.
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Figure 5. Distribution P (H) for walk length T = 128 and
three values of the asymmetry parameter ξ.

D. Rate functions

We will now test the analytical prediction (14) for the
rate functions ΦRW

ξ (H) and Φ̂RW
ξ (Z) defined in Eqs. (10)

and (8) (where the rate functions on the r.h.s. of (14)
are given in Sections III E and Appendix A). Note that
in this numerical section we simplify notations and de-
note Φ(H) ≡ ΦRW

ξ (H) and Φ(Z) ≡ Φ̂RW
ξ (Z). These rate

functions are shown in Fig. 6 for walk length T = 128
and all considered values of the asymmetry parameter
ξ = {0, 1, 2, 3, 4, 5}. Note that a value of Φ close to 20
correspond for T = 128 to a probability e−

√
128×20 ≈

5× 10−99.
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Figure 6. Rate functions Φ(H) and Φ(Z) for walk length T = 128 and various values of the asymmetry parameter ξ =
{0, 1, 2, 3, 4, 5}. The lines show our analytical predictions for T →∞.
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Figure 7. Rate function Φ(Z) for various walk lengths T = {64, 128, 256, 512} and 1024, for the cases ξ = 0 (left, only up to
T = 512) and ξ = 5 (right). The lines show the analytical results, respectively. The insets enlarge the regions I ∈ [0.3, 0.35]
(left) and Z ∈ [0.4, 0.6] (right).

For small values of ξ already a good agreement between
finite-T numerical data and analytical results is visible.
Nevertheless, for values such as ξ = 4 and ξ = 5 substan-
tial deviations are visible. For this reason, we have per-
formed numerical simulations for the two extreme cases
of the asymmetry ξ = 0 and ξ = 5 for various lengths
of the walk T = {64, 128, 256, 512}, and even T = 1024
for ξ = 5. The results for Φ(Z) are shown in Fig. 7.
For the case ξ = 0 basically all results agree, the lim-

iting behavior is already visible for short walk length
T . For ξ = 5 a clear convergence to the analytical re-
sult is visible. The fact that the finite-T corrections are
stronger for larger values of ξ reminds one of the different
of convergence speeds within the central limit theorem:
The properly rescaled sum of random numbers attains
a Gaussian shape near the typical values, corresponding
to small values of ξ here, much faster than in the tails,
corresponding to large values of ξ.



9

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0  0.005  0.01  0.015  0.02

Φ
(Z

)

1/T

ξ=5.0 Z=0.5

data
Φanalytic

fit

Figure 8. Extrapolation of the rate function for ξ = 5 to
infinite walks lengths T →∞ by showing the numerical result
of Φ(Z) as function of 1/T for a fixed value of Z = 0.5 and T =
64, 128, 256, 512 and 1024. The upper line shows the result of
a fit according to Eq. (46). The horizontal line indicates the
analytic asymptotic value for Φ(Z = 0.5).

We have also performed a heuristic extrapolation by
fitting the behavior as function of T , for a fixed value of
Z, to a power law according to

Φ(Z, T ) = Φ∞Z + aZT
−bZ , (46)

i.e., with fitting parameters Φ∞, a and b which may de-
pend on Z. An example for such a fit is shown in Fig. 8.
As visible, the extrapolated value is compatible with the
analytical result.

E. Non convexity of Φ(Z) and first-order transition

A remarkable prediction of Ref. [1] is that for the con-
tinuum model the rate function Φ̂ξ(Z) in (14) is non-
convex for ξ >

√
8. This results in a first-order phase

transition in its Legendre transform (i.e. Ψopt(z) defined
in (A11)) associated to a tilted version of P (Z) (see defi-
nition below and in Eq. (A13)). For a detailed discussion
see Appendix A3, and for an illustration of the first-order
transition see Fig. 10). We thus predict that the same
property holds for the Beta random walk, as we will now
confirm.

We find that for large enough values of ξ, the numerical
rate function Φ(Z) for the random walk exhibits a non-
monotonic curvature, which is already visible in Fig. 6.
This leads to the appearance and disappearance of max-
ima in the tilted distribution P (Z) exp(−z(T/2)1/2Z),
depending on the choice of z. We recall that α = 1 here,
hence this factor is also exp(−zT̃ 1/2Z), corresponding to
(A13) for the continuum model. Our prediction is thus
that at large T and for ξ >

√
8, P (Z) exp(−z(T/2)1/2Z)

should exhibit two peaks for z ∈ [zc1, zc2] given in (A7).
For ξ = 5 this corresponds to z ∈ [−216.5,−13]. The two
peaks should become of same height for z = z∗ given in
(A15), which for ξ = 5 evaluates to z∗ ' −17.84.

In the numerical results, we indeed observe that, for
not too negative values of z, the rescaled rate functions
exhibits a peak close to Z = 0, see left of Fig. 9 the case
z = −12. For intermediate values of z, a second peak
appears, see the case z = −14. This is consistent with
our analytical prediction recalled above that a second
peak should appear for z ' −13. This peak becomes
slightly more pronounced when increasing the number T
of steps (not shown), and much more pronounced when
decreasing the value of z.

For each value of T , there is a value z∗(T ) where both
peaks exhibit the same height. The inset of left of Fig. 9
shows z∗(T ) together with a fit to a power law z∗(T ) =
z∗∞ + a∗T−b

∗
, which results in z∗∞ = 17(1) which is well

compatible with the predicted value z∗ ' −17.84.
For very negative values of z, the first peak disappears,

see right of Fig. 9. The value of z above which this hap-
pens, which we predict to be zc1 = −216.5, is observed
to be indeed very negative for small values of T , about
z = −1150 for T = 128 and increases when increasing T ,
to about z = −320 for T = 1024. When fitting zc1(T ) to
a heuristic power law of the form zc1(T ) = z∞c1 + azT

−bz

we obtain a limiting value z∞c1 = −312(50) which is in
rough agreement, i.e. within two sigma, with the limit-
ing value zc1 = −216.5 (see inset).

The behavior of the numerically determined tilted PDF
of Z is thus in agreement with the prediction, and the
first-order transition in Ψopt(z) results when the sec-
ond peak becomes higher than the first one (see Ap-
pendix A 3).

VI. CONCLUSION AND OUTLOOK

To summarize we have studied analytically and nu-
merically the Beta random walk, a discrete time random
walk on the square lattice with Beta distributed time de-
pendent i.i.d. jump probabilities with parameter α. We
have focused on the probability Z that a walk starting
from the origin is at large time T at position to the right
of X = ξ

√
T/2 for a given ξ > 0. We have determined

analytically and numerically the law of large deviations
of the observable Z. We have first predicted that the
large-deviation rate function of the Beta random walk is
identical, up to a scale factor involving α that we deter-
mined, to the one of the continuum model for diffusion
in random media, which we recently obtained analyti-
cally (and is ξ-dependent). This prediction was based on
the large time asymptotic analysis of an exact Fredholm
determinant formula which exists for both the discrete
and the continuum problem. The prediction holds for
any value of the parameter α, hence it hints at some uni-
versality in the large-deviation rate functions. Proving
this prediction rigorously remains an open question for
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Figure 9. (left panel) Distributions P (Z) rescaled with the factor exp(−z(T/2)1/2Z). For intermediate values of z, the
distribution is observed to exhibit two peaks, as predicted. The inset shows the dependence of the scaling value z∗ where
the two peaks attain the same height as function T and a fit to a shifted power law, see text. The horizontal line shows the
predicted value z∗ ' −17.84. (right panel) For very negative values of z ≤ zc1(T ), one observes that the first peak close to
Z = 0 is suppressed. The inset illustrates the convergence to the predicted value zc1 = −216.5 at large T , which is included as
horizontal line.

mathematicians.
In the absence of a rigorous proof, we performed a nu-

merical test of this prediction. We used a large-deviation
sampling approach to measure the PDF P (Z) for vari-
ous values of α and ξ. We were able to meaure the PDFs
over many decades down to values as small as 10−100

and below. We obtained an accurate determination of
the rate function and observed convergence at large T to
the predicted analytical value. In addition, for a deeper
investigation of the system properties beyond the rough
shape of the distributions, we observed a first-order tran-
sition in the rate function Ψopt(z), which manifests itself
as multiple peaks in the tilted PDF of Z, as predicted
in Ref. [1]. Our numerical results are thus also a con-
firmation of the predictions obtained in that work. The

numerical methods used here should be useful to study
the large-deviation regime for various models of diffusion
of the extremal particle in a cloud of many random walk-
ers [67].
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Appendix A: Analytical results

We recall in this Appendix the analytical result of [1] for the continuum model for arbitrary ξ ≥ 0. To simplify
notations in this Appendix all subscripts ξ are implicit and z̃ is denoted z. We also recall that Z = Z̃ and H = H̃,
hence we use only the notations Z and H in place of Z̃ and H̃.

The rate functions Φ̂(Z) = Φ(H) (with H = logZ) is obtained quite generally from the parametric representation{
Φ̂(Z) = Ψ(z)− zZ,
Z = Ψ′(z) .

(A1)

While the rate function Φ̂(Z) is well defined and single valued, for general ξ > 0, Ψ(z) may have several branches.
This can be seen in Fig. 10 where in some cases one value of z corresponds to one or three values of Z = Ψ′(z).
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ξ 0 ≤ ξ ≤ ξ1 ξ1 ≤ ξ ≤ ξ2
zc1 < zc2 < zc

ξ2 ≤ ξ
zc1 < zc < zc2

∆(z) =

{
0, zc < z

∆1(z), z < zc


0, zc < z

∆1(z), zc1 < z < zc

∆2(z), zc1 < z < zc2

∆3(z), z < zc2



0, zc < z

∆1(z), zc1 < z < zc

∆2(z), zc1 < z < zc

∆2(z)−∆1(z), zc < z < zc2

∆3(z)−∆1(z), zc < z < zc2

∆3(z), z < zc

Table II. Determination of the jump function ∆(z) in the different phases in the case ξ ≥ 0. One has zc = − 2
ξ
eξ

2/4 ≤ 0 and the
points z = zc1 and z = zc2 are turning points which depend on ξ. In the interval z ∈ [zc1, zc2], the function ∆(z) is multi-valued
(i.e. it has several branches) due to these turning points. The definition of ∆` is given in (A4).

Below, we first explain how to compute Ψ(z) and its various branches, and then we explain how to perform the
Legendre inversion. Finally we discuss the multivaluation and the first-order transition of the "optimal" Ψopt(z), see
Fig. 10.

Figure 10. For ξ = (0, 1, 2, 3, 4, 5) we plot the derivative rate function Ψ′(z) from Table II as a function of z, with Ψ′(+∞) = 0
and Ψ′(−∞) = 1 (all the branches are shown). For ξ > ξ1 and z ∈ [zc1, zc2] the function is multi-valued (see text). (Inset)
First-order transition: at z = z∗ such that the areas of the two shaded regions become equal the value of (the optimal) Ψ′opt(z)
(see definition in (A14)) from one branch to the other, shown here for ξ = 4.

1. How to compute Ψ(z)

One first defines

Ψ0(z) = −−
∫
R

dq

2π

Li2(z(iq − ξ
2 )e−q

2− ξ
2

4 )

(iq − ξ
2 )2

(A2)

The general formula for Ψ(z) takes the form

Ψ(z) = Ψ0(z) + ∆(z) (A3)

where Ψ0(z) is the same integral as in (A2). Note that we compute Ψ0(z) numerically using the default PolyLog
function in Mathematica together with the NIntegrate routine for integration (with in some cases a branch cut on
the integration contour dealt automatically by Mathematica). The convention ∆(z) = 0 defines the main branch of
Ψ(z). The other branches and the form of ∆(z) as a function of ξ and z are shown in Table II. Note that for z ≥ 0
one has ∆(z) = 0.
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The jump functions ∆`(z) for ` = {1, 2, 3} which appear in this Table are defined as follows. First one has

∆`(z) = ∆̂(p`(z, ξ)) (A4)

where

∆̂(p) =
1

ξ

[
− (ξ2 + 2)(log(ξ)− log(ξ + 2p)) + 2p(p− ξ)− 4p

ξ + 2p

]
(A5)

The p`(z, ξ) are the real roots of the equation for p

e−p
2+ ξ2

4 + z(p+
ξ

2
) = 0 . (A6)

The behavior of these roots is as follows.
Let us define zc = − 2

ξ e
ξ2

4 . For zc ≤ z ≤ 0, there is always one positive zero to (A6) denoted p1 = p1(z, ξ). For
z < zc, the zeroes of (A6) are all negative and their number is:

1. for 0 < ξ < ξ1 =
√

8, there is one zero p1(z, ξ);

2. for ξ1 < ξ and z ∈]zc1, zc2[ there are three zeroes p1(z, ξ) > p2(z, ξ) > p3(z, ξ). The zeroes degenerate, i.e.
p1 = p2 for z = zc1 and p2 = p3 for z = zc2 which define zc1, zc2. For z > zc2, there is only one zero p1(z, ξ).
For z < zc1, there is only one zero p3(z, ξ).

Note that zc1 < zc2 < 0, with zc1 = zc2 at ξ = ξ1, and their explicit expression and dependence on ξ is given for
ξ > ξ1 =

√
8 by

zc1 = −1

2
e

1
8

(
ξ
(
ξ+
√
ξ2−8

)
+4

) (
ξ −

√
ξ2 − 8

)
zc2 = −1

2
e

1
8

(
ξ
(
ξ−
√
ξ2−8

)
+4

) (
ξ +

√
ξ2 − 8

) (A7)

Note that zc and zc2 become equal at the value ξ = ξ2 with

ξ2 = −2

√√√√ 2

−2W−1

(
− 1

2
√
e

)
− 1

W−1

(
− 1

2
√
e

)
' 3.13395

(A8)

where W−1 is the Lambert function [92].

2. Inversion of Legendre transform

Defining the critical height Hc = log Ψ′0(zc), the rate function Φ(H) is given by the parametric representation
displayed in Table III for ξ ≤ ξ1 =

√
8.

interval of H interval of z H = Φ(H) =

H ≤ Hc zc ≤ z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

0 > H > Hc zc > z log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Table III. Case 0 < ξ ≤ ξ1

For ξ1 < ξ ≤ ξ2 it is given by the parametric representation displayed in Table IV where we have defined

Hc1 = log(Ψ′0(zc1) + ∆′1(zc1)) = log(Ψ′0(zc1) + ∆′2(zc1)),

Hc2 = log(Ψ′0(zc2) + ∆′2(zc2)) = log(Ψ′0(zc2) + ∆′3(zc2)),
(A9)
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interval of H interval of z H = Φ(H) =

H ≤ Hc zc ≤ z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

Hc < H ≤ Hc1 zc1 ≤ z < zc log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Hc1 < H ≤ Hc2 zc1 < z ≤ zc2 log(Ψ′0(z) + ∆′2(z)) Ψ0(z) + ∆2(z)− z(Ψ′0(z) + ∆′2(z))

Hc2 < H < 0 zc2 > z log(Ψ′0(z) + ∆′3(z)) Ψ0(z) + ∆3(z)− z(Ψ′0(z) + ∆′3(z))

Table IV. Case ξ1 < ξ ≤ ξ2

For ξ2 < ξ it is given by the parametric representation displayed in Table V where we have defined

Hc10 = log(Ψ′0(zc1) + ∆′1(zc1)),

Hc11 = log(Ψ′0(zc) + ∆′2(zc)),

Hc20 = log(Ψ′0(zc2) + ∆′2(zc2)−∆′1(zc2)),

Hc21 = log(Ψ′0(zc) + ∆′3(zc)),

(A10)

interval of H interval of z H = Φ(H) =

H ≤ Hc zc ≤ z log Ψ′0(z) Ψ0(z)− zΨ′0(z)

Hc < H ≤ Hc10 zc1 ≤ z < zc log(Ψ′0(z) + ∆′1(z)) Ψ0(z) + ∆1(z)− z(Ψ′0(z) + ∆′1(z))

Hc10 < H ≤ Hc11 zc1 < z ≤ zc log(Ψ′0(z) + ∆′2(z)) Ψ0(z) + ∆2(z)− z(Ψ′0(z) + ∆′2(z))

Hc11 < H ≤ Hc20 zc < z ≤ zc2 log(Ψ′0(z)+∆′2(z)−∆′1(z)) Ψ0(z)+∆2(z)−∆1(z)−z(Ψ′0(z)+∆′2(z)−∆′1(z))

Hc20 < H ≤ Hc21 zc ≤ z < zc2 log(Ψ′0(z)+∆′3(z)−∆′1(z)) Ψ0(z)+∆3(z)−∆1(z)−z(Ψ′0(z)+∆′3(z)−∆′1(z))

Hc21 < H < 0 zc > z log(Ψ′0(z) + ∆′3(z)) Ψ0(z) + ∆3(z)− z(Ψ′0(z) + ∆′3(z))

Table V. Case ξ2 < ξ

3. Multi-valuation and first-order transition

To interpret the S-shape form of Ψ′(z) shown with all its branches in Figure 10, we recall the definition of the
"optimal" Ψ(z) defined as

Ψopt(z) = min
Z∈[0,1]

[Φ̂(Z) + zZ] (A11)

It has the property that its derivative obeys

Ψ′opt(z) = 〈Z〉z (A12)

where 〈Z〉z is the expectation value for large T̃ of the random variable Z under the z-dependent tilted measure

P (Z)e−
√
T̃ zZ ∼ e−

√
T̃ (Φ̂(Z)+zZ) (A13)

The key point is that for ξ > ξ1 the function Φ̂(Z) has a concave part [1]. As a consequence, for z ∈ [zc1, zc2] the tilted
measure (A13) develops three extrema at Zj(z) = eHj(z), solutions of Φ̂′(Z) = −z. They lead to the three branches
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of Ψ′(z) = Zj(z). The "optimal" Ψopt(z) is determined by the absolute minimum in (A11) (which corresponds to the
absolute maximum in the tilted PDF of Z) hence it is given by

Ψopt(z) = min
j=1,2,3

[Φ̂(Zj) + zZj ] (A14)

and the optimal j switches from j = 1 to j = 3 at z = z∗(ξ) where z∗ is the solution of

∆1(z∗) = ∆3(z∗) . (A15)

It is also the point given by an equal area law on the curve Ψ′(z), as in standard magnetization versus field curve
for a first-order phase transition, see Fig. 10 (inset). The points Z = {Z1, Z3} are "stable" whereas Z = Z2 is
"unstable". The optimal rate function Ψopt(z) thus exhibits a first-order transition. This type of transition occurs in
other large-deviation problems [47].

Appendix B: Technical details of the importance sampling algorithm

To sample a wide range of values of H, one chooses a suitable set of parameters {θ−Nn , θ−Nn+1, . . . , θNp−1, θNp},
Nn and Np being the number of negative and positive parameters, to access the large-deviation regimes (left and
right). The normalisation constants W (θi) are obtained by first computing the histogram using direct sampling,
corresponds to θ = 0. Then for θ+1, one matches the right part of the biased histogram with the left tail of the
unbiased one and for θ−1, one matches the left part of the biased histogram with the right tail of the unbiased
one. Similarly one iterates for the other values of θ and the corresponding relative normalisation constants can be
obtained. In the end the full distribution is normalized to result in a total probability of one.
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