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We numerically estimate the leading asymptotic behavior of the length Ln of the longest increasing subse-
quence of random walks with step increments following Student’s t-distribution with parameter in the range
1
2 ≤ ν ≤ 5. We found that the expected value E(Ln) ∼ nθ with θ decreasing from θ(ν = 1

2 ) ∼ 0.70 to
θ(ν ≥ 3) ∼ 0.57. For random walks with distribution of step increments of finite variance (ν > 2) we found
that E(Ln)∼

√
n lnn to leading order, confirming previous observations. We note that this asymptotic behavior

(including the subleading term) resembles that of the largest part of random integer partitions under the uniform
measure and that, curiously, both random variables seem to follow Gumbel statistics. We also provide more
refined estimates for the asymptotic behavior of E(Ln) for random walks with step increments of finite variance.

I. INTRODUCTION

The longest increasing subsequence (LIS) problem is to
find an increasing subsequence of maximum length of a given
finite sequence of n elements taken from a partially ordered
set. Let Xn = (X1, . . . ,Xn) be such a sequence—say, of real
numbers. The longest (weakly) increasing subsequence of
Xn is the longest subsequence Xi1 ≤ Xi2 ≤ ·· · ≤ XiL of Xn
such that 1 ≤ i1 < i2 < · · · < iL ≤ n, with L the length of the
LIS. There may be more than one “longest” increasing subse-
quence for a given Xn, with different elements but of the same
maximum length. Algorithmically, it takes O(n log logn) time
to find one LIS of a given sequence of n elements [1].

The classical LIS problem is that of determining the LIS
of a random permutation. The problem seems to have been
first considered by Stanislaw Ulam in the early 1960s [2].
The resolution of the LIS problem for random permutations
culminated with the exact characterization of Ln as a random
variable distributed like Ln ∼ 2

√
n + 6
√

n χ with P(χ ≤ s) =
F2(s), the Tracy-Widom distribution for the fluctuations of the
largest eigenvalue of a Gaussian unitary random matrix en-
semble about its soft edge [3, 4]. Comprehensive expositions
on the LIS problem for random permutations appear in [5, 6].

Recently, another version of the LIS problem has been
posed [7, 8]: what is the behavior of the LIS of a random
walk? Let Xn = (X1, . . . ,Xn) be the sequence of terms of a
random walk given by

X0 = 0, Xt = Xt−1 +ξt , t = 1, . . . ,n, (1)

with the ξt , t = 1, . . . ,n, independent random variables iden-
tically distributed according to some zero-mean, symmetric
probability distribution φ(ξ ). The sequence Xn constitutes a
time-series of correlated random variables—if the expectation
E(ξ 2) 6= 0, then E(Xt Xs) 6= 0. In [7], the authors showed that
when φ(ξ ) has finite positive variance, then for all ε > 0 and
large enough n the length Ln of the LIS of Xn observes

c
√

n≤ E(Ln)≤ n
1
2 +ε (2)
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for some positive constant c. The upper bound in Eq. (2) does
not rule out a logarithmic term, and can actually be read like

E(Ln)≤
√

n(lnn)a (3)

for some a≥ 0. In [8], the authors further proved that the ex-
pected length of the LIS of a particular random walk with step
lengths of ultra-heavy distribution without any finite (integer
or fractional) moment scales with the length of the walk as

nβ0−o(1) ≤ E(Ln)≤ nβ1+o(1), (4)

with non-sharp β0 ' 0.690 and β1 ' 0.815. Besides the
bounds (2)–(4), little is known rigorously about the LIS of
random walks. Figure 1 displays two random walks of 300
steps distributed according to a Student’s t-distribution (see
Sec. II), one with parameter ν = 1 (the same as the Cauchy
distribution) and the other with parameter ν = 4, together with
one of their LIS each.

In order to improve our knowledge about the LIS of random
walks, we ran Monte Carlo simulations to estimate the scaling
of Ln for several different distributions of step lengths [9]. The
simulations showed that

E(Ln)∼ nθ (5)

with a non-universal scaling exponent 0.60 . θ . 0.69 for
the heavy-tailed distributions of step lengths examined, with
θ increasing as the distribution of step lengths becomes more
heavy-tailed. For distributions of finite variance, assuming
the validity of Eq. (5), we found a value θ ' 0.57, irrespec-
tive of the particular distribution. A closer look into the data
for random walks with step lengths of finite variance led us
to conjecture that the asymptotic behavior of E(Ln) in these
cases is given by

E(Ln)∼
1
e
√

n lnn+
1
2
√

n (6)

plus lower order terms, although the constants are presumed
based on least squares adjustements. Moreover, we found that
the empirical distribution of Ln seems to be of the form

f (Ln) =
1

E(Ln)
g
( Ln

E(Ln)

)
, (7)
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FIG. 1. Student’s t-random walks of 300 steps each with parameters ν = 1 (left panel) and ν = 4 (right panel) together with one of their LIS
(small circles). Note the different vertical scales.

with E(Ln) given by Eq. (5) or (6) depending on whether φ(ξ )
has finite second moment or not. Accordingly, when the step
lengths are of finite variance g(z) should be universal. Plots
of g(z) for different distributions of step lengths appear in
Ref. [9]; see also Fig. 4. The form (7) has been further tested
in Ref. [10], that probed the distribution of Ln into regions of
very small probabilities for random walks with uniform incre-
ments ξ ∼U(−1,1). The authors found very good agreement
between Eqs. (6)–(7) and their data. They also estimated that
the large deviation rate function Φ(L) associated with the dis-
tribution of Ln by

f (Ln)� exp(−nΦ(Ln)). (8)

behaves asymptotically, in the limit of large n → ∞, like
Φ(L) ∼ L−1.6 in the left tail and like Φ(L) ∼ L2.9 in the right
tail. Despite this characterization, the distribution g(z) re-
mains unknown. It is tempting to conjecture that the actual
exponents in Φn(L) are, respectively, L−3/2 and L3, in which
case they would be the same as those of the large deviation
rate function of the Tracy-Widom F2 distribution with the
sides (left ↔ right) and the signs flipped [11]. Note, how-
ever, that unlike in Eq. (8), the large deviation rate function
for the Tracy-Widom distribution in the right tail is defined
by a relationship of the form exp(−

√
nΦ(L)), i. e., with an

unusual
√

n scaling.
In this paper we provide an updated account on the LIS

problem for random walks. While in previous studies of the
problem only specific distributions φ(ξ ) of step increments
were considered, in Section II we employ a parametrized dis-
tribution, namely, the Student’s t-distribution, that allows us
to investigate the dependence of the scaling exponent θ in
(5) with the heavy-tail index of the distribution of step incre-
ments. In Sec. III, we further verify the proposed scaling form
Eqs. (6)–(7) with new and independent data, this time taking
the full distribution of available data into account. We also set
down some remarks on the resemblance between the statis-
tics of the LIS problem for random walks of finite variance
and the random partition problem under the uniform measure.
Section IV concludes the paper with some perspectives for
further study along the lines explored here.

II. LIS OF HEAVY-TAILED RANDOM WALKS

We investigate the behavior of the scaling exponent appear-
ing in the relation Ln ∼ nθ for random walks with heavy-tailed
distribution of step increments as a function of their character-
istic index α , defined by

φα(|ξ | � 1)∼ |ξ |−1−α . (9)

We want to check whether there exists a well defined rela-
tionship between θ and α . In order to access a range of val-
ues of α ≤ 2 (such that E(ξ 2) = ∞), we employ Student’s
t-distribution [12]

φν(ξ ) =
Γ
[ 1

2 (ν +1)
]

√
νπ Γ

( 1
2 ν
)(1+

ξ 2

ν

)− 1
2 (ν+1)

, (10)

where Γ(z) is the usual gamma function and ν is a parameter.
This well-known distribution appears in inference problems
about unknown parameters (mean or variance or both) of a
normal population. In statistical applications ν ≥ 1 is a natu-
ral number, but for general modeling purposes ν can be taken
a real positive number. When ν < ∞, Student’s t-distribution
displays a heavy tail φν(|ξ |� 1)∼ |ξ |−1−ν , with infinite vari-
ance if ν ≤ 2 and finite variance ν/(ν−2) for ν > 2. We see
that ν plays the role of the tail index α in Eq. (9). Student’s
t-distribution becomes the Gaussian distribution in the limit
ν → ∞.

For each parameter ν and walk length n, we generate 104

realizations of Xn, compute their Ln and estimate the empiri-
cal average 〈Ln〉 and variance 〈L2

n〉−〈Ln〉2. In our simulations
104 ≤ n≤ 107 and 1

2 ≤ ν ≤ 5. Whenever E(ξ 2) is finite (i. e.,
ν > 2), we use normalized random variables ξ/

√
E(ξ 2) for

the step increments. We found that these quantities scale like

〈Ln〉 ∼ nθ and 〈L2
n〉−〈Ln〉2 ∼ nγ (11)

over the three decades range of n investigated; data from
[9, 10] indicate that Eq. (11) actually holds over much larger
intervals. Figure 2 displays log-log plots of 〈Ln〉 and 〈L2

n〉−
〈Ln〉2 for ν = 2

3 for illustration. Least-squares fits provide
estimates for θ and γ; see Table I. In all cases we obtained
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FIG. 2. Log-log plot of the empirical mean (left panel) and empirical
variance (right panel) of Ln for the Student’s t-random walk with
parameter ν = 2/3 together with the least-squares fits (dashed lines).
The fact that the curves have virtually the same slope in the different
vertical scales on the graphs suggests that γ ' 2θ . Each point was
obtained from an average over 104 sample random walks.

γ ' 2θ to a very good precision, in agreement with the picture
provided by Figure 2, suggesting that the p.d.f. of Ln indeed
follows the form (7), since then the kth moment of Ln becomes

E(Lk
n) =

∫
Lk

n f (Ln)dLn =

= E(Ln)k
∫

zk
n g(zn)dzn = cn,k E(Ln)k,

(12)

with zn = Ln/E(Ln) and cn,k the kth moment of the distribution
g(zn) = E(Ln) f (E(Ln)zn). We see that, with f (Ln) like in
Eq. (7), all moments E(Lk

n) ∝ E(Ln)k, as our data for k = 1
and 2 do. Note that, as a consequence,

Var(Ln) = E(L2
n)−E(Ln)2 = (cn,2− c2

n,1)E(Ln)2, (13)

and the random variable Ln cannot possibly be self-averaging
unless (cn,2− c2

n,1)
n−→ 0, i. e., unless g(zn) becomes increas-

ingly more concentrated with n,

g(zn)
n−→ δ (z− c1). (14)

Our data indicate, however, that g(zn) remains broad irrespec-
tive of how large n gets.

Figure 3 displays a log-log plot of θ against ν . The plot
does not suggest any clear functional relationship between θ

and ν—we were hoping for something like θ ∼ νz in the inter-
val ν ≤ 2. Otherwise, θ saturates at θ ' 0.57 for distributions
of step lengths of finite variance (ν > 2), with a “transient”
behavior in the interval 2 < ν ≤ 3 that we attribute to the fi-
nite length of the random walks (n ≤ 107 steps). If we repeat
the analysis of Ref. [9] for the Student’s t-random walks, we
obtain that for random walks with step lengths of infinite vari-
ance Ln follows (5) with a nonuniversal exponent θ , as we can
see from Table I, while for random walks with step lengths of
finite variance Ln follows (6), confirming previously obtained
results with other distributions [9, 10]. In Section III B, how-
ever, we revisit the estimation of the constants appearing in
(6).

Figure 4 displays data collapse for our LIS data for some se-
lected ν employing expressions (5) or (6), depending whether

ν < 2 or ν ≥ 2, respectively. The curve resulting from the
data collapse corresponds to the empirical distribution g(z) in
Eq. (7). We see very good data collapse, all virtually with the
same form for g(zn). We also see that it is definitely not the
case that g(zn)

n−→ δ (z) (cf. Eqs. (12)–(14)).
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FIG. 3. Log-log plot of the scaling exponent θ against the tail index
ν . The dashed vertical lines delimit the intervals in which φν (ξ )
(Eq. (10)) does not have finite integer moments (ν ≤ 1), has only
finite mean (1 < ν ≤ 2), and has finite mean and variance (ν > 2).

III. REMARKS ON THE LIS OF RANDOM WALKS
OF FINITE VARIANCE

A. A wishful (but unlikely) connection with integer partitions

Recall that a partition of a natural number n is a sequence of
integers λ1 ≥ ·· · ≥ λk > 0 such that λ1 + · · ·+λk = n. For ex-
ample, (5,4,3) and (4,4,2,1,1) are two partitions of n = 12.
As is well known, integer partitions play an important role in
the solution of the LIS problem for random permutations [4–
6]. In this case, the partitions carry the Plancherel measure

TABLE I. Exponents θ and γ according to (11) for selected values
of tail index ν . The ratio γ/θ ' 2 suggests form (7) for the p.d. f. of
Ln. The numbers between parentheses indicate the uncertainty in the
last digit of the data.

ν θ γ γ/θ

1/2 0.7051(6) 1.419(2) 2.01
1 0.6850(5) 1.372(3) 2.00

3/2 0.639(1) 1.282(3) 2.01
2 0.594(2) 1.198(5) 2.01

5/2 0.578(2) 1.161(6) 2.01
3 0.574(2) 1.151(5) 2.00

7/2 0.573(2) 1.151(5) 2.01
4 0.573(2) 1.148(5) 2.00
5 0.574(2) 1.151(5) 2.01



4

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 1 2

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ●●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 1

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 3 2
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●●
●

●●●●●●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 3

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ln 〈Ln〉

〈L
n
〉 f

(L
n
)

●

●

1×104

2×104

5×104

1×105

2×105

5×105

1×106

2×106

5×106

1×107

ν = 4

FIG. 4. Data collapse for some LIS data according to expressions
(5)–(6). The upper panels (first row) display data for the LIS of ran-
dom walks with step lengths with both infinite mean and variance
(ν ≤ 1), the middle panels (second row) display data when the step
increments have finite mean but infinite variance (1 < ν ≤ 2), and the
bottom panels (last row) display data obtained from random walks
with step increments with both mean and variance finite (ν > 2).

given by P(λ ) = (dimλ )2/n!, where dimλ is the dimension
of the irreducible representation of the symmetric group Sn
indexed by λ or, equivalently, the number of Young tableaux
of shape λ . The correspondence between permutations and
integer partitions (via the Robinson-Schensted-Knuth corre-
spondence between permutations and Young tableaux) then
allows one to identify the largest part of the partition λ with
the length of the LIS of the original permutation.

Clearly, other probability measures for random integer par-
titions have also been considered. Of particular interest to us
is the uniform measure given by P(λ ) = 1/n!. This is because
the expected size of the largest part λ1 of a partition of a large
integer n drawn from the set of all partitions of n uniformly at
random is given asymptotically by [13–17]

E(λ1) =
√

n
4ζ (2)

(
lnn+2γE − lnζ (2)

)
+O(lnn), (15)

where ζ (2) = π2/6 and γE = 0.577215 · · · is Euler’s con-
stant. Equation (15) has, to leading and subleading order, the

same functional form as the conjectured expression (6) for the
asymptotic behavior of the length of the LIS of random walks
with step lengths of finite variance. Moreover, the constant
1/
√

4ζ (2) = 0.389848 · · · accompanying the leading term of
Eq. (15) is close to the conjectured 1/e = 0.367879 · · · in (6).
In the random partition model, however, the largest part λ1
fluctuates, asymptotically for large n, like a Gumbel random
variable with distribution

P(λ1 ≤ λ ) = FG

(
λ −

√
n/4ζ (2) ln

(
n/4ζ (2)

)
2
√

n/4ζ (2)

)
, (16)

where FG(z) = exp(−e−z) [14, 16]. We can thus check
whether Eq. (15) makes sense in the context of the LIS prob-
lem for random walks beyond mere coincidence by checking
whether our LIS data follow a Gumbel distribution.

The mean and variance of a Gumbel random variable with
p.d.f.

fG(x; µ,β ) =
1
β

exp
[
−
(x−µ

β

)
− exp

(
− x−µ

β

)]
(17)

are given by

E(x) = µ + γEβ and Var(x) =
π2

6
β

2. (18)

If we substitute the sample mean 〈Ln〉 = 69946 for E(x) and
the sample variance 〈L2

n〉−〈Ln〉2 ' 8.399×108 for Var(x) of
a LIS dataset obtained from 104 Gaussian random walks of
n = 108 steps each, we obtain the following simple estimation
of the parameters µ and β for the data,

µ̂ ' 56903 and β̂ ' 22597. (19)

We do not care about the uncertainties in µ̂ or β̂ because
they are relatively small and because the estimation pro-
cedure itself (the “method of moments”) is only approxi-
mate. While µ̂ (as well as 〈Ln〉) is not very far from the
respective factor in Eq. (16) with n = 108, to wit, µ =√

n/4ζ (2) ln(n/4ζ (2)) = 64468, the value of β̂ differs sig-
nificantly from β = 2

√
n/4ζ (2) = 7797. Figure 5 displays

the histogram of the LIS data together with a plot of fG(z) =
F ′G(z) = exp(−z− e−z). The fit looks good, but not excel-
lent. In fact, the Gumbel distribution has a skewness of
12
√

6ζ (3)/π3 = 1.139 · · · , while the data distribution has
skewness ' 0.976 (irrespective of linear scaling). Whether
this discrepancy is a finite-size effect is not clear at this mo-
ment. It should be remarked, however, that LIS data obtained
from a uniform U(−1,1) distribution of step increments with
other values of walk length n provide pretty much the same
overall picture as in Fig. 5 and seems to be nearly indepen-
dent of n.

We leave the quantification of the “Gumbel hypothesis” to
a future study employing more sophisticated density estima-
tion techniques and hypothesis testing to tame uncontrolled
magical thinking [18]. In Section III B, however, we will dis-
cover that Eq. (15) cannot be easily discarded as a possible
scaling form for the length of the LIS of random walks with
step lengths of finite variance.
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B. Constraining the range of the parameters in the asymptotic
formula for E(Ln)

The constants 1/e and 1/2 appearing in the asymptotic for-
mula (6) for the E(Ln) of random walks with distribution of
step increments of finite variance were originally guessed in
Ref. [9] based on linear least-squares fits to the data. Equa-
tion (15), with the same functional form, displays, respec-
tively, the constants 1/

√
4ζ (2) = 0.389848 · · · and

(
2γE −

lnζ (2)
)
/
√

4ζ (2) = 0.256025 · · · . These led us to reassess
the numerical values of the constants appearing in (6) by a
more refined approach.

Assuming that Eq. (7) holds for the distribution of Ln and
that E(Ln) behaves asymptotically like

E(Ln)∼ a
√

n lnn+b
√

n, (20)

we can use the entire measured distributions to estimate the
parameters a and b and give confidence intervals on their pos-
sible values. For a given pair (a,b) we scale the data points
according to Eq. (20) and estimate the quality S(c)

a,b (superscript
(c) for “collapse,” see below) of the resulting data collapse by
a method first introduced in [19] and refined in [20] in the
context of the finite-size scaling analysis of phase transitions.
The method works by estimating the best master curve on
which the data points for different sizes n should collapse. The
quality S(c)

a,b is defined as the mean-square distance of the data
points to the master curve in units of the standard error, simi-
lar to a χ2 test. If the data points are on average one standard
error away from the estimated master curve, the data collapse
will have a quality of S(c)

a,b = 1. Values S(c)
a,b � 1 indicate that

the standard errors are overestimated; values S(c)
a,b� 1 indicate

that the data points do not collapse within error bars, i. e., that
the quality of the data collapse is bad. A data collapse of bad
quality might be due, besides the inevitable errors in the es-
timation of the master curve, also to finite-size effects in the

data and corrections to the functional form (20) itself.

In our case, care should be exercised in the application of
the method because the scaling function g(z) (see Eq. (7)) is
insensitive to the multiplication of Ln, and thus E(Ln), by a
nonzero factor, i. e., to any rescaling (a,b)→ (ra,rb) by some
(real) r 6= 0. This leaves the determination of the optimal (a,b)
ill-defined. To fix this we compare the average value of each
data set with the values predicted by Eq. (20) for every pair
(a,b) tested. We then apply the same method as before to
compute the quality figure S(m)

a,b (superscript (m) for “mean”)
using Eq. (20) as the master curve with an added generous
uncertainty of ±0.05×E(Ln) to account for finite-size effects
and possible lower-order terms. Note that the minimum of
S(m)

a,b corresponds to a standard least-squares fit.

The above mentioned analyses were performed on data ob-
tained from random walks of n = 216, 217, 218, and 219 steps
distributed according to a uniform U(−1,1) distribution; for
each value of n, 106 sample random walks (and thus 106 data
points Ln) are generated. Because data collapse is a matter of
the form of a curve, we perform the collapse on ln f (Ln). This
means that instead of the absolute standard errors σ of each
data point we use the relative σ/ f (Ln) instead.

Figure 6 displays the contour plot of the composite qual-
ity factor Sa,b = 1

2

(
S(c)

a,b + S(m)
a,b

)
for our data, which are col-

lected by a scan through the (a,b) space in discrete steps
of ∆a = 0.003 and ∆b = 0.01 of the aforementioned proce-
dure. The best quality S(min)

a,b ≈ 0.7 was achieved for (a,b) =

(0.36,0.36). The equi-quality lines at S(min)
a,b +1 and S(min)

a,b +2
can be roughly understood as 1σ and 2σ confidence inter-
vals around the best quality S(min)

a,b [19, 20]. Note that the pre-
cise shape of the confidence intervals depend on the weight-
ing of the terms in the composite quality—for instance, a
larger weight on S(m)

a,b , say Ŝa,b = 1
4

(
S(c)

a,b + 3S(m)
a,b

)
, leads to a

further elongation of the equi-quality loci. Figure 7 shows
the data collapse as well as the least-squares fit which, in
combination, yield the best quality. A further data collapse
using high precision data from Ref. [10] in the far tails of
the distribution shows a different picture, with S(min)

a,b = 81 at
(a,b) = (0.33,0.68). This data collapse, although still includ-
ing the pair (1/e,1/2) within the second interval, is clearly of
bad quality (S(min)

a,b � 1), probably because of strong finite-size
effects, since we only have data in the far tails of the distribu-
tions for small walk lengths n ≤ 4096. This data collapse is
therefore not shown.

We see from Fig. 6 that both pairs (a,b) = (1/e,1/2),
which was proposed in [9] based on least-squares fits of
mean values 〈Ln〉 for the LIS of Gaussian random walks, and
(a,b) = (0.389848 · · · ,0.256025 · · ·) of Eq. (15) lie within the
second confidence interval suggested by our method. Since
the data sources are independent and even originate from dif-
ferent distributions of step increments, we see this as an argu-
ment in favor of the proposed scaling form (20).
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FIG. 6. Quality landscape Sa,b obtained for random walks of n = 216,
217, 218, and 219 uniformly, U(−1,1) distributed steps; 106 ran-
dom walks were generated for each n. The square symbol indicates
the point (1/e,1/2) proposed in [9], the circle indicates the point
(0.389848 · · · ,0.256025 · · ·) corresponding to Eq. (15), and the cross
indicates the point (0.36,0.36) at which Sa,b attains its minimum.
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FIG. 7. Data collapse of the distributions with the optimal pair
(a,b) = (0.36,0.36) that minimizes Sa,b. The inset shows the em-
pirical averages 〈Ln〉 and their prediction according to Eq. (20) with
the optiml constants (a,b) = (0.36,0.36).

IV. SUMMARY AND CONCLUSIONS

We have extended previous studies on the length Ln of the
LIS of heavy-tailed random walks by considering Student’s t-
distributions with several different values of the parameter ν .
We found that Ln scales like E(Ln)∼ nθ with a non-universal
θ when φ(ξ ) has infinite variance, but could not find a clear
relationship θ = θ(ν) between these quantities besides the de-
creasing behavior θ ′(ν) < 0. When φ(ξ ) is of finite variance

(ν > 2), we recover the asymptotic behavior given by (6), but
with newly estimated constants. Our best current estimate for
the constants appearing in expression (20), based on a sophis-
ticated combined consideration of the behavior of the mean
and of the scaling of the full distribution, are a = 0.36(3) and
b = 0.36(30).

We could not obtain data for ν < 1
2 . The simulation of

very heavy-tailed random walks is complicated by the fact
that one needs to add numbers of widely different orders of
magnitude while keeping their full significance. This can be
done with numerical libraries that implement arbitrary preci-
sion arithmetic, but the efficiency of the simulations suffers
enormously. It would be desirable to compute the LIS of
heavy-tailed random walks in the ν → 0 limit to check how
θ scales with ν in this limit and how it compares with (4).

While the Plancherel distribution of the largest part of an in-
teger partition coincides with the distribution of the length of
the LIS of a uniformly distributed random permutation [4–6],
the similarity between (6) and Eq. (15) does not imply any ob-
vious relationship between the LIS of random walks and ran-
dom integer partitions under the uniform measure. Our best
estimated constants a and b for expression (20), however, can-
not rule out Eq. (15) as a good candidate scaling form for the
length of the LIS of random walks with step lengths of finite
variance, and whether the LIS of these random walks follows
a Gumbel distribution is open to debate. In a further study we
intend to apply more refined density estimation techniques in
the selection of an empirical model for the data; knowledge
of the tail behavior, as provided by [10], is a valuable piece of
information in this regard.

Finally, we would like to remark that the elucidation of a
possible combinatorial structure behind the LIS of random
walks remains a tantalizing issue.
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