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Distribution of shortest path lengths in subcritical Erdős-Rényi networks
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Networks that are fragmented into small disconnected components are prevalent in a large variety of systems.
These include the secure communication networks of commercial enterprises, government agencies, and illicit
organizations, as well as networks that suffered multiple failures, attacks, or epidemics. The structural and
statistical properties of such networks resemble those of subcritical random networks, which consist of finite
components, whose sizes are nonextensive. Surprisingly, such networks do not exhibit the small-world property
that is typical in supercritical random networks, where the mean distance between pairs of nodes scales
logarithmically with the network size. Unlike supercritical networks whose structure has been studied extensively,
subcritical networks have attracted relatively little attention. A special feature of these networks is that the statistical
and geometric properties vary between different components and depend on their sizes and topologies. The overall
statistics of the network can be obtained by a summation over all the components with suitable weights. We use a
topological expansion to perform a systematic analysis of the degree distribution and the distribution of shortest
path lengths (DSPL) on components of given sizes and topologies in subcritical Erdős-Rényi (ER) networks.
From this expansion we obtain an exact analytical expression for the DSPL of the entire subcritical network, in
the asymptotic limit. The DSPL, which accounts for all the pairs of nodes that reside on the same finite component
(FC), is found to follow a geometric distribution of the form PFC(L = �|L < ∞) = (1 − c)c�−1, where c < 1 is
the mean degree. Using computer simulations we calculate the DSPL in subcritical ER networks of increasing
sizes and confirm the convergence to this asymptotic result. We also obtain exact asymptotic results for the mean
distance, 〈L〉FC, and for the standard deviation of the DSPL, σL,FC, and show that the simulation results converge
to these asymptotic results. Using the duality relations between subcritical and supercritical ER networks, we
obtain the DSPL on the nongiant components of ER networks above the percolation transition.
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I. INTRODUCTION

Network models provide a useful framework for the analysis
of a large variety of systems that consist of interacting objects
[1–3]. In these models, the objects are represented by nodes
and the interactions between them are described by edges. A
pair of nodes, i and j , may be connected via many different
paths. The shortest among these paths are of particular impor-
tance because they provide the fastest and often the strongest
interaction. Broadly speaking, one can distinguish between two
major classes of networks: supercritical networks, which are
tightly connected, and subcritical networks, which are loosely
connected. Supercritical networks form a giant component that
encompasses a macroscopic fraction of all the nodes, while the
typical distance between pairs of nodes on the giant component
scales logarithmically with the network size. Examples of
such networks are the worldwide web, social networks, and
infrastructure networks of transportation, telephone, internet,
and electricity. In contrast, subcritical networks are fragmented
into small components that do not scale with the overall
network size. Examples of fragmented networks include secure
networks with controlled access, such as the communication
networks of commercial enterprises, government agencies, and
illicit organizations [4]. Other examples include networks that
suffered multiple failures, large scale attacks, or epidemics,
in which the remaining functional or uninfected nodes form
small, isolated components [5,6]. In spite of their prevalence,

fragmented networks are of low visibility and have not attracted
nearly as much attention as supercritical networks.

Random networks of the Erdős-Rényi (ER) type [7–9] are
the simplest class of random networks and are used as a
benchmark for the study of structure and dynamics in complex
networks [10]. The ER network ensemble is a maximum
entropy ensemble, under the condition that the mean degree
〈K〉 = c is fixed. It is a special case of a broader class of
random uncorrelated networks, referred to as configuration
model networks [2,11,12]. In an ER network of N nodes, each
pair of nodes is independently connected with probability p,
such that the mean degree is c = (N − 1)p. The ensemble of
such networks is denoted by ER[N,p]. The degree distribution
of these networks follows a Poisson distribution of the form

π (K = k) = e−cck

k!
. (1)

ER networks exhibit a percolation transition at c = 1 such
that for c > 1 there is a giant component, while for 0 < c <

1 the network consists of small, isolated tree components
[10,13]. The probability that a random node in the network
resides on the giant component is denoted by g = g(c). Clearly,
below the percolation transition g = 0. Above the transition
[10]

g(c) = 1 + W(−ce−c)

c
, (2)
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where W(x) is the Lambert W function [14]. For networks in
the range 1 < c < ln N , the probability g satisfies 0 < g < 1;
namely the giant and finite components coexist, while for c >

ln N the giant component encompasses the whole network and
g = 1.

To characterize the paths connecting random pairs of nodes,
measures such as the mean distance and the diameter were
studied [11,15–19]. For supercritical ER networks, it was
shown that the mean distance, 〈L〉, scales like 〈L〉 ∼ ln N/ ln c,
in agreement with rigorous results, showing that percolating
random networks are small-world networks [15,17]. For sub-
critical ER networks it was recently shown that the distribution
of diameters over an ensemble of networks follows a Gum-
bel distribution of extreme values [19]. This is due to the
fact that in subcritical networks the diameter is obtained by
maximizing the distances over all the small components. For
supercritical networks, the entire distribution of shortest path
lengths (DSPL) was calculated using various approximation
techniques [5,6,20–26]. However, the DSPL of subcritical
networks has not been studied.

The DSPL provides a natural platform for the study of
dynamical processes on networks, such as diffusive processes,
epidemic spreading, critical phenomena, synchronization, in-
formation propagation, and communication [1–3,27]. Ther-
mal and dynamical processes on networks resemble those
of systems with long range interactions [28] in the sense
that extensivity is broken and standard statistical physics
techniques do not apply. Therefore, it is important to develop
theoretical approaches that take into account the topological
and geometrical properties of complex networks. In fact, the
DSPL provides exact solutions for various dynamical problems
on networks. In the context of traffic flow on networks, the
DSPL provides the distribution of transit times between all
pairs of nodes, in the limit of low traffic load [29]. In the
context of search processes, the DSPL determines the order in
which nodes are explored in the breadth-first search protocol
[29]. In the context of epidemic spreading, the DSPL captures
the temporal evolution of the susceptible-infected epidemic, in
the limit of high infection rate [27]. In the context of network
attacks, the DSPL describes a generic class of violent local
attacks, which spreads throughout the network [30]. It is also
used as a measure that quantifies the structural dissimilarities
between different networks [31].

The DSPL provides a useful characterization of empirical
networks. For example, the DSPL of the protein network in
Drosophila melanogaster was compared to the DSPL of a
corresponding randomized network [32]. It was shown that
proteins in this network are significantly farther away from
each other than in the randomized network, providing useful
biological insight. In the context of brain research, it was found
that the DSPL and the distribution of shortest cycle lengths
[33] determine the periods of oscillations in the activity of
neural circuits [34,35]. In essence, shortest paths and shortest
cycles control the most important feedback mechanisms in
these circuits, setting the characteristic time scales at which
oscillations are sustained.

As mentioned above, in the asymptotic limit, N → ∞, ER
networks exhibit a percolation transition at c = 1. For c < 1,
an ER network consists of finite components (FCs), which
are nonextensive in the network size, while for c > 1 a giant

component (GC) is formed, which includes a finite fraction
of the nodes in the network [10]. When two nodes, i and
j , reside on the same component, the distance, �ij , between
them is defined as the length of the shortest path that connects
them. In the networks studied here, whose edges do not carry
distance labels, the length of a path is given by the number
of edges along the path. When i and j reside on different
components, there is no path connecting them and we define
the distance between them to be �ij ≡ ∞. We denote the

probability distribution PFC(L = �) as the DSPL over all
(
N

2

)
pairs of nodes in a subcritical ER network. The probability that
two randomly selected nodes reside on the same component,
and thus are at a finite distance from each other, is denoted by
PFC(L < ∞) = 1 − PFC(L = ∞).

Here we focus on the conditional DSPL between pairs of
nodes that reside on the same component, denoted by PFC(L =
�|L < ∞), where � = 1,2, . . . ,N − 1. The conditional DSPL
satisfies

PFC(L = �|L < ∞) = PFC(L = �)

PFC(L < ∞)
. (3)

In this paper we use a topological expansion to perform a
systematic analysis of the degree distribution and the DSPL on
finite tree components of all sizes and topologies in subcritical
ER networks. We find that in the asymptotic limit the DSPL is
given by a geometric distribution of the form PFC(L = �|L <

∞) = (1 − c)c�−1, where c < 1. Using computer simulations
we calculate the DSPL in subcritical ER networks of increasing
sizes and confirm the convergence to this asymptotic result. We
also show that the mean distance between pairs of nodes that
reside on the same component is given by 〈L〉FC = 1/(1 − c).
The average size of the tree components (obtained by random
sampling of trees) is 〈S〉FC = 2/(2 − c). However, the average
tree component size, obtained by random sampling of nodes,
is 〈S̃〉FC = 1/(1 − c). Thus, the mean distance turns out to
scale linearly with the average tree component size on which a
random node resides. This is in contrast to supercritical random
networks, in which the mean distance scales logarithmically
or even sub-logarithmically with the network size [15–17,36].
Using duality relations connecting the nongiant components
of supercritical ER networks to the corresponding subcritical
ER networks [10,37–39], we obtain the DSPL of the nongiant
components of the ER network above the percolation transi-
tion.

The paper is organized as follows. In Sec. II we describe
recent results for the DSPL of supercritical networks. In Sec. III
we review some fundamental properties of subcritical ER
networks, which are used in the analysis below. In Sec. IV
we present the topological expansion. In Sec. V we apply the
topological expansion to calculate the degree distribution of
subcritical ER networks. In Sec. VI we calculate the mean and
variance of the degree distribution. In Sec. VII we apply the
topological expansion to calculate the DSPL of subcritical ER
networks. In Sec. VIII we calculate the mean and variance of
the DSPL. The results are discussed in Sec. IX and summarized
in Sec. X. In Appendix A we present the calculation of the
component size distribution, PFC(S = s), in subcritical ER
networks, which is used in the topological expansion. In
Appendix B we present the calculation of the probability,
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PFC(L < ∞), that two random nodes in a subcritical ER
network reside on the same component.

II. THE DSPL OF SUPERCRITICAL
ERDŐS-RÉNYI NETWORKS

Consider a pair of random nodes, i and j , in a supercritical
ER network of N nodes. The probability that both of them
reside on the giant component is g2. The probability that one
of them resides on the giant component and the other resides on
one of the finite components is 2g(1 − g), while the probability
that both reside on finite components is (1 − g)2. In the case
in which both nodes reside on the giant component, they
are connected to each other by at least one path. Therefore,
the distance between them is finite. In the case in which one
node resides on the giant component while the other node
resides on one of the finite components, the distance between
them is �ij = ∞. In the case in which both nodes reside on
finite components, a path between them exists only in the low
probability case in which they reside on the same component.
The finite components are trees and therefore the shortest path
between any pair of nodes is unique.

The DSPL of a supercritical ER network can be expressed
by

P (L = �) = g2PGC(L = �) + (1 − g)2PFC(L = �), (4)

where the first term accounts for the DSPL between pairs of
nodes that reside on the giant component and the second term
accounts for pairs of nodes that reside on finite components.
This form is particularly useful in the range of 1 < c < ln N , in
which the giant component and the finite components coexist.
The probability that there is no path connecting a random pair
of nodes is given by

P (L = ∞) = 2g(1 − g) + (1 − g)2PFC(L = ∞). (5)

The first term in Eq. (5) accounts for the probability that
one node resides on the giant component while the other
resides on one of the finite components. The second term
accounts for the probability that the two nodes reside on two
different finite components and are thus not connected by a
path. In order to obtain accurate results for the DSPL of an ER
network in this regime, one needs to calculate both the DSPL
of the giant component, PGC(L = �), and the DSPL of the fi-
nite components, PFC(L = �) = PFC(L = �|L < ∞)PFC(L <

∞). The giant component of an ER network with 1 < c < ln N

is a more complicated geometrical object than the whole
network. Its degree distribution deviates from the Poisson
distribution and it exhibits degree-degree correlations. The
degree distribution and degree-degree correlations in the giant
component of supercritical ER networks with 1 < c < ln N

were recently studied [39]. Using these results, the DSPL of
the giant component was calculated [39].

For c > ln N the network consists of a single connected
component and the DSPL of the whole network can be calcu-
lated using the recursion equations presented in Refs. [24,25].
In this approach one denotes the conditional probability,
P (L > �|L > � − 1), that the distance between a random pair
of nodes, i and j , is larger than �, under the condition that
it is larger than � − 1. A path of length � from node i to
node j can be decomposed into a single edge connecting node

i and node r ∈ ∂i (where ∂i is the set of all nodes directly
connected to i), and a shorter path of length � − 1 connecting
r and j . Thus, the existence of a path of length � between
nodes i and j can be ruled out if there is no path of length
� − 1 between any of the nodes r ∈ ∂i and j . For sufficiently
large networks, the argument presented above translates into
the recursion equation [25]

P (L > �|L > � − 1) = G0[P (L > � − 1|L > � − 2)], (6)

where

G0(x) =
∞∑

k=0

xkπ (K = k) (7)

is the generating function of the Poisson distribution. The
case of � = 1, used as the initial condition for the recursion
equations, is given by P (L > 1|L > 0) = 1 − c/(N − 1). The
recursion equations provide a good approximation for the
DSPL of supercritical ER networks [24–26], for values of c that
are sufficiently far above the percolation threshold. However,
no exact result for the DSPL of supercritical ER networks is
known. Interestingly, for random regular graphs, in which all
the nodes are of the same degree, k = c � 3, there is an exact
result for the DSPL, which can be expressed by a Gompertz
distribution [40] of the form [16,25]

P (L > �) = exp[−β(eb� − 1)], (8)

where β = c/[N (c − 2)] and b = ln(c − 1). For a supercritical
ER network with mean degree c, which is sufficiently far above
the percolation threshold, the DSPL is qualitatively similar to
the DSPL of a random regular graph with degree 	c + 1/2
.
Here, 	x
 is the integer part of x and thus 	x + 1/2
 is the
nearest integer to x. Unlike random regular graphs in which all
the nodes are of the same degree, in supercritical ER networks,
which follow the Poisson degree distribution, the shortest path
length between a pair of nodes is correlated with the degrees
of these nodes. The correlation is negative; namely nodes of
high degrees tend to be closer to each other than nodes of low
degrees. Another simplifying feature of random regular graphs
with c � 3 is that the giant component encompasses the entire
network (g = 1) and thus all pairs of nodes are connected by
finite paths. Since ER networks with 1 < c < ln N consist of a
combination of a giant component and finite components, the
DSPL exhibits a nonzero asymptotic tail and its calculation is
more difficult.

The DSPL on the finite components in supercritical ER
networks is a subleading term in the overall DSPL, which
involves a fraction of (1 − g)2PFC(L < ∞) from the

(
N

2

)
pairs

of nodes in the network. The factor of (1 − g)2 accounts for
the fraction of pairs that reside on the finite components,
while the fraction of those pairs that reside on the same
component is given by PFC(L < ∞). Except for the vicinity of
the percolation transition, which occurs at c = 1, this amounts
to a small fraction of all pairs of nodes.

In the asymptotic limit, ER networks exhibit duality with
respect to the percolation threshold. In a supercritical ER
network of N nodes the fraction of nodes that belong to the
giant component is g [Eq. (2)], while the fraction of nodes
that belong to the finite components is f = 1 − g. Thus, the
subcritical network that consists of the finite components is of
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FIG. 1. Illustration of the structure of one instance of a subcritical
ER network of N = 100 nodes and c = 0.9. It consists of 33 isolated
nodes, 9 dimers, two chains of three nodes, two chains of four nodes,
one tree with a single hub and four branches, one tree with two hubs,
and two larger trees of 10 and 14 nodes.

size N ′ = Nf . This network is an ER network whose mean
degree is c′ = cf , where c′ < 1. This means that the DSPL
of the finite components of a supercritical ER network can be
obtained from the analysis of its dual subcritical network [39].

III. SUBCRITICAL ERDŐS-RÉNYI NETWORKS

In the analysis presented below we use the fact that the
components that appear in subcritical ER networks are almost
surely trees; namely the expected number of cycles is nonex-
tensive [10]. In Appendix A we show that the expected number
of tree components in a subcritical ER network of N nodes is

NT (c) =
(

1 − c

2

)
N, (9)

and the distribution of tree sizes is [10,13]

PFC(S = s) = 2ss−2cs−1e−cs

(2 − c)s!
. (10)

In these trees we define all the nodes of degree k � 3 as hubs
and all the nodes of degree k = 1 as leaves. Linear chains of
nodes that have a hub on one side and a leaf on the other side
are referred to as branches, while chains that have hubs on
both sides are referred to as arms. In Fig. 1 we illustrate the
structure of an ER network of size N = 100 and c = 0.9. It
consists of 33 isolated nodes, 9 dimers, two chains of three
nodes, two chains of four nodes, one tree with a single hub and
four branches, one tree with two hubs, and two larger trees of
10 and 14 nodes.

Selecting two random nodes in a subcritical ER network, the
probability that they reside on the same component is denoted
by PFC(L < ∞). In Appendix B we show that

PFC(L < ∞) = c

(1 − c)N
. (11)

Using this result and the fact that the first two terms of
PFC(L = �) are known exactly, namely PFC(L = 1) = p

and PFC(L = 2) = (1 − p)[1 − (1 − p2)N−2] [24], we obtain
that PFC(L = 1|L < ∞) = 1 − c and PFC(L = 2|L < ∞) =
c(1 − c).

In the next section we introduce the topological expansion
method. In this approach, for each component size, s, we
identify all the possible tree topologies supported by s nodes,
starting from the linear chain, which does not include any hubs,
followed by single-hub topologies, double-hub topologies, and
higher order topologies, which include multiple hubs. For
each tree topology, we calculate its relative weight among all

possible tree topologies of the same size. A special property
of tree topologies is that each pair of nodes is connected by a
single path. Therefore, in subcritical ER networks the shortest
path between any pair of nodes is, in fact, the only path between
them. Using this property we calculate the DSPL for each tree
topology, and use the weights to obtain the DSPL over all the
components that consist of up to s nodes.

IV. THE TOPOLOGICAL EXPANSION

Consider a tree that includes h hubs. Embedded in this tree,
there is a backbone tree, which consists only of the h hubs
and the h − 1 arms that connect them. The structure of the
backbone tree is described by its adjacency matrix, A. This is
a symmetric h × h matrix, in which Aij = 1 if hubs i and j

are connected by an arm, and 0 otherwise. The degrees of the
hubs in the backbone tree are denoted by the vector

�a = (a1,a2, . . . ,ah), (12)

where

ai =
h∑

j=1

Aij . (13)

The structure of the branches is described by the vector

�b = (b1,b2, . . . ,bh), (14)

where bi is the number of branches connected to the ith hub.
The total number of branches in a tree is given by

b =
h∑

i=1

bi. (15)

The topology of a tree with h hubs is fully described by the
adjacency matrix, A, of its backbone tree and its branch vector
�b. We denote such tree topology by

τ = (h,A,�b). (16)

In this classification, the linear chain structure is denoted by
τ = (0, · ,2). It has no nodes and thus h = 0. The matrix A

is not defined and replaced by the “·” sign. The linear chain
has two leaf nodes and it is thus considered as a tree with two
branches. A tree that includes a single hub with b � 3 branches
is denoted by τ = (1,0,b). Here, the matrix A = 0 is a scalar.
A tree that includes two hubs with a branch vector �b = (b1,b2)
is denoted by τ = (2,A,�b), where A is a 2 × 2 matrix of the
form

A =
(

0 1
1 0

)
. (17)

A tree that consists of a chain of three hubs, with a branch
vector �b = (b1,b2,b3), is denoted by τ = (3,A,�b), where A is
a 3 × 3 matrix of the form

A =
⎛⎝0 1 0

1 0 1
0 1 0

⎞⎠. (18)

A tree that includes four hubs, consisting of one central
hub surrounded by three peripheral hubs is denoted by
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FIG. 2. A list of all the possible backbone tree topologies that
consist of up to six hubs (h = 1,2, . . . ,6). The linear chain topology
appears for all values of h. For h � 3 it is the only topology, while
for h � 4 more complex topologies appear and their number quickly
increases.

τ = (4,A,�b), where

A =

⎛⎜⎝0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎞⎟⎠ (19)

and �b = (b1,b2,b3,b4).
In Fig. 2 we present all the possible topologies of the

backbone tree that can be obtained with up to six hubs. The
linear chain topology exists for all values of h. For h � 3 it
is the only topology, while for h � 4 additional topologies
appear and their number quickly increases. More specifically,
for h = 1 the backbone tree is a single hub, for h = 2 it is a
dimer, and for h = 3 it is a linear chain of three hubs. For h = 4
there are two possible tree topologies: a linear chain of hubs
and a tree that consists of a central hub surrounded by three
peripheral hubs. For h = 5 there are three possible topologies
while for h = 6 there are six possible topologies.

The topological expansion is performed such that the sth
order consists of all possible tree topologies that can be
assembled from s nodes. Since each branch consists of at least
one node, the number of branches in a tree that consists of s

nodes and includes h hubs must satisfy

b � s − h. (20)

Unlike the branches, each arm may either consist of a
single edge between the adjacent hubs or include one or more
intermediate nodes. The number of arms connecting the h hubs
in the tree is h − 1. The degree of each hub is given by the sum
of the number of branches and the number of arms connected
to it. While each branch is connected to only one hub, each arm
is connected to two hubs, one on each side. Recalling that the
degree of each hub is k � 3 we find that 2(h − 1) + b � 3h.
Thus, the number of branches in a tree that includes h hubs
must satisfy

b � h + 2. (21)

Combining Eqs. (20) and (21) we obtain a condition on the
minimal tree size that may include h hubs. It takes the form

s � 2h + 2. (22)

h

b

forbidden

0 1 2 3 4 5 6 7 8 9
0 

2 

4 

6 

8 

10 

12 

FIG. 3. Illustration of the range of possible values of b (the
number of branches) in a tree of h hubs, which consists of s nodes.
This range is bounded from below by b = h + 2, due to a topological
constraint, regardless of s (ascending straight line). For a network
that consists of s nodes, it is bounded from above by b = s − h

(descending straight line). The two lines intersect at (h,2h + 2).
Combinations of (h,b) that are possible in a tree of s = 12 nodes are
marked by full circles, while combination that exist only in larger trees
are marked by empty circles. Each backbone tree can be represented
by its adjacency matrix A, which is an h × h matrix. The topology
of a complete tree is denoted by τ = (h,A,�b), where �b = (b1, . . . ,bh)
accounts for a specific division of the b branches between the h hubs.

We thus obtain a classification of all tree structures that can be
assembled from s nodes, where s � 2. For s = 2,3 the linear
chain is the only possible topology. Higher order topologies,
which exist for s � 4, include at least one hub. In a tree of size
s � 4, the number of hubs may take values in the range

h = 1,2, . . . ,

⌊
s

2
− 1

⌋
. (23)

For each choice of h, the number of branches may take any
value in the range

b = h + 2,h + 3, . . . ,s − h. (24)

In Fig. 3 we illustrate the possible values of b in a tree of
h hubs, which consists of s nodes, given by Eq. (24); i.e., the
range is bounded from below by b = h + 2 and from above by
b = s − h. Combinations of (h,b) that are possible in a tree of
s = 12 nodes are marked by full circles, while combinations
that exist only in larger trees are marked by empty circles.

The number of nonisomorphic tree topologies, n(h), which
can be assembled from h nodes quickly increases as a function
of h. For example, the values of n(h) for h = 1,2, . . . ,13
are 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, and 1301,
respectively [41]. An efficient algorithm for generating all the
tree topologies that can be assembled from h nodes is presented
in Refs. [42,43]. A list of all possible tree topologies up to
h = 13 is presented in Ref. [41]. Other web resources include
enumeration of such tree topologies up to h = 20 [44].

Each one of the possible topologies of the backbone tree
is represented by its adjacency matrix, A, which is an h × h

matrix. The degrees of the hubs in the backbone tree are given
by �a = (a1,a2, . . . ,ah). Since the degrees of the hubs, which
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are given by ki = ai + bi , must satisfy the condition ki � 3, the
components of the branch vector, �b = (b1,b2, . . . ,bh), satisfy
the condition

bi � (3 − ai)θ (3 − ai), (25)

where θ (x) is the Heaviside function, which satisfies θ (x) = 1
for x > 0 and θ (x) = 0 for x � 0. The number of branches
required to satisfy this condition is h + 2. In the case in
which b > h + 2, the remaining b − h − 2 branches can be
divided in many different ways between the h hubs. The
number of possible partitions of x identical objects among y

distinguishable boxes is given by the multiset coefficient [45]((
y

x

))
=

(
x + y − 1

x

)
=

(
x + y − 1

y − 1

)
. (26)

Therefore, the number of different tree topologies that can be
obtained from a single topology of a backbone tree of h hubs
is ((

h

b − h − 2

))
=

(
b − 3

h − 1

)
. (27)

Consider all the tree topologies that can be assembled from
s nodes. The weight of each tree topology, τ , is given by the
number of ways to distribute s indistinguishable nodes among
its branches and arms. We denote this weight by W (τ ; s). In
the case of a tree that consists of a linear chain of s nodes, there
are no degrees of freedom. Therefore, its weight is

W [τ = (0, · ,2); s] = 1. (28)

The weight of a tree of s nodes that consists of a single hub
and b branches is given by

W [τ = (1,0,b); s] =
(

s − 2

b − 1

)
. (29)

Here the binomial factor counts the number of possibilities to
distribute s − 1 nodes between the b branches, such that each
branch consists of at least one node. The weight of a tree with
two hubs is

W [τ = (2,A,�b); s] =
(

s − 2

b

)
. (30)

In this case the binomial coefficient accounts for the number
of ways to distribute s − 2 nodes between the b branches and
one arm, where each branch includes at least one node.

In general, the weight of a tree structure consisting of s

nodes, h hubs (connected by h − 1 arms), and a branch vector
�b is

W [τ = (h,A,�b); s] =
(

s − 2

h + b − 2

)
. (31)

This result can be understood as follows. Among the s nodes,
h nodes are fixed as hubs while each one of the b branches
includes at least one node. Therefore, there are x = s − h −
b nodes that can be distributed among the y = b + h − 1
branches and arms. Using Eq. (26) for the number of possible
divisions of x objects among y boxes, one obtains the result of
Eq. (31).

The contribution of each tree topology to the statistical
properties of the network such as the degree distribution and

the DSPL also depends on its symmetry. To account for the
effect of the symmetry, we define the symmetry factor

X(τ ) = 1

|Aut(τ )| , (32)

where Aut(τ ) is the automorphism group of τ [10], namely all
the transformations that leave τ unchanged. It can be expressed
as a product of the form

|Aut(τ )| = |Aut(A)||Aut(�b)|, (33)

where Aut(A) is the automorphism group of the backbone
tree, which consists of the hubs alone, and Aut(�b) is the
automorphism group of the branches. While |Aut(A)| depends
on the overall symmetry of the backbone tree, |Aut(�b)| is given
by

|Aut(�b)| =
h∏

i=1

bi!. (34)

For example, in the case of a linear chain of s nodes,

X[τ = (0, · ,2)] = 1
2 . (35)

For a tree consisting of a single hub of b branches

X[τ = (1,0,b)] = 1

b!
, (36)

while for a tree that includes two hubs with b1 and b2 branches,

X[τ = (2,A,�b)] = 1

2b1!b2!
. (37)

For a tree that consists of a central hub surrounded by three
peripheral hubs

X[τ = (4,A,�b)] = 1

3b1!b2!b3!b4!
. (38)

V. THE DEGREE DISTRIBUTION

In this section we show how to use the topological expansion
to express the degree distribution PFC(K = k) as a composition
of the contributions of the different tree topologies. In this case
the asymptotic form is known to be the Poisson distribution,
π (K = k), which enables us to validate the method.

Consider a tree that consists of s � 2 nodes, whose degree
sequence is given by k1,k2, . . . ,ks . Since a tree of s nodes
includes s − 1 edges, the sum of these degrees satisfies

s∑
i=1

ki = 2(s − 1). (39)

We denote the number of nodes of degree k by N (K = k),
where

s−1∑
k=1

N (K = k) = s, (40)

reflecting the fact that in a tree of size s � 2 the degrees of
all nodes satisfy k � 1. In the special case of an isolated node,
s = 1 and N (K = k) = δk,0, where δk,k′ is the Kronecker delta,
which satisfies δk,k′ = 1 if k = k′ and δk,k′ = 0 otherwise.
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TABLE I. The different degree distributions and DSPLs for the finite components (FC) of subcritical ER networks and the equations which
are used to evaluate them.

Distribution Equation Description

PFC(K = k|τ ; S = s) Eq. (51) Degree distribution over all trees of s nodes and topology τ

PFC(K = k|S = s) Eq. (52) Degree distribution over all trees of s nodes
PFC(K = k|S � s) Eq. (53) Degree distribution over all trees of up to s nodes
PFC(K = k) Eq. (56) Degree distribution over all trees
E[K|τ ; S = s] Eq. (58) Mean degree over all trees of s nodes and topology τ

E[K|S = s] Eq. (59) Mean degree over all trees of s nodes
E[K|S � s] Eq. (61) Mean degree over all trees of up to s nodes
〈K〉FC Eq. (62) Mean degree over all trees
PFC(L = �|τ ; L < ∞,S = s) Eq. (91) DSPL over all trees of s nodes and topology τ

PFC(L = �|L < ∞,S = s) Eq. (92) DSPL over all trees of s nodes
PFC(L = �|L < ∞,S � s) Eq. (93) DSPL over all trees of up to s nodes
PFC(L = �|L < ∞) Eq. (95) DSPL over all trees
E[L|τ ; S = s] Eq. (106) Mean distance over all trees of s nodes and topology τ

E[L|S = s] Eq. (107) Mean distance over all trees of s nodes
E[L|S � s] Eq. (108) Mean distance over all trees of up to s nodes
〈L〉FC Eq. (109) Mean distance over all trees

Equation (39) can be written in the form

s−1∑
k=1

kN (K = k) = 2(s − 1), (41)

where s � 2. Combining Eqs. (40) and (41), we obtain

N (K = 1) = 2 +
s−1∑
k=3

(k − 2)N (K = k). (42)

This result reflects the fact that any tree includes at least two
leaf nodes and provides a relation between the degrees of the
hubs and the number of leaf nodes in a tree. The number of
nodes of degree k = 2 can be obtained from

N (K = 2) = s − N (K = 1) −
s−1∑
k=3

N (K = k). (43)

The topology of each tree structure can be described by
τ = (h,A,�b), where

h =
s−1∑
k=3

N (K = k) (44)

is the number of hubs. The degrees of the hubs are given by

k1 = a1 + b1,

k2 = a2 + b2,

:

kh = ah + bh, (45)

where ai is the number of arms and bi is the number of branches
that are connected to hub i. The number of leaf nodes with
degree k = 1 is given by b = ∑h

i=1 bi . The remaining s − h −
b nodes are of degree k = 2, namely

N (K = 2) = s − h − b. (46)

The number of nodes of degree k in a linear chain of s nodes
is given by

N (K = k) = 2δk,1 + (s − 2)δk,2, (47)

where δk,k′ is the Kronecker delta.
The number of nodes of degree k in a tree that consists of s

nodes, and includes a single hub with b branches, is

N (K = k) = bδk,1 + (s − 1 − b)δk,2 + δk,b. (48)

The number of nodes of degree k in a tree that consists of s

nodes, and takes the form of a chain of h hubs, with a total of
b branches distributed according to �b = (b1,b2, . . . ,bh), is

N (K = k) = bδk,1 + (s − h − b)δk,2

+
h−1∑
i=2

δk,bi+2 + δk,b1+1 + δk,bh+1. (49)

Consider a tree of topology τ = (h,A,�b) that consists of
s nodes. Such tree includes h hubs, whose degrees in the
backbone tree are given by �a = (a1,a2, . . . ,ah), and their
branch vector is �b = (b1,b2, . . . ,bh). The number of nodes of
degree k is given by

N (K = k|τ ; s) = bδk,1 + (s − h − b)δk,2 +
h∑

i=1

δk,ai+bi
.

(50)

The degree distribution, PFC(K = k|τ ; S = s), of trees of
topology τ , which consist of s nodes, is given by

PFC(K = k|τ ; S = s) = N (K = k|τ ; s)

s
, (51)

where N (K = k|τ ; s) is given by Eq. (50). In the analysis
below we use conditional degree distributions that are evalu-
ated under different conditions. In Table I we summarize these
distributions and list the equations from which they can be
evaluated.
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TABLE II. The conditional probabilities PFC(K = k|S = s) that a node selected randomly from all the tree components of size s in a
subcritical ER network will have a degree k. Results are shown for s = 2,3, . . . ,10 nodes.

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

PFC(K = 1|S = s) = 1 2
3

9
16

64
125

625
1296

7776
16807

117649
262144

2097152
4782969

43046721
100000000

PFC(K = 2|S = s) = 1
3

3
8

48
125

125
324

6480
16807

50421
131072

1835008
4782969

4782969
12500000

PFC(K = 3|S = s) = 1
16

12
125

25
216

2160
16807

36015
262144

229376
1594323

3720087
25000000

PFC(K = 4|S = s) = 1
125

5
324

360
16807

1715
65536

143360
4782969

413343
12500000

PFC(K = 5|S = s) = 1
1296

30
16807

735
262144

17920
4782969

45927
10000000

PFC(K = 6|S = s) = 1
16807

21
131072

448
1594323

5103
12500000

PFC(K = 7|S = s) = 1
262144

56
4782969

567
25000000

PFC(K = 8|S = s) = 1
4782969

9
12500000

PFC(K = 9|S = s) = 1
100000000

E[K|S = s] = 1 4
3

3
2

8
5

5
3

12
7

7
4

16
9

9
5

E[K2|S = s] = 1 2 21
8

76
25

10
3

174
49

119
32

104
27

99
25

Var[K|S = s] = 0 2
9

3
8

12
25

5
9

30
49

21
32

56
81

18
25

The degree distribution over all the tree topologies that
consist of s nodes is given by

PFC(K = k|S = s)

=
∑

{τ |s} X(τ )W (τ ; s)PFC(K = k|τ ; S = s)∑
{τ |s} X(τ )W (τ ; s)

, (52)

where k = 1,2, . . . ,s − 1, the probabilities PFC(K = k|τ ; S =
s) are given by Eq. (51), and the summation is over all
component topologies that can be constructed from s nodes.

In Table II we present the conditional degree distributions
PFC(K = k|S = s) for trees of s = 2,3, . . . ,10 nodes. These
distributions are determined by the combinatorial considera-
tions presented above, after identifying by hand all the tree
topologies that appear in trees of size 2 � s � 10. The proba-
bilities are expressed in terms of constant rational numbers.

Summing up the degree distributions obtained from Eq. (52)
over all the tree topologies that consist of s ′ = 2,3, . . . ,s nodes,
with suitable weights, we obtain

PFC(K = k|2 � S � s)

=
∑s

s ′=2 s ′PFC(S = s ′)PFC(K = k|S = s ′)∑s
s ′=2 s ′PFC(S = s ′)

. (53)

This equation provides an exact analytical expression for
the degree distribution over all tree topologies up to any
desired size, s (not including the case of an isolated node).
In Table III we present these expressions for PFC(K = k|2 �
S � s) where s = 2,3, . . . ,6 and k = 1,2, . . . ,5. It turns out
that in these expressions the dependence on the mean degree,
c, always appears in terms of the parameter η = η(c), which
takes the form

η(c) = ce−c. (54)

The function η(c) is a monotonically increasing function
in the interval 0 � c � 1, where η(0) = 0 and η(1) = 1/e.
Expanding the results of Eq. (53) in powers of the small

parameter c, we obtain

PFC(K = k|2 � S � s) = e−cck

(1 − e−c)k!
(1 + qs,kc

s−k + · · · ),

(55)

where k = 1,2, . . . ,s − 1 and the coefficients qs,k are rational
numbers of order 1.

As s is increased the degree distribution given by Eq. (55)
converges to the asymptotic form given by

πFC(K = k) = e−cck

(1 − e−c)k!
, (56)

which is the degree distribution of the whole subcritical ER
network, except for the isolated nodes. Taking into account
the isolated nodes, whose weight in the degree distribution
is π (K = 0) = e−c, we obtain the Poisson distribution intro-
duced in Eq. (1)

π (K = k) = e−cδk,0 + (1 − e−c)πFC(K = k)θ (k), (57)

where θ (k) is the Heaviside function.
This convergence to the Poisson degree distribution con-

firms the validity of the topological expansion and shows
that the combinatorial factors were evaluated correctly. In
Table IV we present the leading correction terms, qs,kc

s−k ,
of Eq. (55), obtained from the topological expansion, for
all the tree structures that consist of up to s nodes, where
s = 2,3, . . . ,10. Tree structures with up to s nodes support
degrees in the range of k = 1, . . . ,s − 1.

VI. THE MEAN AND VARIANCE
OF THE DEGREE DISTRIBUTION

The moments of the degree distribution provide useful
information about the network structure. The first and second
moments are of particular importance. The first moment,
〈K〉FC, provides the mean degree. The width of the distribu-
tion is characterized by the variance, Var(K) = 〈K2〉 − 〈K〉2,
where 〈K2〉 is the second moment.
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TABLE III. The probabilities PFC(K = k|2 � S � s) that a node selected randomly from all the tree components of sizes in the range
2 � S � s in a subcritical ER network will have a degree k. Results are shown for s = 2,3, . . . ,10 nodes.

s = 2 s = 3 s = 4 s = 5 s = 6

PFC(K = 1|2 � S � s) = 1 2+2η

2+3η

6+6η+9η2

6+9η+16η2
24+24η+36η2+64η3

24+36η+64η2+125η3
120+120η+180η2+320η3+625η4

120+180η+320η2+625η3+1296η4

PFC(K = 2|2 � S � s) = η

2+3η

3η+6η2

6+9η+16η2
12η+24η2+48η3

24+36η+64η2+125η3
60η+120η2+240η3+500η4

120+180η+320η2+625η3+1296η4

PFC(K = 3|2 � S � s) = η2

6+9η+16η2
4η2+12η3

24+36η+64η2+125η3
20η2+60η3+150η4

120+180η+320η2+625η3+1296η4

PFC(K = 4|2 � S � s) = η3

24+36η+64η2+125η3
5η3+20η4

120+180η+320η2+625η3+1296η4

PFC(K = 5|2 � S � s) = η4

120+180η+320η2+625η3+1296η4

E[K|2 � S � 2] = 1 2+4η

2+3η

6+12η+24η2

6+9η+16η2
24+48η+96η2+200η3

24+36η+64η2+125η3
120+240η+480η2+1000η3+2160η4

120+180η+320η2+625η3+1296η4

E[K2|2 � S � s] = 1 2+6η

2+3η

6+18η+42η2

6+9η+16η2
24+72η+168η2+380η3

24+36η+64η2+125η3
120+360η+840η2+1900η3+4320η4

120+180η+320η2+625η3+1296η4

The nth moment of the degree distribution, over all trees of
topology τ that consist of s nodes, can be expressed by

E[Kn|τ ; S = s] =
s−1∑
k=1

knPFC(K = k|τ ; S = s), (58)

where PFC(K = k|τ ; S = s) is given by Eq. (51). The nth
moment of the degree distribution over all tree topologies that
consist of s nodes is given by

E[Kn|S = s] =
∑

{τ |s} X(τ )W (τ ; s)E[Kn|τ ; S = s]∑
{τ |s} X(τ )W (τ ; s)

, (59)

where E[Kn|τ ; S = s] is given by Eq. (58). For the special
case of n = 1, one obtains

E[K|S = s] = 2 − 2

s
. (60)

This result represents a topological invariance and it applies
to any tree of s nodes, regardless of its topology, τ . This is
due to the fact that any tree of s nodes includes s − 1 edges
and each edge is shared by two nodes. The results for the
first two moments, E[K|S = s] and E[K2|S = s], and for the
variance Var[K|S = s] = E[K2|S = s] − (E[K|S = s])2, for
s = 2,3, . . . ,10 are shown in Table II.

The nth moment of the degree distribution over all trees that
consist of up to s nodes (except for the isolated nodes) is given
by

E[Kn|2 � S � s] =
∑s

s ′=2 s ′PFC(S = s ′)E[Kn|S = s ′]∑s
s ′=2 s ′PFC(S = s ′)

,

(61)

where PFC(S = s ′) is given by Eq. (A10). Performing the
summation for a given value of s provides an exact analytical
expression for the nth moment of the degree distribution over
all tree topologies that consist of up to s nodes. The resulting
expressions for the mean degree, E[K|2 � S � s], over all
trees that consist of up to s = 2,3, . . . ,6 nodes, are presented
in Table III.

For a tree of size s = 1, which consists of a single, isolated
node, PFC(S = 1) = 2e−c/(2 − c) and E[Kn|S = 1] = 0.
Thus in order to account for the isolated nodes, one should
simply add the term 2e−c/(2 − c) to the denominator of
Eq. (61).

In the limit of large s, the mean degree E[K|2 � S � s]
converges towards the asymptotic result, which is given by

〈K〉FC = c

1 − e−c
. (62)

TABLE IV. The leading finite size correction terms, PFC(K = k|2 � S � s)/πFC(K = 1) − 1  qs,kc
s−k , of Eq. (55) for the degree

distribution over all the tree topologies with up to s nodes (except for the case of an isolated node). The distribution πFC(K = k), given
by Eq. (56), is the degree distribution over the entire subcritical network, except for the isolated nodes. As s is increased the correction decreases
as cs−1 and PFC(K = k|2 � S � s) converges towards πFC(K = k).

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

PFC(K=1|2�S�s)
πFC(K=1) − 1  1

2 c 7
6 c2 61

24 c3 671
120 c4 9031

720 c5 3211
112 c6 2685817

40320 c7 56953279
362880 c8 1357947691

3628800 c9

PFC(K=2|2�S�s)
πFC(K=2) − 1  −2c −4c2 − 25

3 c3 −18c4 − 2401
60 c5 − 4096

45 c6 − 59049
280 c7 − 31250

63 c8

PFC(K=3|2�S�s)
πFC(K=3) − 1  −3c − 15

2 c2 −18c3 − 343
8 c4 − 512

5 c5 − 19683
80 c6 − 12500

21 c7

PFC(K=4|2�S�s)
πFC(K=4) − 1  −4c −12c2 − 98

3 c3 − 256
3 c4 − 2187

10 c5 − 5000
9 c6

PFC(K=5|2�S�s)
πFC(K=5) − 1  −5c − 35

2 c2 − 160
3 c3 − 1215

8 c4 − 1250
3 c5

PFC(K=6|2�S�s)
πFC(K=6) − 1  −6c −24c2 −81c3 −250c4

PFC(K=7|2�S�s)
πFC(K=7) − 1  −7c − 63

2 c2 − 350
3 c3

PFC(K=8|2�S�s)
πFC(K=8) − 1  −8c −40c2

PFC(K=9|2�S�s)
πFC(K=9) − 1  −9c
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FIG. 4. Analytical results for the mean degree, E[K|2 � S � s],
over all tree topologies of sizes smaller or equal to s, as a function of
c, for s = 2,3, . . . ,10 (solid lines), from bottom to top, respectively,
obtained from Eq. (67). The thick solid line shows the asymptotic
result, 〈K〉FC.

Taking into account the isolated nodes, we obtain

〈K〉 = (1 − e−c)〈K〉FC = c. (63)

In Fig. 4 we present the mean degrees,E[K|2 � S � s], as a
function of c (thin solid lines). The results are shown for all tree

topologies of sizes smaller or equal to s, where s = 2,3, . . . ,10
(from bottom to top). The thick solid line shows the asymptotic
result, 〈K〉FC, given by Eq. (62).

Below we derive closed form analytical expressions for
the mean degree, E[K|2 � S � s], over all tree topologies
that consist of at least two nodes and up to s nodes. Trees of
size s = 1, which consist of isolated nodes, are excluded from
this summation because the degree of such nodes is k = 0,
while trees of size s � 2 do not include nodes of zero degree.
Inserting the expression for E[K|S = s] from Eq. (60) into
Eq. (61), with n = 1, we obtain

E[K|2 � S � s] = 2 − 2

∑s
s ′=2 PFC(S = s ′)∑s

s ′=2 s ′PFC(S = s ′)
. (64)

This result can be expressed in the form

E[K|2 � S � s]

= 2 − 2 − c − 2e−c − 2
∑∞

s ′=s+1 PFC(S = s ′)
1 − e−c − ∑∞

s ′=s+1 s ′PFC(S = s ′)
. (65)

Expressing the distribution PFC(S = s ′) by Eq. (A10) we
obtain

E[K|2 � S � s] = 2 −
√

2π (2 − c − 2e−c) − cse−(c−1)(s+1)�
(
ce1−c, 5

2 ,s + 1
)

√
2π (1 − e−c) − cse−(c−1)(s+1)�

(
ce1−c, 3

2 ,s + 1
) , (66)

where �(z,s,a) is the Hurwitz-Lerch � transcendent. An alternative approach for the evaluation of E[K|2 � S � s] is to go
back to Eq. (65) and replace the sums

∑∞
s ′=s+1 with integrals of the form

∫ ∞
s+1/2. Performing the integrations, we obtain

E[K|2 � S � s] = 2 −
√

2πc(2 − c − 2e−c) − (c − 1 − ln c)3/2�
[− 3

2 ,(c − 1 − ln c)
(
s + 1

2

)]
√

2πc(1 − e−c) − (c − 1 − ln c)1/2�
[− 1

2 ,(c − 1 − ln c)
(
s + 1

2

)] , (67)

where �(s,a) is the incomplete Gamma function. This function satisfies

�

(
−3

2
,x

)
= 4

3

√
π [1 − erf(

√
x)] + 2e−x(1 − 2x)

3x3/2
(68)

and

�

(
−1

2
,x

)
= −2

√
π [1 − erf(

√
x)] + 2e−x

√
x

, (69)

where erf(x) is the error function. In the limit of c → 0 one can show that E[K|2 � S � s] → 1.
For c = 1 the � transcendent function in Eq. (66) can be replaced by the Hurwitz zeta function. In this case

E[K|2 � S � s] = 2 −
√

2π (2e − 4) − 4eζ
(

5
2 ,s + 1

)
√

2π (e − 1) − eζ
(

3
2 ,s + 1

) , (70)

where ζ (s,a) is the Hurwitz zeta function. In the limit of large s, one can approximate Eq. (70) by an asymptotic expansion of
the form

E[K|2 � S � s] = e

e − 1
−

√
2

π

e(e − 2)

(e − 1)2

1√
s

− 2

π

e2(e − 2)

(e − 1)3

1

s
+ O

(
1

s3/2

)
. (71)
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FIG. 5. The mean degree E[K|2 � S � s] over all trees of size
smaller than or equal to s, as a function of s for c = 1. The analytical
results (circles), obtained from Eq. (70), are in excellent agreement
with the exact results of the asymptotic expansion (solid line). The
results of the asymptotic expansion to order 1/

√
s (×), obtained from

the first two terms of Eq. (71), exhibit large deviations from the exact
results, particularly for small values of s. However, an expansion to
order 1/s obtained by including the third term in Eq. (71) greatly
improves the results (+).

In Fig. 5 we present the mean degree E[K|2 � S � s] over
all trees of S � s nodes, as a function of s at the critical
value of c = 1. The analytical results (circles), obtained from
Eq. (70), are in excellent agreement with the exact results of the
asymptotic expansion (solid line). The only slight deviations
are for s = 2 and 3, and they reflect the fact that Eq. (70) is

based on the Stirling expansion, which becomes accurate for
s � 4. The results of the asymptotic expansion to order 1/

√
s

(×), obtained from the first two terms of Eq. (71), exhibit large
deviations from the exact results, particularly for small values
of s. This means that next order correction should be taken
into account, at least for such small values of s. Indeed, an
expansion to order 1/s obtained by including the third term in
Eq. (71) greatly improves the results (+).

Using Eq. (61) one can obtain exact analytical expressions
for the second moment of the degree distribution over all trees
of size 2 � S � s. The results for small trees, which consist of
up to s = 2,3, . . . ,6 nodes, are shown in Table III. In the limit
of large s, the second moment E[K2|2 � S � s] converges
towards the asymptotic result, which is given by

〈K2〉FC = c(c + 1)

1 − e−c
. (72)

Taking into account the isolated nodes, we obtain

〈K2〉 = (1 − e−c)〈K2〉FC = c(c + 1). (73)

The variance of the degree distribution over all trees that consist
of up to s nodes is given by

Var[K|2 � S � s]

= E[K2|2 � S � s] − (E[K|2 � S � s])2. (74)

Using the results presented in Table III for the first and
second moments of the degree distributions over small trees of
sizes s = 2,3, . . . ,5, we obtain

Var[K|2 � S � 2] = 0,

Var[K|2 � S � 3] = 2η + 2η2

(2 + 3η)2
,

Var[K|2 � S � 4] = 18η + 78η2 + 90η3 + 96η4

(6 + 9η + 16η2)2
,

Var[K|2 � S � 5] = 288η + 1248η2 + 3960η3 + 5016η4 + 6920η5 + 7500η6

(24 + 36η + +64η2 + 125η3)2
. (75)

In the limit of large s, the variance Var[K|2 � S � s] con-
verges towards the asymptotic result, σ 2

K,FC = Var(K), where
σk,FC is the standard deviation of the degree distribution over
all the finite components. The asymptotic variance is given by

σ 2
K,FC = Var(K) = c

1 − e−c
− c2e−c

(1 − e−c)2
. (76)

Taking into account the isolated nodes, we obtain

σ 2
K = 〈K2〉 − (〈K〉)2 = c. (77)

VII. THE DISTRIBUTION OF SHORTEST PATH LENGTHS

In this section we apply the topological expansion to obtain
the DSPL of subcritical ER networks and to express it in terms
of the contributions of the different tree topologies. Summing
up the contributions for all possible tree topologies supported
by up to s nodes, we express the DSPL as a power series in c,
and find its asymptotic form in the limit of N → ∞.

For each value of s = 2,3, . . . , we identify all the tree
topologies, τ , supported by s nodes. For each one of these tree
topologies, and for � = 1,2, . . . ,s − 1, we calculate the num-
ber N (L = �|τ ; s) of pairs of nodes that reside at a distance
� from each other. We then sum up these contributions over
all the possible ways to assemble s nodes into the given tree
topology. Below we describe the enumeration of the shortest
paths for a few simple examples of tree topologies.

In a linear chain of s nodes there are s − � pairs of nodes at
distance � from each other. Therefore,

N [L = �|τ = (0, · ,2); s] =
(

s − �

1

)
. (78)

A convenient way to evaluate the number of such pairs is to take
a pair of nodes at a distance � from each other and reduce the
chain of � + 1 nodes between them into a single node, which
is marked in order to distinguish it from the other nodes. This
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FIG. 6. Illustration of the collapse process that is used in order to
obtain the combinatorial factors for the DSPL on a finite component.
In this case, the number of pairs of nodes that are at a distance of � = 3
from each other on a linear chain of size s = 9 (top chain) is equal
to the number of possible locations of the marked node (large empty
circle) on the reduced chain of s − � = 6 nodes (bottom chain).

results in a reduced network of k − � nodes, one of which is
the marked node. At this point, counting the number of pairs of
nodes that are at a distance � from each other is equivalent to
counting the number of different locations of the marked node
in the reduced network. In Fig. 6 we illustrate this procedure
for the case of a linear chain of nodes. Since each node in the
reduced chain may be the marked node, one concludes that in
the original chain there are s − � pairs of nodes at a distance �

from each other.
For a tree of s nodes that includes a single hub and b

branches, the number of pairs of nodes at a distance � from
each other is

N [L = �|τ = (1,0,b),s]

= b

(
s − �

b

)
+ (� − 1)

(
b

2

)(
s − �

b − 1

)
. (79)

In this case there are many different configurations due to
the different ways to distribute the nodes between the b

branches. Therefore, we need to sum up the numbers of pairs
of nodes at distance L = � from each other in all the different
configurations. In this calculation we distinguish between pairs
of nodes that reside on the same branch and pairs of nodes
that reside on different branches. To calculate the number

of pairs of nodes residing on the same branch and are at a
distance L = � apart, we pick one such pair of nodes and
reduce the chain of � + 1 nodes between them into a single
node. This node is marked in order to keep track of its location.
The reduced network now consists of s − � nodes. We then
evaluate the number of ways to distribute these s − � nodes
between the b branches and the number of ways to place
the marked node in its own branch. Essentially, the marked
node splits its branch into two parts. This means that the
number of possible configurations is equal to the number of
possible ways to distribute s − � nodes to b + 1 urns. The first
binomial coefficient in Eq. (79) accounts for the number of
such distributions.

To calculate the number of pairs of nodes that reside on
different branches and are at a distance � apart from each other,
we first arrange all s nodes in a linear chain. We choose a pair
of nodes that are at a distance � from each other and reduce
the � + 1 nodes between them into a single node. This results
in a reduced chain of s − � nodes, one of which is the marked
node. We proceed in two stages. In the first stage we consider
the two branches on which the nodes i and j reside as a single
branch, which now includes the marked node. The binomial
coefficient

(
s − �

b − 1

)
accounts for the number of ways to distribute

the nodes into b − 1 urns and to choose randomly the location
of the marked node. In the second stage we randomly choose
the location of the hub among the � − 1 nodes between i and
j and connect all the end points of all other b − 2 branches
to this node. Apart from this, there are

(
b

2

)
possible ways to

choose the branches on which i and j are located.
The approach presented above can also be used to evaluate

the number of pairs of nodes at a distance L = � apart that
reside on branches that do not share a hub. In this case one
needs to account for the number of possible ways to locate two
or more hubs along the segment of � − 1 nodes between i and
j . For a tree of s nodes, which includes two hubs, we obtain

N [L = �|τ = (2,A,�b); s] = (b1 + b2 + 1)

(
s − �

b1 + b2 + 1

)
+ (� − 1)

[(
b1 + 1

2

)
+

(
b2 + 1

2

)](
s − �

b1 + b2

)
+ b1b2

(
� − 1

2

)(
s − �

b1 + b2 − 1

)
, (80)

where A is given by Eq. (17) and �b = (b1,b2). Generalizing this result to the case of a linear chain of h hubs we obtain

N [L = �|τ = (h,A,�b),s] = (b + h − 1)

(
� − 1

0

)(
s − �

b + h − 1

)

+
[(

b1 + 1

2

)
+

h−1∑
i=2

(
bi + 2

2

)
+

(
bh + 1

2

)](
� − 1

1

)(
k − �

b + h − 2

)

+
h−1∑
r=2

[
b1(br+1 + 1) +

h−r−1∑
i=1

(bi + 1)(bi+r + 1) + (bh−r + 1)bh

]

×
(

� − 1

r

)(
s − �

b + h − r − 1

)
+ b1bh

(
� − 1

h

)(
s − �

b − 1

)
, (81)
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where A is an h × h Toeplitz matrix that satisfies Aij = 1 if j = i ± 1 and Aij = 0 otherwise. Similarly, for a tree that consists
of a central hub, which is surrounded by h − 1 peripheral hubs, N (L = �|τ ; s) is given by

N [L = �|τ = (h,A,�b); s]

= (b + h − 1)

(
� − 1

0

)(
s − �

b + h − 1

)
+

[(
b1 + h − 1

2

)
+

h∑
i=2

(
bi + 1

2

)](
� − 1

1

)(
s − �

b + h − 2

)

+ (b1 + h − 2)
h∑

i=2

bi

(
� − 1

2

)(
s − �

b + h − 3

)
+

h∑
i=2

h∑
j=i+1

bibj

(
� − 1

3

)(
s − �

b + h − 4

)
, (82)

where A1j = 1 for j � 2, Ai1 = 1 for i � 2, and Aij = 0
otherwise.

We will now derive an equation for the number of pairs of
nodes at a distance � from each other in any given tree of s

nodes, whose structure is given by the topology τ = (h,A,�b).
Such tree includes h hubs, whose degrees are given by the
vector

�k = (k1,k2, . . . ,kh), (83)

where ki = ai + bi . For convenience we also define the vector

�k′ = (k1 − 1,k2 − 1, . . . ,kh − 1). (84)

The hubs form a backbone tree of h nodes, described by the
adjacency matrix, A, of dimensions h × h. For any pair of
hubs i and j which are connected by an arm (regardless of
its length in the complete tree), the matrix element Aij = 1,
while otherwise Aij = 0. From the adjacency matrix, A, one
can obtain the h × h distance matrix, D, of the backbone tree,
which consists of the hubs alone. This is a symmetric matrix,
whose matrix element Dij is the distance between hub i and
hub j on the backbone tree, and the diagonal elements are
Dii = 0. For the analysis presented below, it is useful to express
the distance matrix as a sum of symmetric binary matrices in
the form

D = D1 + 2D2 + 3D3 + · · · + (h − 1)Dh−1, (85)

where (D�)ij = 1 if Dij = � and (D�)ij = 0 otherwise. The
matrix D�, � = 1,2, . . . ,h − 1, is called the �th order vertex-
adjacency matrix [46]. It can be obtained directly from the
adjacency matrix, A, by constructing its powers A1, A2, . . . ,
A�. In the case in which (A�)ij � 1, under the condition
that (A�′

)ij = 0 for all the lower powers of A, namely �′ =
1,2, . . . ,� − 1, then (D�)ij = 1, and otherwise (D�)ij = 0.

Each pair of nodes i and j in the network can be classified
according to the number of hubs, νij , along the path between
them. If i and j reside on the same branch or on the same
arm, νij = 0. If they reside on different branches or arms that
emanate from the same hub, νij = 1. In the case in which i

and j reside on branches or arms that do not share a hub, we
denote by hi the hub that is nearest to i along the path to j

and by hj the hub that is nearest to j along the path to i. We
denote by Dij the distance between the hubs hi and hj on the
backbone tree, which consists of the hubs alone. The number
of hubs along the shortest path between nodes i and j can be
expressed by νij = Dij + 1. Thus, νij may take values in the
range 0 � νij � h.

The number of pairs of nodes that are at a distance � from
each other can be expressed in the form

N (L = �|τ,s) =
h∑

ν=0

Nν(L = �|τ,s), (86)

where Nν(L = �|τ,s) is the number of pairs of nodes i and
j that are at a distance � from each other, and along the path
between them there are ν hubs.

For pairs of nodes that reside on the same branch or on the
same arm, for which ν = 0, we obtain

N0(L = �|τ,s) = (b + h + 1)

(
� − 1

0

)(
s − �

b + h − 1

)
. (87)

For pairs of nodes that reside on different branches or arms
that emanate from the same hub, for which ν = 1, we obtain

N1(L = �|τ,s) =
(

� − 1

1

)(
s − �

b + h − 2

) h∑
i=1

(
ki

2

)
. (88)

For pairs of nodes for which ν � 2 we obtain

Nν(L = �|τ,s)

= 1

2

(
� − 1

ν

)(
s − �

b + h − ν − 1

) h∑
i=1

h∑
j=1

k′
ik

′
j δDij ,ν−1. (89)

Equation (89) can be written in the form

Nν(L = �|τ,s) = 1

2

(
� − 1

ν

)(
s − �

b + h − ν − 1

)
�k′T Dν−1�k′,

(90)
where �k′T is the transpose of �k′.

The distribution PFC(L = �|τ ; L < ∞,S = s), for trees of
a given topology, τ , assembled from s nodes, is given by

PFC(L = �|τ ; L < ∞,S = s) = N (L = �|τ ; s)(
s

2

)
W (τ ; s)

. (91)

In the analysis below we use different types of DSPLs. In
Table I we summarize these distributions and list the equations
from which each one of them can be evaluated.

The DSPL over components of all topologies that consist
of s nodes is given by

PFC(L = �|L < ∞,S = s)

=
∑

{τ |s} X(τ )W (τ ; s)PFC(L = �|τ ; L < ∞,S = s)∑
{τ |s} X(τ )W (τ ; s)

, (92)

where the summation is over all component topologies which
can be constructed from s nodes. In Table V we present
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TABLE V. The probabilities PFC(L = �|L < ∞,S = s) that a pair of random nodes on a random component of size s in a subcritical ER
network will be at a distance � from each other for small tree component of s = 2,3, . . . ,10 nodes.

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

PFC(L = 1|L < ∞,S = s) = 1 2
3

1
2

2
5

1
3

2
7

1
4

2
9

1
5

PFC(L = 2|L < ∞,S = s) = 1
3

3
8

9
25

1
3

15
49

9
32

7
27

6
25

PFC(L = 3|L < ∞,S = s) = 1
8

24
125

2
9

80
343

15
64

56
243

28
125

PFC(L = 4|L < ∞,S = s) = 6
125

5
54

300
2401

75
512

350
2187

21
125

PFC(L = 5|L < ∞,S = s) = 1
54

720
16807

135
2048

560
6561

63
625

PFC(L = 6|L < ∞,S = s) = 120
16807

315
16384

1960
59049

147
3125

PFC(L = 7|L < ∞,S = s) = 45
16384

4480
531441

252
15625

PFC(L = 8|L < ∞,S = s) = 560
531441

567
156250

PFC(L = 9|L < ∞,S = s) = 63
156250

E[L|S = s] = 1 4
3

13
8

236
125

115
54

39572
16807

42037
16384

1469756
531441

461843
156250

E[L2|S = s] = 1 2 25
8

542
125

101
18

116582
16807

136033
16384

1718890
177147

1739471
156250

Var[L|S = s] = 0 2
9

31
64

12054
15625

3137
2916

393450490
282475249

461655303
268435456

580283161934
282429536481

58493387101
24414062500

the probabilities PFC(L = �|L < ∞,S = s) for trees of s =
2,3, . . . ,10 nodes. These probabilities are determined by
combinatorial considerations and are expressed in terms of
constant rational numbers.

To obtain the DSPL over all the components of sizes s ′ � s,
we sum up the results of Eq. (92) over all these components:

PFC(L = �|L < ∞,S � s)

=
∑s

s ′=2

(
s ′
2

)
PFC(S = s ′)PFC(L = �|S = s ′)∑s

s ′=2

(
s ′
2

)
PFC(S = s ′)

. (93)

This equation provides an exact analytical expression for the
degree distribution over all tree topologies up to any desired
size, s. In Table VI we present these expressions for PFC(L =
�|L < ∞,S � s) where s = 2,3, . . . ,6 and � = 1,2, . . . ,5. It
turns out that in these expressions the mean degree, c, always
appears in the form η(c) = ce−c, which is defined in Eq. (54).

Expanding the results of Eq. (93) as a power series in the
small parameter c, we find that

PFC(L = �|L < ∞,S � s)

= (1 − c)c�−1(1 + rs,�c
s−� + · · · ), (94)

where � = 2,3, . . . ,s − 1 and the coefficient rs,� is a rational
number of order 1. In Table VII we present the leading finite
size correction terms, rs,�c

s−�, of Eq. (94), obtained from the
topological expansion, for all the tree structures that consist
of up to s nodes, where s = 2,3, . . . ,10. Tree structures with
up to s nodes support distances in the range of � = 1, . . . ,s −
1. In the limit of large s, these results converge towards the
asymptotic form

PFC(L = �|L < ∞) = (1 − c)c�−1, (95)

which turns out to be the DSPL of the entire subcritical network
in the asymptotic limit of N → ∞. In spite of its apparent
simplicity, this is a surprising and nontrivial result, which
was not anticipated when we embarked on the topological
expansion. Equation (95) is essentially a mean field result.
Normally, a mean field result for the DSPL is expected to
represent the shell structure around a typical node. However, in
this case there is no typical node. The shell structures around
each node strongly depends on the size and topology of the
component on which it resides as well as on its location in the
component. Only by combining the contributions of all pairs
of nodes one obtains the simple expression of Eq. (95).

TABLE VI. The probabilities PFC(L = �|L < ∞,S � s) that a pair of random nodes on a random component of size S � s in a subcritical
ER network will be at a distance � from each other for small tree components of s = 2,3, . . . ,10 nodes.

s = 2 s = 3 s = 4 s = 5 s = 6

PFC(L = 1|L < ∞,S � s) = 1 1+2η

1+3η

1+2η+4η2

1+3η+8η2
6+12η+24η2+50η3

6+18η+48η2+125η3
6+12η+24η2+50η3+108η4

6+18η+48η2+125η3+324η4

PFC(L = 2|L < ∞,S � s) = η

1+3η

η+3η2

1+3η+8η2
6η+18η2+45η3

6+18η+48η2+125η3
6η+18η2+45η3+108η4

6+18η+48η2+125η3+324η4

PFC(L = 3|L < ∞,S � s) = η2

1+3η+8η2
6η2+24η3

6+18η+48η2+125η3
6η2+24η3+72η4

6+18η+48η2+125η3+324η4

PFC(L = 4|L < ∞,S � s) = 6η3

6+18η+48η2+125η3
6η3+30η4

6+18η+48η2+125η3+324η4

PFC(L = 5|L < ∞,S � s) = 6η4

6+18η+48η2+125η3+324η4

E[L|S � s] = 1 1+4η

1+3η

1+4η+13η2

1+3η+8η2
6+24η+78η2+236η3

6+18η+48η2+125η3
6+24η+78η2+236η3+690η4

6+18η+48η2+125η3+324η4

E[L2|S � s] = 1 1+6η

1+3η

1+6η+25η2

1+3η+8η2
6+36η+150η2+542η3

6+18η+48η2+125η3
6+36η+150η2+542η3+1818η4

6+18η+48η2+125η3+324η4
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TABLE VII. The leading finite size correction terms rs,�c
s−� of Eq. (94) for the DSPL over all the tree topologies with up to s nodes.

The distribution PFC(L = �|L < ∞) = (1 − c)c�−1, given by Eq. (95), is the DSPL over all pairs of nodes that reside on the same component
in the entire subcritical network. As s is increased, the correction term decreases as cs−2 and PFC(L = �|L < ∞,S � s) converges towards
PFC(L = �|L < ∞).

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

PFC(L=1|L<∞,S�s)
PFC(L=1|L<∞) − 1 = 1 4c2 25

2 c3 36c4 2401
24 c5 4096

15 c6 59049
80 c7 125000

63 c8 214358881
40320 c9

PFC(L=2|L<∞,S�s)
PFC(L=2|L<∞) − 1 = −3c − 15

2 c2 −18c3 − 343
8 c4 − 512

5 c5 − 19683
80 c6 − 12500

21 c7 − 19487171
13440 c8

PFC(L=3|L<∞,S�s)
PFC(L=3|L<∞) − 1 = −4c −12c2 − 98

3 c3 − 256
3 c4 − 2187

10 c5 − 5000
9 c6 − 1771561

1260 c7

PFC(L=4|L<∞,S�s)
PFC(L=4|L<∞) − 1 = −5c − 35

2 c2 − 160
3 c3 − 1215

8 c4 − 1250
3 c5 − 161051

144 c6

PFC(L=5|L<∞,S�s)
PFC(L=5|L<∞) − 1 = −6c −24c2 −81c3 −250c4 − 14641

20 c5

PFC(L=6|L<∞,S�s)
PFC(L=6|L<∞) − 1 = −7c − 63

2 c2 − 350
3 c3 − 9317

24 c4

PFC(L=7|L<∞,S�s)
PFC(L=7|L<∞) − 1 = −8c −40c2 − 484

3 c3

PFC(L=8|L<∞,S�s)
PFC(L=8|L<∞) − 1 = −9c − 99

2 c2

PFC(L=9|L<∞,S�s)
PFC(L=9|L<∞) − 1 = −10c

The DSPL given by Eq. (95) is a conditional distribution,
under the condition that the selected pair of nodes reside on the
same component. In fact, it is a subleading component of the
overall DSPL of the network, because in subcritical networks
most pairs of nodes reside on different components, and are
thus at an infinite distance from each other. The overall DSPL
can be expressed by

PFC(L = �) = PFC(L < ∞)PFC(L = �|L < ∞), (96)

where PFC(L < ∞) is given by Eq. (11). Therefore,

PFC(L = �) = c�

N
(97)

for � = 1,2, . . . ,N − 1, and

PFC(L = ∞) = 1 − c

(1 − c)N
. (98)

The tail distribution that corresponds to the probability distri-
bution function of Eq. (95) is given by

PFC(L > �|L < ∞) = c�. (99)

In Fig. 7 we present theoretical results for the DSPL of
asymptotic ER networks with c = 0.2,0.4,0.6, and 0.8 (solid
lines), obtained from Eq. (95). These results are compared
to numerical results for the DSPL (symbols), obtained for
networks of size N = 104 and the same four values of c. We
find that the theoretical results are in very good agreement
with the numerical results except for small deviations in the
large distance tails. These deviations are due to finite size
of the simulated networks. The numerical simulations were
performed via sampling of 104 independent realizations of ER
networks of size N = 104 for each value of c [47]. For each
realization we applied the all pairs shortest paths algorithm
from the LEDA C++ library [48].

In Fig. 8 we present the probability PFC(L = �|L < ∞),
given by Eq. (95), as a function of the mean degree, c, for
� = 1,2,5, and 10. The probability PFC(L = 1|L < ∞) is a
monotonically decreasing function of c. This is due to the fact
that for very low values of c most of the components consisting
of two or more nodes are dimers and their fraction decreases as

c is increased. For � � 2, the probability PFC(L = �|L < ∞)
vanishes at c = 0 and c = 1. It increases for low values of c,
reaches a peak, and then starts to decrease. For each value of
� � 2, the peak of PFC(L = �|L < ∞) is located at c = 1 −
1/�, reflecting the appearance of longer paths as c is increased.

It is also interesting to consider the conditional probabili-
ties PFC(L = �|L < ∞,K = k) and PFC(L = �|L < ∞,K =
k,K ′ = k′), between random pairs of nodes that reside on the
same finite component, under the condition that the degrees of
one or both nodes are specified, respectively. In supercritical
networks, the paths between nodes of high degrees tend to
be shorter than between nodes of low degrees. This is due
to the fact that higher degrees open more paths between the
nodes, increasing the probability of short paths emerging. The
situation in subcritical networks is completely different. Any
pair of nodes i and j that reside on the same component
are connected by a single path. Such path goes through one
neighbor of i and one neighbor of j . Therefore, the statistics
of the path lengths between pairs of nodes that reside on the
same component in subcritical ER networks do not depend on
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FIG. 7. The DSPLs of subcritical ER network ensembles with
N = 104 and c = 0.2,0.4,0.6, and 0.8. The theoretical results for
the corresponding asymptotic networks (solid lines), obtained from
Eq. (95), are in very good agreement with the numerical simulations
(symbols). The deviations in the tail are due to the finite size of the
sampled networks.
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FIG. 8. The probability PFC(L = �|L < ∞) given by Eq. (95) is
shown as a function of the mean degree, c, for � = 1,2,5, and 10.
The probability PFC(L = 1|L < ∞) is a monotonically decreasing
function of c. For � � 2, the probability PFC(L = �|L < ∞) exhibits
a peak at c = 1 − 1/�, which is the value of c at which the probability
of two random nodes being at a distance � from each other is maximal.

the degrees of these nodes. As a result, the conditional DSPLs
satisfy

PFC(L = �|L < ∞,K = k) = (1 − c)c�−1, (100)

0 5 10 15 20 25 30

10
−6

10
−4

10
−2

10
0

P
F
C
(L

=
|L

<
∞

)

c=0.6
c=1.547
Theory

FIG. 9. Numerical results for the DSPL on the finite components
of an ER[N,c/(N − 1)] network with N = 104 and c = 1.547, above
percolation (circles), and on its dual network, ER[N ′,c′/(N ′ − 1)]
where N ′ = 3882 [obtained from Eq. (104)] and c′ = 0.6 [obtained
from Eq. (105)], below percolation (×), which are essentially identical
and in excellent agreement with the theoretical results (solid line),
obtained from Eq. (95).

regardless of the value of k, and

PFC(L = �|L < ∞,K = k,K ′ = k′) = (1 − c)c�−1, (101)

regardless of the values of k and k′. It is worth pointing out,
however, that the probability that a random node of a specified
degree k and another random node of an unspecified degree
reside on the same component is dependent on the degree k.
Using the results of Appendices A and B it can be shown that

PFC(L < ∞|K = k) = k

(1 − c)N
. (102)

Similarly, it can be shown that the probability that a random
node of degree k and another random node of degree k′ reside
on the same component is given by

PFC(L < ∞|K = k,K ′ = k′) = kk′

c(1 − c)N
. (103)

The DSPL of Eq. (95) applies not only for subcritical ER
networks but also for the finite components of supercritical
ER networks. According to the duality relations [10,37–39],
given a supercritical ER network of N nodes and mean degree
c > 1, the subnetwork that consists of the finite components is
a subcritical ER network of size

N ′ = Nf (c) (104)

and mean degree

c′ = cf (c), (105)

where f (c) = −W(−ce−c)/c is the fraction of nodes in the
supercritical network that reside on the finite components and
c′ < 1. In Fig. 9 we present numerical results for the DSPL of
the finite components of a supercritical ER network of N =
104 nodes and c = 1.547 (circles). The results are found to
be in very good agreement with numerical results for its dual
network, which consists of N ′ = 3882 nodes and c′ = 0.6 (×),
and with the analytical results for an asymptotic subcritical ER
network with c = 0.6 (solid line), obtained from Eq. (95).
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VIII. THE MEAN AND VARIANCE OF THE DSPL

The moments of the DSPL provide useful information about
the large scale structure of the network. The first and second
moments are of particular importance. The first moment,
〈L〉FC, provides the mean distance. The width of the DSPL is
characterized by the variance, Var(L) = 〈L2〉 − 〈L〉2, where
〈L2〉 is the second moment.

The nth moment of the DSPL over all trees of size s and
topology τ is given by

E[Ln|τ ; S = s] =
s−1∑
�=1

�nPFC(L = �|τ ; L < ∞,S = s),

(106)

where PFC(L = �|τ ; L < ∞,S = s) is given by Eq. (91). The
nth moment of the DSPL over trees of all topologies which
consist of s nodes is given by

E[Ln|S = s] =
∑

{τ |s} X(τ )W (τ ; s)E[Ln|τ ; S = s]∑
{τ |s} X(τ )W (τ ; s)

, (107)

where E[Ln|τ ; S = s] is given by Eq. (106).
The results for the first two moments, E[L|S = s] and

E[L2|S = s], and for the variance Var[L|S = s] = E[L2|S =
s] − (E[L|S = s])2, for s = 2,3, . . . ,10 are shown in
Table V.

The nth moment of the DSPL over all trees that consist of
up to s nodes is given by

E[Ln|S � s] =
∑s

s ′=2

(
s ′
2

)
PFC(S = s ′)E[Ln|S = s ′]∑s
s ′=2

(
s ′
2

)
PFC(S = s ′)

, (108)

where PFC(S = s ′) is given by Eq. (A10) and E[Ln|S = s ′] is
given by Eq. (107). Performing the summation over all tree
topologies up to size s provides exact analytical expressions
for the moments of the DSPL over these trees. The results
for E[L|S � s ′] and E[L2|S � s ′] for small trees of sizes s =
2,3, . . . ,6 are shown in Table VI. In the limit of large s, the
mean distance E[L|S � s] converges towards the asymptotic
result, which is given by

〈L〉FC = 1

1 − c
. (109)

FIG. 10. The mean distance E[L|S � s], over all tree topologies
of sizes smaller or equal to s, as a function of c, for s = 2,3, . . . ,10
(solid lines), from bottom to top, respectively. The thick solid line
shows the asymptotic result, 〈L〉FC.

In Fig. 10 we present the mean distances E[L|S � s] (solid
lines) over all tree topologies of sizes smaller than or equal
to s, as a function of c, for s = 2,3, . . . ,10 (from bottom to
top, respectively). The thick solid line shows the asymptotic
result, 〈L〉FC, given by Eq. (109). Clearly, as the tree size s

is increased, E[L|S � s] approaches the asymptotic result. As
expected, for c � 1 the convergence is fast, but as c approaches
the percolation threshold, the asymptotic result diverges and
the convergence slows down.

Using Eq. (108) one can obtain exact analytical expressions
for the second moment of the DSPL over all trees of size S � s.
The results for small trees that consist of up to s = 2,3, . . . ,6
nodes are shown in Table VI. In the limit of large s, the second
momentE[L2|S � s] converges towards the asymptotic result,
which is given by

〈L2〉FC = 1 + c

(1 − c)2
. (110)

The variance of the DSPL over all trees that consist of up to s

nodes is given by

Var[L|S � s] = E[L2|S � s] − (E[L|S � s])2. (111)

Using the results presented in Table VI for the first and
second moments of the degree distributions over small trees of
sizes s = 2,3, . . . ,5, we obtain

Var[L|S � 2] = 0,

Var[L|S � 3] = η + 2η2

(1 + 3η)2
,

Var[L|S � 4] = η + 9η2 + 19η3 + 31η4

(1 + 3η + 8η2)2
,

Var[L|S � 5] = 36η + 324η2 + 1854η3 + 4044η4 + 7950η5 + 12054η6

(6 + 18η + 48η2 + 125η3)2
. (112)

In the limit of large s, the variance Var[L|S � s] converges
towards the asymptotic result, σ 2

L,FC = Var(L), where σL,FC

is the standard deviation of the DSPL over all the finite

components. The asymptotic variance is given by

Var(L) = 〈L2〉FC − 〈L〉2
FC. (113)
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FIG. 11. The mean, 〈L〉FC (a), and the standard deviation, σL,FC

(b), of the DSPL of a subcritical ER network vs the mean degree, c.
The numerical results (symbols) for N = 102, 103, and 104 clearly
converge towards the analytical results (solid lines).

Using Eqs. (109) and (110) we find that

σ 2
L,FC = Var(L) = c

(1 − c)2
. (114)

In Fig. 11 we present the mean distance, 〈L〉FC (a), and the
standard deviation σL,FC (b), versus the mean degree, c. The
theoretical results (solid lines) correspond to the asymptotic
limit. The numerical results, obtained for N = 102 (+), 103

(×), and 104 (◦), are found to converge towards the theoretical
results as the network size is increased.

IX. DISCUSSION

Apart from the shortest path length, random networks
exhibit other distance measures such as the resistance distance
[49–51]. The resistance distance, rij , between a pair of nodes i

and j is the electrical resistance between them under conditions
in which each edge in the network represents a resistor of 1
ohm. Unlike the shortest path length, the resistance distance
depends on all the paths between i and j , which often merge
and split along the way. It can be evaluated using the standard
rules under which the total resistance of resistors connected in
series is the sum of their individual resistance values, while
the total resistance of resistors connected in parallel is the
reciprocal of the sum of the reciprocals of the individual resis-
tance values. It was shown that the resistance distance between
nodes i and j in a network can be decomposed in terms of
the eigenvalues and eigenvectors of the normalized Laplacian
matrix of the network [52,53]. In order to utilize this result for
the calculation of the full distribution of resistance distances,
P (R = r), in an ensemble of supercritical ER networks, one

will need to obtain the full statistics of the spectral properties
of the Laplacian matrix over the ensemble, which is expected
to be a difficult task. For subcritical ER networks the situation
is simpler. Since the finite components in subcritical networks
are trees, the shortest path between a pair of nodes i and j is
in fact the only path between them. As a result, the resistance
distance between i and j is equal to the shortest path length
between them. This means that the results presented in this
paper provide not only the distribution of shortest path lengths
in subcritical ER networks but also the distribution of resistance
distances in these networks, which is given by

PFC(R = r|R < ∞) = (1 − c)cr−1, (115)

where r takes integer values.
Another distance measure between nodes in random net-

works is the mean first passage time, tij , of a random walk
(RW) starting from node i and reaching node j [54,55]. Unlike
the shortest path length, the mean first passage time is not
symmetric, namely tij �= tj i . Since an RW may wander through
side branches, the mean first passage time cannot be shorter
than the shortest path, namely tij � �ij . However, apart from
this inequality, there is no simple way to connect between
these two quantities. Therefore, numerical simulations will
be suitable here. Using specific large-deviation algorithms
[56,57], it is possible, in principle, to sample the distributions
over its full support, i.e., down to very small probabilities such
as 10−100. Such approaches have been already applied to obtain
distributions of several properties of random graphs, e.g., the
distribution of the number of components [58], the distribution
of the size of the largest component [59], the distribution of
the 2-core size [60], or the distribution of the diameters [19].

Unlike RWs, which would eventually visit all the nodes in
the component on which they reside, the paths of self-avoiding
walks (SAWs) terminate once they enter a leaf node [61].
Therefore, an SAW starting from node i does not necessarily
reach node j even if they reside on the same component.
However, in the case in which it reaches node j its first passage
time is equal to the shortest path length between i and j .
Therefore, the distribution of first passage times, PSAW(T =
t |T < ∞), of SAWs between pairs of nodes that reside on the
same component satisfies PSAW(T = t |T < ∞) = PFC(L =
�|L < ∞).

The DSPL of subcritical ER networks is also relevant to
the study of epidemic spreading on supercritical ER networks.
Consider a supercritical ER network with mean degree c > 1.
An epidemic starts from a random node, i, and propagates
through the shell structure around this node. The time is
discrete, so each node that is infected at time t may infect
each one of its neighbors at time t + 1, with probability p′.
The node that was infected at time t recovers at time t + 1 and
becomes immune.

The expectation value of the number of nodes infected by
node i in the first time step is given by c′ = cp′. In the case
in which c′ < 1, the statistical properties of the components
formed by such epidemic are similar to the statistical properties
of the tree components in a subcritical network with mean
degree c′. More precisely, the size distribution of components
formed by the epidemic follows the distribution PFC(S = s)
of component sizes on which a random node resides, given by
Eq. (A11). This property represents some kind of invariance;
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the distribution of epidemic sizes depends only on the value of
the product c′ = cp′ rather than the values of c and p′ alone.
The DSPL, PFC(L = �|L < ∞), represents the temporal prop-
agation of a typical epidemic, namely the probability that a
node that was infected by an epidemic got infected � time
steps after the epidemic started.

Using extreme value statistics it may be possible to obtain
analytical results for the distributions of radii and diameters
over all the tree topologies. For networks that satisfy duality
relations, it will be possible to obtain the DSPL on the finite
components in the supercritical regime. Combining the results
with the DSPL on the giant component will yield the overall
DSPL of the supercritical network. The detailed understanding
of the DSPL in terms of the topological expansion is expected
to be useful in the study of dynamical processes such as
epidemic spreading. Since epidemic spreading and many other
real-world dynamical processes take place on networks that
are different from ER networks, it will be interesting to apply
the topological expansion presented here to the analysis of the
DSPL in a broader class of subcritical random networks. In
particular, extending this approach to configuration model net-
works will provide the DSPL of subcritical random networks
with any desired degree distribution. To this end, one will need
to derive an equation for the size distribution of the finite tree
components, PFC(S = s), in a configuration model network
with a given degree distribution, P (K = k). The weights,
W (τ ; s), of the different tree topologies, τ , which consist of
s nodes, in a configuration model network are expected to
depend on the degree distribution. Therefore, one will need
to derive an equation for W (τ,s) in terms of P (K = k). Once
the weights become available, the counting of the shortest
paths follows the same procedure used in the ER case. It
will also be interesting to apply the topological expansion to
edge-independent, inhomogeneous random graphs [17,62,63].
This family of network models provides a generalization of
the ER network, in which the probability p is replaced by a
random N × N matrix, P , in which the matrix element Pij is
the probability that nodes i and j are connected by an edge.
As a result, each node, i, exhibits unique statistical properties
that depend onPij , j = 1,2, . . . ,N , leading to non-Poissonian
degree distributions, as in the case of configuration model
networks. To apply the topological expansion to inhomoge-
neous random graphs one will need to perform an additional
summation over the distribution of the matrix elements of P .

X. SUMMARY

We have developed a topological expansion methodology
for the analysis of subcritical random networks. The expansion
is based on the fact that such networks are fragmented into finite
tree components, which can be classified systematically by
their sizes and topologies. Using this approach we performed
a systematic calculation of the degree distribution, PFC(K =
k|S � s), and the DSPL, PFC(L = �|L < ∞,S � s), over all
components whose size is smaller than or equal to s, in
subcritical ER networks. Taking the large-s limit, we obtained
an exact asymptotic formula for the DSPL over all pairs of
nodes that reside on the same component, which takes the

form

PFC(L = �|L < ∞) = (1 − c)c�−1. (116)

This remarkably simple asymptotic result is obtained only
when the contributions of the tree components of all sizes and
topologies are taken into account. Such mean-field-like results
are normally expected to represent the shell structure around
a typical node. However, in subcritical networks there is no
typical node because the shell structure strongly depends on
the size and topology of the tree component in which each node
resides as well as on its location in that component.

From the degree distribution and the DSPL, we obtained
analytical results for the mean degree, the variance of the
degree distribution, the mean distance, and the variance of
the DSPL over all components whose size is smaller than or
equal to s. Taking the large-s limit, we found that the mean
path length between all pairs of nodes that reside on the same
component is given by

〈L〉FC = 1

1 − c
. (117)

As the percolation threshold is approached from below, at
c → 1−, the mean distance diverges as 〈L〉FC ∼ (1 − c)−α ,
where the exponent α = 1. From the duality relations between
a subcritical ER network and the finite components in a
corresponding supercritical ER network, it is found that the
same exponent, α = 1, appears also above the transition.

APPENDIX A: THE DISTRIBUTION OF TREE SIZES

In this Appendix we review some useful results on the
distribution of tree sizes in subcritical ER networks. Consider
a subcritical ER network of N nodes with mean degree c < 1.
The expectation value of the number of trees of s nodes in
such network is denoted by T N

s . Using the theory of branching
processes, it was shown that T N

s is given by [10,13]

T N
s =N

(
N

s

)
ss−2

(
c

N

)s−1(
1 − c

N

)(
s

2

)
−(s−1)(

1 − c

N

)s(N−s)

,

(A1)

where the binomial coefficient accounts for the number of ways
to pick s nodes out of N in order to form a component of size
s and the factor of ss−2 is the number of distinct tree structures
that can be constructed from s distinguishable nodes [64]. The
factor of (c/N )s−1 accounts for the probability that the s nodes
of the component will be connected by s − 1 edges. The next
term is the probability that there are no other edges connecting
pairs of nodes in the component, while the last term is the
probability that there are no edges connecting nodes in the com-
ponents with nodes in the rest of the network. For s � N one
can approximate the binomial coefficient by Ns/s! and obtain

T N
s = N

ss−2cs−1

s!

(
1 − c

N

)s(N−s)+
(
s

2

)
−(s−1)

. (A2)

Since we consider subcritical ER networks, for which c < 1,
unless the network is extremely small the condition c � N

is satisfied. Therefore, one can approximate the last term in
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Eq. (A2) by an exponential, and obtain

T N
s = N

ss−2cs−1e−cs

s!
exp

[
c(s2 + 3s − 2)

2N

]
. (A3)

Finally, in the asymptotic limit of N → ∞, the exponential
converges towards 1 and the expression for the expected
number of tree components of s nodes is reduced to [10,13]

T N
s  N

ss−2cs−1e−cs

s!
. (A4)

In the limit of large s, one can use the Stirling approximation
and obtain

T N
s  N√

2πc

e−s/smax

s5/2
, (A5)

where the cutoff parameter smax is given by

smax = 1

ln
(

1
ce1−c

) . (A6)

As the percolation threshold is approached from below, for
c → 1−, the cutoff parameter diverges, according to smax ∼
1/(1 − c)2. The expected number of trees of size s per node,
obtained from Eq. (A5), scales like T N

s /N ∝ s−τ , where
τ = 5/2. This is in agreement with the critical component
size distribution on regular lattices above the upper critical
dimension of D = 6, where τ is the Fisher exponent [65],
exemplifying the connection between percolation transitions
on random networks and regular lattices of high dimensions.

The total number of tree components in a subcritical ER
network of N nodes and c < 1 is denoted by

NT (c) =
N∑

s=1

T N
s . (A7)

Carrying out the summation, using the expression for T N
s from

Eq. (A4), we obtain that for 0 � c � 1

NT (c) =
(

1 − c

2

)
N ; (A8)

namely NT (c) is a linear, monotonically decreasing function
of c, where NT (c = 0) = N and NT (c = 1) = N/2. The mean
tree size is thus given by

〈S〉FC = 2

2 − c
, (A9)

which does not diverge as c approaches the percolation
threshold. Using Eqs. (A4) and (A8) we can write down the
distribution of tree sizes, which takes the form

PFC(S = s) = 2ss−2cs−1e−cs

(2 − c)s!
. (A10)

In various processes on networks, components are selected
by drawing random nodes and choosing the components on
which they reside. The probability that a randomly selected
node resides on a tree of size s is given by

P̃FC(S = s) = s

〈S〉FC
PFC(S = s). (A11)

The mean of this distribution is

〈S̃〉FC = 〈S2〉FC

〈S〉FC
= 1

1 − c
. (A12)

Thus, as c → 1−, the mean tree size on which a random node
resides diverges.

Consider a random pair of nodes that reside on the same
component. The probability that they reside on a component
of size s is given by

P̂FC(S = s) =
(
s

2

)
PFC(S = s)〈(

S

2

)〉
FC

. (A13)

Evaluating the denominator we obtain〈(
S

2

)〉
FC

= c

(1 − c)(2 − c)
. (A14)

The mean of P̂FC(S = s) is found to be

〈Ŝ〉FC = 2 − c

(1 − c)2
, (A15)

which diverges quadratically as c → 1−.

APPENDIX B: THE PROBABILITY THAT TWO RANDOM
NODES RESIDE ON THE SAME COMPONENT

In this Appendix we calculate the probability, PFC(L < ∞),
that two random nodes in a subcritical ER network reside on
the same component. This probability is given by

PFC(L < ∞) = L(N,c)(
N

2

) , (B1)

where L(N,c) is the number of pairs of nodes that reside on
the same component. It is given by

L(N,c) =
∑
s�1

(
s

2

)
T N

s , (B2)

where T N
s is the number of tree components of size s, given

by Eq. (A4). In order to evaluate this sum we use properties of
the Lambert W function, denoted by W(x) [14]. In particular,
we use the implicit definition (Eq. 4.13.1 in Ref. [14])

W(x) = xe−W(x). (B3)

We also use the series expansion (Eq. 4.13.5 in Ref. [14])

W(x) = −
∞∑

s=1

ss−2

s!
s(−x)s . (B4)

Using the series expansion of Eq. (B4) it can be shown that

∞∑
s=1

(
s

2

)
ss−2

s!
(−x)s = 1

2

[
W(x) − x

d

dx
W(x)

]
. (B5)

Plugging in Eq. 4.13.4 of Ref. [14], which can be expressed
in the form

d

dx
W(x) = W(x)

x[1 + W(x)]
, (B6)
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we obtain

∞∑
s=1

(
s

2

)
ss−2

s!
(−x)s = [W(x)]2

2[1 + W(x)]
. (B7)

Plugging inx = −ce−c, multiplying byN/c, and using the rep-
resentation of T N

s in Eq. (A4), we obtain for the left-hand side

N

c

∞∑
s=1

(
s

2

)
ss−2

s!
(ce−c)s

=
∞∑

s=1

(
s

2

)
N

ss−2cs−1e−cs

s!
=

∞∑
s=1

(
s

2

)
T N

s , (B8)

which is the quantity we want, for finite values of N . Therefore,
we obtain

L(N,c) =
(

N

2c

)
[W(−ce−c)]2

1 + W(−ce−c)
. (B9)

For 0 < c < 1 it can be shown that W(−ce−c) = −c, and thus

L(N,c) = Nc

2(1 − c)
. (B10)

Using Eq. (B1) we find that in the asymptotic limit, N → ∞,
the probability that two randomly selected nodes in the
network reside on the same component is given by

PFC(L < ∞) = c

(1 − c)(N − 1)
 c

(1 − c)N
. (B11)
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