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Abstract. The maximum-weight matching problem and the behavior of its
energy landscape is numerically investigated. We apply a perturbation method
adapted from the analysis of spin glasses. This gives inside into the complexity
of the energy landscape of different ensembles. Erdős-Rényi graphs and ring
graphs with randomly added edges are considered and two types of distributions
for the random edge weighs are used. For maximum-weight matching, fast and
scalable algorithms exist, such that we can study large graphs of more than
105 nodes. Our results show that the structure of the energy landscape for
standard ensembles of matching is simple, comparable to the energy landscape
of a ferromagnet. Nonetheless, for some of the here presented ensembles our
results allow for the presence of complex energy landscapes in the spirit of Replica-
Symmetry Breaking.
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1. Introduction

Spin glasses are prototypical complex systems widely
studied in statistical physics [1–6]. The analytical
solution of the Sherrington-Kirkpatrick spin glass
model [7] led to the notion of Replica-Symmetry
Breaking (RSB) [8–13]. Typical for such a complex
RSB phase is a rough energy landscape with many local
minimal and metastable states divided by high energy
barriers [13]. This leads to non-trivial equilibrium and
non-equilibrium behavior.

This concept of complexity is transferable to
other problems like neural networks, data analysis or
optimization problems [5, 14–16]. These problems may
show behavior like RSB or other types of complexity
[17]. It has been observed that, e.g., Satisfiability
[18–20], the traveling salesperson [21–23], vertex cover
[24–27] and graph coloring [28] can feature complex
phases for certain ensembles and model parameters.
These models also exhibit rugged energy landscapes
with glassy equilibrium and non-equilibrium behavior.

These mentioned problems are members of the
class of non-deterministic-polynomial (NP) problems
[29]. All known exact algorithms for treating these
problems exhibit worst-case running times that grow
exponentially with the problem size. This means, one
is rather limited in the numerical investigations of the
equilibrium behavior of these problems, because only
comparable small systems can be studied. This is
a pity, because the behavior of these models is very
interesting.

On the other hand, in the class of polynomial
(P) problems, the worst case run time growths only
polynomially. Hence, much larger systems can be
studied, leading to numerically more accurate results
and better statistics. Unfortunately, problems from
P typically feature a simple energy landscape [30–
35], leading to a rather trivial behavior. This seems
to indicate that complex behavior and convenient
numerical access to the equilibrium behavior do not
come together. But it should be noted that most
studies so far where performed for model ensembles,
where the randomness is introduced in a simple
and uncorrelated way. Interestingly, recently a
complex behavior was found for ensembles which utilize
correlations for the model of directed polymers in
random media. For this model a polynomial exact
sampling algorithm exists and thus large systems of
up to 109 lattice sites could be studied and strong

indications for replica-symmetry breaking have been
observed [36]. Furthermore, for the polynomially
tractable problem of increasing subsequences, also
called Ulam’s problem, numerical evidence for RSB
was found [37]. Finally, it should be noted that also
the XOR-SAT problem, which can be solved efficiently
by Gaussian elimination [38, 39], exhibits one-step
RSB, but this becomes irrelevant in equilibrium in the
thermodynamic limit [40].

Thus, by the choice of a suitable ensemble, it
seems to be possible to study some systems with non-
trivial behavior in a numerically efficient way. In
the present work, in the spirit of [36, 37], we study
another problem from the class P to seek for indications
for complex behavior. In particular, we consider
the maximum-weight graph-matching problem. This
model was one of the first optimization problems to
be studied from the viewpoint of statistical mechanics
[41]. Analyses were extended to arbitrary graphs [30],
finite-size effects [42] and Euclidean edge weights [43–
45].

The interests of graph-matching problems in
physics also comes from the fact that other problems
can be solved by a mapping to suitable matching
problems. This has been done for, e.g., 2D spin glasses
[33], dimer covering [46], negative-weight percolation
[47] and controllability of dynamic networks [48, 49].

The remaining of this paper is organized as
follows: In section 2, graph matching and random
graph ensembles used in this work are introduced.
These ensembles are Erdős-Rényi graphs and ring
graphs with additional random edges, both with
Gaussian distributed or constant edge weights with
uniform noise. Section 3 presents the details of the
perturbation technique. It it explained how one can
investigate whether a complex energy landscape is
present by observing the differences between matchings
obtained from the original and slightly perturbed
graphs, respectively. We also address the question
whether the perturbation approach can be used to
sample matching statistically correctly. The results of
the analyses are given in section 4, where we start with
the results obtained from the perturbation technique.
We summarize and draw final conclusions in section 5.
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2. Model

2.1. Matching

An undirected graph G = (V,E) is given by a set of
nodes i ∈ V and a set of edges e ∈ E ⊆ V (2), where
n = |V | and m = |E|. Two nodes i and j are called
adjacent if e = {i, j} is a member of E. This edge e
called incident to i and j. A matching M is a subset
of E in which no two edges are incident to the same
node. For each edge in M , its adjacent nodes are called
matched. Nodes which are not matched are called free.
A maximum cardinality matching is a matching with
maximizes the number of matched nodes |M |. On a
graph G with edge weights w(e), the weight of the
matching is W =

∑
e∈M w(e). A maximum-weight

matching is a matching M that maximizes the weight
W over all possible matchings on G. In section 3
we state the algorithm we have used to obtain the
maximum-weight matching of a given graph.

2.2. Random graphs

We consider two types of random graph ensembles.
Details on the chosen values of the model parameters
are given in section 4. The first ensemble consists of
Erdős-Rényi random graphs [50]. To generate such
graphs, one starts with on empty graph of n nodes
V = {1, 2, · · · , n}. Then, for each possible pair of
distinct nodes, an edge is created independently with
probability p = c/n, where c is the connectivity. The
resulting degree distribution is Poissonian.

The second ensemble consist of ring graphs with
additional random edges. First, a regular ring graph
with mean degree of two is created. This means, the
edge E set initially contains the edges {i, i + 1} for
i = 1, . . . , n− 1 plus the edge {n, 0}. Next, two nodes
i, j are chosen randomly with uniform probability and
the edge {i, j} is created if i 6= j and {i, j} does not yet
exist in E. This process is repeated until m+ edges are
added to the graph this way. The number of edges in
G is then given by m = n+m+. Below we will consider
the cases m+ = const, m+ ∈ O(log n) and m+ ∈ O(n).

Two types of edge weights w(e) are investigated.
First, we consider w(e) ∼ N (1, 0.01), i.e., Gaussian
distributed random weights with a mean of 1 and a
variance of 0.01. Second, we study constant weights
with additional uniform noise, w(e) = 1+ε. To choose
the strength of the additional noise ε, we mention
that with w(e) = 1 for all edges, a maximum-weight
matching is equivalent to a maximum cardinality
matching, since W = |M | holds. The purpose of
the additive noise ε is to make the optimal solution
unique. But beside that, it should not influence the
size of the optimum matching even for large values
of n. To ensures that, ε is drawn from a uniform

distribution where the values scale with n−
1
2 , i.e.,

ε ∼ U(−0.01n−
1
2 , 0.01n−

1
2 ).

3. Methods

To find a maximum weight matching we use Edmond’s
Blossom Shrinking algorithm [51], implemented in the
LEMON-library [52]. The algorithm has a worst-
case running time O(n2m), i.e., polynomial, such that
correspondingly large graphs can be treated.

3.1. Perturbation technique

When studying the complexity of energy landscapes, a
common technique is to apply weak perturbations on
the system. To our knowledge, this technique was first
used to study spin glasses (see, e.g., [53]). Since then, it
was adapted for, e.g., random-field Ising models [54, 55]
and the traveling salesperson problem [23].

The basic idea is to first calculate a ground state
and the perturb the system slightly such that by a
recomputation a new ground state is obtained, which
is an excited state with respect to the original system.
For the matching problem, we use edge flips as a
perturbation technique. First, a maximum-weight
matching M0 with total weight W0 is calculated. Then,
one randomly chosen edge e will be “flipped”. If e is
in M0, it is not allowed to be in a matching M1 of
the perturbed graph. On the other hand, if e is not in
M0, it is enforced to be in M1. In practice, this can
be achieved by setting the weight of e to a very small
value, e.g., −2W0, or a very large value, e.g., 2W0,
respectively. After M1 is found, the weight of the edge
will be reset to its original value such that the weight
W1 of M1 is calculated with the original weights. In the
following, M0 will always denote an optimal matching
with respect to the original edge weights, whileMi with
i > 0 denote independent matchings resulting from
perturbations by a single edge flip with respect to M0.
W0 and Wi denote the corresponding weights of the
matchings.

A perturbation is weak if the relative difference of
W0 and W1 behaves as

W0 −W1

W0
= O

(
1

n

)
. (1)

If (1) holds, M1 is quasi optimal. Note that this
means that when considering the system in the
canonical ensemble, i.e., according to the Boltzmann
distribution, the matchings M0 and M1 will contribute
with the same weight in the thermodynamic limit.

To compare two matchings Mi and Mj , we
apply a similarity measure, also called overlap. Since
matchings are sets, it is convenient to use the Jaccard
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index [56], given by

qij =
|Mi ∩Mj |
|Mi ∪Mj |

. (2)

The distance between two matchings is defined as
dij = 1 − qij [57]. Overlap and distance between
optimal matching M0 and matching Mi obtained from
a perturbation are denoted as q0 and d0, respectively,
where the second index i is omitted.

A necessary condition for a complex energy
landscape is that there exist quasi optimal matchings
with d0 > 0 in the thermodynamic limit of infinite large
graphs [58]. Hence, we measured 〈(W0 −Wi)/W0〉
and 〈d0〉 for different values of n, averaged over
random graph realizations. If the matchings for the
perturbed graphs are quasi optimal and 〈d0〉 converges
towards zero for increasing values of n, a simple energy
landscape can be assumed. But if 〈d0〉 remains finite,
a complex energy landscape can not be excluded.

3.2. Sampling bias test

To further investigate whether the matching problem
on a given graph ensemble indeed exhibits a complex
energy landscape, it would be desirable to efficiently
sample matchings. For correct statistics, matchings
with equal total weight W should be sampled with
equal probability. Hence, a sampling approach
needs to know the number of distinct matchings for
the full problem and for encountered subproblems.
Unfortunately, the matching problem is in the class
of #P-complete problems [59, 60]. This means,
with all known algorithms, it requires to enumerate
all matchings, which are typically exponentially
many. Hence, such an approach is computationally
demanding.

We can, in principle, use matchings obtained by
the perturbation method as samples. Unfortunately,
edge flips create an unknown bias to the sampling
because various configurations are prohibited, which
depends on the flipped edge. It could nonetheless be
the case that bias errors average out, especially for
large graphs. To assess this, we have performed the
following investigation.

For a given graph, here we study Erdős-Rényi
graphs, a set of edge weights of constant weights with
noise w = 1 + ε is drawn, see section 2.2. Then, an
optimal matching according to this set of weights is
calculated. Next, multiple times a perturbed graph is
obtained, using random edge flips, and again matchings
are calculated. This process is then repeated for
multiple realizations of the initial noise.

The obtained matchings are collected in a sample
histogram. Here, we include only matchings with
the same cardinality as the optimal matching. The
resulting histogram is then used to compare the relative

frequencies Q(M) to the case where all matchings
would have been drawn with equal probability. That
is P (M) = 1/nM, where nM is the number distinct
matchings. As the number of matchings grows
exponentially with the number of edges, this procedure
is only appropriate for small graphs.

To compare P and Q quantitatively, two distance
measures are used. The first one is the Kullback-Leibler
divergence DKL defined as

DKL(P,Q) =

nM∑
i=1

P (Mi) ln

(
P (Mi)

Q(Mi)

)
. (3)

The second measure is the mean relative error MRE
given by

MRE(P,Q) =

nM∑
i=1

P (Mi)

√
(P (Mi)−Q(Mi))

2

P (Mi)
(4)

=

nM∑
i=1

√
(P (Mi)−Q(Mi))

2
, (5)

which is the averaged relative error per matching.
If P and Q become more equal for larger graphs,

the values of DKL and MRE will become smaller.
In particular, if the sampling approaches the uniform
one, the distance measures should converge to zero.
If this was the case, the overlap distributions P (q)
could be investigated in a meaningful way. In case
the distribution of overlaps remains broad in the limit
of large graphs, this would indicate that a complex
behavior is significant in equilibrium. On the other
hand, if the values of DKL and MRE increase with
larger graphs, the sampling bias errors can not be
neglected. In this case, a limiting nonzero value of
the distance d0 would only indicate that significantly
different matchings exists, but one would not know by
using the present approach whether their weights are
strong enough to influence the equilibrium behavior.

4. Results

The following results are obtained by performing
simulations [61] for the two graph ensembles, various
values of parameters and graph sizes in the range of
n = 7 to 131 072. If not otherwise specified, all
results are averaged over 100 different random graph
realizations and 100 different edge-flip perturbations
and resulting matchings for each graph realization.
Partially, the GNU Parallel tool was used to distribute
the simulations over several CPUs [62]. All data fits
were performed as recommended in Ref. [63].

4.1. Perturbation

We first verify that the matchings of the perturbed
graphs are quasi optimal. Our results show that for
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both types of random graphs, Erdős-Rényi and ring
graphs, as well as for both types of edge weights, the
matchings for the perturbed graphs are quasi optimal
as (1) holds. In figure 1, results are shown for Erdős-
Rényi graphs with connectivities c ∈ {0.5, 1, 2, 4}.
Included are results from fits using

〈(W0 −Wi) /W0〉 = α
1

n
. (6)

In the other studied cases the results look similar,
hence they are not shown here. Note that for ring
graphs, the data deviates from the fit for small
sizes n ≤ 28. Since (1) is required to hold only
asymptotically, the condition for quasi optimality is
fulfilled for this case as well.

10−6
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10−2
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24 26 28 210 212 214 216

〈(
W

0
−
W

)/
W

0
〉

n

c = 0.5
c = 1
c = 2
c = 4

w(e) ∼ N

∼
1/n

Erdös-Rényi

Figure 1. Verification that the matchings on perturbed graphs
are quasi optimal, as 〈(W0 −W )/W0〉 as a function of n behaves
as O(1/n). Shown here are results for Erdős-Rényi graphs
with Gaussian distributed random weights and connectivities
c ∈ {0.5, 1, 2, 4}. The straight lines represent fits in the form of
(6).

We next look at the behavior of d0 and start with
the case of Gaussian distributed weights. The results
for Erdős-Rényi graphs are shown in figure 2. One
observes that the distance 〈d0〉 approaches zero for
increasing n. To confirm this behavior systematically,
a power law fit with offset d∞ is used,

〈d0〉 (n) = d∞ + β1 n
β2 , (7)

resulting in good fits. The resulting fit parameters for
all studied cases are reported in table 1.

For Gaussian distributed weights, the value of
d∞ is set to a fixed value of zero in all cases to
obtain reasonable results. Fits with a freely estimated
d∞ result in negative values for this parameter, i.e.,
nonphysical results. The observed behavior shows that
the matchings for the perturbed graphs share most of
their edges with the matching for the original graphs,
increasingly with growing system size. This can be
explained by the application of a non-uniform weight
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w(e) ∼ N
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Figure 2. Averaged distance 〈d0〉 between matchings on
perturbed graphs and optimal matchings as a function of n for
Erdős-Rényi graphs with Gaussian distributed random weights
and connectivities c ∈ {0.5, 1, 2, 4}. The straight lines represent
power low fits in the form of (7).

distribution. To maximize W0, the matching algorithm
focuses on few edges with large weights. Now for a
matching with perturbed weights, if one edge is flipped,
a large total weight is still achieved by using most of the
same edges with large weights as in M0. Consequently,
only a few edges change compared toM0 to compensate
the edge flip. This results in a small difference between
optimal matching and matching of the perturbed graph
that vanishes in the limit of infinity large graphs.

Overall, the results for Gaussian weights indicate a
simple structure of the energy landscape. The results
for ring graphs are similar and therefore not shown
here. As constant values of m+ result in d∞ = 0,
we omitted to investigate values of m+ ∈ O(log n) or
m+ ∈ O(n) for Gaussian distributed weights.

We next look at constant edge weights with
additional noise. Since here all edge weights are
more similar to each other, the existence of very
different matchings with very similar weight, i.e., a
more complex energy landscape, can be anticipated.
For Erdős-Rényi graphs the results for 〈d0〉 are similar
to the above discussed case with Gaussian distributed
weights, and therefore no shown here. Again, fixed
values of d∞ = 0 are needed to obtain physically
meaningful results for the fits according to (7). Thus,
also for this case no sign of a complex energy landscape
can be found.

The argumentation for Gaussian weights no longer
holds here since each edge is almost equally important
for the total weight. But here, the topological
constrains of Erdős-Rényi graphs explain the behavior:
Since loops are of order log(n) for Erdős-Rényi graphs,
local changes of the matching do not spread far,
resulting only in small overall differences between the
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Table 1. Values of the fit parameters for the fits in the form of
(7) to determine d∞. Fixed values are marked with *. Results
are given for various values of parameters (first column) and
edge weights (second column) for Erdős-Rényi graphs and ring
graphs with even or odd number of edges. A value of d∞ = 0
corresponds to a simple energy landscape. But for d∞ > 0, a
complex behavior can not be excluded. Values for β1 and β2 are
given for completeness.

Erdős-Rényi graphs

c w d∞ β1 β2

0.50 ∼ N 0* 10.7(1) 0.997(1)
1 ∼ N 0* 8.8(1) 0.982(1)
2 ∼ N 0* 6.27(7) 0.898(1)
4 ∼ N 0* 2.18(2) 0.446(1)

0.50 1 + ε 0* 10.8(2) 0.998(2)
1 1 + ε 0* 8.9(1) 0.983(1)
2 1 + ε 0* 6.36(7) 0.901(1)
4 1 + ε 0* 2.65(2) 0.499(1)

ring graphs, n even

m+(n) w d∞ β1 β2

0 ∼ N 0* 83(3) 0.989(3)
1 ∼ N 0* 81(3) 0.986(3)

10 ∼ N 0* 80(2) 0.985(3)

0 1 + ε 1* 0* 0*
1 1 + ε 0.947(2) 0* 0*

10 1 + ε 0.583(3) 2.5(5) 1.16(9)
2 ln(n) 1 + ε 0.345(5) 1.00(3) 0.35(1)
4 ln(n) 1 + ε 0.255(3) 1.31(3) 0.42(1)

ring graphs, n odd

m+(n) w d∞ β1 β2

0 ∼ N 0* 81(3) 0.987(3)
1 ∼ N 0* 79(3) 0.984(3)

10 ∼ N 0* 84(2) 0.991(3)

0 1 + ε 0.544(3) 1.5(5) 1.1(2)
1 1 + ε 0.523(3) 2.0(5) 1.1(1)

10 1 + ε 0.397(3) 2.2(2) 0.92(4)
2 ln(n) 1 + ε 0.295(3) 1.42(6) 0.56(2)
4 ln(n) 1 + ε 0.222(3) 1.50(4) 0.51(1)

optimum matching for the original and the perturbed
graph. Hence, the difference 〈d0〉 vanishes for n→∞.

On the other hand, for ring graphs the behavior
is different, as it can also be seen in figure 3. Here, a
value of d∞ > 0 was needed for a good fit in all studied
cases.

To understand this behavior, consider ring graphs
with an even number n of nodes and no random edges,
i.e., m+ = 0. Since matchings along paths appear as
alternations of matched and free edges, the simple ring
graph structure enforces that all matchings Mi with
i > 0 are given by E \M0, i.e., all matched edges are

10−1

100

24 26 28 210 212 214 216

〈d
0
〉

n

n even
m+ = 0
m+ = 1
m+ = 10

n odd
m+ = 0
m+ = 1
m+ = 10

w(e) = 1 + ε
ring graph

(a)

10−1

100

24 26 28 210 212 214 216

〈d
0
〉

n

n even
m+ = 2 ln(n)
m+ = 4 ln(n)
n odd
m+ = 2 ln(n)
m+ = 4 ln(n)

w(e) = 1 + ε
ring graph

(b)

Figure 3. Averaged distance 〈d0〉 between matchings on
perturbed graphs and optimal matchings as a function of n for
ring graphs. (a) shows results for constant edge weights with
additional noise and values of m+ ∈ {0, 1, 10} and (b) shows
results for m+ = l+ ln(n) with l+ ∈ {2, 4}. Blank symbols
indicate even number of nodes n, while filled symbols are used
for odd values of n. The straight or dashed lines represent power
low fits with offset d∞ in the form of (7), respectively.

replaced by free ones, and vice-versa. Hence, trivially
d0 = 1 holds.

If n is odd, one node remains free and there are
n maximum cardinality matchings. M0 is given by the
maximum cardinality matchings with the largest total
weight. Using E \ M0 for a perturbed graph would
results in lower cardinality of the matchings and hence
lower total weight. However, n − 1 other matchings
remain to compensate for the edge flip, each of which
leaves another node free. Thus, one average about half
of the edges change in the optimum matching when the
graph is perturbed. This can be compared to a simple
spin system: for a ferromagnet when anti-periodic
boundary conditions are introduced, two domain walls
will be created, one where the new boundary conditions
are located, the other one anywhere in the system.
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This also results in many different configurations, but
the system still actually does not behave in a complex
way. In conclusion, that d∞ stays finite for m+ = 0 for
the simple ring graph is not resulting from a complex
energy landscape, but rather from the simple structure
of the graphs.

When adding random edges, the situation be-
comes more interesting. The perturbation leads for
the cases of m+ = const and m+ ∈ O(lnn) to vari-
ous matchings and more complex overlaps between the
matchings become possible. The finite value of d∞ can
no longer be explained by the graph structure alone.
Hence, we observe quasi optimal solutions that differ
from the optimal solution by an extensive number of
edges. This is a necessary condition for complexity
[58]. Thus a complex energy landscape may exist for
this ensemble.

We also performed simulations with ring graphs
where the number of random edges m+ grows linearly
with n. Here, the ring graphs become increasingly
equal to Erdős-Rényi graphs for large values of
n and the ring structure becomes less important.
Hence, similar findings as for Erdős-Rényi graphs were
obtained, i.e., we observed 〈d0〉 → 0 for n → ∞.
Therefore, we do not report further results for this case.

4.2. Sampling

Our previous results show that there exists ensembles
for the matching problem, where optimum matchings
exists, which differ by O(n) variables but almost have
the same energy, i.e., are quasi optimal. This is a
necessary condition for the existence of a complex
energy landscape. As mentioned above, it would be
desirable to sample these matchings and compare them
to each other, to understand the energy landscape
better, in particular in the thermodynamic limit. For
this purpose sampling with equal probability, i.e., in
an unbiased way, is needed.

For the sampling bias test, Erdős-Rényi graphs
with 1 + ε weights, c = 2 and n between 4 and 32 are
used. Note that fully enumerating all solutions and
sampling with good statistics is only feasible for such
small sizes. For each graph 1000 different sets of edge
weights are used and 1000 matchings for the perturbed
graphs are calculated for each of these weight sets,
resulting in 106 matchings for each graph.

The frequencies Q(Mi) of occurrences of these
matchings are measured and compared to the required
uniform distribution as described in section 3.2. The
obtained values of DKL and MSE are averaged over 100
different random graph realizations. This averaging is
denoted by 〈.〉G. Results are shown in figure 4. Here
it can be seen that both 〈DKL〉G and 〈MSE〉G increase
for increasing values of n. Hence, the sampling bias
does not average out. It can also be seen that the

0.0
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4 8 16 32

〈D
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L
〉 G

/
〈M

R
E
〉 G

n

MRE
DKL

w(e) = 1 + ε, c = 2
Erdös-Rényi

Figure 4. Result of the sampling bias test. Averaged Kullback-
Leibler divergence 〈DKL〉G and mean relative error 〈MRE〉G
both systematically increase with larger values of n. The results
are obtained from Erdős-Rényi graphs with a connectivity of
c = 2 and constant edge weights with additional noise.

error bars increase with larger values of n. This is the
case, because the number of possible matchings grow
with the number n of nodes resulting in an increasing
variance.

This result shows that the sampling error does
not averages out. Hence, it is not meaningful to
investigate sampled overlap distributions P (q) with
samples directly drawn from the perturbation process.

5. Conclusion

We have studied the behavior of the energy landscape
of matchings by using “edge flips” to perturb the
optimal solution of the original graphs. Our analyses
have shown that for suitable ensembles there exist
quasi optimal states with differ from the ground state
by an extensive number of edges. Hence, a complex
energy landscape can not be excluded here. These
ensembles include ring graphs with a constant or
logarithmic growing number of additional edges and
constant edge weights with uniform noise. In these
cases, the extrapolated relative distance d∞ between
the matchings stays finite. For the other observed
ensembles, ring graphs with linear growing number of
extra edges and for Erdős-Rényi graphs, the results
show no evidence for a complex energy landscape.

It was shown that samples taken directly from
the perturbation method are biased. This hindered
further more detailed investigations, like obtaining
the distribution of overlaps between many optimum
matchings. Hence, it is unknown if the quasi optimal
states are relevant in the thermodynamic limit. If
this was not the case, the behavior of the energy
landscape observed here resembles “weakly broken
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replica symmetry” [64]. It should be noted that,
in general, approaches based on perturbing given
optimum solutions are only able to show whether there
exist other solutions which differ by O(n) variables, but
not whether they are relevant in the thermodynamic
limit. Still, if these very different other quasi-optimal
solutions do not exist, it is clear that the energy
landscape is simple.

To set up further studies, it should be noted
that for ring graphs with a constant or logarithmically
growing number m+(n) of additional edges, a finite
value of d∞ > 0 was observed. But if m+(n) grows
linearly with n, we found d∞ = 0. Consequently, there
exist a transition between choices for m+(n) where d∞
remains finite and where it vanishes. To analyses this
further, the number of extra edges could be modeled
by a power law m+ ∈ O(nλ). Then, it can be evaluated
if a critical value λc for the exponent exists, where a
sudden transition between d∞ > 0 and d∞ = 0 takes
place.

Also, it would be interesting to find a method to
efficiently draw unbiased samples. One could use sam-
pling methods which are numerically more demanding,
like Monte Carlo Markov-chain simulations [65] or ex-
haustive enumerations. With present algorithms this
would restrict the accessible system sizes considerable.
On the other hand, it could be possible to correct the
sampling bias afterwards using the ballistic-search ap-
proach [66], which has been applied successfully to cor-
rect the sampling bias observed for evolutionary algo-
rithms when applied to spin glasses [67]. This is al-
gorithmically quite demanding, but certainly feasible
in future projects. By applying such approaches, the
sampled overlap distributions P (q) can then be inves-
tigated to get more inside into the energy landscape
of the ensembles proposed here. In this way, it would
also possible to check whether the quasi-optimal very
different solutions are relevant in the thermodynamic
limit.

Beside matching and directed polymers, other
P problems may also show indications of a complex
energy landscape for suitable ensembles. The methods
described in this or other works [36–39] can be adjusted
to these problems to studied them in a similar fashion.
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