
Bad Honnef School

Peter Young

Problem 4, Solution

Least squares fit to a non-linear model.

a. Source code is given for gnuplot and python at the bottom. (Thanks to Matt Wittmann for doing the
python scripts.)

A figure, produced by gnuplot, which includes all the fit parameters, is below. Note how the value of Q is
calculated, and how the fit parameters, including error bars, are displayed on the figure. As discussed in
the handout, in the gnuplot script I divided the error bars by FIT STDFIT ≡

√

χ2/NDOF.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.15 0.2 0.25 0.3 0.35

T
*

1/Lω

T* = Tc + A / Nω

Tc = -0.257 +/- 1.476

ω = 0.206 +/- 0.351

A = 2.79 +/- 0.83

χ2 = 1.02

χ2/NDF = 0.25
Q = 0.91

The error bar for ω does not make sense because it includes negative values for which the fit blows up as
L → ∞. The error bar for Tc also does not make sense because, on the positive side, it includes temperatures
higher than any of the values for T ⋆

L
, which cannot be true because T ⋆

L
decreases with increasing L.

b. I modified the gnuplot script to fix the value of Tc (called a in the script). The script is given below.

I ran the script for several values of Tc and noted the value of χ2 in each case. I plotted the resulting value
of χ2 against Tc below. A common confidence limit is the region where ∆χ2 ≤ 1, which corresponds to a
68% probability if the noise is Gaussian.

The curve is very asymmetric. On the negative side the range is unbounded. A fit with arbitrarily large
negative Tc still has ∆χ2 < 1, and goes with a very small (probably unphysically small) value of the exponent
ω. This is an example of a strong correlation between values of different fit parameters.

On the positive side the confidence region extends up to Tc = 0.29, shown by the vertical (black) dotted
line. Hence we can say that Tc ≤ 0.29, but can’t give a lower bound.

The dotted (green) line in the figure shows the (quadratic) variation of ∆χ2 determined from the curvature
at the minimum, i.e.

∆χ2 = (δTc)
2
/σ2

Tc

, (1)

where σTc
is the error bar quoted by the fitting program in part (a). Clearly, however, estimating ∆χ2 from

the curvature is inaccurate (recall this is non-linear model): considerably underestimating it on the positive
side, and overestimating it on the negative side.

1

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

χ2

Tc

I also show below a global view, in which the end of the error bars determined from the fit, σTc
= 1.476, are

shown by vertical (black) dotted lines. These are where ∆χ2 = 1 if one computes ∆χ2 according to Eq. (1)
(the green, dotted line).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-1.5 -1 -0.5 0 0.5 1

χ2

Tc

I also include a python script at the bottom, which gives the same results for χ2 as a function of Tc as
gnuplot.

==========================

Gnuplot Code for part (a):

==========================

set size 1.0, 0.6

set terminal postscript portrait enhanced

2

set output "HW4a.eps"

set fit errorvariables

f(x) = a + b / x**c

set xlabel "1/L^{/Symbol w}"

set ylabel "T^*"

set label "T^* = T_c + A / N^{/Symbol w}" at 0.1, 0.7

a = 0.3

b = 1

c = 0.2

fit f(x) "data.HW4" using 1:2:3 via a, b, c

set xrange [0.07:0.38]

g(x) = a + b * x

h(x) = 0 + 0 * x

ndf = FIT_NDF

chisq = FIT_STDFIT**2 * ndf

Q = 1 - igamma(0.5 * ndf, 0.5 * chisq)

set label sprintf("T_c = %5.3f +/- %5.3f",a, a_err/FIT_STDFIT) at 0.25, 0.33

set label sprintf("{/Symbol w} = %5.3f +/- %5.3f",c, c_err/FIT_STDFIT) at 0.25, 0.27

set label sprintf("A = %5.2f +/- %5.2f",b, b_err/FIT_STDFIT) at 0.25, 0.21

set label sprintf("{/Symbol c}^2 = %5.2f", chisq) at 0.25, 0.15

set label sprintf("{/Symbol c}^2/NDF = %5.2f", FIT_STDFIT**2) at 0.25, 0.09

set label sprintf("Q = %5.2f", Q) at 0.25, 0.03

plot "data.HW4" using (1/$1**c):2:3 with errorbars notitle ls 1, \

g(x) notitle ls 13, \

h(x) notitle lt 3 lw 4

==========================

Python Code for part (a):

==========================

from pylab import *

from scipy.optimize import leastsq

from scipy.stats import chi2

fname = sys.argv[1] if len(sys.argv) > 1 else ’data.txt’

L, Ts, Tserr = np.loadtxt(fname, unpack=True)

n = len(L)

def resids(p):

Tc, w, A = p

return (Tc + A/L**w - Ts) / Tserr

p0 = [-0.25, 0.2, 2.8]

p, covm = leastsq(resids, p0, full_output=True)[:2]

Tc, w, A = p

Tcerr, werr, Aerr = sqrt(diag(covm))

chisq = sum(resids(p)**2)

ndf = n - len(p)

Q = 1. - chi2.cdf(chisq, ndf)

print ’Tc = %10.4f +/- %7.4f’ % (Tc, Tcerr)

print ’A = %10.4f +/- %7.4f’ % (A, Aerr)

print ’w = %10.4f +/- %7.4f’ % (w, werr)

3

print ’chi squared / NDF = %7.4lf’ % (chisq / ndf)

print ’Q = %10.4f’ % Q

==========================

Gnuplot Code for part (b):

==========================

set size 1.0, 0.6

set terminal postscript portrait enhanced

set output "HW4b.eps"

set fit errorvariables

f(x) = a + b / x**c

set xlabel "1/L^{/Symbol w}"

set ylabel "T^*"

set label "T^* = T_c + A / N^{/Symbol w}" at 0.1, 0.7

a = 0.29

b = 1

c = 0.2

fit f(x) "data.HW4" using 1:2:3 via b, c

#set xrange [0.7:0.38]

g(x) = a + b * x

h(x) = 0 + 0 * x

ndf = FIT_NDF

chisq = FIT_STDFIT**2 * ndf

Q = 1 - igamma(0.5 * ndf, 0.5 * chisq)

set label sprintf("T_c = %5.3f",a) at 0.25, 0.33

set label sprintf("{/Symbol w} = %5.3f +/- %5.3f",c, c_err/FIT_STDFIT) at 0.25, 0.27

set label sprintf("A = %5.2f +/- %5.2f",b, b_err/FIT_STDFIT) at 0.25, 0.21

set label sprintf("{/Symbol c}^2 = %5.2f", chisq) at 0.25, 0.15

set label sprintf("{/Symbol c}^2/NDF = %5.2f", FIT_STDFIT**2) at 0.25, 0.09

set label sprintf("Q = %5.2f", Q) at 0.25, 0.03

plot "data.HW4" using (1/$1**c):2:3 with errorbars notitle ls 1, \

g(x) notitle ls 13, \

h(x) notitle lt 3 lw 4

==========================

Python Code for part (a):

==========================

from pylab import *

from scipy.optimize import leastsq

from scipy.stats import chi2

fname = sys.argv[1] if len(sys.argv) > 1 else ’data.txt’

L, Ts, Tserr = np.loadtxt(fname, unpack=True)

n = len(L)

Tc = 0.2

def resids(p):

w, A = p

return (Tc + A/L**w - Ts) / Tserr

4

p0 = [0.2, 2.8]

p, covm = leastsq(resids, p0, full_output=True)[:2]

w, A = p

werr, Aerr = sqrt(diag(covm))

chisq = sum(resids(p)**2)

ndf = n - len(p)

Q = 1. - chi2.cdf(chisq, ndf)

print ’A = %10.4f +/- %7.4f’ % (A, Aerr)

print ’w = %10.4f +/- %7.4f’ % (w, werr)

print ’chi squared / NDF = %7.4lf’ % (chisq / ndf)

print ’Q = %10.4f’ % Q

5

