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Abstract. This Chapter outlines the fundamental construction of the Stochastic
Series Expansion, a highly efficient and easily implementable quantum Monte Carlo
method for quantum lattice models. Originally devised as a finite-temperature simu-
lation based on a Taylor expansion of the partition function, the method has recently
been recast in the formalism of a zero-temperature projector method, where a large
power of the Hamiltonian is applied to a trial wavefunction to project out the ground-
state. Although these two methods appear formally quite different, their implemen-
tation via non-local loop or cluster algorithms reveals their underlying fundamental
similarity. Here, we briefly review the finite- and zero-temperature formalisms, and
discuss concrete manifestations of the algorithm for the spin 1/2 Heisenberg and
transverse field Ising models.

1.1 Introduction

In the quest to understand the phenomenon of quantum systems in the ther-
modynamic limit, it is often one’s ambition to simulate microscopic models
on lattices of the largest sizes practically possible. In the context of quantum
Monte Carlo (QMC), this means constructing a simulation methodology that
is highly efficient, with favorable scaling properties, free of systematic errors
or bias, yet capable of attacking the cornucopia of interesting quantum mod-
els which entice modern condensed matter, materials, atomic, molecular and
optics, and quantum information scientists. Since QMC involves mapping a
D-dimensional quantum system to D + 1 dimensions, the symmetry of the
quantum Hamiltonian is often encoded directly into the structure of the sim-
ulation cell. Therefore, in order to facilitate a practitioner’s ability to examine
a variety of physical Hamiltonians of interest, a QMC program should also
be transparent and easy to implement, allowing flexibility to code in a wide
range of different lattice models.

For many applications, the industry standard for simulation of lattice mod-
els of quantum spins and bosons (without the sign problem) has become SSE
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QMC, which stands for Stochastic Series Expansion.3 Often, SSE simulations
for ‘typical’ Hamiltonians can be straightforwardly implemented in a few thou-
sand lines of code. This allows the programmer a high degree of control, facil-
itates optimization, and encourages algorithmic development. SSE programs
scale with high efficiency, typically linear in the number of lattice sites and the
inverse temperature: O(Nβ). This combination of favorable quantities enables
a power, utility, and ease of use that is testified to by SSE QMC’s widespread
adoption in a variety of applications in the physical sciences.

Modern SSE is based on some of the same principles as Handscomb’s
method, namely Taylor expanding the partition function [1]. However, Hand-
scomb (and others after him) only considered cases where the trace of the
Hamiltonian could be computed analytically – a fact that caused the method
to be considered limited in scope. The major advance, which propelled Hand-
scomb’s method towards wide-spread applicability, was the realization that
this trace could be stochastically sampled, like in worldline methods. Thus
dubbed SSE, Sandvik [2, 3] pioneered not only the original, spin 1/2 version
(used extensively to study the Heisenberg model [4]), but many extensions of
the versatile framework, including the important recent recasting as a T = 0
projector method [5, 6]. The SSE method has been applied to both spin 1/2
and higher spin models [2,7] on a large variety of lattices, including partially-
frustrated systems [8], models with long-range interactions [9], and a whole
host of other manifestations of quantum magnetism. It has been adapted to
boson Hamiltonians, both hard-core and soft-core, which has caused a prolifer-
ation of application on models of cold atoms trapped in optical lattices [10–12].
It has been generalized to study SU(N) symmetric models [13,14], which has
been instrumental in making connection with field-theoretic studies of uni-
versality and quantum phase transitions [15, 16]. Today, SSE simulations can
routinely access simulation cells with a space-time volume Nβ larger than
107 [17]; its limitations it seems are only the imagination of the practitioner.4

The above are but a few examples of the success of SSE over the past
twenty years. An exhaustive list would quickly fill all of the pages available in
this volume. Instead, in this Chapter, we describe the current broad framework
of understanding of the SSE QMC method, outlining the modern approach
to designing and implementing both T > 0 and T = 0 programs. The two
simplest cases for spin 1/2 models, the isotropic Heisenberg model, and the
Ising model in an applied transverse field, are discussed in detail.

1.2 Quantum Monte Carlo formalism

We begin by reviewing the foundational basis of the SSE methodology. Like
any Monte Carlo method, the goal of SSE is to construct an importance

3 or alternatively, Sandvik’s Simple and Efficient QMC
4 and, of course, the infamous “sign problem”
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sampling scheme, which ultimately leads to the computation of expectation
values in the form of an arithmetic mean,

〈O〉 =
1

Nmc

Nmc
∑

t=0

O(xt). (1.1)

Here xt is the configuration of the simulation cell at ‘time’ step t in a Markov
Chain of length Nmc → ∞. Each time step is one element of a random walk
in a higher-dimensional configuration space, weighted with a probability dis-
tribution W (x) (where each W (xt) > 0), which samples all possible configu-
rations when the number of steps is infinite. Because the random walk is an
importance sampling through this weighted space, the arithmetic mean for
finite-Nmc corresponds to the estimate,

〈O〉 =

∑

x OxW (x)
∑

x W (x)
. (1.2)

This expectation value is the basis of many Markov Chain Monte Carlo
(MCMC) procedures [18]. For the purposes of this Chapter, the form of this
expectation value provides a unified starting point for two different QMC
formalisms with separate goals: calculating physical estimators at finite tem-
perature, or calculating physical estimators at zero temperature.

We note here that the procedure we call “quantum Monte Carlo” simu-
lation actually consists of two distinct steps [19]. First, we must derive the
appropriate representation of the quantum mechanical model (i.e. lattice, basis
states, and operators) such that this representation can be coded appropri-
ately on a classical computer. This involves mapping a D-dimensional quan-
tum lattice model to a D + 1-dimensional classical representation, which can
be thought of as a highly non-trivial classical statistical mechanics problem.
Strictly speaking, SSE can be thought of as a representation of exp(−βH) to-
gether with some lattice basis; other representations exist, such as continuous-
time or interaction representations [19]. Second, we must devise updating

schemes that sample configurations of this representation, usually through
some Metropolis procedure. Similar updating schemes may be used for differ-
ent representations. In the next two sections, we will discuss the finite-T and
T = 0 representations. In Section 1.2.3, we’ll outline some basic ideas behind
updating schemes employed in the SSE, emphasizing the role of non-local
updates.

1.2.1 Finite-temperature representation

For finite-temperature, Equation 1.2 corresponds to the thermal average,

〈O〉 =
1

Z
Tr{Oe−βH}, (1.3)

where β = 1/T , and the denominator is the partition function,
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Z =
∑

x

W (x) = Tr{e−βH}. (1.4)

The first step in the SSE approach is to write the trace in the partition function
as a sum over diagonal matrix elements in a basis {α0}. Then, one can Taylor
expand the exponential to get the expression,

Z = Tr{e−βH} =
∑

α0

〈

α0

∣

∣

∣

∣

∣

∞
∑

n=0

βn

n!
(−H)n

∣

∣

∣

∣

∣

α0

〉

. (1.5)

We next insert a set of complete basis states as resolutions of the identity,
∑

α |α〉〈α| between the n products of −H ;

Z =
∑

{αi}

∞
∑

n=0

βn

n!
〈α0| − H |α1〉〈α1| − H |α2〉 · · · 〈αn−1| − H |αn〉, (1.6)

where, importantly, αn = α0 to keep the trace nonzero. Note the set of ba-
sis states {αi} in the sum is practically impossible to evaluate exactly; this
motivates the use of an importance-sampling scheme. Then, the “weight” of
a configuration, W (x), is derived from this expression, and can be seen to
be proportional to the product of n matrix elements. Each individual matrix
element 〈αi |−H|αi+1〉 is evaluated as a real number, and must be positive to
be interpreted as a probability for use in a Metropolis scheme.

Note however that it is very possible for the above matrix elements to be
negative, depending on the precise form of H . This is a manifestation of the
so called “sign problem” [20]. It can essentially be avoided only in the case
where all terms in the Hamiltonian have (or can be made to have) a negative
sign in front of them. This can happen either intrinsically, e.g. with ferromag-
netic interactions, or through a clever basis rotation, which is possible e.g. for
antiferromagnetic interactions on bipartite lattices. In the examples we will
consider in this Chapter, resolution of the sign problem will be straightforward
– however in general quantum lattice models, it can be quite inhibitive.

The next step is to write the Hamiltonian as a sum of elementary lattice
operators,

H = −
∑

t

∑

a

Ht,a, (1.7)

where in our chosen representation the operators propagate the basis Ht,a|αi〉 →
|αi+1〉, and all of the Ht,a are positive. The indices t and a refer to the op-
erator “types” and the “lattice units” (e.g. bonds) over which the terms will
be sampled (specific examples will be given below). We write the partition
function as,

Z =
∑

{αi}

∞
∑

n=0

∑

Sn

βn

n!

n
∏

i=1

〈αi−1 |Hti,ai
|αi〉 , (1.8)

where Sn denotes a sequence of operator-indices specifying the n operators,
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Sn = [t1, a1], [t2, a2], . . . , [tn, an], (1.9)

which must be importance sampled, along with the basis states α, and the
expansion power n.

As the final step, one can truncate the Taylor expansion at a maximum
power M . This is not strictly necessary in principle, however it significantly
facilitates implementation of the updating scheme. The truncation can be
justified by ensuring that the chosen M is always greater than the largest
n to occur in a numerical simulation, M > nmax, for a given parameter set
[4]. Working with a fixed M is possible to do if one inserts M − n “fill-in”,
or null, operators H0,0 ≡ I into the operator list (where I is the identity
operator). However, these operators do not occur in the evaluation of the
partition function, and must be accounted for by dividing the final expression
for Z by their contribution. To do so note that, statistically, the number of
different way of picking the placement of the null operators in the expansion
list is given by the binomial coefficient,

(

M
n

)

= M !/(M−n)!n!. One is required
to divide our truncated partition function by this value, giving,

Z =
∑

α

∑

SM

(β)n(M − n)!

M !

M
∏

i=1

〈αi−1 |Hti,ai
|αi〉 , (1.10)

where the sum over n is now implicitly included in the sampling of SM .
We thus arrive at the final expression for the representation of the finite-

temperature partition function in SSE, which can formally be related to path
integral or worldline representations – resulting in the propagation (or ex-
pansion) dimension being identified with the imaginary time direction [19,21]
With this SSE representation, we are free to devise updating methods adopted
from classical Monte Carlo routines to generate the appropriate Markov Chain
in the unified space of basis state (α) and operator/worldline (SM ) configu-
rations. This will be discussed in Section 1.2.3; first, however, we introduce
the formally different T = 0 starting point for QMC that, nonetheless, re-
sults in a very similar SSE-type representation, amenable to similar updating
techniques as the T > 0 representation here.

1.2.2 Zero-temperature projector representation

At T = 0, Equation 1.2 can alternatively be used as an estimate for the
operator expectation value,

〈O〉 =
1

Z
〈Ψ |O|Ψ〉, (1.11)

where one aims to use some procedure to find Ψ as the ground-state wave-
function of a Hamiltonian [5]. The denominator of Equation 1.2 is then the
normalization, or inner product,
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Z = 〈Ψ |Ψ〉. (1.12)

In a “projector” QMC representation, the ground state wavefunction is esti-
mated by a procedure where a large power5 of the Hamiltonian is applied to
a trial state, call it |α〉. This can be seen by writing the trial state in terms of
energy eigenstates |n〉, n = 0, 1, 2 . . ., |α〉 =

∑

n cn|n〉, so that a large power
of the Hamiltonian will project out the groundstate,

(−H)m|α〉 = c0|E0|m
[

|0〉 +
c1

c0

(

E1

E0

)m

|1〉 · · ·
]

, (1.13)

→ c0|E0|m|0〉 as m → ∞.

Here, we have assumed that that the magnitude of the lowest eigenvalue |E0|
is largest of all the eigenvalues. To achieve this, one may be forced to add a
sufficiently large negative constant to the overall Hamiltonian (that we have
not explicitly included). Then, from this expression, one can write the normal-
ization of the groundstate wavefunction, Z = 〈0|0〉 with two projected states
(bra and ket) as,

Z = 〈α|(−H)m(−H)m|α〉, (1.14)

for large m. The Hamiltonian is again written as a (negative) sum of elemen-
tary lattice interactions (Equation 1.7), the indices t and a referring to the
operator “types” and lattice “units” over which the terms will be sampled.
In order to represent the normalization as a sum of weights, Z =

∑

x W (x),
motivated by Section 1.2.1 we can insert a compete resolution of the identity
between each Hti,ai

,

Z =
∑

{α}

∑

Sm

2m
∏

j=1

〈

αℓ

∣

∣Htj ,aj

∣

∣αr

〉

. (1.15)

We see that this has been cast in a form similar to Equation 1.8, where the the
sum over the set {α} and the operator list Sm must be done with importance
sampling.

Note that, despite the similarity of Equation 1.15 to its finite-T analog,
several important differences exist in this T = 0 representation. First, al-
though the convergence parameter 2m is similar in magnitude to n in the
“equivalent” finite-T simulation, generally speaking this projector formalism
only produces meaningful observables from Equation 1.11 when the simulation
is converged in m. Thus, although it is reasonable to think that the projector
representation will result in a more efficient simulation for T = 0, in general
one loses the advantage of interpreting m smaller than the converged value
with some physical significance (i.e. finite temperature). Another important

5 Alternatively, with the imaginary-time evolution operator e−βH , where β is large.
The two methods are essentially equivalent however, since the exponential can be
Taylor expanded.
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difference is that the simulation cell has lost its periodicity in the projection
(or imaginary time) direction: i.e. |αℓ〉 6= |αr〉 in Equation 1.15. Thus, all
estimators, either in terms of the basis state, or as expectation values of an
operator, are evaluated in the “middle” of the projection – i.e. a distance m
from either endpoint.

In Sections 1.3 and 1.4 we will discuss the precise form of Ht,a used to
represent the Heisenberg and transverse field Ising models, as well as the
specific updating schemes for sampling the basis and operator space for both
finite-T and T = 0 QMC frameworks. However before we turn to specific
models, we discuss general strategies for developing updating schemes, to be
used in MCMC sampling of the D + 1 representations developed in the last
two sections.

1.2.3 Local and non-local updating schemes

Now that we have presented two different ways of representing a D dimen-
sional quantum lattice model by a D +1 classical statistical mechanical prob-
lem, we turn very generally to the problem of how the different configurations
x are sampled in a MCMC scheme. The formation of any QMC simulation
corresponds to addressing two questions in the procedure of updating a config-
uration x → x′. First, how do the transition probabilities P (x → x′) depend
on the weights W (x) such that detailed balance,

W (x)P (x → x′) = W (x′)P (x′ → x), (1.16)

is satisfied. Second, how are these configuration updates performed such that
the simulation is ergodic (and efficient)?

We will assume that, for sign-problem free models, an updating scheme
can always be found that satisfies detailed balance (indeed, all updates are
constructed as such). The question of ergodicity is more subtle. In particular,
since in the SSE representation the Hamiltonian is broken up into “types”,
Ht,a, different update procedures are typically needed to properly sample
each operator type (e.g. diagonal or off-diagonal). These updates are roughly
categorized into local and non-local, referring to the extent of the spatial or
temporal region of the simulation cell that the update influences.

Local updates are familiar from classical Monte Carlo on spin systems,
where the prototypical site update is simply the spin-flip ↑ to ↓. These up-
dates are possible (and recommended) in the SSE, but only at very high
temperatures (or small m), on physical lattice sites that remain unconnected
by operators over the entire propagation direction. Rather, the term “local”
update in QMC is generally referred to as such for involving one lattice unit
(e.g. a bond). Local updates are typically used to sample diagonal operators
in the Sz basis; however they can be used to sample SU(2) singlet operators
in the valence-bond basis (discussed below).

The term “non-local” update is also a blanket term that can refer to sev-
eral different procedures. Most common are so-called “loop” updates [22],
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which are essentially non-branching closed strings [23]. Loop updates have
several functions: they facilitate sampling of off-diagonal operators, and also
allow for fluctuations between different operators types in the simulation cell.
Importantly, they are sometimes necessary for the ergodic sampling of cer-
tain estimators, such as the winding numbers, which spatially are related to
quantities like the helicity modulus [24], and temporally to the uniform spin
susceptibility or compressibility [25]. A variety of loop and worm algorithms
have been discussed in the literature, the most important for SSE being the
directed loop update [26]. In this review we will forgo a detailed discussion
of transition probabilities in the construction of loop moves: instead we will
focus entirely on so-called “deterministic” loop updates, which are available
for certain Hamiltonians, discussed in the next section in the context of the
Heisenberg model.

In addition to loop moves, the term “non-local” can also refer to updates
in the D + 1 simulation cell that do not form non-branching closed loops,
but share the property of being extended over a larger space-time region.
The most important of these are “cluster” updates, which unlike loops are
allowed to branch with many legs over the simulation cell. In Section 1.4 we
will discuss the simplest type of deterministic cluster update for the transverse
field Ising model [9]. Cluster updates have also been designed in Sz preserving
Hamiltonians, in particular the so-called J-K models with four-site exchange
[27]. In these models, although the exact implementation details are a bit
more complicated, the spirit of the cluster update is the same.

Remarkably, the form of the loop or cluster update depends very little on
which representation of the SSE simulation cell is used, be it T = 0 projector
or T > 0 partition-function based. Rather, it depends on the specific quan-
tum Hamiltonian one wishes to implement. In order to make our discussion
more concrete, we now abandon the general discussion of the SSE in favor
of making pedagogical progress on specific spin 1/2 models. In Section 1.3,
we will discuss implementations of the T = 0 and T > 0 SSE for the SU(2)
symmetric Heisenberg model, which is sampled efficiently with deterministic
loop updates. In Section 1.4, we similarly discuss SSE implementations of the
transverse field Ising model, and the associated cluster update.

1.3 Spin-1/2 Heisenberg model

Due to its important place in the history of the development of SSE, the
literature describing algorithms for the spin-1/2 Heisenberg model,

H =
∑

〈ij〉

Si · Sj , (1.17)

is extensive [1, 2, 4, 20, 23, 26]. We encourage the reader interested in imple-
mentation of the Heisenberg model to consult the appropriate authoritative
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reference. Here, we discuss the basic ideas of the SSE representation, together
with the important local and loop updates, as a way of grounding the dis-
cussion. We therefore focus on the unifying framework of the zero- and finite-
temperature simulations, instead of all possible implementation details for the
plethora of variants of this important quantum many-body model.

The standard approach to simulating the Heisenberg Hamiltonian using
an SSE representation is to employ the Sz basis. Using this basis, we begin by
specifying the appropriate bond-decomposition for Ht,a (from Equation 1.7)
for Equation 1.17. Namely, we use,

H0,0 = I, (1.18)

H1,a =
1

4
− Sz

i Sz
j , (1.19)

H2,a =
1

2
(S+

i S−
j + S−

i S+
j ), (1.20)

from which matrix-element weights can be constructed to give W (x). First
note that, in the above bond decomposition, two facts are evident:

1. There has been a constant term 1/4 added to the diagonal operator H1,a.
This eliminates the offensive negative sign: however it adds a constant
1/4×Nb, were Nb is the number of nearest-neighbor bonds, to the expec-
tation value of the Hamiltonian (i.e. the energy).

2. There has been a rotation of the spin operators by π/2 around the z-
axis on one of the sublattices of a bipartite lattice. This ensures that the
off-diagonal part of the Hamiltonian, H2,a, remains positive-definite as
required. Note however that this “trick” of eliminating the negative sign
is only possible on bipartite lattices.6

The weight W (x) of a sampled configuration x is proportional to the prod-
uct of all matrix elements in the SSE expansion. Each matrix element is cal-
culated using the Sz basis: representing the Sz

i = +1/2 eigenstate as | • 〉i
and Sz

j = −1/2 as | ◦ 〉j , the only non-zero matrix elements are,

〈 • ◦ |H1,a| • ◦ 〉 = 〈 ◦ • |H1,a| ◦ • 〉 =
1

2
, (1.21)

〈 • ◦ |H2,a| ◦ • 〉 = 〈 ◦ • |H2,a| • ◦ 〉 =
1

2
. (1.22)

We now see the choice of 1/4 in Equation 1.19 to be judicious: the matrix
elements contributing to the total weight of a configuration, W (x), are equal
when non-zero. This will significantly simplify sampling, we will now see for
both the finite-T and T = 0 cases.

6 A generalization of this basis rotation on non-bipartite lattices would amount to
a solution to the aforementioned “sign-problem” – and a likely Nobel prize for its
architect.
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Fig. 1.1. In (a), a particle worldline (blue) that encounters a two-site diagonal
operator 〈 • ◦ |H1,a| • ◦ 〉 continues unmolested. In (b), a worldline that encounters
an off-diagonal operator 〈 • ◦ |H2,a| ◦ • 〉 is translated by one lattice unit. If
worldlines are to remain periodic in imaginary time, another off-diagonal operator
〈 ◦ • |H2,a| • ◦ 〉 is needed to translate the worldline back.

1.3.1 Finite-temperature SSE in the S
z basis

It is common to call the space-time path that a Sz = +1/2 state traces out in
the D+1 dimension expansion a “worldline”. Figure 1.1 makes it evident that,
in the SSE operator decomposition discussed above, the diagonal (H1,a) and
off-diagonal (H2,a) operators affect the worldline path quite differently. Off-
diagonal operators disturb it with a translation, while diagonal operators do
not. Because of this, diagonal operators can be sampled in each propagation
time-slice with local updates that replace H1,a on a specific lattice bond a
with the null operator H0,0, or vice versa. The transition probabilities (in
the Metropolis sense) associated with these “diagonal updates” are derived
directly from Equations 1.10 and 1.16, by considering the ratio of weights
W (x′)/W (x). One finds, to add a diagonal operator (thereby changing the
power in the propagator list from n to n + 1),

P (n → n + 1) = min

(

1

2

Nbβ

(M − n)
, 1

)

, (1.23)

where the number of lattice bonds, Nb, enters in since the bond index a must
be chosen at random for the insertion. The factor of 1/2 comes from the
matrix elements 1.21 – meaning one only inserts the operator if the Sz basis
states are anti-aligned. If however the Sz states are aligned on the chosen
bond index a, the matrix element (and hence the transition probability) is
zero. Thus, the insertion is rejected and the algorithm moves on to the next
propagation step. In a similar way, we can calculate the transition probably
to remove an operator H1,a from the list,

P (n → n − 1) = min

(

2(M − n + 1)

Nbβ
, 1

)

. (1.24)

These local updates are instrumental in changing the expansion order n (nec-
essary to sample the sum

∑

n in Equation 1.8). They also illustrate an impor-
tant point: diagonal updates alone do nothing to sample off-diagonal operators
H2,a. For this, we must devise another updating scheme.
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Antiquated methods devised to sample H2,a involved identifying diagonal
operators that were “nearby” in the propagation direction, and updating them
both to produce two off-diagonal operators such as in Figure 1.1(b) [4]. Such
approaches are the equivalent of local updates: they are found to be inefficient,
as well as non-ergodic e.g. in the all-important winding number [24]. With the
advent of the global loop move, such problems are relegated to history [23,26].

In general, a loop move is constructed by creating a “defect” (or “head”) in
the worldline configuration, and propagating that defect until it closes upon
itself (i.e. finds its “tail”). The path of the defect through the space-time
simulation cell passes through basis states (spins) and operators in D + 1.
This path defines the loop, which itself is just a list of space-time lattice
coordinates. A loop is said to be “flipped” if all spins on the path are flipped
- which also changes the operator types associated with flipped spins (i.e. the
matrix elements). This loop flipping generally accrues some change in weight.
These weight changes can be absorbed into the process of creating the loop
path, such that the propagation of the defect is subject to the Metropolis
condition at every step (this is the directed loop [26]).

Quite generally, loop updates hold their power in the fact that one can
typically avoid the cases where the algorithm samples “zero” (or low weight)
contributions to the partition function. In some cases of higher symmetry like
the Heisenberg model, simple loop algorithms can be constructed that have
optimal properties in this regard. This comes from our choice of Equations 1.21
and 1.22, which forces non-zero matrix elements have equal weights. In other
words, if loops are constructed to only transition between non-zero matrix
elements, the entire loop flip will involve no weight change: W (x′)/W (x) = 1.
Thus, a Swendsen-Wang (SW) algorithm can be employed, were all loops can
be constructed, and each flipped with probability 1/2 [28]

In Figure 1.2 an abstraction of a finite-T SSE simulation cell for the spin-
1/2 Heisenberg model is shown, for a n = 6 operator configuration. The
propagation direction is horizontal – periodic boundary conditions in imag-
inary time are represented by arrows. Closed loops, eligible for flipping, are
constructed from the paths formed by solid lines. In this case, the rules for a
loop’s construction are simple: make the loop head follow a horizontal path,
and when it reaches an operator (vertical bar), it turns its path in the oppo-
site direction on the associated link. Given an operator position configuration
(generally decided by the diagonal update above), the loop structure formed
in this manner is fully determined – hence the name deterministic loops. This
allows for the straightforward application of the SW algorithm to determine
whether loops are flipped, as discussed above.

Note the dashed lines in Figure 1.2 highlighting one loop structure involv-
ing the bottom two lattice sites. The worldline for this configuration, which
is not illustrated, would look similar to Figure 1.1(b). However, upon flipping
the dashed loop, the worldline would straighten out to be entirely contained on
the second-from-bottom site. By examining the structure of the other loops
in this example, one can see that loop algorithms such as this are capable
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Fig. 1.2. A D+1 SSE simulation cell snapshot for a six-site Heisenberg model. Lat-
tice sites are arranged vertically in one-dimension: the propagation direction (imag-
inary time) is horizontal, with n = 6 operators. Arrows represent periodic boundary
conditions in the propagation direction. Solid lines are the fully-determined loop
structure, where each loop can be formed and flipped with probability 1/2. If the
dashed loop is flipped, it “straightens out” the worldline segment illustrated in Fig-
ure 1.1(b), changing the off-diagonal operators (filled bars) to diagonal operators
(open bars).

of making large-scale changes in the worldline configuration. Hence, among
other features, loop updates are expected to vastly increase the efficiency of
worldline sampling in an SSE QMC simulation.

The interested reader can distill many of the nuances regarding imple-
mentation of the Heisenberg model with finite-T SSE from the literature. In
particular, the loop updates occur within an abstracted simulation cell called
a “linked list” [26]. The topology of the loop structure is fixed in each linked
list; it is only the diagonal update which modifies the operator positions.
Hence one again sees the necessity of both types of updates in an ergodic
sampling of the Heisenberg model. The full SSE update procedure typically
involves a three-step process: diagonal update, creation of the linked-list, and
loop update.

We note that expectation values of physical quantities can be taken at
various steps in this procedure. The simplest measurements involve quantities
diagonal in the basis, such as the magnetization, that can be measured at any
step in the periodic propagation direction. Expectation values of Hamiltonian
operators, such as the energy, can be performed by counting the number and
position of operators in the D + 1 simulation cell; e.g.

E = −〈n〉
β

, (1.25)

is the internal energy, up to the constant factor added to H1,a [23]. Other
quantities are determined by the change in worldline structure, and are eas-
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iest measured in the loop update itself - for example the equal-time Green’s
function, which is measured by keeping track of the position of the loop prop-
agating defect in the D + 1 dimensional simulation cell [19, 29, 30].

It would be possible to discuss many more interesting and important de-
tails of the SSE representation, updating, and measurement procedure, how-
ever we refer the interested reader to the literature for these. Instead, we turn
to a comparison of the basic structure of the loop-algorithm SSE code, de-
scribed above, to the zero-temperature formulation of the same model. As we
will see, despite their formally different starting points, this comparison reveals
the underlying similarity of the two methods in the SSE QMC paradigm.

1.3.2 Zero-temperature projector in the valence bond basis

The beginning point of the T = 0 projection, as described in Section 1.2.2, is to
choose a trial state |α〉, and apply a large number of Hamiltonian operators to
it. For the Heisenberg (or other SU(2) Hamiltonians) a particularly convenient
class of trial states are lattice coverings in the “valence bond” (VB) basis
[5,6,31,32], which are lists of bonds (site-pairs) covering a (bipartite) lattice.
That is,

|α〉 = |(a1, b1)(a2, b1) . . . (aN/2, bN/2)〉, (1.26)

where each index (a, b) labels the a and b sublattice coordinate associated with
a singlet state (| ↑↓ 〉 − | ↓↑ 〉)/

√
2 connecting two of the N sites. This basis

happens to be non-orthogonal and massively overcomplete. Also, one can see
that it is suitable for sampling bond operators of the Heisenberg Hamiltonian,
which can be written in the form of a singlet projection operator,

1

4
− Si · Sj =

1√
2
(| ↑↓〉 − | ↓↑〉) 1√

2
(〈↑↓ | − 〈↓↑ |), (1.27)

where the minus sign can again be removed by an operator rotation on bi-
partite lattices. With this, a T = 0 QMC scheme satisfying Equation 1.14
can quickly be constructed by noting that the projection operator serves to
re-arrange the end-points of the valence bonds [5]. The resulting picture be-
comes very much like the finite-temperature SSE, where up-spins propagating
from 〈αℓ| to |αr〉 form “worldlines” that are re-arranged by the 2m operators
that occur in the propagation, Equation 1.15. Indeed, the primary differences
between this scheme and the finite temperature SSE are simply:

1. A fixed value of m is used in the T = 0 projector method, whereas n in
the finite-T SSE necessarily fluctuates.

2. The T = 0 simulation cell is not periodic in the propagation direction;
rather, particle “worldlines” terminate at the boundaries 〈αℓ| and |αr〉.
Motivated by the loop algorithm of the finite-T SSE, one can then proceed

with a very similar sampling scheme. First, the singlet projection operator is
broken up into diagonal and off-diagonal bond operators, Equations 1.19 and
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Fig. 1.3. A D+1 projector simulation cell snapshot for a six-site Heisenberg model.
Lattice sites are arranged vertically in one-dimension: at left, spin states are | • • ◦
◦ ◦ • 〉, and at right, | ◦ • • ◦ • ◦ 〉. The propagation direction is horizontal, with
m = 3 operators. Solid lines are the fully-determined loop structure, which, when
they encounter the trial states at the ends, propagate through the valence bonds
(curved lines). The dashed line indicates the middle of the simulation cell, where
expectation values must be measured.

1.20. At this stage, one sees that it is advantageous to consider the simulation
to be taking place in a combined VB-spin basis, since these operators will only
give non-zero matrix elements when spin states on the respective sublattices
are opposite [33]. As a consequence of point 2 above, we will be interested in
the “middle” states of the projection to take our expectation values. These
can be seen to be dependent on the particular list of bond operators for a
given sample r:

(

m
∏

j=1

Htj ,aj

)

r
|αr〉 ∝ |Vr〉, (1.28)

where the proportionality constant is the numerical value for the weight of
the projection.

Now, sampling can occur in analogy to the finite-T SSE with both a diago-
nal and a loop update. The diagonal update is significantly modified from the
finite-temperature case, in part because no null (H0,0) operators are included
in the T = 0 projection. Then, the update proceeds by traversing the operator
list

∏2m
i=1 Hti,ai

, and attempting the following transitions:

1. If an off-diagonal operator H2,a acting on some bond a is encountered,
move on to the next operator, making sure to flip the associated spin
state.

2. If a diagonal operator H1,a is present on some bond a, pick a random
bond a′ containing antiparallel spins, and move the operator to it.
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The diagonal update being complete, one now performs the loop update,
which because of the equal matrix elements of H1,a and H2,a, is executed in
direct analogy to the finite-T SSE case. The only difference is that loops no
longer connect periodically in the propagation direction; instead, they follow
the valence bonds when they encounter the trial states 〈αℓ| or |αr〉. As illus-
trated in Figure 1.3, the resulting schematic picture of the D + 1 simulation
cell is, besides this lack of periodicity, essentially equivalent to Figure 1.2.

One other important difference occurs in the calculation of observables,
Equation 1.11, which based on the fact that our trial states have been pro-
jected from the left and right by m operators, must be measured in the middle

of the simulation cell. Expectation values of the form Equation 1.11 are there-
fore written,

〈O〉 =
〈Vℓ|O|Vr〉
〈Vℓ|Vr〉

, (1.29)

where the states are the result of a projection from each endpoint, Equa-
tion 1.28. Remarkably, many estimators can be written as a function of the
loop structure that crosses the middle of the simulation cell as in Figure
1.3 [6, 32, 33]. For example, the spin-spin correlation function Si · Sj gives a
value of 0 when i and j belong to different loops crossing the boundary, and
either ± 3

4
when they’re in the same loop (depending on the sublattice of each

spin). The expectation value of a sum of these operators for nearest neighbor
pairs i, j (i.e. Equation 1.17) can be sampled over the simulation in order to
obtain an estimate for the energy. Other examples of simple-to-calculate es-
timators include higher-order spin correlation functions (such as dimer-dimer
correlation functions), the sublattice magnetization, and even the Renyi en-
tanglement entropy in an extended simulation cell [34]. The reader is left to
scour the literature for the precise procedure for calculating the expectation
value of their favorite operator; we simply note here the important result that
the overlap of the two valence-bond states is given by,

〈Vℓ|Vr〉 = 2Nloop−N/2, (1.30)

where Nloop is the number of loops crossing the middle of the projection (two
in Figure 1.3), and N the number of sites.

Much more discussion of the VB projector algorithm is possible, including
using efficient trial states and state update, details of convergence, advanced
measurement techniques, etc. However, we forgo these to continue with the
broad theme of this Chapter, connecting finite-T and T = 0 SSE. We therefore
turn next to a specific implementation of a different model, to compare and
contrast with the ideas introduced in this section.

1.4 Transverse field Ising model

The transverse field Ising model (TFIM) is one of the most well-studied quan-
tum lattice model, due to the well-known mapping to a D + 1 dimensional
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classical statistical mechanics problem, and its applicability to the field of
quantum phase transitions [35]. A standard form for the Hamiltonian is,

H = −J
∑

〈i,j〉

σz
i σz

j − h
∑

i

σx
i , (1.31)

where σi is a Pauli spin operator, so that σz has eigenvalues ±1. In this
equation, the first sum is over lattice bonds, while the second sum is over
lattice sites. An SSE procedure for simulating the TFIM was first developed
by Sandvik for the finite-T representation [9]; this was subsequently adapted
to a T = 0 projector method, discussed in Section 1.4.2.

As with the Heisenberg model, both representations have a common start-
ing point in the decomposition of the lattice Hamiltonian to bond (and site)
operators. In this case,

H0,0 = I, (1.32)

H−1,a = h(σ+
a + σ−

b ), (1.33)

H0,a = h, (1.34)

H1,a = J(σz
i σz

j + 1). (1.35)

Note that unlike the Heisenberg case, for the TFIM, the index a has two
different meanings. Also, it is evident that some simple constants have been
added to the Hamiltonian: the diagonal operator H0,a, and also the +1 in
Equation 1.35. The first results in matrix elements with equal weight for both
site operators:

〈 • |H−1,a| ◦ 〉 = 〈 ◦ |H−1,a| • 〉 = h, (1.36)

〈 • |H0,a| • 〉 = 〈 ◦ |H0,a| ◦ 〉 = h. (1.37)

The latter ensures that the only non-zero matrix element for the bond oper-
ators are,

〈 • • |H1,a| • • 〉 = 〈 ◦ ◦ |H1,a| ◦ ◦ 〉 = 2J. (1.38)

These matrix elements form the basis of the SSE representation for the TFIM,
by defining the weights W (x). As for the Heisenberg model, the task is now to
construct an updating procedure for QMC sampling. We will see below that a
non-local update analogous to the deterministic loops will be possible; in this
case however there will be branching clusters flipped with a SW procedure.
These weights, and the updating procedure, will form a common framework
for both the zero- and finite-temperature SSE procedures, outlined in the next
two sections.

1.4.1 Finite-temperature SSE in the S
z basis

The finite-T simulation cell is constructed in analogy to the Heisenberg model
above, with n operators (of type 1.33 to 1.35) propagating the Sz basis state,
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and M − n null operators, 1.32. The sampling of Equation 1.10 can then be
carried out in a two-part update sequence, similar to the Heisenberg model,
but with several important differences. First, we discuss the equivalent of the
diagonal update, and second, modifications of the non-local updating scheme
which give us a cluster algorithm.

The diagonal update proceeds in the same spirit as Section 1.3.1. One
traverses the list of all M operators in the propagation in sequence. If an
off-diagonal operator H−1,a is encountered, it is ignored (but the Sz spin
associated with that site is flipped in the propagation). However, if another
operator type is encountered, then a new Metropolis procedure is performed:

1. If a diagonal operator is encountered (H0,a or H1,a), then it is removed
with probability,

P = min

(

M − n + 1

β[hN + (2J)Nb]
, 1

)

, (1.39)

where N is the number of sites, and Nb the number of bonds. One then
goes to the next operator in the list (regardless of whether the removal is
accepted or not).

2. If a null operator (H0,0) is encountered, try to insert a diagonal operator
with the following procedure:
a) First the decision of what operator type to insert is made. One chooses

to insert an operator of type H0,a with probability,

P (h) =
hN

hN + (2J)Nb
, (1.40)

or an operator of type H1,a with probability,

P (J) =
(2J)Nb

hN + (2J)Nb
. (1.41)

Note that P (h) + P (J) = 1
b) After choosing a type, accept the addition of an operator with prob-

ability,

P = min

(

β(hN + (2J)Nb)

M − n
, 1

)

, (1.42)

and randomly choose an appropriate bond or site to insert it. If it is a
bond operator and the chosen bond has a local spin configuration that
prevents the insertion of the operator (i.e. antiparallel spins) then we
do not insert the operator and consider the move failed.

It is clear that these local updates are again instrumental in changing the
expansion order n, however they do not sample off-diagonal operators H−1,a,
and therefore must be combined with the use of some non-local update to
produce an ergodic simulation.
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Fig. 1.4. A D + 1 SSE simulation cell snapshot for a six-site TFIM model. Lattice
sites are arranged vertically in one-dimension: the propagation direction (imaginary
time) is horizontal, with n = 12 operators. Vertical bars are Ising bond operators
H1,a. Filled squares are off-diagonal site operators, H

−1,a, and open squares are
diagonal site operators H0,a. Arrows represent periodic boundary conditions in the
propagation direction. Solid and dashed lines illustrates the spin states (spin up or
down). Flipping all the spins associated with a cluster can be done with probability
1/2. This changes loop-terminating site operators H

−1,a ↔ H0,a, but doesn’t affect
the bond operators or loop-internal site operators.

We require a non-local update in analogy to the loop update of the Heisen-
berg model above. However, in this case, a branching cluster update is con-
structed. A cluster is formed in the D + 1 simulation cell by grouping spins
and operators together. It is built by starting e.g. with a site or bond operator,
then finding the cluster that operator is a part of, according to a set of rules
(Figure 1.4). The two rules governing the building of clusters is: 1) clusters
terminate on site-operators H−1,a or H0,a; and 2) bond operators H1,a belong
to one cluster. This procedure continues until all clusters are identified.

The importance of including the trivial operator H0,a now becomes appar-
ent, since the matrix element of both the diagonal and off-diagonal single-site
operators is h. Hence, switching between H0,a and H−1,a involves no weight
change. With this, clusters constructed using the algorithm can be flipped
with a SW procedure, as discussed previously for the Heisenberg model.

Like the loop algorithm of the Heisenberg model, we see that the topology
of the cluster structure is fixed after each diagonal update. Flipping loops has
the dual effect of sampling the type of site operator, and also sampling the spin
configuration |α〉; however it is only the diagonal update which modifies the
operator positions. The cluster update here is capable of making large-scale
changes to the configuration of the simulation cell, however one again sees
the necessity of both types of update in a fully ergodic sampling of the TFIM
model.
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We again refer the reader to seminal references for details of implementa-
tion, including the construction of the linked-list data structure which facil-
itates the practical construction of the clusters [9]. Note that measurements
are again done in several different ways, either from the basis states directly
(at any point in the propagation), by counting operators, or by looking at
the cluster structure. We refer the reader to the relevant literature; instead,
we now turn to a comparison of the cluster-algorithm TFIM code to a zero-
temperature formulation of the same model.

1.4.2 Zero-temperature projector in the S
z basis

As realized recently [36], the finite-T SSE representation of the TFIM can be
straightforwardly cast in the form of a T = 0 projector method. Unlike the
Heisenberg model of Section 1.3.2, TFIM Hamiltonian operators cannot be
represented as some generalized singlet projection operator, hence there is no
analogous choice of basis which simplifies the sampling procedure. However,
one can use a trial state which is an equal superposition of all spin states,
|α〉 =

∑

{σz} σz , which simply involves storing a list of N spin states for the

“left” and “right” trial state |αℓ〉 and |αr〉. Note that σz configurations in
the trial state are modified during the simulation by the cluster updates, as
described below.

The D+1 dimensional projected simulation cell is built in a way similar to
Section 1.3.2, where 2m operators of the type 1.33 to 1.35 are sampled between
the “end points” (i.e. the trial states). Recall, there are no null operators H0,0

in the projection scheme. Then, sampling occurs via two separate procedures
as previously. First, the diagonal update where one traverses the list of all 2m
operators in the propagation direction in sequence. If an off-diagonal operator
H−1,a is encountered the σz spin associated with that site is flipped but no
operator change is made. If a diagonal operator is encountered, the Metropolis
procedure is:

1. The present diagonal operator, H0,a or H1,a, is removed.
2. A new operator type is chosen, t = 0 or t = 1, corresponding to the

insertion of either a diagonal h or a diagonal J operator. The transition
probability to add H0,a is,

P (h) =
hN

hN + (2J)Nb
. (1.43)

Note, P (J) = 1 − P (h) as before.
3. If H0,a is chosen, a site a is chosen at random, and the operator is placed

there.
4. If H1,a is chosen, a random bond a is chosen. The configurations of the two

spins on this bond must be parallel for the matrix element to be nonzero.
If they are not, then the insertion is rejected. Since no null operators are
possible, steps (2) to (4) are repeated until a successful insertion is made.
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Fig. 1.5. A D+1 projector simulation cell snapshot for a six-site TFIM model. Lat-
tice sites are arranged vertically in one-dimension: the propagation direction (imagi-
nary time) is horizontal, with m = 6 operators. Vertical bars are Ising bond operators
H1,a. Filled squares are off-diagonal site operators, H

−1,a, and open squares are di-
agonal site operators H0,a. Spin states are represented by solid or dashed lines (spin
up or down). Flipping all the spins associated with each cluster can be done with
probability 1/2. This changes site operators H

−1,a ↔ H0,a, and also the spin states
associated with |αℓ〉 and |αr〉.

The main differences between this diagonal update and that of Section 1.4.1
is the presence of null operators in the expansion list in the latter. However,
as for the finite-T SSE, one can see that this diagonal update is necessary in
order to change the topology of the operator sequence in the simulation cell.
In order to get fully ergodic sampling of the TFIM Hamiltonian operators,
one must employ cluster updates as before.

In the T = 0 projection, the cluster update is carried out in almost com-
plete analogy to the finite-T case, using a SW procedure. The main difference
is that clusters terminate not only when they touch site operators, but also
the spin states of the end point trial states |αℓ〉 and |αr〉. We thus see how the
cluster updates sample the trial state: the flipping of a cluster that extends
all the way to the simulation cell end-points will flip the σz states associated
with the state.

Similar to Section 1.3.2, measurements are made in principle in the mid-
dle of the projection, satisfying Equation 1.11. For estimators involving ba-
sis states (e.g. the magnetization) or diagonal operators, the procedure is
straightforward, and in some cases can incorporate the cluster structure at
the middle of the projection. However, unlike the non-orthogonal VB basis,
for off-diagonal operators, the naive expectation value can easily lead to an
overlap of zero. This problem can be circumvented when operators are part of
the Hamiltonian (e.g. the energy); in the interests of space however, we must
leave the reader in suspense [36], or better yet, entice him or her to put down
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this volume, and discover the rewarding process of devising such estimators
in this versatile and transparent SSE method.

1.5 Discussion

This Chapter has aspired to give a basic flavor for the modern conceptual
framework of Stochastic Series Expansion quantum Monte Carlo. Far from
its first incarnations by Handscomb which were highly limited in scope, un-
der Sandvik’s tutelage it has blossomed into a widely adopted, highly general
numerical framework for solving sign-problem free quantum lattice models.
Remarkably, the pace of algorithmic development ceases to abate, as evident
from the large number of new systems, symmetries, measurements, and mod-
els tackled almost daily with novel manifestations of the original SSE idea.
Although this Chapter focused on a pedagogical introduction to the frame-
work of the simplest SSE simulations, the reader should not be fooled by the
apparent simplicity; these methods can quickly be expanded to tackle very so-
phisticated quantum lattice models of real interest to modern physics. Some of
the most exciting recent research on exotic quantum phases and phase transi-
tions has employed new variations of the SSE method; notable advances have
recently been reviewed elsewhere [16].

Perhaps the most important take-home message of this Chapter is the
recent conceptual advances in unifying the traditional finite-T , partition
function-based SSE framework, with Sandvik’s new zero-temperature pro-
jector perspective. Despite the initial apparent differences, particularly upon
introduction of the valence bond projector method [5], the two paradigms have
now almost completely converged, largely due to the understanding gained by
considering the T = 0 representation and updating procedure in terms of
non-local loop structures [33]. It was the purpose of this review to emphasize
this fact; the reader should be struck by the similarities between Figures 1.2
and 1.3 for the Heisenberg SSE, and also Figures 1.4 and 1.5 for the TFIM,
which essentially differ from each other only in the periodicity of the boundary
condition in the propagation direction.

As we move forward as a community, we can undoubtedly expect to rely
more and more on SSE QMC as a mainstay of our research on quantum
lattice models. This progress will likely come with a choice of T = 0 or finite-
T frameworks for most Hamiltonians of interest. This, coupled with innovative
sampling techniques, hardware advances, and of course unforeseen algorithm
breakthroughs, will ensure the golden years of quantum many-body simulation
still lie ahead.

1.6 Acknowledgments

This work would not have been possible without the continuing collaboration
of A. Sandvik, who is proprietor of almost every algorithmic advance outlined



22 Roger G. Melko

in the Chapter, and without who’s willingness to communicate these ideas
privately would have made this work impossible. I am also indebted to A.
Kallin and S. Inglis for contributions to all sections of this Chapter, especially
the figures, and many critical readings.

References

1. D.C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962)
2. A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991)
3. A.W. Sandvik, J. Phys. A 25, 3667 (1992)
4. A.W. Sandvik, Phys. Rev. B 56, 11678 (1997)
5. A.W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005)
6. K.S.D. Beach, A.W. Sandvik, Nucl. Phys. B 750, 142 (2006)
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