DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

Monte Carlo Methods Exercises — Sessions 1 & 2

Introduction — The goal of these exercise sessions is to better understand the concepts taught in
class, such as Monte Carlo integration, simple versus importance sampling, Markov chains, as
well as simulations of the Ising model. You can download all material for the exercises from

http:/ / katzgraber.org/ teaching /SUM/2012-bad_honnef

The material contains example programs which are the solutions to the problems listed below.
Please first attempt to write your own code. If you have problems, feel free to look at and use
the example code written in C. Pseudo-code for the different routines/exercises can be found at

http:/ / arxiv.org/ pdf/0905.1629.pdf

You are not expected to complete all problems in the first part of the exercises. I do, however, expect
you to complete at least problems 1 — 4. The last three are more complex and should be
completed in the second part of the exercise session.

Note: Compiling and running code — All codes are written in C. They can be edited with any
simple editor (vi, pico, nano, emacs, TextEdit...) and compiled with the added Makefile (just
type ‘make’ in a Unix shell) or using ‘gcc *.c’. If you need help with the Unix environment,
please inform the instructor immediately. The codes also compile and run on Windows.

Problem 1: Using a random-number generator in C — The goal of this problem is to familiarize
yourself with the use of a random number generator and routines to automatically seed the
generator. Please download ‘problem_1_using_rng’ from the exercise website. The directory
contains C source code for the r1279() random number generator, as well as routines
(seedgen.c) to seed the generator. (You will need this for problems 2 - 6 if you program in C).

Write a program that generates 10N (Nmax = 6 is enough) uniform random numbers in the
interval [0,1] and averages these. The seed should be automatically generated. The exact value
for the average should be 0.5. Study how the average changes when N is increased.

If you do not program in C or know/use a better generator, please feel free to use that for this
exercise, as well as the remaining problems.

Note: the program seedgen.c takes the process ID (PID), as well as the wall-clock-time and
produces a semi-random seed via a linear-congruential-like operation. Therefore, every time
you run the code, it should produce a different output.

http://katzgraber.org/teaching/SUM/2012-bad_honnef
http://katzgraber.org/teaching/SUM/2012-bad_honnef
http://arxiv.org/pdf/0905.1629.pdf
http://arxiv.org/pdf/0905.1629.pdf

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

Problem 2: Estimating rt using simple-sampling Monte Carlo — The goal of this problem is to
illustrate how m = 3.1415... can be computed by random sampling of the unit disk. Starting from
the pseudo-code presented in class, write a program that calculates m.

In your simulation run the code multiple times for ' algorithm simple_pi
N=10,i=1,2,3, .. random numbers. See how the initialize n_hits 0
estimate for m improves with increasing N and initialize m_trials 10000
compute the deviation from the exact result: error = initialize counter 0

It - Tlestimate . . .
while(counter < m_trials) do

x = rand(0,1)

y = rand(0,1)

if (x**2 + y**2 < 1)
n_hits++

Perform a log-log plot of the error as a function of N
and show that the data can be fit to a straight line of
slope -1/2.
fi
counter++
done

return pi = 4#n_hits/m_trials

Problem 3: Simple-sampling Monte Carlo estimate of the integral f(x) = x” — The goal of the
exercise is to apply the concepts learned in problem 2 and apply these to a real function where
the integral is exactly known, namely I[f(x)] = 1/(n + 1) in the interval [0,1]. For now, set n = 3,
you can change the value of the exponent n later. Start from the pseudo-code presented in class.

As in problem 2, run the code multiple times for N = [algorithm simple_integrate

100,71 =1, 2, 3, ... random numbers. See how the initialize integral 0
estimate for I[f(x)] in the interval [0,1] improves initialize m_trials 10000
with increasing N and compute the deviation from initialize counter 0

the exact result: error = |1 - lestimate | . Again, the error

should scale ~ N-1/2, while(counter < m_trials) do

x = rand(0,1)
integral += x**n
counter++

done

return integral/m_trials

Problem 4: Importance-sampling Monte Carlo estimate of the integral f(x) = x" — The goal of
this exercise is to show that with the same numerical effort as in problem 3 importance sampling
delivers smaller errors. We want to compute the integral of the function f(x) = x” in the interval
[0,1], but instead of using uniform random numbers, we want to use power-law distributed
random numbers according to the distribution p(x) = (k + 1)x* with k < n.

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

Power-law distributed random number can be computed from uniform random numbers by
transforming a uniform random number x in the following way:

y = x1/D) with x in [0,1] uniform

The importance-sampling estimate of the integral I[f(x)] is then
given by a Monte Carlo sampling where f(x) is replaced by the

following function
flx) ———)/ py)

with fly) = y* and p(y) = (k + 1)yk

and y power-law
distributed according to p(y). Start with n =3 (I = 0.25) and k =
2.5 and compare to the results obtained in problem 3. As in !

problem 3, run the code multiple times for N=10",i=1,2,3, ...
random numbers. See how the estimate for I[f(x)] improves with increasing N and compute the
deviation from the exact result: error = |I - Iestimate | . Compare to the results of problem 3.

Problem 5: Esimating m using Markov-chain Monte Carlo — The goal of this problem is to
illustrate how m can be computed by random sampling of the unit disk, however, using a
Markov chain. For the sake of simplicity, we will neglect autocorrelation effects that in this case
would only influence the error. Therefore, measurements should be done at every step of the
simulation. Starting from the pseudo-code presented in class, modify your program to calculate

mtusing a Markov chain.

In your simulation run the code multiple
times for N = 10¢, i = 1, 2, 3, ... random
numbers. See how the estimate for m
improves with increasing N and compute the
deviation from the exact result: error = | -

Tlestimate | .

Note that for the Markov chain you will have
to select a step size in the interval [-p,p]. To
do so, take a uniform random number x and
compute a shifted uniform random number
in the interval [a,b] via y = a + (b - a)x. The
value of p strongly influences the algorithm.
If p is too small, then it will converge slowly.
If p is too large, many moves will be rejected.
Ideally, 50% of the moves should be
accepted. To verify this, measure the
probability for a move to occur, i.e., prob =
(accepted_moves/total_attempts). Values of
p between 0.2 and 1.0 seem to be optimal.

algorithm markov_pi

initialize n_hits 0
initialize m_trials 10000
initialize x 0
initialize y 0
initialize counter 0

while(counter < m_trials) do
dx = rand(-p,p)
dy = rand(-p,p)
if(lx + dx| < 1 and |y + dyl < 1)
x =x + dx
y=y+dy
fi
if (x**2 + y**2 < 1)
n_hits++
fi
counter++
done

return pi = 4*n_hits/m_trials

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

Problem 6: Simulating the one-dimensional Ising model — In this problem we now apply the
concepts learned to the simulation of a physical system, the one-dimensional Ising model on a
closed ring. This problem is slightly more work intensive.

The goal of the problem is to compute the energy per spin e = E/N as a function of temperature
T in [0.2, 5.0] for the model and compare to the exact analytical expression computed by Ernst
Ising in his thesis: 1 Te=7/T _ /T

TN | e IT L eu/T
Run your code for ~3000 equilibration Monte Carlo sweeps (N attempted spin updates) and
then for 3000 measurement Monte Carlo sweeps and record the internal energy. Compare your

results for N = 3, 10, 30, 100, 300 spins to the exact expression. You should see convergence to
the exact values [also provided as a text file] for increasing system size.

Ss

S
The Hamiltonian of the 1D Ising model is given by Sy N
H = —JZsism, S,
' S
where the spins lie on a one-dimensional chain with °
periodic boundaries. For simplicity, we set | = 1. It is S

recommended to tackle the problem bottom-up, i.e., Ss
write individual routines first.

S3
Sy

update.c: For the Monte Carlo update routine you need to compute the difference in energy
between the old and new configuration when flipping a randomly selected spin Si: dE = 25;(Si.1 +
Si+1). To flip a spin

if(r1279() < exp(-dE/T)){
flip spin;
update energy;

}

The function ir1279range(1,N) will select a random spin in the interval [1,N]. Keep in mind that
we use periodic boundaries, i.e., the ‘left’ neighbor if spin S is the spin Sy. If this is unclear,
please look at the provided code.

Problem 7: Java applet of the two-dimensional Ising model — Play with the Java applet at

http:/ / tinyurl.com /3fmé6kcl

Set the system size to N = 100x100 spins and tune the temperature. Observe what happens when
you cross the transition temperature T, ~ 2.269 below which the model orders ferromagnetically.

last update: October 2011, v 1.3

http://tinyurl.com/3fm6kcl
http://tinyurl.com/3fm6kcl

