
Monte Carlo Methods Exercises – Sessions 1 & 2
Introduction – The goal of these exercise sessions is to better understand the concepts taught in
class, such as Monte Carlo integration, simple versus importance sampling, Markov chains, as
well as simulations of the Ising model. You can download all material for the exercises from

" http://katzgraber.org/teaching/SUM/2012-bad_honnef

The material contains example programs which are the solutions to the problems listed below.
Please first attempt to write your own code. If you have problems, feel free to look at and use
the example code written in C. Pseudo-code for the different routines/exercises can be found at

" http://arxiv.org/pdf/0905.1629.pdf

You are not expected to complete all problems in the first part of the exercises. I do, however, expect
you to complete at least problems 1 – 4. The last three are more complex and should be
completed in the second part of the exercise session.

Note: Compiling and running code – All codes are written in C. They can be edited with any
simple editor (vi, pico, nano, emacs, TextEdit...) and compiled with the added Makefile (just
type ‘make’ in a Unix shell) or using ‘gcc *.c’. If you need help with the Unix environment,
please inform the instructor immediately. The codes also compile and run on Windows.

Problem 1: Using a random-number generator in C – The goal of this problem is to familiarize
yourself with the use of a random number generator and routines to automatically seed the
generator. Please download ‘problem_1_using_rng’ from the exercise website. The directory
contains C source code for the r1279() random number generator, as well as routines
(seedgen.c) to seed the generator. (You will need this for problems 2 – 6 if you program in C).

Write a program that generates 10N (Nmax = 6 is enough) uniform random numbers in the
interval [0,1] and averages these. The seed should be automatically generated. The exact value
for the average should be 0.5. Study how the average changes when N is increased.

If you do not program in C or know/use a better generator, please feel free to use that for this
exercise, as well as the remaining problems.

Note: the program seedgen.c takes the process ID (PID), as well as the wall-clock-time and
produces a semi-random seed via a linear-congruential-like operation. Therefore, every time
you run the code, it should produce a different output.

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

1

http://katzgraber.org/teaching/SUM/2012-bad_honnef
http://katzgraber.org/teaching/SUM/2012-bad_honnef
http://arxiv.org/pdf/0905.1629.pdf
http://arxiv.org/pdf/0905.1629.pdf

Problem 2: Estimating π using simple-sampling Monte Carlo – The goal of this problem is to
illustrate how π = 3.1415... can be computed by random sampling of the unit disk. Starting from
the pseudo-code presented in class, write a program that calculates π.

In your simulation run the code multiple times for
N = 10i , i = 1, 2, 3, ... random numbers. See how the
estimate for π improves with increasing N and
compute the deviation from the exact result: error =
|π - πestimate|.

Perform a log-log plot of the error as a function of N
and show that the data can be fit to a straight line of
slope -1/2.

Problem 3: Simple-sampling Monte Carlo estimate of the integral f(x) = xn – The goal of the
exercise is to apply the concepts learned in problem 2 and apply these to a real function where
the integral is exactly known, namely I[f(x)] = 1/(n + 1) in the interval [0,1]. For now, set n = 3,
you can change the value of the exponent n later. Start from the pseudo-code presented in class.

As in problem 2, run the code multiple times for N =
10i , i = 1, 2, 3, ... random numbers. See how the
estimate for I[f(x)] in the interval [0,1] improves
with increasing N and compute the deviation from
the exact result: error = |I - Iestimate|. Again, the error
should scale ~ N-1/2.

Problem 4: Importance-sampling Monte Carlo estimate of the integral f(x) = xn – The goal of
this exercise is to show that with the same numerical effort as in problem 3 importance sampling
delivers smaller errors. We want to compute the integral of the function f(x) = xn in the interval
[0,1], but instead of using uniform random numbers, we want to use power-law distributed
random numbers according to the distribution p(x) = (k + 1)xk with k < n.

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

2

Monte Carlo Methods (Katzgraber)

A problem arises when a multi-dimensional integral needs to be computed. In this
case one can show that, for example, the error of Simpson’s rule scales as ∼ M−4/d

because each space component has to be partitioned independently. Clearly, for space
dimensions larger than 4 convergence becomes very slow. Similar arguments apply for
any other traditional integration scheme where the error scales as ∼ M−κ: if applied
to a d-dimensional integral the error scales ∼ M−κ/d.

2.2 Simple and Markov chain sampling

One way to overcome the limitations imposed by high-dimensional volumes is simple
sampling Monte Carlo. A simple analogy is to determine the area of a pond by
throwing rocks. After enclosing the pond with a known area (e.g., a rectangle) and
having enough beer or wine [2], pebbles are randomly thrown into the enclosed area.
The ratio of stones in the pond and the total number of thrown stones is a simple
sampling statistical estimate for the area of the pond, see Fig. 2.

Figure 2: Illustration of simple-sampling
Monte Carlo integration. An unknown area
(pond) is enclosed by a rectangle of known
area A = ab. By randomly sampling the
area with pebbles, a statistical estimate of
the pond’s area can be computed.

b

a

A slightly more “scientific” example is to compute π by applying Monte Carlo
integration to the unit circle. The area of the unit circle is given by A◦ = πr2 with
r = 1; the top right quadrant can be enclosed by a square of size r and area A! = r2

(see Fig. 3). An estimate of π can be accomplished with the following pseudo-code
algorithm [3] that performs a simple sampling of the top-right quadrant:

algorithm simple_pi1

initialize n_hits 02

initialize m_trials 100003

initialize counter 04

5

while(counter < m_trials) do6

x = rand(0,1)7

y = rand(0,1)8

if(x**2 + y**2 < 1)9

n_hits++10

fi11

counter++12

done13

14

return pi = 4*n_hits/m_trials15

4

2 Monte Carlo integration

of an actual function. As an example, we select a simple function, namely

f(x) = xn → I =

∫ 1

0
f(x)dx (3)

with n > −1. Using simple-sampling Monte Carlo, the integral can be estimated via

algorithm simple_integrate1

initialize integral 02

initialize m_trials 100003

initialize counter 04

5

while(counter < m_trials) do6

x = rand(0,1)7

integral += x**n8

counter++9

done10

11

return integral/m_trials12

In line 8 we evaluate the function at the random location and add the result to the
estimate of the integral, i.e.,

I =
1

M

M
∑

i

f(xi) , (4)

where we have set m trials = M . To calculate the error of the estimate, we need to
compute the variance of the function. For this we need to also perform a simple sam-
pling of the square of the function, i.e., add a line to the code with integral square
+= x**(2*n). It then follows [43] for the statistical error of the integral δI

δI =

√

Varf

M − 1
, Varf = 〈f2〉 − 〈f〉2, (5)

with

〈fk〉 =

∫ 1

0
[f(x)]kdx =

1

M

M
∑

i

[f(xi)]
k . (6)

Here xi are uniform-distributed random numbers. The important detail is that Eq. (5)
does not depend on the space dimension and merely on M−1/2. This means that, for
example, for space dimensions d > 8 Monte Carlo sampling outperforms Simpson’s
rule.

The presented simple-sampling approach has one crucial problem: When in the
example shown the exponent n is close to −1 or much larger than 1 the variance of
the function in the interval is large. At the same time, the interval [0, 1] is sampled
uniformly. Therefore, similar to the estimate of π, areas which carry little weight
for the integral are sampled with equal probability as areas which carry most of the
function’s support (see Fig. 5). Therefore the integral and error converge slowly. To
alleviate the situation and shift resources where they are needed most, importance
sampling is used.

7

Power-law distributed random number can be computed from uniform random numbers by
transforming a uniform random number x in the following way:

" y = x1/(k+1) " with x in [0,1] uniform

The importance-sampling estimate of the integral I[f(x)] is then
given by a Monte Carlo sampling where f(x) is replaced by the
following function

" f(x)" " f(y)/p(y)"

with " f(y) = yn and p(y) = (k + 1)yk and y power-law
distributed according to p(y). Start with n = 3 (I = 0.25) and k =
2.5 and compare to the results obtained in problem 3. As in
problem 3, run the code multiple times for N = 10i , i = 1, 2, 3, ...
random numbers. See how the estimate for I[f(x)] improves with increasing N and compute the
deviation from the exact result: error = |I - Iestimate|. Compare to the results of problem 3.
"
Problem 5: Esimating π using Markov-chain Monte Carlo – The goal of this problem is to
illustrate how π can be computed by random sampling of the unit disk, however, using a
Markov chain. For the sake of simplicity, we will neglect autocorrelation effects that in this case
would only influence the error. Therefore, measurements should be done at every step of the
simulation. Starting from the pseudo-code presented in class, modify your program to calculate
π using a Markov chain.

In your simulation run the code multiple
times for N = 10i , i = 1, 2, 3, ... random
numbers. See how the estimate for π
improves with increasing N and compute the
deviation from the exact result: error = |π -
πestimate|.

Note that for the Markov chain you will have
to select a step size in the interval [-p,p]. To
do so, take a uniform random number x and
compute a shifted uniform random number
in the interval [a,b] via y = a + (b - a)x. The
value of p strongly influences the algorithm.
If p is too small, then it will converge slowly.
If p is too large, many moves will be rejected.
Ideally, 50% of the moves should be
accepted. To verify this, measure the
probability for a move to occur, i.e., prob =
(accepted_moves/total_attempts). Values of
p between 0.2 and 1.0 seem to be optimal.

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

3

Monte Carlo Methods (Katzgraber)

introduced in detail using models from statistical physics. The following algorithm
describes Markov-chain Monte Carlo for estimating π:

algorithm markov_pi1

initialize n_hits 02

initialize m_trials 100003

initialize x 04

initialize y 05

initialize counter 06

7

while(counter < m_trials) do8

dx = rand(-p,p)9

dy = rand(-p,p)10

if(|x + dx| < 1 and |y + dy| < 1)11

x = x + dx12

y = y + dy13

fi14

if(x**2 + y**2 < 1)15

n_hits++16

fi17

counter++18

done19

20

return pi = 4*n_hits/m_trials21

The algorithm starts from a given position in the space to be sampled [here (0, 0)]
and generates the position of the new dot from the position of the previous one. If
the new position is outside the square, it is rejected (line 11). A careful selection of
the step size p used to generate random numbers in the range [−p, p] is of importance:
When p is too small, convergence is slow, whereas if p is too large many moves are
rejected because the simulation will often leave the unit square. Therefore, a value of
p has to be selected such that consecutive moves are accepted approximately 50% of
the time.

The simple-sampling approach has the advantage over the Markov chain approach
in that the different samples are independent and thus not correlated. In the Markov
chain approach the new state depends on the previous state. This can be a problem
since there might be a “memory” associated with this behavior. If this memory is
large, then the autocorrelation times (i.e., the time it takes the system to forget where
it was) are large and many moves have to be discarded. Then why even think about
the Markov chain approach? Because in the study of physical systems it is generally
easier to slightly (and randomly) change an existing state than to generate a new state
from scratch for each step of the calculation. For example, when studying a system
of N spins it is easier to flip one spin according to a given probability distribution
than to generate a new configuration from scratch with a pre-determined probability
distribution.

Let us apply now these ideas to perform a simple-sampling estimate of the integral

6

Problem 6: Simulating the one-dimensional Ising model – In this problem we now apply the
concepts learned to the simulation of a physical system, the one-dimensional Ising model on a
closed ring. This problem is slightly more work intensive.

The goal of the problem is to compute the energy per spin e = E/N as a function of temperature
T in [0.2, 5.0] for the model and compare to the exact analytical expression computed by Ernst
Ising in his thesis:

Run your code for ~3000 equilibration Monte Carlo sweeps (N attempted spin updates) and
then for 3000 measurement Monte Carlo sweeps and record the internal energy. Compare your
results for N = 3, 10, 30, 100, 300 spins to the exact expression. You should see convergence to
the exact values [also provided as a text file] for increasing system size.

The Hamiltonian of the 1D Ising model is given by

 ,

where the spins lie on a one-dimensional chain with
periodic boundaries. For simplicity, we set J = 1. It is
recommended to tackle the problem bottom-up, i.e.,
write individual routines first.

update.c: For the Monte Carlo update routine you need to compute the difference in energy
between the old and new configuration when flipping a randomly selected spin Si: dE = 2Si(Si-1 +
Si+1). To flip a spin

" if(r1279() < exp(-dE/T)){
" flip spin;
" update energy;
" }

The function ir1279range(1,N) will select a random spin in the interval [1,N]. Keep in mind that
we use periodic boundaries, i.e., the ‘left’ neighbor if spin S1 is the spin SN. If this is unclear,
please look at the provided code.

Problem 7: Java applet of the two-dimensional Ising model – Play with the Java applet at

" http://tinyurl.com/3fm6kcl

Set the system size to N = 100x100 spins and tune the temperature. Observe what happens when
you cross the transition temperature Tc ~ 2.269 below which the model orders ferromagnetically.

last update: October 2011, v 1.3

DPH Physics School on Efficient Algorithms in Computational Physics, Bad Honnef 2012 (Katzgraber)

4

e =
1
N

�
e−J/T − eJ/T

e−J/T + eJ/T

�

S1

S2

S3
S4

S5

S6

S7

S8
SN

H = −J
�

i

SiSi+1

http://tinyurl.com/3fm6kcl
http://tinyurl.com/3fm6kcl

