Phase Transitions in Optimization Problems

Alexander K. Hartmann

Institute of Physics
University of Oldenburg

DPG Physics School, Bad Honnef, 14. September 2012

Research Group Computational Physics

"Complex behavior of discrete systems in Physics, Biology, Mathematcs and Computer Science"

Computer Simulations
New algorithms

Optimization algorithms
Development/application

few group members

Research Group Computational Physics

"Complex behavior of discrete systems in Physics, Biology, Mathematcs and Computer Science"

Computer Simulations
New algorithms

few group members

Optimization algorithms
Development/application

MANY variables

Disordered magnets alloys, e.g., iron/gold spin glasses random-field systems

$$
\begin{aligned}
& ++--+ \\
& --++- \\
& -+--- \\
& +--+- \\
& -++++
\end{aligned}
$$

Phasen transitions in optimization problems Vertex Cover Satisfiability

Biologie
RNA secondary structures comparison of proteins bats

Percolation problems systems carrying information

Saftey Measures

Copies

Virtual museums

Saftey Measures

Guards: hyper active

Copies

Virtual museums

unefficient

Saftey Measures

Copies

Guards:
hyper active

Modelling:

- Reduction
- Mathematical description
- Solution

Virtual museums

Vertex-Cover Problem

- Prototypical problem of theoretical Computer Science
. Model

Vertex-Cover Problem

- Prototypical problem of theoretical Computer Science

Model

$X=x N$ guards
guard only adjacent corridors

Vertex-Cover Problem

- Prototypical problem of theoretical Computer Science

Model

$X=x N$ guards
guard only adjacent corridors

Vertex-Cover Problem

- Prototypical problem of theoretical Computer Science

Model

$X=x N$ guards guard only adjacent corridors
— Optimization probl. A: minimize number of guards Optimization probl. B: minimize number of unguarded corr.

- Mathematically: museum = graph Vertex-cover problem = NP-complete

Heuristics

given : museum (graph) $G=(V, E)$
wanted: minimum number of guards (problem (A))
algorithm min_cover(G) begin
$V^{\prime}=\emptyset$
while(there are unguarded corridors)
do
select crossroad $i \in V$ with highest degree d_{i} guard crossroad: $V^{\prime}=V^{\prime} \cup\{i\}$ remove edged adjacent to i from E
end return V^{\prime} end

Leaf-removal Algorithm

Where to put guards without violating minimum condition?

Leaf-removal Algorithm

Where to put guards without violating minimum condition?

Leaf-removal Algorithm

Where to put guards without violating minimum condition?

Leaf-removal Algorithm

Where to put guards without violating minimum condition?

 begin
while(there are leaves)
guard neighbor i of leaf and remove adjacent edges end

Remaining graph is called core \rightarrow exact algorithm

Solve min. problem (A) for handout examples NOW!

Branch-and-bound Algorithm

Task: min. \# of uncov. edges (probl. B)
Complete algorithm: (basically) enumerate all states

Branch-and-bound Algorithm

Task: min. \# of uncov. edges Avoid subtrees w/o solutions (probl. B)
Complete algorithm: best $=$ minimum so far $X^{\prime}=\#$ of curr. covered vertices (basically) enumerate all states \Rightarrow cover $F:=X-X^{\prime}$ vertices
 List F vertices with highest current degrees. Ex. $(F=3)$:

$n_{1}: 5$ edges
$n_{2}: 3$ edges
$n_{3}: 3$ edges
$n_{4}: 2$ edges
$n_{5}: 2$ edges

$$
d_{\max } \equiv \sum_{i=1}^{F} d\left(n_{i}\right)
$$

If (\#(uncovered edges) $-d_{\max }>$ best) \rightarrow bound!

Random Objects: Lego Buildings

- Basic random experiment: throw a dice

E Complex random experiment: reach into box with Legos

\Rightarrow random building/object:

Random Museums

- Generated in the computer
\rightarrow defines statistical properties
- N crossroads, $c N / 2$ randomly chosen corridors

C $c=1$

- $c=2$

Für each museum: is fraction $x=X / N$ of guards enough?

Phase Transitions

- Physics, cooperation of many "particles"

W Water: ice \longleftrightarrow fluid \longleftrightarrow vapor

- Street:
few cars: smooth traffic many cars: traffic jam!

Phase Transition

Ensemble: Erdös-Rényi random graphs:
N vertices and cN/2 random edges
Numerically: averaging over different realizations

- $c=2$

Probability to cover

Running time $=$ number of nodes in branching tree
[M. Weigt and AKH,
Phys. Rev. Lett. 2000]

Phase Diagram

. Finite-size scaling analysis of numerical results: extrapolation $(N \rightarrow \infty) \Rightarrow$ phase boundary $x_{C}(c)$

- Analytical treatment: \Leftrightarrow spin-glass or hard-core gas Stat. Mech. methods:
replica trick/cavity approach exact for $c \leq e \approx 2.718$ (replica symmetry = RS) $c>e$: RS breaking (RSB)
[M. Weigt \& AKH, PRE 2001]

Can one see cluster structure/RSB numerically?

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

$d\left(\underline{S}^{\alpha}, \underline{S}^{\beta}\right):$

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

. Any set of configs can be clustered \rightarrow Does it match? cophenetic correlation: $\mathcal{K} \equiv\left[d \cdot d_{c}\right]_{G}-[d]\left[d_{c}\right]_{G}$, (d_{c} : distance along tree, $[. .]_{G}$: disorder average)
Hubert's Γ statistics: correlation $d \leftrightarrow \frac{d_{\max }}{z}$ clustering

VC: hierarchical clustering
(grand-canonical ensemble (chem. pot. μ) using PT/(MC) ${ }^{3}$)

[W. Barthel \& AKH, PRE 2004]
(large μ): no structure ("paramagnet")
$c<e: \quad$ solution cluster has no structure
$c>e: \quad$ hierarchy of solution clusters
cophenetic correlation $K(N)$: decreases/grows for $c<e / c>e$ Complex phase space organization for $c>e$

Linear Programming (LP)

B B\&B algorithm or stochastic methods \rightarrow move inside configuration space (usually no optimum)
L LP: move outside configurations space (always optimum)

- For each node i : variable $x_{i} \in[0,1]$:
$x_{i}=1 \leftrightarrow$ covered $\quad x_{i}=0 \leftrightarrow$ uncovered
$\left.x_{i} \in\right] 0,1[\leftrightarrow$ undecided
Each of the M edges $\{j, k\} \rightarrow$ constraint $x_{j}+x_{k} \geq 1$
Objective function: $x \rightarrow$ min
VC as LP:
Minimize $\quad x=\sum_{i=1}^{N} x_{i}$
Subject to $0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
x_{j}+x_{k} \geq 1 \quad \forall\{j, k\} \in E
$$

Use Simplex algorithm to solve LP
[G.B. Dantzig, Bull. Amer. Math. Soc. 1948] [http://lpsolve.sourceforge.net/5.5/]

Example

Corresponding LP:
Minimize $\quad x=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$
Subject to $0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{2}+x_{4} \geq 1 \\
& x_{3}+x_{4} \geq 1 \\
& x_{4}+x_{5} \geq 1
\end{aligned}
$$

Example

Corresponding LP:
Minimize $\quad x=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$

Figure : Example graph with $N=M=5$

Subject to $0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{2}+x_{4} \geq 1 \\
& x_{3}+x_{4} \geq 1 \\
& x_{4}+x_{5} \geq 1
\end{aligned}
$$

Solution: $\quad x_{1}=0$,

$$
x_{2}=1,
$$

$$
x_{3}=0
$$

$$
x_{4}=1
$$

$$
x_{5}=0
$$

Figure : Minimum VC
\rightarrow Minimum VC with cardinality: $X_{c}=x=2$

Cutting Planes (CP)

$$
x_{1}=x_{2}=x_{3}=0.5 \quad x_{1}=0, x_{2}=x_{3}=1
$$

Idea: Limit solution space by adding extra constraints (CPs)

Loops:

Search random loop of length I (spanning tree + edge)
Add constraint (CP) to LP: $\quad \sum_{i \in \text { loop }} x_{i} \geq\left\lceil\frac{1}{2}\right\rceil$,
if loop has odd length $/$ and $(*)$ is not fulfilled yet.

- Solve LP again

Extensions: subgraphs; branch \& cut

Example for CP approach

Loops:

Subgraphs:

$x_{i}=2 / 3 \quad x_{i}=1 / 3$
$\boldsymbol{O}_{i}=1$

$21 / 25$

Results cutting planes

Fraction p_{f} of completely solved solutions.

[T. Dewenter \& AKH, preprint arXiv 2012] (old version)

Peak of fluctuations (top inset):
Position converges to $c_{\text {crit }}=2.6(1)$ (bottom inset) compatible with $c=e$.

LP phase diagram

SX+CP:

lower bounds
NH :
"node heuristics" set some $x_{i}=0$ and repeat LP
\rightarrow true VC
\rightarrow upper bounds
upper \approx lower bound for $c \leq e$
several sizes N finite-size scaling: $x(N)=x_{\infty}+a N^{-b}$

Correspondence to core

Hard instances (leaf removal \& branch-and-cut algorithm)
\leftrightarrow hard instances (LP \& cutting planes) ?
p_{d} : fraction of variables $\in\{0,1\}, n_{\text {core }}$: relative core size

For ALL instances $p_{\mathrm{d}} \geq n_{\text {core }}$!

Summary

Computer Science

| helps
helps

Physics

- Simple yet complex-behaving model: Vertex-cover problem
■ Complexity Theory: NP-complete
- Simple/medium complex algorithms: Heuristisc
Leaf removal
Branch-and-bound algorithm Linear Programming \& cutting planes
- Physics: phase-transition in solvability/running time

