Phase Transitions in Optimization Problems

Alexander K. Hartmann

Institute of Physics University of Oldenburg

DPG Physics School, Bad Honnef, 14. September 2012

Research Group Computational Physics

"Complex behavior of discrete systems in Physics, Biology, Mathematcs and Computer Science"

Computer Simulations New algorithms

few group members

Optimization algorithms Development/application

Research Group Computational Physics

"Complex behavior of discrete systems in Physics, Biology, Mathematcs and Computer Science"

Computer Simulations New algorithms

few group members

Optimization algorithms Development/application

MANY variables

Disordered magnets alloys, e.g., iron/gold spin glasses random-field systems

Phasen transitions in optimization problems Vertex Cover Satisfiability

Biologie RNA secondary structures comparison of proteins bats

Percolation problems systems carrying information

Paris

Are they safe?

London

Zürich Are they safe?

Virtual museums

Guards: hyper active

efficient (lazy)

Virtual museums

unefficient

Guards: hyper active

Modelling:

- Reduction
- Mathematical description
- Solution

efficient (lazy)

Virtual museums

unefficient

Prototypical problem of theoretical Computer Science

Prototypical problem of theoretical Computer Science

X = xN guards guard only adjacent corridors

Prototypical problem of theoretical Computer Science

X = xN guards guard only adjacent corridors

Prototypical problem of theoretical Computer Science

X = xN guards guard only adjacent corridors

- Optimization probl. A: minimize number of guards
 Optimization probl. B: minimize number of unguarded corr.
- Mathematically: museum = graph
 Vertex-cover problem = NP-complete

- **given** : museum (graph) G = (V, E)
 - wanted: minimum number of guards (problem (A))
- algorithm min_cover(G) begin

 $V'=\emptyset$

while(there are unguarded corridors)

```
do
```

select crossroad $i \in V$ with highest degree d_i guard crossroad: $V' = V' \cup \{i\}$ remove edged adjacent to *i* from *E* end return *V*'

end

Where to put guards without violating minimum condition?

algorithm leaf_romoval(G) begin while(there are leaves) guard neighbor *i* of leaf and remove adjacent edges end

Remaining graph is called $core \rightarrow exact$ algorithm

Branch-and-bound Algorithm

Task: min. # of uncov. edges

(probl. B)

Complete algorithm:

(basically) enumerate all states

Branch-and-bound Algorithm

Task: min. # of uncov. edgesAvoid subtrees w/o solutions(probl. B)best = minimum so far

Complete algorithm: X' = # of curr. covered vertice (basically) enumerate all states \Rightarrow cover F := X - X' vertices

best = minimum so far X' = # of curr. covered vertices \Rightarrow cover F := X - X' vertices List *F* vertices with highest current degrees. Ex. (*F* = 3):

> n_1 : 5 edges n_2 : 3 edges n_3 : 3 edges n_4 : 2 edges n_5 : 2 edges

 $d_{\max} \equiv \sum_{i=1}^{F} d(n_i)$

If (#(uncovered edges) $-d_{max}$ >best) \rightarrow bound!

Random Objects: Lego Buildings

Basic random experiment:

throw a dice

Complex random experiment:

reach into box with Legos

 \Rightarrow random building/object:

Random Museums

- Generated in the computer → defines statistical properties
- *N* crossroads, *cN*/2 randomly chosen corridors

Für each museum: is fraction x = X/N of guards enough?

Phase Transitions

Physics, cooperation of many "particles"

Water: ice \longleftrightarrow fluid \longleftrightarrow vapor

few cars: smooth traffic many cars: traffic jam!

Phase Transition

- Ensemble: Erdös-Rényi random graphs: N vertices and cN/2 random edges
- Numerically: averaging over different realizations

Phase Diagram

- Finite-size scaling analysis of numerical results: extrapolation ($N \rightarrow \infty$) \Rightarrow phase boundary $x_c(c)$
- Analytical treatment: \Leftrightarrow 0.8 spin-glass or hard-core gas 0.6 COV Stat. Mech. methods: () × 0.4 replica trick/cavity approach exact for $c < e \approx 2.718$ UNCOV (replica symmetry = RS) 0.2 c > e: RS breaking (RSB) [M. Weigt & AKH, PRE 2001] 2 3 4
 - Can one see cluster structure/RSB numerically ?

analytics

numerics

c=2.0

8 9 10

5 6

Hierarchical Clustering

- Start: Z configs = Z single configuration clusters $C_j = \{\underline{x}^j\}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: *Z* configs = *Z* single configuration clusters $C_j = {\underline{x}^j}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: *Z* configs = *Z* single configuration clusters $C_j = {\underline{x}^j}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: *Z* configs = *Z* single configuration clusters $C_j = {\underline{x}^j}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs = Z single configuration clusters $C_j = \{\underline{x}^j\}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs = Z single configuration clusters $C_j = \{\underline{x}^j\}$ initial distances $d(C_j, C_l) = d_{\text{Hamming}}(\underline{x}^j, \underline{x}^l)$
- Merge iteratively nearest clusters $C_{\text{new}} = C_{\alpha} \cup C_{\beta}$, update $d(C_{\text{new}}, C_j) \ (j \neq \alpha, \beta)$, until one cluster left.

[J.H. Ward, J. Am. Stat. Assoc. 1963]

Any set of configs can be clustered → Does it match? cophenetic correlation: K ≡ [d ⋅ d_c]_G - [d][d_c]_G, (d_c: distance along tree, [..]_G: disorder average) Hubert's Γ statistics: correlation d ↔ d_{max}/z clustering

VC: hierarchical clustering (grand-canonical ensemble (chem. pot. μ) using PT/(MC)³)

[W. Barthel & AKH, PRE 2004]

(large μ):	no structure ("paramagnet")
с < е:	solution cluster has no structure
с > е:	hierarchy of solution clusters

cophenetic correlation K(N): decreases/grows for c < e/c > eComplex phase space organization for c > e

Linear Programming (LP)

- B&B algorithm or stochastic methods → move inside configuration space (usually no optimum)
- LP: move outside configurations space (always optimum)
- For each node *i*: variable $x_i \in [0, 1]$: $x_i = 1 \leftrightarrow \text{covered}$ $x_i = 0 \leftrightarrow \text{uncovered}$ $x_i \in]0, 1[\leftrightarrow \text{undecided}$
- Each of the *M* edges $\{j, k\} \rightarrow \text{constraint } x_j + x_k \ge 1$

• Objective function: $x \rightarrow \min$

VC as LP:

Minimize $x = \sum_{i=1}^{N} x_i$

 $\textbf{Subject to} \quad 0 \leq x_i \leq 1 \quad \forall \ i \in V \\$

$$x_j + x_k \ge 1 \quad \forall \{j, k\} \in E$$

Use Simplex algorithm to solve LP [G.B. Dantzig, Bull. Amer. Math. Soc. 1948] [http://lpsolve.sourceforge.net/5.5/] Example

Corresponding LP:

Figure : Example graph with N = M = 5

 $\begin{array}{lll} \mbox{Minimize} & x = x_1 + x_2 + x_3 + x_4 + x_5 \\ \mbox{Subject to} & 0 \leq x_i \leq 1 & \forall \ i \in V \\ & x_1 + x_2 \geq 1 \\ & x_2 + x_3 \geq 1 \\ & x_2 + x_4 \geq 1 \\ & x_3 + x_4 \geq 1 \\ & x_4 + x_5 \geq 1 \end{array}$

Example

Corresponding LP:

Minimize $x = x_1 + x_2 + x_3 + x_4 + x_5$

Subject to $0 \le x_i \le 1$ $\forall i \in V$

$$x_{1} + x_{2} \ge 1$$

$$x_{2} + x_{3} \ge 1$$

$$x_{2} + x_{4} \ge 1$$

$$x_{3} + x_{4} \ge 1$$

$$x_{4} + x_{5} \ge 1$$

Solution: $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0.$

Figure : Example graph with N = M = 5

Figure : Minimum VC

 \rightarrow Minimum VC with cardinality: $X_c = x = 2$

 $x_1 = x_2 = x_3 = 0.5$ $x_1 = 0, x_2 = x_3 = 1$

Idea: Limit solution space by adding extra constraints (CPs) Loops:

- Search random loop of length / (spanning tree + edge)
- Add constraint (CP) to LP:

$$\sum_{i \in \text{loop}} x_i \ge \left\lceil \frac{l}{2} \right\rceil, \quad (*)$$

if loop has odd length I and (*) is not fulfilled yet.

- Solve LP again
- Extensions: subgraphs; branch & cut

Example for CP approach

Results cutting planes

Fraction p_f of completely solved solutions.

[T. Dewenter & AKH, preprint arXiv 2012] (old version)

Peak of fluctuations (top inset): Position converges to $c_{crit} = 2.6(1)$ (bottom inset) compatible with c = e.

LP phase diagram

SX+CP: lower bounds

NH: "node heuristics" set some $x_i = 0$ and repeat LP \rightarrow true VC \rightarrow upper bounds

upper \approx lower bound for $c \leq e$

several sizes N finite-size scaling: $x(N) = x_{\infty} + aN^{-b}$

Correspondence to core

Hard instances (leaf removal & branch-and-cut algorithm) \leftrightarrow hard instances (LP & cutting planes) ?

 p_d : fraction of variables $\in \{0, 1\}$, n_{core} : relative core size

For ALL instances $p_{d} \ge n_{core}$!

Computer Science

Physics

- Simple yet complex-behaving model: Vertex-cover problem
- Complexity Theory: NP-complete
- Simple/medium complex algorithms: Heuristisc
 - Leaf removal
 - Branch-and-bound algorithm
 - Linear Programming & cutting planes
- Physics: phase-transition in solvability/running time