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Disordered magnets
alloys, e.g., iron/gold
spin glasses
random-field systems

Phasen transitions in
optimization problems
Vertex Cover
Satisfiability

Biologie
RNA secondary structures
comparison of proteins
bats

Percolation problems
systems carrying information
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Museums

London Zürich Paris

Are they safe?

van
Gogh Cezanne Munch
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Saftey Measures

Access Copies Virtual museums

Guards:
hyper active efficient (lazy) unefficient

Modelling:
Reduction
Mathematical description
Solution
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Vertex-Cover Problem

Prototypical problem of theoretical Computer Science
Model

crossroad

corridor

N crossroads
Nc/2 corridors

X = xN guards
guard only adjacent corridors
Optimization probl. A: minimize number of guards
Optimization probl. B: minimize number of unguarded corr.
Mathematically: museum = graph
Vertex-cover problem = NP-complete
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Heuristics

given : museum (graph) G = (V ,E)

wanted: minimum number of guards (problem (A))
algorithm min_cover(G)
begin

V ′ = ∅
while(there are unguarded corridors)
do

select crossroad i ∈ V with highest degree di
guard crossroad: V ′ = V ′ ∪ {i}
remove edged adjacent to i from E

end
return V ′

end
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Leaf-removal Algorithm
Where to put guards without violating minimum condition?

algorithm leaf_romoval(G)
begin

while(there are leaves)
guard neighbor i of leaf and remove adjacent edges

end

Remaining graph is called core→ exact algorithm
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Solve min. problem (A) for handout examples NOW!
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Branch-and-bound Algorithm
Task: min. # of uncov. edges
(probl. B)
Complete algorithm:
(basically) enumerate all states

uc

c c

cc uc

covered uncovered

ucucucucc c

k3

k4 k4 k4 k4k4 k4 k4 k4

k2 k2

k3 k3k3

k1

Avoid subtrees w/o solutions
best = minimum so far
X ′ = # of curr. covered vertices
⇒ cover F := X − X ′ vertices
List F vertices with highest cur-
rent degrees. Ex. (F = 3):

n1: 5 edges
n2: 3 edges
n3: 3 edges
n4: 2 edges
n5: 2 edges

. . .

dmax ≡
∑F

i=1 d(ni)

If (#(uncovered edges)−dmax >best) → bound!
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Random Objects: Lego Buildings

Basic random experiment:

throw a dice

Complex random experiment:

reach into box with Legos

⇒ random building/object:
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Random Museums
Generated in the computer
→ defines statistical properties
N crossroads, cN/2 randomly chosen corridors
c = 1

c = 2

Für each museum: is fraction x = X/N of guards enough?
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Phase Transitions

Physics, cooperation of many “particles”
Water: ice←→ fluid←→ vapor

Street:
few cars: smooth traffic
many cars: traffic jam!
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Phase Transition

Ensemble: Erdös-Rényi random graphs:
N vertices and cN/2 random edges
Numerically: averaging over different realizations
c = 2

Probability to cover

Running time =
number of nodes
in branching tree

[M. Weigt and AKH,

Phys. Rev. Lett. 2000]
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Phase Diagram

Finite-size scaling analysis of numerical results:
extrapolation (N →∞)⇒ phase boundary xc(c)

Analytical treatment: ⇔
spin-glass or hard-core gas
Stat. Mech. methods:
replica trick/cavity approach
exact for c ≤ e ≈ 2.718
(replica symmetry = RS)
c > e: RS breaking (RSB)
[M. Weigt & AKH, PRE 2001] 0 1 2 3 4 5 6 7 8 9 10

c
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Can one see cluster structure/RSB numerically ?
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Hierarchical Clustering
Start: Z configs = Z single configuration clusters Cj = {x j}
initial distances d(Cj ,Cl) = dHamming(x j , x l)

Merge iteratively nearest clusters Cnew = Cα ∪ Cβ, update
d(Cnew,Cj) (j 6= α, β), until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Any set of configs can be clustered→ Does it match?
cophenetic correlation: K ≡ [d · dc]G − [d ][dc]G ,
(dc : distance along tree, [..]G: disorder average)
Hubert’s Γ statistics: correlation d ↔ dmax

z clustering
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VC: hierarchical clustering
(grand-canonical ensemble (chem. pot. µ) using PT/(MC)3)

any c (small µ) c = 1 (large µ)

[W. Barthel & AKH, PRE

c = 3 (large µ)

2004]

(large µ): no structure (“paramagnet”)
c < e: solution cluster has no structure
c > e: hierarchy of solution clusters

cophenetic correlation K (N): decreases/grows for c < e/c > e
Complex phase space organization for c > e
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Linear Programming (LP)
B&B algorithm or stochastic methods→
move inside configuration space (usually no optimum)
LP: move outside configurations space (always optimum)
For each node i : variable xi ∈ [0,1]:
xi = 1↔ covered xi = 0↔ uncovered
xi ∈ ]0,1[↔ undecided

Each of the M edges {j , k} → constraint xj + xk ≥ 1

Objective function: x → min

VC as LP:
Minimize x =

∑N
i=1 xi

Subject to 0 ≤ xi ≤ 1 ∀ i ∈ V

xj + xk ≥ 1 ∀ {j , k} ∈ E

Use Simplex algorithm to solve LP
[G.B. Dantzig, Bull. Amer. Math. Soc. 1948] [http://lpsolve.sourceforge.net/5.5/]
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Example

1

2

3

4 5

Figure : Example graph with
N = M = 5

Corresponding LP:
Minimize x = x1 + x2 + x3 + x4 + x5

Subject to 0 ≤ xi ≤ 1 ∀ i ∈ V

x1 + x2 ≥ 1
x2 + x3 ≥ 1
x2 + x4 ≥ 1
x3 + x4 ≥ 1
x4 + x5 ≥ 1

1

2

3

4 5

Figure : Minimum VC

Solution: x1 = 0,
x2 = 1,
x3 = 0,
x4 = 1,
x5 = 0.

→ Minimum VC with cardinality: Xc = x = 2
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Cutting Planes (CP)

22

1

3

1

2

3

1

3

x1 = x2 = x3 = 0.5 x1 = 0, x2 = x3 = 1
Idea: Limit solution space by adding extra constraints (CPs)

Loops:
Search random loop of length l (spanning tree + edge)

Add constraint (CP) to LP:
∑

i∈loop

xi ≥
⌈

l
2

⌉
, (∗)

if loop has odd length l and (∗) is not fulfilled yet.
Solve LP again
Extensions: subgraphs; branch & cut
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Example for CP approach

Loops:

1
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Subgraphs:
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Results cutting planes

Fraction pf of completely solved solutions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14

p
f

c

N=280
N=200
N=150
N=100

N=70
N=50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  4  6  8

V
a
r(

p
f)

c

 2

 3

 4

 5

 6

 10  100  1000

c
m

a
x

N

[T. Dewenter & AKH,
preprint arXiv 2012]
(old version)

Peak of fluctuations (top inset):
Position converges to ccrit = 2.6(1) (bottom inset)
compatible with c = e.
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LP phase diagram

SX+CP:
lower bounds

NH:
“node heuristics”
set some xi = 0
and repeat LP
→ true VC
→ upper bounds

upper≈ lower
bound for c ≤ e

several sizes N
finite-size scaling:
x(N) = x∞+aN−b
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Correspondence to core

Hard instances (leaf removal & branch-and-cut algorithm)
↔ hard instances (LP & cutting planes) ?
pd: fraction of variables ∈ {0,1}, ncore: relative core size
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For ALL instances pd ≥ ncore !
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Summary

Computer Science

helps

helps

Physics

Simple yet complex-behaving model:
Vertex-cover problem
Complexity Theory: NP-complete
Simple/medium complex algorithms:
Heuristisc
Leaf removal
Branch-and-bound algorithm
Linear Programming & cutting planes
Physics: phase-transition in
solvability/running time
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