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I. INTRODUCTION

In several of the lectures at this school you will learn about efficient algorithms to generate

numerical data for problems of interest. This lecture will discuss what to do with that data once

you have generated it.

Typically you will generate a set of values xi, yi, · · · , i = 1, · · ·N , where N is the number of

measurements. The first thing you will want to do is to estimate various average values, and

determine error bars on those estimates. This is straightforward if one wants to compute a single

average, e.g. 〈x〉, but not quite so easy for more complicated averages such as fluctuations in a

quantity, 〈x2〉 − 〈x〉2, or combinations of measured values such as 〈y〉/〈x〉2. Averaging of data will

be discussed in Sec. II.

Having obtained good averaged data with error bars for a system of a certain size, one typically

does several sizes and fits the data to some model, for example using finite-size scaling. Techniques

for fitting data will be described in the second part of this lecture in Sec. III

II. AVERAGES AND ERROR BARS

A. Basic Analysis

Suppose we have a set of data from a simulation, xi, (i = 1, · · · , N), which we shall refer to as

a sample of data. This data will have some random noise so the xi are not all equal. Rather they

are governed by a distribution P (x), which we don’t know.

The distribution is normalized,
∫ ∞

−∞

P (x) dx = 1, (1)

and is usefully characterized by its moments, where the n-th moment is defined by

〈xn〉 =
∫ ∞

−∞

xn P (x) dx . (2)
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We will denote the average over the exact distribution by angular brackets. Of particular interest

are the first and second moments from which one forms the mean µ and variance σ2, by

µ ≡ 〈x〉 (3a)

σ2 ≡ 〈 (x− 〈x〉)2 〉 = 〈x2〉 − 〈x〉2 . (3b)

The term “standard deviation” is used for σ, the square root of the variance.

In this section we will determine the mean 〈x〉, and the uncertainty in our estimate of it, from

the N data points xi. The determination of more complicated averages and resulting error bars

will be discussed in Sec. II B 2

In order to obtain error bars we need to assume that the data are uncorrelated with each other.

This is a crucial assumption, without which it is very difficult to proceed. However, it is not always

clear if the data points are truly independent of each other; some correlations may be present but

not immediately obvious. Here, we take the usual approach of assuming that even if there are some

correlations, they are sufficiently weak so as not to significantly perturb the results of the analysis.

In Monte Carlo simulations, measurements which differ by a sufficiently large number of Monte

Carlo sweeps will be uncorrelated. More precisely the difference in sweep numbers should be greater

than a “relaxation time” (see Helmut Katzgraber’s lectures at this school). This is exploited in

the “binning” method in which the data used in the analysis is not the individual measurements,

but rather an average over measurements during a range of sweeps, called a “bin”. If the bin size

is greater than the relaxation time, results from adjacent bins will be (almost) uncorrelated. A

pedagogical treatment of binning has been given by Ambegaokar and Troyer [1]. Alternatively, one

can do independent Monte Carlo runs, requilibrating each time, and use, as individual data in the

analysis, the average from each run.

The information from the data is usefully encoded in two parameters, the sample mean x and

the sample standard deviation s which are defined by1

x =
1

N

N∑

i=1

xi , (4a)

s2 =
1

N − 1

N∑

i=1

(xi − x)2 . (4b)

1 The factor of N−1 rather than N in the expression for the sample variance in Eq. (4b) needs a couple of comments.
Firstly, the final answer for the error bar on the mean, Eq. (15) below, will be independent of how this intermediate
quantity is defined. Secondly, the N terms in Eq. (4b) are not all independent since x, which is itself given by the
xi, is subtracted. Rather, as will be discussed more in the section on fitting, Sec. III, there are really only N − 1
independent variables (called the “number of degrees of freedom” in the fitting context) and so dividing by N − 1
has a rational basis.
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In statistics, notation is often confusing but crucial to understand. Here, an average indicated

by an over-bar, · · ·, is an average over the sample of N data points. This is to be distinguished from

an exact average over the distribution 〈· · · 〉, as in Eqs. (3a) and (3b). The latter is, however, just

a theoretical construct since we don’t know the distribution P (x), only the set of N data points xi

which have been sampled from it.

Next we derive two simple results which will be useful later:

1. The mean of the sum of N independent variables with the same distribution is N times the

mean of a single variable, and

2. The variance of the sum of N independent variables with the same distribution is N times

the variance of a single variable.

The result for the mean is obvious since, defining X =
∑N

i=1 xi,

〈X〉 =
N∑

i=1

〈xi〉 = N〈xi〉 = Nµ . (5)

The result for the standard deviation needs a little more work:

σ2
X ≡ 〈X2〉 − 〈X〉2 (6a)

=
N∑

i,j=1

(〈xixj〉 − 〈xi〉〈xj〉) (6b)

=
N∑

i=1

(
〈x2i 〉 − 〈xi〉2

)
(6c)

= N
(
〈x2〉 − 〈x〉2

)
(6d)

= Nσ2 . (6e)

To get from Eq. (6b) to Eq. (6c) we note that, for i 6= j, 〈xixj〉 = 〈xi〉〈xj〉 since xi and xj are

assumed to be statistically independent. (This is where the statistical independence of the data is

needed.)

Now we describe an important thought experiment. Let’s suppose that we could repeat the set

of N measurements very many many times, each time obtaining a value of the sample average x.

From these results we could construct a distribution, P̃ (x), for the sample average as shown in

Fig. 1.

If we do enough repetitions we are effectively averaging over the exact distribution. Hence the
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FIG. 1: The distribution of results for the sample mean x obtained by repeating the measurements of the N

data points xi many times. The average of this distribution is µ, the exact average value of x. The mean, x,

obtained from one sample of data typically differs from µ by an amount of order σx, the standard deviation

of the distribution P̃ (x).

average of the sample mean, x, over very many repetitions of the data, is given by

〈x〉 = 1

N

N∑

i=1

〈xi〉 = 〈x〉 ≡ µ , (7)

i.e. it is the exact average over the distribution of x, as one would intuitively expect, see Fig. 1.

Eq. (7) also follows from Eq. (5) by noting that x = X/N .

In fact, though, we have only the one set of data, so we can not determine µ exactly. However,

Eq. (7) shows that

the best estimate of µ is x, (8)

i.e. the sample mean, since averaging the sample mean over many repetitions of the N data points

gives the true mean of the distribution, µ. An estimate like this, which gives the exact result if

averaged over many repetitions of the experiment, is said to be unbiased.

We would also like an estimate of the uncertainty, or “error bar”, in our estimate of x for the

exact average µ. We take σx, the standard deviation in x (obtained if one did many repetitions of

the N measurements), to be the uncertainty, or error bar, in x. The reason is that σx is the width
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of the distribution P̃ (x), shown in Fig. 1, and a single estimate x typically differs from the exact

result µ by an amount of this order. The variance σ2
x is given by

σ2
x ≡ 〈x2〉 − 〈x〉2 = σ2

N
, (9)

which follows from Eq. (6e) since x = X/N .

The problem with Eq. (9) is that we don’t know σ2 since it is a function of the exact

distribution P (x). We do, however, know the sample variance s2, see Eq. (4b), and the average of

this over many repetitions of the N data points, is equal to σ2 since

〈s2〉 = 1

N − 1

N∑

i=1

〈x2i 〉 −
1

N(N − 1)

N∑

i=1

N∑

j=1

〈xixj〉 (10a)

=
N

N − 1
〈x2〉 − 1

N(N − 1)

[
N(N − 1)〈x〉2 +N〈x2〉

]
(10b)

=
[
〈x2〉 − 〈x〉2

]
(10c)

= σ2 . (10d)

To get from Eq. (10a) to Eq. (10b), we have separated the terms with i = j in the last term of

Eq. (10a) from those with i 6= j, and used the fact that each of the xi is chosen from the same

distribution and is statistically independent of the others. It follows from Eq. (10d) that

the best estimate of σ2 is s2 , (11)

since averaging s2 over many repetitions of N data points gives σ2. The estimate for σ2 in Eq. (11)

is therefore unbiased.

Combining Eqs. (9) and (11) gives

the best estimate of σ2
x is

s2

N
. (12)

This estimate is also unbiased. We have now obtained, using only information from from the data,

that the mean is given by

µ = x ± σx . (13)

where we estimate

σx =
s√
N

(14)
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which can write explicitly in terms of the data points as

σx =

[
1

N(N − 1)

N∑

i=1

(xi − x)2

]1/2

. (15)

Remember that x and s are the mean and standard deviation of the (one set) of data that is

available to us, see Eqs. (4a) and (4b).

As an example, suppose N = 5 and the data points are

xi = 10, 11, 12, 13, 14, (16)

(not very random looking data it must be admitted!). Then, from Eq. (4a) we have x = 12, and

from Eq. (4b)

s2 =
1

4

[
(−2)2 + (−1)2 + 02 + 12 + 22

]
=

5

2
. (17)

Hence, from Eq. (14),

σx =
1√
5

√
5

2
=

1√
2
. (18)

so

µ = x± σx = 12± 1√
2
. (19)

How does the error bar decrease with the number of statistically independent data points N?

Equation (10d) states that the expectation value of s2 is equal to σ2 and hence, from Eq. (14), we

see that

the error bar in the mean goes down like 1/
√
N .

Hence, to reduce the error bar by a factor of 10 one needs 100 times as much data. This is

discouraging, but is a fact of life when dealing with random noise.

For Eq. (14) to be really useful we need to know the probability that the true answer µ lies more

than σx away from our estimate x. Fortunately, for large N , the central limit theorem, derived in

Appendix A, tells us (for distributions where the first two moments are finite) that the distribution

of x is a Gaussian. For this distribution we know that the probability of finding a result more than

one standard deviation away from the mean is 32%, more than two standard deviations is 4.5%

and more than three standard deviations is 0.3%. Hence we expect that most of the time x will

be within σxu of the correct result µ, and only occasionally will be more than two times σx from
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it. Even if N is not very large, so there are some deviations from the Gaussian form, the above

numbers are often a reasonable guide.

However, as emphasized in appendix A, distributions which occur in nature typically have much

more weight in the tails than a Gaussian. As a result, the weight in the tails of the distribution

of the sum can be much larger than for a Gaussian even for quite large values of N , see Fig. 4. It

follows that the probability of an “outlier” can be much higher than that predicted for a Gaussian

distribution, as anyone who has invested in the stock market knows well!

B. Advanced Analysis

In Sec. II A we learned how to estimate a simple average, such as µx ≡ 〈x〉, plus the error bar in
that quantity, from a set of data xi. Trivially this method also applies to a linear combination of

different averages, µx, µy, · · · etc. However, we often need more complicated, non-linear functions

of averages. One example is the fluctuations in a quantity, i.e. 〈x2〉 − 〈x〉2. Another example is

dimensionless combination of moments, which gives information about the shape of a distribution

independent of its overall scale. Such quantities are very popular in finite-size scaling (FSS) analyses

since the FSS form is simpler than for quantities with dimension. An popular example, first

proposed by Binder, is 〈x4〉/〈x2〉2, which is known as the “kurtosis” (frequently a factor of 3 is

subtracted to make it zero for a Gaussian).

Hence, in this section we consider how to determine non-linear functions of averages of one or

more variables, f(µx, µy, · · · ), where

µx ≡ 〈x〉 , (20)

etc. For example, the two quantities mentioned in the previous paragraph correspond to

f(µx, µy) = µy − µ2
x , (21)

with y = x2 and

f(µy, µz) =
µy

µ2
z

, (22)

with y = x4 and z = x2.

The natural estimate of f(µx, µy) from the sample data is clearly f(x, y). However, it will take

some more thought to estimate the error bar in this quantity. The traditional way of doing this

is called “error propagation”, described in Sec. II B 1 below. However, it is now more common to
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use either “jackknife” or “bootstrap” procedures, described in Secs. II B 2 and IIB 3. At the price

of some additional computation, which is no difficulty when done on a modern computer (though

it would have been tedious in the old days when statistics calculations were done by hand), these

methods automate the calculation of the error bar.

Furthermore, the estimate of f(µx, µy) turns out to have some bias if f is a non-linear function.

Usually this is small effect because it is order 1/N , see for example Eq. (29) below, whereas the

statistical error is of order 1/
√
N . Since N is usually large, the bias is generally much less than

the statistical error and so can generally be neglected. In any case, the jackknife and bootstrap

methods also enable one to eliminate the leading (∼ 1/N) contribution to the bias in a automatic

fashion.

1. Traditional method

First we will discuss the traditional method, known as error propagation, to compute the error

bar and bias. We expand f(x, y) about f(µx, µy) up to second order in the deviations:

f(x, y) = f(µx, µy)+(∂µxf) δx+(∂µyf) δy+
1

2
(∂2

µxµx
f) δ2x+(∂2

µxµy
f) δxδy+

1

2
(∂2

µyµy
f) δ2y+· · · , (23)

where

δx = x− µx, (24)

etc.

The terms of first order in the δ′s in Eq. (23) give the leading contribution to the error, but

would average to zero if the procedure were to be repeated many times. However, the terms of

second order do not average to zero and so give the leading contribution to the bias. We now

estimate that bias.

Averaging Eq. (23) over many repetitions, and noting that

〈δ2x〉 = 〈x2〉 − 〈x〉2 = σ2
x, 〈δ2y〉 = 〈y2〉 − 〈y〉2 = σ2

y , 〈δxδy〉 = 〈x y〉 − 〈x〉〈y〉 = σ2
xy, (25)

we get

〈f(x, y)〉 − f(µx, µy) =
1

2
(∂2

µxµx
f)σ2

x + (∂2
µxµy

f)σ2
xy +

1

2
(∂2

µyµy
f)σ2

y . (26)

As discussed in Sec. II A our estimate of σ2
x is the sample variance, see Eq. (4b), which we now call

s2xx, divided by N , see Eq. (12), and similarly for σ2
y . In the same way, our estimate of σ2

xy is the
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sample covariance of x and y, defined by

s2xy =
1

N − 1

N∑

i=1

(xi − x) (yi − y) , (27)

divided by N .

Hence, from Eq. (26), we have

f(µx, µy) = 〈f(x, y)〉 − 1

N

[
1

2
(∂2

µxµx
f) s2xx + (∂2

µxµy
f) s2xy +

1

2
(∂2

µyµy
f) s2yy

]
, (28)

where the leading contribution to the bias is given by the 1/N term. Note that the bias term is

“self-averaging”, i.e. the fluctuations in it are small relative to the average (by a factor of 1/
√
N)

when averaging over many repetitions of the data. It follows from Eq. (28) that if one wants to

eliminate the leading contribution to the bias one should

estimate f(µx, µy) from f(x, y)− 1

N

[
1

2
(∂2

µxµx
f) s2xx + (∂2

µxµy
f) s2xy +

1

2
(∂2

µyµy
f) s2yy

]
. (29)

As claimed earlier, the bias correction is of order 1/N and vanishes if f is a linear function. The

generalization to functions of more than two averages, f(µx, µy, µz, · · · ), is obvious.
Next we discuss the leading error in using f(x, y) as an estimate for f(µx, µy). This comes from

the terms linear in the δ’s in Eq. (23). Since 〈f(x, y)〉 − f(µx, µy) is of order 1/N according to

Eq. (28), we can replace 〈f(x, y)〉 by f(µx, µy) to get the leading order fluctuations. Hence,

σ2
f ≡ 〈 f2(x, y)〉 − 〈f(x, y)〉2

= 〈 [ f(x, y)− 〈f(x, y)〉 ]2 〉

= 〈 [ f(x, y)− f(µx, µy) ]
2 〉

= (∂µxf)
2 〈δ2x〉+ 2(∂µxf) (∂µyf) 〈δxδy〉+ (∂µyf)

2 〈δ2y〉 , (30)

where, to get the last line, we omitted the quadratic terms in Eq. (23) and squared it. As above,

we use s2xx/N as an estimate of 〈δ2x〉 and similarly for the other terms. Hence

the best estimate of σ2
f is

1

N
(∂µxf)

2 s2xx + 2(∂µxf) (∂µyf) s
2
xy + (∂µyf)

2 s2yy . (31)

This estimate is unbiased to leading order in N . Note that we need to keep track not only of

fluctuations in x and y, characterized by their variances s2xx and s2yy, but also cross correlations

between x and y, characterized by their covariance s2xy.

Hence, still to leading order in N , we get

f(µx, µy) = f(x, y)± σf , (32)
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where we estimate the error bar σf from Eq. (31) which shows that it is of order 1/
√
N . Again,

the generalization to functions of more than two averages is obvious.

Note that in the simple case studied in Sec. IIA where there is only one set of variables xi

and f(µx) = µx, Eq. (28) tells us that there is no bias, which is correct, and Eq. (31) gives an

expression for the error bar which agrees with Eq. (14).

In Eqs. (29) and (31) we need to keep track how errors in the individual quantities like x

propagate to the estimate of the function f . This requires inputting by hand the various par-

tial derivatives into the analysis program. In the next two sections we see how resampling the

data automatically takes account of error propagation without needing to input the partial deriva-

tives. These approaches, known as jackknife and bootstrap, provide a fully automatic method of

determining error bars and bias.

2. Jackknife

We define a jackknife average to be the average over all data in the sample except one point, i.e.

xJi ≡ 1

N − 1

∑

j 6=i

xj . (33)

We also define corresponding jackknife averages of the function f (again for concreteness we will

assume that f is a function of just 2 averages but the generalization will be obvious):

fJ
i ≡ f(xJi , y

J
i ) . (34)

In other words, we use the jackknife values, xJi , y
J
i , rather than the sample means, x, y, as the

arguments of f . The same is true if we need a function of more than two averages , i.e. fJ
i ≡

f(xJi , y
J
i , z

J
i , · · · ). The jackknife estimate of f(µx, µy) is then the average of the fJ

i :

fJ ≡ 1

N

N∑

i=1

fJ
i . (35)

It is straightforward to show that if f is a linear function of µx and µy then fJ = f(x, y), i.e. the

jackknife and standard averages are identical. However, when f is not a linear function, so there

is bias, there is a difference, and we will now show the resampling carried out in the jackknife

method can be used to determine bias and error bars in an automated way.

We proceed as for the derivation of Eq. (28), which we now write as

f(µx, µy) = 〈f(x, y)〉 − A

N
+

B

N2
+ · · · , (36)
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whereA is the term in rectangular brackets in Eq. (28), and we have added the next order correction.

We find the same result for the jackknife average except that N is replaced by N − 1, i.e.

f(µx, µy) = 〈fJ〉 − A

N − 1
+

B

(N − 1)2
· · · . (37)

We can therefore eliminate the leading contribution to the bias by forming an appropriate linear

combination of f(x, y) and fJ , namely

f(µx, µy) = N〈f(x, y)〉 − (N − 1)〈fJ〉+O

(
1

N2

)
. (38)

It follows that, to eliminate the leading bias without computing partial derivatives, one should

estimate f(µx, µy) from Nf(x, y)− (N − 1)fJ . (39)

As mentioned earlier, bias is usually not a big problem because it is of order 1/N whereas the

statistical error is of order 1/
√
N which is much bigger if N is large. In most cases, N is sufficiently

large that one can use either the usual average f(x, y), or the jackknife average fJ in Eq. (35),

to estimate f(µx, µy), since the difference between them will be much smaller than the statistical

error. In other words, elimination of the leading bias using Eq. (39) is usually not necessary.

Next we show that the jackknife method gives error bars, which agree with Eq. (31) but without

the need to explicitly keep track of the partial derivatives.

We define the variance of the jackknife averages by

σ2
fJ ≡ (fJ)2 −

(
fJ

)2
, (40)

where

(fJ)2 =
1

N

N∑

i=1

(
fJ
i

)2
. (41)

Using Eqs. (34) and (35), we expand fJ away from the exact result f(µx, µy). Just including the

leading contribution gives

fJ − f(µx, µy) =
1

N

N∑

i=1

[
(∂µxf) (x

J
i − µx) + (∂µyf) (y

J
i − µy)

]

=
1

N(N − 1)

N∑

i=1

[
(∂µxf) {N(x− µx)− (xi − µx)}+ (∂µyf) {N(y − µy)− (yi − µy)}

]

= (∂µxf) (x− µx) + (∂µyf) (y − µy) . (42)
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Similarly we find

(fJ)2 =
1

N

N∑

i=1

[
f(µx, µy) + (∂µxf) (x

J
i − µx) + (∂µyf) (y

J
i − µy)

]2

= f2(µx, µy) + 2f(µx, µy)
[
(∂µxf) (x− µx) + (∂µyf) (y − µy)

]

+

{
(∂µxf)

2

[
(x− µx)

2 +
s2xx

N(N − 1)

]
+ (∂µyf)

2

[
(y − µy)

2 +
s2yy

N(N − 1)

]

+2(∂µxf)(∂µyf)

[
(x− µx)(y − µy) +

s2xy
N(N − 1)

]}
. (43)

Hence, from Eq. (40), the variance in the jackknife estimates is given by

σ2
fJ =

1

N(N − 1)

[
(∂µxf)

2 s2xx + (∂µyf)
2 s2yy + 2(∂µxf)(∂µyf)sxy

]
, (44)

which is just 1/(N − 1) times σ2
f , the estimate of the square of the error bar in f(x, y) given in

Eq. (31). Hence

the jackknife estimate for σf is
√
N − 1σfJ . (45)

Note that this is directly obtained from the jackknife estimates without having to put in the partial

derivatives by hand. Note too that the
√
N − 1 factor is in the numerator whereas the factor of

√
N in Eq. (14) is in the denominator. Intuitively the reason for this difference is that the jackknife

estimates are very close since they would all be equal except that each one omits just one data

point.

If N is very large it may be better to group the N data points into Ngroup groups (or “bins”)

of data and take, as data used in the jackknife analysis, the average of data in each group. The

above results clearly go through with N replaced by Ngroup.

To summarize this subsection, to estimate f(µx, µy) one can use either f(x, y) or the jackknife

average fJ in Eq. (35). The error bar in this estimate, σf , is related to the standard deviation in

the jackknife estimates σfJ by Eq. (45).

3. Bootstrap

The bootstrap, like the jackknife, is a resampling of the N data points Whereas jackknife

considers N new data sets, each of containing all the original data points minus one, bootstrap

uses Nboot data sets each containing N points obtained by random (Monte Carlo) sampling of the

original set of N points. During the Monte Carlo sampling, the probability that a data point is
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picked is 1/N irrespective of whether it has been picked before. (In the statistics literature this

is called picking from a set “with replacement”.) Hence a given data point xi will, on average,

appear once in each Monte Carlo-generated data set, but may appear not at all, or twice, and so

on. The probability that xi appears ni times is close to a Poisson distribution with mean unity.

However, it is not exactly Poissonian because of the constraint in Eq. (46) below. It turns out that

we shall need to include the deviation from the Poisson distribution even for large N . We shall use

the term “bootstrap” data sets to denote the Monte Carlo-generated data sets.

More precisely, let us suppose that the number of times xi appears in a bootstrap data set is

ni. Since each bootstrap dataset contains exactly N data points, we have the constraint

N∑

i=1

ni = N . (46)

Consider one of N variables xi. Each time we generate an element in a bootstrap dataset the

probability that it is xi is 1/N , which we will denote by p. From standard probability theory, the

probability that xi occurs ni times is given by a binomial distribution

P (ni) =
N !

ni! (N − ni)!
pni(1− p)N−ni . (47)

The mean and standard deviation of a binomial distribution are given by

[ni]MC
= Np = 1 , (48)

[n2
i ]MC

− [ni]
2
MC

= Np(1− p) = 1− 1

N
, (49)

where [. . . ]
MC

denotes an exact average over bootstrap samples (for a fixed original data set xi).

For N → ∞, the binomial distribution goes over to a Poisson distribution, for which the factor of

1/N in Eq. (49) does not appear. We assume that Nboot is sufficiently large that the bootstrap

average we carry out reproduces this result with sufficient accuracy. Later, we will discuss what

values for Nboot are sufficient in practice. Because of the constraint in Eq. (46), ni and nj (with

i 6= j) are not independent and we find, by squaring Eq. (46) and using Eqs. (48) and (49), that

[ninj ]MC
− [ni]MC

[nj ]MC
= − 1

N
(i 6= j) . (50)

First of all we just consider the simple average µx ≡ 〈x〉, for which, of course, the standard

methods in Sec. IIA suffice, so bootstrap is not necessary. However, this will show how to get

averages and error bars in a simple case, which we will then generalize to non-linear functions of

averages.
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We denote the average of x for a given bootstrap data set by xBα , where α runs from 1 to Nboot,

i.e.

xBα =
1

N

N∑

i=1

nα
i xi . (51)

We then compute the bootstrap average of the mean of x and the bootstrap variance in the mean,

by averaging over all the bootstrap data sets. We assume that that Nboot is large enough for the

bootstrap average to be exact, so we can use Eqs. (49) and (50). The result is

xB ≡ 1

Nboot

Nboot∑

α=1

xBα =
1

N

N∑

i=1

[ni]MC
xi =

1

N

N∑

i=1

xi = x (52)

σ2
xB ≡ (xB)2 −

(
xB

)2
=

1

N2

(
1− 1

N

)∑

i

x2i −
1

N3

∑

i 6=j

xixj , (53)

where

(xB)2 ≡ 1

Nboot

Nboot∑

α=1

[(
xBα

)2]

MC

. (54)

We now average Eqs. (52) and (53) over many repetitions of the original data set xi. Averaging

Eq. (52) gives

〈xB〉 = 〈x〉 = 〈x〉 ≡ µx . (55)

This shows that the bootstrap average xB is an unbiased estimate of the exact average µx. Aver-

aging Eq. (53) gives

〈
σ2
xB

〉
=

N − 1

N2
σ2 =

N − 1

N
σ2
x , (56)

where we used Eq. (9) to get the last expression. Since σx is the uncertainty in the sample mean,

we see that

the bootstrap estimate of σx is

√
N

N − 1
σxB . (57)

Remember that σxB is the standard deviation of the bootstrap data sets. Usually N is sufficiently

large that the square root in Eq. (57) can be replaced by unity.

As for the jackknife, these results can be generalized to finding the error bar in some possibly

non-linear function, f(µx, µy), rather than for µx. One computes the bootstrap estimates for

f(µx, µy), which are

fB
α = f(xBα , y

B
α ) . (58)
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In other words, we use the bootstrap values, xBα , y
B
α , rather than the sample means, x, y, as the

arguments of f . The final bootstrap estimate for f(µx, µy) is the average of these, i.e.

fB =
1

Nboot

Nboot∑

α=1

fB
α . (59)

Following the same methods in the jackknife section, one obtains the error bar, σf , in f(µx, µy).

The result is

the bootstrap estimate for σf is

√
N

N − 1
σfB , (60)

where

σ2
fB = (fB)2 −

(
fB

)2
, (61)

is the variance of the bootstrap estimates. Here

(fB)2 ≡ 1

Nboot

Nboot∑

α=1

(
fB
α

)2
. (62)

Usually N is large enough that the factor of
√
N/(N − 1) is Eq. (60) can be replaced by unity.

Equation (60) corresponds to the result Eq. (57) which we derived for the special case of f(µx, µy) =

µx.

Again following the same path as in the jackknife section, it is straightforward to show that

Eqs. (59) and (60) are unbiased estimates for N → ∞. However, if N is not too large it may

be useful to eliminate the leading contribution to the bias in the mean, as we did for jackknife in

Eq. (39). The result is that one should

estimate f(µx, µy) from 2f(x, y)− fB . (63)

The bias in Eq. (63) is of order 1/N2, whereas f(x, y) and fB each have a bias of order 1/N .

However, it is not normally necessary to eliminate the bias since, if N is large, the bias is much

smaller than the statistical error.

I have not systematically studied the values of Nboot that are needed in practice to get accurate

estimates for the error. It seems that Nboot in the range 100 to 500 is typically chosen, and this

seems to be adequate irrespective of how large N is.

To summarize this subsection, to estimate f(µx, µy) one can either use f(x, y), or the bootstrap

average in Eq. (59), and the error bar in this estimate, σf , is related to the standard deviation in

the bootstrap estimates by Eq. (60).
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III. FITTING DATA TO A MODEL

A good reference for the material in this section is Chapter 15 of Numerical Recipes [2].

Frequently we are given a set of data points (xi, yi), i = 1, 2, · · · , N , with corresponding error

bars, σi, through which we would like to fit to a smooth function f(x). The function could be

straight line (the simplest case), a higher order polynomial, or a more complicated function. The

fitting function will depend on M “fitting parameters”, aα and we would like the “best” fit obtained

by adjusting these parameters. We emphasize that a fitting procedure should not only

1. give the values of the fit parameters, but also

2. provide error estimates on those parameters, and

3. provide a measure of how good the fit is.

If the result of part 3 is that the fit is very poor, the results of parts 1 and 2 are probably

meaningless.

The definition of “best” is not unique. However, the most useful choice, and the one nearly

always taken, is “least squares”, in which one minimizes the sum of the squares of the difference

between the observed y-value, yi, and the fitting function evaluated at xi, weighted appropriately

by the error bars, since, if some points have smaller error bars than others the fit should be closer to

those points. The quantity to be minimized, called “chi-squared”2, which is written mathematically

as χ2, is defined by

χ2 =
N∑

i=1

(
yi − f(xi)

σi

)2

. (64)

Often we assume that the distribution of the errors is Gaussian, since, according to the central

limit theorem discussed in Appendix A the sum of N independent random variables has a Gaussian

distribution (under fairly general conditions) if N is large. However, distributions which occur in

nature usually have more weight in the “tails” than a Gaussian, and as a result, even for moderately

large values of N , the probability of an “outlier” might be much bigger than expected from a

Gaussian, see Fig. 4.

If the errors are distributed with a Gaussian distribution, χ2 in Eq. (64) is a sum of squares

of N random variables with a Gaussian distribution with mean zero and standard deviation unity.

2 χ2 should be thought of as a single variable rather than the square of something called χ. This notation is standard.
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However, when we have minimized the value of χ2 with respect to the M fitting parameters aα

the terms are not all independent. It turns out, see Appendix B, that the distribution of χ2 at the

minimum is that of the sum of the squares of N −M (not N) Gaussian random variable with zero

mean and standard deviation unity3. We call N −M the “number of degrees of freedom” (NDOF).

The χ2 distribution is described in Appendix C, see in particular Eq. (C6).

The simplest cases are where the fitting function is a linear function of the parameters. We

shall call this a linear model. Examples are a straight line (M = 2),

y = a0 + a1x , (65)

and an m-th order polynomial (M = m+ 1),

y = a0 + a1x+ a2x
2 + · · ·+ amxm =

m∑

α=0

aαx
m , (66)

where the parameters to be adjusted are the aα. (Note that we are not stating here that y has to

be a linear function of x, only of the fit parameters aα.)

An example where the fitting function depends non-linearly on the parameters is

y = a0x
a1 + a2 . (67)

Linear models are fairly simply because, as we shall see, the parameters are determined by linear

equations, which, in general, have a unique solution, and this can be found by straightforward

methods. However, for fitting functions which are non-linear functions of the parameters, the

resulting equations are non-linear which may have many solutions or none at all, and so are much

less straightforward to solve. We shall discuss fitting to both linear and non-linear models in these

notes.

Sometimes a non-linear model can be transformed into a linear model by a change of variables.

For example, if we want to fit to

y = a0x
a1 , (68)

which has a non-linear dependence on a1, taking logs gives

ln y = ln a0 + a1 lnx , (69)

3 Strictly speaking, this result is only if the fitting model is linear in the parameters, but is usually taken to be a
reasonable approximation for non-linear models as well.
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which is a linear function of the parameters a′0 = ln a0 and a1. Fitting a straight line to a log-log

plot is a very common procedure in science and engineering. However, it should be noted that

transforming the data does not exactly take Gaussian errors into Gaussian errors, though the

difference will be small if the errors are “sufficiently small”. For the above log transformation this

means σi/yi ≪ 1, i.e. the relative error is much less than unity.

A. Fitting to a straight line

To see how least squares fitting works, consider the simplest case of a straight line fit, Eq. (65),

for which we have to minimize

χ2(a0, a1) =
N∑

i=1

(
yi − a0 − a1xi

σi

)2

, (70)

with respect to a0 and a1. Differentiating χ2 with respect to these parameters and setting the

results to zero gives

a0

N∑

i=1

1

σ2
i

+ a1

N∑

i=1

xi
σ2
i

=
N∑

i=1

yi
σ2
i

, (71a)

a0

N∑

i=1

xi
σ2
i

+ a1

N∑

i=1

x2i
σ2
i

=

N∑

i=1

xiyi
σ2
i

. (71b)

We write this as

U00 a0 + U01 a1 = v0, (72a)

U10 a0 + U11 a1 = v1, (72b)

where

Uαβ =
N∑

i=1

xα+β
i

σ2
i

, and (73)

vα =
N∑

i=1

yi x
α
i

σ2
i

. (74)

The matrix notation, while an overkill here, will be convenient later when we do a general polyno-

mial fit. Note that U10 = U01. (More generally, later on, U will be a symmetric matrix). Equations

(72) are two linear equations in two unknowns. These can be solved by eliminating one variable,

which immediately gives an equation for the second one. The solution can also be determined from

aα =

m∑

β=0

(
U−1

)
αβ

vβ , (75)
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(where we have temporarily generalized to a polynomial of order m). For the straight-line fit, the

inverse of the 2× 2 matrix U is given, according to standard rules, by

U−1 =
1

∆


 U11 −U01

−U01 U00


 (76)

where

∆ = U00U11 − U2
01, (77)

and we have noted that U is symmetric so U01 = U10. The solution for a0 and a1 is therefore given

by

a0 =
U11 v0 − U01 v1

∆
, (78a)

a1 =
−U01 v0 + U00 v1

∆
. (78b)

We see that it is straightforward to determine the slope, a1, and the intercept, a0, of the fit from

Eqs. (73), (74), (77) and (78) using the N data points (xi, yi), and their error bars σi.

B. Fitting to a polynomial

Frequently we need to fit to a higher order polynomial than a straight line, in which case we

minimize

χ2(a0, a1, · · · , am) =
N∑

i=1

(
yi −

∑m
α=0 aαx

α
i

σi

)2

(79)

with respect to the (m + 1) parameters aα. Setting to zero the derivatives of χ2 with respect to

the aα gives

m∑

β=0

Uαβ aβ = vα, (80)

where Uαβ and vα have been defined in Eqs. (73) and (74). Eq. (80) represents m + 1 linear

equations, one for each value of α. Their solution is given formally by Eq. (75), which is expressed

in terms of the inverse matrix U−1.

In addition to the best fit values of the parameters we also need to determine the error bars in

those values. Interestingly, this information is also contained in the matrix U−1.
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To derive the error bars in the fit parameters we start by noting that, if the yi change by an

amount δyi, then aα changes by an amount

δaα =
N∑

i=1

∂aα
∂yi

δyi . (81)

Averaging over fluctuations in the yi we get the variance of the value of aα to be

σ2
α ≡ 〈δa2α〉 =

N∑

i=1

σ2
i

(
∂aα
∂yi

)2

, (82)

where we used that the data points yi are statistically independent. Writing Eq. (75) explicitly in

terms of the data values,

aα =
∑

β

(
U−1

)
αβ

N∑

i=1

yi x
β
i

σ2
i

, (83)

and noting that U is independent of the yi, we get

∂aα
∂yi

=
∑

β

(
U−1

)
αβ

xβi
σ2
i

. (84)

Substituting into Eq. (82) gives

σ2
α =

∑

β,γ

(
U−1

)
αβ

(
U−1

)
αγ

[
N∑

i=1

xβ+γ
i

σ2
i

]
. (85)

The term in rectangular brackets is just Uβγ and so the last equation reduces to

σ2
α =

(
U−1

)
αα

, (86)

where we remind the reader that the elements of the matrix U are given by Eq. (73). We emphasize

that the uncertainty in aα is σα, not the square of this.

We also need a parameter to describe the quality of the fit. A useful quantity is the probability

that, given the fit, the data could have occurred with a χ2 greater than or equal to the value found.

This is generally denoted by Q and is given by Eq. (C9) assuming the data have Gaussian noise.

Note that the effects of non-Gaussian statistics is to increase the probability of outliers, so fits

with a fairly small value of Q, say around 0.01, may be considered acceptable. However, fits with

a very small value of Q should not be trusted and the values of the fit parameters are probably

meaningless in these cases.
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FIG. 2: An example of a straight-line fit to a set of data with error bars.

For the case of a straight line fit, the inverse of U is given explicitly in Eq. (76). Using this

information, and the values of (xi, yi, σi) for the data in Fig. 2, I find that the fit parameters

(assuming a straight line fit) are

a0 = 0.84± 0.32, (87)

a1 = 2.05± 0.11, (88)

in which the error bars on the fit parameters on a0 and a1, which are denoted by σ0 and σ1, are

determined from Eq. (86). I had generated the data by starting with y = 1+ 2x and adding some

noise with zero mean. Hence the fit should be consistent with y = 1 + 2x within the error bars,

and it is. The value of χ2 is 7.44 so χ2/NDOF = 7.44/9 = 0.866 and the quality of fit parameter,

given by Eq. (C9), is Q = 0.592 which is good.

We call U−1 the “covariance matrix”. Its off-diagonal elements are also useful since they

contain information about correlations between the fitted parameters. More precisely, one can

show, following the lines of the above derivation of σ2
α, that the correlation of fit parameters α and

β, known mathematically as their “covariance”, is given by the appropriate off-diagonal element
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of the covariance matrix,

Cov(α, β) ≡ 〈δaα δaβ〉 =
(
U−1

)
αβ

. (89)

The correlation coefficient, rαβ , which is a dimensionless measure of the correlation between δaα

and δaβ lying between −1 and 1, is given by

rαβ =
Cov(α, β)

σασβ
. (90)

A good fitting program should output the correlation coefficients as well as the fit parameters,

their error bars, the value of χ2/NDOF, and the goodness of fit parameter Q.

For a linear model, χ2 is a quadratic function of the fit parameters and so the elements of

the “curvature matrix”4, (1/2) ∂2χ2/∂aα∂aβ are constants, independent of the values of the fit

parameters. In fact, we see from Eqs. (73) and (79) that

1

2

∂2χ2

∂aα∂aβ
= Uαβ , (91)

so the curvature matrix is equal to U , given by Eq. (73) for a polynomial fit.

If we fit to a general linear model, writing

f(x) =
M∑

α=1

aαXα(x), (92)

where X1(x), X2(x), · · · , XM (x) a fixed functions of x called basis functions, the curvature matrix

is given by

Uαβ =
N∑

i=1

Xα(xi)Xβ(xi)

σ2
i

. (93)

Similarly, the quantities vα in Eq. (74) become

vα =
N∑

i=1

yiXα(xi)

σ2
i

, (94)

for a general set of basis functions.

C. Fitting to a non-linear model

As for linear models, one minimizes χ2 in Eq. (64). The difference is that the resulting equations

are non-linear so there might be many solutions or non at all. Techniques for solving the coupled

4 It is conventional to include the factor of 1/2.
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non-linear equations invariably require specifying an initial value for the variables aα. The most

common method for fitting to non-linear models is the Levenberg-Marquardt (LM) method, see

e.g. Numerical Recipes [2]. Implementing the Numerical Recipes code for LM is a little complicated

because it requires the user to provide a routine for the derivatives of χ2 with respect to the fit

parameters as well as for χ2 itself, and to check for convergence. Alternatively, one can use the

fitting routines in the scipy package of python or use gnuplot. (For the latter, see the comment in

Appendix D about getting the error bars in the parameters correct. This applies when fitting to

linear as well as non-linear models.)

One difference from fitting to a linear model is that the curvature matrix, defined by the LHS

of Eq. (91) is not constant but is a function of the fit parameters. Nonetheless, the covariance

matrix, which is the inverse of the curvature matrix at the minimum of χ2, still gives information

about error bars on the fit parameters. This is discussed more in the next subsection, in which we

point out, however, that,

in general, error bars for non-linear models should be determined by investigating the

global behavior of χ2 as each of the parameters is varied in turn, rather than getting

them from the local curvature at the minimum.

As a reminder:

• The curvature matrix is defined in general by the LHS of Eq. (91), which, for a linear model

is equivalent to Eq. (93) (Eq. (73) for a polynomial fit.)

• The covariance matrix is the inverse of the curvature matrix at the minimum of χ2 (the

last remark being only needed for a non-linear model). Its diagonal elements give error bars

on the fit parameters according to Eq. (86) (but see the indented caveat in the previous

paragraph for non-linear models) and its off-diagonal elements give correlations between fit

parameters according to Eqs. (89) and (90).

D. Confidence limits

In the last two subsections we showed that the diagonal elements of the covariance matrix give

an error bar on the fit parameters. In this section we discuss more fully what this error bar means

and introduce the notion of “confidence limits”.

We assume that the data is described by a model with a particular set of parameters atrueα

which, unfortunately, we don’t know. If we were, somehow, to have many data sets each one would
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give a different set of fit parameters a
(i)
α , i = 0, 1, 2, · · · , clustered about the true set atrueα , because

of noise in the data. The scatter in these parameters is a measure of the uncertainty (error bar)

in determining these parameters from the one data set available to us, which is what we want to

know.

We denote here our one data set by y
(0)
i . This gives one set of fit parameters which we call

here a
(0)
α . Suppose, however, we were to generate many simulated data sets assuming that a

(0)
α is

the true set of parameters. Fitting each simulated dataset would give different values for the aα,

clustered now about the a
(0)
α . We now come to an important, but rarely discussed, point:

We assume that the scatter of the fit parameters of these simulated data sets about

a
(0)
α , which, as we will see, we can calculate from the single set of data available to us,

is very similar to the scatter of the fit parameters of real data sets a
(i)
α about atrueα ,

which is what we really want to know (since it is our estimate of the error bar on aα)

but can’t calculate directly.

According to Numerical Recipes [2] there is a theorem which states that if we take simulated

data sets assuming the actual parameters are the a
(0)
α and the noise is Gaussian, and for each data

set compute the fit parameters a
S(i)
α , i = 1, 2, · · · , then the probability distribution of aS is given

by the multi-variable Gaussian distribution

P (~aS) ∝ exp


−1

2

∑

α,β

δaSα Uαβ δa
S
β


 , (95)

where δaSα ≡ a
S(i)
α − a

(0)
α and U is the curvature matrix defined in terms of the second derivative of

χ2 at the minimum according to Eq. (91). A proof of this result is given in Appendix E. It applies

for a linear model, and also for a non-linear model if the uncertainties in the parameters do not

extend outside a region where an effective linear model could be used. (This does not preclude

using a non-linear routine to find the best parameters.)

From Eq. (91) the change in χ2 as the parameters are varied away from the minimum is given

by

∆χ2 ≡ χ2({aS(i)α })− χ2({a(0)α }) =
∑

α,β

δaSα Uαβ δa
S
β , (96)

in which the χ2 are all evaluated from the single (actual) data set y
(0)
i . Equation (95) can therefore

be written as

P (~aS) ∝ exp

(
−1

2
∆χ2

)
. (97)
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Hence the probability of a particular deviation, δaSα, of the fit parameters in a simulated data

set away from the parameters in the actual data set, depends on how much this change increases χ2

(evaluated from the actual data set) away from the minimum. In general a “confidence limit” is the

range of fit parameter values such that ∆χ2 is less than some specified value. The simplest case,

and the only one we discuss here, is the variation of one variable at a time, though multi-variate

confidence limits can also be defined, see Numerical Recipes [2].

We therefore consider the change in χ2 when one variable, aS1 say, is held at a specified value,

and all the others (β = 2, 3, · · · ,M) are varied in order to minimize χ2. Minimizing ∆χ2 in Eq. (96)

with respect to aSβ gives

M∑

γ=1

Uβγ δa
S
γ = 0, (β = 2, 3, · · · ,M) . (98)

The corresponding sum for β = 1, namely
∑M

γ=1 U1γ δa
S
γ , is not zero because δa1 is fixed. It will

be some number, c say. Hence we can write

M∑

γ=1

Uαγ δa
S
γ = cα, (α = 1, 2, · · · ,M) , (99)

where c1 = c and cβ = 0 (β 6= 1). The solution is

δaSα =
M∑

β=1

(
U−1

)
αβ

cβ . (100)

For α = 1 this gives

c = δaS1 /
(
U−1

)
11

. (101)

Substituting Eq. (100) into Eq. (96), and using Eq. (101) we find that ∆χ2 is related to
(
δaS1

)2
by

∆χ2 =
(δaS1 )

2

(U−1)11
. (102)

(Curiously, the coefficient of (δa1)
2 is one over the 11 element of the inverse of U , rather than U11

which is how it appears in Eq. (96) in which the β 6= 1 parameters are free rather than adjusted

to minimize χ2.)

From Eq. (97) we finally get

P (aS1 ) ∝ exp

(
−1

2

(δaS1 )
2

σ2
1

)
, (103)

where

σ2
1 =

(
U−1

)
11

. (104)
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According to the assumption made earlier in this section, we take Eq. (103) to also apply to

the probability for δa1 ≡ atrue1 − a
(0)
1 , where we remind the reader that a

(0)
1 is the fit parameter

obtained from the actual data. Hence the probability that the true value is equal to atrue1 is given

by

P (atrue1 ) ∝ exp

(
−1

2

(δa1)
2

σ2
1

)
. (105)

This gives 〈(δa1)2〉 = σ2
1 =

(
U−1

)
11
, in agreement with what we found earlier in Eq. (86). We

emphasize that Eq. (105) assumes Gaussian noise on the data points, and either the model is linear

or, if non-linear, that the range of uncertainty in the parameters is small enough that a description

in terms of an effective linear model is satisfactory.

However we have not just recovered our earlier result, Eq. (86), by more complicated means

since we have gained additional information. From the properties of a Gaussian distribution we

now know that, from Eq. (105), the probability that aα lies within one standard deviation σα of

the value which minimizes χ2 is 68%, the probability of its being within two standard deviations

is 95.5%, and so on. Furthermore, from Eq. (102), which applies to δa1 as well as δaS1 according

to our assumption, we see that

if a single fit parameter is one standard deviation away from its value at the minimum

of χ2 (the other fit parameters being varied to minimize χ2), then ∆χ2 = 1.

Unfortunately this last sentence, and Eqs. (95) and (105) which are used to derive it, are not

valid for a non-linear model if the uncertainties of the parameters extends outside the range where

an effective linear model can be used. Nonetheless, we argue that it is still better to use the range

where δχ2 ≤ 1 as the confidence range for each parameter rather than the error bar determined

from the curvature of χ2 at the minimum.

This is illustrated in Fig. 3. The left hand figure is for a linear model, for which the curve of

∆χ2 against δa1 is a parabola, and the right hand figure is for a non-linear model, for which it is

not a parabola though it has a quadratic variation about the minimum shown by the dashed curve.

For the linear case, the values of δa1 where ∆χ2 = 1 are the same as the values ±σ1, where σ1 is

the standard error bar obtained from the local curvature in the vicinity of the minimum. However,

for the non-linear case, the values of δa1 where ∆χ2 = 1 are different from ±σ1, and indeed the

values on the positive and negative sides, σ+
1 and σ−

1 , are not equal. For the data in the figure,

it is clear that the value of a1 is more tightly constrained on the positive side than the negative
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FIG. 3: Left: The change in χ2 as a fit parameter a1 is varied away from the value that minimizes χ2 for

a linear model. The shape is a parabola for which ∆χ2 = 1 when δa = ±σ1, where σ1 is the error bar.

Right: The solid curve is the change in χ2 for a non-linear model. The curve is no longer a parabola and

is even non-symmetric. The dashed curve is a parabola which fits the solid curve at the minimum. The

fitting program only has information about the local behavior at the minimum and so gives an error range

±σ1 where the value of the parabola is 1. However, the parameter a1 is clearly more tightly constrained on

the plus side than on the minus side, and a better way to determine the error range is to look globally and

locate the values of δa1 where ∆χ2 = 1. This gives an error bar σ+

1 on the plus side, and a different error

bar, σ−

1 , on the minus side, both of which are different from σ1.

side, and so it is better to give the error bars as +σ+
1 and −σ−

1 , obtained from the range where

∆χ2 ≤ 1, rather the symmetric range ±σ1.

Based on this example, we conclude that, even if the noise on the data points is not Gaussian,

and/or the model is non-linear and the range of parameter uncertainty extends outside the range

where an effective linear model is satisfactory, it is still useful to define a “confidence interval” for

each parameter as the region where ∆χ2 is less than a specified value. However, Eq. (105) is no

longer valid so one can not convert the value of ∆χ2 to a probability that the true value lies within

this range.

If one wants to get a confidence interval with a specified probability in the case where the model

is non-linear and the range of parameter uncertainty extends outside the range where an effective

linear model is adequate (but still assuming that the noise is Gaussian to a good enough approxi-

mation) one could generate many additional data sets, assuming the the initial fitted parameters
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are the true ones, but with noise on the data. In other words, the yi are generated with the prob-

ability distribution given in the curly brackets in Eq. (E4). One then fits each data set and looks

at the distribution of results for the fitted parameters. The confidence interval for a particular

fitted parameter could then be the range which includes 68% of the datasets (i.e. 16% missing on

either side of the minimum). Unfortunately, this does not seem to be a standard procedure in the

statistical physics community.

Appendix A: Central Limit Theorem

In this appendix we give a proof of the central limit theorem.

We assume a distribution that falls off sufficiently fast at ±∞ that the mean and variance are

finite. This excludes, for example, the Lorentzian distribution:

PLor =
1

π

1

1 + x2
. (A1)

A common distribution which does have a finite mean and variance is the Gaussian distribution,

PGauss =
1√
2π σ

exp

[
−(x− µ)2

2σ2

]
. (A2)

Using standard results for Gaussian integrals you should be able to show that the distribution is

normalized and that the mean and standard deviation are µ and σ respectively.

Consider a distribution, not necessarily Gaussian, with a finite mean and distribution. We pick

N random numbers xi from such a distribution and form the sum

X =
N∑

i=1

xi.

The determination of the distribution of X, which we call PN (X), will involve the Fourier

transform of P (x), called the “characteristic function” in the context of probability theory. This

is defined by

Q(k) =

∫ ∞

−∞

P (x)eikx dx .

Expanding out the exponential we can write Q(k) in terms of the moments of P (x)

Q(k) = 1 + ik〈x〉+ (ik)2

2!
〈x2〉+ (ik)3

3!
〈x3〉+ · · · .

It will be convenient in what follows to write Q(k) as an exponential, i.e.

Q(k) = exp

[
ln

(
1 + ik〈x〉+ (ik)2

2!
〈x2〉+ (ik)3

3!
〈x3〉+ · · ·

)]

= exp

[
ikµ− k2σ2

2!
+

c3(ik)
3

3!
+

c4(ik)
4

4!
+ · · ·

]
, (A3)
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where c3 involves third and lower moments, c4 involves fourth and lower moments, and so on. In

general, the cn are cumulant averages.

For the important case of a Gaussian, the Fourier transform is obtained by “completing the

square”. The result is that the Fourier transform of a Gaussian is also a Gaussian, namely,

QGauss(k) = exp

[
ikµ− k2σ2

2

]
, (A4)

showing that the higher order cumulants, c3, c4, etc. in Eq. (A3) all vanish for a Gaussian.

The distribution PN (x) can be expressed as

PN (x) =

∫ ∞

−∞

P (x1)dx1

∫ ∞

−∞

P (x2)dx2 · · ·
∫ ∞

−∞

P (xN )dxN δ(X −
N∑

i=1

xi) . (A5)

We evaluate this by using the integral representation of the delta function

δ(x) =
1

2π

∫ ∞

−∞

eikx dk , (A6)

so

PN (X) =

∫ ∞

−∞

dk

2π

∫ ∞

−∞

P (x1)dx1

∫ ∞

−∞

P (x2)dx2 · · ·
∫ ∞

−∞

P (xN )dxN exp[ik(x1 + x2 + · · ·xN −X)]

(A7)

=

∫ ∞

−∞

dk

2π
Q(k)Ne−ikX , (A8)

showing that the Fourier transform of PN (x), which we call QN (k), is given by

QN (k) = Q(k)N . (A9)

Consequently

QN (k) = exp

[
ikNµ− Nk2σ2

2
+

Nc3(ik)
3

4!
+

Nc4(ik)
4

4!
+ · · ·

]
. (A10)

Comparing with Eq. (A3) we see that

the mean of the distribution of the sum of N variables (the coefficient of −ik in the

exponential) is N times the mean of the distribution of one variable, and the variance

of the distribution of the sum of N variables (the coefficient of −k2/2!) is N times the

variance of the distribution of one variable.

These are general statements applicable for any N and have already been derived in Sec. IIA.
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However, if N is large we can now go further. The distribution PN (X) is the inverse transform

of QN (k), see Eq. (A8), so

PN (X) =
1

2π

∫ ∞

−∞

exp

[
−ikX ′ − Nk2σ2

2!
+N

c3(ik)
3

3!
+

Nc4(ik)
4

4!
+ · · ·

]
dk , (A11)

where

X ′ = X −Nµ . (A12)

Looking at the−Nk2/2 term in the exponential in Eq. (A11), we see that the integrand is significant

for k < k⋆, where Nσ2(k⋆)2 = 1, and negligibly small for k ≫ k⋆. However, for 0 < k < k⋆ the

higher order terms in Eq. (A11), (i.e. those of order k3, k4 etc.) are very small since N(k⋆)3 ∼
N−1/2, N(k⋆)4 ∼ N−1 and so on. Hence the terms of higher order than k2 in Eq. (A11), do not

contribute for large N and so

lim
N→∞

PN (X) =
1

2π

∫ ∞

−∞

exp

[
−ikX ′ − Nk2σ2

2

]
dk . (A13)

In other words, for large N the distribution is the Fourier transform of a Gaussian, which, as we

know, is also a Gaussian. Completing the square in Eq. (A13) gives

lim
N→∞

PN (X) =
1

2π

∫ ∞

−∞

exp

[
−Nσ2

2

(
k − iX ′

Nσ2

)2
]
dk exp

[
− (X ′)2

2Nσ2

]

=
1√

2πN σ
exp

[
−(X −Nµ)2

2Nσ2

]
, (A14)

where, in the last line, we used Eq. (A12). This is a Gaussian with mean Nµ and variance Nσ2.

Eq. (A14) is the central limit theorem in statistics. It tells us that,

for N → ∞, the distribution of the sum of N variables is a Gaussian of mean N times

the mean, µ, of the distribution of one variable, and variance N times the variance of

the distribution of one variable, σ2, independent of the form of the distribution of one

variable, P (x), provided only that µ and σ are finite.

The central limit theorem is of such generality that it is extremely important. It is the reason

why the Gaussian distribution has such a preeminent place in the theory of statistics.

Note that if the distribution of the individual xi is Gaussian, then the distribution of the sum

of N variables is always Gaussian, even for N small. This follows from Eq. (A9) and the fact that

the Fourier transform of a Gaussian is a Gaussian.
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FIG. 4: Figure showing the approach to the central limit theorem for the distribution in Eq. (A15), which

has mean, µ, equal to 0, and standard deviation, σ, equal to 1. The horizontal axis is the sum of N random

variables divided by
√
N which, for all N , has zero mean and standard deviation unity. For large N the

distribution approaches a Gaussian. However, convergence is non-uniform, and is extremely slow in the

tails.

In practice, distributions that we meet in nature, have a much broader tail than that of the

Gaussian distribution which falls off very fast at large |x−µ|/σ. As a result, even if the distribution

of the sum approximates well a Gaussian in the central region for only modest values of N , it

might take a much larger value of N to beat down the weight in the tail to the value of the

Gaussian. Hence, even for moderate values of N , the probability of a deviation greater than σ can

be significantly larger than that of the Gaussian distribution which is 32%. This caution will be

important in Sec. III when we discuss the quality of fits.

We will illustrate the slow convergence of the distribution of the sum to a Gaussian in Fig. (4), in

which the distribution of the individual variables xi is

P (x) =
3

2

1

(1 + |x|)4 . (A15)



32

This has mean 0 and standard deviation 1, but moments higher than the second do not exist

because the integrals diverge. For large N the distribution approaches a Gaussian, as expected,

but convergence is very slow in the tails.

Appendix B: The number of degrees of freedom

Consider, for simplicity, a straight line fit, so we have to determine the values of a0 and a1 which

minimize Eq. (70). The N terms in Eq. (70) are not statistically independent at the minimum

because the values of a0 and a1, given by Eq. (71), depend on the data points (xi, yi, σi).

Consider the “residuals” defined by

ǫi =
yi − a0 − a1xi

σ
. (B1)

If the model were exact and we use the exact values of the parameters a0 and a1 the ǫi would be

independent and each have a Gaussian distribution with zero mean and standard deviation unity.

However, choosing the best-fit values of a0 and a1 from the data according to Eq. (71) implies

that

N∑

i=1

1

σi
ǫi = 0 , (B2a)

N∑

i=1

xi
σi

ǫi = 0 , (B2b)

which are are two linear constraints on the ǫi. This means that we only need to specify N − 2 of

them and we know them all. In the N dimensional space of the ǫi we have eliminated two directions,

so there can be no Gaussian fluctuations along them. However the other N − 2 dimensions are

unchanged, and will have the same Gaussian fluctuations as before. Thus χ2 has the distribution

of a sum of squares of N −2 Gaussian random variables. This makes sense since, if there were only

two points, the fit would go perfectly through them, so χ2 = 0 in this case.

Clearly this argument can be generalized to any fitting function which depends linearly on M

fitting parameters, with the result that χ2 has the distribution of a sum of squares of NDOF =

N −M Gaussian random variables, in which the quantity NDOF is called the “number of degrees

of freedom”.

Even if the fitting function depends non-linearly on the parameters, this last result is often

taken as a reasonable approximation.
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Appendix C: The χ
2 distribution and the goodness of fit parameter Q

The χ2 distribution for m degrees of freedom is the distribution of the sum of m independent

random variables with a Gaussian distribution with zero mean and standard deviation unity. To

determine this we write

P (x1, x2, · · · , xm) dx1dx2 · · · dxm =
1

(2π)m/2
e−x2

1
/2 e−x2

2
/2 · · · e−x2

m/2 dx1dx2 · · · dxm , (C1)

convert to polar coordinates, and integrate over directions, which gives the distribution of the

radial variable to be

P̃ (r) dr =
Sm

(2π)m/2
rm−1 e−r2/2 dr , (C2)

where Sm is the surface area of a unit m-dimensional sphere. To determine Sm we integrate

Eq. (C2) over r, noting that P̃ (r) is normalized, which gives

Sm =
2πm/2

Γ(m/2)
, (C3)

where Γ(x) is the Euler gamma function defined by

Γ(x) =

∫ ∞

0
tx−1 e−t dt . (C4)

From Eqs. (C2) and (C3) we have

P̃ (r) =
1

2m/2−1Γ(m/2)
rm−1e−r2/2 . (C5)

This is the distribution of r but we want the distribution of χ2 ≡ ∑
i x

2
i = r2. To avoid confusion

of notation we write X for χ2, and define the χ2 distribution for m variables as P (m)(X). We have

P (m)(X) dX = P̃ (r) dr so the χ2 distribution for m degrees of freedom is

P (m)(X) =
P̃ (r)

dX/dr

=
1

2m/2Γ(m/2)
X(m/2)−1 e−X/2 (X > 0) . (C6)

The χ2 distribution is zero for X < 0. Using Eq. (C4) and the property of the gamma function

that Γ(n+ 1) = nΓ(n) one can show that
∫ ∞

0
P (m)(X) dX = 1 , (C7a)

〈X〉 ≡
∫ ∞

0
X P (m)(X) dX = m, (C7b)

〈X2〉 ≡
∫ ∞

0
X2 P (m)(X) dX = m2 + 2m, so (C7c)

〈X2〉 − 〈X〉2 = 2m. (C7d)
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From Eqs. (C7b) and (C7d) we see that typically χ2 lies in the range m−
√
2m to m+

√
2m. For

large m the distribution approaches a Gaussian according to the central limit theory discussed in

Appendix A. Typically one focuses on the value of χ2 per degree freedom since this should be

around unity independent of m.

The goodness of fit parameter is the probability that the specified value of χ2, or greater, could

occur by random chance. From Eq. (C6) it is given by

Q =
1

2m/2Γ(m/2)

∫ ∞

χ2

X(m/2)−1 e−X/2 dX , (C8)

=
1

Γ(m/2)

∫ ∞

χ2/2
y(m/2)−1 e−y dy , (C9)

which is known as an incomplete gamma function. Code to generate the incomplete gamma function

is given in Numerical Recipes [2]. There is also a built-in function to generate the goodness of fit

parameter in the scipy package of python and in the graphics program gnuplot. Note that Q = 1

for χ2 = 0 and Q → 0 for χ2 → ∞. Remember that m is the number of degrees of freedom, written

as NDOF elsewhere in these notes.

Appendix D: Asymptotic standard error

Sometimes one does not have error bars on the data. Nonetheless, one can still use χ2 fitting to

get an estimate of those errors (assuming that they are all equal) and thereby also get an error bar

on the fit parameters. The latter is called the “asymptotic standard error”. Assuming the same

error bar σass for all points, we determine σass from the requirement that χ2 per degree of freedom

is precisely one, i.e. the mean value according to Eq. (C7b). This gives

1 =
χ2

NDOF
=

1

NDOF

N∑

i=1

(
yi − f(xi)

σass

)2

, (D1)

or, equivalently,

σ2
ass =

1

NDOF

N∑

i=1

(yi − f(xi))
2 . (D2)

The error bars on the fit parameters are then obtained from Eq. (86), with the elements of U given

by Eq. (73) in which σi is replaced by σass. Equivalently, one can set the σi to unity in determining

U from Eq. (73), and estimate the error from

σ2
α = (U)−1

αα σ2
ass , (asymptotic standard error). (D3)
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A simple example of the use of the asymptotic standard error in a situation where we don’t

know the error on the data points, is fitting to a constant, i.e. determining the average of a set of

data, which we discussed in detail in Sec. II. In this case we have

U00 = N, v0 =
N∑

i=1

yi, (D4)

so the only fit parameter is

a0 =
v0
U00

=
1

N

N∑

i=1

yi = y, (D5)

which gives, naturally enough, the average of the data points, y. The number of degrees of freedom

is N − 1, since there is one fit parameter, so

σ2
ass =

1

N − 1

N∑

i=1

(yi − y)2 , (D6)

and hence the square of the error on a0 is given, from Eq. (D3), by

σ2
0 =

1

U00
σ2
ass =

1

N(N − 1)

N∑

i=1

(yi − y)2 , (D7)

which is precisely the expression for the error in the mean of a set of data given in Eq. (15).

As an aside, I mention that a popular plotting program, gnuplot, which also does fits, presents

error bars on the fit parameters in a confusing way. Even if there are error bars on the points,

gnuplot presents the “asymptotic standard error” on the fit parameters. Gnuplot calculates the

elements of U correctly from Eq. (73) including the error bars, but then apparently also determines

an “assumed error” from an expression like Eq. (D2) but including the error bars, i.e.

σ2
ass =

1

NDOF

N∑

i=1

(
yi − f(xi)

σi

)2

=
χ2

NDOF
, (gnuplot) . (D8)

Hence gnuplot’s σ2
ass is just the chi-squared per degree of freedom. The error bar (squared) quoted

by gnuplot is (U)−1
αα σ2

ass, as in Eq. (D3). However, this is wrong since the error bars on the data

points have already been included in calculating the elements of U , so the error on the fit parameter

α should be (U)−1
αα. Hence,

to get the correct error bars on fit parameters from gnuplot, you have to divide gnu-

plot’s asymptotic standard errors by the square root of the chi-squared per degree of

freedom (which, fortunately, gnuplot gives correctly).
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Appendix E: Derivation of Eq. (95)

The fitting function to an arbitrary linear model is

f(x) =
M∑

α=1

aαXα(x), (E1)

where the Xα(x) are the M basis functions, and the aα are the fitted parameters. These parameters

are given by the solution of the linear equations

M∑

β=1

Uαβ aβ = vα aα , (E2)

where

Uαβ =
N∑

i=1

Xα(xi)Xβ(xi)

σ2
i

. (E3a)

vα =
N∑

i=1

yiXα(xi)

σ2
i

. (E3b)

We do a fit for one set of y-values, y
(0)
i , and obtain a set of fit parameters a

(0)
α . We then assume

that the a
(0)
α are the correct parameters and generate an ensemble of simulated data sets based on

this assumption, using the error bars on the data and assuming that the noise is Gaussian. We ask

what is the probability that the fit to one of the new data sets has parameters ~a.

This probability distribution is given by

P (~a) =
N∏

i=1





1√
2πσi

∫ ∞

−∞

dyi exp


−

(
yi − ~a(0) · ~X(xi)

)2

2σ2
i








M∏

α=1

δ



∑

β

Uαβaβ − vα


 detU ,

(E4)

where the factor in curly brackets is (an integral over) the probability distribution of the data

points yi, and the delta functions project out those sets of data points which have a particular

set of fitted parameters. The factor of detU is a Jacobian to normalize the distribution. Using

the integral representation of the delta function, and writing explicitly the expression for vα from

Eq. (E3b), one has

P (~a) =
N∏

i=1





1√
2πσi

∫ ∞

−∞

dyi exp


−

(
yi − ~a(0) · ~X(xi)

)2

2σ2
i








× (E5)

M∏

α=1


 1

2π

∫ ∞

−∞

dkα exp


ikα



∑

β

Uαβaβ −
N∑

i=1

yiXα(xi)

σ2
i






 detU . (E6)
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We carry out the y integrals by “completing the square”

P (~a) =
M∏

α=1

(
1

2π

∫ ∞

−∞

dkα

) N∏

i=1





1√
2πσi

∫ ∞

−∞

dyi exp


−

(
yi − ~a(0) · ~X(xi) + i~k · ~X(xi)

)2

2σ2
i








×

(E7)

exp

[
− 1

2σ2
i

((
~k · ~X(i)

)2
+ 2i

(
~k · ~X(xi)

) (
~a(0) · ~X(xi)

))]
× exp


i

∑

α,β

kα Uαβ aβ


 detU .

(E8)

Doing the y-integrals, the factors in curly brackets are equal to unity. Using Eq. (E3a) we then get

P (~a) =
M∏

α=1

(
1

2π

∫ ∞

−∞

dkα

)
exp


−1

2

∑

α,β

kα Uαβ kβ + i
∑

α,β

kα Uαβ δaβ


 detU , (E9)

where

δaβ ≡ aβ − a
(0)
β . (E10)

The k-integrals are done by working in the basis in which U is diagonal. The result is

P (~a) =
(detU)1/2

(2π)m/2
exp


−1

2

∑

α,β

δaαUαβδaβ


 , (E11)

which is Eq. (95), including the normalization constant in front of the exponential. In Eq. (95) we

emphasized that the aα are fits to simulated data sets by adding a superscript S. Here we have

omitted this superscript to avoid cluttering up the notation too much.
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