Efficient algorithms for hard spheres and related systems, Applications

Werner Krauth

Département de physique Ecole normale supérieure Paris, France

DPG Summer School Bad Honnef 13 September 2012 see also lecture's webpage

http://cours-physique.lps.ens.fr/ index.php/Bad_Honnef_Lecture_2012

• A molecular dynamics algorithm for hard disks:

- ... starting point of Molecular dynamics, in 1957 ...
- ... converges towards thermal equilibrium.

Markov-chain Monte Carlo ('Boltzmann')

• A local Markov-chain Monte Carlo algorithm for hard disks:

...starting point of Markov chain Monte Carlo, in 1953
...converges towards thermal equilibrium.

2D melting transition

- generic 2D systems cannot crystallize yet they can turn solid (Alder & Wainwright, 1962) ...
- ...nature of transition long disputed (first order vs. KTHNY (1973-1979))

density $\eta = 0.48$

density $\eta = 0.72$

Phase	positional order	orientational order
liquid	short-ranged	short-ranged
hexatic	short-ranged	algebraic
solid	algebraic	long-ranged

Correlation time in larger simulations

• τ exists, but it is large ($\tau \gg 25\,600\,000\,000$).

- rejection-free
- detailed balance OK ($heta \in [0, 2\pi]$)
- Bernard, Krauth, Wilson PRE (2009)
- see lecture webpage

Faster algorithm: Event-chain

- rejection-free
- detailed balance OK ($\theta \in [0, 2\pi]$)
- Bernard, Krauth, Wilson PRE (2009)

Breaking detailed balance

• ... speeds up event-chain algorithm ...

Generalization for stepped/smooth potentials

- Microcanonical version, breaking detailed balance
- faster than local Monte Carlo
- Python example code (on WK home page)
- infinite # of steps possible (see home page)
- see lecture webpage

Configurations (1/5)

Configurations (2/5)

Configurations (3/5)

Configurations (4/5)

Configurations (5/5)

Correlation times

Phase separation

Phase separation (other color code)

- circular color code
- by D. Fiocco

Equation of state

Synopsis of orientations and densities

- Upper: Orientations.
- Lower: Coarse-grained densities.
- Bernard, Krauth, PRL (2011)

Phase	positional order	orientational order
liquid	short-ranged	short-ranged
hexatic	short-ranged	algebraic
solid	algebraic	long-ranged

Spatial correlations at $\eta = 0.718$ (sample-averaged)

• Bernard, Krauth, PRL (2011)

Correlation times (2/2)

- Exact time of decorrelation can be computed
- This is the issue of "perfect sampling"

OXFORD MASTER SERIES IN STATISTICAL, COMPUTATIONAL, AND THEORETICAL PHYSICS

Statistical Mechanics:

Algorithms and Computations

Werner Krauth

