Quantum Monte Carlo

Roger Melko

DPG - School on Physics

Efficient Algorithms in Computational Physics

10-14 September 2012, Physikzentrum Bad Honnef, Germany

The need for Quantum Monte Carlo

Many-Body Quantum Mechanics:

Schrödinger equation

Time Evolution operator

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle
$$

Thermal Expectation value

T=0 Expectation Value

$$
\begin{aligned}
\hat{U}(t) & =e^{-\frac{i t}{\hbar} \hat{H}} \\
\langle\mathcal{O}\rangle & =\frac{\operatorname{Tr} e^{-\beta \hat{H}} \mathcal{O}}{\operatorname{Tr} e^{-\beta \hat{H}}} \\
\langle\mathcal{O}\rangle & =\langle\Psi| \mathcal{O}|\Psi\rangle
\end{aligned}
$$

Would like to solve the dynamic, thermodynamic, and groundstate properties of a system

Consider the Time Independent Schrödinger Equation

$$
\hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

matrix $M \times M \quad M$ vector

Then for example the thermal expectation value:

$$
\langle\mathcal{O}\rangle=\frac{\sum_{i=1}^{M} e^{-\beta E_{i}}\left\langle\Psi_{i}\right| \mathcal{O}\left|\Psi_{i}\right\rangle}{\sum_{i=1}^{M} e^{-\beta E_{i}}}
$$

ie. we can solve all the model properties if we can solve the eigenvalue problem (i.e. diagonalize the Hamiltonian)

Many efficient eigenvalue libraries exist (LAPACK, ARPACK...)

Difficulty: Hilbert space is exponential

Consider a spin $1 / 2$ system (e.g. electron spin)

$$
S^{z}= \pm \frac{1}{2} \quad \uparrow \downarrow \quad \text { two states }
$$

For an N -spin system, the Hilbert space is 2^{N}
If each vector element is an integer (4 bytes), the memory needed to store it can be calculated:

$$
\begin{array}{lrl}
N=9 & 2048 & \text { bytes } \\
N=40 & \sim 10^{12} & \text { bytes } \\
N=256 & \sim 10^{77} & \text { bytes }
\end{array}
$$

Difficulty: Hilbert space is exponential

Consider a spin $1 / 2$ system (e.g. electron spin)

$$
S^{z}= \pm \frac{1}{2} \quad \uparrow \downarrow \quad \text { two states }
$$

For an N -spin system, the Hilbert space is 2^{N}
If each vector element is an integer (4 bytes), the memory needed to store it can be calculated:

$$
\begin{array}{lrl}
N=9 & 2048 & \text { bytes } \\
N=40 & \sim 10^{12} & \text { bytes } \\
N=256 & \sim 10^{77} & \text { bytes }
\end{array}
$$

Difficulty: Hilbert space is exponential

Consider a spin $1 / 2$ system (e.g. electron spin)

$$
S^{z}= \pm \frac{1}{2} \quad \uparrow \downarrow \quad \text { two states }
$$

For an N -spin system, the Hilbert space is 2^{N}
If each vector element is an integer (4 bytes), the memory needed to store it can be calculated:

$$
\begin{array}{lll}
N=9 & 2048 & \text { bytes } \\
N=40 & \sim 10^{12} & \text { bytes } \\
N=256 & \sim 10^{77} & \text { bytes }
\end{array}
$$

Can we diagonalize "parts" of the Hamiltonian?

For example, assume: $\quad \hat{H}=\hat{T}+\hat{V}$

$$
\begin{array}{ll}
& e^{-\beta \hat{H}} \not \approx e^{-\beta \hat{T}} e^{-\beta \hat{V}} \\
\text { since } \quad[\hat{T}, \hat{V}] \neq 0
\end{array}
$$

no
to see this: compare Taylor expansions of

$$
\mathrm{e}^{\lambda(\hat{A}+\hat{B})} \quad \text { and } \quad \mathrm{e}^{\lambda \hat{A}} \mathrm{e}^{\lambda \hat{B}}
$$

only agree up to order $O\left(\lambda^{2}\right)$

Numerical Methods for Quantum Systems

- Exact diagonalization

$$
\langle\mathcal{O}\rangle=\frac{\sum_{i=1}^{M} e^{-\beta E_{i}}\left\langle\Psi_{i}\right| \mathcal{O}\left|\Psi_{i}\right\rangle}{\sum_{i=1}^{M} e^{-\beta E_{i}}}
$$

obtain full spectrum

$$
N \approx 16-20
$$

- Lanczos diagonalization
iterative: groundstate only $\quad\left|\Psi_{0}\right\rangle \quad N \approx 40$

Density Matrix Renormalization Group (very basic idea)

- Reduce the size of the Hilbert space through some clever decimation procedure
- Keep only the "important" information
- Perform an exact diagonalization using the remaining Hilbert space

Density Matrix Renormalization Group (very basic idea)

- Early success: the Haldane Gap

Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic $S=1$ Heisenberg chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717
David A. Huse
ATET Bell Labs, Murray Hill, New Jersey 07974
(Received 3 February 1993; revised manuscript received 23 April 1993)

We present results of a numerical renormalization-group study of the isotropic $S=1$ Heisenberg chain. The density-matrix renormalization-group techniques used allow us to calculate a variety of properties of the chain with unprecedented accuracy. The ground state energy per site of the infinite chain is found to be $e_{0} \cong-1.401484038971(4)$

The excitation energy of the first excited state, a state with one magnon with momentum $q=\pi$, is the Haldane gap, which we find to be $\Delta \cong 0.41050(2)$.

$$
S=1 \$-8888-080
$$

Density Matrix Renormalization Group (very basic idea)

- The DMRG works, because truncating the eigenvalues of the reduced density matrix is able to preserve the entanglement properties of typical 1D systems

$$
S=-\operatorname{Tr}\left(\rho_{A} \ln \rho_{A}\right)
$$

AKLT

$$
S=\ln (2)
$$

$$
H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

$$
S(x)=\frac{c}{3} \cdot \ln \left[x^{\prime}\right]+\text { const. }
$$

Density Matrix Renormalization Group (very basic idea)

- The DMRG doesn't work in D>1, because it doesn't capture typical entanglement properties...

$$
S_{A}=a L+c \ln (L)+\cdots
$$

$$
\downarrow
$$

Quantum Monte Carlo Suzuki, 1993

Avoids the storage problem by importance sampling
Goal: simulate quantum many-body models, particularly those with strong interactions, D>1

- lattice or continuum
- free of systematic errors or bias
- often on as large sizes as possible:

Can characterize phases (and phase transitions) $\quad \xi \rightarrow \infty$

Condensed matter, materials, atomic systems, quantum information systems, lattice gauge theory, nuclear and particle physics

A "zoo" of QMC methods, depending on which model you want to study

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i} \hat{\nabla}_{i}^{2}+\sum_{i} \hat{V}_{\mathrm{ext}}\left(\vec{r}_{i}\right)+\sum_{i<j} \hat{V}_{\mathrm{int}}\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)
$$

Path Integral Monte Carlo
Ceperly

$$
\left.H=-J \sum(|\mathbf{I}\rangle\rangle\langle=|+\text { H.c. }\right)+V \sum(|\mathbf{I}\rangle\langle\mathbf{I}|+|=\rangle\langle=|)
$$

Diffusion Monte Carlo

$$
\hat{H}=J \sum_{\langle i j\rangle} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} \quad \hat{H}=J \sum_{\langle i j\rangle}\left(b_{i}^{\dagger} b_{j}+b_{i} b_{j}^{\dagger}\right)
$$

Continuous world-line, Stochastic Series Expansion

$$
\hat{H}=-t \sum_{\langle i j\rangle, \sigma}\left(c_{i, \sigma}^{\dagger} c_{j, \sigma}+h . c .\right)+U \sum_{i=1}^{N} n_{i, \uparrow} n_{i, \downarrow}
$$

Auxiliary field Monte Carlo

What unifies these methods as "Quantum" Monte Carlo?

- A D-dimensional quantum model has a $D+1$ dimensional representation on the computer
- The presence of some form of sign problem:

Not all quantum models are amenable to efficient simulation by QMC. Something very fundamental precludes certain (very interesting) models.

Quantum Monte Carlo consists of three ingredients

- A $D+1$ dimensional "representation" on the computer
- A procedure for updating configurations of the representation
- A way of devising measurements

The first thing you need is a choice of basis:

$$
S^{z}= \pm \frac{1}{2}
$$

$$
\rangle=\frac{1}{\sqrt{2}}(| | \downarrow\rangle-\| \|\right\rangle\right)
$$

Example: Path Integral Monte Carlo

D. M. Ceperly, RMP 67, 279 (1995)

Say you want to simulation N particles in the continuum:

$$
\begin{aligned}
& \hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i} \hat{\nabla}_{i}^{2}+\sum_{i} \hat{V}_{\text {ext }}\left(\vec{r}_{i}\right)+\sum_{i<j} \hat{V}_{\text {int }}\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right) \\
& \hat{H}=\hat{T}+\hat{V}
\end{aligned}
$$

Naturally choose a position basis

$$
\begin{aligned}
& |R\rangle=\left|\vec{r}_{1}, \ldots \vec{r}_{N}\right\rangle \\
& \int \mathcal{D} R|R\rangle\langle R|=1
\end{aligned}
$$

Example: Path Integral Monte Carlo

The partition function is:

$$
\begin{aligned}
\mathcal{Z} & =\operatorname{Tr} \mathrm{e}^{-\beta \hat{H}} \\
& =\int d r_{1} \cdots \int d r_{N}\left\langle r_{1}, \ldots r_{N}\right| \mathrm{e}^{-\beta \hat{H}}\left|r_{1}, \ldots, r_{N}\right\rangle \\
& =\int \mathcal{D} R\langle R| \mathrm{e}^{-\beta \hat{H}}|R\rangle
\end{aligned}
$$

Note $[\hat{T}, \hat{V}] \neq 0$
But, the Hamiltonian commutes with itself

$$
e^{-(\beta / 2+\beta / 2) \hat{H}}=e^{-\beta / 2 \hat{H}} e^{-\beta / 2 \hat{H}}
$$

Example: Path Integral Monte Carlo

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} R\langle R| \mathrm{e}^{-\beta \hat{H}}|R\rangle \\
\mathcal{Z} & =\int \mathcal{D} R\langle R| \mathrm{e}^{-\frac{\beta}{M} \hat{H}} \mathrm{e}^{-\frac{\beta}{M} \hat{H}} \mathrm{e}^{-\frac{\beta}{M} \hat{H}} \ldots \mathrm{e}^{-\frac{\beta}{M} \hat{H}}|R\rangle
\end{aligned}
$$

insert $M-1$ resolutions of the identity

$$
\begin{array}{r}
\mathcal{Z}=\int \mathcal{D} R_{0} \mathcal{D} R_{1} \cdots \mathcal{D} R_{M-1}\left\langle R_{0}\right| \mathrm{e}^{-\frac{\beta}{M} \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| \mathrm{e}^{-\frac{\beta}{M} \hat{H}}\left|R_{2}\right\rangle\left\langle R_{2}\right| \mathrm{e}^{-\frac{\beta}{M} \hat{H}}\left|R_{3}\right\rangle \cdots \\
\cdots\left\langle R_{M-1}\right| \mathrm{e}^{-\frac{\beta}{M} \hat{H}}\left|R_{0}\right\rangle
\end{array}
$$

we usually define $\quad \tau=\frac{\beta}{M}$

Example: Path Integral Monte Carlo

notice that

$$
\left\langle R_{\ell-1}\right| \mathrm{e}^{-\tau \hat{H}}\left|R_{\ell}\right\rangle=\left\langle R_{\ell-1}\right| \hat{U}(-i \hbar \tau)\left|R_{\ell}\right\rangle
$$

We can imagine that each Hamiltonian operator evolves the state of the system by a single imaginary time step, and after M such steps, we return to the initial state!
"Discrete Path Integral" picture of Feynmann

- A D-dimensional quantum model has a $D+1$ dimensional representation on the computer

Example: Path Integral Monte Carlo

Consider a 1D system, consisting of $N=2$ particles with $M=10$:

$$
\mathcal{Z}=\int \mathcal{D} R_{0} \cdots \int \mathcal{D} R_{9}\left\langle R_{0}\right| \mathrm{e}^{-\tau \hat{H}}\left|R_{1}\right\rangle \cdots\left\langle R_{9}\right| \mathrm{e}^{-\tau \hat{H}}\left|R_{0}\right\rangle
$$

Example: Path Integral Monte Carlo

Examine one imaginary time "transition amplitude":

$$
\left\langle R_{\ell-1}\right| \mathrm{e}^{-\tau(\hat{T}+\hat{V})}\left|R_{\ell}\right\rangle
$$

One needs a way to solve this matrix element. Use the "primitive approximation"

$$
\mathrm{e}^{-\tau(\hat{T}+\hat{V})}=\mathrm{e}^{-\tau \hat{T}} \mathrm{e}^{-\tau \hat{V}}+O\left(\tau^{2}\right)
$$

This is the "Trotter error"
It gets smaller for increasing M : $\quad \tau=\frac{\beta}{M}$
In practice, higher order terms included: $O\left(\tau^{4}\right)$

Example: Path Integral Monte Carlo

ie. We can approximate the high-temperature transition amplitudes to high order in T (exact in the limit $M \rightarrow \infty$):

$$
\begin{aligned}
& \left\langle R_{\ell-1}\right| \mathrm{e}^{-\tau(\hat{T}+\hat{V})}\left|R_{\ell}\right\rangle \approx \underbrace{\left\langle R_{\ell-1}\right| \mathrm{e}^{-\tau \hat{T}}\left|R^{\prime}\right\rangle}_{\text {Gaussian integral }} \underbrace{}_{\left.\mathrm{e}^{-\tau \hat{V}\left(R_{\ell}\right)}\right)\left(R^{\prime}\left|\mathrm{e}^{-\hat{V}}\right| R_{\ell}\right)} \\
& \mathcal{Z} \sim \frac{1}{N!} \sum_{P} \prod_{m=0}^{M-1} \int \mathcal{D} R_{m} \exp \left[-\frac{\left(R_{m}-R_{m+1}\right)^{2}}{4 \lambda \tau}-\tau \hat{V}\left(R_{m}\right)\right] \\
& \text { Ceperly, RMP 67, 279 (1995) }
\end{aligned} \begin{gathered}
\text { kinetic: } \\
\text { connects } \\
\text { time steps }
\end{gathered}
$$

Quantum Monte Carlo:

- A $D+1$ dimensional "representation" on the computer
- A procedure for updating configurations of the representation

Quantum Monte Carlo:

- A $D+l$ dimensional "representation" on the computer
- A procedure for updating configurations of the representation

Path Integral Monte Carlo: "Worm Updates"

The University of Vermont
http://www.delmaestro.org/adrian

Stochastic Series Expansion QMC

A simple to implement, powerful QMC method for lattice models

$$
\hat{H}=J \sum_{\langle i j\rangle} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} \quad \hat{H}=J \sum_{\langle i j\rangle}\left(b_{i}^{\dagger} b_{j}+b_{i} b_{j}^{\dagger}\right)
$$

- Scales linearly in system size (and inverse temperature)
- Sign problem prevents simulation of fermions, frustrated spins
- Finite and Zero-temperature representations available

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \operatorname{Tr}\left\{\mathcal{O} e^{-\beta H}\right\} \quad\langle\mathcal{O}\rangle=\frac{1}{Z}\langle\Psi| \mathcal{O}|\Psi\rangle
$$

SSE Finite-T representation

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\frac{1}{Z} \operatorname{Tr}\left\{\mathcal{O} e^{-\beta H}\right\} \\
& \langle\mathcal{O}\rangle=\frac{\sum_{x} \mathcal{O}_{x} W(x)}{\sum_{x} W(x)}
\end{aligned}
$$

partition function

$$
Z=\sum_{x} W(x)=\operatorname{Tr}\left\{e^{-\beta H}\right\}
$$

Taylor expand the exponential:

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\sum_{\alpha_{0}}\left\langle\alpha_{0}\right| \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}(-H)^{n}\left|\alpha_{0}\right\rangle
$$

Insert $n-1$ resolutions of the identity
$Z=\sum_{\left\{\alpha_{i}\right\}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}\left\langle\alpha_{0}\right|-H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right|-H\left|\alpha_{2}\right\rangle \cdots\left\langle\alpha_{n-1}\right|-H\left|\alpha_{n}\right\rangle$
$\alpha_{0}=\alpha_{n}$ to keep the trace nonzero
i.e. periodic in "imaginary time" (the propagation direction)

The weight $W(x)$ is derived from this;

- proportional to the product of n matrix elements
- each $\left\langle\alpha_{i}\right|-H\left|\alpha_{i+1}\right\rangle$ is a real number
- must be positive to be interpreted as a probability for use in a Metropolis condition: otherwise get the "sign problem"

The Hamiltonian is broken into elementary lattice operators

$$
H=-\sum_{t} \sum_{a} H_{t, a}
$$

"type" lattice unit (e.g. bond)

$$
Z=\sum_{\left\{\alpha_{i}\right\}} \sum_{n=0}^{\infty} \sum_{S_{n}} \frac{\beta^{n}}{n!} \prod_{i=1}^{n}\left\langle\alpha_{i-1}\right| H_{t_{i}, a_{i}}\left|\alpha_{i}\right\rangle
$$

sequence of operator indices

$$
S_{n}=\left[t_{1}, a_{1}\right],\left[t_{2}, a_{2}\right], \ldots,\left[t_{n}, a_{n}\right]
$$

We sample (using Monte Carlo) the operator sequence, basis state, and expansion power n

A final (practical) step: truncate the length of the operator list

$$
M>n_{\max }
$$

Keeping M fixed but sampling different n : need to introduce M-n null operators $H_{0,0} \equiv \mathbb{I}$

Statistically, the number of different way of picking the placement of the null operators in the expansion list is given by the binomial coefficient

$$
\binom{M}{n}=\frac{M!}{(M-n)!n!}
$$

$$
Z=\sum_{\alpha} \sum_{S_{M}} \frac{(\beta)^{n}(M-n)!}{M!} \prod_{i=1}^{M}\left\langle\alpha_{i-1}\right| H_{t_{i}, a_{i}}\left|\alpha_{i}\right\rangle
$$

SSE Zero-T representation (projector)

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{Z}\langle\Psi| \mathcal{O}|\Psi\rangle \quad Z=\langle\Psi \mid \Psi\rangle \\
\langle\mathcal{O}\rangle & =\frac{\sum_{x} \mathcal{O}_{x} W(x)}{\sum_{x} W(x)}
\end{aligned}
$$

The ground state wavefunction is estimated by a procedure where a large power of the Hamiltonian is applied to a "trial" state $|\alpha\rangle$

First, write in terms of energy eigenstates: $|\alpha\rangle=\sum_{n} c_{n}|n\rangle$

$$
\begin{aligned}
(-H)^{m}|\alpha\rangle & =c_{0}\left|E_{0}\right|^{m}\left[|0\rangle+\frac{c_{1}}{c_{0}}\left(\frac{E_{1}}{E_{0}}\right)^{m}|1\rangle \cdots\right], \\
& \rightarrow c_{0}\left|E_{0}\right|^{m}|0\rangle \text { as } m \rightarrow \infty
\end{aligned}
$$

$Z=\langle 0 \mid 0\rangle \quad$ is then $\quad Z=\langle\alpha|(-H)^{m}(-H)^{m}|\alpha\rangle$
using a Hamiltonian breakup: $H=-\sum_{t} \sum_{a} H_{t, a}$
insert a resolution of the identity between each operator

$$
Z=\sum_{\{\alpha\}} \sum_{S_{m}} \prod_{j=1}^{2 m}\left\langle\alpha_{\ell}\right| H_{t_{j}, a_{j}}\left|\alpha_{r}\right\rangle
$$

essentially identical to the finite-T representation, except:

- a fixed value of m is always used
- the simulation cell is not periodic: $\left|\alpha_{\ell}\right\rangle \neq\left|\alpha_{r}\right\rangle$

SSE QMC: Representations

- Finite-T and zero-T representations available
- Both result in very similar practical implementations
- Both can have very similar updating schemes

Thermal Expectation value

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{\operatorname{Tr} e^{-\beta \hat{H}} \mathcal{O}}{\operatorname{Tr} e^{-\beta \hat{H}}} \\
\langle\mathcal{O}\rangle & =\langle\Psi| \mathcal{O}|\Psi\rangle
\end{aligned}
$$

T=0 Expectation Value

To understand in more detail, we should examine a specific example

SSE QMC: Spin-1/2 Heisenberg Model

$$
H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Let's examine the finite-T representation:

$$
Z=\sum_{\alpha} \sum_{S_{M}} \frac{(\beta)^{n}(M-n)!}{M!} \prod_{i=1}^{M}\left\langle\alpha_{i-1}\right| H_{t_{i}, a_{i}}\left|\alpha_{i}\right\rangle
$$

First: choose a basis $|\alpha\rangle$

$$
\begin{equation*}
S^{z}= \pm \frac{1}{2} \tag{O}
\end{equation*}
$$

Next: specify a specific lattice decomposition: $\quad H=-\sum_{t} \sum_{a} H_{t, a}$

Choose a "bond" decomposition $H=-\sum_{t} \sum_{a} H_{t, a}$

$$
\begin{aligned}
\text { null } & H_{0,0}=\mathbb{I}, \\
\text { diagonal } & H_{1, a}=\frac{1}{4}-S_{i}^{z} S_{j}^{z} \\
\text { off-diagonal } & H_{2, a}=\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) \\
& \sum_{\text {"type" bond label }}
\end{aligned}
$$

- A constant term $1 / 4$ is added to the diagonal operator
- Spin operators are rotated by $\pi / 2$ around the z-axis on one of the sublattices

All bond operators are positive

$$
\begin{aligned}
& \text { 】 } H_{1, a}=\frac{1}{4}-S_{i}^{z} S_{j}^{z} \quad \text { H } H_{2, a}=\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) \\
& n=6 \quad M=13
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=[0,0],[2,0],[0,0],[2,2],[0,0],[1,4],[0,0],[2,0],[0,0],[1,3],[0,0],[2,2],[0,0]
\end{aligned}
$$

resembles a world line picture:

The weight $W(x)$ of a sampled configuration x is proportional to the product of the positive matrix elements.

$$
\begin{aligned}
& \langle\bullet \circ| H_{1, a}|\bullet \circ\rangle=\langle\circ \bullet| H_{1, a}|\circ \bullet\rangle=\frac{1}{2} \\
& \langle\bullet \circ| H_{2, a}|\circ \bullet\rangle=\langle\circ \bullet| H_{2, a}|\bullet \circ\rangle=\frac{1}{2}
\end{aligned}
$$

We now have a representation. From this we design updates:

- Local updates can be used to sample diagonal operators

$$
H_{1, a} \leftrightarrow H_{0,0}
$$

- Non-local updates needed to sample off-diagonal operators

$$
H_{2, a} \leftrightarrow H_{1, a}
$$

SSE "Diagonal" Updates

- Cycle through the operator list
- If a null operator is encountered, attempt to put a diagonal operator on a random bond $H_{0,0} \rightarrow H_{1, a}$
- If a diagonal operator is encountered, attempt to remove it (resulting in a null operator) $H_{1, a} \rightarrow H_{0,0}$

Like in classical Monte Carlo, we calculate the ratio of weights:

$$
\frac{W\left(x^{\prime}\right)}{W(x)}
$$

The transition probability is then obtained from detailed balance:

$$
W(x) P\left(x \rightarrow x^{\prime}\right)=W\left(x^{\prime}\right) P\left(x^{\prime} \rightarrow x\right)
$$

SSE "Diagonal" Updates

SSE "Diagonal" Updates

SSE "Diagonal" Updates

SSE "Diagonal" Updates

SSE "Diagonal" Updates

$$
Z=\sum_{\alpha} \sum_{S_{M}} \frac{(\beta)^{n}(M-n)!}{M!} \prod_{i=1}^{M}\left\langle\alpha_{i-1}\right| H_{t_{i}, a_{i}}\left|\alpha_{i}\right\rangle
$$

Transition probabilities for a Metropolis algorithm

$$
P(n \rightarrow n+1)=\min \left(\frac{1}{2} \frac{N_{b} \beta}{(M-n)}, 1\right)
$$

- a lattice bond must be chosen at random for the insertion
- factor of $1 / 2$ is the matrix element

$$
P(n \rightarrow n-1)=\min \left(\frac{2(M-n+1)}{N_{b} \beta}, 1\right)
$$

SSE "Diagonal" Updates

- Sample the power of the expansion effectively
- Easy to implement, local updates
- Do not result in an ergodic simulation: off-diagonal operators are not sampled

we require a method to change the type of more than one operator at once, if we are to preserve the periodic boundaries

SSE "Operator-Loop" Updates

The fact that all non-trivial matrix elements are $1 / 2$ means that operator types can be changed without a change in weight

Closed "loops" are identified (in a linked list), then flipped with a Swendsen-Wang algorithm

SSE "Operator-Loop" Updates

The fact that all non-trivial matrix elements are $1 / 2$ means that operator types can be changed without a change in weight

Closed "loops" are identified (in a linked list), then flipped with a Swendsen-Wang algorithm

SSE "Operator-Loop" Updates

The fact that all non-trivial matrix elements are $1 / 2$ means that operator types can be changed without a change in weight

Closed "loops" are identified (in a linked list), then flipped with a Swendsen-Wang algorithm

SSE "Operator-Loop" Updates

The fact that all non-trivial matrix elements are $1 / 2$ means that operator types can be changed without a change in weight

Closed "loops" are identified (in a linked list), then flipped with a Swendsen-Wang algorithm

Other SSE updates:

- Spin-flips: required at high temperature

$$
\begin{aligned}
& \text { OOOOOOOOOOOOOO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OOOO••••••••O O }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ○ O- - - - OOOOOO }
\end{aligned}
$$

- Other more sophisticated operator loops possible
- Can be used in conjunction with Parallel Tempering, etc.

Other SSE updates:

- Spin-flips: required at high temperature

- Other more sophisticated operator loops possible
- Can be used in conjunction with Parallel Tempering, etc.

$\underline{\text { SSE T=0 }}$ representation $\quad H=J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

Remarkably, a very different representation can have essentially the same updating procedure

another example: Transverse Field Ising Model

$$
H=-J \sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-h \sum_{i} \sigma_{i}^{x}
$$

A convenient Hamiltonian decomposition: $H=-\sum_{t} \sum_{a} H_{t, a}$

$$
\begin{aligned}
H_{0,0} & =I, \\
H_{-1, a} & =h\left(\sigma_{a}^{+}+\sigma_{b}^{-}\right), \\
H_{0, a} & =h, \\
H_{1, a} & =J\left(\sigma_{i}^{z} \sigma_{j}^{z}+1\right) .
\end{aligned}
$$

The index a can label a bond, or a single lattice site. Note:

$$
\begin{aligned}
& \langle\bullet| H_{-1, a}|\circ\rangle=\langle\circ| H_{-1, a}|\bullet\rangle=h \\
& \langle\bullet| H_{0, a}|\bullet\rangle=\langle\circ| H_{0, a}|\circ\rangle=h \\
& \langle\bullet \bullet| H_{1, a}|\bullet \bullet\rangle=\langle\circ \circ| H_{1, a}|\circ \circ\rangle=2 J
\end{aligned}
$$

another example: Transverse Field Ising Model

Finite-T representation

$$
H=-J \sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-h \sum_{i} \sigma_{i}^{x}
$$

another example: Transverse Field Ising Model

zero-T representation

$$
H=-J \sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-h \sum_{i} \sigma_{i}^{x}
$$

The Sign Problem in SSE

- Any constant term can be added to diagonal operators
- Spin operators are rotated by $\pi / 2$ around the z -axis on one of the sublattices ...

$$
Z=\sum_{\left\{\alpha_{i}\right\}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}\left\langle\alpha_{0}\right|-H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right|-H\left|\alpha_{2}\right\rangle \cdots\left\langle\alpha_{n-1}\right|-H\left|\alpha_{n}\right\rangle
$$

Alternatively, we can keep the matrix element unchanged, if we are confident that off-diagonal operators always occur in even numbers

$$
H=-\sum_{t} \sum_{a} H_{t, a}
$$

$$
H_{2, a}=-\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)
$$

The Sign Problem in SSE

In the finite-T representation, periodic boundary condition in imaginary time enforce this:

The Sign Problem in SSE

In the finite-T representation, periodic boundary condition in imaginary time enforce this:

Measurements in the SSE:

In general - expectation values of operators either:

- Diagonal in the basis $\left\langle S_{i}^{z} S_{j}^{z}\right\rangle \quad S(\mathbf{q})$
- Associated with the Hamiltonian

$$
\left\langle B_{i} B_{j}\right\rangle \quad B_{i}=S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}
$$

example: $\quad Z=\sum_{\alpha_{0}}\left\langle\alpha_{0}\right| \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}(-H)^{n}\left|\alpha_{0}\right\rangle \quad E=-\frac{\partial \ln Z}{\partial \beta}$

$$
E=-\frac{1}{Z} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| \sum_{n=0}^{\infty} \frac{n \beta^{(n-1)}}{n!}(-H)^{n}\left|\alpha_{0}\right\rangle \quad E=-\frac{\langle n\rangle}{\beta}
$$

Quantum Monte Carlo

- A large class of Metropolis based Monte Carlo methods in $\mathrm{D}+1$ dimension
- Extremely powerful, work well in higher D
- Inhibited by the "sign problem" for frustrated spins and fermions
- Algorithms are not static: new models, measurements, and tricks are discovered frequently
- At least one Nobel Prize lurking around...

