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The need for Quantum Monte Carlo

Many-Body Quantum Mechanics:

i~ @

@t
| (t)i = Ĥ| (t)i

Û(t) = e�
it
~ Ĥ

Schrödinger equation

Time Evolution operator

Thermal Expectation value

T=0 Expectation Value

hOi =
Tr e��ĤO
Tr e��Ĥ

hOi = h |O| i

Would like to solve the dynamic, thermodynamic, and 
groundstate properties of a system
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Consider the Time Independent Schrödinger Equation

Ĥ| ni = En| ni

M ⇥M Mmatrix vector

Then for example the thermal expectation value:

hOi =
PM

i=1 e��Eih i|O| iiPM
i=1 e��Ei

ie. we can solve all the model properties if we can solve the 
eigenvalue problem (i.e. diagonalize the Hamiltonian)

Many efficient eigenvalue libraries exist (LAPACK, ARPACK...)
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Difficulty: Hilbert space is exponential

Consider a spin 1/2 system (e.g. electron spin)

Sz = ±1
2

two states

For an N-spin system, the Hilbert space is 2N

If each vector element is an integer (4 bytes), the 
memory needed to store it can be calculated:

N = 9

N = 40

N = 256

⇠ 1012

⇠ 1077

2048     bytes

bytes

bytes
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Can we diagonalize “parts” of the Hamiltonian?

Ĥ = T̂ + V̂For example, assume:

e��Ĥ = e��T̂ e��V̂ noX

[T̂ , V̂ ] 6= 0since

to see this: compare Taylor expansions of

e�(Â+B̂) e�Âe�B̂and

only agree up to order O(�2)
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Numerical Methods for Quantum Systems

• Exact diagonalization

• Lanczos diagonalization

N � 16� 20obtain full spectrum

iterative: groundstate only N � 40

hOi =
PM

i=1 e��Eih i|O| iiPM
i=1 e��Ei

| 0i
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 Density Matrix Renormalization Group
(very basic idea)

•  Reduce the size of the Hilbert space through some 
clever decimation procedure

• Keep only the “important” information

• Perform an exact diagonalization 
using the remaining Hilbert space
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S = 1

 Density Matrix Renormalization Group
(very basic idea)

• Early success: the Haldane Gap
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 Density Matrix Renormalization Group
(very basic idea)

• The DMRG works, because truncating the eigenvalues of the 
reduced density matrix is able to preserve the entanglement 
properties of typical 1D systems

S = �Tr(⇢A ln ⇢A)

S(x) =

c

3

· ln [x0
] + const.

H = J
�

�ij�

Si · Sj

AKLT

S = ln(2)
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• The DMRG doesn’t work in D>1, because it doesn’t capture 
typical entanglement properties...

AB

SA = aL+ c ln(L) + · · ·

 Density Matrix Renormalization Group
(very basic idea)
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Quantum Monte Carlo

Goal: simulate quantum many-body models, 
particularly those with strong interactions, D>1 

• lattice or continuum 
• free of systematic errors or bias
• often on as large sizes as possible:

Condensed matter, materials, atomic systems, quantum 
information systems, lattice gauge theory, nuclear and 
particle physics

Avoids the storage problem by importance sampling

Suzuki, 1993

Can characterize phases (and phase transitions) ⇠ !1
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A “zoo” of QMC methods, depending on which model 
you want to study

Auxiliary field Monte Carlo

Ĥ = � ~2

2m

X

i

r̂2

i +
X

i

V̂
ext

(~ri) +
X

i<j

V̂
int

(|~ri � ~rj |)

Ĥ = J
X

hiji

�
b†i bj + bi b

†
j

�
Ĥ = J

X

hiji

Ŝi · Ŝj

Ĥ = �t
X

hiji,�

�
c†i,�cj,� + h.c.

�
+ U

NX

i=1

ni,"ni,#

Continuous world-line, Stochastic Series Expansion

Path Integral Monte Carlo

Diffusion Monte Carlo Syljuåsen

Assaad, Evertz

Prokof’ev, Sandvik

Ceperly
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What unifies these methods as “Quantum” Monte Carlo?

• A D-dimensional quantum model has a D+1 
dimensional representation on the computer

• The presence of some form of sign problem:

Not all quantum models are amenable to efficient simulation 
by QMC.  Something very fundamental precludes certain 
(very interesting) models.

?
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Quantum Monte Carlo consists of three ingredients

• A D+1 dimensional “representation” on the 
computer

• A procedure for updating configurations of the 
representation

• A way of devising measurements

The first thing you need is a choice of basis:

-( )1p
2

=Sz = ±1
2
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Example: Path Integral Monte Carlo

Say you want to simulation N particles in the continuum:

Ĥ = � ~2

2m

X

i

r̂2

i +
X

i

V̂
ext

(~ri) +
X

i<j

V̂
int

(|~ri � ~rj |)

D. M. Ceperly, RMP 67, 279 (1995)

|Ri = |~r1, . . .~rN i

Naturally choose a position basis

Z
DR |RihR| = 1

Ĥ = T̂ + V̂
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Example: Path Integral Monte Carlo

Z = Tr e��Ĥ

=

Z
dr1 · · ·

Z
drN �r1, . . . rN |e��Ĥ |r1, . . . , rN ⇥

=

Z
DR �R|e��Ĥ |R⇥

The partition function is:

Note [T̂ , V̂ ] 6= 0

But, the Hamiltonian commutes with itself

e�(�/2+�/2)Ĥ = e��/2Ĥe��/2Ĥ
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Example: Path Integral Monte Carlo

Z =
Z
DR hR|e��Ĥ |Ri

Z =
Z
DR hR|e�

�
M Ĥe�

�
M Ĥe�

�
M Ĥ . . . e�

�
M Ĥ |Ri

insert M-1 resolutions of the identity

· · · hRM�1|e�
�
M Ĥ |R0i

Z =
Z

DR0DR1 · · · DRM�1hR0|e�
�
M Ĥ |R1ihR1|e�

�
M Ĥ |R2ihR2|e�

�
M Ĥ |R3i · · ·

we usually define ⌧ =
�

M
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Example: Path Integral Monte Carlo

notice that 

We can imagine that each Hamiltonian 
operator evolves the state of the system by 
a single imaginary time step, and after M 
such steps, we return to the initial state!

“Discrete Path Integral” picture of Feynmann

• A D-dimensional quantum model has a D+1 
dimensional representation on the computer

hR`�1|e�⌧Ĥ |R`i = hR`�1|Û(�i~⌧)|R`i
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Example: Path Integral Monte Carlo

Consider a 1D system, consisting of N = 2 particles with M = 10:

0

x

�imaginary time

Z =
Z

DR0 · · ·
Z

DR9 hR0|e�⌧Ĥ |R1i · · · hR9|e�⌧Ĥ |R0i

R0 = {x1,0, x2,0} R10 = R0 = {x1,0, x2,0}

Wednesday, 12 September, 12



Example: Path Integral Monte Carlo

Examine one imaginary time “transition amplitude”:

hR`�1|e�⌧(T̂+V̂ )|R`i

One needs a way to solve this matrix element.  Use the 
“primitive approximation”

e�⌧(T̂+V̂ ) = e�⌧ T̂ e�⌧ V̂ + O(⌧2)

This is the “Trotter error”

It gets smaller for increasing M: ⌧ =
�

M

In practice, higher order terms included: O(⌧4)
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Example: Path Integral Monte Carlo

hR`�1|e�⌧(T̂+V̂ )|R`i ⇡ hR`�1|e�⌧ T̂ |R0ihR0|e�V̂ |R`i

e�⌧ V̂ (R`)�(R0 �R`)Gaussian integral

ie. We can approximate the high-temperature transition 
amplitudes to high order in τ (exact in the limit M  → ∞):

kinetic:
connects
time steps

potential:
connects
particles

Image courtesy of Carl McBride 

D. M. Ceperly, RMP 67, 279 (1995)

Z � 1
N !

�

P

M�1�

m=0

�
DRm exp

�
� (Rm �Rm+1)2

4��
� � V̂ (Rm)

�
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Quantum Monte Carlo:

• A D+1 dimensional “representation” on the 
computer

• A procedure for updating configurations of the 
representation

0

x

�imaginary time
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Quantum Monte Carlo:

• A D+1 dimensional “representation” on the 
computer

• A procedure for updating configurations of the 
representation

Path Integral Monte Carlo: “Worm Updates”

http://www.delmaestro.org/adrian
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Stochastic Series Expansion QMC

A simple to implement, powerful QMC method for lattice 
models

Ĥ = J
X

hiji

�
b†i bj + bi b

†
j

�
Ĥ = J

X

hiji

Ŝi · Ŝj

• Scales linearly in system size (and inverse temperature)

• Sign problem prevents simulation of fermions, frustrated 
spins

• Finite and Zero-temperature representations available

�O� =
1
Z

��|O|���O� =
1
Z

Tr{Oe��H}

Anders Sandvik
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SSE Finite-T representation

�O� =
1
Z

Tr{Oe��H}

�O� =
�

xOxW (x)�
x W (x)

Z =
�

x

W (x) = Tr{e��H}partition function

Z = Tr{e��H} =
�

�0

�
�0

�����

��

n=0

�n

n!
(�H)n

����� �0

�
Taylor expand the exponential:
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• proportional to the product of n matrix elements
 
• each                     is a real number

• must be positive to be interpreted as a probability for use 
in a Metropolis condition: otherwise get the “sign problem”

Z =
�

{�i}

��

n=0

�n

n!
��0| � H|�1���1| � H|�2� · · · ��n�1| � H|�n�

Insert n-1 resolutions of the identity

�0 = �n to keep the trace nonzero

i.e. periodic in “imaginary time” (the propagation direction)

The weight         is derived from this;W (x)

��i |�H| �i+1�
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The Hamiltonian is broken into elementary lattice operators

H = �
�

t

�

a

Ht,a

“type” lattice unit (e.g. bond)

Z =
�

{�i}

��

n=0

�

Sn

�n

n!

n�

i=1

��i�1 |Hti,ai | �i�

Sn = [t1, a1], [t2, a2], . . . , [tn, an]

sequence of operator indices

We sample (using Monte Carlo) the operator sequence, basis 
state, and expansion power n
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A final (practical) step: truncate the length of the operator list

M > nmax

Keeping M fixed but sampling 
different n: need to introduce 
M-n null operators H0,0 � I

Statistically, the number of different way of picking the 
placement of the null operators in the expansion list is given 
by the binomial coefficient �

M

n

�
=

M !
(M � n)!n!

Z =
�

�

�

SM

(�)n(M � n)!
M !

M�

i=1

��i�1 |Hti,ai | �i�

P (n)

n
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SSE Zero-T representation (projector)

�O� =
1
Z

��|O|�� Z = ��|��

�O� =
�

xOxW (x)�
x W (x)

The ground state wavefunction is estimated by a procedure 
where a large power of the Hamiltonian is applied to a “trial” 
state |��

First, write in terms of energy eigenstates: |�� =
�

n

cn|n�

(�H)m|�� = c0|E0|m
�
|0�+ c1

c0

�
E1

E0

�m

|1� · · ·
�

,

� c0|E0|m|0� as m��
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Z = ��|(�H)m(�H)m|��Z = �0|0� is then

H = �
�

t

�

a

Ht,ausing a Hamiltonian breakup:

Z =
�

{�}

�

Sm

2m�

j=1

�
��

��Htj ,aj

�� �r

�

insert a resolution of the identity between each operator

essentially identical to the finite-T representation, except:

|��� �= |�r�
• a fixed value of m is always used
• the simulation cell is not periodic:
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SSE QMC: Representations

• Finite-T and zero-T representations available

• Both result in very similar practical implementations

• Both can have very similar updating schemes 

To understand in more detail, we should examine 
a specific example

Thermal Expectation value

T=0 Expectation Value

hOi =
Tr e��ĤO
Tr e��Ĥ

hOi = h |O| i
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SSE QMC: Spin-1/2 Heisenberg Model

H = J
X

hiji

Si · Sj

Let’s examine the finite-T representation:

Z =
�

�

�

SM

(�)n(M � n)!
M !

M�

i=1

��i�1 |Hti,ai | �i�

First: choose a basis |�� Sz = ±1
2

Next: specify a specific lattice decomposition: H = �
�

t

�

a

Ht,a
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• A constant term 1/4 is added to the diagonal operator 

• Spin operators are rotated by  
    around the z-axis on one of the sublattices 

Choose a “bond” decomposition H = �
�

t

�

a

Ht,a

H0,0 = I,

H1,a =
1
4
� Sz

i Sz
j ,

H2,a =
1
2
(S+

i S�j + S�i S+
j )

“type” bond label

a = 0 a = 1

null

bond label

diagonal

off-diagonal

�/2

+

+

-

-

All bond operators are positive
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bond label

H1,a =
1
4
� Sz

i Sz
j H2,a =

1
2
(S+

i S�j + S�i S+
j )

|�0� |�M � = |�0�

n = 6 M = 13

Sn = [0, 0], [2, 0], [0, 0], [2, 2], [0, 0], [1, 4], [0, 0], [2, 0], [0, 0], [1, 3], [0, 0], [2, 2], [0, 0]

0

1

2

3

4
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bond label

resembles a world line picture:
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The weight W(x) of a sampled configuration x is proportional to the 
product of the positive matrix elements.

� • � |H1,a| • � � = � � • |H1,a| � • � =
1
2

� • � |H2,a| � • � = � � • |H2,a| • � � =
1
2

We now have a representation.  From this we design updates:

• Local updates can be used to sample diagonal operators

• Non-local updates needed to sample off-diagonal 
operators

H1,a � H0,0

H2,a � H1,a
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SSE “Diagonal” Updates

W (x�)
W (x)

Like in classical Monte Carlo, we calculate the ratio of weights:

The transition probability is then obtained from detailed balance:

W (x)P (x� x�) = W (x�)P (x� � x),

• Cycle through the operator list

• If a null operator is encountered, attempt to put a diagonal 
operator on a random bond

• If a diagonal operator is encountered, attempt to remove it 
(resulting in a null operator) H1,a � H0,0

H0,0 � H1,a
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SSE “Diagonal” Updates
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SSE “Diagonal” Updates
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SSE “Diagonal” Updates
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SSE “Diagonal” Updates
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Z =
�

�

�

SM

(�)n(M � n)!
M !

M�

i=1

��i�1 |Hti,ai | �i�

P (n� n� 1) = min
�

2(M � n + 1)
Nb�

, 1
�

P (n� n + 1) = min
�

1
2

Nb�

(M � n)
, 1

�

Transition probabilities for a Metropolis algorithm

• a lattice bond must be chosen at random for the insertion

• factor of 1/2 is the matrix element

SSE “Diagonal” Updates
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SSE “Diagonal” Updates

• Sample the power of the expansion effectively

• Easy to implement, local updates

• Do not result in an ergodic simulation: off-diagonal 
operators are not sampled

 we require a method to change the type of more than one 
operator at once, if we are to preserve the periodic boundaries
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SSE “Operator-Loop” Updates
The fact that all non-trivial matrix elements are 1/2 means that 
operator types can be changed without a change in weight

Closed “loops” are identified (in a linked list), then flipped with 
a Swendsen-Wang algorithm
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Other SSE updates:
• Spin-flips: required at high temperature

• Other more sophisticated operator loops possible

• Can be used in conjunction with Parallel Tempering, etc.
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SSE T=0 representation

Remarkably, a very different representation can have essentially 
the same updating procedure

Z = ��|(�H)m(�H)m|��

H = J
X

hiji

Si · Sj
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another example: Transverse Field Ising Model

A convenient Hamiltonian decomposition: H = �
�

t

�

a

Ht,a

The index a can label a bond, or a single lattice site.  Note:
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Finite-T representation

another example: Transverse Field Ising Model
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zero-T representation

another example: Transverse Field Ising Model
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The Sign Problem in SSE

• Any constant term can be added to diagonal operators

• Spin operators are rotated by  
    around the z-axis on one of the sublattices ...

�/2

+

+

-

-

Z =
�

{�i}

��

n=0

�n

n!
��0| � H|�1���1| � H|�2� · · · ��n�1| � H|�n�

Alternatively, we can keep the matrix element unchanged, if we 
are confident that off-diagonal operators always occur in even 
numbers

H = �
�

t

�

a

Ht,a H2,a = �1
2
(S+

i S�j + S�i S+
j )

Wednesday, 12 September, 12



The Sign Problem in SSE
In the finite-T representation, periodic boundary condition in 
imaginary time enforce this:
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The Sign Problem in SSE
In the finite-T representation, periodic boundary condition in 
imaginary time enforce this:
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Measurements in the SSE:

In general - expectation values of operators either:

• Diagonal in the basis

• Associated with the Hamiltonian

�Sz
i Sz

j �

�BiBj� Bi = S+
i S�j + S�i S+

j

S(q)

example:

E = ��n�
�

E = �� lnZ

��
Z =

�

�0

�
�0

�����

��

n=0

�n

n!
(�H)n

����� �0

�

E = � 1
Z

�

�0

�
�0

�����

��

n=0

n�(n�1)

n!
(�H)n

����� �0

�
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Quantum Monte Carlo

• A large class of Metropolis based Monte Carlo 
methods in D+1 dimension

• Extremely powerful, work well in higher D

• Inhibited by the “sign problem” for frustrated spins 
and fermions

• Algorithms are not static: new models, 
measurements, and tricks are discovered frequently

• At least one Nobel Prize lurking around...
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