
Helmut G. Katzgraber

Lecture II

Advanced Monte Carlo & Spin Glasses

Outline

• Monte Carlo in statistical physics

• Metropolis algorithm

• Ising model implementation

• Equilibration times

• Autocorrelation times 

• When does Monte Carlo fail?

• Critical slowing down (Krauth)

• Low temperatures 

• Speedup at low temperatures

• Spin glasses

• Parallel tempering

• Optimization & Complexity

• P versus NP

• Exact versus heuristic 

• Optimization algorithms:

• Simulated annealing

• Parallel tempering

• Genetic algorithms 

• Other optimization methods

• Quantum annealing, …

Literature used

• Monte Carlo, spin glasses & optimization:

• “Introduction to Monte Carlo Algorithms” – Krauth

• “Introduction to Monte Carlo Methods” – HGK (arXiv:0905.1629)

• “Monte Carlo Methods in Statistical Physics” – Newman & Barkema

• “Optimization Algorithms in Physics” – Hartmann & Rieger

• “Scientific Programming” – Zachary

• “Statistical Mechanics of Phase Transitions” – Yeomans

• “Spin glasses and complexity” – Stein & Newman

• “New Optimization Algorithms in Physics” – Hartmann & Rieger

• “The Nature of Computation” – Moore & Mertens

• “Phase Transitions in Combinatorial Opt.” – Hartmann & Weigel  

• … and many more books…

Monte Carlo in statistical physics…

… or how do we measure observables?

Where has Monte Carlo been successful?

• Monte Carlo-like sampling can be applied to problems across disciplines:  

• Chemistry Chemical reactions, …

• Physics Statistical mechanics, nuclear physics, …

• Biology Biomolecules, …

• Sociology Social networks, …

• Economy Market simulations, …

• Engineering Structural integrity simulations, …

• Geology Water seepage, …

• Linguistics Pattern matching in texts, …

• Medicine Disease spreading, …

• Astronomy Exoplanet detection, …
…

Recall importance sampling…

• Goal: Compute the average of an observable O 

• Extend this with a distribution (think importance sampling):  

• If is the Boltzmann distribution we obtain  
 
 
 
where the states si are selected according to a Boltzmann distribution.

⇥O⇤ =
�

sO(s)e�H(s)/kT

�
s e�H(s)/kT

⇤O⌅ =
�

s[O(s)/P(s)]e�H(s)/kT

�
s[1/P(s)]e�H(s)/kT

P(s)

⇥O⇤ =
1
M

�

i

O(si)

Sure… But how do we sample a Boltzmann distribution?

sum of P-distributed measurements!

Metropolis paper

Downloaded 06 Oct 2007 to 129.132.208.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Downloaded 06 Oct 2007 to 129.132.208.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

History behind the Metropolis paper

• 50 years later at a Los Alamos meeting:

• Only M. Rosenbluth attended, although  
with terminal cancer.

• Metropolis mainly contributed CPU 
time on MANIAC.

• von Neumann and Ulam invented the  
Monte Carlo method in 1946 and  
pointed out that it could be used for  
simulations.

• Teller: Statistical averages can be made as ensemble averages.

• Interesting author list: two couples. How often does this happen?

• Why Los Alamos?

• The US was building the atomic bomb.  
At least one good thing came out of this.

Phys. Plasmas 12, 057303 (05)

ENIAC

Metropolis algorithm

• Start by generating a Markov chain of successive states 
 
 
the new state is generated with a probability

• A state s occurs with a probability at the k-th step, described by
the master equation:

• For .  

• Detailed balance:  
 
 
this ensures that the process is reversible (ergodic)!

s1 � s2 � s3 � . . .

Peq(s) =
1
Z

e�H(s)/kT

Pk(s)

states to s
states from s

k �⇥ Pk(s)� Peq

all terms in sum = 0

Pk+1(s) = Pk(s) +
�

s�

[T (s� ⇥ s)Pk(s�)� T (s⇥ s�)Pk(s)

T (s� � s)Peq(s�) = T (s� s�)Peq(s)

trans. prob.

]

Metropolis algorithms contd.

• When the system is in thermal equilibrium:

• There are different choices for that satisfy the general equation:  
 

• Metropolis-Hastings algorithm:  

• Heat-bath algorithm:

T

T (x)/T (1/x) = x x = exp(��H/kT)

T (x) = min(1, x)

T (s⇤ s⇥) =
�

�, if ⇥H � 0
�e��H(s,s�)/kT , if ⇥H ⇥ 0

��1 ~ time

T (x) = x/(1 + x)

see Newman & Barkema for details.

T (s! s0
)

T (s0 ! s)
= exp[�(H(s0

)�H(s))/kT] = exp[��H(s, s0
)/kT]

Example: Algorithm for the Ising model

• Remember:

• Updates:

• The states s correspond to spin configurations .

• The move between s and s’ can be arbitrary.

• If s and s’ are too far apart, the move will not be accepted.

• Common choice: Flip one randomly-chosen spin Si with  
 
 
 
 
where is the effective field felt by Si.

H = �
�

�ij⇥

JijSiSj

T (Si ⇥ �Si) =
�

�, for Si = �sign(hi)
�e�2Sihi/kT , for Si = sign(hi)

hi =
�

j �=i

JijSj

{Si}

Practical implementation

• Bare-bones implementation:

• If the change in energy  
is favorable, we always 
flip the spin.

• If the change in energy is 
not favorable, we flip with  
a given probability.

• For infinite time this  
converges to the estimate 
of an observable O.

• Some considerations swept under the rug so far…

• Is this sampling the equilibrium distribution?

• What about autocorrelation effects in the Markov chain?

4 Monte Carlo simulations in statistical physics

Practical implementation of the Metropolis algorithm A simple pseudo-code
Monte Carlo program to compute an observable O for the Ising model is the following:

algorithm ising_metropolis(T,steps)1

initialize starting configuration S2

initialize O = 03

4

for(counter = 1 ... steps) do5

generate trial state S’6

compute p(S -> S’,T)7

x = rand(0,1)8

if(p > x) then9

accept S’10

fi11

12

O += O(S’)13

done14

15

return O/steps16

After initialization, in line 6 a proposed state is generated by, e.g., flipping a spin.
The energy of the new state is computed and henceforth the transition probability
between states p = T (S → S′). A uniform random number x ∈ [0, 1] is generated. If
the probability is larger than the random number, the move is accepted. When the
energy is lowered, i.e., ∆H > 0 the spin is always flipped. Otherwise the spin is flipped
with a probability p. Once the new state is accepted, we measure a given observable
and record its value to perform the thermal average at a given temperature. For
steps → ∞ the average of the observable converges to the exact value, again with an
error inversely proportional to the square root of the number of steps. This is the core
bare-bones routine for the Metropolis algorithm. In practice, several aspects have to
be considered to ensure that the data produced are correct. The most important,
autocorrelation and equilibration times, are described below.

4.2 Equilibration

In order to obtain a correct estimate of an observable O, it is imperative to ensure
that one is actually sampling an equilibrium state. Because, in general, the initial con-
figuration of the simulation can be chosen at random—popular choices being random
or polarized configuration—the system will have to evolve for several Monte Carlo
steps before an equilibrium state at a given temperature is obtained. The time τeq

until the system is in thermal equilibrium is called equilibration time and depends
directly on the system size (e.g., the number of spins N = Ld) and increases with
decreasing temperature. In general, it is measured in units of Monte Carlo sweeps
(MCS), i.e., 1MCS = N spin updates.
In practice, all measured observables should be monitored as a function of MCS to
ensure that the system is in thermal equilibrium. Some observables, such as the

15

Things to consider: equilibration…

• The initial configuration is arbitrary.

• To obtain a correct estimate of O,  
we need to ensure we are sampling 
the equilibrium state.

• How do we check for this?

• Monitor all observables as a function of time, e.g., O(t). Why all?

• The time it takes for O(t) ~ “constant” is the equilibration time.

• Properties of teq:

• Increases with the number variables N.

• Increases with decreasing temperature.

• Measured in Monte Carlo sweeps: 1 MCS = N update attempts.

m(t)

tτeq

O(t)

Equilibration time contd.

• Recommendations for simulations:

• Always store time-dependent measurements every 2k steps.

• Once , do not start measuring. Let the
system thermalize for at least an additional 5 – 10 times longer to
ensure full thermalization.

• Note:

• It can be shown analytically that the equilibration time is the
maximum of all autocorrelation times.

hO(t = 1)�O(t)i ⇠ 0

m(t)

tτeq

m(t)

tτeq t⌧eq 2⌧eq 3⌧eq 4⌧eq 5⌧eq

measure

O(t)

Things to remember: autocorrelations…

• To avoid correlations between measurements, study autocorrelation
functions for observables O:  

• This ensures that measurements are 
independent.

• Autocorrelation effects influence errors:  

• Integrated autocorrelation time:

4

TABLE II: Input parameters for the guiding function used in
the simulation. Initial runs using the parameters shown in
Table I indicated that m > 6, so that we have chosen m = 8
for the production runs. The parameters µ and ν have been
calculated from [E]av , σe, and m with the help of Eqs. (11)
and (12).

N [E]av σe m µ ν

16 −10.635 1.180 8 −10.429 3.233

24 −16.481 1.325 8 −16.249 3.631

32 −22.321 1.469 8 −22.064 4.025

48 −34.248 1.589 8 −33.970 4.355

64 −70.205 1.710 8 −45.961 4.685

96 −94.305 1.867 8 −69.789 5.116

128 −142.627 2.186 8 −93.956 5.472

0 500 1000 1500 2000

!i

0.01

0.1

1

"
(!
i)

FIG. 1: Autocorrelation function as defined in Eq. (6) for
system sizes N = 16 (circles) and N = 128 (triangles) for the
simulation with parameters shown in Table II. The value 1/e
is marked by the horizontal dotted line (∆i is measured in
Monte Carlo steps).

expected change in the ground-state energy is then of
the order ∼ 1/N), calculate the ground-state energy of
the new configuration, and accept the new configuration
with the probability given in Eq. (5), which in this case
is a modified Gumbel distribution, Eq. (10), with the pa-
rameters listed in Table II. To avoid a trapping of the
simulation in the double-exponential forward tail of the
distribution, we limit the maximum energy allowed in the
simulation by [E]av +3σE . Initial runs indicated that the
estimates of m shown in Table I are too small, and we
therefore choose an estimate of m = 8 for the production
runs. µ and ν are determined from the simple-sampling
results for the average and standard deviation with the

-150 -100 -50 0

E

10
-18

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

P N
(E
)

16

24

32

48

64

96

128

N

FIG. 2: Unscaled ground-state energy distributions of the
Sherrington-Kirkpatrick model for different system sizes, ob-
tained by the guiding-function simulation with the parameters
given in Table II. For each system size, between 92 and 686
independent samples are simulated.

TABLE III: Three-parameter fit in the parameters µ, ν, and
m to the data [rescaled to x = (E − [E]av)/σE] for the SK
model. For each system size N , between Nsamp = 92 and 686
independent samples have been generated. z = ν/m describes
the asymptotic behavior of the single-exponential tail (error
bar obtained from independent fits). χ2/dof represents the
χ2 per degree of freedom of the fit [24].

N Nsamp µ ν m ν/m χ2/dof

16 686 −0.059(63) 3.87(32) 13.8(16) 0.279(9) 6.29

24 274 −0.024(41) 3.55(19) 11.9(9) 0.298(6) 1.04

32 311 −0.017(43) 3.31(18) 11.2(9) 0.295(6) 1.47

48 221 0.010(40) 3.50(17) 11.5(8) 0.303(5) 0.77

64 168 0.063(44) 3.42(18) 11.1(8) 0.309(5) 0.72

96 92 0.026(36) 3.44(14) 10.9(6) 0.314(4) 0.23

128 112 0.066(42) 3.39(16) 10.7(7) 0.317(5) 0.42

help of Eqs. (11) and (12), and a summary of the input
parameters used is shown in Table II. It is important to
note that this change in the parameters does not lead to a
systematic error or bias in the results and merely consti-
tutes a change of the guiding function, which can either
improve or degrade the range of energies visited by the
algorithm. Figure 1 shows the energy-energy autocorre-
lation function for system sizes N = 16 and 128. Auto-
correlation times are of the order of 400 to 700 Monte
Carlo steps resulting in 92 to 686 independent measure-
ments for the different system sizes. While the number
of samples used is small, the method is able to probe the
tails in this particular case down to 18 orders of magni-
tude, a result impossible to obtain with simple-sampling
techniques. Figure 2 shows the unscaled ground-state en-

CO

t(MCS)

⌧ int

auto

=
P1

t=1

�hO(t
0

)O(t
0

+ t)i � hOi2�

hO2i � hOi2

�O =

s
hO2i � hOi2

(M � 1)
(1 + 2⌧

auto

) .

CO(t) =
hO(t0)O(t0 + t)i � hO(t0)ihO(t0 + t)i

hO2(t0)i � hO(t0)i2
⇠ exp(�t/⌧

auto

)

Practical approach: Binning

• Measuring autocorrelation times in simulations can be tedious:

• The “noise floor” depends on the model and must be excluded.

• Autocorrelation functions might not be pure exponentials.

• The shape of the function might change with time.

• Binning:

• Divide the M measurements into p bins.

• If then the averages  
computed in each bin over M/p  
measurements should be relatively  
uncorrelated statistical error bar.

• Alternative to estimate error bars:

• Do M different simulations with different initial conditions & average.

ln t

lnCO

noise floorM/p � ⌧
auto

Further MC-like algorithms? Many!

Variations…? Many!

• Cluster algorithms (see Krauth lecture):

• Help overcome critical slowing down at phase transitions.

• Flat-histogram methods:

• Multicanonical method, broad histogram method, Wang Landau, …

• Allow for the computation of the free energy.  

• Quantum Monte Carlo:

• Extension to quantum systems.

• Simulated/Quantum annealing:

• Minimization routine based on the reduction of fluctuations.

Wolff, Swendsen & Wang (87)
Houdayer (01)

Das (03)
Kirkpatrick et al. (83)

Berg (91)
Wang & Ladau (01)

Suzuki (93)

Where does simple Monte Carlo “fail”?

Regimes where MC sampling is inefficient

• At phase transitions autocorrelation times diverge. This effect is known
as critical slowing down. Cluster Algorithms (see Krauth lecture)

• Close to the ground state (zero temperature) sampling becomes
inefficient because is very small when .

• Rough energy landscapes where is large and therefore, again,
acceptance probabilities are small.

TcT ! 0 T ! 1

hard easyvery hard

T = min(1, e��E/T) T ! 0

�E

Slow convergence at low temperatures 
 … and rough energy landscapes

Monte Carlo & Rugged energy landscapes

• Systems with rugged energy landscapes (metastable states).

• At low temperature, when is large  
 
 
is “never” accepted.

• Sampling all of phase space becomes 
inefficient.  

• How can we resolve the problem?

• Tunnel trough barrier.

• Heat up the system to overcome the barrier.  

• Where does this happen?

• All over the place… Especially in bio applications and optimization.

�E

�E

T = min(1, e��E/T)

T

Typical problems with complex phase space

• Several physical problems have rugged energy landscapes.

• Randomness or frustration produce competing interactions and thus
a complex energy landscape.  

• Examples:

• Spin glasses:  

• Structural glasses

• Polymers in random media (interfaces)

• Biomolecules (proteins)  

• Quantum wave function reconstruction

• Reconstruction of geological structures from 
seismic measurements, ...

−
?
+

+

+

E

configuration space

H = −
∑

ij

JijSiSj

P(Jij) random

Nontrivial toy model: Spin glasses
Adding frustration...

• General Hamiltonian:  
 

• Introduce frustration between the spins:  
 
 
 
 
 

• Properties of the fully-frustrated Ising model:

• Huge ground-state degeneracy.

• Complex energy landscape, Tc = 0 in 2D.

•

• What happens if we add randomness, too?

H = �
�

�ij⇥

JijSiSj +J
�J

frustration
−

+

+

+?
++

+

+
ferromagnet frustrated

�
� Jij < 0 � i, j

ferromagnet

fully frustrated

spin glass

“2x2”

Spin glasses: (Magnetic) Frustration

• Add disorder… Edwards-Anderson spin glass 
 
 

• … obtain loads of frustration:  
 
 
 
 
 

• Many metastable states, slow relaxation.

• Nontrivial aging, memory effects, rough landscape.

• NP hard – perfect for testing algorithms!

• No transition below d = 3, mean field for d ≥ 6.

disorder

frustration
−

+

+

+?
++

+

+

H = −
∑

ij

JijSiSj − h
∑

Si

ferromagnet spin glass

Jij random

−
?
+

+

+

E

configuration space

E

Selected big challenges

J

P(J)

T

χAC

Tw Tc

1

0

q

ATH

Tc T

H

SG

PM
ATH

Tc T Tc T

H H

PM

SG SG

PM

P(q)

q+qEA–qEA

(c) P(q)

q+qEA–qEA

(a)

?ultrametricity

universality

aging & memory

nature of the spin-glass state

spin glasses in field (3D)

A brief word on the history…

• Early experimental discovery:  
Canella & Mydosh see a cusp in the  
susceptibility of a Fe/Au alloy.

• Brief incomplete history…

• mid 70’s: Edwards-Anderson Ising spin glass model (random):

• mid 70’: Mean-field Sherrington-Kirkpatrick (SK) spin glass.

• 70’s: Parisi mean-field solution (replica symmetry breaking - RSB).

• 80’s: Scaling-like droplet picture (DP) for short-range systems.

• 90’s: Chaotic pairs picture (CP) by Newman & Stein.

T

χ

T

C

Tc Tc

Jij ∼

cos(2kFRij)

R3
ij

H = −
∑

⟨ij⟩

JijSiSj

Jij
∑

⟨ij⟩

→

∑

i,j

mean-field approx.

specific heat susceptibility

Giorgio Parisi Daniel Fisher David Huse and many more…

To date controversial…

 RSB vs DP

• One pair of pure states in the
thermodyn. limit.  
 
 
 
 

• Trivial ground state 

• No spin-glass state in a field:

P(q)

q+qEA–qEA

(c) P(q)

q+qEA–qEA

(a)

ATH

Tc T Tc T

H H

PM

SG SG

PM
ATH

Tc T Tc T

H H

PM

SG SG

PM

• Countable infinity of pure
states in the thermodyn. limit.  
 
 
 
 

• Nontrivial ground state 

• Spin-glass state in a field:

Incidentally, how do we measure “order”?

• The ground state has no  
spatial order (m = 0).

• Above Tc spins fluctuate.

• Below Tc spins frozen.

• Compare spins at time t0 
with spins at time t + t0:

• Not practical in simulations. Better:  
 

()

Monte Carlo Methods (Katzgraber)

How can order be quantified in a system that intrinsically does not have visible
spatial order? For this we need to first determine what differentiates a spin glass
at temperatures above the critical point Tc and below. Above the transition, like
for the regular Ising model, spins fluctuate and any given snapshot yields a random
configuration. Therefore, comparing a snapshot at time t and time t + δt yields
completely different results. Below the transition, (replica) symmetry is broken and
configurations freeze into place. Therefore, comparing a snapshot of the system at
time t and time t+ δt shows significant similarities. A natural choice thus is to define
an overlap function q which compares two copies of the system with the same disorder.

In simulations, it is less practical to compare two snapshots of the system at
different times. Therefore, for practical reasons two copies (called “replicas”) α and β
with the same disorder but different initial conditions and Markov chains are simulated
in parallel. The order parameter is then given by

q =
1

N

∑

i

Sα
i Sβ

i , (32)

and is illustrated graphically in Fig. 11. For temperatures below Tc, q tends to unity
whereas for T > Tc on average q → 0, similar to the magnetization for the Ising
ferromagnet. Analogous to the ferromagnetic case, we can define a Binder ratio g by
replacing the magnetization m with the spin overlap q to probe for the existence of a
spin-glass state.

!" " !

Figure 11: Graphical representation of the order parameter function q. Two
replicas of the system α and β with the same disorder are compared spin-by-spin.
The left set corresponds to a temperature T ≪ Tc where many spins agree and so
q → 1. The right set corresponds to T > Tc; the spins fluctuate due to thermal
fluctuations and so q < 1.

6 Parallel tempering Monte Carlo

As illustrated with the case of spin glasses in Sec. 5, the free energy landscape of
many-body systems with competing phases or interactions is generally characterized
by many local minima that are separated by entropic barriers. The simulation of these
systems with standard Monte Carlo [51, 46, 42] or molecular dynamics [22] methods

20

Si = +1
Si = �1

q =
1
N

N�

i=1

Si(t0)Si(t + t0)

q =
1
N

N�

i=1

S�
i S⇥

i
mferro � qglass

q

T

Applications beyond disordered magnets

• The models can describe different materials and many systems with
competing interactions on a graph:

• Computer chips:  
 
 

• Economic markets:  
 
 

• Other applications:

• Quantum error correction (topological quantum computing).

• Neural networks.

• Optimization problems …

Si

Jij

component

wiring diagram

Si

Jij

agent inclination

portfolio interactions

chip optimization

markets

Importance of spin glasses in optimization

• Selected common optimization problems:

• k-SAT

• Number partitioning (NPP)

• Minimum vertex covers

• Spin glasses, proteins, …

• What do these have in common?

• They are typically problems in NP.

• They have a very rough energy/cost function landscape.

• They map onto spin-glass Hamiltonians:
NP Problems

NP-complete

P Problems

(x11 OR x12 OR x13) AND (x21 OR x22 OR x23) AND...

vertex cover

NPP

H(Si) =
NX

i 6=j

QijSiSj Si 2 {±1}

How can we study these systems?

• Analytically: only mean-field solution or qualitative  
descriptions.

• Numerically: Optimal problem for huge computers.

• Challenges:

• Exponential number of competing states (usually NP hard).

• Relaxation times diverge exponentially with the system size.

• Extra overhead due to disorder averaging.

• This means small systems only.

• Any study requires…

• … clever models,

• … better algorithms,

• … very large computer clusters.

∞

∞

How large is large? A typical project takes…

 
…about 3 month  

 on 500 processors.

Speeding up simulations:

Parallel tempering Monte Carlo

Top 10 reasons to use parallel tempering

1. Very efficient.
2. Simple to implement.
3. Only few parameters.
4. It is practical (several T’s).
5. Small numerical overhead.
6. It is easy to parallelize.
7. Mix with other algorithms.
8. It is ‘Made in Japan.’

Hukushima & Nemoto (96)

top 8 reasons 
to use 

parallel 
tempering  

Monte Carlo

Geyer (91)

Exchange (parallel tempering) Monte Carlo

• Idea:

• Simulate M copies of the system at different  
temperatures with Tmax > Tc (typically Tmax ~2TcMF).

• After each lattice sweeps, attempt to swap neighbors:  
easy crossing of barriers.  
 
 
 
 
 
 

• What has to be tuned?

• Number of temperatures M.

• Position of the temperatures.

T
T

T

1
2

fa
st

sl
ow

M

configuration space

E

T1 2

P(E)

ET

Hukushima & Nemoto (96)

Parallel tempering: algorithm and details

• Outline of the algorithm:

• Perform a Monte Carlo update between neighboring replicas:

• Pseudo code implementation:

[obeys detailed balance]

T [(Ei, Ti)� (Ei+1, Ti+1)] = min {1, exp[�Ei+1,i��i+1,i]}

�Ei+1,i = Ei+1 � Ei

��i+1,i = 1/Ti+1 � 1/Ti
Monte Carlo Methods (Katzgraber)

algorithm parallel_tempering(*energy,*temp,*spins)1

2

for(counter = 1 ... (num_temps - 1)) do3

delta = (1/temp[i] - 1/temp[i+1])*(energy[i] - energy[i+1])4

if(rand(0,1) < exp(delta)) then5

swap(spins[i],spins[i+1])6

swap(energy[i],energy[i+1])7

fi8

done9

The swap() function swaps neighboring energies and spin configurations (*spins)
if the move is accepted. As simple as the algorithm is, some fine tuning has to be
performed for it to operate optimally.

6.2 Selecting the temperatures

There are many recipes on how to ideally select the position of the temperatures for
parallel tempering Monte Carlo to perform optimally. Clearly, when the temperatures
are too far apart, the energy distributions at the individual temperatures will not
overlap enough and many moves will be rejected. The result is thus M independent
simple Monte Carlo simulations run in parallel with no speed increase of any sort. If
the temperatures are too close, frequent swaps continuously “kick” the system, thus
reducing equilibration as well.

A measure for the efficiency of a system copy to traverse the temperature space is
the probability (as a function of temperature) that a swap is accepted. A good rule of
thumb is to ensure that the acceptance probabilities are approximately independent
of temperature, between approximately 20 – 80%, and do not show large fluctuations
as these would signify breaking up the random walk into segments of the temperature
space. Following the aforementioned recipe, parallel tempering Monte Carlo already
outperforms any simple sampling Monte Carlo method. Still, the performance can be
further increased, as outlined below.

Traditional approaches As mentioned before, a reasonable performance of the
algorithm can be obtained when the acceptance probabilities are approximately inde-
pendent of temperature. If the specific heat of a system is not strongly divergent at
the phase transition—as it is the case with spin glasses—a good starting point is given
by a geometric progression of temperatures. Given a temperature range [T1, TM], the
intermediate M − 2 temperatures can be computed via

Tk = T1

k−1
∏

i=1

Ri, Ri = M−1

√

TM

T1
. (34)

Because relaxation is slower for lower temperatures, the geometric progression peaks
the number of temperatures close to T1. If, however, the specific heat of the system
has a strong divergence, this approach is not optimal.

22

note: keep T’s, swap pointers

Example: Ising spin glass in d = 3

• Equilibration times:  
 

• Equilibration test  
(Gaussian disorder):  
 
 
 
 
Once both agree, the  
system is in equilibrium.

z = 2D

τ
PT
eq ≈ 300MCS

τ
SM
eq ≈ 10

6
MCS

N = 43 spins
T = 0.5 Tc

equilibrium

Katzgraber et al. PRB (01)

simple MC

ql(E) =
2T |E|

z
+ 1

How many temperatures do we need?

• Two possible scenarios:

• Temperatures too far apart:  
parallel simple Monte Carlo chains.

• Temperatures too close: overhead.  

• What determines the number M of temperatures?

• The energy distributions of the system at T1 and T2 have to
overlap.

• Because

• Note: Systems for which require many  
temperatures.  

• In principle, we need as many temperatures such that the method
traverses the energy landscape. Measure? Acceptance probabilities.

configuration space

E

T1 2

P(E)

ET

�E � CV M �
�

N1+�/d⇥

CV|T�0 � 0

Tmax � TMF
c

Measuring acceptance probabilities

• Definition:  
 

• Traditional wisdom: Tune the temperature  
set such that...

• ... 0.2 ≤ A ≤ 0.9.

• ... A is approximately independent of temperature.  

• Detailed implementation which gives flat acceptance rates:  
Incomplete beta function law [uses].

• Notes:

• A quick run (no need to equilibrate) will immediately produce
stable acceptance rates (easy tuning by hand).

• It has been claimed that A ~ 0.3 is optimal.

good

T

A

bad

Tc

A = f(CV)
Predescu et al., JSTAT (03)

Rathore et al., J. Chem. Phys. (05)

A =
Naccept

Ntrial

Practical approach when CV ~ const.

• Geometric progression:

• Works well when CV ~ const (like in spin glasses).

• Iteratively construct a temperature set and tune M with .  
 
 

• By hand:

• If CV diverges strongly, start from a geometric progression.

• Interlace extra temperatures by hand.

• Tedious, but can be automatized.  

• What if Cv diverges?

• Optimize the diffusion of temperatures to overcome bottlenecks.

• Replicas should do a random walk in temperature space.

1
Ti

= �Ri�1 1
Tmin

�

R =
�

Tmin

Tmax

⇥1/(M�1)

Katzgraber et al., JSTAT (06)

• Protein A:  
 
 
 
 
 
 

• It can happen that the replicas will only move in subspaces of the
phase space (A, B, C) using traditional temperature schemes.

• Feedback optimization helps overcome these bottlenecks.

Example: Protein

Hansmann & Trebst (07)

A

B
C

A

B

C

Katzgraber et al., JSTAT (06)

Possible extensions and adaptations

• Any control variable can be used:

• Field

• Temperature and field

• Coupling constants in QCD

• Frequencies (e.g., in a Holstein model)

• ...

• Combinations with other algorithms possible:

• Tempering Monte Carlo molecular dynamics (biomolecules).

• Tempering quantum Monte Carlo (quantum spin glasses).

• Bayensian periodigrams (planet search in star systems).

• Iterative search methods (combinatorial problems).

• Cluster exchange Monte Carlo (diluted spin glasses).

• Parallel tempering Wang-Landau sampling (biomolecules).

T

H

Selected optimization methods:

Monte Carlo based
Evolutionary
Quantum

P versus NP (non-rigorous definitions)

• P (“polynomial”)

• All decision problems (YES/NO) that can be solved on a deterministic
sequential machine in an amount of time polynomial in the input.

• NP (“nondeterministic polynomial”)

• All decision problems for which the correctness of a guessed solution
can be verified in polynomial time.

• NP problems scale worse than any polynomial.

• Examples: 3-SAT, spin glasses, NPP, …

• NP-complete: hardest problems in NP.  

• How do we show that a problem is either P or NP?

• Easiest way is to find a polynomial mapping to a known problem.

P = NP?

NP Problems

NP-complete

P Problems

Is P always tractable?

• While in theory P is easier than NP, in practice this is not always true:

• Pre-factors are ignored when assessing algorithms:  
T(N) ~ 1010000 N is intractable.

• Exponent size is ignored: T(N) ~ N10000 is intractable.

• Worst-case scenarios ignored: 99.999% P, but 0.001% NP.

• While NP, in general, is harder to solve, there are exceptions:

• Only deterministic solutions considered:  
The problem might be solved quickly, but  
with a small error probability.

• Quantum computers might help solve  
problems known not to be in P.  
Example: D-Wave quantum annealer.

Exact versus heuristic

• Exact:

• The algorithm delivers the exact ground state, guaranteed.

• Difficult task: How can one prove this is the true optimum?

• Often not practical.

• Examples: Branch & Cut algorithm, exhaustive search, …

• Heuristic:

• The algorithm might deliver the exact ground state.

• Most algorithms deliver the optimum with high probability.

• In general, one obtains a good estimate for the optimum.

• Examples: genetic algorithms, simulated annealing, …

• Note: For most practical purposes heuristic algorithms are enough.

our focus here…

Thermal optimization:

Simulated annealing

Simulated Annealing (SA)

• Inspired by cooling of a crystal to avoid defects.

• Stochastically sample the cost function to obtain a stationary
state described by the Boltzmann distribution.

• Once the system is in thermal equilibrium, cool slowly and iterate.

• Typical cooling protocols: logarithmic
linear (0.1≤b≤0.2)
exp (0.8≤b≤0.99)

• The slower the cooling, the better. Infinitely slow will find true optimum.

• Many applications across disciplines (bio, TSP, NPP, …).

T

t

T

t

linear logarithmic

ALGORITHM (sim anneal):
choose configuration {Si}
for i = 1 ... tmax;
set temperature T(t);
MC run until equilibrium;
[store best solution];

done
return E = H({Si})

H({S})

T (t) = a/(b + log t)

T (t) = a − bt

T (t) = a exp(−bt)

Kirkpatrick et al., Science (83)

Geman & Geman

When does simulated annealing fail?

• Simulated annealing is a one-way optimization.

• If the energy landscape is rough, it might get stuck in metastable states.

Simulated annealing Parallel tempering

Improving simulated annealing by repetition

• Empirical observation:

• The algorithm getting stuck is only slightly
dependent on the annealing speed/schedule.

• Initial conditions can strongly affect the
performance.

• Simple solution:

• Repeat the sampling many times with
different initial conditions / Markov chains.

• Keep track of the states obtained. The
distribution of low-lying states should give  
a clear indication of the ground state.  

• Alternative: Use parallel tempering.

Simulated Annealing applied to the TSP

• 72 city tour with random initialization (tour length ~ 7000 steps).

• Optimization with a linear schedule, quenched to T = 0.

• Optimal tour (approximately 5 minutes run time) ~ 1320 steps.

initial tour optimized tour

Optimization using parallel tempering
Parallel tempering ground-state searches

• Outline of the approach:

• Perform a parallel tempering (PT) simulation with Tmin close to zero
typically Tmin ~ 0.1Tc .

• Simulate two copies of the system with different Markov chains.

• Run the simulation for time teq until the system is in equilibrium.

• During an additional teq/4, repeat:

• Before each PT move record the energy (and spin configuration)
for the lowest T values if the energies match in both copies.

• If a lower energy is found, replace the recorded value.

• Performance of the method:

• Works best for short-range systems.

• For intermediate system sizes (up to 500 spins) ≥ 99% accuracy!

Moreno et al. (03)

not a must

Distribution of states reached at low T

• Data for a 3D Gaussian spin glass instance sampled 103 times.

• The ground state is the most populated state, even for ~ 500 spins!

P(E) P(E)

EE

ground state

ground state Genetic algorithms

Motivation

• Basic idea:

• Mimic nature by generating a “population” of possible solutions.

• Evolve the population according to some problem-dependent rules.

• Survival of the fittest…

• Application domain:

• Optimization problems with rough energy landscapes: Using a
population allows the algorithm overcome barriers.

• Outside physics: scheduling, protein ligand docking, code cracking,
TSP, model selection, compiler flag optimization.

• In Physics: statistical mechanics problems, X-ray data analysis,
geological data reconstruction, general optimization… 

• Note: Here we follow closely the book of Hartmann & Rieger.

Necessary ingredients for a GA

• Population of solutions:

• Needs to be in a “genetic representation.”

• The larger the population, the better the chance to find a solution.

• However, the larger, the longer the search could take.

• Example: Minimize of a function f(x)

• Represent the pool of minima as bit strings  
where mutations are easily accomplished.

• The initial population is a list with  
random-bit arrays.

• Fitness function:

• We need a measure of the quality of a candidate solution.

• Example: Hamiltonian of a physical problem, or for above f(x).

...10010100000010111111

100100111111010101010

00100101110101101010

100101001001011101001

f initial

f final

Operations on the population

• Evolution of the population:

• To converge to a solution, cheap operations that randomize the
population need to be performed.

• Mutations:

• Randomly change bits with a (small) probability p.

• Crossover:

• Generate “offsprings” from a set of “parents.”

• Note: In principle, any operation is possible. Only few are good…

00100101010 00100001010

00100101001

00010100111
+ 0010 0100111

Crossover & Natural selection

• Crossover operation:

• There are many ways, e.g., sequence splitting, keep the fittest, …

• The number of parents can be varied (typically 2).

• Randomizes better than mutations (typically called more often).

• Natural selection (fitness testing):

• Very much problem dependent.

• Evaluate the fitness of the solution  
and only keep the fittest.

• Different schemes: kill 50% worst,  
kill offspring if worse than parent,  
kill with a fitness-dependent probability.

• The population can be shrunk or kept constant  
(cloning of the fittest).

10010100000010111111

100100111111010101010

00100101110101101010

100101001001011101001
1

4
32

100100111111010101010

00100101110101101010

100101001001011101001
1

32
f(x)

Pseudocode & Final considerations

• Note:

• The method is heuristic, and often  
does not deliver good results.

• GAs should be combined with other  
local optimizers to improve results.

• Recommended to start with a large 
population that is culled.

• Advantage:

• Straightforward to implement.  

• Disadvantage:

• Many parameters must be tuned, fitness functions often not available.

• The choice of parameters/operations depends on the problem.

ALGORITHM (generic genetic):

Initialize populations x1, ... xM

for t = 1 ... Niter

 choose a set of parents {xi};
 create offsprings via crossover;
 mutate;
 [local optimization;]
 calculate fitness;
 update population with offsprings;
done
return best individuals from x1, ... xM

Case study: function minimization

• Goal:

• Find the minimum of  
in the interval .

• Note: this is an academic example because we know .

• We represent  
as bit strings with precision P:

• Steps:

• Represent numbers as genes.

• Mutation/Crossover operations.

• Evolve the population.

f(x) = 10|x − 0.5|− cos(100(x − 0.5)) + 1
x ∈ [0, 1]

x0 = 0.58.2 Finding the Minimum of a Function 165

! !"# !"$!"% !"& '

(

!

#

$

%

&

)*
(
+

Figure 8.6: One-dimensional sample fitness function f(x).

procedure bit-sequence(x, P)
begin

f := 0.5
for q := 1 to P
begin

if x ≥ f then
xq := 1; x := x − f ;

else
xq := 0;

f := f/2;
end
return(x1, . . . , xP);

end

Next, we present the realization of the genetic operations. For the mutation with
rate pm, each bit is reversed with probability pm (the random numbers drawn in this
algorithm are assumed to be equally distributed in [0, 1]):

f(x)

x

x ∈ R

xi =

P∑

j=1

2
−j

x
j
i

x
j
i ∈ {0, 1}

Hartmann & Rieger

Representation of numbers & mutations

• Converting floats to bit sequences:

• This can be efficiently done with the code  
snippet on the right.

• Mutations:  

• Flip bits with a  
probability p.

• Note that this can  
also be biased to  
work for low or  
high bits.

ROUTINE bit_seq(x,P)

f = 0.5;
for q = 1 ... P;
do

if(x ≥ f)
then

xq = 1;
x = x - f;

else
xq = 0;
f = f/2.0;

done;
done;
return (x1,x2,, xP);

ROUTINE mutate(x)

for q = 1 ... P;
do

r = rand(0.,1.)
if(r < p){

xq = 1 - xq;
done;

done;
return (x1,x2,, xP);

00100101010 00100001110

Crossover

• Details:

• Select two parents.

• Select a splicing bit position s.

• Generate two offsprings.  

• Note:

• It is best to select a random crossover point to improve
randomization.

• One could also use three parents, where one plays the role of a
“mask” used to select the parental bits for the offspring.

00100101001

00010100111
+

0010 0100111

0001 0101001

ROUTINE crossover(x1,x2)

s = rand(1,P)
for q = 1 ... s do

c1
q = x1

q;
c2

q = x2
q;

done;
for q = s+1 ... P do

c1
q = x2

q;
c2

q = x1
q;

done;
return (c1,c2);

Putting it all together…

• Natural selection: An offspring that has better fitness than the parent
automatically replaces the parent.

• Example run:

• Start with M = 50 genes.

• Mutation probability: p = 0.1.

ALGORITHM genetic(f)
begin

initialize M strings of length P.
for t = 1... n do

choose parents i and j randomly in [1,M];
(c1,c2) = crossover(x1,x2);
mutation(c1,p);
mutation(c2,p);
if(f(c1) < f(x1)) then

x1 = c1;
done;
if(f(c2) < f(x2)) then

x2 = c2;
done;

done;
return best individual from (x1, ... xM)
end;

168 8 Genetic Algorithms

Please note that before the evaluation of the fitness f(xi), the value of the bit string
x1

i , . . . , x
P
i has to be converted into the number xj .

Now we study the algorithm with the parameters M = 50 and pm = 0.1. We recom-
mend the reader to write the program itself. It is very short and the implementation
allows to learn much about genetic algorithms. The choice of pm = 0.1 for the mu-
tation rate is very typical for many optimization problems. Much smaller mutation
rates do not change the individuals very much, so new areas in configuration space
are explored only very slowly. On the other hand, if pm is too large, too much genetic
information is destroyed by the mutation.
The optimum size M of the population usually has to be determined by tests. It
depends on whether one is interested in really obtaining the global optimum. As a
rule of a thumb, the larger the size of the population is, the better the results are. On
the other hand, one does not want to spend much computer time on this, so one can
decrease the population size, if the optimum is rather easy to find.

! !" !"" !""" !""""

#

!"
!$

!"
!%

!"
!&

!"
!'

!"
!!

!"
"

!"
!

!"
'

()
#*

+,-.+/-

0-1#

Figure 8.7: Evolution of the current minimum and average fitness with time t, here

M = 50, pm = 0.1, nR = 10000.

In Fig. 8.7 the evolution of the fitness of the best individual and the average fitness are
shown as a function of the step size. Here nR = 10000 iterations have been performed.
The global minimum has been found after 1450 steps. Since in each iteration two
members of the population are considered, this means on average each member has
been treated 2× 1450/M = 58 times. Please note, if you are only interested in a very
good value, not in the global optimum, you could stop the program after say only
100 iterations. At timestep 1450 only one individual has found the global optimum at
x0 = 0.5, the average value still decreases.

f(x)

t[n]

first optimum

Hartmann & Rieger

Tracking the evolution of the population

• Example histogram of genetic population with M = 5000.

• The initial population at t = 0 is random, i.e., P(x) ~ 1 for all x.

• After t = 5•105 iterations the population relaxes into the local minima
with a large fraction settling for the true optimum.

8.2 Finding the Minimum of a Function 169

! !"# !"$!"% !"& '

(

!

!")

'

'")

#

#")

*

+
,(
-

./!

! !"# !"$!"% !"& '

(

!

'

#

*

+
,(
-

./'(0

! !"# !"$!"% !"& '

(

!

'!

#!

*!

$!

+
,(
-

./'!(0

Figure 8.8: Evolution of population with time t, here M = 50000, pm = 0.1 and

t = 0, 1 × M, 10 × M .

8.2 Finding the Minimum of a Function 169

! !"# !"$!"% !"& '

(

!

!")

'

'")

#

#")

*

+
,(
-

./!

! !"# !"$!"% !"& '

(

!

'

#

*

+
,(
-

./'(0

! !"# !"$!"% !"& '

(

!

'!

#!

*!

$!

+
,(
-

./'!(0

Figure 8.8: Evolution of population with time t, here M = 50000, pm = 0.1 and

t = 0, 1 × M, 10 × M .

P(x) P(x)

xx

t = 0 t = 5•105

optimum

Hartmann & Rieger

8.2 Finding the Minimum of a Function 165

! !"# !"$!"% !"& '

(

!

#

$

%

&

)*(+

Figure 8.6: One-dimensional sample fitness function f(x).

procedure bit-sequence(x, P)
begin

f := 0.5
for q := 1 to P
begin

if x ≥ f then
xq := 1; x := x − f ;

else
xq := 0;

f := f/2;
end
return(x1, . . . , xP);

end

Next, we present the realization of the genetic operations. For the mutation with
rate pm, each bit is reversed with probability pm (the random numbers drawn in this
algorithm are assumed to be equally distributed in [0, 1]):

Quantum enhanced optimization
Quantum Annealing

• Idea:

• Use quantum tunneling & fluctuations.

• Like SA, but quenches quantum fluctuations.

• Theoretical advantages over SA:

• Not limited to a local search.

• Fluctuations determine the “tunneling radius.”

• Implementation in DW2:

• Apply a transverse field that does not commute:

• Reduce quantum fluctuations via a linear protocol .

Kadowaki & Nishimori (98)
Farhi et al. (00)

H(Si) =
NX

i 6=j

QijSiSj H(S
i

) =
NX

i 6=j

Q
ij

Sz

i

Sz

i

�D
NX

i

Sx

i

D(t) = a − bt

Morita & Nishimori (06)
[Sx, Sz] 6= 0

Is this method of general interest? Yes!

• First quantum annealing machines with ~1000 qubits.

• Based on programmable superconducting flux qubits.

• Currently, large controversy on its speed & quantumness.

Washington chip Cryogenic mount D-Wave 2X @ NASA

currently part of my research.

Final considerations

Final considerations & further methods

• How can we improve optimization algorithms?

• Tailored combinations of algorithms tend to work better.

• Developing new & efficient algorithms is the holy grail in this field.

• There are more efficient methods. However, these are very complex.

• Other selected methods:

• Improved Extremal Optimization (heuristic).

• Hysteretic Optimization (heuristic, works for high connectivity).

• Patchwork Dynamics (heuristic, helps with nonplanar graphs).

• Max-flow methods (heuristic, ideal for random-field models).

• Matching algorithms (heuristic, planar frustrated systems).

• Branch & Bound (exact, only small instances tractable).

• Population Annealing (sequential Monte Carlo, very fast, new SOA?). hgk@tamu.edu

Thank you!

