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e Monte Carlo, spin glasses & optimization:

* Metropolis algorithm * Pversus NP * “Introduction to Monte Carlo Algorithms” — Krauth

* Ising model implementation * Exact versus heuristic * “Introduction to Monte Carlo Methods” — HGK (arXiv:0905.1629)
* Equilibration times S _ * “Monte Carlo Methods in Statistical Physics” — Newman & Barkema
e Autocorrelation times * Optimization algorithms:

e “Optimization Algorithms in Physics” — Hartmann & Rieger

¢ Simulated annealin L .
& * “Scientific Programming” — Zachary

* When does Monte Carlo fail? ¢ Parallel temperin . ) L
pering e “Statistical Mechanics of Phase Transitions” — Yeomans

¢ Critical slowing down (Krauth) * Genetic algorithms « “Spin glasses and complexity” — Stein & Newman

* Low temperatures Lo : . I .
P * “New Optimization Algorithms in Physics” — Hartmann & Rieger

* “The Nature of Computation” — Moore & Mertens

e Other optimization methods

e Speedup at low temperatures ¢ Quantum annealing, ...
e Spi * “Phase Transitions in Combinatorial Opt.” — Hartmann & Weigel
pin glasses

¢ Parallel temperin
pering e ... and many more books...



Monte

... or how do we measure observables!?

Carlo in statistical physics...

¢ Monte Carlo-like sampling can be applied to problems across disciplines:

e Chemistry
¢ Physics

¢ Biology

e Sociology
* Economy
* Engineering
¢ Geology

e Linguistics
* Medicine

e Astronomy

Chemical reactions, ...

Statistical mechanics, nuclear physics, ...
Biomolecules, ...

Social networks, ...

Market simulations, ...

Structural integrity simulations, ...
Water seepage, ...

Pattern matching in texts, ...

Disease spreading, ...

Exoplanet detection, ...

Recall importance sampling.

¢ Goal: Com

e Extend this

pute the average of an observable O

5, Os)e MO
= S, e HO)/KT

(0)

with a distribution (think importance sampling):

3°,[0(s) /P (s)]e=M/KT

O =S AP T

e If P(s) is the Boltzmann distribution we obtain

(0) = % 21: O(s;) sum of P-distributed measurements!

where the states s; are selected according to a Boltzmann distribution.

Sure...

But how do we sample a Boltzmann distribution?
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

1. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,



e 50 years later at a Los Alamos meeting:

¢ Only M. Rosenbluth attended, although
with terminal cancer.

¢ Metropolis mainly contributed CPU
time on MANIAC.

¢ von Neumann and Ulam invented the
Monte Carlo method in 1946 and
pointed out that it could be used for
simulations.

e Teller: Statistical averages can be made as ensemble averages.
¢ Interesting author list: two couples. How often does this happen?
* Why Los Alamos? :

¢ The US was building the atomic bomb.
At least one good thing came out of this.

Metropolis algorithms contd.

¢ When the system is in thermal equilibrium:
T(s—¢)
T(s —s)
¢ There are different choices for 7 that satisfy the general equation:

T(z)/T(1)z) == x = exp(—AH/KT)

= exp[—(H(s") — H(s))/kT] = exp[-AH(s, s') /kT]

* Metropolis-Hastings algorithm: 7 (z) = min(1, z)
r it AH <0 1

no__ ) = ~
T(s—s)= { Te-AHG)/MT i AT > 0 r time

¢ Heat-bath algorithm: T(z)=z/(14x)

see Newman & Barkema for details.

History behind the Metropolis paper. Metropolis algorithm

Phys. Plasmas 12,057303 (05)

¢ Start by generating a Markov chain of successive states

S1 — S92 — 83 — ...

the new state is generated with a probability P, (s) = le—H(S)/’“T

A state s occurs with a probability Py (s) at the k-th step, described by
the master equation: D

Pri1(s) = Pr(s) + Z [T(s" — 8)Pr(s') —T(s — s’)Pk(s)]

states to s

For k — 00 Pi(s) = Peq -

states from s

Detailed balance:
T (5" — 8)Peq(s) =T (s — §")Peq(s) all terms in sum =0

this ensures that the process is reversible (ergodic)!

Example: Algorithm for. the Ising model

e Remember:

H=-> JiSiS;
(i7)
e Updates:
e The states s correspond to spin configurations{S; }.
¢ The move between s and s’ can be arbitrary.
* If sand s’ are too far apart, the move will not be accepted.

¢ Common choice: Flip one randomly-chosen spin §; with

T, for S; = —sign(h;)

T(S;— —=8;) = { Te~25:ihi/kT  for S; = sign(h;)

where h; = Z Ji;S; is the effective field felt by S..
J#i



Practical implementation

¢ Bare-bones implementation:

is favorable, we always

algorithm ising_metropolis(T,steps)

e If the change in energy J:.n%:::taizi.ze :tar;ing configuration S
initialize O =

ﬂip the spin. for(counter = 1 ... steps) do

¢ If the change in energy is

generate trial state S’
compute p(S -> S’,T)

not favorable, we flip with x = rand(0,1)
a given probability. if(p > x) then
. . . . accept S’
¢ For infinite time this i
converges to the estimate
of an observable O. doneD Gy

e Some considerations swept under the rug so far...

e Is this sampling the equilibrium distribution?

¢ What about autocorrelation effects in the Markov chain?

Equilibration time contd.

e Recommendations for simulations:

* Always store time-dependent measurements every 2* steps.

e Once (O(t = 00) — O(t)) ~ 0, do not start measuring. Let the
system thermalize for at least an additional 5 — 10 times longer to

ensure full thermalization.

s

measure

1
Teq 2Teq 3Teq ATeq

¢ Note:

9Teq

¢ |t can be shown analytically that the equilibration time is the

maximum of all autocorrelation times.

[ hings to consider: equilibration...

The initial configuration is arbitrary.

To obtain a correct estimate of O,
we need to ensure we are sampling
the equilibrium state.

T
Teq

e How do we check for this?

* Monitor all observables as a function of time, e.g., O(t). Why all?

¢ The time it takes for O(t) ~ “constant” is the equilibration time.

* Properties of teq:
¢ |ncreases with the number variables N.

¢ Increases with decreasing temperature.

¢ Measured in Monte Carlo sweeps: | MCS = N update attempts.

I hings to remember: autocorrelations...

¢ To avoid correlations between measurements, study autocorrelation

functions for observables O:
Col(t) = (O(to)O(to + 1)) — (O(t0))(O(to + 1))

~ eXp(_t/Tauto)

* This ensures that measurements are () \
independent. i

(O2(to)) = (O(t0))*

o Autocorrelation effects influence errors:

Ao — \/ (O = (O2 | L or ).

(M —1)

¢ Integrated autocorrelation time: 001

t(MCS)?

e _ 21 ((0(00)O(to + 1)) — (0)?)
e (0%) —{0)?
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0 500

P B
1000

P
1500 2000



Practical approach: Binning

* Measuring autocorrelation times in simulations can be tedious:

* The “noise floor” depends on the model and must be excluded.

e Autocorrelation functions might not be pure exponentials.

e The shape of the function might change with time.

Binning:

e Divide the M measurements into p bins.

* If M/p > Tauto then the averages
computed in each bin over M/p

measurements should be relatively
uncorrelated — statistical error bar.

¢ Alternative to estimate error bars:

vIn Co

noise floor

Int

* Do M different simulations with different initial conditions & average.

Variations...!?

Cluster algorithms (see Krauth lecture):

¢ Help overcome critical slowing down at phase transitions.

Flat-histogram methods:

Wolff, Swendsen & Wang (87)
Houdayer (0I)

® Multicanonical method, broad histogram method,Wang Landay, ...

* Allow for the computation of the free energy. Berg (91)

Quantum Monte Carlo:

* Extension to quantum systems.

Simulated/Quantum annealing:

Wang & Ladau (0I)

Suzuki (93)

¢ Minimization routine based on the reduction of fluctuations.

Das (03)
Kirkpatrick et al. (83)

Further MC-like algorithms? Many!

Where does simple Monte Carlo “fail””?




Regimes where MC sampling is.inefficient

very hard hard easy

Slow convergence at low temperatures
... and rough energy landscapes

T —

T—0 T

e At phase transitions autocorrelation times diverge.This effect is known
as critical slowing down. — Cluster Algorithms (see Krauth lecture)

* Close to the ground state (zero temé)er'ature) sampling becomes
inefficient because 7 = min(1,e~>#/T) is very small whenT — 0.

* Rough energy landscapes where AF is large and therefore, again,
acceptance probabilities are small.

Monte Carlo & Rugged energy landscapes Iypical problems with complex phase space

¢ Systems with rugged energy landscapes (metastable states). ¢ Several physical problems have rugged energy landscapes.
¢ At low temperature, when A F is large ¢ Randomness or frustration produce competing interactions and thus
T = min(1 e‘AE/T) a complex energy landscape.
’ E

is “never” accepted. T AE e Examples:
* Sampling all of phase space becomes o Spin glasses: H = — Z Ji;5:9;

inefficient. —

4 P(J:;) random
e Structural glasses configuration space

¢ How can we resolve the problem?

Polymers in random media (interfaces)
¢ Tunnel trough barrier.

) Biomolecules (proteins)
¢ Heat up the system to overcome the barrier.

¢ Quantum wave function reconstruction

Where does this happen? . .
* Reconstruction of geological structures from

¢ All over the place... Especially in bio applications and optimization. seismic measurements, ...




Adding frustration...

¢ General Hamiltonian:

Nontrivial toy model: Spin glasses

|

H:_ZJijSiSj — ] I-t-t-
(i) — =1t
e Introduce frustration between the spins: v=4-v-

magnet ]
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e Properties of the fully-frustrated Ising model:

¢ Huge ground-state degeneracy.

L ==
1
> — =<
1
==

¢ Complex energy landscape, Tc = 0 in 2D.
o HDJij <0 Vi,j

* What happens if we add randomness, too!? spin glass ]
Spin glasses: (Magnetic) Frustration Selected big challenges
® Add disorder... Edwards-Anderson spin glass Wi Py
Hr
H=- %: JijSiSj — hz S; J;; random .
® ... obtain loads of frustration: SGx
_* ¢ dieord b+t TLRTT
— isorder spin.glasses in field (3D) universalit
+| |+ — +| | - P(q) Y
—_— frustration —_—
t=t 7=
ferromagnet spin glass E ] .
® Many metastable states, slow relaxation. ~qeA | +qEA

® Nontrivial aging, memory effects, rough landscape.

nature of the spin-glass state
® NP hard — perfect for testing algorithms!

0
o | - [ . L T
® No transition below d = 3, mean field for d = 6. configuration space ultrametricity aging & memory



A brief word on the history... RSB VS DP

® Countable infinity of pure ® One pair of pure states in the
states in the thermodyn. limit. thermodyn. limit.
P(q) P(q)
Giorgio Parisi Daniel Fisher David Huse and many more... -gEa +qEAq -qEa +qEAq
® Briefincomplete history... ¢ Nontrivial ground state e Trivial ground state
® mid 70’s: Edwards-Anderson Ising spin glass model ( .J;; random):
H— Z Ji;8i8; mean-ﬁeld» Z - Z ® Spin-glass state in a field: ® No spin-glass state in a field:
(if) (ig) i,j

® mid 70’: Mean-field Sherrington-Kirkpatrick ) spin glass. Har
® 70’s: Parisi mean-field soluti y breaking - RSB). PM PM
® 80’s: Scaling-li or short-range systems. SG SG—
® 90’s: Chaotic [ re (CP) by Newman & Stein. ' T >T ' T ;

Incidentally, how.do we measure “order’’? Applications beyond disordered magnets

¢ The ground state has no
spatial order (m = 0).

* The models can describe different materials and many systems with

competing interactions on a graph:
e Computer chips:
* Above T spins fluctuate. S; component

* Below T¢ spins frozen. Jij wiring diagram

¢ Economic markets:
e Compare spins at time to S;
with spins at time t+ to:

agent inclination

o B Jij portfolio interactions
Si(to)Si(t+t @ S5 =+1 o
Z 0) +to) o SZ _ _14g ¢ Other applications: markets
e Not practlcal in simulations. Better: ! ¢ Quantum error correction (topological quantum computing).

¢ Neural networks.

¢ Optimization problems ...

N
1
= N Z Sla;s’lﬂ (mferro - leass)

\ 4



Importance of spin glasses in optimization How can we study these systems!?

e Selected common optimization problems: ¢ Analytically: znly r.ne:.m-ﬁeld solution or qualitative 00
escriptions.
o [K-SAT (x11 OR x12 OR x13) AND (x21 OR x22 OR x23) AND... P
® Number partitioning (NPP)

. e Numerically: Optimal problem for huge computers.
® Minimum vertex covers

. . ¢ Challenges:
® Spin glasses, proteins, ...

e Exponential number of competing states (usually NP hard).

vertex cover

e What do these have in common? e Relaxation times diverge exponentially with the system size.

o They are typically problems in NP e Extra overhead due to disorder averaging.

® They have a very rough energy/cost function landscape. * This means small systems only.

* Any study requires...

® They map onto spin-glass Hamiltonians:
e ... clever models,

P Problems
NP-complete

How large is large? A typical project takes...

2222283838388 888888888

I -

e ... better algorithms,

N
H(S;) = ZQijSiSj S; € {£1}

] e ... very large computer clusters.

Speeding up simulations:

g;g;gggggggggggggggggggggg{g{gg;g; Parallel tempering Monte Carlo

S S G B S G B G G B G G B S S S S G B SR S S B S R R G B S EE G B EE G R G BRSO R S G

SIS S S S S S S S S Y SRS S S S RS S RS RS I R RS G S S

oSS S S S S S S S S S S SRS S S S E S e SIS ESE S ES S
oSS SIS ES S E S ES E SIS S S ES S S S S ESESES ESES ESES
SIS ES SIS ES S E S S E SIS S S SIS S ES S B ESES ESES ESES
F R e R Y-y

SIS S S S S S S S S G G SR S A S RS RS S

SSRGS S S G R SRS S B S RS G S

...about 3 month
on 500 processors.
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Top |0 reasons to use parallel tempering Exchange (parallel tempering) Monte Carlo

Parallel tempering: algorithm and details Example: Ising spin glass.in d =3

© N o h WD —

Geyer (91)
Hukushima & Nemoto (96) e |dea:
Very efficient.
Simple to implement.
Only few parameters. . .
easy crossing of barriers.
It is practical (several T’s).
Small numerical overhead

It is easy to parallelize

e Simulate M copies of the system at different
temperatures with Tmax > Tc (typically Tmax ~2TMF).

e After each lattice sweeps, attempt to swap neighbors:

Hukushima & Nemoto (96)

tewmpering configuration space
Monte Carlo
¢ What has to be tuned?

* Position of the temperature

¢ Number of temperatures M.

S.

. o
' top 8 reasons \; ’] r \ ’
Mix with other algorithms. g 1o use m
It is ‘Made in Japan’ parallel +

¢ Qutline of the algorithm: i Equilibration times: S R ELL N R EELL B R L) R R
¢ Perform a Monte Carlo update between neighboring replicas: Telle ~ 300 MCS 0.8 - equilibrium ]
- _— .
T((Ei, Ti) = (Eit1, Tiyr)] = min {1, exp[AE; 11, Afiy14} M 2 109 MCS - N
0.7 —
AEi1,=FEix1— E; [obeys detailed balance] - N = 43 spins .
ABii1i=1/Tiy1 —1/T; * Equilibration test 06 L T=05T. ]
: : (Gaussian disorder): T i
¢ Pseudo code implementation: (note: keep T, swap pointers 27| B B ]
algorithm parallel_tempering(*energy,*temp,*spins) QZ(E) = = +1 0.5 - L q, ]
for(counter = 1 ... (num_temps - 1)) do z2=2D 0.4 N " ql(E) ]
delta = (1/templ[il - 1/templi+1])*(energyl[i]l - energyl[i+1l) Eln A imple MC
if (rand(0,1) < exp(delta)) then Once bOth agreg,.th-e - 9\ simple .
swap (spins[i],spins[i+1]) system is in equilibrium. - N
swap (energy[i] ,energy[i+1]) Katzgraber et al. PRB (01) 03 C vl v vl v vl v vl
£ 10 102 103 104 10%

done

to, [MCS]



* Two possible scenarios:

P(E)

¢ Temperatures too far apart:
parallel simple Monte Carlo chains.

¢ Temperatures too close: overhead.

T T2
* What determines the number M of temperatures?

* The energy distributions of the system at T, and T2 have to
overlap.

¢ Because AF ~ Cy ——— M ~ / N1l+o/dv

* Note: Systems for which Cy/|7_,o — 0 require many
temperatures.

¢ In principle, we need as many temperatures such that the method
traverses the energy landscape. Measure? Acceptance probabilities.

How.many temperatures do we need? Measuring acceptance probabilities

Tnax > TMF

¢ Definition:
A _ Naccept A
Ntrial gOOd
e Traditional wisdom: Tune the temperature
set such that... bad R
«.02<A<09. ST T

e ..Ais approximately independent of temperature.

¢ Detailed implementation which gives flat acceptance rates:
Incomplete beta function law [usesA = f(Cvy)].

¢ Notes: Predescu et al., ]STAT (03)

¢ A quick run (no need to equilibrate) will immediately produce
stable acceptance rates (easy tuning by hand).

e It has been claimed that A ~ 0.3 is optimal.
Rathore et al., . Chem. Phys. (05)

Practical approach when Cy ~ const. Example: Protein

e Geometric progression:
* Works well when Cv ~ const (like in spin glasses).
e lIteratively construct a temperature set and tune M with \.
1 it 1 . [Tmin]l/(M—l)
T, Tmln Tonax
¢ By hand:
e If Cv diverges strongly, start from a geometric progression.
¢ Interlace extra temperatures by hand.

¢ Tedious, but can be automatized.

* What if C, diverges? atzgraber et al., JSTAT (06)
¢ Optimize the diffusion of temperatures to overcome bottlenecks.
¢ Replicas should do a random walk in temperature space.

¢ Protein A: o]
A & 800
2
2 600
=3
z B
s
400 C
C - Hansmann &Trebst (07)
B o 0.5 05 0. 75 135

sweeps [10 ]
* It can happen that the replicas will only move in subspaces of the
phase space (A, B, C) using traditional temperature schemes.

* Feedback optimization helps overcome these bottlenecks.
Katzgraber et al., JSTAT (06)



Possible extensions and adaptations

Selected optimization methods:

* Any control variable can be used: H
* Field
¢ Temperature and field Monte C&I"IO based
e Coupling constants in QCD Evolutionary

¢ Frequencies (e.g., in a Holstein model)

T Quantum

e Combinations with other algorithms possible:
¢ Tempering Monte Carlo molecular dynamics (biomolecules).
¢ Tempering quantum Monte Carlo (quantum spin glasses).
¢ Bayensian periodigrams (planet search in star systems).
e |terative search methods (combinatorial problems).
¢ Cluster exchange Monte Carlo (diluted spin glasses).
¢ Parallel tempering Wang-Landau sampling (biomolecules).

P versus NP (non-rigorous definitions Is P.always tractable?

P = NP?

e P (“polynomial”) * While in theory P is easier than NP, in practice this is not always true:
¢ All decision problems (YES/NO) that can be solved on a deterministic ® Pre-factors are ignored when assessing algorithms:
sequential machine in an amount of time polynomial in the input. T(N) ~ 10'0000 N s intractable.

* Exponent size is ignored: T(N) ~ N'000 js intractable.
¢ NP (“nondeterministic polynomial”) ¢ Worst-case scenarios ignored: 99.999% P, but 0.001% NP.

¢ All decision problems for which the correctness of a guessed solution

can be verified in polynomial time. e While NP, in general, is harder to solve, there are exceptions:

* NP problems scale worse than any polynomial. * Only deterministic solutions considered:

The problem might be solved quickly, but
with a small error probability.

e Examples: 3-SAT, spin glasses, NPP, ...

P Problems
NP-complete

* Easiest way is to find a polynomial mapping to a known problem.

* NP-complete: hardest problems in NP.

¢ Quantum computers might help solve
problems known not to be in P.

* How do we show that a problem is either P or NP?
Example: D-Wave quantum annealer.




Exact versus heuristic

e Exact:

Thermal optimization:

¢ The algorithm delivers the exact ground state, guaranteed. . .
¢ Difficult task: How can one prove this is the true optimum? SlmUIated anneallng
¢ Often not practical.

e Examples: Branch & Cut algorithm, exhaustive search, ...

* Heuristic:
¢ The algorithm might deliver the exact ground state.
¢ Most algorithms deliver the optimum with high probability.
¢ In general, one obtains a good estimate for the optimum.
¢ Examples: genetic algorithms, simulated annealing, ...

our focus here...

* Note: For most practical purposes heuristic algorithms are enough.

Simulated Annealing (SA VVhen does simulated annealing fail?

) . ) Kirkpatrick et al., Science (83)
¢ Inspired by cooling of a crystal to avoid defects.

* Stochastically sample the cost function H({S})to obtain a stationary
state described by the Boltzmann distribution.

Simulated annealing Parallel tempering

o\ \«0

A

* Once the system is in thermal equilibrium, cool slowly and iterate.
* Typical cooling protocols: T(t) =a/(b+logt) logarithmic

ALGORTTHM (sim anneal): T(t)=a—0bt linear (0.1<b=<0.2)
choose configuration {Si} T(t) = aexp(—bt) exp (0.85b$0.99)
for i = 1 ... tmax}

set temperature T(t);

T li T I ithmi
MC run until equilibrium; Inear ogarithmic
[store best solution];
done
return E = H({Si})

>

T t T ”~ t
* The slower the cooling, the better. Infinitely slow will find true optimum. * Simulated annealing is a one-way optimization.

e Many applications across disciplines (bio, TSP, NPP, ...). Geman & Geman

* If the energy landscape is rough, it might get stuck in metastable states.



Improving simulated annealing by repetition Simulated Annealing applied to the TSP

e Empirical observation:

¢ The algorithm getting stuck is only slightly
dependent on the annealing speed/schedule.

¢ Initial conditions can strongly affect the
performance.

e Simple solution:

* Repeat the sampling many times with
different initial conditions / Markov chains.

¢ Keep track of the states obtained.The
distribution of low-lying states should give
a clear indication of the ground state.

¢ Alternative: Use parallel tempering.

Optimization using parallel tempering

initial tour optimized tour
200 e — 200 e —
by WV = 72 cities b W =72 cities g
180 > n 1 180 3 o .
am n - | B} u | |
60 F omoog A8 . 160 F W g % o
140 [* XA 140 ¥
n o — n
120 § 120 ~ —
100 100 . " ]
n
80 My 80 Mg an i m n
60 | ™y 60 | ™y [ p— Lt |
40 40 | " Sa e |
20 ow L [ =]
0 - 2 I. ] [ ] u 4 a

0 20 40 60 80 100 120 140 160 180 20C

0 20 40 60 80 100 120 140 160 180 200

e 72 city tour with random initialization (tour length ~ 7000 steps).
¢ Optimization with a linear schedule, quenched to T = 0.

¢ Optimal tour (approximately 5 minutes run time) ~ 1320 steps.

Parallel tempering ground-state searches

e OQutline of the approach:

Moreno et al. (03)

¢ Perform a parallel tempering (PT) simulation with Ty, close to zero

typically Trin ~ 0.1T.

* Simulate two copies of the system with different Markov chains.

* Run the simulation for time teq until the system is in equilibrium.

¢ During an additional teq/4, repeat:

¢ Before each PT move record the energy (and spin configuration)
for the lowest T values if the energies match in both copies.

* If a lower energy is found, replace the recorded value.

¢ Performance of the method:

* Works best for short-range systems.

* For intermediate system sizes (up to 500 spins) = 99% accuracy!



Distribution of states reached at low. [
:
o o I I
L = 4 Gaussian L = 8 Gaussian
| B, = —1.712031 1 E, = —1.767109
- T =01 . T =01
° ° d stat
N N
|‘ ||.| bowre ° ‘ L oy

-1.71 -1705 -1.7

E

-1.767 -1.766

E

e Data for a 3D Gaussian spin glass instance sampled 103 times.

* The ground state is the most populated state, even for ~ 500 spins!

e Basic idea:

e Mimic nature by generating a “population” of possible solutions.

¢ Evolve the population according to some problem-dependent rules.

¢ Survival of the fittest...

e Application domain:

¢ Optimization problems with roug

f

ﬁ\enérgy landscapes: Using a

Genetic algorithms

¢ Population of solutions:
¢ Needs to be in a “genetic representation.”

ingredients for.a GA

* The larger the population, the better the chance to find a solution.

/" @
| /'%%f: |

<A

population allows the algorithm overcome barriers.

* However, the larger, the longer the search could take.

Example: Minimize of a function f(x)

.

* Represent the pool of minima as bit strings

where mutations are easily accomplished.
¢ The initial population is a list with

¢ Outside physics: scheduling, protein ligand docking, code cracking,
TSP, model selection, compiler flag optimization.

¢ In Physics: statistical mechanics problems, X-ray data analysis,
geological data reconstruction, general optimization...

* Note: Here we follow closely the book of Hartmann & Rieger.

random-bit arrays.

¢ Fitness function:

° initial
PY @
[ )

\ Mal

¢ We need a measure of the quality of a candidate solution.

¢ Example: Hamiltonian of a physical problem, or for above f(x).



Operations on the population Crossover & Natural selection

* Evolution of the population: e Crossover operation:

¢ To converge to a solution, cheap operations that randomize the ® There are many ways, e.g., sequence splitting, keep the fittest, ...

population need to be performed. e The number of parents can be varied (typically 2).

¢ Randomizes better than mutations (typically called more often).

e Mutations:
* Randomly change bits with a (small) probability p. ¢ Natural selection (fitness testing): /
100100 01010 —— 00100 01010 * Very much problem dependent.
e Crossover:

¢ Evaluate the fitness of the solution

¢ Generate “offsprings” from a set of “parents.” and only keep the fittest.
¢ Different schemes: kill 50% worst, f(x)
M —> (00100100111 kill offspring if worse than parent, 08
[ ol00111| kill with a fitness-dependent probability. 06
. ) . L . ® The population can be shrunk or kept constant 04
Note: In principle, any operation is possible. Only few are good... (cloning of the fittest). ol i 82

Pseudocode & Final considerations Case study: function minimization

¢ Note: e Goal:

» The method is heuristic, and often ALGORITHIM (generic genetic) * Find the minimum of f(z) = 10|z — 0.5| — cos(100(z — 0.5)) + 1

does not deliver good results. Initialize populations xi, .. xm in the intervalz € [0, 1].
¢ GAs should be combined with other fort= 1 ... Niar ¢ Note: this is an academic example because we know o = 0.5.
local optimizers to improve results. choose z}fset.of parents {x}; e We represent x € R 6
* Recommended to start with a large rente Jleprings via crossovers as bit strings with precision P: f(x)
population that is culled. [local optimization;] P
calculate ﬁtness.; . . x; = Z 9—J xz
update population with offsprings; . )
* Advantage: done =t z] €{0,1}

return best individuals from xi, ... xm

¢ Straightforward to implement. o Steps:

) ¢ Represent numbers as genes.
¢ Disadvantage: . .
¢ Mutation/Crossover operations.

* Many parameters must be tuned, fitness functions often not available.

* Evolve the population. o o0z 04 , 06 08 1

¢ The choice of parameters/operations depends on the problem. X Hartmann & Rieger



Representation of humbers & mutations

e Converting floats to bit sequences:

e This can be efficiently done with the code

snippet on the right.

Mutations:

100100 01 10 === 00100 01 10

¢ Flip bits with a
probability p.

¢ Note that this can
also be biased to

work for low or
high bits.

ROUTINE bit_seq(x,P)

f=0.5;
forq=1..P;
do
if(x = f)
then
Xq = 1;
x=x-f,
ROUTINE mutate(x) ERS
Xq=0;
forg=1..P; f=120;
do done;
r = rand(0.,1.) el
if(r < p){ return (Xi,X2, ..., Xp);
Xq= | - xg;
done;
done;

return (X1,xa, ..., Xp);

¢ Natural selection: An offspring that has better fitness than the parent
automatically replaces the parent.

f(x)

Example run:

e Start with M = 50 genes.
¢ Mutation probability: p = 0.1.

ALGORITHM genetic(f)

begin
initialize M strings of length P.
fort=1..ndo

=-—=- average
— best

o L first optimum ||

choose parents i and j randomly in [1,M];
(c1,¢2) = crossover(xi,x2);

mutation(ci,p);

mutation(c2,p);

1 if(f(c1) < f(x1)) then

! X1 =ci;

| done;

i if(f(c2) < f(x2)) then
X2 = C,

done;

L done;

I
1 10 100

1000
t[n] Hartmann & Rieger

return best individual from (xi, ... Xm)

end;

10000

Crossover

e Details:

¢ Select two parents.
¢ Select a splicing bit position s.
¢ Generate two offsprings.

Loolo LY
+ —
L oioon]

* Note:
e |t is best to select a random crossover point to improve

randomization.

ROUTINE crossover(xi,x2)

s = rand(l,P)

forg=1..sdo
9 =x19
29 = x2%,

done;

for g =s+l ..Pdo
Clq = qu;
4 =x1%

done;

return (c1,c2);

¢ One could also use three parents, where one plays the role of a
“mask” used to select the parental bits for the offspring.

Iracking the evolution of the population

e Example histogram of genetic population with M = 5000.
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X Hartmann & Rieger

¢ The initial population at t = 0 is random, i.e., P(x) ~ | for all x.
o After t = 5¢10° iterations the population relaxes into the local minima

with a large fraction settling for the true optimum.



Quantum Annealing

Quantum enhanced optimization Kadowaki & Nishimori (98)
® |dea: Farhi et al. (00)

® Use quantum tunneling & fluctuations.
® Like SA, but quenches quantum fluctuations.

® Theoretical advantages over SA:
® Not limited to a local search.

® Fluctuations determine the “tunneling radius.”

® Implementation in DW2: Morita & Nishimori (06)
® Apply a transverse field that does not commute: [S*, 5%] # 0
N

H(S) =D Qi;SiS; —— H(S ZQUSZSZ DZSw
i#] i#]
® Reduce quantum fluctuations via a linear protocol D(t) = a — bt.

Is this method of general interest? Yes!

UL L IR nmom- /
NIRRT

Final considerations

LN

Washington chip Cryogenic mount  D-Wave 2X7'@ NASA

e First quantum annealing machines with ~1000 qubits.
¢ Based on programmable superconducting flux qubits.

¢ Currently, large controversy on its speed & quantumness.
currently part of my research.



* How can we improve optimization algorithms?

* Tailored combinations of algorithms tend to work better.

* Developing new & efficient algorithms is the holy grail in this field.

. HOW'S YOUR THE PROJECT EXISTS
* There are more efficient methods. However, these are very complex. QUANTUM COMPUTER IN A STMULTANEOUS CANI  THATS
PROJECT COMING STATE OF BEING BOTH OBSERVE A TRICKY
ALONG? TOTALLY SUCCESSFUL ITe QUESTION.

AND COMPLETELY
e Other selected methods: GREAT! UNSUCCESSFUL

* Improved Extremal Optimization (heuristic).

e Hysteretic Optimization (heuristic, works for high connectivity).
e Patchwork Dynamics (heuristic, helps with nonplanar graphs).

e Max-flow methods (heuristic, ideal for random-field models).

e Matching algorithms (heuristic, planar frustrated systems). Thank you!
* Branch & Bound (exact, only small instances tractable).
* Population Annealing (sequential Monte Carlo, very fast, new SOA?). hgk@tamu.edu




