

Helmut G. Katzgraber

TEXAS A\&M
 UNIVERSITY

First steps towards Monte Carlo...

Outline

- Random numbers:
- True vs pseudo
- Recommended generators
- Libraries
- Application: Random walks
- Standard random walk
- Simple simulation techniques
- Monte Carlo integration
- Recap:Traditional schemes
- Simple sampling
- Markov chain sampling
- Importance sampling
- Statistical mechanics
- Concepts in a (pea)nut shell
- Phase transitions
- A toy model: the Ising model
- Finite-size scaling

Literature used

- Random numbers:
- "Random numbers: A survival guide" - Mertens (arXiv:0905.4238)
- "Random Numbers in Scientific Computing" - HGK (arXiv:I005.4II7)
- "Random Numbers" - Knuth ("Art of Scientific Computing" Volume 2).
- "Numerical Recipes" - Press et al.
- "Numerical Analysis" - Timothy Sauer
- Monte Carlo:
- "Introduction to Monte Carlo Algorithms" - Krauth
- "Introduction to Monte Carlo Methods" - HGK (arXiv:0905.I629)
- "Monte Carlo Methods in Statistical Physics" - Newman \& Barkema
- "Optimization Algorithms in Physics" - Hartmann \& Rieger
- "Scientific Programming" - Zachary

Motivation: Integration schemes...

Example: Rectangle rule

- Goal:
- Compute the following one-dimensional integral: $I=\int_{a}^{b} f(x) d x$
- Solution: Newton-Cotes-like scheme
- Partition $[a, b]$ into M slices of width $h=(b-a) / M$.
- Perform a k-th order interpolation.
- Approximate the integral as a sum.
- Rectangle rule

$$
I \approx \sum_{l=0}^{M-1} h f\left(x_{l}\right)
$$

- For $M \rightarrow \infty$ the sum converges to the integral of $f(x)$.
- Error ~ $O(h)$.

Error of traditional integration schemes

What happens in high space dimensions?

- Error:

- Rectangle rule Error $\sim M^{-1}$
- Trapezium rule Error $\sim M^{-2}$
- Simpson rule

Error $\sim M^{-4}$

- What happens in d space dimensions?
- One-dimensional error scales $\sim M^{-k}$.
- d-dimensional error scales $\sim M^{-k / d}$.
- For large d, convergence is slow!
- Further technicality: nested ranges

Simpson rule (quadratic)

$$
I=\iiint d x d y d z f(x, y, z)=\int_{x_{1}}^{x_{2}} d x \int_{y_{1}(x)}^{y_{2}(x)} d y \int_{z_{1}(x, y)}^{z_{2}(x, y)} d z f(x, y, z)
$$

Can this be an issue for physics applications?

- Yes!
- Most integration schemes fail for high-dimensional integrals.
- The phase space of physical problems is generally huge.

Examples:

- N classical particles $d=6 N$ (3 coordinates, 3 momenta).
- N classical Ising spins
$d=2^{N}$ (can take values of $\pm \mathrm{I}$).
- N spin-S quantum spins $d=(2 S+I)^{N}$
- Solution:
- Find a method where the error is independent of the dimension d.
- However, for that we need to first understand random numbers...

Poll:Which generators do you use?

- drand48()?
- r250()?
- rl279()?
- Mersenne Twister?
- Randoml23?
- http://random.org?
- /dev/random?
- Home brew?
- I do not know but it works..
- Never used one.

Random Number Generation

Nandom Number Generation

Desired properties of a RNG in simulations

- Simple facts:
- Modern computers can perform $\sim 10^{9}$ operations per second.
- A typical Monte Carlo simulation needs $\sim 10^{14}$ random numbers!
- Desired properties for a RNG:
- The numbers should be "as random as possible" and not repeat.
- It should be fast.
- Problem:
- Excellent RNGs are typically slow, poor RNGs fast...
- Solution:
- Use the right RNG for the right problem (True vs Pseudo RNGs).

True Random Number Generators

True RNGs

- Pros:
- True random numbers are generated.
- No correlations in the sequence, the numbers are unique.
- Cons:
- Generally slow (not useful for physical simulations).
- Because the numbers are unique, code debugging is difficult.
- Applications:
- Cryptography.
- Seeding of large-scale simulations (or PRNGs).

Implementations of TRNGs

- General concept:

- Exploit unpredictable processes in nature.
- Add post-processing to prevent any bias.
- Selected hardware implementations:

- Coin flipping, rolling of dice, roulette, ... (slow: 32 tosses for I int).
- Random physical processes:
- Noise (thermal, atmospheric, ...)
- Radioactive decay
- Quantum interference (idQuantique)
- Human game-play entropy in MMO games
- LavaRand by SGI (pictures of patterns for entropy).
- Unix / dev/random collects noise from device drivers.

Pseudo Random Number Generators

Pseudo RNGs

Implementations of typical PRNGs

- Pros:
- Generally fast.
- Do not require special hardware and are therefore portable.
- Sequences can be reproduced for debugging.
- Cons:
- Finite sequence lengths (however, some are very long).
- The numbers can be correlated.

- Applications:

- Computer simulations.
- Statistical data analysis.
- Applications that are not mission critical ("Who pays for the beer?").

PRNGs you should use

- General concept:
- PRNGs are based on an algorithm and are therefore deterministic.

 | seed 2 seed 1 |
| :---: | :---: |

- Mathematical structure:

$$
x_{i}=f\left(x_{i-1}, x_{i-2}, \ldots, x_{i-n}\right)
$$

- The initial n numbers needed are called the seed block.
- Goal: find a function f that produces "very" random numbers.
- The seed determines the sequence of random numbers:
- It is crucial you carefully seed your simulation.
- Do not seed your simulation too often to prevent overlaps.
- Some generators use the modulo operator to randomize the sequence. This, in turn, limits the length of the sequence.

Lagged Fibonacci Generators

- The name comes from the similarity to the Fibonacci series:

$$
x_{i}=x_{i-1}+x_{i-2} \quad \longrightarrow \quad 1,1,2,3,5,8,13,21, \ldots \quad\left(x_{0}=x_{1}=1\right)
$$

- Definition:

$$
x_{i}=\left(x_{i-j} \odot x_{i-k}\right) \bmod m, \quad 0<j<k
$$

- Properties:
- \odot represents either addition, multiplication, or XOR.
- Requires a seed block of size k (has to be built carefully!).
- $m=2^{M}$, with $M=32$ or 64 .
- Very fast (can be vectorized and pipelined).
- In general, passes all statistical tests known.
- Very long periods: $\quad \rho(\oplus)=2^{k-1} 2^{M-1}$
$\rho(\otimes)=2^{k-1} 2^{M-3}$

Lagged Fibonacci generators contd.

- The quality of the generator (and length of period) highly depends on the values of j and k. The larger the lags, the better.
- Note: the XOR version is known as two-tap generalized shift register.
- Additive choices: (rarely used)
- Multiplicative choices: (commonly used)

$$
\begin{aligned}
& \{55,24, \oplus\} \\
& \{607,273, \oplus\} \\
& \{2281,1252, \oplus\} \\
& \{9689,5502, \oplus\} \\
& \{250,103, \otimes\} \\
& \{1279,418, \otimes\}
\end{aligned}
$$

- $r \mid 279$ (multiplicative with $k=1279, j=4 I 8$):
- Period of approximately 10^{394}.
- Passes all statistical tests.
- Part of the GNU Scientific Libraries (GSL).

Only use library implementations!

Other commonly used PRNGs

- Mersenne Twister:
- Generalized feedback shift register PRNG.
- The period is given by a Mersenne prime: $M_{n}=2^{n}-1 \quad n \in \mathbb{N}$
- The implementation mt19937 () has period ~ 10^{6001} !
- Probably best and fastest generator at this time (passes all tests).
- Part of many scientific software packages and libraries (R, Matlab, ...).
- Easy to checkpoint.
- WELL (Well equidistant long-period linear) generators:
- Based on the Mersenne Twister, but with better bit mixing.
- Randoml23 (DE Shaw):
- Counter based, radically different. Very good for certain applications.

Library implementations of PRNGs

- It is not recommended to implement one's own PRNG.
- Many libraries have optimized implementations.
- Examples:
- Boost Libraries: Generic implementations in C++.
- GNU Scientific Library (GSL): Implementations in C.
- TRNG: Implementations for parallel simulations.
- Numerical Recipes: Implementations in many different languages.

license issues

- Structure/contents of PRNG libraries:
- Uniform PRNGs (rI279, Mersenne Twister, LCG, ...).
- Distribution functions (Gaussian, Gamma, Poisson, ...).
- Tests.

Example: Boost Libraries

Boost Libraries:Adding it all up...

- Definition of generators:

```
boost::lagged_fibonacci1279 rng1; // r1279
boost::mt1993\overline{7} rng2; // Twister
boost::minstd_rand0 rng3; // LCG
```

- Definition of distributions:
- Uniform: $\quad r=a+(b-a) u$
boost::uniform_int<int> dist1(a,b); boost: :uniform_real<double> dist2(a,b);
- Exponential: $q(y)=a \exp (-a y)$ boost::exponential_distribution<double> dist3(a);
- Normal:

$$
q(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-y^{2} / 2\right)
$$

boost::normal distribution<double> dist4(mu,sigma);

Final recommendations

- Remember:
- Test your simulation code with two different PRNGs.
- Ensure provenance: Store information about the PRNG \& seed.
- Use trusted and well-tested implementations. Avoid home-brew.
- Know your PRNG’s limits!
- How long is the period?
- Are there problems with certain applications?
- Are there correlations?
- Be careful when you use PRNGs in parallel simulations.
- Recommended generators:
- Mersenne Twister (mtl9937).
- Lagged Fibonacci (r1279).

Random numbers - A first application...

Random walks

What is the typical size of a random walk?

- Motivation:
- Likely the simplest physical application of random numbers.
- Applications:
- Economics: used to model shares prices.
- Genetics: used to simulate genetic drift in genetic populations.
- Physics: simplified models for Brownian motion.
- Biology: motile bacteria typically perform random walks.
- Polymers: simple polymer/protein properties can be modeled.

What is the typical size? contd.

- Compute the vector \mathbf{R} between beginning and end:

$$
\mathbf{R}=\sum_{i=1}^{N} \mathbf{r}_{i}
$$

- Average over many configurations:

$$
\begin{aligned}
\langle\mathbf{R}\rangle & =\sum_{i=1}^{N}\left\langle\mathbf{r}_{i}\right\rangle=0 \\
\left\langle\mathbf{R}^{2}\right\rangle & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\mathbf{r}_{i} \cdot \mathbf{r}_{j}\right\rangle=\sum_{i=1}^{N}\left\langle\mathbf{r}_{i}^{2}\right\rangle+\sum_{i \neq j}\left\langle\mathbf{r}_{i} \cdot \mathbf{r}_{j}\right\rangle=N a^{2}
\end{aligned}
$$

- The typical linear size of the walk is therefore $\sqrt{\left\langle\mathbf{R}^{2}\right\rangle} \propto a \sqrt{N}$.
- Note:
- This expression is independent of the space dimension d !
- Random walks are $D=2$-dimensional fractal objects with $N \sim \ell^{D}$.
- Simplest setup:
- The walk can cut across itself.
- There are no interactions.
- The angles are random and uncorrelated.
- Model:
- The vectors r_{i} connecting the steps can be treated as random.
- The vectors r_{i} connecting the steps are uncorrelated.
- What does this mean? Averaging over multiple configurations yields...

$$
\left\langle\mathbf{r}_{i}\right\rangle=0 \quad\left\langle\mathbf{r}_{i} \cdot \mathbf{r}_{\mathbf{j}}\right\rangle=\left\langle\mathbf{r}_{i}\right\rangle \cdot\left\langle\mathbf{r}_{\mathbf{j}}\right\rangle=0 \quad i \neq j \quad\left\langle\mathbf{r}_{i}^{2}\right\rangle=a^{2}
$$

Modeling d-dimensional random walks

- Algorithm (d-dimensional lattice):
- Place a walker on the origin.
- Draw a uniform random number in [1,2d].
- Move the walker to the new position.
- Treat this new position as the new origin.
- Iterate...
- How to determine the typical distance:

- Perform N steps.
- Measure the geometric distance from the origin.
- Average over many runs.
- Vary N and verify that $\sqrt{\left\langle\mathbf{R}^{2}\right\rangle} \propto a \sqrt{N}$.

Example: One-dimensional random walk

- Simple algorithm:

```
while(i < N){
    if(rand_bit()){
        dist++;
    }
    else{
        dist--;
    }
    i++;
    x2_ave += dist*dist;
}
```


- Note:
- The above code snippet is for one run of N steps.
- To compute error bars, you need to average over runs.
- Higher dimensions can be implemented with a case statement.

Historical motivation

- Manhattan Project at Los Alamos Natl. Lab:
- Simulations of nuclear weapons.
- The term "Monte Carlo" was coined 1940 by Ulam, Fermi, von Neumann, Metropolis and others thinking of casinos when using random numbers.
- Monte Carlo method:

- One of the most important methods in computational physics.
- Idea:
- Randomly sample a volume in a d-dimensional space to obtain an estimate of an integral at the price of a statistical error.
- This works best when the problem has a large space dimension.

Manhattan?

Monte Carlo!

Monte Carlo integration

Motivation

- Recall...
- Most integration schemes fail for high-dimensional integrals.
- The phase space of physical problems is generally huge.

Examples:

- N classical particles
$d=6 \mathrm{~N}$ (3 coordinates, 3 momenta)
- N classical Ising spins
$d=2^{N}$ (can take values of $\pm \mathrm{I}$).
- N spin-S quantum spins
$d=(2 S+I)^{N}$
- Solution:
- A method where the error is independent of the space dimension...

Simple sampling Monte Carlo contd.

- How can we compute π using Monte Carlo integration?
- Integrate part of the unit circle $A_{\circ}=\pi r^{2}$ enclosed by a box of unit side length $A_{\square}=r$.
- For m_trials $\rightarrow \infty$ this converges to π.

- Error $\sim M^{-1 / 2}$ independent of d.

```
algorithm simple_pi
    initialize n_hits
    initialize m_trials 10000
    initialize counter 0
    while(counter < m_trials) do
        x = rand (0,1)
        y = rand(0,1)
        if(x**2 + y**2 < 1)
        n_hits++
        fi
        counter++
    done
```

return pi = 4*n_hits/m_trials

Simple sampling Monte Carlo

- So far: Sample the function $f(x)$ at evenlyspaced points.
- Now: Sample $f(x)$ at random points.
- Analogy:

- Determine the area of a pond by throwing stones.
- Enclose the pond by a known area $A=a b$.
- Randomly throw stones in the rectangular area.

$$
A_{\text {pond }}=A N_{\text {in }} / N_{\text {tot }}
$$

- We obtain a simple sampling statistical estimate of $A_{\text {pond }}$.
- Note: get lots of Kölsch to properly randomize the process...

Markov chains \& pebbles

- So far:
- The pebbles are independent and thrown from one place.
- π estimate: the random numbers are independent. 1
- Problem:
- If the pond is large, we cannot reach all corners from one point only!

- Solution:
${ }^{b}$
- Use a bucket of pebbles. Throw the first, relocate, throw again, ...
- If you throw outside the rectangle, get the pebble and place it on your current location. The move is rejected, the last one counted twice. This ensures the Markov chain is reversible (detailed balance).

Markov chains: estimating π

- Start at $\{0,0\}$ and "wander" around phase space.
- Select p carefully:
- too small: slow convergence.
- too large: many rejections.
- ensure $\sim 50 \%$ of the moves are accepted.

```
algorithm markov_pi
    initialize n_hits 0
    initialize m_trials 10000
    initialize x 0
    initialize y 0
    initialize counter 0
    while(counter < m_trials) do
        dx = rand (-p,p)
        dy = rand(-p,p)
        if(|x + dx| < 1 and |y + dy| < 1)
            x = x + dx
            y = y + dy
        fi
        if(x**2 + y**2 < 1)
            n_hits++
        fi
        counter++
    done
return pi = 4*n_hits/m_trials
```


Simple sampling vs Markov chain sampling?

- Simple sampling Monte Carlo:
- Advantage: No correlations between states (pebbles).
- Disadvantage: At every step a new state from a given distribution needs to be generated from scratch.
- Markov chain Monte Carlo:
- Disadvantage: There are (auto)correlations between states. Uncorrelated measurements are only possible every autocorrelation-time steps.
- Advantage: Slightly randomly change the existing state to generate a new one from a given distribution.
- So... What do we do?
- Surprisingly, it is easier to sample from an existing distribution.

Simple sampling:When does it fail?

- Example: $f(x)=x^{n}(n>-1) \quad \rightarrow \quad I=\int_{0}^{1} f(x) d x$
- The integral is given by:

$$
I \approx \frac{1}{M} \sum_{i}^{M} f\left(x_{i}\right)
$$

with x_{i} random in $[0,1]$.

- Estimating the error: variance

$$
\delta I=\sqrt{\frac{\operatorname{Var} f}{M-1}} \sim M^{-1 / 2}
$$

$$
\begin{aligned}
& \operatorname{Var} f=\left\langle f^{2}\right\rangle-\langle f\rangle^{2} \quad \text { return integral } \\
& \text { ments: }
\end{aligned}
$$

moments:

$$
\left\langle f^{k}\right\rangle=\int_{0}^{1}[f(x)]^{k} d x \approx \frac{1}{M} \sum_{i}^{M}\left[f\left(x_{i}\right)\right]^{k}
$$

algorithm simple_integrate initialize integral 0 initialize m_trials 10000 initialize counter 0
while(counter < m_trials) do $\mathrm{x}=\operatorname{rand}(0,1)$ integral += $\mathrm{x} * * \mathrm{n}$ counter++
done
return integral/m_trials

- Solution:
- Select the random numbers such that places of $f(x)$ with a larger support are visited more frequently.
- Problem:
- $n \sim-1$ and $n \gg 1: \operatorname{Var}(f)$ is large.
- The interval $[0, \mathrm{l}]$ is sampled uniformly.
- The error converges slowly.
rejected!
more sampling here

Importance sampling

- When the variance of $f(x)$ is large, the error is also large.
- Solution:
- Produce random numbers that more efficiently sample the area.
- Generate random numbers according to $p(x)$ with
- $p(x)$ close to $f(x)$
- $p(x)$-distributed random numbers are easy to generate.
- We obtain:

$$
\langle f\rangle=\langle f / p\rangle_{p}=\int_{0}^{1} \frac{f(x)}{p(x)} p(x) d x \approx \frac{1}{M} \sum_{i}^{M} \frac{f\left(y_{i}\right)}{p\left(y_{i}\right)}
$$

- Notation: $\langle\cdots\rangle_{p}$ represents an average over p-distributed numbers and y_{i} are p-distributed.
- The error is now $\operatorname{Var}(f / p)$ which is much smaller if $f(x) \sim p(x)$!

But first...

Statistical mechanics primer

Importance sampling contd.

- Example: $f(x)=x^{n} \quad(n>-1)$
- Select $p(x) \sim x^{l}$ with $l \geq n$
- Power-law distributed random numbers y can be obtained from uniform numbers x via

$$
y(x)=x^{1 /(\ell+1)} \quad l>-1
$$

(distribution inversion)

- We have now all ingredients to simulate a physical system:

Markov chains + importance sampling \longrightarrow Metropolis algorithm

Focus: Magnetic systems. Why?

- They are far easier to simulate than systems of interacting particles.
- Many nontrivial analytical results for some systems (e.g., 2D Ising model).
- Best understood models that display phase transitions.
- Simple models can describe complex materials extremely well. Example: 3D Heisenberg ferromagnet.

3D Heisenberg	β
Fe	$0.34(4)$
Ni	$0.378(4)$
CrB_{3}	$0.368(5)$
EuO	$0.36(1)$
Mean field	0.5
Monte Carlo	$0.364(4)$

Why statistical mechanics?

Observables

- Problem:
- Systems of N particles with N large are hard to treat.
- Certain types of systems have emergent collective behavior that the individual constituents do not have (e.g., phase transitions).
- Setup:
- Consider a system of N entities described by a Hamiltonian H.
- The system is described by a state vector $\bar{s}=\left\{s_{1}, \ldots, s_{N}\right\}$.
- The partition function for the system is given by

$$
\mathcal{Z}=\sum_{s} \exp [-\mathcal{H}(s) / k T]
$$

where k is the Boltzmann constant and T a temperature.

- Physically measurable quantities can be computed from Z !

Selected thermodynamic quantities

- Internal energy:

$$
E=\langle\mathcal{H}\rangle=\partial_{\beta} \ln Z
$$

- Free energy:

$$
F=-k T \ln Z=E-T S
$$

- All thermodynamic quantities are related to F or Z :
- Magnetization: $M=\partial_{h} F$
- Specific heat: $C=\partial_{T} E=-T \partial_{T}^{2} F=\beta^{2}\left(\left\langle\mathcal{H}^{2}\right\rangle-\langle\mathcal{H}\rangle^{2}\right)$
- Susceptibility: $\chi=\partial_{h} M=-\partial_{h}^{2} F$

$$
=\beta\left(\left\langle M^{2}\right\rangle-\langle M\rangle^{2}\right)
$$

- Entropy: $\quad S=-\partial_{T} F=-k\langle\ln \mathcal{P}(s)\rangle$
- ...

$$
\beta=\frac{1}{k T}
$$

- Note: h represents the magnetic field. $\mathrm{k}=\mathrm{I}$ in the future.
- Definition (observable):The expectation value of any measured quantity O by performing a trace over the partition function Z. see K. Huang book (87)
- At a fixed temperature $\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \sum_{s} \mathcal{O}(s) e^{-\mathcal{H}(s) / k T}$

$$
\text { with } \mathcal{Z}=\sum_{s} \exp [-\mathcal{H}(s) / k T]
$$

- The partition function Z normalizes the equilibrium Boltzmann distribution:

$$
\mathcal{P}_{\text {eq }}(s)=\frac{1}{\mathcal{Z}} e^{-\mathcal{H}(s) / k T}
$$

- Note: It is this distribution we will statistically sample using Monte Carlo simulations.

Critical behavior in magnetic systems

Continuous phase transitions (state change)

- At a continuous ("2nd order") phase transition, the correlation length diverges:

$$
\xi \sim\left|T-T_{c}\right|^{-\nu} \quad \begin{array}{ll}
\nu \text { critical exponent } \\
& T_{c} \text { crit. temperature }
\end{array}
$$

- Example: Ising model in $d=2$

- I-st order: Phase coexistence and latent heat (not discussed).

Some definitions..

- Definition (critical exponent):
- The critical exponent μ of a quantity f is defined via

$$
\mu=\lim _{t \rightarrow 0} \frac{\ln f(t)}{\ln t} \quad t=\frac{T-T_{c}}{T_{c}}
$$

- This means, that close to the transition the quantity f is dominated by a nonanalytic part $f(t) \sim t^{\mu}$ for $t \rightarrow 0$.
- Definition (homogenous function):
- A function $f(r)$ is called homogenous if for all values of λ

$$
f(\lambda r)=g(\lambda) f(r)
$$

- The function $g(\lambda) \sim \lambda^{p}$ is called the scaling function.
- For more than one space dimension:

$$
\lambda f\left(x_{1}, x_{2}, \ldots\right)=f\left(\lambda^{y_{1}} x_{1}, \lambda^{y_{2}} x_{2}, \ldots\right)
$$

Summary of magnetic critical exponents

Exponent	Definition	Description
α	$C_{H} \sim\|t\|^{-\alpha}$	specific heat at $H=0$
β	$M \sim\|t\|^{\beta}$	magnetization at $H=0, t<0$
γ	$\chi \sim\|t\|^{-\gamma}$	isothermal susceptibility at $H=0$
δ	$M \sim h^{\frac{1}{\delta}}$	critical isotherm
ν	$\xi \sim\|t\|^{-\nu}$	correlation length
η	$G(r) \sim\|r\|^{-(d-2+\eta)}$	correlation function

- Note:
- In the above expressions $t=\frac{T-T_{c}}{T_{c}}$ and $h=\frac{H}{T_{c}}$.
- There are relationships between the exponents.
- Only two are needed to fully characterize a system!

Scaling hypothesis \& exponent relations

- Scaling hypothesis:
- The singular part of the free energy F is a homogenous function near the phase transition.
- Furthermore, $f(t, h)=b^{-d} f\left(b^{y_{t}} t, b^{y_{h}} h\right)$, where b is some length scale and $f(t, h)=F(t, h) / V$, with $V \sim b^{d}$ a volume.
- Example derivation of the scaling relations:
- Let $b=|t|^{-1 / y_{t}}$ Then $f(t, h)=|t|^{d / y_{t}} f\left(\pm 1, t^{-y_{h} / y_{t}} h\right)$

$$
\sim|t|^{d / y_{t}} \phi\left(|t|^{-y_{h} / y_{t}} h\right)
$$

- Recall $M \sim|t|^{\beta}$ for $H=0$, but also $M=\left.\frac{1}{T} \partial_{h} f\right|_{h \rightarrow 0} \sim|t|^{\left(d-y_{h}\right) / y_{t}}$
- It follows: $\beta=\frac{d-y_{h}}{y_{t}}$

Relationships between exponents contd.

- Following the same approach as before...
- Specific heat

$$
\alpha=\frac{d}{y_{t}}-2
$$

- Magnetization
$\beta=\frac{d-y_{h}}{y_{t}}$
- Susceptibility $\quad \gamma=\frac{d-2 y_{h}}{y_{t}}$
- Isotherm

$$
\delta=\frac{y_{h}}{d-y_{h}}
$$

- Homogenous form of the correlation function:
- $G(r)=b^{-2\left(d-y_{h}\right)} G\left(r / b, b^{y_{t}} t\right) \sim|t|^{2\left(d-y_{h}\right) / y_{t}} \Phi\left(r|t|^{1 / y_{t}}\right)$
- From this expression we can derive other "spatial" quantities...

Universality

- Having defined all these exponents... Why should we care?
- While T_{c} does depend on the details of the model, the exponents are universal.
- What do the critical exponents depend on?
- Space dimension d.
- Order parameter symmetry.
- Note:
- For long-range interactions one has to be more careful.

- Knowing the exponent of a simple system that has the same symmetry properties as a complex material can save years of CPU.

Scaling \& Hyperscaling

- Further exponents:
- Correlation length

$$
G(r) \sim e^{r / \xi} \longrightarrow \nu=\frac{1}{y_{t}}
$$

- Correlation function $\eta=d+2-2 y_{h}$
- Scaling relations (cancel out y_{t} and $y_{h} \ldots$):
- Rushbrook $\alpha+2 \beta+\gamma=2$
- Widom $\quad \beta(\delta-1)=\gamma$
- Josephson $2-\alpha=d \nu$
- Has no name $\gamma=\nu(2-\eta)$
- Note: Scaling relations with the space dimension d are called "hyperscaling" relations. They break down for $d \geq d_{u}$.

Simplest toy: The Ising model

Simplest model for a magnet

- Imagine the system as made from small mini magnets on a lattice.
- If all mini magnets point in the same direction, the system magnetizes.

Building a model system contd.

- Is this realistic?
- Um... No.
- However, it is astounding that it works so well for so many materials.
- Why all the simplifications?
- Analytically solvable in $d=1$ (lsing, $\left.T_{c}=0\right)$ and $d=2\left(\right.$ Onsager, $\left.T_{c}>0\right)$.
- What about $d=3$? Out of luck, we must resort to simulations.
- What about $d \geq 4$? Mean-field theory works and is exact!
- Note:
- If $\mathrm{J}>0$, we obtain a ferromagnet, if $\mathrm{J}<0$ an antiferromagnet (spins order antiparallel).

$$
\uparrow \downarrow 4 \downarrow \downarrow 4 \downarrow 4 \downarrow_{J<0}
$$

Building a model system

- Generic setup:
- Place N magnetic moments on a d-dimensional lattice.
- Assume the system is highly anisotropic, i.e., $S_{i}= \pm I=$
- Most general Hamiltonian:

$$
\begin{array}{r}
\mathcal{H}=\sum_{i} H_{i} S_{i}+\sum_{i, j} J_{i j} S_{i} S_{j}+\sum_{i, j, k} K_{i j k} S_{i} S_{j} S_{k}+\ldots \\
\\
\text { coupling to field } \\
\text { 2-body spin-spin }
\end{array}
$$

- Some simplifications:
- $H_{i}=H \quad$ We assume a uniform external field
- $K_{i j k}=0 \quad$ We neglect n-body interactions with $n \geq 3$.
- $J_{i j}=J \quad$ Only isotropic nearest neighbor interactions.

Ferromagnetic Ising model

- Final ingredients:

- Hamiltonian: phase transition T_{c}

$$
\mathcal{H}=-\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}-H \sum_{i} S_{i} \quad J_{i j}=1 \quad \forall i, j
$$

- Order parameter (observable):

$$
m=\frac{1}{N} \sum_{i} S_{i} \text { (magnetization) }
$$

Mean-field theory

- Idea:
- Approximate the effects of neighboring spins by introducing a "mean field" and neglecting fluctuation effects

$$
S_{j} \rightarrow\left\langle S_{j}\right\rangle+\left(S_{j}-\left\langle S_{j}\right\rangle\right)
$$

- Derivation of the partition function:
- Introduce the mean-field approximation into H and neglect quadratic terms:

$$
\mathcal{H} \approx N d J\langle S\rangle^{2}-(H+2 J\langle S\rangle) \sum_{i} S_{i}
$$

- Sum up all one-body terms in the partition function:

$$
\mathcal{Z}=e^{-\beta J N d\langle S\rangle^{2}}[2 \cosh (\beta H+2 \beta\langle S\rangle J d)]
$$

Mean-field vs non-mean-field exponents

- Mean-field exponents:
- Close to the phase transition $t=\frac{T-T_{c}}{T_{c}} \ll 1$. We can expand the
expression for M :

$$
H \approx M t+M^{3}\left[1-t+(1-t)^{2}+\ldots\right]
$$

- $\mathrm{H}=\mathbf{O} \longrightarrow M \sim t^{1 / 2} \sim\left|T-T_{c}\right|^{\beta} \longrightarrow \beta=1 / 2$
- $t=\mathrm{I} \longrightarrow M \sim H^{1 / 3}=H^{1 / \delta} \quad \longrightarrow \delta=3$
- $M=0 \longrightarrow \chi \sim 1 / t \sim\left|T-T_{c}\right|^{-\gamma} \longrightarrow \gamma=1$
- Similarly: $\nu=1 / 2$ and $\alpha=0$.
- Note: These exponents are valid for any $d \geq 4$.
- Exact exponents in d=2:

$$
\alpha=0, \quad \beta=1 / 8, \quad \gamma=7 / 4, \quad \delta=15, \quad \eta=1 / 4, \quad \nu=1
$$

And for $d=3$? Simulations...

Mean-field magnetization and T_{c}

- Recall:
- $M=\left\langle S_{i}\right\rangle$ and $M=\partial_{H} T \ln \mathcal{Z}$.
- Expression for the magnetization:

- It follows: $M=\tanh [\beta(H+2 d J M)]$
- When the external field is zero $(H=0)$ the equation has either one solution $(M=0)$ or three solutions. This defines a phase transition.
- Critical temperature: $T_{c}^{\mathrm{MF}}=2 d J$
- Note:
- Mean-field theory implies a transition for $d=I$, which is wrong.
- $T_{c}(d=2)=2 / \ln (1+\sqrt{2}) \approx 2.26918 \ldots$
- $T_{c}(d=3) \approx 4.51$

Finite-size scaling

Finite-size effects in simulations

- Simulations:
- The accessible system sizes are often very limited.
- However, we can extract thermodynamic information from the data.
- Approach:
- Use periodic boundaries to remove finite-size effects.
- Finite-size scaling.
- General philosophy:

- Never "just" simulate a problem.
- Check first the universality class. Has it been studied before?
- Use "theory intuition" (finite-size scaling) to extract the information.

Example: 2D Ising model magnetization

$$
\begin{aligned}
& \beta=1 / 8 \\
& \nu=1 \\
& T_{c}=2.269
\end{aligned}
$$

Finite-size scaling

- Close to the transition: $t=\left(T-T_{c}\right) / T_{c} \ll 1$
- In an infinite system the correlation length diverges $\xi \sim|t|^{-\nu}$.
- In a finite system (simulation) the correlation length cannot grow larger than the system size, i.e., $\xi \sim L$.
- We need to apply a finite-size cutoff to the scaling expressions:

$$
\mathcal{O}(t) \sim|t|^{y} \longrightarrow \mathcal{O}(t, L) \sim|t|^{y} f(L / \xi)
$$

- The scaling function must satisfy:
- $f(x) \rightarrow$ const. for $x \rightarrow \infty$ ensures correct power law for $L \rightarrow \infty$.
- $f(x) \sim x^{y / \nu}$ for $x \rightarrow 0 \quad$ ensures \mathcal{O} becomes independent of temperature when $\xi \gg L$.
- It follows:

$$
\mathcal{O}(t, L) \sim L^{y / \nu} \tilde{f}\left[L^{1 / \nu} t\right]
$$

Can we do better than that?

- Scaling expression for the magnetization:

$$
\left\langle m_{L}\right\rangle \sim L^{\beta / \nu} \tilde{M}\left[L^{1 / \nu}\left(T-T_{c}\right)\right]
$$

- We have three unknowns (two exponents) which makes the analysis cumbersome.
- Binder ratio:
- Use combined quantities to eliminate the metric factors:

$$
g=\frac{1}{2}\left[3-\frac{\left\langle m^{4}\right\rangle}{\left\langle m^{2}\right\rangle^{2}}\right] \sim \tilde{G}\left[L^{1 / \nu}\left(T-T_{c}\right)\right]
$$

- The function only depends on $L^{1 / \nu}\left(T-T_{c}\right)$. At T_{c} data for different L should cross (up to corrections...).
- One can, in principle, derive many such dimensionless quantities.

Finite-size scaling of the Binder ratio

- The data cross at $T_{c}(d=2)=2.269 \ldots$
- If we select the right value of $\nu=1$ and T_{c} the data fall onto one curve.

