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e Random numbers: * Monte Carlo integration
* True vs pseudo * Recap:Traditional schemes
* Recommended generators * Simple sampling
* Libraries * Markov chain sampling

¢ Importance sampling

e Application: Random walks e Statistical mechanics
* Standard random walk e Concepts in a (pea)nut shell
¢ Simple simulation techniques e Phase transitions

* A toy model: the Ising model

¢ Finite-size scaling

First steps towards Monte Carlo...

Literature used

e Random numbers:
e “Random numbers: A survival guide” — Mertens (arXiv:0905.4238)
e “Random Numbers in Scientific Computing” — HGK (arXiv:1005.4117)
e “Random Numbers” — Knuth (“Art of Scientific Computing” Volume 2).
e “Numerical Recipes” — Press et al.
* “Numerical Analysis” — Timothy Sauer

e Monte Carlo:

e “Introduction to Monte Carlo Algorithms” — Krauth

 “Introduction to Monte Carlo Methods” — HGK (arXiv:0905.1629)
“Monte Carlo Methods in Statistical Physics” — Newman & Barkema

“Optimization Algorithms in Physics” — Hartmann & Rieger

“Scientific Programming” — Zachary



Example: Rectangle rule

¢ Goal:

Motivation: Integration schemes...

b
e Compute the following one-dimensional integral: :/ f(z)dzx

a

¢ Solution: Newton—Cotes—like scheme
¢ Partition [a,b] into M slices of width h = (b — a)/M.
Perform a k-th order interpolation. f(zx)

e Approximate the integral as a sum.

¢ Rectangle rule

M—1
I~ Z hf(z)
1=0

* For M — 0o the sum converges to the integral of f(x).
Error ~ O(h).

Error of traditional integration schemes

rectangle rule

What happens in high space dimensions?

e Error:

e Rectangle rule  Error ~ M"!

¢ Trapezium rule Error ~ M2

e Simpson rule Error ~ M+*

* What happens in d space dimensions?

e One-dimensional error scales ~ M*. 3 0 1 2
¢ d-dimensional error scales ~ M/d,

e For large d, convergence is slow!

e Further technicality: nested ranges

2 py2(x)  pr2(z,y)
I:// dedydzf(z,y,z) = d:n/ dy/ dzf(x,y, z)
y z

z1 1(z) 1(z,y)



Can this be an issue for.physics applications?

Random Number Generation

e Yes!
* Most integration schemes fail for high-dimensional integrals.
® The phase space of physical problems is generally huge.

Examples:
* N classical particles d = 6N (3 coordinates, 3 momenta).
* N classical Ising spins d = 2N (can take values of £1).

¢ N spin-S quantum spins  d = (25 + )N
e Solution:

¢ Find a method where the error is independent of the dimension d.
* However, for that we need to first understand random numbers...

Poll:VWhich generators do you use! Desired properties of a RNG in simulations

e Simple facts:
e drand48( )? Texas Chicken Shit Bingo::. e Modern computers can perform ~10° operations per second.
e r250( )? ... yes, this exists. * A typical Monte Carlo simulation needs ~10'* random numbers!

e rl279()?

e Mersenne Twister?
e Random|23?

e http://random.org!

Desired properties for a RNG:

¢ The numbers should be “as random as possible” and not repeat.
e It should be fast.

* /dev/random?

Problem:
* Home brew? ¢ Excellent RNGs are typically slow, poor RNGs fast...

¢ | do not know but it works...

Solution:
* Use the right RNG for the right problem (True vs Pseudo RNGs).

¢ Never used one.




True RNGs

e Pros:

True Random Number Generators

® True random numbers are generated.

¢ No correlations in the sequence, the numbers are unique.

e Cons:

¢ Generally slow (not useful for physical simulations).

¢ Because the numbers are unique, code debugging is difficult.
e Applications:

¢ Cryptography.

e Seeding of large-scale simulations (or PRNGs).

Implementations of IRNGs

¢ General concept:

Pseudo Random Number Generators

¢ Exploit unpredictable processes in nature.
¢ Add post-processing to prevent any bias.

e Selected hardware implementations: ~ quantis PCI card
* Coin flipping, rolling of dice, roulette, ... (slow: 32 tosses for | int).

e Random physical processes: /u

* Radioactive decay Iy \

¢ Noise (thermal, atmospheric, ...)

Quantum interference (idQuantique)
Human game-play entropy in MMO games
LavaRand by SGI (pictures of patterns for entropy).

o o
LavaRand

Unix /dev/random collects noise from device drivers.



Pseudo RNGs Implementations of typical PRNGs

¢ Pros:
¢ Generally fast.
* Do not require special hardware and are therefore portable.
* Sequences can be reproduced for debugging.

* Cons:
¢ Finite sequence lengths (however, some are very long).

¢ The numbers can be correlated.

e Applications:
e Computer simulations.

e Statistical data analysis.

* Applications that are not mission critical (“Who pays for the beer?”).

PRNGs you should use

¢ General concept:

¢ PRNGs are based on an algorithm and are therefore deterministic.
1000110100100001 11001110101 I|0I000I 10100100001 11001110101 I|0I000I 10100100001 11001110101 I|0I000I 10100100001 11001110101l

¢ Mathematical structure:

Xq = f($i—1,331—2, .- ~;xi—n)

The initial n numbers needed are called the seed block.

Goal: find a function f that produces “very” random numbers.

The seed determines the sequence of random numbers:
e |t is crucial you carefully seed your simulation.
¢ Do not seed your simulation too often to prevent overlaps.

¢ Some generators use the modulo operator to randomize the
sequence.This, in turn, limits the length of the sequence.

Lagged Fibonacci Generators

¢ The name comes from the similarity to the Fibonacci series:

v, =xi—1+xi—o — 1,1,2,3,5,8,13,21,... (1170 =x = 1)
¢ Definition:
x; = (zi—; ©® x;_) mod m, 0<j<k

¢ Properties:
* O represents either addition, multiplication, or XOR.
¢ Requires a seed block of size k (has to be built carefully!).
e m=2M with M = 32 or 64.
¢ Very fast (can be vectorized and pipelined).
* In general, passes all statistical tests known.
e Very long periods:  p(@) = 2~ 12M -1

P(®) — 2k—12M—3



Lagged Fibonacci generators contd.

¢ The quality of the generator (and length of period) highly depends on
the values of j and k.The larger the lags, the better.

¢ Note: the XOR version is known as two-tap generalized shift register.
* Additive choices: {55,24, ®}
(rarely used) (607,273, &)
{2281,1252, &}
{9689, 5502, ¢}
* Multiplicative choices: {250,103, ®}
(commonly used) {1279,418, ®} J

e rl1279 (multiplicative with k = 1279, j = 418):
* Period of approximately 10394,
¢ Passes all statistical tests.
* Part of the GNU Scientific Libraries (GSL).

Only use library implementations!

Other.commonly.used PRNGs

Mersenne Twister:

¢ Generalized feedback shift register PRNG.

 The period is given by a Mersenne prime:M,, =2" —1 ne&N
e The implementation mt 19937 ( ) has period ~ 105001

Probably best and fastest generator at this time (passes all tests).
¢ Part of many scientific software packages and libraries (R, Matlab, ...).
¢ Easy to checkpoint.

e WELL (Well equidistant long-period linear) generators:

¢ Based on the Mersenne Twister, but with better bit mixing.

Random 123 (DE Shaw):
¢ Counter based, radically different.Very good for certain applications.

Library.implementations of PRNGs

It is not recommended to implement one’s own PRNG.
Many libraries have optimized implementations.

Examples:

¢ Boost Libraries: Generic implementations in C++.

* GNU Scientific Library (GSL): Implementations in C.

¢ TRNG: Implementations for parallel simulations.

¢ Numerical Recipes: Implementations in many different languages.
license issues

Structure/contents of PRNG libraries:

e Uniform PRNGs (r1279, Mersenne Twister, LCG, ...).

¢ Distribution functions (Gaussian, Gamma, Poisson, ...).

¢ Tests.



Boost Libraries

Boost Libraries:Adding it all up

* Definition of generators: [call boost headers ]>1-#inc1ude <boost/random.hpp>
2
boost::lagged fibonaccil279 rngl; // rl279 s i“t main (void)
. 4
boost::mt19937 rng2; // Twister .
boost::minstd rand0 rng3; // LCG o // define distribution
[uniform double distribution]>-—boost: :uniform_real<double> dist(0.,1.);
8
¢ Definition of distributions: - . o // define the PRNG engine
[englne: Mersenne Twister boost: :mt19937 engine;
e Uniform: r=a+ (b—a)u -
boost: :uniform_int<int> distl(a,b); (create generator S g R
boost: :uniform_real<double> diSt2 ( a, b) 7 14 boost: :nor;\al_distribution<double> >
: ine,di H
. Exponenuak q(y) = anp(—ay) i: rng(engine,dist)
boost: :exponential distribution<double> dist3(a); 17 // seed it
e Normal: [seeding the generator engine.seed(1234u) ;
° 19
1 // use i
o 2 20 use it
q(y) = \/2— exp(—y~/2) [ 21 for (int i = 0; i < 100; i++){
™ call the generator std::cout << rng() << "\n";
boost::normal distribution<double> dist4(mu,sigma); 23 }

Final recommendations
Random numbers — A first application...

e Remember:
¢ Test your simulation code with two different PRNGs.
¢ Ensure provenance: Store information about the PRNG & seed.

Use trusted and well-tested implementations. Avoid home-brew.
* Know your PRNG’s limits!
* How long is the period?

* Are there problems with certain applications?

¢ Are there correlations?

Be careful when you use PRNGs in parallel simulations.

e Recommended generators:
* Mersenne Twister (mt19937).
¢ Lagged Fibonacci (r1279).



Random walks VVhat. is the typical size of a random walk?

¢ Motivation:
e Likely the simplest physical application of random numbers.

¢ Applications:
® Economics: used to model shares prices.
* Genetics: used to simulate genetic drift in genetic populations.
* Physics:  simplified models for Brownian motion.
* Biology:  motile bacteria typically perform random walks.

® Polymers: simple polymer/protein properties can be modeled.

4—:.!’8.!: e

e Simplest setup:
¢ The walk can cut across itself.
¢ There are no interactions.
¢ The angles are random and uncorrelated.

* Model:
® The vectors r; connecting the steps can be treated as random.

* The vectors r; connecting the steps are uncorrelated.

* What does this mean? Averaging over multiple configurations yields...

(r;) =0 (ri-rj) = (ri) - (r;) =0 i #j (rf) = a®

VWhat is the typical size! contd. Modeling d-dimensional random walks

* Compute the vector R between beginning and end:
N

R = E r;
=1
° Average over many conﬁgurations:

N N
(R?) = ZZ(r, -Tj) Z )+ Z r;-rj) a®

i=1 j=1 i=1 i#j
o The typical linear size of the walk is therefore v/(R2)  av/N.
* Note:
¢ This expression is independent of the space dimension d!
» Random walks are D = 2—-dimensional fractal objects with N ~ ¢

e Algorithm (d-dimensional lattice):

walker

Place a walker on the origin.

Draw a uniform random number in [I,2d].

Move the walker to the new position.

Treat this new position as the new origin.

¢ [terate...

e How to determine the typical distance:

e Perform N steps.
¢ Measure the geometric distance from the origin.
¢ Average over many runs.

* Vary N and verify that/(R2) x aV'N .



Example: One-dimensional random walk

e Simple algorithm:

Manhattan?

while(i < N){
if(rand bit()){
dist++;

Monte Carlo!

}
else{
dist--;

}
i++;
x2_ave += dist*dist;

distance from the origin

L L L L
0 100 200 300 400 500

simulation time
¢ Note:

¢ The above code snippet is for one run of N steps.
¢ To compute error bars, you need to average over runs.
¢ Higher dimensions can be implemented with a case statement.

Historical motivation

* Manhattan Project at Los Alamos Natl. Lab:  [ig

Monte Carlo integration

¢ Simulations of nuclear weapons.

¢ The term “Monte Carlo” was coined
1940 by Ulam, Fermi, von Neumann,
Metropolis and others thinking of
casinos when using random numbers.

¢ Monte Carlo method: Ulam Feynman von Neumann

¢ One of the most important methods in computational physics.

¢ |dea:

¢ Randomly sample a volume in a d-dimensional space to obtain an
estimate of an integral at the price of a statistical error.

¢ This works best when the problem has a large space dimension.



Simplejsampling Monte Carlo

e Recall... e Sofar:  Sample the function f(x) at evenly- . .
* Most integration schemes fail for high-dimensional integrals. spaced points. :
® The phase space of physical problems is generally huge. P *
¢ Now: Sample f(x) at random points. .
Examples: ¢ Analogy: oL i
¢ Determine the area of a pond by throwing stones. b
¢ N classical particles d = 6N (3 coordinates, 3 momenta). _
* Enclose the pond by a known area A = ab.
¢ N classical Ising spins d = 2N (can take values of £1).

Randomly throw stones in the rectangular area.
e N spin-S quantum spins  d = (25 + )N

Apond =A Nin/Ntot

e Solution: We obtain a simple sampling statistical estimate of Apond.

¢ A method where the error is independent of the space dimension... Note: get lots of Kolsch to properly randomize the process...

Simple sampling Monte Carlo contd. Markov.chains & pebbles

* How can we compute TT using Monte Carlo integration? e So far:

* Integrate part of the unit circle A, = 7r% enclosed by

box of de lensth A 2° * The pebbles are independent and thrown from one place.
a box of unit side length Ag = 7

. . X
J * TT estimate: the random numbers are independent. 4
* Form_trials — OO this converges to TI.
0 algorithm simple_pi e Problem: e
| initialize n_hits 0 . o
5 - m_trials-l/? initialize m_trials 10000 e If the pond is large, we cannot reach all 4
5 initialize counter 0 corners from one point only!
o
3 -3
? while(counter < m_trials) do @]
= -4 x = rand(0,1) e Solution:
5 y = rand(0,1) olution: b
. if (xkk2 + yhx2 < 1) ¢ Use a bucket of pebbles. Throw the first, relocate, throw again, ...
- n_hits++
25 5 75 10 125 fi ¢ |If you throw outside the rectangle, get the pebble and place it on
log(m_trials) counter++ your current location. The move is rejected, the last one counted

d . . o . .
. one twice. This ensures the Markov chain is reversible (detailed balance).
e Error ~ M-'"2 independent of d. ] ] ]

return pi = 4*n_hits/m_trials



Markov.chains:

e Start at {0,0} and “wander” algorithm markov_pi
around phase space. initialize n_hits 0
initialize m_trials 10000
initialize x 0
* Select p carefully: SR § ®
initialize counter 0

¢ too small: slow convergence.
while(counter < m_trials) do
dx = rand(-p,p)
* ensure ~50% of the moves dy = rand(-p,p)
if(lx + dx| < 1 and |y + dyl| < 1)
are accepted. e D Eh

y=y+tdy

* too large: many rejections.

fi
if (xkk2 + yHk2 < 1)
n_hits++
fi
counter++
done

return pi = 4*n_hits/m_trials

e Simple sampling Monte Carlo:
e Advantage: No correlations between states (pebbles).

¢ Disadvantage: At every step a new state from a given distribution
needs to be generated from scratch.

¢ Markov chain Monte Carlo:

¢ Disadvantage: There are (auto)correlations between states.
Uncorrelated measurements are only possible every
autocorrelation-time steps.

¢ Advantage: Slightly randomly change the existing state to
generate a new one from a given distribution.

* So... What do we do?
e Surprisingly, it is easier to sample from an existing distribution.

® The integral is given by:

1 M

with x; random in [0, 1].

algorithm simple_integrate
initialize integral O
initialize m_trials 10000
initialize counter 0

while(counter < m_trials) do
x = rand(0,1)

¢ Estimating the error: variance integral += x#+n

counter++
5T = Var f ~ M—1/2 done
M—-1
9 9 return integral/m_trials
Varf = (f7) = (f)" -
integral_sq += x**(2n)]
moments:

M

(= [ el 5 Sl

e Problem:
e n~—land n>> 1:Var(f)islarge.
¢ The interval [0,1] is sampled uniformly.
® The error converges slowly.

¢ Solution:

¢ Select the random numbers such
that places of f(x) with a larger
support are visited more frequently.

more sampling here




Importance sampling Importance sampling contd.

* When the variance of f(x) is large, the error is also large. e Example: f(z) =2" (n > —1) fix)

e Solution: e Select p(x) ~ ! with [ >n

* Produce random numbers that more efficiently sample the area. e Power-law distributed random

¢ Generate random numbers according to p(x) with numbers y can be obtained from
e p(x) close to f(x) uniform numbers x via p(z)
¢ p(x)-distributed random numbers are easy to generate. ylz) =YD o g
* We obtain: !t M (distribution inversion) |
[z 1 I (yi 1 x
T
Y=U1e = | ) Mzi:p(yz)

* Notation: (...), represents an average over p-distributed * We have now all ingredients to simulate a physical system:

numbers and y; are p-distributed. . . . ) ,
Markov chains + importance sampling ——> Metropolis algorithm

Focus: Magnetic systems.VVhy?

e They are far easier to simulate than systems of interacting particles.

Statistical mechanics primer e Many nontrivial analytical results for some systems (e.g., 2D Ising model).

* Best understood models that display phase transitions.

* The error is now Var(f/p) which is much smaller if f(x) ~ p(x)!

But first...

e Simple models can describe complex materials extremely well.
Example: 3D Heisenberg ferromagnet.

1,0:-....'.

Fe 034¢4) | L 2

Ni 03784 [ 'l.

CrB, 03685)] | ere

EuO 0.36(1) | *[ =coni m ~ (T = T.)°
Mean field (0.5 0z L

Monte Carlo  |0.364(4) 0.2 0.4 0.6 0.8 1.0




VVhy statistical mechanics? Observables

e Problem:
e Systems of N particles with N large are hard to treat.

e Certain types of systems have emergent collective behavior that the
individual constituents do not have (e.g., phase transitions).

e Setup:
e Consider a system of N entities described by a Hamiltonian H.
* The system is described by a state vector 5 = {s1,...,SNn}.
e The partition function for the system is given by

Z= Z exp[—H(s)/kT)

where k is the Boltzmann constant and T a temperature.
e Physically measurable quantities can be computed from Z!

Selected thermodynamic quantities

e Internal energy: FE = (H)=03InZ
e Free energy: F=-kTnZ=FE-TS kT

¢ All thermodynamic quantities are related to F or Z:
* Magnetization: M = O, F
Specific heat: C' = 0pE = —TOAF = B2((H?) — (H)?)
Susceptibility: x = O,M = -0 F
= B((M?) — (M)?)
Entropy: S =—-0rF = —k(InP(s))

°

* Note: h represents the magnetic field. k = | in the future.

e Definition (observable): The expectation value of any measured quantity

O by performing a trace over the partition function Z.
see K. Huang book (87)

1
e At a fixed temperature (O) = Z Z O(s)e HE)/RT ]
s ———=— sum over dll states

with Z = " exp[-H(s)/kT]

* The partition function Z normalizes the equilibrium Boltzmann
distribution:

1 —H(s
Puals) = 5 MO

e Note: It is this distribution we will statistically sample using
Monte Carlo simulations.

Critical behavior in magnetic systems




Summary. of magnetic critical exponents

At a continuous (“2nd order”) phase transition,
the correlation length diverges:

Exponent Definition

Description

v critical exponent,

~|T-T.|7%
&~ | el T crit. temperature

Nv

Example: Ising model ind =2
*T.=2.269...

Other observables also show criticality:
* Magnetization m ~ |T — T.|°
C~|T-T,|¢

¢ Specific heat

I-st order: Phase coexistence and latent heat (not discussed).

Some definitions...

e Definition (critical exponent):
e The critical exponent y of a quantity f is defined via

e This means, that close to the transition the quantity fis dominated
by a nonanalytic part f(t) ~ t# for t — 0.

¢ Definition (homogenous function):
e A function f(r) is called homogenous if for all values of A
FOW) = gV £(r)
* The function g(\) ~ A? is called the scaling function.

* For more than one space dimension:
)\f(:lil, o, . . ) = f()\yliltl, )\y2$2, RN

¢ In the above expressions ¢ =

* Itfollows: 3 =

« Cy ~ |t|™ specific heat at H =0
I} magnetization at  =0,¢t <0
¥ isothermal susceptibility at H = 0
o critical isotherm
v correlation length
n G (r) ~ |r|~@=2+)  correlation function
¢ Note:

v H
dh=—.
an T

C c

* There are relationships between the exponents.
* Only two are needed to fully characterize a system! How?

Scaling hypothesis & exponent relations

¢ Scaling hypothesis:

e The singular part of the free energy F is a homogenous function
near the phase transition.

e Furthermore, f(t, h) = b= f(b¥'t, bY" 1), where b is some length
scale and f(t,h) = F(t,h)/V,with V ~ b a volume.

e Example derivation of the scaling relations:
o Letb = [t["}/¥ Then f(t, h) = [t|*/¥ f(£1,¢7¥/¥h)
~ ’t|d/yt¢(‘t|_yh/yth)

* Recall M ~ |t|® for H=0,butalso M = %ahﬂh% ~ [¢](d=ym) /e



Relationships between exponents contd. Scaling & Hyperscaling

¢ Following the same approach as before... e Further exponents: 1
* Correlation length Glr)~els — v=—
. d Yt
¢ Specific heat a=——2
v e Correlation function n=d+2— 2y,
* Magnetization 8= d=yn
ye e Scaling relations (cancel out y; and ys...):
* Susceptibility v = w e Rushbrook a+28+~y=2
v * Widom B(6—1)=~
* |sotherm p—— * Josephson 2—a=dv
d=yn e Has noname ~v=v(2—1n)
* Homogenous form of the correlation function:
o G(r) = b= A=) G(r /b, bYit) ~ [t|HdYm)/ VD (r|t|}/v2) * Note: Scaling relations with the space dimension d are called
* From this expression we can derive other “spatial” quantities... “hyperscaling” relations. They break down for d = d..

¢ Having defined all these exponents... Why should we care?!

Simplest toy: The Ising model

* While T does depend on the details of the model, the exponents

are universal. PN Y, . L R
woy. T/TS"’“) ,f\ Ne o
e £
e I " Ar
&
* What do the critical exponents st ¢ Kr

Xe

N2
O, A
CO |
CHg4

depend on? o f

e Space dimension d. m_[
* Order parameter symmetry. »:{

¢
. Fo . N
* Note: ¥ scaled coexistence curves 3
e For long-range interactions  “f for different liquids p/pe. % ,
one has to be more careful. T T i

* Knowing the exponent of a simple system that has the same
symmetry properties as a complex material can save years of CPU.



Building a model system

¢ Generic setup:
e Place N magnetic moments on a d-dimensional lattice.

e Assume the system is highly anisotropic, i.e., Si = 1 f
* Most general Hamiltonian:

H = ZHS + 2 iSiSi+ D KigkSiSiSk + ..

i 1,5,k
( coupllng to field |

[ 2-body spin-spin ][ 3-body spin-spin |

* Some simplifications:

e H=H We assume a uniform external field

* Kixk=0  We neglect n-body interactions with n > 3.

* Imagine the system as made from small mini magnets on a lattice.

- L . . . e fi=] Only isotropic nearest neighbor interactions.
* If all mini magnets point in the same direction, the system magnetizes.

Building a model system contd. Ferromagnetic Ismg model

e Is this realistic? * Final ingredients: 4‘m

* Um... No.

* However, it is astounding that it works so well for so many materials. = Si=+1
e Why all the simplifications?

* Analytically solvable in d = | (Ising, T = 0) and d = 2 (Onsager, Tc > 0). = Jij

e What about d = 3? Out of luck, we must resort to simulations.

* What about d = 4? Mean-field theory works and is exact! e Hamiltonian:

H=—Y Ji;SS8;—H Z S;

* Note: (35)

¢ If/ > 0, we obtain a ferromagnet, if | < 0 an antiferromagnet (spins * Order parameter (observable):

order antiparallel).

1 o
* + * * ) * * +]<0 m:N;Si (magnetization)

Ernst Ising 1900-98



Mean-field theor:

e |dea:

e Approximate the effects of neighboring spins by introducing a “mean
field” and neglecting fluctuation effects

Sj = (S;) + (S5 — (S5)

e Derivation of the partition function:

¢ Introduce the mean-field approximation into H and neglect
quadratic terms:

M~ NdJ(S)? — (H+2J(S) > S;
e Sum up all one-body terms in the partitionzfunction:

Z = e PINUS)" [2 cosh (BH + 2B(S)Jd)]

Mean-field vs non-mean-field exponents

¢ Mean-field exponents:

—T.

* Close to the phase transition ¢ =
expression for M: ¢

H~Mt+M1—t+(1—1)%+..]

< 1.We can expand the

e H=0 — M~ 2~ T -T,)f —— B=1/2
o t=| —»MNH1/3:H1/6
eM=0——s X~ 1/t~ |T-T[7 —s =1

— =3

Similarly: ¥ =1/2 and a =0.

Note: These exponents are valid for any d > 4.

* Exact exponents in d = 2:
a=0, f=1/8, y=T7/4, §=15, n=1/4, v=1.

And for d = 3? Simulations...

Mean-field magnetization and I

* Recall: Vs
o M =(S;and M = 9yTIn Z. /T

-0.5 | B

e Expression for the magnetization: bl wluz M ‘fi“‘“ e ]
e It follows: M = tanh [3(H + 2dJM))]

* When the external field is zero (H = 0) the equation has either one
solution (M = 0) or three solutions.This defines a phase transition.

e Critical temperature: TMF = 24.7

* Note:
e Mean-field theory implies a transition for d = |, which is wrong.
o T.(d=2)=2/In(1+2) ~2.26918. ..
e To(d=3)~4.51

Finite-size scaling




Finite-size effects in simulations

¢ Simulations:

® The accessible system sizes are often very limited.

* However, we can extract thermodynamic information from the data.

PERIODIC BOUNDARY C(ONDITIONS

e Approach:

e Use periodic boundaries to
remove finite-size effects.

e Finite-size scaling.

e General philosophy:
e Never “just” simulate a problem.

e Check first the universality class. Has it been studied before?

e Use “theory intuition” (finite-size scaling) to extract the information.

Example: 2D Ising model magnetization

T

I | : I v
(my) ~ LP/Y M[LMY (T

‘‘‘‘‘

- 1.50 g7
’Ah—‘k».
ﬁ = 1/8 - \;5,%\;
v=1 125} "
T, = 2.269 i 3
s 1000 L
= o—o 16
i T 6—8 32
-~ 075 4~ 464
~)
g v 128
~ 256
050~ »—» 512
i 1024
0.25—
L I 1
0.00_3 7

T T
_ Tc)] .

Finite-size scaling

¢ Close to the transition: ¢t = (T — T,.)/T. < 1
¢ In an infinite system the correlation length diverges & ~ |¢t|7".

* In a finite system (simulation) the correlation length cannot grow larger
than the system size,i.e., { ~ L.

* We need to apply a finite-size cutoff to the scaling expressions:
o) ~|t]! —— O(t, L) ~ [t} f(L/E)

* The scaling function must satisfy:
e f(x) — const. for x — oo ensures correct power law for L — oc.

of () ~ x¥" forz — 0 ensures () becomes independent of

temperature when £ > L.
e It follows:

O(t, L) ~ LYV f[L'"1]

Can we do better.than that?

e Scaling expression for the magnetization:

(my) ~ LYV MILY"(T — T.)]

* We have three unknowns (two exponents) which makes the analysis
cumbersome.

¢ Binder ratio:

¢ Use combined quantities to eliminate the metric factors:

o=3 [s- k] ~ G -

¢ The function only depends on Ll/”(T —T,). At T data for
different L should cross (up to corrections...).

¢ One can, in principle, derive many such dimensionless quantities.
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* The data cross at T(d = 2) = 2.269...

¢ If we select the right value of v = 1 and T the data fall onto one curve.




