
Helmut G. Katzgraber

Lecture I

First steps towards Monte Carlo…

Outline

• Random numbers:

• True vs pseudo

• Recommended generators

• Libraries 
 

• Application: Random walks

• Standard random walk

• Simple simulation techniques

• Monte Carlo integration

• Recap: Traditional schemes

• Simple sampling

• Markov chain sampling

• Importance sampling 

• Statistical mechanics

• Concepts in a (pea)nut shell

• Phase transitions

• A toy model: the Ising model

• Finite-size scaling

Literature used

• Random numbers:

• “Random numbers: A survival guide” – Mertens (arXiv:0905.4238)

• “Random Numbers in Scientific Computing” – HGK (arXiv:1005.4117)

• “Random Numbers” – Knuth (“Art of Scientific Computing” Volume 2).

• “Numerical Recipes” – Press et al.

• “Numerical Analysis” – Timothy Sauer

• Monte Carlo:

• “Introduction to Monte Carlo Algorithms” – Krauth

• “Introduction to Monte Carlo Methods” – HGK (arXiv:0905.1629)

• “Monte Carlo Methods in Statistical Physics” – Newman & Barkema

• “Optimization Algorithms in Physics” – Hartmann & Rieger

• “Scientific Programming” – Zachary

Motivation: Integration schemes…
Example: Rectangle rule

• Goal:

• Compute the following one-dimensional integral:

• Solution: Newton–Cotes–like scheme

• Partition [a,b] into M slices of width .

• Perform a k-th order interpolation.

• Approximate the integral as a sum.

• Rectangle rule  

• For the sum converges to the integral of f(x).

• Error ~ O(h).

I =
� b

a
f(x)dx

M �⇥

f(x)

x

h = (b� a)/M

I ⇡
M�1X

l=0

hf(xl)

What happens in high space dimensions?
• Error:

• Rectangle rule Error ~ M-1

• Trapezium rule Error ~ M-2

• Simpson rule Error ~ M-4

• What happens in d space dimensions?

• One-dimensional error scales ~ M-k.

• d-dimensional error scales ~ M-k/d.

• For large d, convergence is slow!

• Further technicality: nested ranges

Error of traditional integration schemes
rectangle rule

trapezium rule (linear)

Simpson rule (quadratic)

I =

ZZZ
dx dy dzf(x, y, z) =

Z
x2

x1

dx

Z
y2(x)

y1(x)
dy

Z
z2(x,y)

z1(x,y)
dzf(x, y, z)

Can this be an issue for physics applications?

• Yes!

• Most integration schemes fail for high-dimensional integrals.

• The phase space of physical problems is generally huge.  
 
Examples:  

• N classical particles d = 6N (3 coordinates, 3 momenta).

• N classical Ising spins d = 2N (can take values of ±1).

• N spin-S quantum spins d = (2S + 1)N

• Solution:

• Find a method where the error is independent of the dimension d.

• However, for that we need to first understand random numbers…

Random Number Generation

Poll: Which generators do you use?

• drand48()?

• r250()?

• r1279()?

• Mersenne Twister?

• Random123?

• http://random.org?

• /dev/random? 

• Home brew?

• I do not know but it works…

• Never used one.

Texas Chicken Shit Bingo…
… yes, this exists.

Desired properties of a RNG in simulations

• Simple facts:

• Modern computers can perform ~109 operations per second.

• A typical Monte Carlo simulation needs ~1014 random numbers!

• Desired properties for a RNG:

• The numbers should be “as random as possible” and not repeat.

• It should be fast.  

• Problem:

• Excellent RNGs are typically slow, poor RNGs fast…

• Solution:

• Use the right RNG for the right problem (True vs Pseudo RNGs).

True Random Number Generators
True RNGs

• Pros:

• True random numbers are generated.

• No correlations in the sequence, the numbers are unique.

• Cons:

• Generally slow (not useful for physical simulations).

• Because the numbers are unique, code debugging is difficult.

• Applications:

• Cryptography.

• Seeding of large-scale simulations (or PRNGs).

Implementations of TRNGs

• General concept:

• Exploit unpredictable processes in nature.

• Add post-processing to prevent any bias.

• Selected hardware implementations:

• Coin flipping, rolling of dice, roulette, … (slow: 32 tosses for 1 int).

• Random physical processes:

• Noise (thermal, atmospheric, …)

• Radioactive decay

• Quantum interference (idQuantique)

• Human game-play entropy in MMO games

• LavaRand by SGI (pictures of patterns for entropy).

• Unix /dev/random collects noise from device drivers.

quantis PCI card

La
va

R
an

d

Pseudo Random Number Generators

Pseudo RNGs

• Pros:

• Generally fast.

• Do not require special hardware and are therefore portable.

• Sequences can be reproduced for debugging.

• Cons:

• Finite sequence lengths (however, some are very long).

• The numbers can be correlated.  

• Applications:

• Computer simulations.

• Statistical data analysis.

• Applications that are not mission critical (“Who pays for the beer?”).

Implementations of typical PRNGs

• General concept:

• PRNGs are based on an algorithm and are therefore deterministic.  

• Mathematical structure:  
 

• The initial n numbers needed are called the seed block.

• Goal: find a function f that produces “very” random numbers.

• The seed determines the sequence of random numbers:

• It is crucial you carefully seed your simulation.

• Do not seed your simulation too often to prevent overlaps.

• Some generators use the modulo operator to randomize the
sequence. This, in turn, limits the length of the sequence.

xi = f(xi�1, xi�2, . . . , xi�n)

01000110100100001110011101011010001101001000011100111010110100011010010000111001110101101000110100100001110011101011

seed 1seed 2

PRNGs you should use
Lagged Fibonacci Generators

• The name comes from the similarity to the Fibonacci series:

• Definition:

• Properties:

• represents either addition, multiplication, or XOR.

• Requires a seed block of size k (has to be built carefully!).

• m = 2M, with M = 32 or 64.

• Very fast (can be vectorized and pipelined).

• In general, passes all statistical tests known.

• Very long periods:

xi = xi�1 + xi�2 �! 1, 1, 2, 3, 5, 8, 13, 21, . . . (x0 = x1 = 1)

xi = (xi�j � xi�k) mod m , 0 < j < k

�

⇢(�) = 2k�12M�1

⇢(⌦) = 2k�12M�3

Lagged Fibonacci generators contd.

• The quality of the generator (and length of period) highly depends on
the values of j and k. The larger the lags, the better.

• Note: the XOR version is known as two-tap generalized shift register.

• Additive choices:  
(rarely used)

• Multiplicative choices:  
(commonly used)

• r1279 (multiplicative with k = 1279, j = 418):

• Period of approximately 10394.

• Passes all statistical tests.

• Part of the GNU Scientific Libraries (GSL).

{55, 24,�}
{607, 273,�}
{2281, 1252,�}
{9689, 5502,�}
{250, 103,⌦}
{1279, 418,⌦}

Other commonly used PRNGs

• Mersenne Twister:

• Generalized feedback shift register PRNG.

• The period is given by a Mersenne prime:

• The implementation mt19937() has period ~ 106001!

• Probably best and fastest generator at this time (passes all tests).

• Part of many scientific software packages and libraries (R, Matlab, …).

• Easy to checkpoint.

• WELL (Well equidistant long-period linear) generators:

• Based on the Mersenne Twister, but with better bit mixing.

• Random123 (DE Shaw):

• Counter based, radically different. Very good for certain applications.

Mn = 2n � 1 n 2 N

Only use library implementations!
Library implementations of PRNGs

• It is not recommended to implement one’s own PRNG.

• Many libraries have optimized implementations.

• Examples:

• Boost Libraries: Generic implementations in C++.

• GNU Scientific Library (GSL): Implementations in C.

• TRNG: Implementations for parallel simulations.

• Numerical Recipes: Implementations in many different languages.

• Structure/contents of PRNG libraries:

• Uniform PRNGs (r1279, Mersenne Twister, LCG, …).

• Distribution functions (Gaussian, Gamma, Poisson, …).

• Tests.

license issues

Example: Boost Libraries

• Definition of generators:  
 

 boost::lagged_fibonacci1279 rng1; // r1279  
 boost::mt19937 rng2; // Twister  
 boost::minstd_rand0 rng3; // LCG  

• Definition of distributions:

• Uniform:  
 boost::uniform_int<int> dist1(a,b);  
 boost::uniform_real<double> dist2(a,b);

• Exponential:  
 boost::exponential_distribution<double> dist3(a);

• Normal:  
 
 
 boost::normal_distribution<double> dist4(mu,sigma);

r = a + (b� a)u

q(y) =

1p
2⇡

exp(�y2/2)

q(y) = a exp(�ay)

Boost Libraries: Adding it all up…

6 Library implementations of PRNGs

boost::mt19937 rng1; // mersenne twister
boost::lagged_fibonacci1279 rng2; // lagged fibonacci r1279
boost::minstd_rand0 rng3; // linear congruential

These can now be combined with different distribution functions. The uniform dis-
tributions in an interval [a, b] can be called with

boost::uniform_int<int> dist1(a,b); // integers between a and b
boost::uniform_real<double> dist2(a,b); // doubles between a and b

There are many more distribution functions and the reader is referred to the docu-
mentation [4]. For example

boost::exponential_distribution<double> dist3(a);

produces random numbers with the distribution shown in Eq. (20). Gaussian random
numbers [Eq. (23)] can be produced with

boost::normal_distribution<double> dist4(mu,sigma);

where mu is the mean of the distribution and sigma its width. Combining generators
and distributions can be accomplished with boost::variate generator. For exam-
ple, to produce 100 uniform random numbers in the interval [0, 1) using the Mersenne
Twister:

1 #include <boost/random.hpp>
2

3 int main (void)

4 {
5

6 // define distribution

7 boost::uniform_real<double> dist(0.,1.);
8

9 // define the PRNG engine

10 boost::mt19937 engine;
11

12 // create a normally-distributed generator

13 boost::variate_generator<boost::mt19937&,
14 boost::normal_distribution<double> >
15 rng(engine,dist);

16

17 // seed it
18 engine.seed(1234u);

19

20 // use it
21 for (int i = 0; i < 100; i++){

22 std::cout << rng() << "\n";
23 }

For further details consult the Boost documentation [4].

17

seeding the generator

uniform double distribution

engine: Mersenne Twister

create generator

call the generator

call boost headers

Final recommendations

• Remember:

• Test your simulation code with two different PRNGs.

• Ensure provenance: Store information about the PRNG & seed.

• Use trusted and well-tested implementations. Avoid home-brew.

• Know your PRNG’s limits!

• How long is the period?

• Are there problems with certain applications?

• Are there correlations?

• Be careful when you use PRNGs in parallel simulations.  

• Recommended generators:

• Mersenne Twister (mt19937).

• Lagged Fibonacci (r1279).

Random numbers – A first application…

Random walks

• Motivation:

• Likely the simplest physical application of random numbers.

• Applications:

• Economics: used to model shares prices.

• Genetics: used to simulate genetic drift in genetic populations.

• Physics: simplified models for Brownian motion.

• Biology: motile bacteria typically perform random walks.

• Polymers: simple polymer/protein properties can be modeled.

What is the typical size of a random walk?

• Simplest setup:

• The walk can cut across itself.

• There are no interactions.

• The angles are random and uncorrelated.

• Model:

• The vectors ri connecting the steps can be treated as random.

• The vectors ri connecting the steps are uncorrelated.

• What does this mean? Averaging over multiple configurations yields…

hrii = 0 hri · rji = hrii · hrji = 0 hr2i i = a2i 6= j

What is the typical size? contd.

• Compute the vector R between beginning and end:

• Average over many configurations:

• The typical linear size of the walk is therefore .

• Note:

• This expression is independent of the space dimension d!

• Random walks are D = 2–dimensional fractal objects with .

R =
NX

i=1

ri

hRi =
NX

i=1

hrii = 0

hR2i =
NX

i=1

NX

j=1

hri · rji =
NX

i=1

hr2i i+
X

i 6=j

hri · rji = Na2

p
hR2i / a

p
N

N ⇠ `D

Modeling d-dimensional random walks

• Algorithm (d-dimensional lattice):

• Place a walker on the origin.

• Draw a uniform random number in [1,2d].

• Move the walker to the new position.

• Treat this new position as the new origin.

• Iterate…

• How to determine the typical distance:

• Perform N steps.

• Measure the geometric distance from the origin.

• Average over many runs.

• Vary N and verify that .

walker

p
hR2i / a

p
N

Example: One-dimensional random walk

• Simple algorithm:  
 
while(i < N){  

if(rand_bit()){  
dist++;  

}  
else{  

dist--;  
}  
i++;  
x2_ave += dist*dist;  

}  
 

• Note:

• The above code snippet is for one run of N steps.

• To compute error bars, you need to average over runs.

• Higher dimensions can be implemented with a case statement.

simulation time

di
st

an
ce

 fr
om

 t
he

 o
ri

gi
n

Manhattan?

Monte Carlo!

Historical motivation

• Manhattan Project at Los Alamos Natl. Lab:

• Simulations of nuclear weapons.

• The term “Monte Carlo” was coined  
1940 by Ulam, Fermi, von Neumann,  
Metropolis and others thinking of  
casinos when using random numbers.

• Monte Carlo method:

• One of the most important methods in computational physics.  

• Idea:

• Randomly sample a volume in a d-dimensional space to obtain an
estimate of an integral at the price of a statistical error.

• This works best when the problem has a large space dimension.

Ulam Feynman von Neumann

Monte Carlo integration

Motivation

• Recall…

• Most integration schemes fail for high-dimensional integrals.

• The phase space of physical problems is generally huge.  
 
 
Examples:  

• N classical particles d = 6N (3 coordinates, 3 momenta).

• N classical Ising spins d = 2N (can take values of ±1).

• N spin-S quantum spins d = (2S + 1)N 

• Solution:

• A method where the error is independent of the space dimension…

Simple sampling Monte Carlo

• So far: Sample the function f(x) at evenly-  
spaced points.  

• Now: Sample f(x) at random points.

• Analogy:

• Determine the area of a pond by throwing stones.

• Enclose the pond by a known area A = ab.

• Randomly throw stones in the rectangular area.  
 

Apond = A Nin/Ntot 

• We obtain a simple sampling statistical estimate of Apond.

• Note: get lots of Kölsch to properly randomize the process…

b

a

Simple sampling Monte Carlo contd.

• How can we compute π using Monte Carlo integration?

• Integrate part of the unit circle enclosed by  
a box of unit side length .

• For m_trials this converges to π.

• Error ~ M-1/2 independent of d.

r = 1A� = �r2

A� = r2

Monte Carlo Methods (Katzgraber)

A problem arises when a multi-dimensional integral needs to be computed. In this
case one can show that, for example, the error of Simpson’s rule scales as ∼ M−4/d

because each space component has to be partitioned independently. Clearly, for space
dimensions larger than 4 convergence becomes very slow. Similar arguments apply for
any other traditional integration scheme where the error scales as ∼ M−κ: if applied
to a d-dimensional integral the error scales ∼ M−κ/d.

2.2 Simple and Markov chain sampling

One way to overcome the limitations imposed by high-dimensional volumes is simple
sampling Monte Carlo. A simple analogy is to determine the area of a pond by
throwing rocks. After enclosing the pond with a known area (e.g., a rectangle) and
having enough beer or wine [2], pebbles are randomly thrown into the enclosed area.
The ratio of stones in the pond and the total number of thrown stones is a simple
sampling statistical estimate for the area of the pond, see Fig. 2.

Figure 2: Illustration of simple-sampling
Monte Carlo integration. An unknown area
(pond) is enclosed by a rectangle of known
area A = ab. By randomly sampling the
area with pebbles, a statistical estimate of
the pond’s area can be computed.

b

a

A slightly more “scientific” example is to compute π by applying Monte Carlo
integration to the unit circle. The area of the unit circle is given by A◦ = πr2 with
r = 1; the top right quadrant can be enclosed by a square of size r and area A! = r2

(see Fig. 3). An estimate of π can be accomplished with the following pseudo-code
algorithm [3] that performs a simple sampling of the top-right quadrant:

algorithm simple_pi1

initialize n_hits 02

initialize m_trials 100003

initialize counter 04

5

while(counter < m_trials) do6

x = rand(0,1)7

y = rand(0,1)8

if(x**2 + y**2 < 1)9

n_hits++10

fi11

counter++12

done13

14

return pi = 4*n_hits/m_trials15

4

�⇥

lo
g(

er
ro

r)

-6

-5

-4

-3

-2

-1

0

log(m_trials)

2.5 5 7.5 10 12.5

~ m_trials-1/2

Markov chains & pebbles

• So far:

• The pebbles are independent and thrown from one place.

• π estimate: the random numbers are independent.  

• Problem:

• If the pond is large, we cannot reach all  
corners from one point only!

• Solution:

• Use a bucket of pebbles. Throw the first, relocate, throw again, …

• If you throw outside the rectangle, get the pebble and place it on
your current location. The move is rejected, the last one counted
twice. This ensures the Markov chain is reversible (detailed balance).

a

b

Markov chains: estimating π
• Start at {0,0} and “wander” 

around phase space.  

• Select p carefully:

• too small: slow convergence.

• too large: many rejections.

• ensure ~50% of the moves  
are accepted.

Monte Carlo Methods (Katzgraber)

introduced in detail using models from statistical physics. The following algorithm
describes Markov-chain Monte Carlo for estimating π:

algorithm markov_pi1

initialize n_hits 02

initialize m_trials 100003

initialize x 04

initialize y 05

initialize counter 06

7

while(counter < m_trials) do8

dx = rand(-p,p)9

dy = rand(-p,p)10

if(|x + dx| < 1 and |y + dy| < 1)11

x = x + dx12

y = y + dy13

fi14

if(x**2 + y**2 < 1)15

n_hits++16

fi17

counter++18

done19

20

return pi = 4*n_hits/m_trials21

The algorithm starts from a given position in the space to be sampled [here (0, 0)]
and generates the position of the new dot from the position of the previous one. If
the new position is outside the square, it is rejected (line 11). A careful selection of
the step size p used to generate random numbers in the range [−p, p] is of importance:
When p is too small, convergence is slow, whereas if p is too large many moves are
rejected because the simulation will often leave the unit square. Therefore, a value of
p has to be selected such that consecutive moves are accepted approximately 50% of
the time.

The simple-sampling approach has the advantage over the Markov chain approach
in that the different samples are independent and thus not correlated. In the Markov
chain approach the new state depends on the previous state. This can be a problem
since there might be a “memory” associated with this behavior. If this memory is
large, then the autocorrelation times (i.e., the time it takes the system to forget where
it was) are large and many moves have to be discarded. Then why even think about
the Markov chain approach? Because in the study of physical systems it is generally
easier to slightly (and randomly) change an existing state than to generate a new state
from scratch for each step of the calculation. For example, when studying a system
of N spins it is easier to flip one spin according to a given probability distribution
than to generate a new configuration from scratch with a pre-determined probability
distribution.

Let us apply now these ideas to perform a simple-sampling estimate of the integral

6

Simple sampling vs Markov chain sampling?

• Simple sampling Monte Carlo:

• Advantage: No correlations between states (pebbles).

• Disadvantage: At every step a new state from a given distribution 
needs to be generated from scratch.

• Markov chain Monte Carlo:

• Disadvantage: There are (auto)correlations between states.  
Uncorrelated measurements are only possible every 
autocorrelation-time steps.

• Advantage: Slightly randomly change the existing state to
generate a new one from a given distribution.

• So… What do we do?

• Surprisingly, it is easier to sample from an existing distribution.

Back to simple sampling of integrals…

• Example:

• The integral is given by:  
 
 
 
with xi random in [0,1].

• Estimating the error: variance  
 
 
 
 
moments:

f(x) = xn I =
� 1

0
f(x)dx(n > �1) ⇥

2 Monte Carlo integration

of an actual function. As an example, we select a simple function, namely

f(x) = xn → I =

∫ 1

0
f(x)dx (3)

with n > −1. Using simple-sampling Monte Carlo, the integral can be estimated via

algorithm simple_integrate1

initialize integral 02

initialize m_trials 100003

initialize counter 04

5

while(counter < m_trials) do6

x = rand(0,1)7

integral += x**n8

counter++9

done10

11

return integral/m_trials12

In line 8 we evaluate the function at the random location and add the result to the
estimate of the integral, i.e.,

I =
1

M

M
∑

i

f(xi) , (4)

where we have set m trials = M . To calculate the error of the estimate, we need to
compute the variance of the function. For this we need to also perform a simple sam-
pling of the square of the function, i.e., add a line to the code with integral square
+= x**(2*n). It then follows [43] for the statistical error of the integral δI

δI =

√

Varf

M − 1
, Varf = ⟨f2⟩ − ⟨f⟩2, (5)

with

⟨fk⟩ =

∫ 1

0
[f(x)]kdx =

1

M

M
∑

i

[f(xi)]
k . (6)

Here xi are uniform-distributed random numbers. The important detail is that Eq. (5)
does not depend on the space dimension and merely on M−1/2. This means that, for
example, for space dimensions d > 8 Monte Carlo sampling outperforms Simpson’s
rule.

The presented simple-sampling approach has one crucial problem: When in the
example shown the exponent n is close to −1 or much larger than 1 the variance of
the function in the interval is large. At the same time, the interval [0, 1] is sampled
uniformly. Therefore, similar to the estimate of π, areas which carry little weight
for the integral are sampled with equal probability as areas which carry most of the
function’s support (see Fig. 5). Therefore the integral and error converge slowly. To
alleviate the situation and shift resources where they are needed most, importance
sampling is used.

7

�I =
�

Varf
M � 1

�M�1/2

Varf = ⇥f2⇤ � ⇥f⇤2
integral_sq += x**(2n)

I ⇡ 1
M

MX

i

f(xi)

hfki =
Z 1

0
[f(x)]kdx ⇡ 1

M

MX

i

[f(xi)]k

Simple sampling: When does it fail?

• Problem:

• and : Var(f) is large.

• The interval [0,1] is sampled uniformly.

• The error converges slowly.  
 
 

• Solution:

• Select the random numbers such  
that places of f(x) with a larger  
support are visited more frequently.

x1

1

f(x)

more sampling here

n ⇥ �1 n� 1

rejected!

Importance sampling

• When the variance of f(x) is large, the error is also large.  

• Solution:

• Produce random numbers that more efficiently sample the area.

• Generate random numbers according to p(x) with

• p(x) close to f(x)

• p(x)-distributed random numbers are easy to generate.

• We obtain:

• Notation: represents an average over p-distributed
numbers and yi are p-distributed.

• The error is now which is much smaller if f(x) ~ p(x)!

⇥· · · ⇤p

Var(f/p)

hfi = hf/pip =
Z 1

0

f(x)
p(x)

p(x)dx ⇡ 1
M

MX

i

f(yi)
p(yi)

Importance sampling contd.

• Example:

• Select with

• Power-law distributed random  
numbers y can be obtained from  
uniform numbers x via  
 
 
(distribution inversion)

• We have now all ingredients to simulate a physical system:

x1

1

f(x)f(x) = xn

p(x) � xl l � n

y(x) = x1/(⇥+1)
l > �1

(n > �1)

Markov chains + importance sampling Metropolis algorithm

p(x)

But first…

Statistical mechanics primer

Focus: Magnetic systems. Why?

• They are far easier to simulate than systems of interacting particles.

• Many nontrivial analytical results for some systems (e.g., 2D Ising model).

• Best understood models that display phase transitions.

• Simple models can describe complex materials extremely well.  
Example: 3D Heisenberg ferromagnet.

Phase transitions

T < Tc

T > Tcm ∼ |H|1/δ

m ∼ (−t)β

Cullmy (72)

Central problem in statistical
physics. Driven by:

• Temperature / Pressure

• Quantum fluctuations

• Disorder

Only solvable model: Ising

H = −
∑

⟨i,j⟩

JijSiSj ; m = ⟨Si⟩

Simulations

Verify / compare theory and ex-
periment.

m/ms

T/Tc

Tc
T

m

H
0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Fe

Co, Ni

Universal behavior: dimension and symmetry de-
termine universality class (T ∼ Tc).

Calculation of critical exponents β, δ,
ν,. . . defines universality class.

3D Heisenberg β

Fe 0.34(4)
Ni 0.378(4)
CrB3 0.368(5)
EuO 0.36(1)
Mean fi eld 0.5
Monte Carlo 0.364(4)

SNF 2005 - Katzgraber 3

3D Heisenberg
Fe 0.34(4)
Ni 0.378(4)
CrB3 0.368(5)
EuO 0.36(1)
Mean field 0.5
Monte Carlo 0.364(4)

�

m ⇠ (T � Tc)
�

Why statistical mechanics?

• Problem:

• Systems of N particles with N large are hard to treat.

• Certain types of systems have emergent collective behavior that the
individual constituents do not have (e.g., phase transitions).

• Setup:

• Consider a system of N entities described by a Hamiltonian H.

• The system is described by a state vector .

• The partition function for the system is given by  
 
 
 
where k is the Boltzmann constant and T a temperature.

• Physically measurable quantities can be computed from Z!

s = {s1, . . . , sN}

Z =
�

s

exp[�H(s)/kT]

Observables

• Definition (observable): The expectation value of any measured quantity
O by performing a trace over the partition function Z.

• At a fixed temperature 

• The partition function Z normalizes the equilibrium Boltzmann
distribution:

• Note: It is this distribution we will statistically sample using  
Monte Carlo simulations.

⇤O⌅ =
1
Z

�

s

O(s)e�H(s)/kT

Z =
�

s

exp[�H(s)/kT]

Peq(s) =
1
Z e�H(s)/kT

see K. Huang book (87)

sum over all states

with

Selected thermodynamic quantities

• Internal energy:

• Free energy:

• All thermodynamic quantities are related to F or Z:

• Magnetization:

• Specific heat:

• Susceptibility:

• Entropy:

• …

• Note: h represents the magnetic field. k = 1 in the future.

F = �kT lnZ

E = hHi = @� lnZ

M = @hF

� =
1

kT

C = @TE = �T@2
TF = �2(hH2i � hHi2)

� = @hM = �@2
hF

S = �@TF = �khlnP(s)i

= E � TS

= �(hM2i � hMi2)

Critical behavior in magnetic systems

Continuous phase transitions (state change)

• At a continuous (“2nd order”) phase transition,  
the correlation length diverges:  

critical exponent,  
crit. temperature

• Example: Ising model in d = 2

•

•

• Other observables also show criticality:

• Magnetization

• Specific heat

• … 

• I-st order: Phase coexistence and latent heat (not discussed).

� ⇥ |T � Tc|�� �
Tc

Tc = 2.269 . . .

� = 1

� > 0

Tc T

m

H

⇥ |T � Tc|�

Tc T

�

m ⇠ |T � Tc|�

C ⇠ |T � Tc|�↵

Summary of magnetic critical exponents

• Note:

• In the above expressions and .

• There are relationships between the exponents.

• Only two are needed to fully characterize a system! How?

4.2 Scaling hypothesis

Exponent Definition Description

α CH ∼ |t|−α specific heat at H = 0

β M ∼ |t|β magnetization at H = 0, t < 0

γ χ ∼ |t|−γ isothermal susceptibility at H = 0

δ M ∼ h
1
δ critical isotherm

ν ξ ∼ |t|−ν correlation length

η G (r) ∼ |r|−(d−2+η) correlation function

Table 4.1: Critical exponents of a magnetic system

will therefore not distinguish between them. The amplitudes, however, are not
necessarily the same, in general if cH ∼ A|t|α then A ̸= A′.

There are exponent inequalities which follow from fundamental thermodynamic

considerations. One example is the Rushbrooke inequality [1]:

α+ 2β + γ ≥ 2. (4.3)

Using the scaling hypothesis in the next section we show that these inequalities

are in fact equalities.

4.2 Scaling hypothesis

4.2.1 Definition of a homogeneous function

A function f(r) is homogeneous if for all values of λ

f(λr) = g(λ)f(r) (4.4)

g(λ) is called the scaling function which must be of the form g(λ) = λp.

In n dimensions the variables may scale with different factors. Therefore we

define the generalized homogeneous function by the condition

λf(x, y) = f(λax,λby) ⇔ λcf(x, y) = f(λax,λby). (4.5)

4.2.2 Scaling hypothesis

The scaling hypothesis states that the singular part of the free energy density
f(t, h) is a homogeneous function near a second-order phase transition. Further-

more, the reduced temperature t and the order parameter h rescale by different
factors:

54

t =
T � Tc

Tc
h =

H

Tc

Some definitions…

• Definition (critical exponent):

• The critical exponent µ of a quantity f is defined via

• This means, that close to the transition the quantity f is dominated
by a nonanalytic part for .

• Definition (homogenous function):

• A function f(r) is called homogenous if for all values of

• The function is called the scaling function.

• For more than one space dimension:

µ = lim
t!0

ln f(t)

ln t
t =

T � Tc

Tc

f(t) ⇠ tµ t ! 0

f(�r) = g(�)f(r)

�

g(�) ⇠ �p

�f(x1, x2, . . .) = f(�y1
x1,�

y2
x2, . . .)

Scaling hypothesis & exponent relations

• Scaling hypothesis:

• The singular part of the free energy F is a homogenous function
near the phase transition.

• Furthermore, , where b is some length
scale and , with a volume.

• Example derivation of the scaling relations:

• Let . Then  

• Recall for H = 0, but also

• It follows:

f(t, h) = b�df(bytt, byhh)

f(t, h) = |t|d/ytf(±1, t�yh/yth)

⇠ |t|d/yt�(|t|�yh/yth)

M ⇠ |t|� M =
1

T
@hf |h!0 ⇠ |t|(d�yh)/yt

� =
d� yh
yt

f(t, h) = F (t, h)/V V ⇠ bd

b = |t|�1/yt

Relationships between exponents contd.

• Following the same approach as before…

• Specific heat

• Magnetization

• Susceptibility

• Isotherm

• Homogenous form of the correlation function:

•

• From this expression we can derive other “spatial” quantities…

↵ =
d

yt
� 2

� =
d� yh
yt

� =
d� 2yh

yt

� =
yh

d� yh

G(r) = b�2(d�yh)G(r/b, bytt) ⇠ |t|2(d�yh)/yt�(r|t|1/yt)

Scaling & Hyperscaling

• Further exponents:

• Correlation length

• Correlation function

• Scaling relations (cancel out yt and yh…):

• Rushbrook

• Widom

• Josephson

• Has no name

• Note: Scaling relations with the space dimension d are called 
 “hyperscaling” relations. They break down for d ≥ du.

G(r) ⇠ er/⇠ ⌫ =
1

yt

⌘ = d+ 2� 2yh

↵+ 2� + � = 2

�(� � 1) = �

2� ↵ = d⌫

� = ⌫(2� ⌘)

Universality

• Having defined all these exponents… Why should we care?

• While Tc does depend on the details of the model, the exponents
are universal.

• What do the critical exponents  
depend on?

• Space dimension d.

• Order parameter symmetry.

• Note:

• For long-range interactions 
one has to be more careful.

• Knowing the exponent of a simple system that has the same
symmetry properties as a complex material can save years of CPU.

T/Tc

⇢/⇢c

Ne
Ar
Kr
Xe
N2

O2

CO
CH4

scaled coexistence curves  
for different liquids

Simplest toy: The Ising model

N

S

Simplest model for a magnet N
S

=

• Imagine the system as made from small mini magnets on a lattice.

• If all mini magnets point in the same direction, the system magnetizes.

Building a model system

• Generic setup:

• Place N magnetic moments on a d-dimensional lattice.

• Assume the system is highly anisotropic, i.e., Si = ±1 =

• Most general Hamiltonian:  
 
 
 

• Some simplifications:

• Hi = H We assume a uniform external field

• Kijk = 0 We neglect n-body interactions with n ≥ 3.

• Jij = J Only isotropic nearest neighbor interactions.

H =
X

i

HiSi +
X

i,j

JijSiSj +
X

i,j,k

KijkSiSjSk + . . .

coupling to field

2-body spin-spin
3-body spin-spin

N
S

Building a model system contd.

• Is this realistic?

• Um… No.

• However, it is astounding that it works so well for so many materials.

• Why all the simplifications?

• Analytically solvable in d = 1 (Ising, Tc = 0) and d = 2 (Onsager, Tc > 0).

• What about d = 3? Out of luck, we must resort to simulations.

• What about d ≥ 4? Mean-field theory works and is exact!

• Note:

• If J > 0, we obtain a ferromagnet, if J < 0 an antiferromagnet (spins
order antiparallel).

J < 0

• Final ingredients:

• Hamiltonian:

• Order parameter (observable):

Ferromagnetic Ising model

Tc T

m

H

Jij = 1 ∀i, j

m =
1

N

∑

i

Si (magnetization)

H = −
∑

⟨ij⟩

JijSiSj − H
∑

i

Si

N
S

=

= Jij

Ernst Ising 1900-98

phase transition

�m⇥ = 1

�m⇥ = 0
Si = ±1

Mean-field theory

• Idea:

• Approximate the effects of neighboring spins by introducing a “mean
field” and neglecting fluctuation effects

• Derivation of the partition function:

• Introduce the mean-field approximation into H and neglect
quadratic terms:  
 

• Sum up all one-body terms in the partition function:

Sj ! hSji+ (Sj � hSji)

mean field fluctuations

H ⇡ NdJhSi2 � (H + 2JhSi)
X

i

Si

Z = e��JNdhSi2
[2 cosh (�H + 2�hSiJd)]

Mean-field magnetization and Tc

• Recall:

• and .  
 

• Expression for the magnetization:

• It follows:

• When the external field is zero (H = 0) the equation has either one
solution (M = 0) or three solutions. This defines a phase transition.

• Critical temperature:

• Note:

• Mean-field theory implies a transition for d = 1, which is wrong.

•

•

M = hSii M = @HT lnZ

M = tanh [�(H + 2dJM)]

TMF
c = 2dJ

16 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

Figure 7.9: Results for h = 0. Upper panels: graphical solution to self-consistency equation m = tanh(m/θ) at
temperatures θ = 0.65 (blue) and θ = 1.5 (dark red). Lower panel: mean field free energy, with energy shifted by
θ ln 2 so that f(m = 0, θ) = 0.

This nonlinear equation can be solved graphically, as in the top panel of fig. 7.9. The RHS in a tanh function
which gets steeper with decreasing t. If, at m = 0, the slope of tanh(m/θ) is smaller than unity, then the curve
y = tanh(m/h) will intersect y = m only at m = 0. However, if the slope is larger than unity, there will be three
such intersections. Since the slope is 1/θ, we identify θc = 1 as the mean field transition temperature.

In the low temperature phase θ < 1, there are three solutions to the mean field equations. One solution is always
at m = 0. The other two solutions must be related by the m ↔ −m symmetry of the free energy (when h = 0).
The exact free energies are plotted in the bottom panel of fig. 7.9, but it is possible to make analytical progress by
assuming m is small and Taylor expanding the free energy f(m, θ) in powers of m:

f(m, θ) = 1
2m2 − θ ln 2− θ ln cosh

(m

θ

)

= −θ ln 2 + 1
2 (1 − θ−1)m2 +

m4

12 θ3
−

m6

45 θ5
+

(7.67)

Note that the sign of the quadratic term is positive for θ > 1 and negative for θ < 1. Thus, the shape of the free
energy f(m, θ) as a function of m qualitatively changes at this point, θc = 1, the mean field transition temperature,
also known as the critical temperature.

For θ > θc, the free energy f(m, θ) has a single minimum at m = 0. Below θc, the curvature at m = 0 reverses, and
m = 0 becomes a local maximum. There are then two equivalent minima symmetrically displaced on either side
of m = 0. Differentiating with respect to m, we find these local minima. For θ < θc, the local minima are found at

m2 = 3θ2(1− θ) = 3(1− θ) + O
(
(1 − θ)2

)
. (7.68)

T < Tc T > Tc

Tc(d = 2) = 2/ ln(1 +
p
2) ⇡ 2.26918 . . .

Tc(d = 3) ⇡ 4.51

Mean-field vs non-mean-field exponents

• Mean-field exponents:

• Close to the phase transition . We can expand the
expression for M:  

• H = 0

• t = 1

• M = 0

• Similarly: and .

• Note: These exponents are valid for any d ≥ 4.  

• Exact exponents in d = 2:  
 , , , , , .

t =
T � Tc

Tc
⌧ 1

M ⇠ t1/2 ⇠ |T � Tc|� � = 1/2

H ⇡ Mt+M3[1� t+ (1� t)2 + . . .]

M ⇠ H1/3 = H1/� � = 3
� ⇠ 1/t ⇠ |T � Tc|�� � = 1

⌫ = 1/2 ↵ = 0

� = 1/8 � = 7/4 � = 15 ⌘ = 1/4 ⌫ = 1↵ = 0

And for d = 3? Simulations…

Finite-size scaling

Finite-size effects in simulations

• Simulations:

• The accessible system sizes are often very limited.

• However, we can extract thermodynamic information from the data.

• Approach:

• Use periodic boundaries to  
remove finite-size effects.

• Finite-size scaling.

• General philosophy:

• Never “just” simulate a problem.

• Check first the universality class. Has it been studied before?

• Use “theory intuition” (finite-size scaling) to extract the information.

from “Adventures of Schrödinger’s Cat”

Finite-size scaling

• Close to the transition:

• In an infinite system the correlation length diverges .

• In a finite system (simulation) the correlation length cannot grow larger
than the system size, i.e., .

• We need to apply a finite-size cutoff to the scaling expressions:

• The scaling function must satisfy:

• for ensures correct power law for .

• for ensures becomes independent of  
temperature when .

• It follows:

t = (T � Tc)/Tc ⌧ 1

⇠ ⇠ |t|�⌫

⇠ ⇠ L

O(t, L) ⇠ |t|yf(L/⇠)O(t) ⇠ |t|y

f(x) ! const. x ! 1
f(x) ⇠ x

y/⌫
x ! 0

L ! 1
O

⇠ � L

O(t, L) ⇠ Ly/⌫ f̃ [L1/⌫t]

Example: 2D Ising model magnetization

L

L1/⌫(T � Tc)

hm
L
i/
L
�
/
⌫

� = 1/8

⌫ = 1
⇤mL⌅ ⇥ L�/⇥M̃ [L1/⇥(T � Tc)]

Tc = 2.269

Can we do better than that?

• Scaling expression for the magnetization:

• We have three unknowns (two exponents) which makes the analysis
cumbersome.  

• Binder ratio:

• Use combined quantities to eliminate the metric factors:  

• The function only depends on . At Tc data for  
different L should cross (up to corrections…).

• One can, in principle, derive many such dimensionless quantities.

⇤mL⌅ ⇥ L�/⇥M̃ [L1/⇥(T � Tc)]

g =
1
2

�
3� ⇤m4⌅

⇤m2⌅2

⇥
⇥ G̃[L1/�(T � Tc)]

L1/�(T � Tc)

Finite-size scaling of the Binder ratio

• The data cross at Tc(d = 2) = 2.269…

• If we select the right value of and Tc the data fall onto one curve.� = 1

Kurze Pause

