

Introduction to

Network Science

Macroscopic

S

Macroscopic

Microscopic

Complex Systems

Macroscopic

Microscopic

Introduction to Network Science

Complex systems

Macroscopic

Microscopic

4

Complex systems

Macroscopic

Microscopic

Complex systems

Macroscopic

Microscopic

Complex systems

Introduction to Network Science

Complex systems and Networks

Behind each complex system there is an underlying network that describes the interactions between the microscopic (Duilding blocks
 Network Science

M

Where it all began - back to 1735

Can one walk
across the seven
bridges and never
cross the same
bridge twice?

Where it all began - back to 1735

Can one walk across the seven bridges and never cross the same bridge twice?

Where it all began - back to 1735

Introduction to Network Science

Where it all began - back to 1735

The Erdős-Rényi Random Graph

$G(N, p)-$ Begin with N nodes.

Connect each pair with probability p.

Obtain L links.

$$
\begin{gathered}
N=10 \\
p=1 / 6 \\
L=8
\end{gathered}
$$

The Erdős-Rényi Random Graph

$$
L_{E R}=\binom{N}{2} p=\frac{N(N-1)}{2} p
$$

The Erdős-Rényi Random Graph

$$
L_{E R}=\binom{N}{2} p=\frac{N(N-1)}{2} p
$$

$$
\begin{gathered}
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 L}{N} \\
\langle k\rangle_{E R}=p(N-1) \approx p N
\end{gathered}
$$

The Erdős-Rényi Random Graph

$$
P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-k-1}
$$

Bell Curve

Degree - The number of links of a node
Degree distribution - the probability
that a randomly selected node has
degree k

Bar-llan University אוניברסיטת בר-אילן

The Erdős-Rényi Random Graph

$$
P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-k-1}
$$

Binomial Distribution

$$
\begin{aligned}
& P(k) \approx e^{-p(N-1)} \frac{(p(N-1))^{k}}{k!}=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!} \\
& \text { Poisson Distribution }
\end{aligned}
$$

The Erdős-Rényi Random Graph

$$
\begin{aligned}
& C_{i}=\frac{E_{i}}{\frac{1}{2} k_{i}\left(k_{i}-1\right)}=\frac{2}{10}=\frac{1}{5} \\
& \langle C\rangle=\frac{1}{N} \sum_{i=1}^{N} C_{i} \\
& \langle C\rangle_{E R}=p
\end{aligned}
$$

How loopy is your network?
Clustering - the average density of
triangles in the network

Types of Graphs

Undirected

- Protein interaction networks
- Collaboration networks
- Actor co-stardom networks
- Internet

Bar-llan University אוניברסיטת בר-אילן

Types of Graphs

Undirected

- Protein interaction networks
- Collaboration networks
- Actor co-stardom networks
- Internet

Directed

- Metabolic
- Citation networks
- World Wide Web

$$
A_{i j}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Types of Graphs

Undirected

- Protein interaction networks
- Collaboration networks
- Actor co-stardom networks
- Internet

Directed

- Metabolic
- Citation networks
- World Wide Web

Bipartite

- Collaboration networks
- Actor co-stardom network
- Disease network

Types of Graphs

Undirected

- Protein interaction networks
- Collaboration networks
- Actor co-stardom networks
- Internet

Directed

- Metabolic
- Citation networks
- World Wide Web

Bipartite

- Collaboration networks
- Actor co-stardom network
- Disease network

M

Types of Graphs

Undirected
Protein interaction networks
Collaboration networks
Actor co-stardom networks

Bipartite

- Collaboration networks
- Actor co-stardom network
- Disease network
- Internet

Directed

- Metabolic

Citation networks
W/orld Wide W/eb

Types of Graphs

Undirected

- Protein interaction networks
- Collaboration networks
- Actor co-stardom networks
- Internet

Directed

- Metabolic
- Citation networks
- World Wide Web

$$
A_{i j}=\left(\begin{array}{cccccc}
0 & 0.2 & 0 & 0 & 1.3 & 0 \\
0.8 & 0 & 0 & 0.9 & 0 & 0 \\
0 & 0 & 0 & 0.2 & 1.1 & 0 \\
0 & 3.1 & 0.1 & 0 & 2.5 & 0 \\
1.8 & 0 & 0.6 & 0.5 & 0 & 0.8 \\
0 & 0 & 0 & 0 & 0.7 & 0
\end{array}\right)
$$

Bipartite

- Collaboration networks
- Actor co-stardom network
- Disease network

Weighted

- Metabolic networks
- Collaboration networks
- Actor co-stardom networks
- Social networks
,

The Metric of Paths

$$
P_{i j}=i \xrightarrow{A_{i k}} k \xrightarrow{A_{k m}} m \xrightarrow{A_{m l}} l \cdots q \xrightarrow{A_{q j}} j
$$

$N_{i j}^{l}=\sum_{k, m \cdots q} A_{i k} A_{k m} \cdots A_{q j}=\left[A^{l}\right]_{i j}$
$D_{i j}=\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 2 & 1 \\ 2 & 0 & 4 & 1 & 4 & 6 \\ 2 & 4 & 0 & 1 & 1 & 2 \\ 5 & 1 & 1 & 0 & 1 & 3 \\ 1 & 3 & 1 & 4 & 0 & 1 \\ 5 & 2 & 3 & 2 & 1 & 0\end{array}\right)$

Path - a set of consecutive edges
Network Distance - the shortest path linking a pair of nodes
,

The Metric of Paths

$$
P_{i j}=i \xrightarrow{A_{i k}} k \xrightarrow{A_{k m}} m \xrightarrow{A_{m l}} l \cdots q \xrightarrow{A_{q j}} j
$$

$N_{i j}^{l}=\sum_{k, m \cdots q} A_{i k} A_{k m} \cdots A_{q j}=\left[A^{l}\right]_{i j}$
$D_{i j}=\left(\begin{array}{llllll}0 & 1 & 2 & 3 & 2 & 1 \\ 2 & 0 & 4 & 1 & 4 & 6 \\ 2 & 4 & 0 & 1 & 1 & 2 \\ 5 & 1 & 1 & 0 & 1 & 3 \\ 1 & 3 & 1 & 4 & 0 & 1 \\ 5 & 2 & 3 & 2 & 1 & 0\end{array}\right)$

$$
D_{i j}=\infty
$$

$$
D_{j i}=4
$$

Network Distance - the shortest path linking a pair of nodes

Connectivity

Connected component - a subset of nodes
linked through finite paths

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Strange Letter Arrives in Omaha

Introduction to Network Science

Bar-Ilan University

It's a Small World After All

5.73 -Facebook
4.67-Twitter

3 -Metabolism
5 - Protein interactions
3.87 - Internet

19 - WWW
2.5 - Neuronal

3 - Food webs

Exploding Volume of Networks

$S(d)=4 d$

Introduction to Network Science

Exploding Volume of Networks

$$
N(d)=\sum_{x=1}^{d} 4 x=2 d(d+1) \sim d^{2}
$$

Polynomial growth

Exploding Volume of Networks

$$
N(d)=\sum_{x=1}^{d} 4 x=2 d(d+1) \sim d^{2}
$$

Polynomial growth

Exploding Volume of Networks

$N(d)=\sum_{x=1}^{d} k^{x}=\frac{k^{d+1}-1}{k-1} \sim k^{d}$
Exponential growth

$N(d)=\sum_{x=1}^{d} 4 x=2 d(d+1) \sim d^{2}$
Polynomial growth

M אוניברסיטת בר-אילן

Exploding Volume of Networks

$N(d)=\sum_{x=1}^{d} k^{x}=\frac{k^{d+1}-1}{k-1} \sim k^{d}$
Exponential growth

$N(d)=\sum_{x=1}^{d} 4 x=2 d(d+1) \sim d^{2}$
Polynomial growth

N אוניברסיטת בר-אילן

The Erdős-Rényi Graph Model

Poisson - narrow distribution around the mean

Clustering - vanishes for large networks.
Almost no loops. $\left(p=\frac{1}{N}\right)$

Small world -
radius scales logarithmically with volume

Erdős-Rényi vs. Reality

Small world -
radius scales logarithmically with volume

Erdős-Rényi vs. Reality

Clustering -

vanishes for large networks.
$\langle C\rangle_{E R}=p=\langle k\rangle / N$

Erdős-Rényi vs. Reality

Poisson - narrow distribution around the mean

Bar-llan University

Erdős-Rényi vs. Reality

We do not observe a single network in nature that follows this model
 Network Science

