1) Introduction to glasses

2) Molecular Dynamics

Walter Kob

Université Montpellier

France

DPG Physics School on Computational Physics of Complex and Desirderod Systems

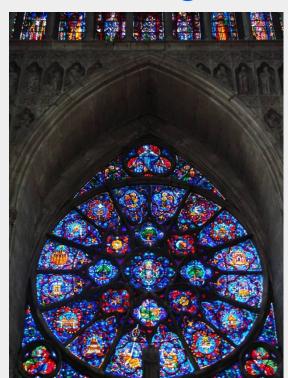
Bad Honnef

September 21-25, 2015

Part 1: Introduction to glassy systems

- History
- Phenomenology of glassy systems
- mainly experimental results
- Nomenclature (often ill-chosen)

What are glasses?



- windows
- mirrors
- vases/containers
- decorative art
- optical fibers
- buildings

But also other structurally disordered systems

•gels: food, cosmetics, ...

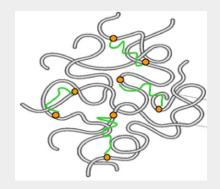
polymers: plastics, rubber,...

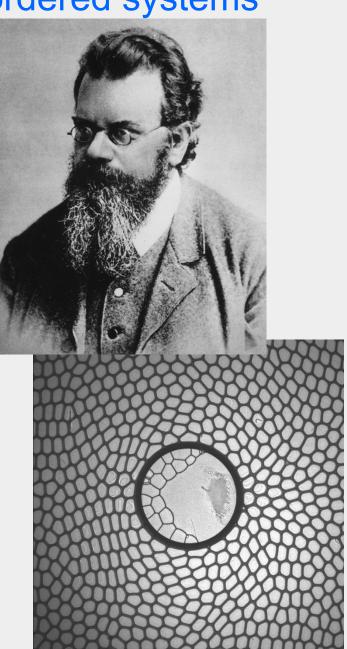
•granular materials: sand, powders,...

complex fluids: shampoo, paint,...

foams

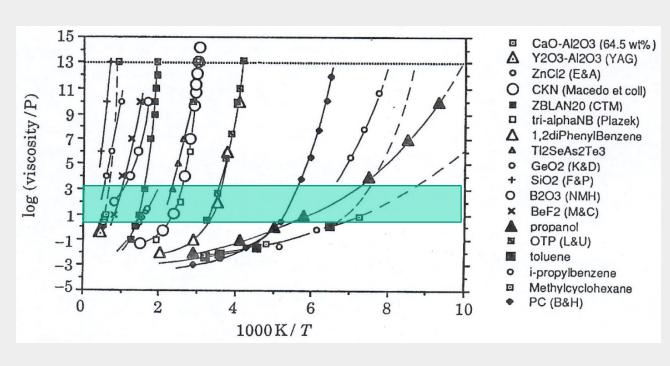
complex proteins





Supercooled liquids

- Most liquids crystallize if they are cooled below their melting temperature T_m
- But some liquids stay in a (metastable) liquid phase even well below T_m
- ⇒ one can study their properties in the supercooled state
- Consider, e.g., the T-dependence of the viscosity η



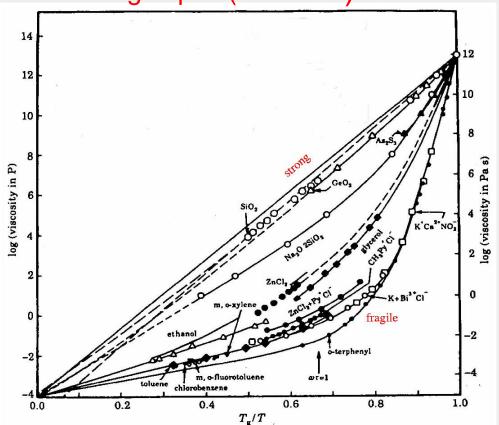
- Strong increase of η with decreasing T
- Similar results for relaxation times
- NB: slow dynamics has nothing to do with supercooled!!!!

Strong and fragile glass-formers

Use the viscosity η to define a glass transition temp. T_g : $\eta(T_g) = 10^{13}$ Poise

N.B. the value 10^{13} Poise is almost completely arbitrary; it was chosen such that the typical relaxation time of the system is on the order of 100 seconds $\eta = 10^{13}$ Poise \Leftrightarrow very slow flow (a person sinks in by 10cm/year!!) •make a reduced Arrhenius plot $\log(\eta)$ vs T_{α}/T

Angell-plot (Uhlmann)



- Rescaling did not lead to a master curve ⇒ T-dependence is not universal (??)
- ⇒ "strong" and "fragile" glassformers

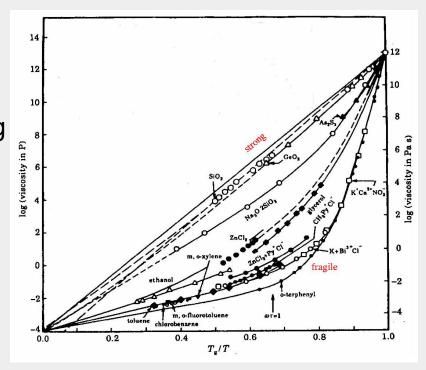
Questions:

- What is the mechanism for the slowing down?
- Is there one universal mechanism or are there several ones?
- •What is the difference between strong and fragile systems? 6

More questions

- What is the T-dependence of η ? Empirically one often (!!!) finds the following dependencies:
- -high T: Arrhenius-law
- intermediate and low T:

```
Vogel-Fulcher (-Tammann)- law:  \eta(T) = \eta_0 \; exp(\; A/(T-T_0)\; )  with the "Vogel temperature" T_0
```

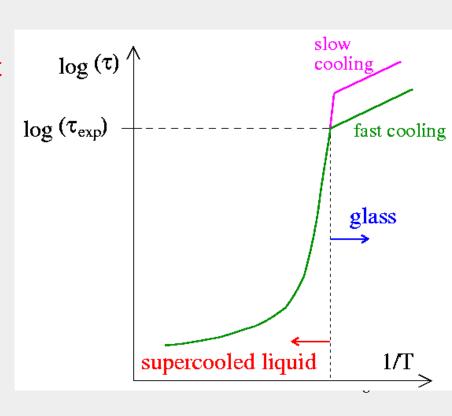


- -Sometimes one also finds at low T a cross-over to a different Vogel-Fulcher law (different A and T₀)
- Sometimes the low T data is fitted well by the Bässler-law $\eta(T) = \eta_0 \exp(A/T^2)$
- Many (>10) other functional forms have been proposed
- •Is there a divergence of the relaxation times at a finite T?

 Experiments are not able to tell because the glass transition intervenes

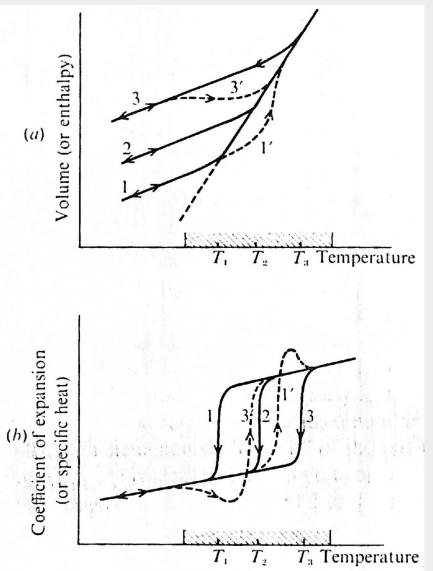
The glass transition

- If in an experiment (or simulation) one wants to investigate the properties of a system at a given T one first has to bring the system to this temperature (by coupling it to a heat bath)
- If one wants to study the equilibrium dynamics one will have to allow the system to equilibrate and usually this takes a time that is comparable with the relaxation time τ of the system, N.B. $\tau \propto \eta$
- Due to the strong increase of τ with decreasing T there will exist a temp. T at which the system falls out of equilibrium (because we don't have enough patience) and forms a glass
 - ⇒ the system undergoes a glass transition
- N.B.: 1) the existence of *this* glass transition is trivial!
 2) the temperature of this transition depends on τ_{exp}, i.e. the experiment (and observable)



Cooling rate dependence of T_g

To generate a glass one has to cool a liquid to low temperatures until it falls out of equilibrium

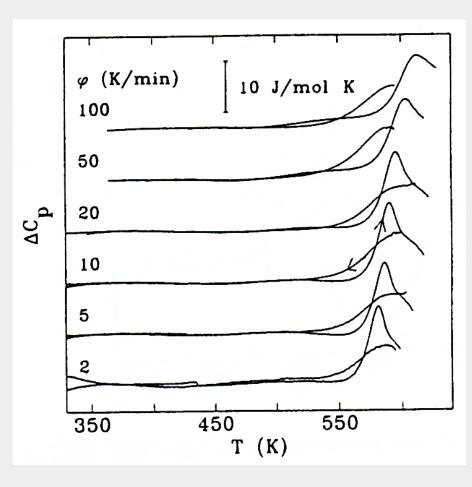


- The larger the cooling rate the higher is the glass transition temperature
- Upon reheating we find aging effects that are most pronounced close to the glass transition temperature
- These effects are even more pronounced in the derivatives

NB: All these effects are easily understood by recalling that the glass transition and the resulting glass depends on the cooling rate

Cooling rate dependence of T_g: 2

Cooling rate effects in real experiments



 Dependence of specific heat on cooling rate in Pd₄₀Ni₄₀P₁₉Si₁

(heating rate = cooling rate)

Brüning and Samwer PRB **46**, 11318 (1992)

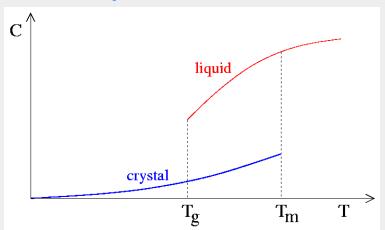
NB: In order to see a change in T_g one needs a *large* change in cooling rate since

i) the relaxation time $\tau(T)$ is a very strong function of T and

ii)
$$\tau(T_q) \propto \varphi^{-1}$$

The Kauzmann temperature

 Typical T-dependence of the specific heat



 For all liquids the specific heat is higher than the one of the corresponding crystal:

Reason: in a supercooled liquid there are not only vibrational excitations but also translational degrees of freedom

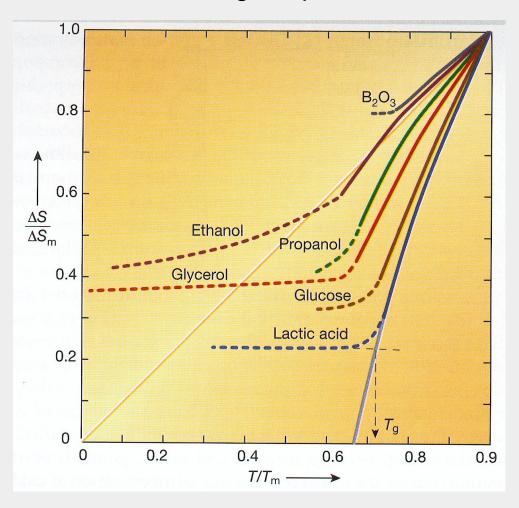
- In the glass c(T) is similar to the one of the corresponding crystal (vibrational excitations are quite similar)
- •Kauzmann (1948) used the temperature dependence of the specific heat to calculate the entropy of the system for T < T_m

$$s_{lpha}(T_m) = s_{lpha}(T) + \int_{T}^{T_m} rac{c_{lpha}}{T} dT \quad lpha \in \{ ext{liquid, crystal}\}$$

•Since c_{liquid} > c_{crystal} the entropy of the liquid decreases faster (with decreasing T) than the one of the crystal

The Kauzmann temperature: 2

• Calculate the difference $\Delta s(T) = s_{liquid} - s_{crystal}$ and normalize it by Δs_m , its value at the melting temperature



- Solid lines: equilibrium data dashed lines: data in the glass
- Above T_g difference depends strongly on T and a reasonable extrapolation seems to predict that $\Delta s(T)$ vanishes at a temperature T_K , the Kauzmann temperature
- Implication: below T_K the entropy of the liquid is smaller than the one of the crystal! ⇒ "Kauzmann paradox"
- ⇒ Boltzmann: $s=k_B \log(\Omega)$ ⇒ $s=0 \Leftrightarrow \Omega = 1 \Rightarrow below T_K$ there is only **one** (ideal!) glass state²

Glass transition temperatures

So far we have three glass transition temperatures:

- T_g from $\eta(T_g) = 10^{13}$ Poise is an intrinsic (= equilibrium) temperature but arbitrary
- T_{kinetic} from falling out of equilibrium depends on experiment (cooling rate, ...) but is important to characterize the glass; attempts to make this more systematic: Tool, Narayaswamy, Moynihan, ... "fictive temperature"
- T_K from the extrapolation of the entropy (Kauzmann temperature)
 is an intrinsic temperature but can be obtained only by extrapolations
 (see later)

Other important ones:

- Onset temperature T₀: Temperature at which the system starts to become sluggish (see later)
- T_c critical temperature of mode-coupling theory (intrinsic temperature at which the mechanism for the relaxation dynamics changes)

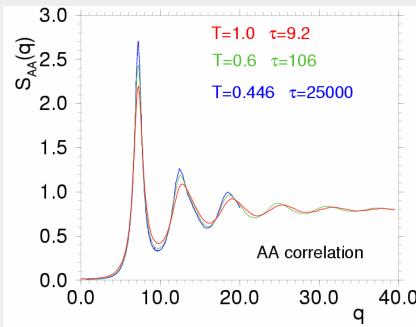
And static quantities?

So far we have considered only dynamic quantities; do static quantities also show a strong T-dependence?

Look, e.g. at the static structure factor S(q):

$$S(q) = N^{-1} \sum_{k} \sum_{i} \langle exp(i \mathbf{q} \cdot (\mathbf{r}_{k} - \mathbf{r}_{i})) \rangle$$

S(q) can be measured in light or neutron scattering experiments



- Compared with the dynamic quantities, S(q) shows only a very weak
 T-dependence
- Similar results for most other static quantities that have been investigated so far (however, spin glasses show a divergent length scale, and since recent times also structural glasses show a pronounced Tdependence in certain static observables!)

Time dependent correlation functions

So far: T-dependence of macroscopic quantities; what is the dynamics of the system on the microscopic level? ⇒ study time correlation functions

- consider an observable A(t) [density at a given point in space, magnetization, velocity of particle #351, ...] and an observable B(t)
- calculate the time correlation function

$$\phi_{AB}(t, t') = \langle A(t) B(t') \rangle$$

where $\langle ... \rangle$ is the canonical average

In equilibrium we have time translation invariance and hence:

$$\phi_{AB}(t, t') = \langle A(t) B(t') \rangle = \langle A(t-t') B(0) \rangle = \phi_{AB}(t-t')$$

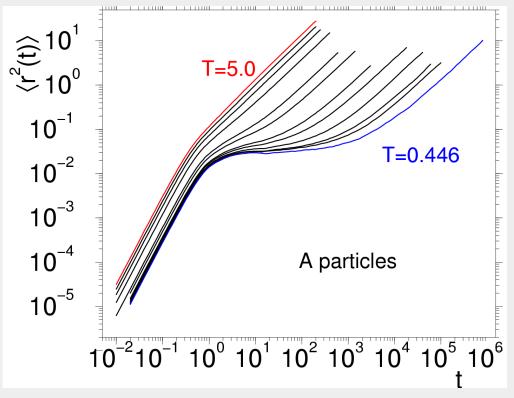
special case: A = B: ⇒ autocorrelation function of observable A

Time dependent correlation functions 2

Mean squared displacement is defined as

$$\langle \mathbf{r}^2(\mathbf{t}) \rangle = \langle |\mathbf{r}_i(\mathbf{t}) - \mathbf{r}_i(\mathbf{0})|^2 \rangle$$

T- and t-dependence of MSD in a L-J system



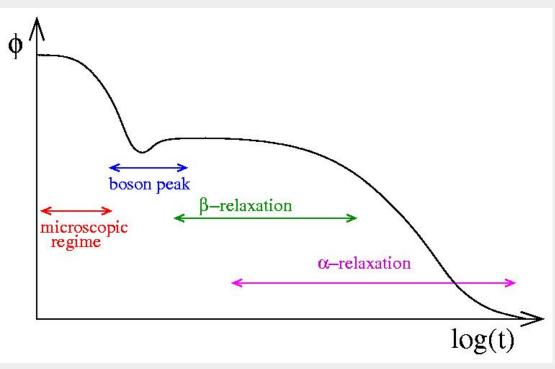
- short t: ballistic regime $r_i(t)=r_i(0)+v_i(0)t+...$ $\Rightarrow \langle r^2(t)\rangle \propto t^2$
- long t: diffusive regime ⟨r²(t)⟩ ∝ t
- intermediate times at low T: cage
 effect

• with decreasing T the dynamics slows down quickly since the length of the plateau increases; ⇒ in order to understand the slowing down one must understand the breaking up of the cage

Time dependent correlation functions 3

What is the typical time dependence of a correlation function for a system with glassy dynamics?

N.B.: We are interested in **glass-forming systems**. Therefore we **need a logarithmic time axis**.

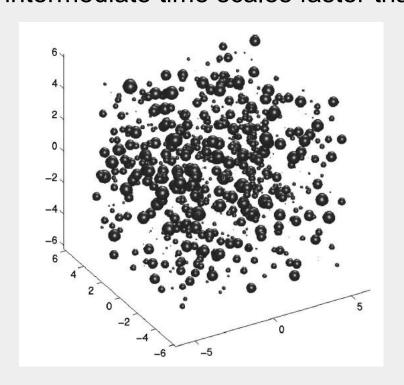


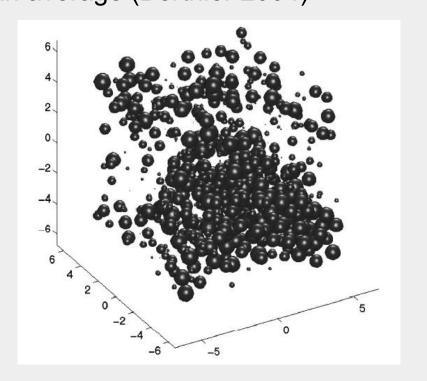
Various regimes

- microscopic regime short times; ballistic motion; vibrations
- boson peak low frequency vibrations
- β-relaxation regime
 intermediate times; correlator
 depends only weakly on time
 (cage effect)
- α-relaxation regime
 long times; correlator decays
 to zero in a non-exponential
 way (=particles leave cage)

Origin of stretched exponential $\phi(t) = A \exp(-(t/\tau)^{\beta})$ with $\beta \le 1$

Dynamical heterogeneities: Become very prominent if the temperature is lowered; size of dynamically correlated regions increases Example: Particles in a binary Lennard-Jones mixture that relax on intermediate time scales faster than average (Berthier 2004)





High T

Low T

Correlation functions in the frequency domain

- Many experimental techniques do not give information in the time domain but only in the frequency domain (spectroscopy)
- \Rightarrow what one measures is $\phi'(\omega)$ and $\phi''(\omega)$, the real and imaginary part of the time-Fourier transform of a time correlation function $\phi(t)$

or

 $\chi'(\omega)$ and $\chi''(\omega)$, the real and imaginary part of the dynamic susceptibility

• important connection between $\phi''(\omega)$ and $\chi''(\omega)$ (valid for systems in equilibrium!):

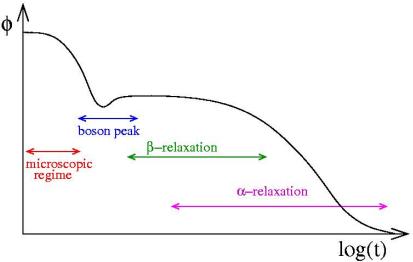
$$\chi''(\omega) = \phi''(\omega) \omega/(k_B T)$$

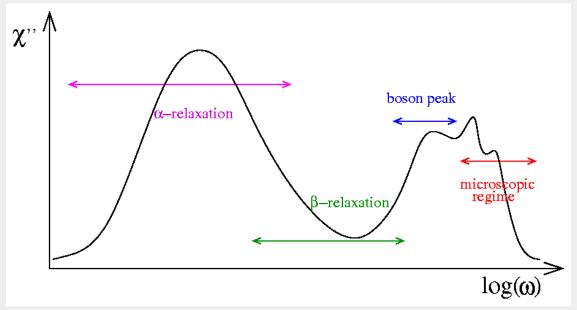
Correlation functions in the frequency domain 2

φ"(ω): imaginary part of the time-Fourier φ transform of a time correlation function

 χ "(ω): imaginary part of the dynamic susceptibility

$$\chi''(\omega) = \phi''(\omega) \omega/(k_B T)$$





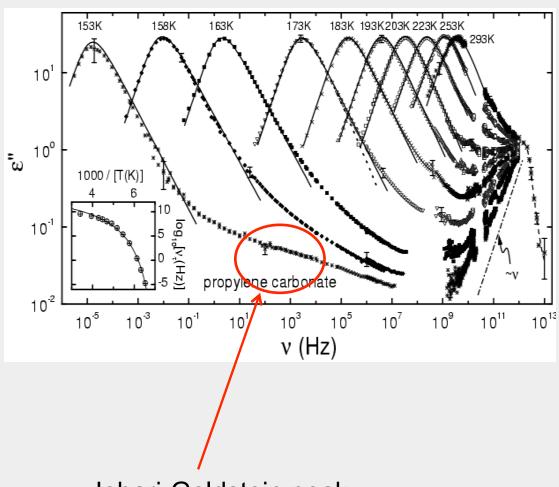
 various peaks correspond to the different processes seen in the time domain

Correlation functions in the frequency domain 3: Real data

 One of the best techniques to probe the system in a large frequency and temperature range is dielectric measurements

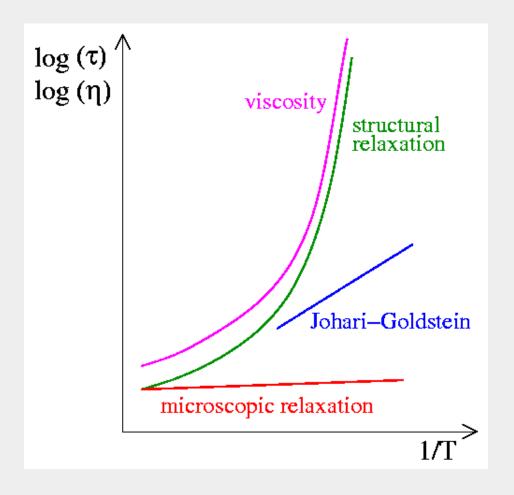
Lunkenheimer et al. (2001)

Problem: what exactly is measured??



Johari-Goldstein peak

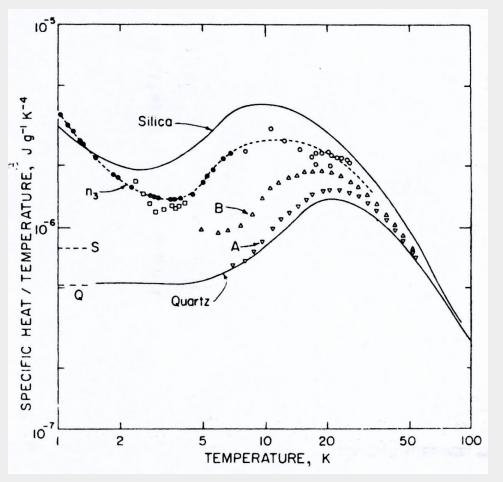
T-dependence of characteristic times



- viscosity and microscopic relaxation times
- strong T-dependence
- unclear whether or not they have the same T-dependence
- microscopic relaxation
- weak T dependence (∝T-0.5)
- Johari-Goldstein peak
- Arrhenius law
- Conductivity: often Arrhenius

Properties of the glass

For a crystal the specific heat at low T is proportional to T³ (Debye)
 ⇒ a plot of C/T³ gives a plateau
 (N.B. peak at higher T stems from optical vibrations)

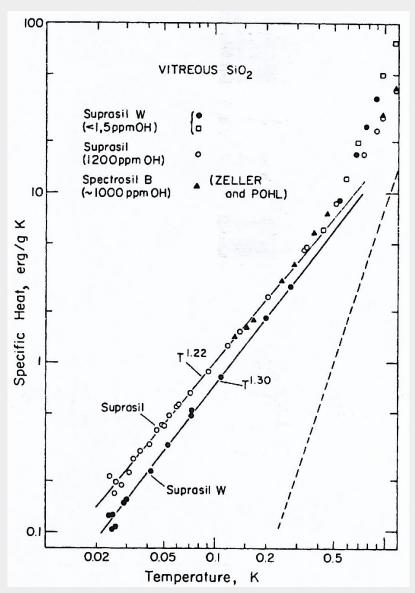


- In a glass there are three anomalies:
- 1) the specific heat is increased with respect to the one of the crystal
- 2) there is a peak at relatively low T

 ⇒ there exist excitations that are quite soft; nature of the excitations is not quite clear (Boson peak); intensity is correlated with fragility
- 3) at very low T there is a strong increase of C

Specific heat at low T

For a crystal the specific heat at low T is proportional to T³



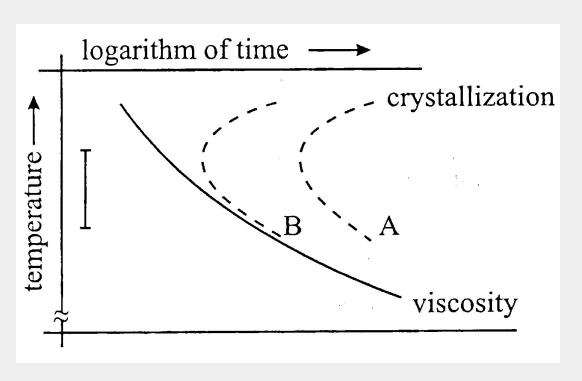
- In glasses C shows an increase \propto T $^{\alpha}$ with 0.8 < α <1.4
- Phenomenological explanation:
 two-level systems, i. e. atoms/or a
 group of atoms that oscillate between
 two local minima;
 under certain assumptions on the
 distribution of the asymmetry and the
 barrier height one is able to reproduce
 the fractional power-law;
 the real mechanism is, however, not
 really known

N.B. the density of the TLS is estimated to be ≈10⁻⁶ per atom!

24

But sometimes it happens...

So far: ideal situation in which the liquid did not crystallize at all;
 but in reality most systems will crystallize sooner or later

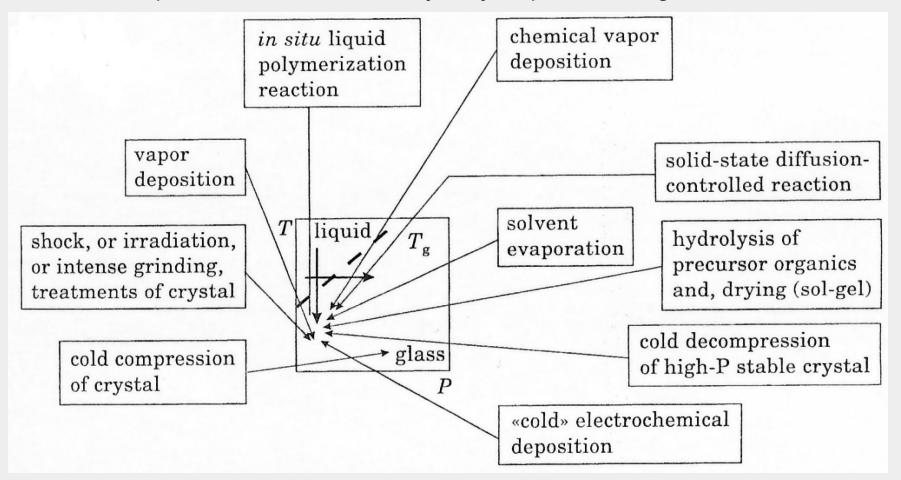


Time-Temperature-Transformation plot

- A bit below the melting temperature the system is stable for a very long time
- With decreasing T the driving force for crystallization increases
- With decreasing T the dynamics slows down and hence the critical nuclei cannot form or grow
- ⇒ there exists a dangerous Trange in which (sometimes) the liquid cannot be studied

How to produce a glass?

• So far: the slowing down of the dynamics was due to a decrease of temperature; is this the only way to produce a glass?



N.B.: glasses obtained in different ways are usually not equivalent, even if their macroscopic properties (density, composition, temperature,...) are the same

Frequent features of disordered materials

Glassy materials show many (but not necessarily all!) of the following features:

- strong slowing down of the dynamics upon a modest change of some external parameter (temperature, pressure, magnetic field,...)
- a transition to a non-ergodic phase
- no obvious presence of long range order
- stretching of time correlation functions
- some sort of frustration
- complex time dependence of correlation functions
- . . .
- ⇒ at low T these systems will show aging, i.e. their properties will depend on time

Examples of glassy systems

- oxide glasses: windows, bottles, optical fibers,...
- polymers: plastic bags, spectacles, boxes, gels,...
- paint: colloidal particles in a solution of water, polymers, and more
- metallic glasses: Ni₂₄Zr₇₆ etc.: *thin* ribbons (few μm) because of large cooling rates (10⁶ K/s); used in transformer cores because of good magnetic properties
 - Since 1993: bulk metallic glasses Zr-Ti-Ni-Cu-Be alloys; cooling rates 1K/s; very good mechanical properties; used in high strength materials, golf clubs (see http://www.liquidmetalgolf.com), etc.
 - food: caramel, mayonnaise,...
 - foams
 - granular materials: sand, flour, ...
 - spin glasses: magnetic impurities in a noble metal, i.e. Au-0.5%Mn; Eu_{1-x}Sr_xS
 - domain growth in a system with impurities
 - biological systems: large proteins that have to fold; commissions; ...
 - abstract optimization problems: traveling salesman problem, k-sat problem, ...

• . . .

Various models/theories for the glass transition

- Continuous Random Network (Zachariasen)
- Adam-Gibbs (Adam, Gibbs)
- Excitation/defect mediated dynamics (Chandler, Garrahan)
- Ensembles of histories (Chandler)
- Free volume theory (Cohen, Turnbull, Grest)
- Frustrated domains/avoided criticality (Kivelson, Tarjus)
- Gibbs-DiMarzio theory (Gibbs, DiMarzio)
- Mode-coupling theory (comes in various flavors) (Götze, Sjögren)
- Random first order theory (Kirkpatrick, Thirumalai, Wolynes)
- Rigidity percolation (Philips, Thorpe)
- Shoving model (Dyre)
- Trap model (Bouchaud)

29

Things I didn't mention

- •Aging dynamics below T_g: Is very complex and not very well understood; can one introduce an effective temperature to describe this nonequilibrium state? (see L.F. Cugliandolo, Lecture Notes Les Houches 2003)
- Dynamical heterogeneities: how does the relaxation dynamics depend on the particle/region considered? (see R. Richert, J. Phys.: CM **14**, R703 (2002))
- Driven glassy systems: Driving a system (shearing, stirring,...) is similar to impose an external temperature to it; what are the resulting properties?
- Transport phenomena in disordered systems: Ion conducting glasses; mixed alkali effect; electrophoresis
- Fracture of glasses: Highly complex phenomenon due to the disorder and slow intrinsic time scales

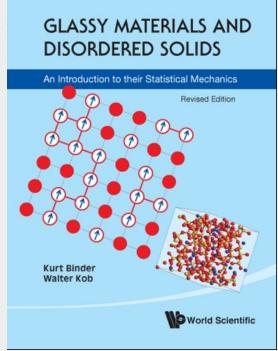
• ...

References

- A. Feltz, Amorphous Inorganic Materials and Glasses (VCH, Weinheim, 1993)
- P. G. Debenedetti Metastable Liquids
 (Princeton University Press, Princeton, 1997)

• A. K. Varshneya, Fundamentals of Inorganic Glasses (Soc. Glass Tech., 2006)

•K. Binder and W. Kob Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2011)



A brief history of glass

 Prehistoric times: obsidian was used to make knives, arrow tips etc.

•Oldest man-made glasses date from 3000 BC (Mesopotamia); Na₂O-CaO-SiO₂; melting of sand addition of sea plants

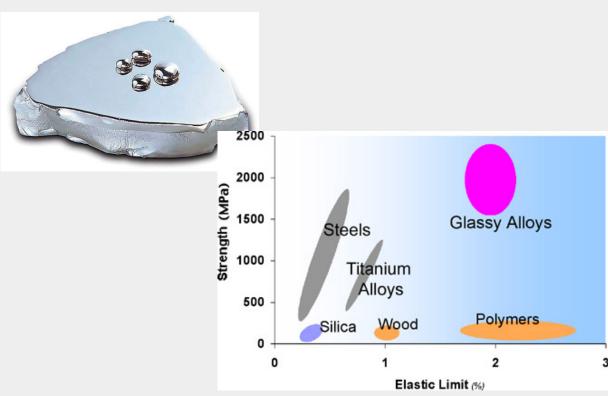
Egyptian perl, XII cent. BC

•Invention of glass blowing in Phoenicia (today Lebanon) around 50 BC

pitcher, Italy, 2 cent. AC

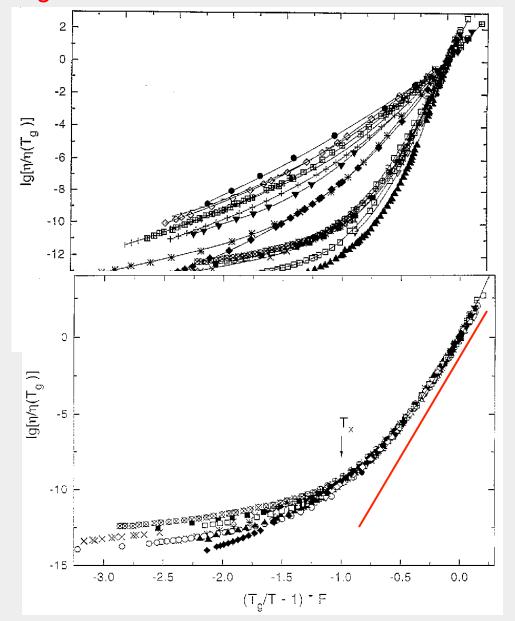
History of glasses: cont.

- 17th century
 - large mirrors (Versailles)
- 20th century
 - float-glass
 - polymers
 - metallic glasses
 - spin glasses
 - foams
 - granular materials
 - colloidal systems
 - ...



- All these materials have certain properties in common that are considered to be "typical" for glassy systems
- To understand/define these properties we consider one important class of glass-forming systems: liquids

Strong and fragile glass-formers?
•Is there really a fundamental difference between strong and fragile glass-formers?



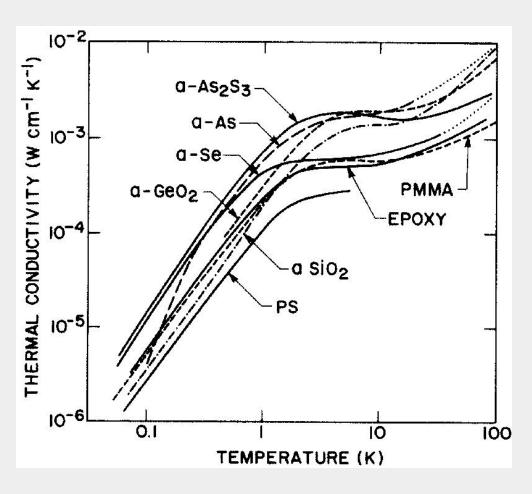
Scale T-axis such that the slope of the different curves at T_q is the same

Rössler, Hess, and Dingwell (1998):

Not really! Perhaps???

A related anomaly

• Recall: C shows at around 10 K a broad peak whose existence is related to the presence of soft excitations (Boson peak)

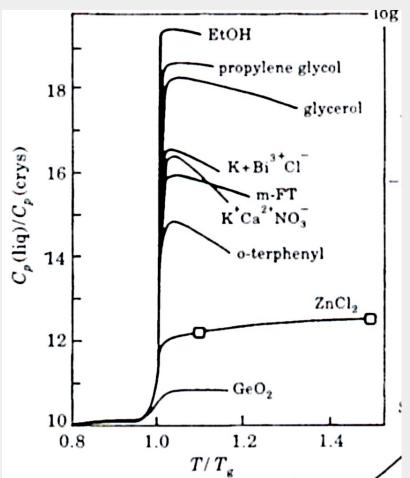


- the thermal conductivity shows between 1-10 K a plateau
- ⇒ phonons with this energy do not propagate anymore because they are scattered by the disorder

Since the anomaly occurs in the same T-range as the one of the Boson peak, it is believed that they have a common origin

Close to the glass transition

- Recall: At the glass transition the system falls out of equilibrium since the translational degrees of freedom cannot relax anymore
- ⇒ these degrees of freedom do not contribute anymore to the specific heat
- \Rightarrow drop in C_p (or C_V) at the glass transition; is used in experiments to obtain T_q



How does this drop depend on the fragility?

- trend: the more fragile the system, the larger is the drop
- for fragile systems the curve above T_g (i.e. the equilibrium values) tend to decrease with increasing T