Extended tables and figures to the M-estimator paper

Peter Ruckdeschel Mathematisches Institut Universität Bayreuth D-95440 Bayreuth Germany e-Mail: peter.ruckdeschel@uni-bayreuth.de

5th October 2005

1 Extended / additional Tables

In this document, you find extended tables to Ruckdeschel (2005).

1.1 Extended Table 1

Optimal clipping heights and corresponding (numerically) exact $\ensuremath{\mathrm{MSE}}$

r		n = 5	n = 10	n = 30	n = 50	n = 100	$n = \infty$
	c_0	1.948	1.948	1.948	1.948	1.948	1.948
	$MSE_n(c_0)$	1.508	1.290	1.166	1.138	1.112	1.054
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{0})$	8.679%	4.065%	1.340%	0.836%	0.448%	—
	c_1	1.394	1.484	1.611	1.663	1.724	1.948
	$MSE_n(c_1)$	1.399	1.242	1.151	1.129	1.107	1.054
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{1})$	0.833%	0.207%	0.027%	0.014%	0.010%	_
0.1	c_2	1.309	1.428	1.585	1.644	1.713	1.948
0.1	$MSE_n(c_2)$	1.392	1.240	1.151	1.129	1.107	1.054
	$\operatorname{relMSE}_n^{\operatorname{ex}}(c_2)$	0.332%	0.066%	0.008%	0.004%	0.006%	_
	$C_{\rm FZY}$	1.368	1.370	1.610	1.668	1.756	1.939
	$MSE_n(c_{FZY})$	1.397	1.239	1.151	1.129	1.107	1.054
	$\operatorname{relMSE}_{n}^{ex}(c_{FZY})$	0.658%	0.002%	0.026%	0.021%	0.031%	_
	$C_{\rm ex}$	1.167	1.358	1.560	1.630	1.704	_
	$MSE_n(c_{ex})$	1.388	1.239	1.151	1.129	1.107	—

r		n = 5	n = 10	n = 30	n = 50	n = 100	$n = \infty$
	<i>c</i> ₀	1.339	1.339	1.339	1.339	1.339	1.339
	$MSE_n(c_0)$	2.365	1.768	1.454	1.390	1.335	1.220
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{0})$	6.280%	3.681%	1.108%	0.656%	0.330%	_
	<i>c</i> ₁	0.994	1.059	1.147	1.181	1.219	1.339
	$MSE_n(c_1)$	2.246	1.713	1.438	1.381	1.330	1.220
	$\operatorname{relMSE}_n^{\operatorname{ex}}(c_1)$	0.933%	0.415%	0.055%	0.023%	0.009%	—
0.25	<i>c</i> ₂	0.890	0.990	1.114	1.159	1.207	1.339
0.20	$MSE_n(c_2)$	2.230	1.707	1.438	1.381	1.330	1.220
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{2})$	0.241%	0.104%	0.009%	0.002%	0.003%	—
	$C_{\rm FZY}$	0.924	1.020	1.205	1.177	1.211	1.338
	$MSE_n(c_{FZY})$	2.234	1.709	1.441	1.381	1.330	1.220
	$\operatorname{relMSE}_{n}^{ex}(c_{FZY})$	0.417%	0.215%	0.233%	0.018%	0.002%	—
	C _{ex}	0.783	0.921	1.092	1.140	1.205	_
	$MSE_n(c_{ex})$	2.225	1.705	1.438	1.381	1.330	_
	c_0	0.862	0.862	0.862	0.862	0.862	0.862
	$MSE_n(c_0)$	4.768	3.120	2.180	2.017	1.883	1.636
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{0})$	2.930%	2.655%	0.792%	0.446%	0.218%	_
	<i>c</i> ₁	0.650	0.690	0.746	0.767	0.790	0.862
	$MSE_n(c_1)$	4.667	3.058	2.164	2.008	1.879	1.636
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{1})$	0.756%	0.615%	0.087%	0.036%	0.013%	_
0.5	<i>c</i> ₂	0.547	0.620	0.712	0.744	0.777	0.862
0.0	$MSE_n(c_2)$	4.643	3.045	2.163	2.008	1.879	1.636
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{2})$	0.230%	0.191%	0.015%	0.008%	0.003%	—
	$c_{\rm FZY}$	0.539	0.632	0.716	0.749	0.782	0.866
	$MSE_n(c_{FZY})$	4.641	3.047	2.163	2.008	1.879	1.636
	$\operatorname{relMSE}_{n}^{ex}(c_{FZY})$	0.200%	0.248%	0.021%	0.011%	0.008%	—
	$C_{ m ex}$	0.413	0.531	0.686	0.728	0.770	_
	$MSE_n(c_{ex})$	4.632	3.039	2.162	2.008	1.879	—
	<i>c</i> ₀	0.436	0.436	0.436	0.436	0.436	0.436
	$MSE_n(c_0)$	12.970	8.710	4.985	4.311	3.793	2.964
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{0})$	2.716%	3.132%	0.746%	0.348%	0.149%	_
	c_1	0.320	0.340	0.369	0.380	0.394	0.436
	$MSE_n(c_1)$	12.805	8.581	4.961	4.299	3.788	2.964
	$\operatorname{relMSE}_{n}^{\operatorname{ex}}(c_{1})$	1.411%	1.610%	0.251%	0.076%	0.021%	_
1.0	<i>c</i> ₂	0.255	0.291	0.342	0.361	0.382	0.436
1.0	$MSE_n(c_2)$	12.737	8.530	4.954	4.297	3.788	2.964
	$\operatorname{relMSE}_{n}^{ex}(c_2)$	0.876%	0.999%	0.123%	0.027%	0.006%	_
	C _{FZY}	-	0.281	0.344	0.375	0.387	0.440
	$MSE_n(c_{FZY})$		8.521	4.955	4.298	3.788	2.964
	$\operatorname{relMSE}_{n}^{ex}(c_{FZY})$		0.892%	0.132%	0.063%	0.012%	-
	C _{ex}	0.001	0.125	0.286	0.334	0.366	—
	$MSE_n(c_{ex})$	12.627	8.445	4.948	4.296	3.787	—

c	order	determined by	optimal among
c_0	f-o-o	num. solution of (1.9)	all IC's
c_1	S-0-0	num. solution of (7.4)	all IC's acc. to $(bmi), (D'), (Vb)$ and (C')
c_2	t-o-o	num. optimization of (3.22)	all Hampel-type IC's
$c_{\rm FZY}$	—	num. optimization of ()	all (4.45)-type IC's
$c_{\rm ex}$	—	num. optimization of the (num.) exact MSE	all Hampel-type IC's
where ((7.4) is the	he s-o analogue to (1.9) , which is derived in Cord	ollary 7.2. A description

to this table is located on page Ruckdeschel (2005).

1.2 Additional tables to subsection 5.3.1

n/		simulation			num	neric	asymptotics		
situa	ation	\bar{S}_n	[low;	up]	Algo C	Algo D	n^0	$n^{-1/2}$	n^{-1}
5	id	0.981	[0.954;	1.009]	1.008	1.007	1.012	1.012	1.007
0	cont	1.471	[1.419;	1.532]	1.501	1.612	1.054	1.292	1.331
10	id	1.001	[0.973;	1.029]	1.010	1.009	1.012	1.012	1.010
10	cont	1.288	[1.248;	1.328]	1.290	1.296	1.054	1.222	1.242
30	id	1.028	[1.000;	1.057]	1.011	1.011	1.012	1.012	1.011
30	cont	1.192	[1.158;	1.226]	1.165	1.167	1.054	1.151	1.158
50	id	1.027	[0.998;	1.056]	_	1.011	1.012	1.012	1.012
50	cont	1.142	[1.110;	1.174]	_	1.138	1.054	1.129	1.133
100	id	0.984	[0.956;	1.011]	_	1.010	1.012	1.012	1.012
100	cont	1.081	[1.050;	1.111]	_	1.111	1.054	1.107	1.109

emp., num., and as. MSE at r = 0.1, $c = c_0(r) = 1.9483$

emp., num., and as. MSE at r = 0.5, $c = c_0(r) = 0.862$

n/		simulation			num	neric	asymptotics		
situa	ation	\bar{S}_n	[low;	up]	Algo C	Algo D	n^0	$n^{-1/2}$	n^{-1}
5	id	1.117	[1.086]	;1.148]	1.124	1.121	1.139	1.139	1.124
0	cont	3.061	[2.962]	;3.161]	3.084	12.557	1.636	2.558	3.170
10	id	1.144	[1.112]	;1.177]	1.131	1.128	1.139	1.139	1.132
10	cont	2.993	[2.893]	;3.093]	2.908	4.905	1.636	2.288	2.594
20	id	1.149	[1.117]	;1.180]	1.137	1.134	1.139	1.139	1.137
30	cont	2.199	[2.135]	;2.263]	2.183	2.185	1.636	2.013	2.115
50	id	1.120	[1.089]	;1.151]	_	1.134	1.139	1.139	1.138
50	cont	1.956	[1.903]	;2.009]	—	2.018	1.636	1.928	1.989
100	id	1.142	[1.111]	;1.174]	_	1.135	1.139	1.139	1.139
100	cont	1.894	[1.845]	;1.944]	—	1.882	1.636	1.842	1.873

1.3 Additional table to subsection 5.3.2

~	simulation			num	eric	asymptotics		
7	\bar{S}_n	[low;	up]	Algo C	Algo D	n^0	$n^{-1/2}$	n^{-1}
0.00	1.001	[0.973;	1.029]	1.009	1.009	1.010	1.010	1.010
0.10	1.145	[1.112;	1.177]	1.139	1.141	1.054	1.132	1.136
0.25	1.518	[1.475;	1.560]	1.535	1.546	1.285	1.495	1.524
0.50	2.753	[2.682;	2.823]	2.824	2.866	2.108	2.645	2.775
1.00	8.620	[8.446;	8.794]	8.490	8.750	5.401	7.406	8.148

emp., num., and as. MSE at n = 50, c = 2.0

1.4 Extended / additional tables to subsection 5.3.3

estimator/		si	mulation	num	asymptotics		
situa	ation	\bar{S}_n	[low; up]	*	n^0	$n^{-1/2}$	n^{-1}
Mod	id	1.562	[1.518;1.605]	1.549	1.571	1.571	1.526
Mea	cont	2.165	[2.106; 2.223]	2.171	1.963	2.241	2.251
a = 0.5	id	1.273	[1.237;1.308]	1.258	1.263	1.263	1.262
c = 0.5	cont	1.926	[1.875; 1.978]	1.912	1.689	1.880	1.907
c = 0.7	id	1.192	[1.159;1.226]	1.182	1.187	1.187	1.186
c = 0.7	cont	1.894	[1.844; 1.944]	1.879	1.647	1.844	1.873
a = 1.0	id	1.108	[1.078; 1.139]	1.103	1.107	1.107	1.107
c = 1.0	cont	1.913	[1.864; 1.963]	1.904	1.644	1.860	1.893
a – 15	id	1.035	[1.006;1.063]	1.034	1.037	1.037	1.037
c = 1.0	cont	2.125	[2.072; 2.179]	2.133	1.786	2.063	2.108
a = 2.0	id	1.008	[0.980; 1.036]	1.009	1.010	1.010	1.010
c = 2.0	cont	2.569	[2.507 ; 2.632]	2.601	2.108	2.488	2.553
$c = c_0 = 0.8616$	id	1.142	[1.111; 1.174]	1.135	1.139	1.139	1.139
$c = c_0 = 0.8010$	cont	1.894	[1.845; 1.944]	1.882	1.636	1.842	1.873

emp., num., and as. MSE at n = 100, r = 0.5

estimator/		simulation	numeric	asymj	ptotics
situation			*	n^0	$n^{-1/2}$
Med	id	1.367	1.365	1.379	1.379
	cont	1.142	1.154	1.200	1.153
c = 0.5	id	1.144	1.108	1.108	1.108
c = 0.5	cont	1.017	1.016	1.020	1.018
a = 0.7	id	1.044	1.041	1.041	1.041
c = 0.1	cont	0.999	0.999	1.001	1.000
c = 1.0	id	0.970	0.972	0.972	0.972
c = 1.0	cont	1.010	1.012	1.009	1.010
c = 1.5	id	0.906	0.911	0.910	0.910
c = 1.0	cont	1.122	1.134	1.120	1.125
a = 2.0	id	0.883	0.889	0.887	0.887
c = 2.0	cont	1.356	1.382	1.350	1.363

emp., num., and as. relMSE at n = 100, r = 0.5 relative to $Var[\bar{X}_n]$ for id and $MSE(c_0(r))$ for cont, $c_0(r) = 0.8616$

emp., num., and as. MSE at n = 30, r = 0.25

estimator/		si	mulation	num	asymptotics		
situa	ation	\bar{S}_n	[low; up]	ex	n^0	$n^{-1/2}$	n^{-1}
Mod	id	1.492	[1.451; 1.532]	1.501	1.571	1.571	1.496
Mea	cont	1.786	$[1.736\ ; 1.835]$	1.779	1.669	1.821	1.767
c = 0.5	id	1.250	[1.216; 1.284]	1.259	1.263	1.263	1.259
c = 0.0	cont	1.545	[1.502; 1.588]	1.545	1.369	1.514	1.532
c = 0.7	id	1.175	[1.142; 1.207]	1.183	1.187	1.187	1.184
c = 0.1	cont	1.482	[1.440; 1.523]	1.483	1.302	1.450	1.469
c = 1.0	id	1.092	[1.062; 1.122]	1.105	1.107	1.107	1.105
c = 1.0	cont	1.433	$[1.393\ ; 1.473\]$	1.440	1.241	1.402	1.425
a - 15	id	1.018	[0.990;1.046]	1.036	1.037	1.037	1.036
c = 1.0	cont	1.462	[1.421; 1.503]	1.478	1.224	1.426	1.458
c = 2.0	id	0.991	$[0.963\ ;1.018\]$	1.010	1.010	1.010	1.010
c = 2.0	cont	1.611	$[1.566\ ; 1.656\]$	1.633	1.285	1.556	1.604
$c = c_0 = 1.3303$	id	1.035	[1.006; 1.063]	1.051	1.139	1.053	1.052
$c = c_0 = 1.5555$	cont	1.438	$[1.398\ ; 1.479\]$	1.452	1.220	1.405	1.434

emp., num., and as. relMSE at n = 30, r = 0.25 relative to $Var[\bar{X}_n]$ for id and $MSE(c_0(r))$ for cont, $c_0(r) = 1.3393$

estimator/		simulation	numeric	asymp	ptotics
$_{ m situs}$	ation		ex	n^0	$n^{-1/2}$
Mod	id	1.435	1.427	1.379	1.379
Mea	cont	1.241	1.224	1.320	1.263
a = 0.5	id	1.202	1.197	1.199	1.198
c = 0.0	cont	1.073	1.064	1.077	1.068
a = 0.7	id	1.130	1.126	1.127	1.126
c = 0.1	cont	1.029	1.021	1.032	1.025
a = 1.0	id	1.051	1.051	1.051	1.051
c = 1.0	cont	0.995	0.991	0.998	0.994
a = 1.5	id	0.980	0.985	0.985	0.985
c = 1.0	cont	1.016	1.018	1.014	1.017
a = 2.0	id	0.953	0.960	0.959	0.960
c = 2.0	cont	1.119	1.125	1.107	1.119

1.5 Extended Table 8

Minimal n_0 such that for $n \ge n_0$ the relative error using first to third order asymptotics for approximating $MSE_n(\psi_c)$ for c = 0.7 is smaller than 1% resp. 5%

rel.err	order	r = 0.00	r = 0.10	r = 0.25	r = 0.50	r = 1.00
1%	1st order asy.	9	$> 640^{*}$	$> 3927^{*}$	$> 14425^{*}$	$> 49220^{*}$
	$[\varepsilon]$	[0.00]	[3.95 E - 3]	$[3.99 \pm -3]$	[4.16E-3]	[4.51 E - 3]
	2nd order asy.	9	15	60	196	$> 580^{*}$
	$[\varepsilon]$	[0.00]	[2.58 E - 2]	[3.23E-2]	[3.57E-2]	[4.15 E - 2]
	3rd order asy.	5	15	30	59	146
	$[\varepsilon]$	[0.00]	[2.58 E - 2]	[4.56 E - 2]	[6.51E-2]	[8.28E-2]
5%	1st order asy.	3	28	162	$> 590^{*}$	$> 1995^{*}$
	$[\varepsilon]$	[0.00]	$[1.89 \pm -2]$	[1.96E-2]	[2.06E-2]	[2.24E-2]
	2nd order asy.	3	6	17	43	119
	$[\varepsilon]$	[0.00]	[4.08 E - 2]	[6.06E-2]	[7.62E-2]	[9.17 E - 2]
	3rd order asy.	3	6	12	23	49
	[arepsilon]	[0.00]	[4.08 E - 2]	[7.21E-2]	[1.04E-1]	[1.43 E - 1]

The additional ε corresponds to the actual amount of contamination, i.e. $r/\sqrt{n_0}\,.$

1.6 Additional table to subsection 7.4

This table is Table 10 in Ruckdeschel (2005) for t-o risks. Again there is not much variation in both $c_2(r_{\infty}, \cdot)$, $\rho_{2;\gamma}(r_{\gamma}, \cdot)$ for varying n.

Minimax radii for second order asymptotics

		n=5	n = 10	n = 30	n = 50	n = 100	$n = \infty$
	r_{γ}	0.337	0.404	0.489	0.518	0.548	0.621
$\gamma = \infty$	$c_2(r_{\gamma})$	0.742	0.733	0.725	0.722	0.721	0.718
	$ \rho_{2;\gamma}(r_{\gamma}) $	15.58%	16.70%	17.56%	17.75%	17.89%	18.07%
	r_{γ}	0.384	0.436	0.492	0.507	0.525	0.548
$\gamma = 3$	$c_2(r_{\gamma})$	0.677	0.693	0.721	0.735	0.747	0.800
	$\rho_{2;\gamma}(r_{\gamma})$	6.026%	6.708%	7.513%	7.784%	8.067%	8.836%
	r_{γ}	0.421	0.477	0.533	0.549	0.561	0.574
$\gamma = 2$	$c_2(r_{\gamma})$	0.632	0.644	0.675	0.688	0.707	0.770
	$\rho_{2;\gamma}(r_{\gamma})$	2.869%	3.252%	3.703%	3.851%	4.005%	4.410%

2 Additional Figures

2.1 Zoom into Figure 1

Zoom into the mapping $n \mapsto \text{rel.error}(\text{MSE}_n(\psi_c))$ for c = 0.7 and $F = \mathcal{N}(0, 1)$.

2.2 Additional figures to subsection 7.3.3

The mapping $r \mapsto \operatorname{asMSE}_{i[,n]}(\eta_{c_j(r[,n])}, r[,n])$ for i = 0, 1, 2, j = 0, i, n = 100 and $F = \mathcal{N}(0, 1)$

The mapping $r \mapsto c_j(r[,n])$ for j = 0, 1, 2, n = 100 and $F = \mathcal{N}(0,1)$

References

Ruckdeschel P. (2005): Higher Order Asymptotics for the MSE of M-Estimators on Shrinking Neighborhoods. unpublished manuscript. Also available in http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/mest1.pdf . 1, 1.1, 1.6