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Abstract

In the setup of shrinking neighborhoods about an ideal central model,
Rieder (1994) determines the as.. linear estimator minimaxing MSE on these
neighborhoods. We address the question to which degree this as.. optimality
carries over to finite sample size. We consider estimation of a one-dim. loca-
tion parameter by means of M-estimators Sn with monotone influence curve
ψ . Using Donoho and Huber (1983)’s finite sample breakdown point ε0 for
Sn , we define thinned out convex contamination balls Q̃n(r; ε0) of radius
r/
√
n about the ideal distribution.This modification is negligible exponen-

tially, but suffices to establish uniform higher order asymptotics for the MSE
of the kind

max
Qn∈Q̃n(r;ε0)

nMSE(Sn, Qn) = r2 supψ2 + Eidψ
2 + r√

n
A1 + 1

n
A2 + o( 1

n
),

where A1 , A2 are constants depending on ψ and r . Moreover, we essentially
characterize contaminations generating maximal MSE up to o(n−1) . Our re-
sults are confirmed empirically by simulations as well as numerical evaluations
of the risk. With the techniques used for the MSE , we determine higher or-
der expressions for the risk based on over-/undershooting probabilities as in
Huber (1968) and Rieder (1980), respectively.

In the symmetric case, we find the second order optimal scores again of
Hampel form, but to an O(n−1/2) -smaller clipping height c than in first
order asymptotics. This smaller c improves MSE only by O(n−1) . For the
case of unknown contamination radius we generalize the minimax inefficiency
introduced in Rieder et al. (2001) to our second order setup. Among all risk
maximizing contaminations we determine a “most innocent” one. This way
we quantify the “limits of detectability”in Huber (1997)’s definition for the
purposes of robustness.

∗..
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1 Motivation/introduction

1.1 Setup: one-dimensional location

This paper deals with the one–dimensional location model, i.e.

Xi = θ + vi, vi
i.i.d.∼ F, Pθ = L(Xi) (1.1)

for some ideal distribution F with finite Fisher-Information of location I(F ) , i.e.

Λf = −ḟ/f ∈ L2(F ), I(F ) = E[Λ2
f ] <∞ (1.2)

We also assume that Λf is increasing. By translation equivariance, we may restrict
ourselves to θ0 = 0 which will be suppressed in the notation.

Following Rieder (1994), we may define the set of influence curves (IC’s) Ψ for
the estimation of θ as

Ψ := {ψ ∈ L2(F ) | E[ψ] = 0, E[ψΛf ] = 1}, (1.3)

where both expectations are evaluated under F . As class of estimators we consider
asymptotically linear estimators (ALE’s), i.e. estimators Sn = Sn(X1, . . . , Xn) with
the property

√
n Sn = 1√

n

∑n
i=1 ψ(Xi) + oFn(n0) (1.4)
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1.2 Shrinking neighborhoods

We will consider the maximal mean squared error (MSE) on neighborhoods of this
ideal model. To avoid dominance of the bias for increasing number of observations,
we follow Rieder (1994), working in the setup of shrinking neighborhoods. For this
paper we consider contamination neighborhoods, i.e. the set Qn(r) of distributions

Lreal
θ (X1, . . . , Xn) = Qn =

n⊗
i=1

[(1− rn√
n
)F + rn√

n
P di
n,i] (1.5)

with rn = min(r,
√
n) , r > 0 the contamination radius and P di

n,i ∈ M1(B) ar-
bitrary, uncontrollable contaminating distributions. As usual, we interpret Qn as
the distribution of the vector (Xi)i≤n with components

Xi := (1− Ui)X id
i + UiX

di
i , i = 1, . . . , n (1.6)

for X id
i , Ui , Xdi

i stochastically independent, X id
i

i.i.d.∼ F , Ui
i.i.d.∼ Bin(1, r/

√
n) ,

and (Xdi
i ) ∼ P di

n for some arbitrary P di
n ∈M1(Bn) .

1.3 First order optimality

For a sequence of estimators Sn , consider the following asymptotic (modified)
maximal mean squared error on Qn

R̃(Sn, r) := lim
t→∞

lim
n→∞

sup
Qn∈Qn(r)

∫
min{t, n |Sn − θ0|2} dQn (1.7)

In Rieder (1994), it is shown that in the general p -dimensional L2 -differentiable
model, with scores Λθ and Fisher-Information Iθ (suppressing the dependency
upon θ as usual) a (suitably constructed) ALE Sn with IC ψ has risk

R̃(Sn, r) = r2 sup |ψ|2 + Eid |ψ|2 (1.8)

In Theorem 5.5.7 (ibid.), together with its preceding remarks, it is proved that, for
given r ≥ 0 , among all such ALEs, any (suitably constructed) ALE with IC ηb0
minimizes R̃( · , r) where ηb0 is of Hampel form

ηb0 = Y min{1, b0/|Y |}, Y = AΛ− a (1.9)

for some A ∈ Rp×p , a ∈ Rp such that ηb0 is an IC, and b0 solving E(|Y |− b0)+ =
r2b0 . In our context, for Lagrange multipliers z and A such that ηb0 = ηc0 ∈ Ψ,
we get that

ηc0 = A(Λf − z) min{1, c0/|Λf − z|} (1.10)
c0 s.t. E[(|Λf − z| − c0)+] = r2c0 (1.11)
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1.4 Open issues in this setup

Being bound to first order asymptotics, so far these results do not come along with
an indication for the speed of the convergence; it is not clear to what degree radius
r , sample size n and clipping height b affect this approximation. The theorem only
characterizes the optimal expansion in terms of ICs. Finally, modification (1.7) of
the MSE, which is common in as.. statistics, confer Le Cam (1986), Rieder (1994),
Bickel et al. (1998), van der Vaart (1998), and which forces the integrals to converge
under weak convergence, appears somewhat ad hoc. One would perhaps prefer a
modification that is statistically motivated.

1.5 M-estimators for location

As estimators to achieve (1.4) for a given IC ψ , we consider M-estimators. More
specifically we require ψ to be monotone and bounded and write ψt( · ) for ψ( · −t) .
For technical reasons we assume that the law of ψt(X id) has non-trivial absolutely
continuous component uniformly in t —compare condition (C)/(C’) later; in par-
ticular the set Dt of discontinuities of the c.d.f. of ψt(X id) has to carry less mass
than 1 uniformly:

pD := supt P
id(Dt) < 1 (1.12)

Following the notation in Huber (1981, pp. 46), let

S∗n := sup
{
t |

∑
i≤n

ψt(xi) > 0
}
, S∗∗n := inf

{
t |

∑
i≤n

ψt(xi) < 0
}

(1.13)

and Sn be any estimator satisfying S∗n ≤ Sn ≤ S∗∗n . By monotonicity of ψ , we get

Pr{S∗n < t} = Pr
{∑
i≤n

ψt(xi) ≤ 0
}
, Pr{S∗∗n < t} = Pr

{∑
i≤n

ψt(xi) < 0
}

(1.14)

in the continuity points t of the LHS. The next lemma, an immediate consequence
of Hall (1992, Theorem 2.3), shows that we may ignore the event S∗n 6= S∗∗n if we
are interested in statements valid up to o(1/n) .

Lemma 1.1 Under (1.12), Pr(S∗n 6= S∗∗n ) = O(exp(−γn)) for some γ > 0 .

Remark 1.2 If
⋃
tDt = {±c} for some c > 0 , Pr(S∗n 6= S∗∗n ) = 0 for n odd.

Remark 1.3 In principle, the arguments used in our paper are not confined to the
location case. In fact, we crucially use monotony of the scores function/IC. To cover
multivariate M-estimators or M-estimators with a non-monotone IC, an approach local
to a

√
n–consistent starting esimtator seems to be more appropriate. We have not yet

worked this out, however.
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1.6 Organization of this paper and description of the results

In this paper, we will provide answers to some of the open questions mentioned in
subsection 1.4: In a closer inspection of simulations, M. Kohl found out that larger
inaccuracies of (first order) asymptotics only occurred when there were extraneous
sample situations where more than half the sample size stemmed from a contamina-
tion, which made him conjecture that excluding such samples, asymptotics might
then prove useful even for very small samples. In fact this gives a convenient mod-
ification of the contamination neighborhood system based on Donoho and Huber
(1983)’s finite sample breakdown point ε0 for Sn . This modification on the one
hand is asymptotically negligible hence does not affect the results of subsection 1.2,
but on the other hand enforces the unmodified MSE to converge along with weak
convergence. We will start with presenting this modification in section 2. In sec-
tion 3, we then present the central theoretical result, Theorem 3.6. This result is
of the following form

sup
Qn∈Q̃n(r;ε0)

nMSE(Sn, Qn) = r2 sup |ψ|2+Eψ2+ r√
n
A1+ 1

n
A2+o( 1

n
) (1.15)

Here Sn is an M-estimator to IC ψ , and A1 , A2 are polynomials in the contami-
nation radius r , in b = sup |ψ| , and in the moment functions t 7→ Eψlt , l = 1, . . . , 4
and their derivatives evaluated in t = 0. We recognize a uniform higher order as..
expansion for the MSE along the modified neighborhood and that the speed of the
convergence to the first order as.. value is one order faster in the ideal model.

Notation 1.4 For indices we start counting with 0 , so that terms of first-order asymp-
totics have an index 0 , second-order ones a 1 and so on. Also we abbreviate first-order,
second-order and third-order by f-o, s-o, t-o respectively, and we write f-o-o, s-o-o, and
t-o-o for first, second, and third-order asymptotically optimal respectively.

As to the correctness of our main result, we give a number of cross checks and com-
ments on this result in section 4. That these results are already relevant for small
sample sizes is shown by a simulation study which is presented in section 5 as to its
design and results. This section will also contain numerical results obtained with
an adopted convolution algorithm taken from Kohl et al. (2004). In particular, our
main result compares fairly well with results obtainable in the fixed-neighborhood
setup, compare Fraiman et al. (2001), with the advantage of explicit expressions
instead of numerical solutions.

Some ramifications of Theorem 3.6 are presented in section 6: With a slight
(further) restriction of the neighborhood system, we make our main result available
in the case that the central distribution has tails decaying at a polynomial rate in
Proposition 6.1. As is shown in Proposition 6.2, polynomial tails are essentially
necessary for a finite MSE at least in the ideal model. The sufficient condition for
a sequence of contaminations to achieve maximal risk from Theorem 3.6 is shown
to be almost necessary in Proposition 6.3.

As examples for the wide application range of the techniques used to prove this
theorem, we determine higher order expansions for bias and variance separately in
Proposition 6.4. In Theorem 6.5, we take up the risk consisting in certain over-
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and undershooting probabilities used in Huber (1968) to determine a finite sample
minimax estimator of location. By means of a s-o expansion, we refine the corre-
sponding f-o translation by Rieder (1980), providing a closer link to finite sample
optimality.

Some consequences of Theorem 3.6 are discussed in section 7. In subsection 7.1,
we show for F symmetric in θ , the f-o optimality of Hampel-type ICs of form (1.10)
persists if we account for the A1 term in (1.15). Hence, in this sense, Pfanzagl
(1979)’s catchword “First order efficiency implies second order efficiency” survives
(at least partially) when passing to neighborhoods around the ideal (symmetric)
model. We even may determine the s-o-o clipping height c1 = c1(r, n) which in
fact is slightly lower (O(n−1/2) ) than the f-o-o c0 = c0(r) determined according to
(1.11). Passing to c1 , as..MSE can at most be improved by O(n−1) . So in fact we
only retain the optimal class, not the actual optimal estimator from f-o optimality.

A (partial) explanation for the good, respectively excellent behaviour of f-o-o,
s-o-o and t-o-o procedures as to numerically exact finite maximal MSE, we present
an argument based on a functional implicit function theorem in section 7.2.

For decisions upon the procedure to take, only relative risk is relevant which
is discussed in some detail in subsection 7.3. We then proceed to obtain a s-o
variant of the minimax radius introduced and determined in Rieder et al. (2001):
In the situation where the radius is unknown within a range (rl, ru) , a radius r0
is determined such that the (f-o) maximal inefficiency ρ̄(r′) defined in (7.17) is
minimized in r′ = r0 . We translate this to the s-o setup in section 7.4; the s-o
results in the Gaussian location model show that neither c1(r1, ·) , nor s-o minimax
radius r1(·) vary much in n and that for all n , s-o minimax inefficiency is always
smaller than the corresponding f-o one.

We also get a deeper insight to the question which contaminations are (already)
dangerous; in subsection 7.5, we determine a most innocent appearing least fa-
vorable contamination which is shown to form a saddlepoint together with the f-o
(s-o) optimal M-estimator. It appears to be innocent, as it produces only “outliers”
which are hardest to detect in some sense specified in this section.

In the following section 8, we present proofs to the theorems and propositions
of this paper. These contain rather tedious Taylor expansions where we need the
help of a symbolic Algebra program like MAPLE. To ease readability, we therefore
start the proof of the main theorem with an outline of the essential steps. Some
auxiliary results needed in the proofs are provided in an appendix in section 9.

For the interested reader we have set up a web-page to this article under
http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/mest.html

On this page, additional tables and figures, the MAPLE script to generate the ex-
pansions, and the R-script to calculate numerically exact MSE are available for
download.

1.7 Deferred problems

The question of what construction principle to take will be discussed in a subsequent
paper, Ruckdeschel (2005b), where we will present an analogue to the main theorem
of this paper for the One-Step-construction principle.

http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/mest.html
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2 Modification of the shrinking neighborhood setup

The key property in the shrinking-neighborhood setup is the LAN-property1 in the
sense of Hájek and LeCam. This property is generally available in L2 -differentiable
models, c.f. Rieder (1994, Thm. 2.3.5). This property together with LeCam’s third
Lemma —c.f. Corollary 2.2.6 ibid.— implies uniform weak convergence of any (suit-
ably constructed) ALE to a bounded IC on a representative subclass of the system
of neighboring distributions Qn — those distributions induced by simple pertur-
bations Qn(ζ, t) , confer p. 126 (ibid.).
This weak convergence however does not entail convergence of the risk for an un-
bounded loss function in general, as we show in the following example:

2.1 Convergence failure of the MSE for M-estimators to bounded
scores

Proposition 2.1 Let P be the location model from (1.1). Let ψ be an isotone
influence curve with sup |ψ| = b < ∞ which is Lipschitz bounded. Let Sn be an
M-Estimator according to (1.13) that is uniformly consistent on Qn . Then for
sample size n , for each θ ∈ R and each Kn ↑ ∞ there is a sequence xn ∈ R such
that with Qn = [(1− rn√

n
)Pθ + rn√

n
I{xn}]

n

nMSE(Sn, Qn) > Kn (2.1)

although, with T (Q) the zero of t 7→
∫
ψt dQ , it holds that uniformly in Qn ,

√
n (Sn − T (Qn)) ◦Qn −→w N (0,EF [ψ2

0 ]) (2.2)

2.2 Modification of the shrinking neighborhood setup

The proof of proposition 2.1, suggests the following modification for finite n : Only
such realizations of U1, . . . , Un are permitted, where

∑
Ui < n/2 —the case∑

Ui = n/2 only occurs for even sample size and will not be considered here.
More precisely, accounting for non-symmetric ψ , we introduce

b̌ := inf ψ, b̂ = supψ, b̄ := 1
2 (b̂− b̌), δ0 := |(−b̌)−b̂|

min((−b̌),b̂)
(2.3)

and recall that in our situation, both the functional (Huber, 1981, (2.39),(2.40)) and
the finite sample (ε -contamination) breakdown point (Donoho and Huber, 1983,
section 2.2) of T respectively Sn are

ε0 = 1/(2 + δ0) (2.4)

With these expressions, our modifiation amounts to considering the neighborhood
system Q̃n(r; ε0) of conditional distributions

Qn = L
{

[(1− Ui)X id
i + UiX

di
i ]i

∣∣∣ ∑
Ui ≤ pε0n q− 1

}
(2.5)

1for local as.. normality
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This restriction hence combines a restriction to the marginals L(Xreal
i ) which are

“close” to L(X id
i ) for each i as well as a sample-wise restriction.

Correspondingly, we will consider the asymptotics of

Rn(Sn, r; ε0) := sup
Qn∈Q̃n(r;ε0)

n

∫
|Sn − θ0|2 dQn (2.6)

2.3 Asymptotic negligibility of this modification

The effect of this modification is negligible asymptotically: By the Hoeffding bound
(9.1),

P (
∑

Ui ≥ nε0) ≤ exp(−2n(ε0 − r/
√
n )2) (2.7)

which decays exponentially fast. Thus all results on convergence in law of the
shrinking neighborhood setup are not affected when passing from Qn(r) to Q̃n(r; ε0) .

Remark 2.2 (a) Replacing r/
√
n by the fixed radius ε , asymptotic negligibil-

ity continues to hold, as long as ε < ε0 .
(b) This concept of thinning out the neighborhoods according to the finite finite

sample breakdown point easily generalizes to other setups; this has been spelt out
in some detail in Ruckdeschel (2005a).

3 Main Theorem

Before the statement of the theorem, we introduce some auxiliary terms.

3.1 Notation

To ψ : R → R monotone let ψt(x) := ψ(x− t) and define the following functions

L(t):= Eψ(X− t), V (t)2:= Varψ(X− t), (3.1)

ρ(t):= E[(ψ(X− t)− L(t))3]/V (t)3, κ(t):= E[(ψ(X− t)− L(t))4]/V (t)4 − 3 (3.2)

Let y̌n and ŷn sequences in R such that for some γ > 1

ψ(y̌n) = inf ψ + o( 1
nγ ), ψ(ŷn) = supψ + o( 1

nγ ) (3.3)

To state our main theorem, we need the following notation:
For H ∈M1(Bn) and an ordered set of indices I = (1 ≤ i1 < . . . < ik ≤ n) denote
HI the marginal of H with respect to I .

Definition 3.1 Consider three sequences cn , dn , and κn in R , in (0,∞) , and
in {1, . . . , n} , respectively. We say that the sequence (H(n)) ⊂ M1(Bn) is κn –
concentrated left [right] of cn up to o(dn) , if for each sequence of ordered sets In
of cardinality in ≤ κn

1−H
(n)
In

(
(−∞; cn]in

)
= o(dn)

[
1−H

(n)
In

(
(cn,∞)in

)
= o(dn)

]
(3.4)
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3.2 Assumptions

The following assumptions will be needed for the main result of this paper:

(bmi) sup ‖ψ‖ = b <∞ , ψ monotone, ψ ∈ Ψ

(D) For some δ ∈ (0, 1] , L , V , ρ , and κ allow the expansions

L(t) = l1t+ 1
2 l2 t

2 + 1
6 l3 t

3 + O(t3+δ) (3.5)

V (t) = v0(1 + ṽ1 t+ 1
2 ṽ2 t

2) + O(t2+δ) (3.6)

ρ(t) = ρ0 + ρ1 t+ O(t1+δ) (3.7)

κ(t) = κ0 + O(tδ) (3.8)

(Vb) V (t) = O(|t|−(1+δ)) for |t| → ∞ and some δ ∈ (0, 1]

(C) Let ft be the characteristic function of ψt(X id) ; then

lim
t0→0

lim sup
s→∞

sup
|t|≤t0

|ft(s)| < 1 (3.9)

Condition (C) is a local uniform Cramér condition; it is implied by

Lemma 3.2 Assume L(ψ(X id)) has a nontrivial absolute continuous part and that
ψ is continuous. Then (C) is fulfilled.

Remark 3.3 (a) By condition (bmi) —as ψ ∈ Ψ—, l1 = −1 .
(b) Condition (C) is not fulfilled for the median, as its influence curve just takes

the values −b, b F -a.e. A direct proof for an analogue to Theorem 3.6 is possible,
however, and given in Ruckdeschel (2005a).

(c) If one is content with an expansion of the MSE up to order o(n−1/2) , we
may drop (3.8) and use the following weakened assumptions

(D’) For some δ ∈ (0, 1] , L , V , and ρ allow the expansions

L(t) = l1t+ l2/2 t2 + O(t2+δ), (3.10)

V (t) = v0(1 + ṽ1 t) + O(t1+δ) (3.11)

ρ(t) = ρ0 + O(tδ) (3.12)

(C’) “Uniformly” for t around t = 0, L
(
ψt(X id)

)
is not a lattice distribution,

that is, there exist t0 > 0 , s0 > 0 such that for all s1 > s0

f̂s0,t0(s1) := sup
s0≤s≤s1

sup
|t|≤t0

|ft(s)| < 1 (3.13)

Note that (C) implies (C’), but contrary to (C), in (C’) the case sups1
f̂s0,t0 (s1) = 1 for all

s0 > 0 and all t0 > 0 is allowed.
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3.3 Illustration

We specialize assumptions (bmi) to (C) for F = N (0, 1) and ψ ∈ Ψ of form (1.10).

Proposition 3.4 For F = N (0, 1) and ψ = ηc an IC to some c ∈ (0,∞) of
Hampel–form ηc = Ac(xmin{1, c

|x|} , assumptions (bmi) to (C) are in force; in
particular the bound in (Vb) holds even exponentially.

Remark 3.5 For ηc to be an IC, Ac = (2Φ(c)− 1)−1 . As to the terms from (D) we get,
with Φ(x) the c.d.f. of N (0, 1) and ϕ(x) its density

l2 = 0, ṽ1 = 0, ρ0 = 0 (3.14)

For c ∈ (0,∞) , we get

l3 = 2cϕ(c)/(2Φ(c)− 1) (3.15)

v2
0 = 2b2(1− Φ(c)) +Ac(1− 2bϕ(c)) (3.16)

ṽ2 =
6Φ(c)− 4Φ(c)2 − 2− 2cϕ(c)

2c2(1− Φ(c)) + 2Φ(c)− 1− 2cϕ(c)
(3.17)

ρ1 =
3A3

c (1− 2Φ(c) + 2cϕ(c))

v3
0

+ 3v−1
0 (3.18)

κ0 =
2c4 (1− Φ(c))− 2c(c2 + 3)ϕ(c) + 3(2Φ(c)− 1)

[2c2 (1− Φ(c)) + 2Φ(c)− 1− 2cϕ(c)]2
− 3 (3.19)

For c ↓ 0 , l3 = 1, v2
0 = π

2
, ṽ2 = − 2

π
, ρ1 = 2

q
2
π
, κ0 = −2 , and, formally, for

c ↑ ∞ , l3 = 0, v0 = 1, ṽ2 = 0, ρ1 = 0, κ0 = 0 .

3.4 Statement of the main theorem

Theorem 3.6 (Main Theorem) In the location model (1.1) with (1.2) assume
(bmi) to (C) from section 3.2. Then for sample size n ,

(a) the following expansion of the maximal MSE of an an M-estimator Sn to
scores-function ψ holds

Rn(Sn, r, ε0) = r2b2 + v0
2 + r√

n
A1 + 1

n A2 + o(n−1) (3.20)

with

A1 = v0
2
(
± (4 ṽ1 + 3 l2 )b+ 1

)
+ b2 + [2 b2 ± l2 b

3 ] r2 (3.21)

A2 = v0
3
(
(l2 + 2 ṽ1 )ρ0 + 2

3 ρ1

)
+ v0

4 (3 ṽ2 + 15
4 l2

2 + l3 + 9 ṽ2
1 + 12 ṽ1 l2 ) +

+[ v02
(
(3 ṽ2 + 3 ṽ2

1 + 15
2 l2

2 + 2 l3 + 12 ṽ1 l2 )b2 + 1± (8 ṽ1 + 6 l2 ) b
)

+

±3 l2 b3 + 5 b2 ] r2 +
(
( 5
4 l2

2 + 1
3 l3 )b4 ± 3 l2 b3 + 3 b2

)
r4 (3.22)

and we are in the − [+] -case depending on whether (3.23) or (3.24) below applies.
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(b) let P di
n :=

⊗n
i=1 P

di
n,i be contaminating measures for (1.5). Then Qn with

P di
n as contaminating measures achieves the maximal risk in (3.20) if for k1 > 1

and k2 > 2 ∨ ( 3
2 + 3

2δ ) with δ from (Vb) and K1(n) = pk1r
√
nq either

(P di
n ) is K1(n)–concentrated left of y̌n − b

√
k2 log(n)/n up to o(n−1) (3.23)

or

(P di
n ) is K1(n)–concentrated right of ŷn + b

√
k2 log(n)/n up to o(n−1) (3.24)

More precisely, if supψ < [>] − inf ψ , the maximal MSE is achieved by conta-
minations according to (3.23) [ (3.24)]. In case supψ = − inf ψ , (3.23) [ (3.24)]
applies if

ṽ1 > [<]− l2
4

(
b2

v20
(r2 + 3)(1 + r√

n
− 2r2

n ) + 3(1− b2

v20
)
)

(3.25)

If supψ = − inf ψ and there is “=” in (3.25), (3.23) and (3.24) generate the same
risk up to order o(n−1) .

Remark 3.7 (a) Curiously, although being of corresponding order, no ρ0 [κ0 ]-
term shows up in the correction term A1 [A2 ], which is probably due to the special
loss function. We thus conjecture that we may dispense of condition (C’) for s-o
asymptotics for the MSE.

(b) As announced in the introduction, for r = 0, we get an approximation that
is one order faster than under contamination.

(c) Let Q0
n be any distribution in Q̃n attaining maximal risk in Theorem 3.6.

Under symmetry or more specifically if l2 = v1 = ρ0 = 0, (3.20) becomes

n EQ0
n
[S2
n ] =

(
r2b2 + v0

2
) (

1 + r√
n

)
+ r√

n

(
b2(1 + r2)

)
+ O(n−1) (3.26)

Thus under symmetry and for large enough n , the maximal MSE on Q̃n is
always underestimated by f-o asymptotics!

(d) In the ideal Gaussian location model (i.e. r = 0), plugging in the (limiting)
results for c = 0 from section 3.3, the RHS of (3.26) becomes

π

2

(
1 +

1
n

(
π

2
− 5

3
)
)

+ o(n−1) .= 1.5708(1− 0.0958
n ) + o(n−1) (3.27)

suggesting an overestimation of the risk by the f-o asymptotics. This is to be
compared to the result for the median for odd sample size from Ruckdeschel (2005a):

n EFn [Med2
n ] =

π

2

(
1+

1
n

(
π

2
−2)

)
+o(n−1) .= 1.5708(1− 0.4292

n )+o(n−1) (3.28)

Hence we indeed overestimate the risk by the f-o asymptotics. The difference of
π
6n is due to the failure of condition (C).
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3.5 Cross-checks

3.5.1 Check with results by Fraiman et al.

In the symmetric case, the first cross check comes with the as.. formula for variance
asVar(ψ) and (maximal) bias asBias(ψ) as to be found in Fraiman et al. (2001),
where we have to identify ε = r/

√
n .

asBias(ψ)/
√
n := B(ψ) = {β | (1− ε)

∫
ψβ dF + εb = 0} (3.29)

asVar(ψ) :=
(1− ε)

∫
ψ2
B(ψ) dF + εb2

(1− ε)2(
∫
ψ̇B(ψ) dF )2

, (3.30)

Assuming that
∫
ψ̇B(ψ) dF = L′(B(ψ)) and using that∫

ψB(ψ) dF = L(B(ψ)) = −B(ψ) + o(B2))∫
ψ2
B(ψ) dF = V (B(ψ))2 + L(B(ψ))2 = v2

0(1 + o(B))

L′(B(ψ))2 = −1 + o(B)

we get that

asBias(ψ) =
√
n bε(1 + ε+ o(ε)) = rb(1 + r√

n
+ o(n−1/2)) (3.31)

asVar(ψ) = (1 + ε)v2
0 + εb+ o(ε) = v2

0 + r√
n
(v2

0 + b) + o(n−1/2) (3.32)

and hence —in accordance with formula (3.20)—

asMSE(ψ) = (v2
0 + r2b2)(1 + r√

n
) + r√

n
b2(1 + r2) + o(n−1/2) (3.33)

3.5.2 Check with second order asymptotics for the median

The second check comes with the s-o asymptotics for the median from Ruckdeschel
(2005a). To that end we assume that with f0 > 0 and some δ ∈ (0, 1] ,

f(t) = f0 + f1t+ O(t1+δ) (3.34)

As for the median, ψMed = 1
2 f0

sign(x) , we have v0 = b = 1
2f0

and ε0 = 1/2 . For
the moment we ignore the fact, that condition (C) —resp. (C’)— is not fulfilled.
Easy calculations give

l2 = −f1/f0, ṽ1 = 0, ρ0 = 0 (3.35)

so that with our formula (3.20) we obtain for odd sample size n

Rn(ψMedn
, r, 1

2 )=
1

4f2
0

(
(1 + r2)

[
1 + 2r√

n

]
− r√

n

f1
2f2

0

(r2 + 3)
)

+ o(n−1/2)(3.36)

in complete concordance with Ruckdeschel (2005a).
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3.5.3 Check with third order asymptotics for the median

The third check takes up the second and compares t-o asymptotics to be obtained
by (3.20) —again ignoring condition (C). We get

l3 = −f2/f0, ṽ2 = −4f2
0 , ρ1 = 4f0 (3.37)

and hence for odd sample size n , after some reordering

Rn(ψMedn
, r, 1

2 ) ?= o( 1
n ) +

1
4f2

0

{
(1 + r2) + r√

n

(
2(1 + r2) + r2+3

2

|f1|
f2
0

)
+

+ 1
n

(
4
3 − 3 + 3r2 + 3r4 + 3r2(3+r2)

2

|f1|
f2
0

− 3+6r2+r4

12

f2
f3
0

+ 5(3+6r2+r4)
16

f2
1

f4
0

)}
(3.38)

and it is just the framed term 4
3 , which is coming in as 2

3ρ1v0 from (3.22), which
causes a difference to the result of Ruckdeschel (2005a), where we get the value 1
instead. This discrepancy, however, is in fact due to the failure of condition (C),
because Theorem 9.3, which we need to prove (3.20), is not available in this case.

4 Relations to other approaches

4.1 Small sample asymptotics

Of course the idea of assessing the quality / speed of convergence of CLT-type argu-
ments by means of higher order asymptotics is common in Mathematical Statistics,
confer among others Ibragimov and Linnik (1971), Bhattacharya and Rao (1976),
Pfanzagl (1985), Hall (1992), Barndorff-Nielsen and Cox (1994) and Taniguchi and
Kakizawa (2000).
Asymptotic expansions of the moments of statistical estimators —like MSE in our
case— have already been studied by Gusev (1976) and Pfaff (1977); both ap-
proaches, however, only consider the ideal model, and work with pointwise ex-
pansions of the likelihood.
Also the idea to improve convergence by means of saddlepoint techniques and con-
jugate densities, respectively, has been a large success in this context, confer Daniels
(1954), Hampel (1974), Field and Ronchetti (1990).
Our approach is simpler in the sense that instead of approximating the c.d.f. or the
density of our procedures on the whole range of arguments, we directly approxi-
mate our risk. Doing so, we do not run into problems of bad approximations in the
tails of a distribution, because all that is interesting for our risk will occur within
a (decreasing) compact; using saddlepoint techniques, we would have to solve the
saddlepoint-equation for a grid of evaluation points ti to get an accurate estimate
for the density which makes the corresponding solution less explicite than ours.
Even more important, note that in view of Proposition 2.1, a highly accurate ap-
proximation of the distribution of the M-estimator would not suffice to enforce
uniform convergence of the MSE, which was the reason for our modification of the
neighborhoods (2.5). Also, contrary to “usual” small sample asymptotics, by our
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approach no particular contamination has to be assumed right from the beginning
but we rather identify a least favorable one within the proof.
In the setup of saddlepoint-approximations, one would probably apply Theorem 4.3
in Field and Ronchetti (1990) which at least covers the Hampel-type solutions. The
pointwise formulation of assumption A4.2 therein,

A4.2 There is an open subset U ⊂ R , such that
(i) for each θ ∈ R , F (U − θ) = 1
(ii) Dψ , D2ψ , D3ψ exist on U

however, seems a bit dangerous, as it allows for pathological ψ -functions de-
fined similar to the Cantor distribution function (while F may be something like
N (0, 1) ), for which the interchange of differentiation and integration becomes awk-
ward. As may be read off from (3.20), in the ideal model, as for the saddlepoint
approach, we, too, get an expansion of order 1/n , a fact, which is not due to sym-
metry of Λ and/or ψ ! So in fact we get the same approximation quality as with
the saddlepoint approach —indeed, by the Taylor-expansion step in section 8.4.8,
we extract an argument to be expanded from the exponential, which also is an idea
behind the saddlepoint approximation, confer Field and Ronchetti (1990, p. 26).
On the other hand, even in the restricted neighborhoods of (2.5), it is not clear
to the present author, if in general, the saddlepoint approximation holds uniformly
in t , so it is not clear, whether an improved approximation for the density will
result in a better approximation of the risk. A detailed empirical and numerical
investigation of such questions is contained in Ruckdeschel and Kohl (2004).

4.2 Approach by Fraiman et al. (2001)

In Fraiman et al. (2001), the authors work in a similar setup, i.e. the one-dimensional
location problem where the center distribution is F0 = N (0, σ2) and an M-estimator
Sn to skew symmetric scores ψ is searched which minimizes the maximal risk on a
neighborhood about F0 . Contrary to our approach, the authors work with convex
contamination neighborhoods V = V(F, ε) to a fixed radius ε .
There has been some discussion which approach —fixed or shrinking radius— is
more appropriate, but for fixed sample size n , of course we may translate the fixed
radius ε into our radius r/

√
n and then compare the approximation quality of

both approaches.
Fraiman et al. (2001) propose to use risks which are constructed by means of a pos-
itive function g : R×R+ → R+ of as.. bias b = b(G,ψ) —formula (3.29)— and as..
variance v2 = v2(G,ψ) —formula (3.30). The function g is assumed lower semi-
continuous and symmetric in the first argument as well as isotone in each argument.
The risk of an M-estimator to IC ψ is taken as the function

Lg(ψ) = sup
G∈V

g(b(G,ψ), v(G,ψ)/n) (4.1)

A mean squared error-type risk then is formed by g(u, v) = u2 + v . It is not quite
the MSE, as it employs the as.. terms b and v and so their results may differ from
ours. The crucial point is that to solve their optimization problem, they have to



P. Ruckdeschel 15

assume that besides bias, also variance is maximized (for their optimal ψ̂ ) if we
contaminate with a Dirac measure in ∞ . According to this assumption, if we
introduce G0 := (1− ε)F0 + ε I{∞} , we have to find ψ minimizing

lg(ψ) = g(b(G0, ψ), v(G0, ψ)/n) (4.2)

Differently to the Hampel-type IC’s the solutions to this problem are of form

ψa,b,c,t(x) = ψ̃a,b,t
(
xmin{1, c

|x|}
)
, (4.3)

ψ̃a,b,t(x) = a tanh(tx) + b[x− t tanh(tx)] (4.4)

but the “MSE”-optimal solutions are numerically quite close to corresponding
Hampel-ICs ψH , for which the authors in turn show that always Lg(ψH) = lg(ψH) .
For an implementation of this optimization see the R-file FYZ.R available on the web-
page.
A comparison
As a sort of benchmark for our results, we reproduce a comparison to be found in
Ruckdeschel and Kohl (2004) —albeit in some more detail than in the cited refer-
ence: For the values of n and r from section 5, we determine the “MSE”-optimal ψ̂
and a corresponding Hampel IC ψ̂H which is then compared to the f-o-o and s-o-o
IC derived in this paper. Within the class of Hampel-IC’s, numerically, we also
determine the t-o-o and the “exactly” optimal clipping- c , c2 and cex respectively.
We compare the resulting IC’s as to their clipping-height and the corresponding
(numerically exact) value of Rn(Sn, r) , denoted by MSEn ; the latter comparison
is done by the terms relMSEex

n (c·) , calculated as

relMSEex
n (c·) = (

MSEn(c·)
MSEn(cex)

− 1)× 100% (4.5)

The results are displayed in Table 1. Also confer the function allMSEs in the R-file
asMSE.R available on the web-page to this article.
For the numerical evaluation of the MSE, we use the techniques described in sec-
tion 5.2. For n = ∞ , we evaluate the corresponding f-o as.. MSE for the IC to the
corresponding values of c . As a cross-check, the clipping heights ci , i = 0, 1, 2 are
also determined for n = 108 . In case of cFZY , for all finite n ’s the error tolerance
used in optimize in R was 10−4 , while for n = ∞ it was 10−12 . For cex and
n = 108 , an optimization of the (numerically) exact MSE would have been too
time-consuming and has been skipped for this reason. Also, for n = 5, the radius
r = 1.0 , corresponding to ε = 0.447 , is not admitted for an optimization of (4.2)
and thus no result is available in this case.

5 A simulation study and numerical evaluations

Before starting with the theoretical findings we summarize the results of a sim-
ulation study that actually lead us to the closer examination of the higher order
expansions of the MSE.
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Table 1: Optimal clipping heights and corresponding (numerically) exact MSE

r n = 5 n = 10 n = 30 n = 50 n = 100 n = ∞
c0 1.948 1.948 1.948 1.948 1.948 1.948
relMSEex

n (c0) 8.679% 4.065% 1.340% 0.836% 0.448% –
c1 1.394 1.484 1.611 1.663 1.724 1.948
relMSEex

n (c1) 0.833% 0.207% 0.027% 0.014% 0.010% –

0.1
c2 1.309 1.428 1.585 1.644 1.713 1.948

relMSEex
n (c2) 0.332% 0.066% 0.008% 0.004% 0.006% –

cFZY 1.368 1.370 1.610 1.668 1.756 1.939
relMSEex

n (cFZY) 0.658% 0.002% 0.026% 0.021% 0.031% –
cex 1.167 1.358 1.560 1.630 1.704 –
MSEn(cex) 1.388 1.239 1.151 1.129 1.107 –

c0 1.339 1.339 1.339 1.339 1.339 1.339
relMSEex

n (c0) 6.280% 3.681% 1.108% 0.656% 0.330% –
c1 0.994 1.059 1.147 1.181 1.219 1.339
relMSEex

n (c1) 0.933% 0.415% 0.055% 0.023% 0.009% –

0.25
c2 0.890 0.990 1.114 1.159 1.207 1.339

relMSEex
n (c2) 0.241% 0.104% 0.009% 0.002% 0.003% –

cFZY 0.924 1.020 1.205 1.177 1.211 1.338
relMSEex

n (cFZY) 0.417% 0.215% 0.233% 0.018% 0.002% –
cex 0.783 0.921 1.092 1.140 1.205 –
MSEn(cex) 2.225 1.705 1.438 1.381 1.330 –

c0 0.862 0.862 0.862 0.862 0.862 0.862
relMSEex

n (c0) 2.930% 2.655% 0.792% 0.446% 0.218% –
c1 0.650 0.690 0.746 0.767 0.790 0.862
relMSEex

n (c1) 0.756% 0.615% 0.087% 0.036% 0.013% –

0.5
c2 0.547 0.620 0.712 0.744 0.777 0.862

relMSEex
n (c2) 0.230% 0.191% 0.015% 0.008% 0.003% –

cFZY 0.539 0.632 0.716 0.749 0.782 0.866
relMSEex

n (cFZY) 0.200% 0.248% 0.021% 0.011% 0.008% –
cex 0.413 0.531 0.686 0.728 0.770 –
MSEn(cex) 4.632 3.039 2.162 2.008 1.879 –

c0 0.436 0.436 0.436 0.436 0.436 0.436
relMSEex

n (c0) 2.716% 3.132% 0.746% 0.348% 0.149% –
c1 0.320 0.340 0.369 0.380 0.394 0.436
relMSEex

n (c1) 1.411% 1.610% 0.251% 0.076% 0.021% –

1.0
c2 0.255 0.291 0.342 0.361 0.382 0.436

relMSEex
n (c2) 0.876% 0.999% 0.123% 0.027% 0.006% –

cFZY – 0.281 0.344 0.375 0.387 0.440
relMSEex

n (cFZY) – 0.892% 0.132% 0.063% 0.012% –
cex 0.001 0.125 0.286 0.334 0.366 –
MSEn(cex) 12.627 8.445 4.948 4.296 3.787 –

c order determined by optimal among M-estimators
c0 f-o-o num. solution of (1.11) to any IC
c1 s-o-o num. solution of (7.4) in S2 (see section 7.1)
c2 t-o-o num. optimization of (3.20) in H (see section 7.1)
cFZY — num. optimization of (4.2) to (4.4)-type ICs
cex — num. optimization of the (num.) exact MSE in H (see section 7.1)

where (7.4) is the s-o analogue to (1.11), which is derived in Corollary 7.2. A more detailed

description to this table is located on page 15.
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5.1 Simulation design

Under R 1.7.1, we simulated M = 10000 runs of sample size n = 5, 10, 30, 50, 100
in the ideal location model P = N (θ, 1) at θ = 0. In a contaminated situation,
we used observations stemming from

Qn = L{[(1− Ui)X id
i + UiX

di
i ]i

∣∣∣ ∑
Ui ≤ pn/2q− 1 } (5.1)

for Ui
i.i.d.∼ Bin(1, r/

√
n) , X id

i
i.i.d.∼ N (0, 1) , Xdi

i
i.i.d.∼ I{100} all stochastically inde-

pendent and for contamination radii r = 0.1, 0.25, 0.5, 1.0 .
As estimators we considered the median (with the mid-point variant for even sample
size), and M-estimators to Hampel-type ICs ηc of form (1.10) with clipping heights
c = 0.5, 0.7, 1, 1.5, 2 and c0(r) , the f-o-o clipping height according to (1.11). All
empirical MSE’s come with as.. 95%–confidence intervals, which are based on the
CLT for the variables

empMSEn = n
10000

∑
j
[Sn(samplej)]

2 (5.2)

Note that with respect to (3.23)/(3.24), and the considered estimators, a contami-
nation point 100 will largely suffice to attain the maximal MSE on Q̃n .

5.2 Numerical evaluations

By means of relations (1.14) we may reduce the problem of finding the exact
distribution of our M-estimators to the calculation of the “exact” distribution of∑
i ψ(Xi) . For this purpose, we may apply the general convolution algorithm for ar-

bitrarily distributed real-valued random variables introduced in Kohl et al. (2004).
This algorithm is based on FFT resp. discrete Fourier Transformation (DFT) and is
implemented in R within the package distr available on CRAN, confer Ruckdeschel
et al. (2004).
In Ruckdeschel and Kohl (2004), to increase accuracy for M-estimators to Hampel
IC’s, we extend our algorithm from distr to (a) better cope with mass points in
±b and (b) to calculate the “exact” finite-sample maximum MSE on Q̃n . Here we
confine ourselves to attach extra columns “numeric” to the following tables sum-
marizing our simulation. “numeric” will then stand for application of Algorithm C
respectively Algorithm D from Ruckdeschel and Kohl (2004).
More specifically, for “exact” terms, as worked out in Algorithm C (ibid.), we have
to take into account that after conditioning w.r.t. the event that the number of
contaminations K in the sample is less than half the sample size, the switching
variables Ui from (1.6) no longer are independent. So we may only apply the FFT-
based Algorithm from Kohl et al. (2004) to an absolutely continuous inner part and
have to calculate the rest by explicitly summing up the events —for details confer
Ruckdeschel and Kohl (2004) and the R-program written for this purpose, which
may be downloaded on the web-page to this article.

On the other side, as described in Algorithm D in Ruckdeschel and Kohl (2004),
by the exponential negligibility shown in subsection 2.3, the dependency of the Ui
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may be ignored for n sufficiently large —in our case this was possible for n ≥ 30 ,
moderate radius r and robust clipping height c . Then, we simply may determine
the corresponding convolutions of the corresponding distributions of the summands
directly by Algorithm 4.4 from Kohl et al. (2004).
To demonstrate the negligibility, for n ≤ 30 , we calculate both “exact” terms
(Algortihm C) and those obtained by superposition of the a.c. part and the random
walk, ignoring all mass points of the law of the sum (Algortihm D).

5.3 Results

A more detailed account of the results of the simulation study in tables may be
found at the web-page to this article. Here we only present some few results which
led to the subsequent investigation.

5.3.1 Fixed procedure, fixed radius

To get an idea of the speed of the convergence of the MSE to its as.. values, we
consider the H07-estimator from Andrews et al. (1972), i.e. the M-estimator to η0.7
at r = 0.1 and at r = 0.5 for different sample sizes n .
The simulated empirical risk comes with an (empirical) 95% confidence interval and
is compared to the corresponding numerical approximations and to the f-o, s-o, and
t-o asymptotics from Theorem 3.6. Corresponding tables for the f-o-o M-estimator
to ηc0 may be drawn from the web-page to this article. The results are tabulated
in Tables 2/3. In Table 4 we consider the relative MSE, calculated as the quotient

Table 2: emp., num., and as. MSE at r = 0.1 , c = 0.7

n/ simulation numeric asymptotics
situation S̄n [low; up] Algo C Algo D n0 n−1/2 n−1

id 1.147 [1.114 ;1.179 ] 1.172 1.168 1.187 1.187 1.1695
cont 1.403 [1.359 ;1.447 ] 1.434 1.535 1.205 1.342 1.345

id 1.179 [1.139 ;1.205 ] 1.177 1.174 1.187 1.187 1.17810
cont 1.331 [1.292 ;1.369 ] 1.327 1.326 1.205 1.302 1.303

id 1.209 [1.175 ;1.242 ] 1.183 1.180 1.187 1.187 1.18430
cont 1.301 [1.264 ;1.337 ] 1.265 1.262 1.205 1.261 1.261

id 1.192 [1.158 ;1.225 ] – 1.181 1.187 1.187 1.18550
cont 1.250 [1.214 ;1.285 ] – 1.247 1.205 1.248 1.249

id 1.161 [1.128 ;1.193 ] – 1.182 1.187 1.187 1.186100
cont 1.212 [1.178 ;1.246 ] – 1.232 1.205 1.236 1.236

MSE(c, r)/MSE(c0(r), r) . This is a natural expression to compare the efficiency of
different procedures. We compare the empirical terms from the simulation to the
corresponding numerical approximations and to the as.. terms derived by means of
Theorem 3.6. We already recognize a very good approximation down to very small
sample sizes.
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Table 3: emp., num., and as. MSE at r = 0.5 , c = 0.7

n/ simulation numeric asymptotics
situation S̄n [low; up] Algo C Algo D n0 n−1/2 n−1

id 1.166 [1.134 ;1.199 ] 1.172 1.168 1.187 1.187 1.1695
cont 2.989 [2.892 ;3.087 ] 3.016 12.491 1.647 2.529 3.103

id 1.191 [1.157 ;1.224 ] 1.177 1.174 1.187 1.187 1.17810
cont 2.934 [2.836 ;3.032 ] 2.840 4.820 1.647 2.271 2.557

id 1.194 [1.161 ;1.227 ] 1.183 1.180 1.187 1.187 1.18430
cont 2.183 [2.119 ;2.247 ] 2.167 2.167 1.647 2.007 2.102

id 1.165 [1.133 ;1.197 ] – 1.181 1.187 1.187 1.18550
cont 1.946 [1.893 ;1.998 ] – 2.008 1.647 1.926 1.983

id 1.192 [1.159 ;1.226 ] – 1.182 1.187 1.187 1.186100
cont 1.894 [1.844 ;1.944 ] – 1.879 1.647 1.844 1.873

5.3.2 Fixed procedure, fixed sample size

In order to study the effect of the radius on the quality of the approximation, we
consider the M-estimator to η0.5 at sample size n = 30 at varying radii. The
results are tabulated in Table 5. The simulations and the numeric values clearly
show that with increasing radius, the approximation quality of f-o asymptotics
decreases, which is conformal to the infinitesimal character of our neighborhoods.
A corresponding table for the more liberal M-estimator to η2 at sample size n = 50
may be drawn from the web-page.

5.3.3 Fixed radius, fixed sample size

In this paragraph we want to compare M-estimators to different clipping heights
and see whether the choice of c0 may also be considered reasonable for moderate
n . To this end, we consider the situationr = 0.25 and n = 30 . The results are
tabulated in Tables 6 and 7. The simulations already indicate that the answer
should be affirmative. The numeric and as.. values for the median are taken from
Ruckdeschel (2005a). Corresponding tables to the situation r = 0.5 and n = 100
are on the web-page.

5.3.4 Relative error compared to numerically exact risk

A closer look onto the relative error of our higher order asymptotics w.r.t. the
numerically exact risk MSEn is provided by figure 1. A zoom-in for n ≥ 16 is
available on the web-page. Indeed for all investigated radii r = 0.00 , 0.10 , 0.25 ,
1.00 , the relative error of our asymptotic formula w.r.t. the corresponding numeric
figures is quickly decreasing in absolute value in n ; also, we notice that we have
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Table 4: emp., num., and as. relMSE at r = 0.1, 0.5 , c = 0.7 relative to Var[X̄n]
for id and MSE(c0(r)) for cont

r = 0.1 r = 0.5
n/ sim num asymptotics sim num asymptotics
situation

ex/∗ n0 n−1/2 ex/∗ n0 n−1/2

id 1.161 1.163 1.173 1.173 1.038 1.042 1.041 1.0415
cont 1.003 0.956 1.143 1.039 0.992 0.978 1.006 0.989

id 1.167 1.166 1.173 1.173 1.037 1.041 1.041 1.04110
cont 1.049 1.029 1.143 1.065 0.993 0.977 1.006 0.992

id 1.174 1.170 1.173 1.173 1.037 1.041 1.041 1.04130
cont 1.094 1.086 1.143 1.095 0.994 0.993 1.006 0.997

id 1.160 1.169∗ 1.173 1.173 1.038 1.041∗ 1.041 1.04150
cont 1.096 1.096∗ 1.143 1.105 0.996 0.995∗ 1.006 0.999

id 1.180 1.170∗ 1.173 1.173 1.044 1.041∗ 1.041 1.041100
cont 1.122 1.110∗ 1.143 1.116 0.999 0.999∗ 1.006 1.001

Table 5: emp., num., and as. MSE at n = 30 , c = 0.5

simulation numeric asymptotics
r

S̄n [low; up] Algo C Algo D n0 n−1/2 n−1

0.00 1.272 [1.237 ;1.307 ] 1.259 1.256 1.263 1.263 1.259
0.10 1.374 [1.336 ;1.413 ] 1.337 1.335 1.280 1.334 1.334
0.25 1.545 [1.502 ;1.588 ] 1.545 1.542 1.588 1.514 1.532
0.50 2.204 [2.139 ;2.268 ] 2.189 2.187 1.689 2.037 2.128
1.00 5.362 [5.219 ;5.505 ] 5.238 5.265 2.967 4.132 4.652

a certain oscillation between odd and even sample sizes for very small n which
is explained by the fact that for even n there may be ties. By Lemma 1.1, the
contribution of these ties to the risk is however decaying exponentially in n .
In table 8, we have determined the smallest sample size n0 such that for n ≥ n0 the
relative error using first to third order asymptotics for approximating MSEn(ψc)
to c = 0.7 is smaller than 1% resp. 5% which shows that for r ≤ 0.5 we need no
more than 25 (60) observations to stay within an error corridor of 5% (1%) in
t-o asymptotics. For f-o asymptotics, however we need considerable sample sizes
for reasonable approximations unless the radius is rather small.
The figures in this table are to be taken “cum grano salis” due to numerical in-
accuracies in MSEn w.r.t. the exact risk of order 1E − 5 which may result in a
deviation from the “real” n0 of ±2 for n0 < 200 .
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Table 6: emp., num., and as. MSE at n = 30 , r = 0.25

estimator/ simulation num asymptotics
situation S̄n [low; up] ex n0 n−1/2 n−1

id 1.492 [1.451 ;1.532 ] 1.501 1.571 1.571 1.496Med
cont 1.786 [1.736 ;1.835 ] 1.779 1.669 1.821 1.767

id 1.250 [1.216 ;1.284 ] 1.259 1.263 1.263 1.259
c = 0.5

cont 1.545 [1.502 ;1.588 ] 1.545 1.369 1.514 1.532
id 1.092 [1.062 ;1.122 ] 1.105 1.107 1.107 1.105

c = 1.0
cont 1.433 [1.393 ;1.473 ] 1.440 1.241 1.402 1.425

id 0.991 [0.963 ;1.018 ] 1.010 1.010 1.010 1.010
c = 2.0

cont 1.611 [1.566 ;1.656 ] 1.633 1.285 1.556 1.604
id 1.035 [1.006 ;1.063 ] 1.051 1.139 1.053 1.052

c = c0 = 1.3393
cont 1.438 [1.398 ;1.479 ] 1.452 1.220 1.405 1.434

Table 7: emp., num., and as. relMSE at n = 30 , r = 0.25 relative to Var[X̄n]
for id and MSE(c0(r)) for cont , c0(r) = 1.3393

estimator/ simulation numeric asymptotics
situation ex n0 n−1/2

id 1.435 1.427 1.379 1.379Med
cont 1.241 1.224 1.320 1.263

id 1.202 1.197 1.199 1.198
c = 0.5

cont 1.073 1.064 1.077 1.068
id 1.051 1.051 1.051 1.051

c = 1.0
cont 0.995 0.991 0.998 0.994

id 0.953 0.960 0.959 0.960
c = 2.0

cont 1.119 1.125 1.107 1.119

6 Ramifications

6.1 Ideal distributions with polynomially decaying tails

In order to be able to cover ideal distributions with polynomially decaying tails, we
sharpen the restriction of the original neighborhood system Q̃n(r, ε0) from (2.5) to

Qn = L
{

[(1− Ui)X id
i + UiX

di
i ]i

∣∣∣ lim sup
n

1
n

n∑
i=1

Ui ≤ ε′0

}
(6.1)

for some fixed ε′0 such that

0 ≤ ε′0 < ε0 (6.2)
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Figure 1: The mapping n 7→ rel.error(MSEn(ψc)) for c = 0.7 and F = N (0, 1) .

Table 8: Minimal n0 such that for n ≥ n0 the relative error using first to third order
asymptotics for approximating MSEn(ψc) for c = 0.7 is smaller than 1%
resp. 5%

rel.err order r = 0.00 r = 0.10 r = 0.25 r = 0.50 r = 1.00
1% 1st order asy. 9 > 640∗ > 3927∗ > 14425∗ > 49220∗

2nd order asy. 9 15 60 196 > 580∗

3rd order asy. 5 15 30 59 146
5% 1st order asy. 3 28 162 > 590∗ > 1995∗

2nd order asy. 3 6 17 43 119
3rd order asy. 3 6 12 23 49

∗ : for n > 200 computation of MSEn gets too expensive in time; instead we use the the

corresponding t-o figure. Assuming an error of t-o asymptotics of order O(n−3/2) , a corresponding

regression onto the error term gives estimates for the regression coefficient to the term n−3/2 of

about −50 , −166 , −534 , and −1940 for r = 0.1 , 0.25 , 0.5 , and 1.0 , so that the error (read

from top to bottom and then left to right) incurred by this replacement is about −3E−3 , −7E−4 ,

−3E− 4 , −2E− 2 , −2E− 2 , −1.3E− 1 , and −2E− 4 .
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giving the new neighborhood system Q̃′n(r; ε′0) . Correspondingly, we will consider
the asymptotics of

R′n(Sn, r; ε
′
0) := sup

Qn∈Q̃′n(r;ε′0)

n

∫
|Sn − θ0|2 dQn (6.3)

It is not surprising that all results up to this point on maximal risks are unaffected
by this subtle modification. But, we may replace assumption (Vb) by

(Pd) There are some T > 0 and η > 0 such that

F (t) ≥ 1− t−η, for t > T, F (t) ≤ (−t)−η for t < −T (6.4)

Proposition 6.1 In the location model (1.1) with (1.2), assume (bmi), (D), and
(C) from section 3.2; additionally assume that the central distribution F satisfies
(6.4). Then, on Q̃′n(r; ε′0) , the assertions of Theorem 3.6 —with any k2 > 2—
continue to hold.

Property (6.4) can be made plausible by the following proposition:

Proposition 6.2 In the location model (1.1) with (1.2), assume: For any d > 0 ,

lim inf
t→∞

td(1− F (t)) > 0 or lim inf
t→∞

tdF (−t) > 0 (6.5)

Then for any sample size n , the MSE of the M-estimator Sn to any IC ψ according
to (bmi) in the ideal model is infinite.

Conditions (3.23) resp. (3.24) almost characterize the risk-maximizing contamina-
tions:

Proposition 6.3 Under the assumptions of Theorem 3.6, let δ0, c0 > 0 . Assume
that b̂ = b and let Bn := inf{x

∣∣ψ(x) ≥ b−c0/
√
n} . Assume that, for K =

∑n
i=1 Ui

and k > (1− δ)r
√
n ,

Pr
( n∑
i=1

Ui I(Xdi
i ≤ Bn + v0

√
log(n)/n) ≥ 1

∣∣∣K = k
)
≥ p0 > 0 (6.6)

Then, eventually in n , for any such sequence of contaminations Q[n ∈ Q̃(r) , the
maximal MSE as in condition (3.24) (i.e. with positive bias) in (3.20) cannot be
attained. More precisely,

Rn(Sn, r)− nEQ[
n
S2
n ≥ 2p0v0(rc0 + b)/(n

√
2π) (6.7)

A corresponding relation holds for condition (3.23).
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6.2 Convergence of variance and bias separately

The technique used to derive Theorem 3.6 also applies if we are interested in vari-
ance and bias separately; we get

Proposition 6.4 Under Assumptions (bmi) to (C) and for sample size n , an M-
estimator Sn for scores-function ψ under a measure Q0

n ∈ Q̃n(r; ε0) according to
(3.23) resp. (3.24) admits the following expansions

√
n

∣∣∣Bias(Sn, Q0
n)

∣∣∣ =
∣∣∣ rb+ 1√

n
B1,0 + r2√

n
B1,1 + r

n B2

∣∣∣ + o(n−1) (6.8)

nBias2(Sn, Q0
n) = r2b2 + r√

n
C1 + 1

n C2 + o(n−1) (6.9)

nVar(Sn, Q0
n) = v2

0 + r√
n
D1 + 1

n D2 + o(n−1) (6.10)

with

B1,0 = ( 1
2 l2 + ṽ1)v2

0 , B1,1 = b(1± 1
2 l2b) (6.11)

B2 =
[
( 1
2 l2

2 + 1
6 l3)b

3 + b± l2b
2
]
r2 + b(1± 1

2 l2b) +

+
[
( 1
2 l3 + 3

2 l2
2 + ṽ2 + ṽ2

1 + 3 ṽ1 l2)b± 1
2 l2 ± ṽ1

]
v0

2 (6.12)

C1 = b2r2(±l2b+ 2)± b(l2 + 2ṽ1)v2
0 (6.13)

C2 = (ṽ1 l2 + 1
4 l2

2 + ṽ2
1)v04 +

[
3 b2 ± 3 l2 b3 + ( 5

4 l2
2 + 1

3 l3)b
4
]
r4 +

+( 7
2 l2

2 + l3 + 2 ṽ2 + 2 ṽ2
1 + 7 ṽ1 l2)b2 v02 r2 +[

± (2 l2 + 4 ṽ1) b v2
0 + 2b2 ± l2 b

3
]
r2 (6.14)

D1 =
[
± 2( l2 + ṽ1)b+ 1

]
v0

2 + b2 (6.15)

D2 = (l3 + 7
2 l2

2 + 11 ṽ1 l2 + 8 ṽ2
1 + 3 ṽ2)v04 +[(

(l3 + ṽ2
1 + ṽ2 + 5 ṽ1 l2 + 4 l22)b2 ± 4(l2 + ṽ1)b+ 1

)
v0

2 +

±2 l2 b3 + 3b2
]
r2 +

(
2
3 ρ1 + (l2 + 2 ṽ1)ρ0

)
v0

3 (6.16)

where we are in the − [+] -case according to whether (3.23) or (3.24) applies.

For a proof to this proposition, we may proceed exactly as in the proof of Theo-
rem 3.6; only in (8.57), we keep the integration domain and replace the integrand
u1(s)2 ϕ(s) gn(s) by u1(s)ϕ(s) gn(s) ; we do not spell this out here. In MAPLE the
expressions are obtained by means of our procedure asESi.

6.3 Other loss functions

Analogously, we obtain that under similar condition as for Theorem 3.6, we may
replace the integrand u1(s)2 ϕ(s) g(s) in (8.57) — on essentially the same domain
of integration — using some other loss function ` , i.e. by `(u1)ϕ(s) g(s) . In this
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respect, Theorem 3.6 easily extends to uniform convergence of other risks on Q̃n ,
e.g. absolute error ( `(x) = |x| ), Lk -error ( `(x) = |x|k ) for 1 < k <∞ , and certain
covering probabilities, `(x) = I(α1,α2)(x) for some α1 < α2 ∈ R .
As an illustration we consider this last type of loss function, more specifically in the
form in which it arises in the finite minimax estimation theory as in Huber (1968)
and in which it has been extended to an as.. setup by Rieder (1980): The risk is
defined as

R\(Sn, r) = sup
Qn∈Qn(r)

max{Qn(Sn > θ +
α2√
n

), Qn(Sn < θ − α1√
n

)} (6.17)

Recently Fraiman et al. (2001) have taken up a similar setup with conventional
confidence intervals to cover bias and variance simultaneously.
We work in the setup of Rieder (1980) here and confine ourselves to the higher
order terms of order n−1/2 , but of course an extension to terms up to order n−1

as in Theorem 3.6 is feasible. Due to translation equivariance, it is no restriction to
consider the case θ = 0 only. As in Rieder (1980), we work with a possibly asym-
metric partition of the interval of given length 2a/

√
n laid around the estimator:

Using the partition
2a = α1 + α2 = α1(Sn) + α2(Sn), (6.18)

we minimize the risk according to Rieder (1980, formulas (2.8) and (2.11) in), if
with b̌ , b̂ , and b̄ from (2.3) and

α1 = a− δ, α2 = a+ δ, δ = r
2 (b̂+ b̌) (6.19)

If we now account for terms of order 1√
n

we minimize the risk if we use the partition

2a = α′1 + α′2 = α′1(Sn) + α′2(Sn), (6.20)

with
α′1 = a− δ − δ′, α2 = a+ δ + δ′, (6.21)

δ′ = δ′n given in the theorem below. To this end, let

s1 := (−a+ rb̄)/v0 (6.22)

Then, with Φ and ϕ c.d.f. and density of N (0, 1) and using the notation of The-
orem 3.6, we have

Theorem 6.5 For the location model (1.1) of finite Fisher information (1.2), as-
sume (bmi), (D’) and (C’). Then for sample size n , the minimal over-/undershooting
probability of an M-estimator Sn for scores-function ψ in Qn obtains eventually
in n as

R\(Sn)= sup
Qn∈Qn

max{Qn(Sn ≤ −
α′1√
n

), Qn(Sn ≥
α′2√
n

)} =

= R−(Sn, Q0
n;−) = R+(Sn, Q0

n;+) (6.23)
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with Q0
n;− resp. Q0

n; + according to (3.23) resp. (3.24) and

R−(Sn, Q0
n;−) = Φ(s1) + 1√

n v0
ϕ(s1)×

×
[
ra
2 + 2l2aδ − as1ṽ1v0 − r(b̌2+b̂2)s1

4v0
+ r2b̄

2

]
+ o( 1√

n
) (6.24)

and δ′ = δ′n according to

δ′ = 1√
n

(
− rδ

2v0
− l2

2v0
(a2 + δ2)− ṽ1v0s1δ − ρ0

6 (s21 − 1) + rb̄δs1
v20

+ r2δ
2v0

)
(6.25)

Remark 6.6 (a) If l2 = ṽ1 = 0 and b̂ = −b̌ , we obtain the same result as
(6.24), if we use the expressions bn := Biasn and v2

n = Varn for bias and variance
from Proposition 6.4, plug them into the as.. risk, which gives Φ((rbn−a)/vn) , and
then expand this up to o(n−1/2) .

(b) The numerical values obtainable by Theorem 6.5 should be compared to
those of Kohl (2005, sections 11.3.3.3 and 11.4.1); admittedly the approach of The-
orem 6.5 in this context gives rather poor (too liberal) approximations compared
to those in the cited reference (confer the R-file Thm65.R available on the web-page
to this article).

6.4 Different models

By the Log-Transformation — c.f. Kohl (2005, p. 156-159) —we may transform
any scale model to a location model and thus also cover this model directly. For
general parametric models arguments like in Rieder (1994, section 6.2.2) seem nec-
essary, and with these in principle corresponding higher order statements should
be possible.

7 Consequences

In this section, we consider the class S2 of all M-estimators according to (bmi),
(D’), and (C’) as well as (Vb) or (Pd); correspondingly, we define S3 with (D), (C)
replacing (D’), (C’); we always assume that the class of M-estimators H of ICs of
Hampel-type (1.10) forms a subset of S2 [S3 ].

7.1 Second-order optimality

Symmetry allows considerable simplifications; for instance, if F is symmetric, i.e.
F (B) = F (−B) for all B ∈ B , in (1.10) always z = 0. But also, much deeper
results are possible. Thus for the rest of this subsection, we assume

l2 = v1 = ρ0 = 0 (7.1)

Under these assumptions, we come up with (8.76) as s-o-maximal MSE for any
M-estimator in S2 ; in particular

A1 = v2
0 + b2(1 + 2r2) (7.2)
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Condition (7.1) is clearly the case for skew symmetric ψ and symmetric F . For
symmetric F , however, for any IC ψ , also ψ̃ := −ψ(− · ) is an IC and hence so is
the skew-symmetrized ψ(s) := 1

2 (ψ + ψ̃) , too. But by convexity of the MSE, ψ(s)

will be at least as good as ψ as to MSE, hence it is no restriction to only consider
skew symmetric ICs, and we fall into the application range of

Theorem 7.1 Assume that maximal as.. risk of an ALE on Q̃n resp. Q̃′n( ,̇ s0)
is representable as G(rb(ψ), v0(ψ)) for some convex real-valued function G(w, s) ,
strictly isotone in both arguments and totally differentiable, bounded away from the
minimum for w → ∞ . Then, on Qn , respectively on Q̃n , the optimal IC of
Hampel-type (1.10) for some clipping height b = Ac determined by

r v0 ∂wG(rAc, v0) = ∂sG(rAc, v0)AE(|Λ− z| − c)+ (7.3)

proved in Ruckdeschel and Rieder (2004). In our case, this theorem specializes to

Corollary 7.2 Assume a symmetric model (1.1) with increasing Λf and (1.2).
Under the assumptions of this section, the s-o-o M-estimator in class S2 has an
IC of of Hampel-type (1.10) with z = 0 and the s-o-o clipping height c1 = c1(n) is
determined by

r2c
(
1 +

r2 + 1
r2 + r

√
n

)
= E(|Λ| − c)+ (7.4)

Always, c0 > c1(n) . Suppose that h(c) := E(|Λ| − c)+ is differentiable in c0 with
derivative h′(c0) . Then,

c1(n) = c0

(
1− 1√

n

r3 + r

r2 − h′(c0)

)
+ o(

1√
n

) (7.5)

That is, the f-o-o clipping height c0 always is too optimistic.
Assume s-o risk of ICs of Hampel-type (1.10) is smooth enough in c in its

minimum c1 to allow a s-o Taylor expansion. Then, around c1 , s-o risk behaves
like a parabola. But, as by (7.5), c1 − c0 = O(1/

√
n ) , s-o risk improvement by

using c1 instead of c0 can only be of order O(1/n) . This even carries over to risks
“near” s-o risk:

7.2 Consequences for the exact MSE

Proposition 7.3 Let F, Fn, Gn ∈ C2(R) , n ∈ N , such that for some β ≥ β′ > 0

(i) supx |Fn −Gn|+ |F ′n −G′n|+ |F ′′n −G′′n| = O(n−β),

(ii) supx |Fn − F |+ |F ′n − F ′|+ |F ′′n − F ′′| = O(n−β
′
)

(7.6)

Assume that in x0 ∈ R , F (x0) is minimal, and that F ′′(x0) = f2 > 0 . Then
(a) there is some sequence (xn) ⊂ R such that eventually in n , Fn(xn) is

minimal and limF ′′n (xn) = f2 .
(b) |xn − x0| = O(n−β

′
) .
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(c) there is some sequence (yn) ⊂ R such that eventually in n , Gn(yn) is
minimal and limnG

′′
n(yn) = f2 .

(d) |yn − xn| = O(n−β) .
(e) 0 ≤ Gn(xn)−Gn(yn) = O(n−2β) .

The drawback of this proposition is that assumption (7.6) is difficult to check if
we have no explicit expression for Gn : For given r ≥ 0 , let asMSEj=0,1,2(c)be
the f-o, s-o, and t-o maximal MSE of an M-estimator in H , and exMSE(c) the
corresponding exact maximal MSE Rn ; we would like to apply Proposition 7.3 to
F = asMSE0 , Fn = asMSEj=1,2 and Gn = exMSE to conclude on the performance
of f-o-o, s-o-o, t-o-o procedures as to exMSE. As to (7.6), part (ii) is easy to see
checking the expressions, giving β′ = 1/2 , while for part (i) Theorem 3.6 only says
that supx |Fn−Gn| = o(n−j/2) which in fact is O(n−(j/2+δ)) , and probably, under
slightly stronger assumptions, O(n−(j+1)/2) . So presumably —in view of Table 1,

0 ≤ exMSE(cj,n)− exMSE(cex;n)) = O(n−j−1), j = 0, 1, 2 (7.7)

Remark 7.4 We even conjecture that we may apply an analogue to Proposition 7.3
for functions F, Fn, Gn : Ψ → R : Let us denote by ψ̂(j;n) , the corresponding f-o,
s-o, t-o optimal IC and ψ̂(ex;n) the exactly optimal IC; then, with the usual abuse
of notation as to exMSE, we conjecture that

0 ≤ exMSE(ψ̂(j;n))− exMSE(ψ̂(ex;n)) = O(n−j−1), j = 0, 1, 2 (7.8)

7.3 Relative risk

An observation in the simulation study was that the relative MSE w.r.t. the MSE
of the f-o-o procedure seemed to converge faster than the absolute terms. This is
reflected by our formulas as follows:

7.3.1 Contaminated situation

Let asMSE0(c) and A1(c) be the f-o as.. MSE and the corresponding s-o correction
term for the Hampel-IC with clipping height c . Then we may write for the f-o [s-o]
relative risk relMSE0(c, r) [ relMSE1(c, r, n) ] w.r.t. the corresponding risk of the
f-o-o procedure

relMSE1(c, r, n):=
asMSE0(c) + r√

n
A1(c)

asMSE0(c0) + r√
n
A1(c0)

= (7.9)

=relMSE0(c, r)
(

1 +
r√
n

(∆(c)−∆(c0))
)

+ o(n−1/2) (7.10)

with

∆(c) :=
b2(c)− v2

0(c)
asMSE0(c)

(7.11)
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So in fact, the assumed faster convergence is not true, but as we will see, the
difference between relMSE0(c, r) and relMSE1(c, r) are in fact small.
As we will base our decision which procedure to take upon this relative risk, it is
interesting to consider the maximal error w.r.t. the s-o approximation one has to
take into account when we use the f-o asymptotics instead. In view of subsection 7.1
we will limit ourselves to only considering Hampel-IC’s with a clipping height c in
the range

C(c0, ρ) := [c0/(1 + ρ), c0(1 + ρ)], (7.12)

for ρ ≥ 0 . This leads us to

̂∆relMSE(r; ρ) := max
c∈C(c0(r), ρ)

r
(
∆(c)−∆(c0(r))

)
(7.13)

or even maximizing over the radius

∆̂(ρ) := ̂̂∆relMSE(ρ) := max
r

̂∆relMSE(r; ρ) (7.14)

In the Gaussian case, the function r 7→ ̂∆relMSE(r; ρ) is plotted for ρ = 0.1 in
Figure 2, and for ∆̂(0.1) , we get a value of 0.065 , which for an actual sample size
n has to be divided by

√
n — an astonishingly good approximation!

So down to very moderate sample sizes we can base our decision which
clipping height to take to achieve “nearly” the optimal MSE on Q̃n on
f-o asymptotics only.
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Figure 2: The mapping r 7→ \∆relMSE(r; ρ) for F = N (0, 1) and for ρ = 0.1 .
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7.3.2 Illustration

As an example we take F = N (0, 1) and calculate the terms c1 ,

asMSE1 := asMSE0 + r√
n
A1 (7.15)

and relMSE1 for the radii and sample sizes of the simulation study where for the
optimization for c1 we use the function optimize in R 1.7.1 (compare R Devel-
opment Core Team (2005)). The results are tabulated in Table 9. Correspondingly,
we also determine the t-o terms c2 ,

asMSE2 := asMSE1 +A2/n (7.16)

and in Figure 3, we plot the graphs of the five functions

r 7→ asMSE0(ηc0(r), r), r 7→ asMSE1(ηc0(r), r, n), r 7→ asMSE2(ηc0(r), r, n)
r 7→ asMSE1(ηc1(r,n), r, n), r 7→ asMSE2(ηc2(r,n), r, n)

for F = N (0, 1) and for n = 30 . In fact, the choice of the clipping height —
c0(r), c1(r, n), c2(r, n)— does not entail any visible changes while the absolute value
of f-o, s-o, and t-o MSE clearly differ.
In the same situation, the three functions r 7→ c0(r) , r 7→ c1(r, n) , r 7→ c2(r, n) are
plotted in Figure 4; while there are visible differences between c0(r) and ci(r, n) ,
i = 1, 2 , c1(r, n) and c2(r, n) visually coincide.

Table 9: c1(r, n) , asMSE1(c1(r, n), r, n) and relMSE1(c1(r, n), r, n)

r n = 5 n = 10 n = 30 n = 50 n = 100 n = ∞
c1 1.394 1.484 1.611 1.663 1.724 1.948

0.1 asMSE1 1.248 1.197 1.140 1.122 1.103 1.054
relMSE1 3.476% 2.149% 0.939% 0.623% 0.349% 0.000%
c1 0.994 1.059 1.147 1.181 1.219 1.339

0.25 asMSE1 1.635 1.519 1.397 1.358 1.319 1.220
relMSE1 2.377% 1.470% 0.632% 0.414% 0.228% 0.000%
c1 0.650 0.690 0.746 0.767 0.790 0.862

0.5 asMSE1 2.527 2.271 2.006 1.923 1.840 1.636
relMSE1 1.214% 0.772% 0.342% 0.226% 0.126% 0.000%
c1 0.320 0.340 0.369 0.380 0.394 0.436

1.0 asMSE1 5.761 4.944 4.110 3.852 3.593 2.964
relMSE1 0.427% 0.292% 0.142% 0.098% 0.056% 0.000%

7.4 Minimax radius

In this subsection, we refine the results of Rieder et al. (2001). In the cited paper,
we want to give a guideline to the statistician which procedure to choose if he knows



P. Ruckdeschel 31

0.0 0.5 1.0 1.5

2
4

6
8

10

r

as
M

S
E

i,n
c j

(r
,n

),r
)

asMSE2,n(c0(r),r)

asMSE2,n(c2(r,n),r,n)

asMSE0(c0(r),r)

asMSE1,n(c0(r),r)

asMSE1,n(c1(r,n),r,n)

Figure 3: The mapping r 7→ asMSEi[,n](ηcj(r[,n]), r[, n]) for i =

0, 1, 2 , j = 0, i , n = 30 and F = N (0, 1)

that there is contamination but does not know the radius exactly: To this end, we
consider the maximal inefficiency ρ̄(r′) defined as

ρ̄0(r′) := sup
r∈(rl,ru)

ρ̄(r′, r), ρ̄(r′, r) :=
R̄(ηc0(r′), r)
R̄(ηc0(r), r)

(7.17)

and determine the minimax radius r0 as minimizer of ρ̄0(r′) . If one knows at least
that the actual radius will lie in an interval [r/γ, rγ] we may determine rγ,r as
minimizer of ρ̄γ(r′, r) = sups∈(r/γ,rγ) ρ̄(r′, s) and denote the corresponding min-
imax inefficiency by ρ̄γ(r) . In a second optimizing step we then determine the
maximizer rγ of ρ̄γ(r) . The unrestricted case is symbolically included by γ = ∞ .
In the Gaussian location case this gives

γ = 0 γ = 2 γ = 3
r0 c0(r0) ρ̄0(r0) r2 c0(r2) ρ̄2(r2) r3 c0(r3) ρ̄3(r3)

0.621 0.718 18.07% 0.575 0.769 8.84% 0.549 0.799 4.41%

These calculations can easily be translated to the s-o setup setting

R1(ψ, r, n) := r2 sup |ψ|2 + Eψ2 + r√
n
A1 (7.18)

so that in this paper we would instead determine r1(n) as minimizer of ρ1(r′, r, n) ,

sup
r∈(rl,ru)

ρ1(r′, r, n), ρ1(r′, r, n) :=
R1(ηc1(r′(n),n), r, n)
R1(ηc1(r,n), r, n)

(7.19)
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Figure 4: The mapping r 7→ cj(r[, n]) for j = 0, 1, 2 and n = 30

and F = N (0, 1)

respectively ρ1;γ and instead of ρ̄γ . For finite n , however, we have to take into
account that r <

√
n always. Doing so we get Table 10 on page 33, showing that

there is not much variation in both c1(r∞, ·) , ρ1;γ(rγ , ·) for varying n .
So if r is completely unknown, it is a good choice to use the M-estimator
to Hampel-scores for c ≈ 0.7 —you will never have a larger inefficiency
than the limiting 18% ! Ex post this is one more argument, why the H07-estimate
survived in in Sections 7.B.8 and 7.C.4 of the Princeton robustness study (Andrews
et al. (1972)). A table for the corresponding t-o minimax radii is available on the
web-page.

7.5 Innocent-looking risk-maximizing contaminations

In Huber (1997, p. 62), the author complains “. . . the considerable confusion be-
tween the respective roles of diagnostics and robustness. The purpose of robustness
is to safeguard against deviations from the assumptions, in particular against those
that are near or below the limits of detectability.” As worked out in Ruckdeschel
(2004), the exact critical rate for these limits may be determined in a statistical
way: For some prescribed outlier set OUT, let p0 and qn = (1− rn)p0 + rn be the
probability under the ideal model, and under convex contaminations of radius rn ,
respectively. Considering the minimax test between these alternatives yields the
exact critical rate 1/

√
n : under a faster shrinking p0 cannot be separated from qn

at all, while at a slower rate, asymptotically we can separate them without error.
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Table 10: Minimax radii for second order asymptotics

n = 5 n = 10 n = 30 n = 50 n = 100 n = ∞
rγ 0.390 0.449 0.514 0.536 0.559 0.621

γ = 0 c1(rγ) 0.776 0.749 0.729 0.725 0.722 0.718
ρ1;γ(rγ) 16.27% 17.08% 17.71% 17.85% 17.96% 18.07%
rγ 0.481 0.496 0.518 0.524 0.534 0.548

γ = 3 c1(rγ) 0.670 0.694 0.724 0.739 0.750 0.800
ρ1;γ(rγ) 6.213% 6.773% 7.490% 7.751% 8.036% 8.836%
rγ 0.540 0.552 0.564 0.563 0.571 0.574

γ = 2 c1(rγ) 0.609 0.637 0.675 0.695 0.707 0.770
ρ1;γ(rγ) 2.987% 3.297% 3.692% 3.834% 3.988% 4.410%

Going one step further, for some given 1/
√
n -shrinking neighborhoods of radius

r , we would also like to know how “small” an outlier may be, while it is still harmful
enough to distort the classically optimal procedure in a way that this procedure is
beaten by some robust one.

7.5.1 The Cniper contaminaton

To a fixed radius r , in the preceding sections, we have found/discussed f-o-o and
s-o-o ICs of Hampel-form with clipping height cj = cj(r[, n]) , j = 0, 1 . To these
ICs we have derived families of contaminations achieving maximal risk on Q̃n(r) .
By means of Theorem 3.6(b), these are induced by any contaminating measures
P di
n under which ηθ(Xdi) is constantly either bj or −bj for bj = Ajcj —up to an

event of probability o(n−1) . Out of these risk-maximizing contaminations, let us
limit ourselves to those induced by Dirac masses at x :

Qn(x) := [(1− r√
n
)Pθ + r√

n
I{x}]⊗n (7.20)

Among these Qn(x) , we seek the least “conspicious” looking contamination point
x in the sense that the region OUTj := [x;∞) [or (−∞;x) ] carries large ideal
probability. With this region as outlier set in Ruckdeschel (2004), values of x (or
slightly above in absolute value) occuring more frequently than they should under
the ideal situation, are hardest to detect.

More precisely, recall the general setup from section 1.3. Assume that the
observations are univariate; let S(b0)

n and Ŝn be ALEs to the classical optimal IC
η̂ = I−1Λ and the asMSE0 -optimal IC ηb0 , respectively. In this setup we define

Definition 7.5 The f-o cniper point x0 is defined as x0,+ if x0,+ ≥ −x0,− and
x0,− else, where

x0,+ := inf{x > 0
∣∣∣ asMSE0(S

(b0)
n , Qn(x)) < asMSE0(Ŝn, Qn(x))}

x0,− := sup{x < 0
∣∣∣ asMSE0(S

(b0)
n , Qn(x)) < asMSE0(Ŝn, Qn(x))}

(7.21)
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Remark 7.6 (a) The name cniper point is due to H. Rieder; it alludes to the
fact that this “Ianus-type” contamination Qn(x0) pretends to be nice, but to the
contrary is in fact pernicious, “sniping” off the classically optimal procedure. . .

(b) To get rid of the dependency upon the radius r , in the examples we will use
the minimax radii rγ(n) defined in the preceding section.

(c) The idea of specifying a contamination appearing as “least dangerous” is of
course not bound to quadratic loss.

(d) In the obvious manor, the concept may be generalized for multivariate ob-
servations, if we define any x0 of minimal absolute as cniper point.

Correspondingly, in the setup of this paper and under (7.1), let S(c1)
n be an M-

estimator to the s-o-o IC ηc1 according to Corollary 7.2.

Definition 7.7 The s-o cniper point x1 is defined as x1,+ if x1,+ ≥ −x1,− and
x1,− else, where

x1,+ := inf{x > 0
∣∣∣ asMSE1(S

(c1)
n , Qn(x)) < asMSE1(Ŝn, Qn(x))}

x1,− := sup{x < 0
∣∣∣ asMSE1(S

(c1)
n , Qn(x)) < asMSE1(Ŝn, Qn(x))}

(7.22)

Cniper contaminations and f/s-o-o ICs form saddle-points under (7.23)/(7.1):

Proposition 7.8 The pair (S(b0)
n , Qn(x0)) is a saddlepoint for the class of all pairs

(Sn, Qn) if
|η̂(x0)| ≤ |ηb(x0)| ∀b : |ηb(x0)| < b (7.23)

where Sn are ALE’s to IC’s of form (1.9) and Qn ∈ Qn w.r.t. f-o risk R̃ .
Under (7.1), the same holds in the one-dimensional location model for the pair
(S(c1)
n , Qn(x1)) w.r.t. s-o risk in Q̃(r) .

Remark 7.9 A sufficient condition for (7.23) is that Λ(x) = −Λ(−x) : Then for
any b > 0 , ab = 0 is possible and,

A−1
b = EΛΛτ min{1, b

|AbΛ|
} ≤ EΛΛτ = I

So Ab � I−1 in the positive semi-definit sense, and hence for b s.t. |ηb(xj)| < b

|ηb(xj)| = |AbΛ(xj)| ≥ |I−1Λ(xj)| = |η̂(xj)| (7.24)

7.5.2 Error probabilities

For numerical evaluations, we consider the Gaussian location model and the Gaussian
location and scale model. In both models, xj,+ = −xj,− , and without loss, we use
xj,+ .
For the as.. tests between qn = p0 and qn > p0 , alluded to in the beginning of this
section, we note that

p0 = Pθ(Xi ≥ xj) = Φ(−xj), qn = p0 +
r√
n

(1− p0) (7.25)
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As to the (f-o) as.. minimax test Ruckdeschel (2005b, formula (6.1)) gives as as.. risk

ε = ε∞ = Φ
(
− r

2

√
1− p0

p0

)
(7.26)

For s-o asymptotics, we instead use the finite-sample minimax test, i.e. the Neyman-
Pearson test with equal Type-I and Type-II error. In our case this is a corresponding
randomized binomial test.

7.5.3 Gaussian location

In the Gaussian location model, we draw all necessary expressions from Proposi-
tion 3.4; in particular, with c1 = c1(n, rγ) , and A1 = (2Φ(c1)−1)−1 , b1 = c1A1 , by
Remark 3.7(a), maximizing risk amounts to either Xdi > c1 always or Xdi < −c1
always. The classically optimal estimator is the arithmetic mean, and one easily
calculates

EQn(x)[x̄2
n

∣∣∣K = k] =
1
n2

[k2x2 + (n− k)] (7.27)

and integrating out K we get directly

n EQn(x)[x̄2
n] = 1− r√

n
+ x2(r2 + r√

n
− r2

n ) (7.28)

Combining this with formulas (3.20) and (7.2), for M0 := asMSE0(S
(c1)
n ) we get

x2
1(n) =

M0 − 1 + r√
n
(M0 + b21(r

2 + 1) + 1)

r2(1− 1
n ) + r√

n

(7.29)

or

x1(n) =
√
M0 − 1
r

+
1

2
√
n

[
M0 + 1 + b21(r

2 + 1)√
M0 − 1

−
√
M0 − 1
r2

] + o( 1√
n
) (7.30)

This yields the results as in Table 11. We include the type-II error 1 − β(α) for
the Neyman Pearson test to niveau α = 5% and the risk εn of the corresponding
minimax test; roughly speaking we cannot do better than overlooking one of 10
contaminations at niveau 5% ideal observations to be falsely marked as outliers,
and, equally weighting the two error types we cannot do better than with a false
classification rate of 7% for each error type.

7.5.4 Gaussian location and scale

To give one more example, consider the one-dimensional location-scale model at
central distribution N (0, 1) . For this model we have not yet established a s-o
as.. theory; for f-o asymptotics, however, we may use R-programs from the bundle
RobASt, confer Kohl (2005, Appendix D), and get r∞ = 0.579 ,

max
Qn∈Qn(r∞)

asMSE(ηθ;0, Qn) = 3.123 (7.31)

while I−1
θ Λθ = (x, 1

2 (x2 − 1))τ . This gives x0 = 1.844 — and hence ε∞ = 5.737%
and 1−β∞(5%) = 6.557%. Condition (7.23) is proved to hold in subsection 8.11.
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Table 11: Minimax contamination at γ = 0

n 5 10 30 50 100 200 300 ∞
rγ(n) 0.390 0.449 0.514 0.536 0.559 0.576 0.584 0.621
c1(rγ , n) 0.776 0.749 0.729 0.725 0.722 0.720 0.719 0.718
x1(n) 2.931 2.470 2.101 2.004 1.914 1.853 1.826 1.714
1− βn(0.05) 0.364 0.272 0.215 0.183 0.162 0.133 0.132 0.101
εn 0.277 0.178 0.129 0.115 0.097 0.089 0.086 0.072

8 Proofs

8.1 Proof of Proposition 2.1

The assertion (2.2) for uniform normality is Rieder (1994, Theorem 6.2.4). Conver-
gence failure (2.1) is the usual breakdown point argument: W.l.o.g. take θ = 0
.Let pn := Pr(Ui > n/2) ; take xn so that either ψ(xn −

√
Kn/pn ) ↑ b or

ψ(xn +
√
Kn/pn ) ↓ −b . We consider only the first case, here; for the second

case, one has to consider Qn(Sn ≤ −t) . By the relations of Huber (1981, pp. 45),
compare (1.14),

Qn(Sn ≥ t) ≥ Qn(
∑
i ψ(Xi − t) > 0), (8.1)

Qn(Sn > t) ≤ Qn(
∑
i ψ(Xi − t) ≥ 0) (8.2)

Thus for any t ≤
√
Kn/pn ,

Qn(Sn ≥ t) ≥ Qn(
∑
i ψ(Xi − t) > 0) ≥

≥
∑
k>n/2

Pr(
∑
i ψ(Xi − t) > 0,

∑
Ui = k) =

=
∑
k>n/2

Pr
( ∑

Ui = k,
∑
Ui=0

ψ(Xi − t) > −kψ(xn − t) = −kb+ o(n0)
)
(8.3)

But, as sup |ψ| ≤ b for all t ∈ R and all k > n/2 ,

inf
y1,...,yn−k∈Rn−k

n−k∑
i=1

ψ(yi − t) ≥ −(n− k)b > −kb (8.4)

so that for n sufficiently large and for t ≤
√
Kn/pn

Qn(Sn ≥ t) ≥
∑
k>n/2

Pr(
∑
Ui = k) = Pr(Ui > n/2) = pn (8.5)

Now take tn := (Kn/pn)1/2 to get

EQn
[S2
n] ≥ t2nQn(Sn ≥ tn) ≥ Kn (8.6)

Here we use the fact, that although arbitrarily small for large n , pn > 0 . ////
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8.2 Proof to Lemma 3.2

Let Gt be the law of ψt(X id) . By assumption, the Lebesgue decomposition yields
dG0 = ag dλ + (1 − a) dG̃ for a ∈ (0, 1] , g some probability density and G̃ ⊥ λ .
The support of g contains an open interval (c1, c2) and G0(c2) > G0(c1) . On
(c1, c2) , ψ is strictly isotone and continuous, so that with di = ψ−1(ci)

P (ψt(X id) ∈ (c1, c2)) = P (d1 + t < X id < t+ d2) =
∫ d2+t

d1+t

dF (8.7)

But ∫ d2+t

d1+t

dF = G0(c2)−G0(c1) + o(t0) (8.8)

so that for t small enough, the absolute continuous part of Gt is uniformly bounded
away from 0 and hence by the Lebesgue Lemma our condition (3.9) holds. ////

8.3 Proof to Proposition 3.4 and Remark 3.5

To get E[η̂cΛf ] = 1 , the Lagrange multiplier Ac must be determined by

A−1
c = 2Φ(c)− 1

It holds that b = Acc . For c→∞ we obtain the classically optimal IC, and c→ 0 , using
l’Hospital yields the IC of the sample median. As to L(t) , we obtain

Lc(t) = A[c− (c+ t)Φ(t+ c) + (t− c)Φ(t− c) + ϕ(t− c)− ϕ(t+ c)],

L∞(t) = −t, L0(t) =
p

π
2

(1− 2Φ(t))

all arbitrarily often differentiable functions, so (3.5) holds with li as stated in the propo-
sition. For V (t) introduce

S(t) := E[ψ(x− t)2], W (t) := V (t)2

Then, suppressing the argument t ,

W = S − L2, W ′ = S′ − 2LL′, W ′′ = S′′ − 2L′2 − 2LL′′

and with W0 = W (0) , W̃1(0) = W ′(0)/W0 , W̃2(0) = W ′′(0)/W0 we get

W0 = S(0), W̃1 = S′(0)/S(0), W̃2 = (S′′(0)− 2)/S(0)

and hence

V (t) =
√
W0(1 + W̃1 t

2
+

(2W̃2−W̃2
1 ) t2

8
) + O(t2+δ)

so that

v0 =
p
S(0), ṽ1 =

S′(0)

2S(0)
, ṽ2 =

2S′′(0)− 4− S′(0)2/S(0)

4S(0)

In our case we have for 0 < c <∞

S(t) = A2
c

h
c2
�
1− Φ(t+ c) + Φ(t− c)

�
+ (1 + t2)

�
Φ(t+ c)− Φ(t− c)

�
+

+(t− c)ϕ(t+ c)− (t+ c)ϕ(t− c)
i
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and
S(t) = 1 + t2 for c = ∞, S(t) =

π

2
= b2 for c = 0

so (3.6) holds with
0 < c <∞ c = 0 c = ∞

S(0) 2b2(1− Φ(c)) +Ac(1− 2bϕ(c)) 1 π
2

S′(0) 0 0 0
S′′(0) 2A2

c(2Φ(c)− 1− 2cϕ(c)) 2 0

and the assertions as to v0 , ṽ1 , ṽ2 follow. As to (Vb), for |t| → ∞ , we get with Mill’s
ratio for any δ > 0

��� b− |L(t)|
��� = Ac

��� (c+ t)Φ̄(t+ c)− (t− c)Φ̄(t− c) + ϕ(t− c)− ϕ(t+ c)
��� =

= o(exp(− t2

2 + δ
))

Again with Mill’s ratio,

|S(t)− b2| ≤ A2
c

h
2(t2 + 1)Φ̄(|t| − c) + 2(|t|+ c)ϕ(|t| − c)

i
= o(exp(− t2

2 + δ
))

and hence

V 2(t) = S(t)− L(t)2 = o(exp(− t2

2 + δ
))

For c = 0 we get ��� b− |L(t)|
��� =

√
2π Φ̄(t) = o(exp(−t2/2))

V 2(t) = b2 − (b+ o(exp(−t2/2)))2 = o(exp(−t2/2))

For ρ(t) and κ(t) , we introduce

M(t) := E[ψ(X − t)3], N(t) := E[ψ(X − t)4]

Then, again suppressing the argument t

ρ = V −3[M − 3LS + 2L3], κ = V −4[N − 4ML+ 6SL2 − 3L4]− 3

and hence
ρ0 = v−3

0 M(0), κ0 = V −4N(0)− 3

For ρ1 we note

ρ′ = V −3
�
− 3[M − 3LS + 2L3]V ′/V + (M ′ − 3L′S − 3LS′ + 3L′L2)

�

so that
ρ1 = v−3

0 (−3M(0)ṽ1 +M ′(0) + 3S(0))

In our case, for c = ∞ ,

M(t) = −3t− t3, M ′(t) = −3− 3t2, N(t) = t4 + 6t2 + 3

and for c = 0

M(t) = (

r
π

2
)3(1− 2Φ(t)), M ′(t) = −2 (

r
π

2
)3ϕ(t), N(t) =

π2

4
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for 0 < c <∞

M(t) = A3
c

h
c3 − Φ(t+ c)(c3 + t3 + 3t)− Φ(t− c)(c3 − t3 − 3t) +

+(t2 + tc+ 2 + c2)ϕ(t− c)− (t2 − tc+ c2 + 2)ϕ(t+ c)
i

M ′(t) = A3
c

h
3
�
Φ(t− c)− Φ(t+ c)

�
(t2 + 1)−

−3(t− c)ϕ(t+ c) + 3(t+ c)ϕ(t− c)
i

N(t) = A4
c

h
c4 +

�
Φ(t+ c)− Φ(t− c)

�
(t4 + 6t2 + 3− c4) +

+(t3 − t2c+ tc2 − c3 + 5t− 3c)ϕ(t+ c)−

−(t3 + t2c+ tc2 + c3 + 5t+ 3c)ϕ(t− c)
i

This gives the assertion as to ρ0 , ρ1 and κ0 , and (3.7) and (3.8) also hold.

For c > 0 , Pr(|ηc| < b) > 0 and ηc is continuous. But, on {|ηc| < b} , L(ηc) is a.c. and

hence by Lemma 3.2 (C) holds. ////

8.4 Proof of Theorem 3.6

We plug in (Xi) ∼ Qn for some Qn ∈ Q̃n(r) into the defining relations for M-
estimators of (1.13).

8.4.1 Outline of the proof

We begin with conditioning w.r.t. the number K =
∑
i Ui = k of contaminated

observations; next for fixed t ∈ R , we consider T̃n,k,t(t) =
∑
i:Ui=1 ψ(Xi − t) and

condition the probability w.r.t. its realization t̃n,k,t . In the sequel we suppress the
indices of t̃n,k,t . Denote this event by

Dk,t̃ := {K = k, T̃n,k(
√
t ) = t̃ } (8.9)

Thus

nMSE(Sn, Qn |Dk,t̃ ) =
∫ ∞

0

Pr(S2
n ≥ t |Dk,t̃ ) dt =

=
∫ ∞

0

Pr(Sn ≥
√
t |Dk,t̃ ) dt+

∫ ∞

0

Pr(Sn ≤ −
√
t |Dk,t̃ ) dt (8.10)

For the sequel, we define

n̄ := n− k, sn,k := sn,k(t) =
−t̃− n̄L(t)√

n̄ V (t)
(8.11)

To derive the result, we then partition the integrand according to the following
tableau where C ′ > 0 is some constant and δ is the exponent from assump-
tion (Vb):
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K < k1r
√
n k1r

√
n ≤ K < ε0n K ≥ ε0n

|t| ≤ k2b
2log(n)/n (I)

k2b
2log(n)/n < |t| ≤ Cn1+3/δ (III)

(II)
excluded

|t| > Cn1+3/δ (IV)

At this point we also summarize the constants that will be used throughout this
section.

constant k1 k2

value > 1 > 2 ∨ ( 3
2 + 3

2δ )

For all cases except for (I), we will show that they contribute only terms of order
o(n−1) to nMSE(Sn) and hence can be neglected. Applying Taylor expansions at
large, we derive an expression in which it becomes clear, that independently from t
and eventually in n , the maximal MSE is attained for t̃n,k either kb or identically
−kb for all t in (I) — or equivalently all contaminated observations are either
smaller than y̌n− k2b

2 log(n)/n or larger than ŷn+ k2b
2 log(n)/n . Integrating out

first t and then k we obtain the result (3.20) stated in Theorem 3.6.

8.4.2 Conditioning w.r.t. the number of contaminated observations

As announced, for the moment we condition w.r.t. the number K =
∑
i Ui = k

of contaminated observations in the sample. Denote the ideally distributed part as
Tn,k(t) :=

∑
i:Ui=0 ψt(Xi) . Then we get

Pr{Sn ≤ t
∣∣∣K = k }+R(0)

n (k) = Pr(Tn,k(t) < −T̃n,k(t)) =

= Pr(
Tn,k(t)− n̄L(t)√

n̄V (t)
< − T̃n,k(t)− n̄L(t)√

n̄V (t)
) (8.12)

where R
(0)
n (k) 6= 0 can only happen for mass points of L(Tn,k(t) + T̃n,k(t)) .

8.4.3 Conditioning w.r.t. the actual contamination

Next, we condition the probability w.r.t. the actual value of the contamination
T̃n,k = t̃ . This gives

Pr{Sn ≤ t |Dk,t̃}+ R̃(0)
n (k, t̃) = Pr

(Tn,k(t)− n̄L(t)√
n̄ V (t)

< sn,k(t)
)

(8.13)

where again R̃
(0)
n (k, t̃) 6= 0 can only happen for mass points of L(Tn,k(t)) .

8.4.4 Negligibility of case (IV)

Without loss, assume that b = b̂ . By monotonicity and boundedness in assumption
(bmi), to given 0 < η < −b̌ there is a t0 > 0 such that for t > t0 ,

b̌ < L(t) = E[ψ(X id − t)] ≤ b̌+ η
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Let t1 > t0 , δ > 0 and C ′ > 0 so that for t > t1 , by (Vb), |V (t)| ≤ C ′t−1−δ .
Then we apply the Chebyshev inequality to obtain for t > t21

Pr{Sn >
√
t
∣∣∣Dk,t̃}

(8.2)

≤ Pr
(
Tn,k(

√
t )− n̄L(

√
t ) ≥ −t̃− n̄L(

√
t )

)
≤

Cheb.

≤ n̄V 2(
√
t )

(t̃+ n̄L(
√
t ))2

(Vb)

≤ n̄C ′t−(1+δ)

(t̃+ n̄L(
√
t ))2

≤ nC ′t−(1+δ)

(t̃+ n̄b̌+ η)2
≤

t̃≤kb̂

≤ nC ′t−(1+δ)

[kb̂+ n̄b̌+ η]2
=

nC ′t−(1+δ)

[k(b̂− b̌) + nb̌+ η]2
k≤ε0n

≤ nC ′t−(1+δ)

(b̌− η)2
(8.14)

and correspondingly (with b = −b̌) for Pr{Sn ≤ −
√
t
∣∣Dk,t̃} ; but

C ′n2

(b− η)2

∫ ∞

Cn1+3/δ

t−(1+δ) dt =
C ′C−δn−1−δ

δ(b̌− η)2
= o(n−1) (8.15)

8.4.5 Negligibility of case (II)

For the proof of Theorem 3.6, a weaker version of the following lemma, Ruckde-
schel (2005a, Lemma 5.3), would suffice to settle case (II), but for the proof of
Theorem 6.5, we have to allow for k1 varying in n .

Lemma 8.1 Let k1(n) = 1 + dn and assume that for some δ ∈ (0, 1/4) ,

dnn
1/4−δ →∞, dnn

−1/4+δ → 0 for n→∞ (8.16)

Let
Kn := k1(n) log k1(n) + 1− k1(n) (8.17)

Then if lim infn dn > 0 there is some c > 0 such that

Pr(Bin(n, r/
√
n ) > k1(n)r

√
n ) = o(e−cr

√
n) (8.18)

and, if dn = o(n0) , for any 0 < δ0 ≤ 2δ , it holds that

Pr(Bin(n, r/
√
n ) > k1(n)r

√
n ) = o(e−rn

δ0 ) (8.19)

Remark 8.2 Even if dn is increasing at a faster rate than n1/4 , assertion (8.18)
remains true, as long as lim infn dn > 0 —but this is not needed here.

Proof : We first note that Kn > 0 , as log(x) > 0 for x > 1 and

Kn =
∫ k1(n)

1

log(x) dx (8.20)

Applying Hoeffding’s Lemma 9.2 to the case of n independent Bin(1, p) variables,
we obtain for Bn ∼ Bin(n, pn) , pn = r/

√
n and ε = (k1(n) − 1)r/

√
n (which is

smaller than 1− pn eventually)

Pr(Bn > k1(n)r
√
n ) ≤ exp

(
− k1(n)r

√
n log(k1(n)) + (n− k1(n)r

√
n )×

×
(
log(1− r√

n
)− log(1− k1(n)

r√
n

)
))
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But for x ∈ (0, 1) , − x
1−x ≤ log(1− x) ≤ −x . Thus

log(1− r√
n

)− log(1− k1(n)
r√
n

) ≤ k1(n)r√
n (1− k1(n)r/

√
n ))

− r√
n

Pr(Bn > k1(n)r
√
n ) ≤ exp

(
− r

√
n

(
k1(n) log(k1(n))− k1(n) + 1

)
+ rk1(n)2

)
=

= exp
(
−Kn r

√
n+ rRn

)
for Rn = O(1)+O(d2

n) , where due to the second assumption in (8.16), d2
n = o(

√
n ) .

If lim infn dn > 0 , by (8.20) lim infnKn > 0 , and for any 0 < c < lim infnKn ,
(8.18) follows. If dn = o(n0) , we note that

Kn = (1 + dn) log(1 + dn)− dn = d2
n/2 + o(d2

n) (8.21)

which for any δ′ > 0 entails

Pr(Bin(n, r/
√
n ) > k1(n)r

√
n ) = o

(
exp

(
− rd2

n

√
n

2 + δ′
))

Now for dn = o(n0) , by the first assumption in (8.16), for 0 < δ0 < 2δ eventually
in n , (8.19) holds as

nδ0 − d2
n

√
n

2 + δ′
< n2δ(1− n1/2−2δd2

n

2 + δ′
) → −∞

////

As in (II), |t| < Cn1+3/δ , the integrand of nMSE(Sn, Qn | Dk,t̃ ) is bounded by
some polynomial in n , and hence by Lemma 8.1 the contribution of (II) is indeed
o(n−1) .

Another consequence of the exponential decay of (8.18)/(8.19) is that we may
neglect values of K > k1(n)r

√
n when integrating along K .

Corollary 8.3 Let K ∼ Bin(n, r/
√
n ) . Then, in the setup of Lemma 8.1, for any

j ∈ N ,
E[Kj I{X≥k1(n)r

√
n}] = o(e−rn

d

) (8.22)

for any 0 < d <
√
n if lim infn dn > 0 and any 0 < d ≤ δ0 if limn dn = 0 .

Proof : E[Kj I{K≥k1(n)r
√
n}] ≤ nj Pr(X > k1(n)r

√
n)

(8.18)/(8.19)
= o(e−rn

d

) ////

8.4.6 Negligibility of case (III)

We apply Hoeffding’s bound Lemma 9.1:

Pr{Sn >
√
t
∣∣∣Dk,t̃} ≤ Pr(Tn,k(

√
t ) ≥ −t̃

∣∣ Dk,t̃ ) ≤ exp(−2n∆2/b2) (8.23)
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for ∆ := −L(
√
t )− t̃

n . As ψ is isotone, L is antitone, hence in case (III),

L(
√
t ) ≤ L(b

√
k2 log(n)/n ) = −b

√
k2 log(n)/n+ o(

√
log(n)/n ) (8.24)

Thus

∆ ≥ −L(
√
t )− kb

n

(8.24)
>

b√
n

[
√
k2 log(n) + o(

√
log(n) )] (8.25)

and

exp(−2
n∆2

b2
) < n−2k2(1 + o(n0)) (8.26)

This latter is o(n−3−3/δ) and thus integrating nMSE out along (III) we get some-
thing of order o(n−1) .

8.4.7 Asymptotic normality

On (I), by Lemma 1.1

Pr
{
Sn ≥

√
t
∣∣∣Dk,t̃

}
= Pr

(
Tn,k(

√
t )− n̄L(

√
t )√

n̄ V (
√
t )

> sn,k(t)
)

+ O(e−γn) (8.27)

for some γ > 0 , uniformly in t and k . For i = 1, . . . , n̄ , let ji ∈ {1, . . . , n} be
the indices such that Uji = 0. We may apply Theorem 9.3(b) to (8.10)/(8.13),
identifying

ξi,t :=
1

V (t)
[ψt(Xji)− L(t)], i = 1, . . . , n̄ (8.28)

and setting Θ := Θn = {|t| ≤ k2b
2 log(n)/n} . This application is possible, as

|ψ| < b , so supt∈Θn
E |ξ̃i,t|5 < ∞ . By condtion (C) of our assumptions, Cramér

condition (9.11) of the theorem holds if n is large enough.
We note that if in Theorem 3.6, we limit ourselves to term A1 and hence only
assume (C’), we may apply Theorem 9.3(a).
With Gn,t(s) from (9.7) we define

G̃n,t(u) := Gn,t(sn,k(u)), G̃n(t) := G̃n,t(t) (8.29)

With these definitions we have for |t| ≤ k2b
2 log(n)/n and K < k1r

√
n uniformly

in t and k :

O(exp(−γn)) + Pr
{
Sn ≥

√
t
∣∣∣Dk,t̃

}
=

= Pr
( n̄∑
i=1

ξi,
√
t > sn,k(

√
t )

)
= 1− G̃n(

√
t ) + O(n−3/2) (8.30)

Hence, using negligibility of (II), (III) and (IV), and setting

n\ =
√
n̄/n, ln = n\

√
k2 log(n), l(0)n = k2b

2 log(n)/n (8.31)
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we obtain

nMSE(Sn, Qn
∣∣Dk,t̃ ) = (n\)−2 n̄

∫ l(0)n

0

1− G̃n(
√
t ) + G̃n(−

√
t ) dt+ o(n−1) =

= 2(n\)−2

∫ bln

0

u
(
1− G̃n(

u√
n̄

) + G̃n(−
u√
n̄

)
)
du+ o(n−1) (8.32)

As G̃n is arbitrarily smooth, integration by parts is available and gives

nMSE(Sn, Qn
∣∣Dk,t̃ ) = Rn + (n\)−2

∫ bln

−bln

u2

√
n̄
G′n(

u√
n̄

) du+ o(n−1) (8.33)

with

Rn := k2 log(n) b2
[
1− G̃n(b

√
k2 log(n)

n )− G̃n(−b
√

k2 log(n)
n )

]
(8.34)

A closer look at sn,k(±b
√

k2 log(n)
n ) reveals

sn,k(±b
√

k2 log(n)
n ) (3.6)=

O(
√
n )± b

√
k2n̄2 log(n)

n + O( n̄ log(n)
n )

√
n̄ (v0 + o(n0))

=

=
±b

√
k2 log(n)
v0

(1 + o(n0)) (8.35)

We also note that, again by (bmi) v2
0 = E[ψ2] ≤ b2 , hence b/v0 > 1 . In particular,

eventually in n ,
|s̃n,k(±b

√
k2 log(n) )| >

√
2 log(n) (8.36)

But, as |ψ| ≤ b by (bmi), |κ| ≤ b4 and |ρ| ≤ b3 , and thus by Mill’s ratio, there is
some 0 < K <∞ , independent of t , n , such that for any s > 0

max
(
1−Gn,t(s), Gn,t(−s)

)
≤ K|s|5 exp(−s2/2) (8.37)

Thus for n sufficiently large

1− G̃n(b
√

k2 log(n)
n ) = exp(−k2b

2 log(n)
2v2

0

+ o(n0))) = O(
log(n)5/2

n1+δ
) (8.38)

for some δ > 0 . The same goes for G̃n(−2b
√

log(n)
n ) , and therefore,

Rn = O(log(n)7/2/n1+δ) = o(n−1) (8.39)

and

nMSE(Sn, Qn
∣∣Dk,t̃ ) = (n\)−2

∫ bln

−bln

u2

√
n̄
G′n(

u√
n̄

) du+ o(n−1) (8.40)
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To make more transparent, which terms are bounded to which degree, we introduce
the following notation, which will also help MAPLE to ignore irrelevant terms

t\ := t̃√
n̄
, s̃n,k(x) = sn,k( x√

n̄
), (8.41)

Then on (I), u = O(
√

log(n) ) , t\ = O(n0) . In particular this will not affect the
remainder terms of the Taylor expansions of assumption (D).
In the sequel, we drop the indices of sn,k and s̃n,k , where they are clear from the
context. Next, we spell out G̃′n(u) in (8.40) more explicitly. Denote

Gn(s, t) := Gn,t(s), G
(1)
n,t(s) := [ ∂∂sGn](s, t), G

(2)
n,t(s) := [ ∂∂tGn](s, t) (8.42)

Then, as s̃′n,k(x) = s′n,k(
x√
n̄

)/
√
n̄,

G̃′n(
u√
n

) = [G(1)
n,x(s(x))s

′(x) +G(2)
n,x(s(x))]

∣∣∣
x= u√

n̄

=

= G
(1)

n,u/
√
n̄
(s̃(u)) s̃′(u)

√
n̄+G

(2)

n,u/
√
n̄
(s̃(u)) =: g̃n(u)

√
n̄ (8.43)

and therefore

nMSE(Sn, Qn
∣∣Dk,t̃ ) = (n\)−2

∫ bln

−bln
u2g̃n(u) du+ o(n−1) (8.44)

8.4.8 Expanding g̃n(u)

Considering g̃n(u) more closely, we expand the terms according to assumption (D)
—with the help of our MAPLE procedures asS, asS1, asg

s̃(u) =
−t\ −

√
n̄L( u√

n̄
)

V ( u√
n̄
)

= 1
v0

[
(u− t\)− u√

n̄

(
l2u
2 + ṽ1(u− t\)

)
+

+ 1
n̄

(
(l2 ṽ12 −

l3
6 )u3 + (u− t\)u2(ṽ2

1 − ṽ2/2)
)]

+ O(n−(1+δ)) (8.45)

s̃′(u) = −
L′( u√

n̄
)

V ( u√
n̄
)

+
(t\ + L( u√

n̄
))V ′( u√

n̄
)

V 2( u√
n̄
)

= 1
v0

[
1− l2

u√
n̄
− 2ṽ1 u√

n̄
+ t\√

n̄
ṽ1 +

+ 1
n̄

(
(3ṽ2

1 − l3
2 −

3
2 ṽ2 + 3

2 ṽ1l2)u
2 + ut\(ṽ2 − 2ṽ2

1)
)]

+ O(n−(1+δ))(8.46)

as well as

G
(1)

n,u/
√
n̄
(s̃) = ϕ(s̃)

[
1 + 1

6
√
n̄
(ρ0 + ρ1

u√
n̄
) (s̃3 − 3s̃) + 1

24nκ0(s̃4 − 6s̃2 + 3) +

+ 1
72nρ

2
0(s̃

6 − 15s̃4 + 45s̃2 − 15)
]

+ O(n−(1+δ)) (8.47)

and respectively,

G
(2)

n,u/
√
n̄
(s̃) = ϕ(s̃) ρ1

6
√
n̄
(1− s̃2) + O(n−(1/2+δ)) (8.48)
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This gives

g̃n(u) = v0ϕ(s̃)[1 + 1√
n̄
P1(u, t\) + 1

n̄P2(u, t\)] + O(n−(1+δ)) (8.49)

for
P1(u, t\) = −l2u− 2ṽ1u+ t\ṽ1 + ρ0

6v30
(u− t\)3 − ρ0

2v0
(u− t\) (8.50)

and P2(u, t\) a corresponding polynomial in u , t\ , ṽ1 , ṽ2 , l2 , l3 , ρ0 , ρ1 , and
κ0 , the exact expression of which may be taken from our MAPLE procedure asg.
To be able to calculate the integrals, we expand ϕ(s̃) in a Taylor expansion about

s1 = (u− t\)/v0 (8.51)

as

ϕ(s̃) = ϕ(s1)[1− s1(s̃− s1) + (s21 − 1)(s̃− s1)2/2] + O(n−(1+δ)) (8.52)

and hence
g̃n(u) = v0ϕ(s1)gn(s1) + O(n−(1+δ)) (8.53)

with
gn(s1) := 1 + 1√

n̄
P̃1(s1, t\) + 1

n̄ P̃2(s1, t\) (8.54)

for

P̃1(s1, t\) = ρ0
s31 − 3s1

6
+ ( l22 + ṽ1)s31 − (l2 + 2ṽ1)s1v0 +

+(l2 + ṽ1)[s21 − 1]t\ +
(t\)2l2s1

2v0
(8.55)

and P̃2(s1, t\) a corresponding polynomial again to be looked up from our MAPLE
procedure asgns. This gives

nMSE(Sn, Qn
∣∣Dk,t̃ ) = (n\)−2

∫ bln/v0

−bln/v0
hn(s)ϕ(s)λ(ds) + o(n−1) (8.56)

for
hn(s) = u1(s)2gn(s), u1(s) = sv0 + t\ (8.57)

8.4.9 Selection of the least favorable contamination

Function hn(s) from (8.57) is a polynomial in s , hence on (I), where |s| =
O(log(n)) , we may ignore terms of (pointwise-in-s ) order O(n−(1+δ)) . This gives
a complicated expression of form

hn(s) = (sv0 + t\)2 +
1√
n
Q1 +

1
n
Q2 (8.58)

where v0Q1 is a polynomial in s , t\ , v0 , l2 , ṽ1 , and ρ0 with deg(Q1, s) = 5 and
deg(Q1, t) = 4 , and v2

0Q2 is a polynomial in s , t\ , v0 , l2 , ṽ1 , ρ0 , l3 , ṽ2 , ρ̃1 , and
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κ0 with deg(Q2, s) = 8 and deg(Q1, t) = 6 ; the exact expressions are available on
the web-page and may be generated by our MAPLE-procedure ashn. Denoting the
second partial derivative w.r.t. t\ by an index t, t we consider

hn,t,t(s) = 2 +
1√
n
Q1,t,t +

1
n
Q2,t,t (8.59)

where deg(Q1,t,t, s) = 3 and deg(Q2,t,t, s) = 6 , and under (7.1), i.e., if l2 =
ṽ1 = ρ0 = 0, Q1,t,t = 0 and deg(Q2,t,t, s) = 4 . That is, on (I), uniformly
in s , hn,t,t(s) = 2 + O(log(n)3/

√
n) , and under (7.1), the remainder is even

O(log(n)4/n) . Hence eventually in n , uniformly in s , hn is strictly convex in
t\ , hence takes its maximum on the boundary, that is for |t\| maximal.

Going back to the definition of t\ , we note that for fixed n and k ,

t\ = t̃/
√
n̄ =

∑
i:Ui=1

ψ(Xi − t)/
√
n̄ (8.60)

Obviously, t̃ is bounded in absolute value by kb . This value may be attained if (up
to O(n−1) ) all terms ψ(Xi− t) are either b or −b for all t in (I). This amounts to
concentrating essentially all the contamination either right of ŷn + b

√
k2 log(n)/n

or left of y̌n − b
√
k2 log(n)/n ; the decision which of the two alternatives is least

favorable is deferred to subsubsection 8.4.13.
As we may allow for deviations from this “outlyingness” as long as we do no

affect the expansion of the MSE up to O(n−1) , we may weaken the concentration
property to (3.23) resp. (3.24): On (I), |t\| is bounded, so smallness of the proba-
bilities in (3.23) resp. (3.24) entails that also the expectations of (t\)j , j = 1, . . . , 6
arising in hn(s) are o(n−1) .

Denote a distribution in Q̃n which is contaminated according to (3.23) resp.
(3.24) by Q0

n . By the previous considerations, under Q0
n , we may consider |t̃| as

being exactly kb , and we will consider the cases t̃ = ±kb simultaneously. For the
substitution t\ = ±kb/

√
n̄ , the following abbreviations are convenient

k̃ := k/
√
n, k\ := k/

√
n̄ = k̃/n\ (8.61)

Taking up the dependency on t\ in hn(s) as hn(s) = hn(s, t\) , in the MAPLE
procedure ash, we introduce

h̃n(s) = h̃n(s, k\) = hn(s, k\b) (8.62)

8.4.10 Integration w.r.t. s

In this step we integrate out s in h̃n(s) . As bln/v0 >
√

2 log(n) , by Lemma 9.5,
we may drop the integration limits and get

nMSE(Sn, Q0
n

∣∣K = k ) = (n\)−2

∫ ∞

−∞
h̃n(s)ϕ(s)λ(ds) + o(n−1) (8.63)

So for integration, we use that for X ∼ N (0, 1) , E[Xj ] = 0 , for j = 1, 3, 5, 7 , and

E[X2] = 1, E[X4] = 3, E[X6] = 15, E[X8] = 115 (8.64)
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and get (by our MAPLE procedures intesout and asMSEK)

nMSE(Sn, Q0
n

∣∣K = k ) =

= o(n−1) + (n\)−2
[
(k\)2b2 + v2

0 + 1√
n̄
[±(3l2 + 4ṽ1)v2

0k
\b± l2(k\)3b3] +

+ 1
n̄

[
( 5
4 l

2
2 + 1

3 l3)(k
\)4b4 + (3ṽ2 + 2l3 + 3ṽ2

1 + 15
2 l2 + 12ṽ1l2)v2

0(k\)2b2 +

+(ρ0(2ṽ1 + l2) + 2
3ρ1)v3

0) + (12ṽ1l2 + l3 + 3ṽ2 + 15
4 l

2
2 + 9ṽ2

1)v4
0

]]
(8.65)

As mentioned in Remark 3.7(c), the terms of κ0 cancel out for A2 as do the terms
of ρ0 for A1 .

8.4.11 Collection of terms

As we want to calculate the expectation with respect to K , we have to expand
terms in a way that k is only appearing in integer powers and in the nominator.
For this purpose we employ our MAPLE procedures asNn, asKn, and get

(n\)−2 = 1 + k̃√
n

+ k̃2

n + o(n−1) (8.66)

(n\)−3 = 1 + 3k̃
2
√
n

+ o(n−1/2), (n\)−4 = 1 + o(n0) (8.67)

k\ = k̃ + k̃2

2
√
n

+ o(n−1/2), (k\)2 = k̃2 + k̃3
√
n

+ k̃4

n + o(n−1) (8.68)

(k\)3 = k̃3 + 3k̃4
√
n

+ o(n−1/2), (k\)4 = k̃4 + o(n0) (8.69)

Substituting k\ and n\ by means of these expressions, we obtain (MAPLE procedure
asMSEk)

nMSE(Sn, Q0
n

∣∣K = k ) =

= o(n−1) + k̃2b2 + v0
2 +

[± (4 ṽ1 + 3 l2 ) b+ 1]k̃v02 + (2± l2b) k̃3b2√
n

+

+

(
3 b2 ± 3 l2 b3 +

(
5
4 l2

2 + 1
3 l3

)
b4

)
k̃4

n
+

+

((
3 ṽ2

1 + 3 ṽ2 + 12 l2ṽ1 + 15
2 l2

2 + 2 l3
)
b2 + 1± (6 l2 + 8 ṽ1 ) b

)
k̃2v2

0

n
+

+

(
3ṽ2 + 9ṽ2

1 + 15
4 l2

2 + l3 + 12 l2 ṽ1
)
v0

4 +
(
(l2 + 2ṽ1) ρ0 + 2

3 ρ1

)
v0

3

n
(8.70)

8.4.12 Integration w.r.t. k̃

As by Corollary 8.3 the event {K > (1 + δ)r
√
n} only attributes o(n−1) to the

expectation of E[Kj ] , j = 0, . . . , 4 , we can now simply use Lemma 8.1 to determine
the MSE. This gives the result by our MAPLE procedures intekout, asMSE:

n EQ0
n
[S2
n ] = r2b2 + v0

2 + r√
n
A1 + 1

n A2 + o(n−1) (8.71)
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with

A1 = v0
2
(
± (4 ṽ1 + 3 l2 )b+ 1

)
+ b2 + [2 b2 ± l2 b

3 ] r2 (8.72)

A2 = v0
3
(
(l2 + 2 ṽ1 )ρ0 + 2

3 ρ1

)
+ v0

4 (3 ṽ2 + 15
4 l2

2 + l3 + 9 ṽ2
1 + 12 ṽ1 l2 ) +

+[ v02
(
(3 ṽ2 + 3 ṽ2

1 + 15
2 l2

2 + 2 l3 + 12 ṽ1 l2 )b2 + 1± (8 ṽ1 + 6 l2 ) b
)

+

±3 l2 b3 + 5 b2 ] r2 +
(
( 5
4 l2

2 + 1
3 l3 )b4 ± 3 l2 b3 + 3 b2

)
r4 (8.73)

8.4.13 Decision upon the alternative (3.23) or (3.24)

Denote Q−n a contaminated member in Q̃n(r) according to (3.23) and correspond-
ingly Q+

n according to (3.24). With respect to terms of (8.71)–(8.73), obviously,
if supψ < − inf ψ , the maximal MSE is achieved by Q−n , respectively by Q+

n if
supψ > − inf ψ . In case supψ = − inf ψ , the terms in A1 are decisive:

n(EQ+
n
[S2
n ]− EQ−n [S2

n ]) = rb√
n

{
l2

[
(r2b2 + 3v2

0)(1 + 2 r√
n
) + 3b2r(r2+1)√

n

]
+

+4v2
0(1 + r√

n
)v1

}
+ o(n−1) (8.74)

Hence, Q−n [Q+
n ] is least favorable up to o(n−1) if

ṽ1 > [<]− l2
4

(
b2

v20
(r2 + 3)(1 + r√

n
− 2r2

n ) + 3(1− b2

v20
)
)

(8.75)

If there is “=” in (8.75), no decision can be taken up to order o(n−1) .

8.4.14 Special cases

Obviously, under symmetry, or more exactly under (7.1), we have

n EQ0
n
[S2
n ] =

(
r2b2 + v0

2
) (

1 + r√
n

+ r2

n

)
+ r√

n

(
b2(1 + r2)

)
+

+ r2

n

(
b2(5 + 2r2)

)
+

2
3v0

3 ρ1 + v0
4 (3 ṽ2 + l3 )
n

+

+

(
v0

2 (3 ṽ2 + 2 l3 ) b2
)
r2 + 1

3 l3b
4 r4

n
+ o(n−1), (8.76)

and under r = 0, we get

n EFn [S2
n ] = v0

2 +
v0

3
(
(l2 + 2 ṽ1 )ρ0 + 2

3 ρ1

)
n

+

+
v0

4 (3 ṽ2 + l3 + 15
4 l2

2 + 12 ṽ1 l2 + 9 ṽ2
1 )

n
+ o(n−1) (8.77)

respectively, again under (7.1),

n EFn [S2
n ] = v0

2 +
2
3 v0

3ρ1 + v0
4 (3 ṽ2 + l3 )
n

+ o(n−1) (8.78)

////
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8.5 Proofs to Propositions 6.1 and 6.2

For ε1 ∈ (0, 1) , let

N+(t) = N+(t;n, ε1, b̂) := #
{
ψ(xi − t) ≥ b̂(1− ε1), Ui = 0

}
(8.79)

N−(t) = N−(t;n, ε1, b̌) := #
{
ψ(xi − t) ≤ b̌(1− ε1), Ui = 0

}
(8.80)

The idea behind Propositions 6.1 and 6.2 is to use the inclusions{ ∑
ψ(xi − t) ≤ 0

}
⊂

{
N+(t) ≤ n+

}
,

{ ∑
ψ(xi − t) ≥ 0

}
⊂

{
N−(t) ≤ n−

}
(8.81)

for some numbers n− , n+ yet to be specified.
For Proposition 6.1, symbolically in the tableau of page 39, we plug in δ = 0, so
that the second and third line are separated by |t| = Cn . All cases except for case
(IV) remain unchanged. For (IV), we consider the first inclusion of (8.81). In this
case, {

∑
ψ(xi − t) ≤ 0} is distorted most importantly by t̃ = kb̂ . On the other

hand the N ′′ = n−N+ −K remaining observations cannot be smaller than N ′′b̌ ,
so ∑

ψ(xi − t) ≤ 0 =⇒ N+b̂(1− ε1) +Kb̂+N ′′b̌ ≤ 0 (8.82)

that is

N+ ≤
−nb̌−K(b̂− b̌)

b̂(1− ε1)− b̌
(8.83)

and as this has to hold for all K ≤ ε′0n ,

N+ ≤ n
−b̌− ε′0(b̂− b̌)

b̂(1− ε1)− b̌
=: n+ = n+(ε′0) (8.84)

where by (6.2) and as 0 < ε1 < 1 , n+ = nε+ for

0 < ε+ =
−b̌− ε′0(b̂− b̌)

b̂(1− ε1)− b̌
< 1− ε′0 (8.85)

Accordingly, for the second inclusion in (8.81), we obtain

N− ≤ nε− =: n− = n−(ε′0) for ε− :=
b̂− ε′0(b̂− b̌)

b̂− b̌(1− ε1)
(8.86)

where again 0 < ε− < 1− ε′0 . Hence with k̄ = pε′0nq− 1

Pr{Sn >
√
t
∣∣∣Dk,t̃=−kb̌}

(8.2)

≤ Pr
{
Tn,k(

√
t ) ≥ kb̌

}
≤ Pr

{
Tn,k(

√
t ) ≥ k̄b̌

}
≤

≤ Pr
{
N−(

√
t ) ≤ n−

∣∣K = k̄
}

(8.87)

and correspondingly

Pr
{
Sn < −

√
t
∣∣∣Dk,t̃=kb̂

}
≤ Pr

{
N+(−

√
t ) ≤ n+

∣∣K = k̄
}

(8.88)
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But, L(N±|K = k) = Bin(n− k, p±) for

p−(t) = Pr
(
ψ(X id −

√
t ) ≤ b̌(1− ε1)

)
= F (

√
t +B−), (8.89)

p+(t) = Pr
(
ψ(X id +

√
t ) ≥ b̂(1− ε1)

)
= F̄ (−

√
t +B+) (8.90)

where F̄ = 1− F and

B− := inf
{
y

∣∣ψ(y) ≥ (1− ε1)b̌
}
, B+ := sup

{
y

∣∣ψ(y) ≤ (1− ε1)b̂
}

(8.91)

If we abbreviate m = n− k̄ , m± = pn±q , pt = (1− p+(t))∨ p−(t) , in the binomial
probabilities in (8.87)/(8.88),

(
m
j

)
≤ 2n , j = 0, . . .m± , and p−(t), (1− p+(t)) ≤ 1 ,

so that

sup
k

Pr
{
|Sn| >

√
t
∣∣∣Dk,|t̃|=kb̌

}
≤ n2np[m−(m−∨m+)]

t (8.92)

But by (8.85), 1− ε′0 − (ε− ∨ ε+) =: α > 0 , so

m− (m− ∨m′
+) ≥ αn− 1 (8.93)

Now, by (6.4), for B̂ = max{B+,−B−} , if n is so large that Cn > (T − B̂)2 ,

sup
k

∫ ∞

Cn

Pr
{
|Sn| >

√
t

∣∣∣Dk,|t̃|=kb

}
≤ n2n+1

∫ ∞

Cn

t−η(αn−1)/2 dt =

= exp[−α̃n log(n)(1− o(n0))]

for some α̃′ > 0 . So (IV) is indeed negligible. ////

For Proposition 6.2, we only show the first case of (6.5); the second follows analo-
gously. This time K = 0, n is fixed, and we use the inclusions of the complements
in (8.81). Thus

Pr{Sn ≥
√
t}

(8.2)

≥ Pr
{
Tn,0(

√
t ) > 0

}
≥ Pr

{
N+(

√
t) > n+(0)

}
Let p̃+ = F̄ (

√
t+B+) . To δ > 0 there is an some T > 0 such that for t > T and

p̃
n+
+ > 1− δ . Hence for t > T 2 and n′ = m+ + 1

Pr{Sn >
√
t } ≥

(
n

n′

)
(1− p̃+)n

′
p̃n−n

′

+ ≥
(
n

n′

)
(1− δ)F̄ (

√
t +B+)n

′

Now by the first half of (6.5), for d = 1/n′ and some c > 0 , T ′ > T and for all
t > T ′

t1/n
′(

1− F (t)
)
> c ⇐⇒

(
1− F (t)

)n′
> cn

′
t−1 (8.94)

Then for the M-estimator Sn ,

EF [(Sn)2+] ≥
∫ ∞

(T ′)2
Pr

{
Sn >

√
t

}
dt

≥
∫ ∞

(T ′)2

(
n

n′

)
(1− δ)cn

′
(
√
t +B+)−1 dt = ∞ (8.95)

////
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8.6 Proof of Proposition 6.3

For t > v2
0 log(n)/n , we consider the following inclusion{

ψ(x−
√
t ) > b− c0/

√
n
}

=
{
x >

√
t +Bn

}
⊂

{
x > v0

√
log(n)/n+Bn

}
Let

Ak,t :=
{ ∑
i : Ui=1

ψ(Xi −
√
t ) ≤ (k − 1)(b− c0/

√
n )

}
(8.96)

Hence if t > v2
0 log(n)/n , by (6.6), for all k > (1− δ)r

√
n ,

Pr(Ak,t
∣∣∣K = k) ≥ p0 (8.97)

Now we proceed as in section 8.4, and even with restriction (8.97) the argu-
ments of subsection 8.4.9 remain in force, so that we have to maximize t\ . But
t > v2

0 log(n)/n ⇐⇒ s >
√

log n in (8.56). Hence on the event Ak,t for
s ∈ [

√
log n; bln/v0) , we get the bound t\ ≤ (k\ − 1)(b − c0/

√
n)/

√
n̄ , while for

s ∈ (−bln/v0;
√

log n) respectively on cAk,t , we bound t\ by k\b . Integrating out
these two s -domains separately as in subsection 8.4.10, we obtain

n
(
MSE(Sn, Q0

n

∣∣K = k )−MSE(Sn, Q[n
∣∣K = k )

)
≥

≥ p0

∫ bln/v0

√
logn

(
2v0sDn(k̃) + 2k̃bDn(k̃)−Dn(k̃)2

)
ϕ(s) ds+ o(n−1)

for
Dn(k̃) = k̃c0/

√
n+ b/

√
n+ o(1/

√
n) (8.98)

But for 0 < a1 < a2 < ∞ , ϕ(a1)/a2 − ϕ(a2)/a2 ≤
∫ a2

a1
ϕ(s) ds , so that with

a1 =
√

log n , a2 = bln/v0 , and as ϕ(a2) = o(n−1) ,

n
(
MSE(Sn, Q0

n

∣∣K = k )−MSE(Sn, Q[n
∣∣K = k )

)
≥

≥ p0√
2πn

[2v0Dn(k̃)− 2 k̃bDn(k̃)+Dn(k̃)2

bln/v0
] + o(n−1) =

2p0v0√
2πn

Dn(k̃) + o(n−1)

Now the restriction to (1− δ)r
√
n < K < k1r

√
n by Lemma 8.1 may be dropped,

and we obtain

n
(
MSE(Sn, Q0

n

∣∣K = k )−MSE(Sn, Q[n
∣∣K = k )

)
≥ 2p0v0

n
√

2π
(rc0 + b) + o(n−1)

////

8.7 Proof of Theorem 6.5

In the risk, we have to treat stochastic arguments in Φ , ϕ ; this is settled in the
following lemma:
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Lemma 8.4 Let F : R → R be twice differentiable with Hölder-continuous second
derivative and G : R → R be differentiable with Hölder-continuous derivative.
Then there is a sequence k1(n) = 1 + dn with dn → 0 according to (8.16), such
that for all x, β ∈ R and with k̃ = K/

√
n ,

E[F (x+ βk̃)|K ≤ k1(n)r
√
n ] = F (x+ βr) + F ′′(x+ βr)

β2r

2
√
n

+ o(n−1/2) (8.99)

and
E[G(x+ βk̃)|K ≤ k1(n)r

√
n ] = G(x+ βr) + O(n−(1+η)/4) (8.100)

Proof : Using the Taylor approximation of log(1 + x) , we get for n sufficiently
large

d2
n/3 ≤ d2

n/2− d3
n/6 ≤ Kn ≤ d2

n/2 (8.101)

By (8.19) of Lemma 8.1, for some δ0 and eventually in n we have

P (K > k1(n)r
√
n ) ≤ exp(−rnδ0) (8.102)

By the same argument we also get that

P (K < (2− k1(n))r
√
n ) ≤ exp(−rnδ0) (8.103)

Hence,
P (|k̃ − r| > rdn) ≤ 2 exp(−rnδ0) (8.104)

Thus, as F , G are bounded, the contribution of the set {|k̃ − r| > rdn} de-
cays exponentially, while on the complement we have a uniformly bounded Taylor
expansion up to order 2 respectively 1 for the integrands:

F (x+ βk̃) = F (x+ βr) + F ′(x+ βr)β(k̃ − r) + F ′′(x+ βr)β2(k̃ − r)2/2 +
+o((k̃ − r)2+η)

G(x+ βk̃) = G(x+ βr) +G′(x+ βr)β(k̃ − r) + o((k̃ − r)1+η)

Integrating these expansions out in k̃ , we see that the first contribution to the
Taylor series for F is the quadratic term, which is F ′′(x + βr)β

2

2 Var k̃ , and the
remainder is o(n−1/2) . For G , the first contribution to the error term is the
remainder, hence of form const|k̃ − r|1+η . By the Hölder inequality this gives a
bound

const [Var k̃]
1+η
2 = O(n−(1+η)/4) (8.105)

////

For the proof of Theorem 6.5, we again use the tableau of page 39, albeit with k1(n)
according to (8.16). This time, no integration w.r.t. t is needed, so case (IV) may
be cancelled, which is why we may dispense of assumptions (Vb)/(Pd) and pass to
the unrestricted neighborhoods Qn . Cases (II) and (III) may be left unchanged,
so we start with working out case (I):
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We use α1 , α2 from (6.18) and proceed paralleling the proof of Theorem 3.6 and
get from formula (8.30) that

Pr(Sn ≤ − α1√
n
|Dk,t̃ ) = G̃n(− α1√

n
) + O(n−3/2) (8.106)

So we have to spell out sn,k(−α1√
n

) , which gives

sn,k(−α1√
n

) = v−1
0

{
(−t\−α1) + 1√

n
[ k̃2α1−α1ṽ1(t\ +α1)− l2

2 α
2
1]

}
+ o( 1√

n
) (8.107)

and hence —setting s̃ = sn,k(−α1√
n

) and s̃1 = −(α1 + t\)/v0 as in (8.51)

Pr(Sn ≤ − α1√
n
|Dk,t̃ ) = Φ(s̃)− ϕ(s̃) (s̃2−1)

6
√
n
ρ(− α1√

n
) + o( 1√

n
) = Φ(s̃1)+

+ ϕ(s̃1)
2
√
nv0

[α1k̃ − l2α
2
1 − 2(α1 + t\)ṽ1α1 − v0

ρ0
3 (s̃21 − 1)] + o( 1√

n
) (8.108)

This term is maximized eventually in n , if −t\ is maximal or, essentially equivalent,
all contaminating mass (up to mass o(n−1/2) ) is concentrated left of y̌n from (3.3),
and then

t\ = k\b̌ (8.109)

and after the substitution according to (8.61), this gives with s̃k = −(α1 + k̃b̌)/v0

Pr(Sn ≤ − α1√
n
|Dk,t̃=kb̌ ) = Φ(s̃k)+

+ ϕ(s̃k)
2
√
nv0

[α1k̃ − l2α
2
1 − 2s̃kv0ṽ1α1 − v0

ρ0
3 (s̃2k − 1)− k̃2b̌] + o( 1√

n
)(8.110)

Now, by (6.22), it holds that s1 = −(α1 + rb̌)/v0 , so that by an application of
Lemma 8.4, for Q0

n;− any sequence of measures according to (3.23)

Q0
n;−(Sn ≤ − α1√

n
) = Φ(s1) + o( 1√

n
) + 1√

n
ϕ(s1)×

×
[
r

2v0
α1 − l2

2v0
α2

1 + s1v0ṽ1α1 − ρ0
6 (s̃21 − 1)− r b̌2

2v20
s1 − r2 b̌

2v0

]
(8.111)

Correspondingly, we get for any sequence of measures Q+
n according to (3.24)

Q0
n; +(Sn ≥ α2√

n
) = Φ(s1) + o( 1√

n
) + 1√

n
ϕ(s1)×

×
[
r

2v0
α2 + l2

2v0
α2

2 − s1v0ṽ1α2 + ρ0
6 (s̃21 − 1)− r b̂2

2v20
s1 + r2 b̂

2v0

]
(8.112)

We next account for order 1√
n

-terms and get, as δ′ = O( 1√
n

)

Q0
n;−(Sn ≤ − α′1√

n
) = Q0

n;−(Sn ≤ − α1√
n

) + δ′ϕ(a−rb̄v0
) + o( 1√

n
) (8.113)

and analogously for Q0
n; +(Sn ≥ α′2√

n
) , so

δ′ = 1√
n

(
− rδ

2v0
− l2

2v0
(a2 + δ2)− ṽ1v0s1δ − ρ0

6 (s21 − 1) + rb̄δs1
v20

+ r2δ
2v0

)
(8.114)
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and Q0
n;−(Sn ≤ − α′1√

n
) = Q0

n; +(Sn ≥ α′2√
n

) + o( 1√
n

) ,

Q0
n;−(Sn ≤ − α′1√

n
) = Φ(s1)+

+ϕ(s1) 1√
n

[
ra
2v0

+ 2 l2aδv0 − as1ṽ1 − r(b̌2+b̂2)s1
4v20

+ r2b̄
2v0

]
+ o( 1√

n
) (8.115)

////

8.8 Proof of Corollary 7.2

The assumptions of Theorem 7.1 are clearly fullfilled. Hence we may start with the
verification (7.4):

G(w, s) = (w2 + s2)(1 +
r√
n

) +
r√
n
w2(1 +

1
r2

) (8.116)

∂wG(w, s) = 2w[1 +
r√
n

+
r√
n

(1 +
1
r2

) ] (8.117)

∂sG(w, s) = 2s[1 +
r√
n

] (8.118)

and hence, dividing both sides of (7.3) by 2Âv̂0 , we get the assertion. The LHS
of (7.4) (with or without factor 1 + r2+1

r2+r
√
n

) is isotone, the RHS antitone in c .
Thus if we insert the factor to correct the f-o-o clipping height c0 to c1(n) , the
factor increases the LHS without affecting the RHS. This can only be compensated
for by a decrease of c0 to c1(n) . If h(c) is differentiable in c0 with derivative
h′(c0) , (7.5) is an application of the applying the implicit function theorem: Let
G(s, c) := r2c (1 + s) − h(c) . Then G(0, c0) = 0 . Hence for s = r2+1

r2+r
√
n

, up to

o(n−1/2) ,

c1(n) + o(n−1/2) = c0 −
Gs(0, c0)
Gc(0, c0)

s = c0

(
1− 1√

n

r3 + r

r2 − h′(c0)

)
+ o(n−1/2)

////

8.9 Proof of Proposition 7.3

We apply Rieder (1994, Theorem 1.4.7) to the derivatives; this theorem says that
for η ∈ C1(R) with η(θ0) = 0 , η′(θ0) 6= 0 for some θ0 ∈ R , there exists an
open neighborhood V0 ⊂ C1(R) such that for every open, connected neighborhood
V ⊂ V0 of η there is a unique, continuous map T : V → R with

T (η) = θ0, f(T (f)) = 0, f ∈ V (8.119)

even more so, T is continuously bounded differentiable on V with derivative at
tangent h

dT (f)h = −h(T (f))/f ′(T (f)) (8.120)
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Hence there is an open neighborhood V0;F of F such that for each connected open
neighborhood VF ⊂ V0;F , we get a unique, continuously bounded differentiable
map T : VF → R with

T (F ) = x0, f ′(T (f)) = 0, f ∈ VF , dT (f)h = −h′(T (f))/f ′′(T (f)) (8.121)

But by assumption (7.6) from some n on, Fn and Gn will lie in V0;F , and setting
xn = T (Fn) , by (8.121) F ′n(xn) = 0 , and

|xn − x0| = |T (Fn)− T (F )| ≤ |F ′n(x0)|/F ′′(x0) = O(n−β
′
)

which is (b); again by (7.6),

|F ′′n (xn)− F ′′(x0)| ≤ |F ′′n (xn)− F ′′(xn)|+ |F ′′(xn)− F ′′(x0)| ≤
≤ sup

x
|F ′′n (x)− F ′′(x)|+ o(n0) = o(n0)

In particular, eventually in n , F ′′n (xn) > 0 and hence xn is a minimum of F , so
(a) is shown. By (7.6), supx |F −Gn| + |F ′ −G′n| + |F ′′ −G′′n| = O(n−β

′
) , so (c)

follows just as (a). For (d) we note

|xn−yn| = |T (Fn)−T (Gn)| ≤ |G′n(xn)|/F ′′n (xn)
(a)
= |G′n(xn)|/(f2+o(n0)) = O(n−β)

To show (e), we introduce dn := yn − xn and write

0 ≤ Gn(xn)−Gn(yn) = G′n(yn)dn +G′′n(yn)d
2
n/2 + o(d2

n) =
= (f2 + o(n0))d2

n/2 + o(d2
n) = O(n−2β) (8.122)

////

8.10 Proof of Proposition 7.8

We show that under the assumptions of this proposition xj indeed defines a “uni-
formly bad contamination” in the sense that for the fixed contamination Qn(xj)

asMSE0(S(b0)
n , Qn(x0)) = min

b>0
asMSE0(S(b)

n , Qn(x0))) (8.123)

resp.
asMSE1(S(c1)

n , Qn(x1)) = min
c>0

asMSE1(S(c)
n , Qn(x1))) (8.124)

In case j = 0, as in the setup of Rieder (1994, chap. 5), we obtain

asMSE0(S(b)
n , Qn(x0)) = trCovid(ηb) + r2|ηb(x0)|2 (8.125)

and
asMSE0(Ŝn, Qn(x0)) = tr I + r2|η̂(x0)|2 (8.126)

Now for given x0 , either |η(b)(x0)| < b or |η(b)(x0)| = b . In the first case, (7.23)
applies and hence

asMSE0(S(b0)
n , Qn(x0)) ≥ asMSE0(Ŝn, Qn(x0)) (8.127)
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In the latter, Qn(x0) already achieves maximal asymptotic risk for S(b)
n on Qn ,

and hence by minimaxity of S(b0)
n

asMSE0(S(b)
n , Qn(x0)) ≥ asMSE0(S(b0)

n , Qn(x0)) (8.128)

For the case j = 1 one argues in an analogue way. ////

8.11 Proof for (7.23) in the Gaussian location scale model

We abbreviate the location and scale parts by indices l and s respectively. By
equivariance we may limit ourselves to the case θ = (0, 1)τ . Due to symmetry,
A = A(b) from (1.9) is diagonal for all b with elements Al and As and we may
write

ηb = Y min{1, b/|Y |}, Y τ =
(
Alx,As(x2 − 1− zs)

)
(8.129)

The centering zs(b) after the clipping is necessary, as the scale part is not skew
symmetric; in the pure scale case (with known θl ), the corresponding centering
z′s = z′s(b) is antitone in b , because Λs is monotone in x2 : It decreases from 0 to
[Φ−1(3/4)]2−1 .= −0.545 =: ž . In the combined case, we never reach this extremal
case due to the additional location part —compare Kohl (2005, Remark 8.2.1(a))
where z̄s = āsc/ᾱ− 1 .= −0.530 ; in any case, zs > −1 always. Hence in particular,
for x0 = 1.844 and b such that |η(b)(x0)| ≤ b it holds that

|η(b)
s (x0)| = As(b)|x2

0 − 1− zs(b)| > As(b)|x2
0 − 1| > I−1

s |x2
0 − 1| = |η̂s(x0)| (8.130)

and thus in particular,

|η(b)(x0)|2 = |η(b)
s (x0)|2 + |η(b)

l (x0)|2) = |η(b)
s (x0)|2 +A0;l(b)x2

0 >

> η̂s(x0)2 + I−2
l x2

0 = |η̂(x0)|2 (8.131)

////

9 Appendix

9.1 Two Hoeffding Bounds

Lemma 9.1 Let ξi
i.i.d.∼ F , i = 1, . . . , n be real–valued random variables, |ξi| ≤M

Then for ε > 0

P (
1
n

∑
i

ξi − E[ξ1] ≥ ε) ≤ exp(−2nε2

M2
) (9.1)

P (
1
n

∑
i

ξi − E[ξ1] ≤ −ε) ≤ exp(−2nε2

M2
) (9.2)

Proof : Hoeffding (1963), Thm. 2. ////
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Lemma 9.2 Let ξi
i.i.d.∼ F , i = 1, . . . , n be real–valued random variables, |ξi| ≤ 1

Then for µ = E[ξ1] and 0 < ε < 1− µ

P (
1
n

∑
i

ξi − µ ≥ ε) ≤

{(
µ

µ+ ε

)µ+ε (
1− µ

1− µ− ε

)1−µ−ε
}n

(9.3)

Proof : Hoeffding (1963), Thm. 1, inequality (2.1). ////

9.2 A uniform Edgeworth expansion

In the following theorem, we generalize Ibragimov (1967, Thm. 1) and Ibragimov
and Linnik (1971, Thm. 3.3.1) to the situation where the law of ξi depends through
an additional parameter t :

Theorem 9.3 For some set Θ ⊂ R and fixed t ∈ Θ let ξi,t , i = 1, 2, . . . be a
sequence of i.i.d. real-valued random variables with distribution Ft and with

E ξi,t = 0, E ξ2i,t = 1, E ξ3i,t = ρt, E ξ4i,t − 3 = κt (9.4)

Let Φ(s) and ϕ(s) be the c.d.f. and p.d.f. of N (0, 1) and

Fn(s, t) := P (
∑n
i=1 ξi,t < s

√
n) (9.5)

Hn(s, t) := Φ(s)− ϕ(s)√
n
ϕ(s)

ρt
6

(s2 − 1) (9.6)

Gn(s, t) := Hn(s, t)−
ϕ(s)
n

[κt
24

(s3 − 3s) +
ρ2
t

72
(s5 − 10s3 + 15s)

]
(9.7)

Let ft be the characteristic function of Ft .
(a) If supt κt < ∞ and if there is some u0 > 0 such that for all u1 the “no-

lattice”-condition (C)’

f̂u0(u1) := sup
u0<u<u1

sup
t
|ft(u)| < 1 (9.8)

is fulfilled, then
sup
s∈R

sup
t
|Fn(s, t)−Hn(s, t)| = o(n−1/2) (9.9)

(b) If
sup
t

E |ξi,t|5 <∞ (9.10)

and the uniform Cramér–condition (C)

lim sup
u→∞

sup
t
|ft(u)| < 1 (9.11)

is fulfilled, then
sup
s∈R

sup
t
|Fn(s, t)−Gn(s, t)| = O(n−3/2) (9.12)
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Proof : The general technique to prove Edgeworth expansions is to use Berry’s
smoothing lemma, which we take from Ibragimov and Linnik (1971, Thm. 1.5.2):
and apply it to our case: Let fn,t be the characteristic function of Fn( · , t) , and
define the Edgeworth measures Gn,j,t , j = 1, 2 as

Gn,2,t(s) = Hn(s, t), Gn,3,t(s) = Gn(s, t)

as well as their Fourier-Stieltjes transforms

gn,j,t(u) =
∫
eisuG′n,j,t(s)λ(ds) (9.13)

and
Ĝ′n,j = sup

t
sup
s∈R

|G′n,j,t(s)| (9.14)

Then for T > T ′ > 0 , it holds that

sup
s∈R

sup
t
|Fn(s, t)−Gn,j,t(s)| ≤

≤ sup
t

1
π

∫ T ′

−T ′

|fn,t(u)− gn,j,t(u)|
|u|

λ(du) + sup
t

1
π

∫
T ′≤|u|<T

|fn,t(u)|
|u|

λ(du) +

+ sup
t

1
π

∫
T ′≤|u|<T

|gn,j,t(u)|
|u|

λ(du) + sup
t

24
πT

Ĝ′n,j (9.15)

But similarly as in Ibragimov (1967, p. 462/3), for some constants γ > 0 and
cj > 0 , we get for T ′ = γ

√
n and |u| ≤ T ′

|fn,t(u)− gn,j,t(u)|
|u|

≤ cj sup
t

E[|ξ1,t|3+j ]n−(j+1)/2 (|u|j + |u|2+3j) e−u
2/4 (9.16)

and hence the first summand in the RHS of (9.15) is O(n−(j+1)/2) . For the second
summand, we note that fn,t(u) = fnt (u/

√
n) and hence∫ T

T ′

|fn,t(u)|
u

λ(du) =
∫ T/

√
n

γ

|fnt (u)|
u

λ(du) (9.17)

In case j = 2, for γ sufficiently large, by condition (C), supt sup|u|>γ |ft(u)| =:
β < 1 and hence, for T = n3/2 ,

sup
t

∫ T

T ′

|fn,t(u)|
u

λ(du) ≤ log(T/
√
n )βn = o(e−

√
n/2) (9.18)

In case j = 1, we proceed as in Ibragimov and Linnik (1971, Lemma 3.3.1): If
supu1

f̂γ(u1) < ∞ for γ sufficiently large, we may proceed as in case j = 2; else,
(C’) says that for γ sufficiently large, f̂γ(u1) is isotone and tends to 1 . So we may
define

l′n := inf{u1

∣∣ f̂γ(u1) ≥ 1− 1/
√
n } (9.19)
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Setting T =
√
n ln for ln = min(l′n,

√
n) , we see that l−1

n = o(n0) and

sup
t

∫ T

T ′

|fn,t(u)|
u

λ(du) ≤ log(
√
n)(1− 1/

√
n)n ≤ log(

√
n)e−

√
n = o(e−

√
n/2)

(9.20)
Hence the second summand in the the RHS of (9.15) is O(n−(j+1)/2) . Also, it is
easy to see that Ĝ′n,j < ∞ , and hence by the choice of T , the last summand in
the the RHS of (9.15) is O(l−1

n n−1/2) = o(n−1/2) in case j = 1, and O(n−3/2)
for j = 2. Finally, by Mill’s ratio, the third summand is again easily shown to be
O(exp(−γ2n/3)) . ////

9.3 Moments for the Binomial

Lemma 9.4 Let X ∼ Bin(n, p) . Then

E[X] = pn, E[X2] = p2n2 + pn− p2n, (9.21)

E[X3] = p3n3 − 3p3n2 + 2p3n+ 3p2n2 − 3p2n+ pn, (9.22)

E[X4] = p4n4 − 6p4n3 + 11p4n2 − 6p4n+

+ 6p3n3 − 18p3n2 + 12p3n+ 7p2n2 − 7p2n+ pn (9.23)

and consequentially, for p = r/
√
n ,

E[X] = rn1/2, E[X2] = r2n+ rn1/2 − r2, (9.24)

E[X3] = r3n3/2 + 3r2n+ (r − 3r3)n1/2 − 3r2 + 2r3n−1/2, (9.25)

E[X4] = r4n2 + 6r3n3/2 + (7r2 − 6r4)n+ (r − 18r3)n1/2+

+ 11r4 − 7r2 + 12r3n−1/2 − 6r4n−1 (9.26)

Proof : easy calculations for MAPLE — see procedure Binmoment. . . ////

9.4 Decay of the standard normal

Finally, we note the following Lemma for N (0, 1) variables

Lemma 9.5 Let X ∼ N (0, 1) . Then for k = 0, 1, 2, . . . , 8 and any sequence
(cn)n ⊂ R with lim infn cn >

√
2 ,

E[Xk I{X≥cn

√
log(n)}] = o(n−1) (9.27)

Proof : Let Φ(x) := Pr(X ≤ x) , Φ̄(x) := Pr(X > x) , ϕ(x) the density of X .
Then

E[Xk I{X≥2
√

log(n)}] =


Pk(x)ϕ(x)

∣∣∣∞
c
√

log(n)
for k odd

Pk(x)ϕ(x) +
∏k/2
i=1(2i− 1)Φ(x)

∣∣∣∞
c
√

log(n)
k even
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for some polynomial Pk of degree k − 1 . The assertion follows, as

ϕ(c
√

log(n)) = ϕ(0)n−c
2/2 = ϕ(0)n−(1+δ)

for some δ > 0 , and because for the Φ(x) -term Mill’s ratio applies: That is,
Φ̄(x) ≤ ϕ(x)/x for x > 0 . ////
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