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I. A Robust Filter with H. Rieder

I.1. State Space Models (SSM’s)
and Outliers

I.1.(a) Setup of Stochastic Control�� ��
�� ��state transition

β̌t+ = Ft(βt, vt)GF

��

• innovation

vt
_^]\XYZ[oo

• //�� ���� ��t+ t
state

βt = F̃t(β̌t, wt−)

BC

OO

ED

��

/
∣∣
/

//

observation
yt = Zt(βt, εt)@A

ED
��

• [obs.] error

εt
gfed`abcoo

[transmitted] control
wt = Wt(yt, [y−past], ξt)

@A

OO

•oo
control

error

ξt
oo



I-1-2

Peter Ruckdeschel

'

&

$

%

I.1.(b) Definitions and Assumptions:
Linear, Time–Discrete,
Euclidean Setup

ideal model:

yt = Ztβt + εt, εt ∼ Nq(0, Vt), (1)

βt = Ftβt−1 + vt, vt ∼ Np(0, Qt), (2)

β0 ∼ Np(a0, Q0) (3)

hyper-parameters: Ft, Zt, Qt, Vt, a0

I.1.(c) Types of Outliers

AO :: εreal
t ∼ (1− rAO)Nq(0, Vt) + rAOL(εcont

t ) (4)

SO :: yreal
t ∼ (1− rSO)L(yid

t ) + rSOL(ycont
t ) (5)

IO :: vreal
t ∼ (1− rIO)Np(0, Qt) + rIOL(vcont

t ) (6)



I-1-3

Peter Ruckdeschel

'

&

$

%

I.1.(d) Example: Model under AO and IO

1-dim steady state - ideal
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I.2. Classical Method: Kalman–Filter

Filter problem

E
∣∣βt − ft(y1:t)

∣∣2 = minft !, y1:t = (y1, . . . , yt), y1:0 := ∅ (7)

General solution: E[βt|y1:t]
LS-solution among linear filters: Kalman–filter (Kalman[/Bucy] [60/61])

Initialization: β0|0 = a0, Σ0|0 = Q0 (8)

Prediction: βt|t−1 = Ftβt−1|t−1 (9)

Σt|t−1 = FtΣt−1|t−1F
τ
t +Qt = Cov(∆βt) (10)

with ∆βt = βt − βt|t−1 [state innovation] (11)

Correction: βt|t = βt|t−1+M̂t(yt−Zβt|t−1)=βt|t−1+M̂t∆yt (12)

Σt|t = Σt|t−1 − M̂tZtΣt|t−1 = Cov(βt − βt|t) (13)

with M̂t = Σt|t−1Z
τ
t [ZtΣt|t−1Z

τ
t + Vt]

−1
[Kalman–Gain] (14)

∆yt = yt − Ztβt|t−1 = Zt∆βt + εt [obs. innov.] (15)
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I.3. Robustification Approaches for
SSM’s

I.3.(a) State of the Art

• already 209 References to that subject in Kassam/Poor[85];

many different notions of robustness

• here: robustness w.r.t. AO/SO–distributional deviations

• key features: recursivity and bounded correction step

I.3.(b) Various “Robustnesses”

• in Control Theory, c.f. H∞/H2–approach e.g.

Başar/Bernhard [91], Rotea/Khargonekar [95]

• by Hard Rejection, e.g. Meyr/Spies [84]

• by “Fat Tails”

– Bayesian Approach: e.g. West [81–85],

– Posterior Mode, e.g. Künstler/Fahrmeir/Kaufmann [91–99]
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• by Analogy:

– M–Estimators for Regression e.g.

Boncelet[/Dickinson] [83–85], Cipra/Romera [91]

– L–Estimators: numerous examples in image processing; an

initial example: 3R–smoother by Tukey [77]

• Non–Recursive Robustness

– without sampling a.o. Pupeikis [98], Schick [89],

Birmiwal/Shen [93]

– with MCMC–methods: Carlin [92], Carter/Kohn[94]

• Minmax-Robustness:

– in the frequency domain: e.g. Kassam/Lim [77],

Franke [85], Franke/Poor [84]

– ACM-[type]-filter: Martin/Masreliez [77-79]

– SO-optimal filter in one dimension: Birmiwal/Shen [93]
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I.4. robustifying recursive

Least Squares: rLS

I.4.(a) Idea and Definition
[from now on: omitting t where possible]

• restriction to AO/SO’s:

For arbitrary IO’s the problem is not well–posed!

• no AO/SO’s in the prediction step

• in the correction step: instead of M∆y we use

Hb(M∆y) = M∆ymin{1, b∣∣M∆y
∣∣} (16)

• So recursions (8),(9),(12) are transformed to

β0|0 = a0, (17)

βt|t−1 = Ftβt−1|t−1 (18)

βt|t = βt|t−1 +Hb(Mt(yt − Zβt|t−1)) (19)
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I.4.(b) Properties
• no rotation as in [Masreliez/]Martin ACM [77/79]

• if E[∆β|∆y] is linear in ∆y, then

– the optimal M is M̂t (Kalman Gain)

– rLS is SO-optimal (see part II)

• strict normality gets lost during the history of βt|t for growing t

• βt|t is “nearly” normal and M̂t cannot be improved significantly

I.4.(c) Availability/Implementation
• XploRe

– c.f. http://www.xplore-stat.de

– rLS realized in the XploRe–quantlib kalman

– documentation: XploRe Application Guide

• ISP: macros available on demand

• S-Plus/R: not yet
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I.4.(d) Calibration

Choice of b: Anscombe–Critrerium

E
∣∣∆β −Hb(M̂∆y)

∣∣2 !
= (1 + δ) tr Σt|t (20)

• with known hyper-parameters, calibration can be done

beforehand!

• simplifications for implementation of (20):

– assuming strict normality,

– for n = 1 analytic terms,

– for n > 1 MC-Simulation

• alternatives:

– simulation of a bundle of paths and then MC-integration

– numerical integration
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I.4.(e) Example: rLS for Simulated Data

simulated Model under AO -- 1st coord.
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II. Robust Optimalities

II.1. Robust Optimization Problems

II.1.(a) Reduction to a Simple Model

• ideal model:

Y := X + ε, X ∼ PX , ε ∼ P ε indep. (21)

PX , P ε ∈M1(Bq)[
Eid |X |2, Eid | ε|2 <∞

]
• Identifications: innovation representation

rLS : X =̂ [Zt]∆βt, ε =̂ εt
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II.1.(b) Types of Outliers / Neighborhoods

Types of Outliers

SO :: Ŷ ∼ P̂Y = (1− rSO)PY + rSOP̃
Y ,

PY = PX ∗ P ε
(22)

AO :: ε̂ ∼ P̂ ε = (1− rAO)P ε + rAOP̃
ε,

⇒ Ŷ ∼ P̂Y = (1− rAO)PY + rAOP̃
Y ,

Ŷ = X + ε̂, P̃Y = PX ∗ P̃ ε
(23)

Neighborhoods

SO :: Ur := {L(X, Ŷ ) : X ∼ PX , Ŷ ∼ P̂Y , P̂Y acc. to (24)} (24)

AO :: Vr := {L(X, Ŷ ) : X ∼ PX , Ŷ ∼ P̂Y , P̂Y acc. to (25)} (25)
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II.1.(c) Problems to be Solved

“Lemma 5” Minimax

SO

Eid[
∣∣X − f(Ŷ )

∣∣2] = minf !

s.t.
∣∣Ereal[X − f(Ŷ )]

∣∣ ≤ b
Eid[X] = Eid[f(Ŷ )]

EP
∣∣X − f(Ŷ )

∣∣2 =

minf maxP∈Ur !

AO

Eid[
∣∣X − f(Ŷ )

∣∣2] = minf !

s.t.
∣∣Ereal[X − f(Ŷ )

∣∣ ε]∣∣ ≤ b
Eid[X] = Eid[f(Ŷ )]

EP
∣∣X − f(Ŷ )

∣∣2 =

minf maxP∈Vr !

Equivalences under Eid[X] = Eid[f(Ŷ )]∣∣Ereal[X − f(Ŷ )]
∣∣ ≤ b ∀P ∈ Ur ⇐⇒

∣∣f(Ŷ )− Eid[X]
∣∣ ≤ b/r∣∣Ereal[X − f(Ŷ )

∣∣ ε]∣∣ ≤ b ∀P ∈ Vr ⇐⇒
∣∣Eid[f(Ŷ )

∣∣ ε]− Eid[X]
∣∣ ≤ b/r
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II.2. Solution in the SO-Case

II.2.(a) Solution to Problem “Lemma 5”-SO

Setting D(Y ) := Eid[X|Y ]− Eid[X] and b′ = b/r, we get

f̂(Y ) := Eid[X] +D(Y ) min{1,
b′∣∣D(Y )

∣∣} (26)

Proof :

Eid[
∣∣X − f(Y )

∣∣2] = Eid[
∣∣X − Eid[X|Y ]

∣∣2] + Eid[
∣∣Eid[X|Y ]− f(Y )

∣∣2] =

= const + Eid[
∣∣D(Y )− (f(Y )− Eid[X])

∣∣2]

pointwise minimization in Y subject to
∣∣f(Y )− Eid[X]

∣∣ ≤ b′ gives the

result. ////

If Eid[X|Y ] = MY for some M , necessarily M = M̂ and f̂(Y ) is rLS.
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II.2.(b) Solution to Problem Minimax-SO

• Birmival/Shen [93]:
– for q = 1

– only Lebesgue-densities for both id. and cont. distr.
– applying Minimax-Thm without giving justification

• here:
– q ≥ 1

– arbitrary cont. distr.
– assumption in the ideal model only:

(A) ∃P ∈M1(Bq) : for t ∈ supp(PX), P ε(· − t)� P.

– Minimax-Thm justified by Franke/Poor [84]

THM 1:(R. [01]) Under (A) there is a saddlepoint (f0, P̃Y0 ) with

f0(Y ) := Eid[X] +D(Y ) min{1,
ρ̃∣∣D(Y )
∣∣} (27)

P̃0(dy) :=
1− rSO

rSO
(1/ρ̃

∣∣D(y)
∣∣− 1)+P

Y (dy) (28)

with ρ̃ > 0 assuring that
∫
Rq
P̃0(dy) = 1.
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II.2.(c) Example:

Densities of PY , P̂Y , P̃Y for PX = P ε = N (0, 1), r = 0.1
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II.3. Back in the ∆β Model for t > 1

II.3.(a) Approaches up to Now

• [Masreliez/]Martin [77/79] assume L(∆β) normal. BUT:

– if correction step is bounded, L(∆β) cannot be normal

(R. [01]: as. version of Cramér–Lévy–Theorem)

• rLS is optimal in both “Lemma 5” and minimax sense if

Eid[∆β|∆y] is linear. BUT:

– if Lid(ε) is normal, Eid[∆β|∆y] is linear iff L(∆β) is normal

(R. [01]: ODE for Fourier transforms of Lid(ε) and L(∆β).).

• Schick[/Mitter] [89/94] work with a Taylor-expansion for a

non-normal L(∆β). BUT:

– stochastic error terms??

– come up with a bank of (at least t) Kalman–Filters — not

very operational

• Birmiwal/Shen [93] work with exact L(∆β). BUT:

– splitting up the history of outlier occurrences yields 2t

different terms — not very operational either
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II.3.(b) An Even Larger SO-Model

Consider the following outlier model:

• X ∼ PX , X̃ ∼ P̃X ,

ε ∼ P ε, Ỹ ∼ P̃Y ,

U ∼ Bin(1, reSO) all sto. indep.

• Observation:

(X̂, Ŷ ) := (1− U)(X,X + ε) + U(X̃, Ỹ ). (29)

• PX , P ε, reSO known, P̃X , P̃Y unknown /arbitrary,

• but: E[X̃] = E[X], E[|X̃|2] ≤ G for some known 0 < G <∞.

THM 2:(R. [01]) Under (A) (f0, P̃
Y
0 ) from THM 1 still form a

saddlepoint in the larger eSO–model to the same radius — P̃X

being arbitrary with E[X̃] = E[X], E[|X̃|2] = G
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II.3.(c) Consequences of THM 2

Instead of regarding the saddlepoint solution to the Ur-nbd around

L(∆β) we assume that for each t there is a r.v. ∆βN ∼ Np(0,Σ) s.t.

∆β can be considered a X̃ in the corresponding eSO-nbd around

∆βN ∼ Np(0,Σ) with the given radius

• in this setup the rLS is exactly minimax for each t

• explains good results

• no analytic proof for the existence of ∆βN ∼ Np(0,Σ)

• BUT for p = 1 in a large number of models numerical

— not simulational ! — proof
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III More Addressed Problems

• AO–problem: both Lemma 5– and Minimax–approach

• Stationarity of the rLS– (and rIC–filter)

• Estimation of Hyper–Parameters:

– Embedding into LAN–Theory —

L2–differentiability of this model

– Concept of a Robust One–Step–EM–Algorithm

For questions and comments, as well as for

a detailed outline and a list of references

you please contact me by E-mail.

Also, the slides of this talk are available upon request in -pdf-–format

peter.ruckdeschel@uni-bayreuth.de
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