Robust Recursive Kalman–Filtering

Peter Ruckdeschel

Mathematics VII

Magdeburger Stochastik–Tage 2002 at Otto–von–Guericke–Universität Magdeburg

March 20th 2002

E-mail: peter.ruckdeschel@uni-bayreuth.de

I.1.(b) Definitions and Assumptions: Linear, Time–Discrete, Euclidean Setup

ideal model:

- $y_t = Z_t \beta_t + \varepsilon_t,$ $\varepsilon_t \sim \mathcal{N}_q(0, V_t),$ (1)
- $\beta_t = F_t \beta_{t-1} + v_t, \qquad v_t \sim \mathcal{N}_p(0, Q_t), \qquad (2)$

$$\beta_0 \sim \mathcal{N}_p(a_0, Q_0)$$

hyper-parameters: F_t, Z_t, Q_t, V_t, a_0

I.1.(c) Types of Outliers

AO ::
$$\varepsilon_t^{\text{real}} \sim (1 - r_{\text{AO}})\mathcal{N}_q(0, V_t) + r_{\text{AO}}\mathcal{L}(\varepsilon_t^{\text{cont}})$$
 (4)

SO ::
$$y_t^{\text{real}} \sim (1 - r_{\text{SO}})\mathcal{L}(y_t^{\text{id}}) + r_{\text{SO}}\mathcal{L}(y_t^{\text{cont}})$$
 (5)

IO ::
$$v_t^{\text{real}} \sim (1 - r_{\text{IO}}) \mathcal{N}_p(0, Q_t) + r_{\text{IO}} \mathcal{L}(v_t^{\text{cont}})$$

UNIVERSITÄT BAYREUTH Peter Ruckdeschel

(3)

(6)

I-1-2

I.1.(d) Example: Model under AO and IO

UNIVERSITÄT BAYREUTH Peter Ruckdeschel

I.2. Classical Method: Kalman–Filter

Filter problem

 $\mathbf{E}\left|\beta_{t} - f_{t}(y_{1:t})\right|^{2} = \min_{f_{t}} !, \qquad y_{1:t} = (y_{1}, \dots, y_{t}), y_{1:0} := \emptyset \qquad (7)$

General solution: $E[\beta_t | y_{1:t}]$

LS-solution among linear filters: Kalman-filter (Kalman[/Bucy] [60/61])

Initialization:
$$\beta_{0|0} = a_0, \qquad \Sigma_{0|0} = Q_0$$
 (8)

Prediction:
$$\beta_{t|t-1} = F_t \beta_{t-1|t-1}$$
 (9)

$$\Sigma_{t|t-1} = F_t \Sigma_{t-1|t-1} F_t^\tau + Q_t = \operatorname{Cov}(\Delta\beta_t)$$
(10)

with
$$\Delta \beta_t = \beta_t - \beta_{t|t-1}$$
 [state innovation] (11)

Correction:
$$\beta_{t|t} = \beta_{t|t-1} + \hat{M}_t (y_t - Z\beta_{t|t-1}) = \beta_{t|t-1} + \hat{M}_t \Delta y_t$$
 (12)

$$\Sigma_{t|t} = \Sigma_{t|t-1} - \hat{M}_t Z_t \Sigma_{t|t-1} = \operatorname{Cov}(\beta_t - \beta_{t|t})$$
(13)

with
$$\hat{M}_t = \Sigma_{t|t-1} Z_t^{\tau} [Z_t \Sigma_{t|t-1} Z_t^{\tau} + V_t]^{-1}$$
 [Kalman–Gain]

$$\Delta y_t = y_t - Z_t \beta_{t|t-1} = Z_t \Delta \beta_t + \varepsilon_t \quad \text{[obs. innov.]}$$

A Harden all any

I-2-1

(14)

(15)

I.3. Robustification Approaches for SSM's

I.3.(a) State of the Art

- already 209 References to that subject in Kassam/Poor[85]; many different notions of robustness
- here: robustness w.r.t. AO/SO-distributional deviations
- key features: recursivity and bounded correction step

I.3.(b) Various "Robustnesses"

- in Control Theory, c.f. *H*[∞]/*H*²−approach e.g. Başar/Bernhard [91], Rotea/Khargonekar [95]
- by Hard Rejection, e.g. Meyr/Spies [84]
- by "Fat Tails"
 - Bayesian Approach: e.g. West [81-85],
 - Posterior Mode, e.g. Künstler/Fahrmeir/Kaufmann [91-99]

I-3-1

- by Analogy:
 - M–Estimators for Regression e.g.
 Boncelet[/Dickinson] [83–85], Cipra/Romera [91]
 - L-Estimators: numerous examples in image processing; an initial example: 3R-smoother by Tukey [77]
- Non-Recursive Robustness
 - without sampling a.o. Pupeikis [98], Schick [89], Birmiwal/Shen [93]
 - with MCMC-methods: Carlin [92], Carter/Kohn[94]
- Minmax-Robustness:
 - in the frequency domain: e.g. Kassam/Lim [77],
 Franke [85], Franke/Poor [84]
 - ACM-[type]-filter: Martin/Masreliez [77-79]
 - SO-optimal filter in one dimension: Birmiwal/Shen [93]

I.4.(b) Properties

- no rotation as in [Masreliez/]Martin ACM [77/79]
- if $E[\Delta\beta|\Delta y]$ is linear in Δy , then
 - the optimal M is \hat{M}_t (Kalman Gain)
 - rLS is SO-optimal (see part II)
- strict normality gets lost during the history of $\beta_{t|t}$ for growing t
- $\beta_{t|t}$ is "nearly" normal and \hat{M}_t cannot be improved significantly

I.4.(c) Availability/Implementation

- XploRe
 - C.f. http://www.xplore-stat.de
 - rLS realized in the XploRe-quantlib kalman
 - documentation: XploRe Application Guide
- ISP: macros available on demand
- S-Plus/R: not yet

I.4.(d) Calibration

Choice of *b*: Anscombe–Critrerium

$$\mathbf{E} \left| \Delta \beta - H_b(\hat{M} \Delta y) \right|^2 \stackrel{!}{=} (1+\delta) \operatorname{tr} \Sigma_{t|t}$$
(20)

- with known hyper-parameters, calibration can be done beforehand!
- simplifications for implementation of (20):
 - assuming strict normality,
 - for n = 1 analytic terms,
 - for n > 1 MC-Simulation
- alternatives:
 - simulation of a bundle of paths and then MC-integration
 - numerical integration

I.4.(e) Example: rLS for Simulated Data

I-4-4

II.1.(b) Types of Outliers / Neighborhoods

Types of Outliers

SO ::
$$\hat{Y} \sim \hat{P}^Y = (1 - r_{SO})P^Y + r_{SO}\tilde{P}^Y,$$

 $P^Y = P^X * P^{\varepsilon}$
(22)

AO ::
$$\hat{\varepsilon} \sim \hat{P}^{\varepsilon} = (1 - r_{AO})P^{\varepsilon} + r_{AO}\tilde{P}^{\varepsilon},$$

 $\Rightarrow \hat{Y} \sim \hat{P}^{Y} = (1 - r_{AO})P^{Y} + r_{AO}\tilde{P}^{Y},$ (23)
 $\hat{Y} = X + \hat{\varepsilon}, \qquad \tilde{P}^{Y} = P^{X} * \tilde{P}^{\varepsilon}$

Neighborhoods

SO :: $\mathcal{U}_r := \{ \mathcal{L}(X, \hat{Y}) : X \sim P^X, \hat{Y} \sim \hat{P}^Y, \hat{P}^Y \text{ acc. to (24)} \}$ (24) AO :: $\mathcal{V}_r := \{ \mathcal{L}(X, \hat{Y}) : X \sim P^X, \hat{Y} \sim \hat{P}^Y, \hat{P}^Y \text{ acc. to (25)} \}$ (25)

UNIVERSITÄT Bayreuth

Peter Ruckdeschel

II-1-2

II.2. Solution in the SO-Case II.2.(a) Solution to Problem "Lemma 5"-SO

Setting $D(Y) := E_{id}[X|Y] - E_{id}[X]$ and b' = b/r, we get

$$\hat{f}(Y) := \operatorname{E}_{\operatorname{id}}[X] + D(Y) \min\{1, \frac{b'}{|D(Y)|}\}$$
(26)

Proof:

$$E_{id}[|X - f(Y)|^{2}] = E_{id}[|X - E_{id}[X|Y]|^{2}] + E_{id}[|E_{id}[X|Y] - f(Y)|^{2}] =$$

= const + E_{id}[|D(Y) - (f(Y) - E_{id}[X])|^{2}]

pointwise minimization in Y subject to $|f(Y) - E_{id}[X]| \le b'$ gives the result.

If $E_{id}[X|Y] = MY$ for some M, necessarily $M = \hat{M}$ and $\hat{f}(Y)$ is rLS.

II-2-1

UNIVERSITÄT BAYREUTH Peter Ruckdeschel

II.2.(b) Solution to Problem Minimax-SO

- Birmival/Shen [93]:
 - for q=1
 - only Lebesgue-densities for both id. and cont. distr.
 - applying Minimax-Thm without giving justification
- here:
 - $q \ge 1$
 - arbitrary cont. distr.
 - assumption in the ideal model only:

(A) $\exists P \in \mathcal{M}_1(\mathbb{B}^q)$: for $t \in \operatorname{supp}(P^X)$, $P^{\varepsilon}(\cdot - t) \ll P$.

- Minimax-Thm justified by Franke/Poor [84]

THM 1:(R. [01]) Under (A) there is a saddlepoint (f_0, \tilde{P}_0^Y) with

$$f_0(Y) := E_{id}[X] + D(Y) \min\{1, \frac{\tilde{\rho}}{|D(Y)|}\}$$
 (27)

$$\tilde{P}_{0}(dy) := \frac{1 - r_{\rm SO}}{r_{\rm SO}} (1/\tilde{\rho} |D(y)| - 1)_{+} P^{Y}(dy)$$
(28)

with $\tilde{
ho} > 0$ assuring that $\int_{\mathbb{R}^q} \tilde{P}_0(dy) = 1$.

UNIVERSITÄT BAYREUTH Peter Ruckdeschel

II-2-2

II.3. Back in the $\Delta\beta$ Model for t>1

II.3.(a) Approaches up to Now

- [Masreliez/]Martin [77/79] assume $\mathcal{L}(\Delta\beta)$ normal. BUT:
 - if correction step is bounded, $\mathcal{L}(\Delta\beta)$ cannot be normal (R. [01]: as. version of Cramér–Lévy–Theorem)
- rLS is optimal in both "Lemma 5" and minimax sense if $E_{id}[\Delta\beta|\Delta y]$ is *linear*. BUT:
 - if $\mathcal{L}_{id}(\varepsilon)$ is normal, $E_{id}[\Delta\beta|\Delta y]$ is linear iff $\mathcal{L}(\Delta\beta)$ is normal (R. [01]: ODE for Fourier transforms of $\mathcal{L}_{id}(\varepsilon)$ and $\mathcal{L}(\Delta\beta)$.).
- Schick[/Mitter] [89/94] work with a Taylor-expansion for a non-normal $\mathcal{L}(\Delta\beta)$. BUT:
 - stochastic error terms??
 - come up with a bank of (at least t) Kalman–Filters not very operational
- Birmiwal/Shen [93] work with exact $\mathcal{L}(\Delta\beta)$. BUT:
 - splitting up the history of outlier occurrences yields 2^t different terms not very operational either

II.3.(b) An Even Larger SO-Model

Consider the following outlier model:

- $X \sim P^X$, $\tilde{X} \sim \tilde{P}^X$, $\varepsilon \sim P^{\varepsilon}$, $\tilde{Y} \sim \tilde{P}^Y$, $U \sim \operatorname{Bin}(1, r_{eSO})$ all sto. indep.
- Observation:

$$(\hat{X}, \hat{Y}) := (1 - U)(X, X + \varepsilon) + U(\tilde{X}, \tilde{Y}).$$
 (29)

- $P^X, P^{\varepsilon}, r_{\mathrm{eSO}}$ known, \tilde{P}^X, \tilde{P}^Y unknown /arbitrary,
- but: $E[\tilde{X}] = E[X]$, $E[|\tilde{X}|^2] \le G$ for some known $0 < G < \infty$.

THM 2:(R. [01]) Under (A) (f_0, \tilde{P}_0^Y) from THM 1 still form a saddlepoint in the larger eSO-model to the same radius — \tilde{P}^X being arbitrary with $E[\tilde{X}] = E[X]$, $E[|\tilde{X}|^2] = G$

II.3.(c) Consequences of THM 2

Instead of regarding the saddlepoint solution to the \mathcal{U}_r -nbd around $\mathcal{L}(\Delta\beta)$ we assume that for each t there is a r.v. $\Delta\beta^{\mathcal{N}} \sim \mathcal{N}_p(0,\Sigma)$ s.t. $\Delta\beta$ can be considered a \tilde{X} in the corresponding eSO-nbd around $\Delta\beta^{\mathcal{N}} \sim \mathcal{N}_p(0,\Sigma)$ with the given radius

- in this setup the rLS is exactly minimax for each t
- explains good results
- no analytic proof for the existence of $\Delta \beta^{\mathcal{N}} \sim \mathcal{N}_p(0, \Sigma)$
- BUT for p = 1 in a large number of models numerical
 not simulational ! proof

III More Addressed Problems

- AO-problem: both Lemma 5- and Minimax-approach
- Stationarity of the rLS- (and rIC-filter)
- Estimation of Hyper–Parameters:
 - Embedding into LAN-Theory L_2 -differentiability of this model
 - Concept of a Robust One–Step–EM–Algorithm

For questions and comments, as well as for

a detailed outline and a list of references

you please contact me by E-mail.

Also, the slides of this talk are available upon request in -pdf--format

III-1

peter.ruckdeschel@uni-bayreuth.de

