Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Mark Niemeyer, ${ }^{\text {a* }}$ Jens Christoffers ${ }^{\text {b }}$ and Michael Rössle ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail:
niemeyer@iac.uni-stuttgart.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.103$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
An optically active heteroleptic cerium camphorate: [bis(trimethylsilyl)amido- κ N]bis[(+)-(1R,4R)-3-(tri-fluoroacetyl)camphorato- $\left.\kappa^{2} O, O^{\prime}\right](1,3,5-t r i m e t h y l-$ 1,3,5-triazacyclohexane- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)$ cerium (III)

The title compound, $\left[\mathrm{Ce}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{NSi}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$, is a rare example of a structurally characterized lanthanide(III) camphorate. The $\mathrm{Ce}^{\mathrm{III}}$ atom shows a distorted trigonal-dodecahedral coordination, formed by the N atom of the amido ligand $[\mathrm{Ce}-\mathrm{N}=2.428(5) \AA$], four O atoms of two η^{2}-bonded camphorate groups [average $\mathrm{Ce}-\mathrm{O}=2.459$ (4) \AA] and three N atoms of a chelating triazacyclohexane donor [average $\mathrm{Ce}-\mathrm{N}=2.808$ (6) \AA].

Comment

The $\mathrm{Ce}^{\text {III }}$-catalyzed α-hydroxylation of β-diketo compounds with molecular oxygen is a mild atom-economic and environmentally friendly method for the synthesis of the biologically important α-hydroxy- β-dicarbonyl group (Christoffers \& Werner, 2002; Christoffers et al., 2003, 2004; Rössle et al., 2004). The structure determination of the title compound, (I), was performed as part of a project on the preparation of well defined chiral cerium(III) complexes which might be used for enantioselective oxidation reactions. Crystals of (I) were obtained by the reaction of cerium-tris\{bis(trimethylsil$\mathrm{yl})$ amide $\}$ with an excess of $(1 R, 4 R)$-(+)-3-trifluoroacetylcamphor in the presence of the chelating N-donor $1,3,5-$ trimethyl-1,3,5-triazacyclohexane (tmta).

(I)

The molecular structure of (I) shows monomeric units (Fig. 1), in which the eight-coordinate $\mathrm{Ce}^{\mathrm{III}}$ atom is bonded to one N atom of the silylamido ligand, four O atoms of the η^{2} chelating camphorate groups and three N atoms of the neutral donor tmta. The evaluation of characteristic dihedral angles (Muetterties \& Guggenberger, 1974) indicates that the coordination polyhedron around the $\mathrm{Ce}^{\mathrm{III}}$ atom is best described as a distorted trigonal dodecahedron (Fig. 2). In an alternative view, pairs of O atoms ($\mathrm{O} 1 / \mathrm{O} 2$ and $\mathrm{O} 3 / \mathrm{O} 4$) of the camphorate and the three N atoms $\mathrm{N} 31 / \mathrm{N} 33 / \mathrm{N} 35$ of the tmta ligand are replaced by three centroids, thus resulting in a distorted

Received 6 May 2005 Accepted 20 May 2005 Online 28 May 2005

Figure 1
A drawing of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity.
tetrahedral environment with interligand angles in the range 98.2 (2)-123.1 (2) ${ }^{\circ}$.

The $\mathrm{Ce}-\mathrm{N} 1$ bond length of 2.428 (5) \AA is longer than the distance of 2.320 (3) \AA in the tris-amide $\left[\mathrm{Ce}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{3}\right]$ (Rees et al., 1999), which contains a three-coordinate metal atom. Taking into account the small difference in the ionic radii of $\mathrm{Ce}^{\mathrm{III}}$ and $\mathrm{Pr}^{\mathrm{III}}$ ($0.01 \AA$ for coordination number 6 ; Emsley, 1991) the average $\mathrm{Ce}-\mathrm{O}$ distance of 2.459 (4) \AA is almost identical to the corresponding $\mathrm{Pr}-\mathrm{O}$ bond length of 2.46 (3) \AA in the nine-coordinate complex $\left[(T f c a m)_{3} \operatorname{Pr}(\mu\right.$ $\left.\mathrm{dmf})_{3} \operatorname{Pr}(\mathrm{Tfcam})_{3}\right]$, which is the only structurally characterized lanthanide camphorate currently available in the literature for comparison [Tfcam is 3-(trifluoroacetyl)camphorate and dmf is dimethylformamide; Cunningham \& Sievers, 1975].

Finally, it may be noted that the asymmetric bonding of the chelating tmta donor, with $\mathrm{Ce}-\mathrm{N} 3 n(n=1,3,5)$ distances of 2.762 (6), 2.883 (6) and 2.780 (5) \AA, respectively, indicates steric crowding and a transition from η^{3} - to η^{2}-coordination (Becker et al., 2004). The average $\mathrm{Ce}-\mathrm{N}$ bond length of 2.808 (6) \AA is considerably longer than the corresponding value in the praseodymium trifluoromethanesulfonate complex $\left[\operatorname{Pr}(\mathrm{OTf})_{3}(\mathrm{tmta})_{2}\right]\left[\mathrm{OTf}=\mathrm{O}_{3} \mathrm{SCF}_{3}\right.$; average $\mathrm{Pr}-\mathrm{N}$ 2.673 (2) Å; Köhn et al., 2002].

Experimental

Under an atmosphere of purified argon, a solution of $\left[\mathrm{Ce}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{3}\right](0.56 \mathrm{~g}, 0.90 \mathrm{mmol}),(1 R, 4 R)-(+)-3$-trifluoroacetylcamphor $(0.82 \mathrm{~g}, 3.3 \mathrm{mmol})$ and tmta $(0.5 \mathrm{ml})$ in n-heptane (40 ml) was stirred for 2 d at 333 K , after which all volatile materials were removed under reduced pressure. The remaining solid was extracted with n-heptane (ca 15 ml) and solid by-products were separated by centrifugation. The volume of the resulting dark-amber solution was reduced to incipient crystallization. Redissolution by slight warming and storage at ambient temperature for 14 h afforded orange-brown crystals of (I) (m.p. 396-398 K; yield $0.47 \mathrm{~g}, 56 \%$).

Crystal data

$\left[\mathrm{Ce}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{NSi}_{2}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right)$]
$M_{r}=924.19$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.170$ (3) \AA
$b=14.934$ (4) \AA
$c=29.568$ (8) \AA
$V=4491(2) \AA^{3}$
$Z=4$
$D_{x}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 42
reflections
$\theta=7.1-12.5^{\circ}$
$\mu=1.13 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, orange-brown
$0.50 \times 0.45 \times 0.35 \mathrm{~mm}$

Data collection

Rebuilt Syntex $P 2{ }_{1} /$ Siemens $P 3$ four-circle diffractometer ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.574, T_{\text {max }}=0.673$
7383 measured reflections
7081 independent reflections
6138 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.103$
$S=1.47$
7081 reflections
491 parameters
Only H-atom displacement parameters refined
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-1 \rightarrow 13$
$k=-1 \rightarrow 19$
$l=-1 \rightarrow 39$
2 standard reflections every 298 reflections intensity decay: 0.3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0426 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.38 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.88 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1079 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.013(17)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ce}-\mathrm{O} 1$	$2.414(3)$	$\mathrm{N} 1-\mathrm{Si} 21$	$1.712(5)$
$\mathrm{Ce}-\mathrm{O} 2$	$2.480(4)$	$\mathrm{O} 1-\mathrm{C} 2$	$1.266(6)$
$\mathrm{Ce}-\mathrm{O} 3$	$2.415(4)$	$\mathrm{O} 2-\mathrm{C} 4$	$1.238(6)$
$\mathrm{Ce}-\mathrm{O} 4$	$2.528(4)$	$\mathrm{O} 3-\mathrm{C} 14$	$1.271(7)$
$\mathrm{Ce}-\mathrm{N} 1$	$2.428(5)$	$\mathrm{O} 4-\mathrm{C} 16$	$1.248(7)$
$\mathrm{Ce}-\mathrm{N} 31$	$2.762(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.384(8)$
$\mathrm{Ce}-\mathrm{N} 33$	$2.883(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.436(7)$
$\mathrm{Ce}-\mathrm{N} 35$	$2.780(5)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.370(8)$
$\mathrm{N} 1-\mathrm{Si} 11$	$1.705(5)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.429(8)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{O} 2$	$72.10(11)$	$\mathrm{O} 3-\mathrm{Ce}-\mathrm{N} 31$	$85.12(16)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{O} 3$	$108.57(14)$	$\mathrm{O} 3-\mathrm{Ce}-\mathrm{N} 33$	$116.24(16)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{O} 4$	$72.12(16)$	$\mathrm{O} 3-\mathrm{Ce}-\mathrm{N} 35$	$68.68(14)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{N} 1$	$84.03(16)$	$\mathrm{O} 4-\mathrm{Ce}-\mathrm{N} 1$	$144.28(15)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{N} 31$	$135.94(16)$	$\mathrm{O} 4-\mathrm{Ce}-\mathrm{N} 31$	$74.00(15)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{N} 33$	$135.07(16)$	$\mathrm{O} 4-\mathrm{Ce}-\mathrm{N} 33$	$119.68(16)$
$\mathrm{O} 1-\mathrm{Ce}-\mathrm{N} 35$	$173.88(13)$	$\mathrm{O} 4-\mathrm{Ce}-\mathrm{N} 35$	$111.18(13)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 3$	$140.37(14)$	$\mathrm{N} 1-\mathrm{Ce}-\mathrm{N} 31$	$138.11(17)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 4$	$72.64(13)$	$\mathrm{N} 1-\mathrm{Ce}-\mathrm{N} 33$	$96.01(17)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{N} 1$	$125.16(14)$	$\mathrm{N} 1-\mathrm{Ce}-\mathrm{N} 35$	$90.64(15)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{N} 31$	$71.50(15)$	$\mathrm{N} 31-\mathrm{Ce}-\mathrm{N} 33$	$49.28(15)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{N} 33$	$71.56(16)$	$\mathrm{N} 31-\mathrm{Ce}-\mathrm{N} 35$	$49.98(15)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{N} 35$	$113.61(13)$	$\mathrm{N} 33-\mathrm{Ce}-\mathrm{N} 35$	$48.40(16)$
$\mathrm{O} 3-\mathrm{Ce}-\mathrm{N} 1$	$93.65(14)$		

The trifluoromethyl group in one of the camphorate ligands is disordered and was modelled over two positions, with site occupation factors of 0.5 and a common isotropic displacement parameter. The corresponding $\mathrm{C}-\mathrm{F}$ distances were refined with distance similarity restraints. The H atoms were positioned geometrically at distances of $1.00(\mathrm{CH}), 0.99\left(\mathrm{CH}_{2}\right)$ and $0.98 \AA\left(\mathrm{CH}_{3}\right)$ and refined in a riding-model approximation, including free rotation for methyl groups. The assigned $U_{\text {iso }}$ was allowed to refine freely for groups of chemically equivalent atoms. The absolute configuration was assigned on the basis of the known absolute configuration of the starting material,
$(+)-(1 R, 4 R)$-3-trifluoroacetylcamphor, and confirmed by anomalous scattering effects.

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

References

Becker, G., Niemeyer, M., Mundt, O., Schwarz, W., Westerhausen, M., Ossberger, M. W., Mayer, P., Nöth, H., Zhong, Z., Dijkstra, P. J. \& Feijen, J. (2004). Z. Anorg. Allg. Chem. 630, 2605-2621.

Christoffers, J. \& Werner, T. (2002). Synlett, pp. 119-121.
Christoffers, J., Werner, T., Frey, W. \& Baro, A. (2004). Chem. Eur. J. 10, 10421045.

Christoffers, J., Werner, T., Unger, S. \& Frey, W. (2003). Eur. J. Org. Chem. pp. 425-431.
Cunningham, J. A. \& Sievers, R. E. (1975). J. Am. Chem. Soc. 97, 15861588.

Emsley, J. (1991). The Elements, 2th ed. Oxford University Press.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Köhn, R. D., Pan, Z., Kociok-Köhn, G. \& Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 2344-2347.
Muetterties, E. L. \& Guggenberger L. J. (1974). J. Am. Chem. Soc. 96, 17481756.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rees, W. S. Jr, Just, O. \& Van Derveer, D. S. (1999). J. Mater. Chem. 9, 249252.

Figure 2
The trigonal-dodecahedral coordination of the $\mathrm{Ce}^{\mathrm{III}}$ atom in (I). Characteristic dihedral angles (Muetterties \& Guggenberger, 1974): $\mathrm{O} 4-\mathrm{O} 1-\mathrm{O} 3-\mathrm{N} 1=150.7, \mathrm{O} 4-\mathrm{O} 3-\mathrm{N} 31-\mathrm{N} 35=158.8, \mathrm{O} 2-\mathrm{N} 31-$ $\mathrm{N} 33-\mathrm{N} 35=127.4$ and $\mathrm{O} 2-\mathrm{O} 1-\mathrm{N} 33-\mathrm{N} 1=167.0^{\circ}$. In the ideal polyhedron, these values should equal 150.5°.

Rössle, M., Werner, T., Baro, A., Frey, W. \& Christoffers, J. (2004). Angew. Chem. Int. Ed. 43, 6547-6549.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1989). P3 and XDISK. Release 4.1. Siemens AXS, Madison, Wisconsin, USA.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

