

Tetrahedron 57 (2001) 1779-1783

Synthesis of C₂-symmetric tris-thioethers via optically active mustards

Jens Christoffers^{a,*} and Ulrich Rößler^b

^aInstitut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany ^bInstitut für Organische Chemie der Technischen Universität Berlin, Sekretariat C 3, Straße des 17. Juni 135, D-10623 Berlin, Germany

Received 20 November 2000; accepted 20 December 2000

Abstract—Chiral dihydroxy thioethers derived from L-mandelic and L-lactic acid are activated with $SOCl_2$, $SOBr_2$ and by bis-trifluoroacetate formation to give optically active mustard gas analogues. These compounds serve as substrates for stereospecific nucleophilic substitution reactions with NaSEt and NaSPh to furnish C₂-symmetric tris-thioethers with overall inversion of configuration. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the course of our combinatorial catalysis project on asymmetric Michael reactions^{1–3} we prepared a number of new chiral bi- and tridentate ligands being phosphines,⁴ amines,^{5–6} imines,⁷ and oxazolines⁸ having a thioether moiety as an additional donor function. In continuation of this work, we herein wish to report on novel C_2 -symmetric tris-thioethers **1a–d** (Scheme 1) being accessible from chiral dihydroxy thioethers **2a,b** by a sequence of alcohol activation and stereospecific nucleophilic substitution. The starting materials **2a,b** are readily available on a multigram scale from optically active ethyl lactate and mandelate in 75–76% yield over five steps.^{9–10}

Scheme 1. Retrosynthesis of tris-thioethers 1a-d from dihydroxy thioethers 2a,b.

2. Results and discussion

In initial attempts to activate alcohols 2a,b as sulfonates we tried to synthesize the corresponding tosylates, mesylates, or triflates according to standard protocols. However, in every case we were neither able to detect the product in

the reaction mixture nor to isolate any unique compound. Obviously, there is a significant neighboring group effect of the adjacent thioether function preventing the formation of unique materials. Having in mind that mustard gas—bis(2-chlororethyl)sulfide—is a very reactive but stable compound we considered alcohol activation by formation of the corresponding halides with SOCl₂ and SOBr₂ (Scheme 2). Compounds **3a**^{11,12} and **3c**¹³ have been reported before as racemic materials. Conversion of **2a,b** with the two thionyl halides proceeded with almost quantitative conversion in all four cases (Table 1). For **2a** elevated temperatures were required in both cases. As detectable by NMR spectroscopy all four products were obtained as single diastereoisomers and moreover as optically active materials. Partial racemization would have caused at least some formation of the meso-diastereoisomer.

Only compound **3b** showed long-term stability at ambient temperature and was obtained as an analytically pure material without particular purification (on SiO_2 decomposition is observed). Congeners **3a** and **3c**, **d** always contained

Scheme 2. Activation of dihydroxy thioethers 2a,b and synthesis of tristhioethers 1a-d. Reagents, conditions, and yields: (a) see Table 1, (b) see Table 2. For definition of 2a,b and 1a-d see Scheme 1. Tfa=trifluoroacetyl.

Keywords: alcohols; diols; substitution; sulfur compounds; thioethers.

^{*} Corresponding author. Fax: +49-711-685-4269;

e-mail: jchr@po.uni-stuttgart.de

^{0040–4020/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(01)00006-0

Starting material	Reagent	Solvent	Conditions	Product	Yield (%)
2a 2b 2a 2b 2a 2a	$\begin{array}{c} SOCl_2\\ SOCl_2\\ SOBr_2\\ SOBr_2\\ Tfa_2O^c \end{array}$	None None CH_2Cl_2 CH_2Cl_2 CH_2Cl_2	1.5 h, 50°C 2 h, 23°C 2 h, reflux 4 h, 23°C 3 h, 23°C	3a 3b 3c 3d 3e	94^{a} 94^{b} 100^{a} 100^{a} 97^{b}
2b	Tfa ₂ O	CH_2Cl_2	2 h, 23°C	3f	97 ^b

Table 1. Activation of dihydroxy thioethers 2a,b

^a Crude materials, decomposition even at -20° C within days.

^b Analytically pure without purification, no decomposition at -20° C over weeks.

^c Tfa=Trifluoroacetyl.

Table 2. Synthesis of tris-thioethers 1a-d, solvent: DMF

Starting material	Nucleophile	Temperature (°C)	Product	Yield (%)
3a	NaSEt	23	1a	61 ^a
3e	NaSEt	60	1a	8 ^b
3a	NaSPh	23	1b	60 ^a
3e	NaSPh	70	1b	24 ^b
3b	NaSEt	23	1c	50 ^b
3b	NaSEt	70	4	78 ^b
3f	NaSEt	60	1c	21 ^b
3b	NaSPh	23	1d	33 ^b
3b	NaSPh	70	1d	39 ^b
3f	NaSPh	70	1d	17 ^b

^a Contains impurities even after repeated chromatography.

^b Analytically pure after chromatography.

impurities resulting from continuous decomposition. Attempts to purify them by chromatography or distillation lead to complete decomposition. As expected for a mustard gas analogue, **3a** showed a strong biological activity in a primary anticancer assay. Since the instability of **3a** and **3c,d** turned out to be problematic in terms of clean conversion of these compounds we additionally decided to activate alcohols **2a,b** as the bis-trifluoroacetate **3e,f**, which were readily available in quantitative yields and as analytically pure products without chromatography (Table 1).

Compounds 3a-f were converted with sodium thioethanolate and thiophenolate in order to prepare tris-thioethers 1a-d (Scheme 2, Table 2). The bis-bromides 3c,d turned out to be too unstable to give products in satisfying purity. Bis-chloride 3a gave acceptable yields of 1a,b at ambient temperature, however, since decomposition of 3a occurred along with the substitution reaction, impurities resulted which could not be removed from the products **1a**,**b**, not even by repeated chromatography. Conversion of the bistrifluoroacetate 3e at elevated temperature furnished 1a,b in analytically pure form after chromatography, but in low yields. Reaction of the more stable bis-chloride 3b yielded analytically pure products 1c,d after chromatography, however, the yields were moderate at ambient temperature. Attempts to raise the yields by elevation of the reaction temperature did not significantly improve the formation of 1d. In the case of conversion of 3b with NaSEt at 70°C no product 1c was isolable after workup. Instead the bisthioether 4^{14} was formed in good yield as a racemic material. A number of pathways can be considered for the formation of 4 under the reaction conditions all involving thiiranium species as intermediates. Application of the

bis-trifluoroacetate **3f** for the synthesis of **1c**,**d** at elevated temperature resulted—similar to **3e**—in lower yields.

All products 1a-d were formed stereospecifically with inversion of configuration independently from the nature of the starting material (bis-chloride or bis-trifluoroacetate). Meso-diastereoisomers were not detectable by NMR spectroscopy in any case. Moreover, all products were of course optically active. The values of optical rotations were independent from the starting material (bis-chloride or bistrifluoroacetate) or the reaction temperature applied. We have included compounds 1a-d in our library of chiral ligands and investigations on the asymmetric catalysis of Michael reactions, as mentioned in the introduction, are presently in process.

3. Experimental

3.1. General procedure

Column chromatography was accomplished with Merck silica gel (Type 60, 0.063-0.200 mm) using *tert*-butyl methyl ether (MTB) and hexanes (PE) as solvents. Preparative TLC was performed on ICN silica gel plates (type 60A, F254, 20 cm×20 cm). Absolute CH₂Cl₂ was freshly distilled from CaH₂, DMF (HPLC grade quality) was used as purchased. ¹H NMR: Bruker AM 400 (400 MHz). ¹³C NMR: Bruker AC 200 (50 MHz), assignments were made using DEPT experiments. MS: Varian MAT 711 and MAT 955Q (high resolution). IR: Nicolet Magna IR 750. Elemental analyses: Analytik Jena Vario EL. Optical rotations: Perkin–Elmer polarimeter 341.

Dihydroxy thioethers were prepared as reported previously,¹⁰ all other starting materials were commercially available.

3.1.1. (*S*,*S*)-(+)-Bis(2-chloropropyl)sulfide (3a). Under an atmosphere of nitrogen SOCl₂ (2.00 ml, 27.5 mmol) was added to diol 2a (375 mg, 2.50 mmol). After being stirred for 90 min at 50°C water was added (15 ml), and the mixture extracted with CH_2Cl_2 (3×25 ml). Drying of the combined organic layers (MgSO₄) and filtration was followed by evaporation of all volatile materials to yield the dichloride 3a (440 mg, 2.35 mmol, 94%) as a brown liquid, which decomposes upon chromatography as well as on storage at ambient temperature. $[\alpha]_D^{20} = +9.61$ (*c* 3.85, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.60$ (d, J = 6.6 Hz, 3H), 2.83 (dd, J=13.7, 7.9 Hz, 1H), 3.01 (dd, J=13.7, 5.8 Hz, 1H), 4.06–4.16 (m, 1H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): δ=23.89 (CH₃), 42.58 (CH₂), 56.68 (CH) ppm. IR (ATR): ν =2976 (m), 2928 (m), 1713 (vs), 1450 (m), 1419 (m), 1377 (m), 1362 (s), 1221 (s), 1107 (m) cm⁻¹. MS (EI, 70 eV), *m*/*z* (%): 186 (31) [M⁺], 137 (35), 123 (100), 110 (21), 87 (43), 77 (43), 61 (17). C₆H₁₂Cl₂S (187.13): Mol. mass calcd 186.0037; found 186.0039 (HRMS).

3.1.2. (S,S)-(+)-**Bis**(2-phenyl-2-chloroethyl)sulfide (3b). According to the previous procedure for **3a** SOCl₂ (2.00 ml, 27.5 mmol) and diol **3b** (640 mg, 2.33 mmol) were converted for 2 h at 23°C to yield the dichloride **2b** (685 mg, 2.20 mmol, 94%) as an analytically pure brown

1781

oil, which is stable below 0°C over weeks, but decomposes upon chromatography on SiO₂. $[\alpha]_D^{20}=+125$ (*c* 2.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta=2.98$ (dd, J=13.9, 8.5 Hz, 1H), 3.06 (dd, J=13.9, 6.4 Hz, 1H), 4.79 (dd, J=8.5, 6.4 Hz, 1H) 7.28–7.48 (m, 5H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): $\delta=41.70$ (CH₂), 62.04 (CH), 127.27 (CH), 128.63 (CH), 128.78 (CH), 139.57 (C) ppm. IR (ATR): $\nu=1493$ (m), 1454 (s), 768 (m), 723 (m), 696 (vs) cm⁻¹. MS (EI, 70 eV), *m/z* (%): 310 (10) [M⁺], 149 (100), 135 (20), 125 (26), 115 (16), 104 (60), 103 (47), 91 (25), 77 (22), 51 (12). C₁₆H₁₆Cl₂S (311.27): Anal. calcd C 61.74, H 5.18; found C 61.84, H 5.31. Mol. mass calcd 310.0350; found 310.0349 (HRMS).

3.1.3. (S,S)-(+)-Bis(2-bromopropyl)sulfide (3c). Under an atmosphere of nitrogen SOBr₂ (1.65 g, 7.92 mmol) was added to a solution of diol 2a (297 mg, 1.98 mmol) in CH₂Cl₂ (10 ml). After being heated to reflux for 2 h water was added (30 ml) and the mixture extracted with CH₂Cl₂ $(3 \times 30 \text{ ml})$. Drying of the combined organic layers (MgSO₄) and filtration was followed by evaporation of all volatile materials to yield the dibromide 3c (547 mg, 1.98 mmol, 100%) as a brown liquid, which decomposes upon chromatography as well as on storage below 0° C. $[\alpha]_{D}^{20} = +23$ (c 0.8, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.78$ (d, J=6.6 Hz, 3H), 2.91 (dd, J=13.7, 8.9 Hz, 1H), 3.15 (dd, J=13.7, 5.3 Hz, 1H), 4.06–4.32 (m, 1H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): δ=24.66 (CH₃), 42.93 (CH₂), 47.68 (CH) ppm. IR (ATR): v=2970 (s), 2923 (s), 1727 (m), 1447 (s), 1416 (m), 1375 (vs), 1243 (m), 1220 (m), 1163 (vs), 1099 (m), 1045 (m), 996 (s) cm⁻¹. MS (EI, 70 eV), m/z (%): 274 (19) [M⁺], 195 (100) [M⁺-Br], 153 (38), 125 (20), 121 (64), 75 (30). C₆H₁₂Br₂S (276.03): Mol. mass calcd 273.9027; found 273.9022 (HRMS).

3.1.4. (*S*,*S*)-(+)-Bis(2-phenyl-2-bromoethyl)sulfide (3d). Under an atmosphere of nitrogen SOBr₂ (208 mg, 1.00 mmol) was added to a solution of diol **2b** (94.1 mg, 0.343 mmol) in CH₂Cl₂ (2 ml). After being stirred for 4 h at 23°C water was added (10 ml), and the mixture extracted with CH_2Cl_2 (2×20 ml). Drying of the combined organic layers (MgSO₄) and filtration was followed by evaporation of all volatile materials to yield the dibromide 3d (137 mg, 0.343 mmol, 100%) as a green liquid, which decomposes upon chromatography as well as on storage below 0°C. $[\alpha]_{D}^{20} = +12$ (c 0.95, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ =4.03 (dd, J=10.6, 10.3 Hz, 1H), 4.09 (dd, J=10.3, 5.5 Hz, 1H), 5.15 (dd, J=10.6, 5.5 Hz, 1H), 7.28-7.50 (m, 5H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): δ =34.99 (CH₂), 50.83 (CH), 127.59 (CH), 128.79 (CH), 128.89 (CH), 139.52 (C) ppm. IR (ATR): v=1496 (m), 1454 (s), 1155 (m), 1137 (m), 767 (s), 694 (vs) cm⁻¹. MS (EI, 70 eV), m/z (%): 398 (1) [M⁺], 319 (12), 183 (46), 104 (100), 103 (31), 91 (15), 78 (17), 77 (17), 51 (14). C₁₆H₁₆Br₂S (400.17): Mol. mass calcd 397.9340; found 397.9337 (HRMS).

3.1.5. (*S*,*S*)-(-)-**Bis**(2-trifluoroacetoxypropyl)sulfide (3e). Under an atmosphere of nitrogen Tfa₂O (1.21 g, 5.76 mmol) was added at 0°C to a solution of diol 2a (217 mg, 1.44 mmol) in CH₂Cl₂ (10 ml). The mixture was stirred for 3 h while warming up to ambient temperature, then water (5 ml) and saturated Na₂CO₃ solution (30 ml) were added. After extraction with CH₂Cl₂ (3×30 ml), drying $(MgSO_4)$, and filtration, all volatile materials were removed yielding the bisacetate 3e (479 mg, 1.40 mmol, 97%) as a yellowish, analytically pure oil. $[\alpha]_D^{20} = -13.1$ (c 11.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (d, J=6.2 Hz, 3H), 2.81 (d, J=6.2 Hz, 2H), 5.21 (sextet, J=6.2 Hz, 1H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): $\delta = 18.48$ (CH₃), 37.18 (CH₂), 74.71 (CH), 114.30 (q, J=286 Hz, CF₃), 156.74 (q, J=42 Hz, CO) ppm. IR (ATR): $\nu = 1781$ (vs), 1380 (m), 1331 (m), 1218 (s), 1154 (vs), 1122 (vs), 1031 (m), 862 (m), 776 (m), 728 (m) cm^{-1} . MS (EI, 70 eV), *m*/*z* (%): 342 (4) [M⁺], 228 (38), 155 (16), 114 (100) [CF₃CO₂H⁺], 99 (15), 87 (58), 73 (15), 69 (83), 59 (13). C₁₀H₁₂F₆O₄S (342.25): Anal. calcd C 35.09, H 3.53; found C 35.14, H 3.82. Mol. mass calcd 342.0360; found 342.0361 (HRMS).

3.1.6. (S,S)-(+)-Bis(2-phenyl-2-trifluoroacetoxyethyl)sulfide (3f). According to the previous procedure for 3e Tfa₂O (527 mg, 2.51 mmol), diol 2b (172 mg, 0.627 mmol), and CH₂Cl₂ (4 ml) were converted to yield bisacetate 3f (284 mg, 0.609 mmol, 97%) as a yellowish, analytically pure oil. $[\alpha]_D^{20} = +92.6$ (*c* 10.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.89$ (dd, J = 14.4, 5.6 Hz, 1H), 3.03 (dd, J=14.4, 8.1 Hz, 1H), 5.92 (dd, J=8.1, 5.6 Hz, 1H), 7.24–7.46 (m, 5H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): δ=37.46 (CH₂), 79.27 (CH), 114.45 (q, J=284 Hz, CF₃), 126.49 (CH), 128.88 (CH), 129.37 (CH), 136.34 (C), 156.49 (q, J=42 Hz, CO) ppm. IR (ATR): $\nu = 1785$ (s), 1224 (s), 1149 (vs), 697 (m) cm⁻¹. MS (EI, 70 eV), m/z (%): 466 (10) [M⁺], 352 (55), 203 (29), 149 (100), 135 (20), 115 (20), 104 (31), 91 (29), 77 (14), 69 (17). C₂₀H₁₆F₆O₄S (466.40): Anal. calcd C 51.51, H 3.46; found C 51.60, H 3.65. Mol. mass calcd 466.0673; found 466.0678 (HRMS).

3.1.7. (*R*,*R*)-(+)-**Bis**[2-(ethylsulfanyl)propyl]sulfide (1a). A solution of bisacetate **3e** (916 mg, 2.68 mmol) in DMF (6 ml) was added to NaSEt (757 mg, 9.00 mmol), and the resulting mixture was stirred overnight at 60°C in a tightly closed reaction vial. After dilution with MTB (75 ml) the solution was washed with water (3×30 ml), dried (MgSO₄), filtered and the solvent evaporated. Column chromatography (SiO₂, MTB/PE 1:50, R_f =0.13) of the residue followed by removal of small amounts of higher volatile impurities in high vacuum furnished tris-thioether **1a** (52.2 mg, 0.219 mmol, 8%) as an analytically pure, colorless oil.

Analogous conversion of dichloride **3a** (468 mg, 2.50 mmol) with NaSEt in DMF at ambient temperature yielded the title compound **1a** (364 mg, 1.53 mmol, 61%) containing impurities, which could not be removed by chromatography. $[\alpha]_{D}^{20} = +86$ (*c* 3.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (t, J = 7.4 Hz, 3H), 1.36 (d, J = 6.8 Hz, 3H), 2.52–2.64 (m, 1H), 2.59 (q, J = 7.4 Hz, 2H), 2.82–2.98 (m, 2H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): $\delta = 14.79$ (CH₃), 20.23 (CH₃), 24.65 (CH₂), 39.42 (CH), 40.28 (CH₂) ppm. IR (ATR): $\nu = 2962$ (vs), 2925 (vs), 2869 (m), 1451 (s), 1373 (s), 1261 (s), 1225 (w) cm⁻¹. MS (EI, 70 eV), *m/z* (%): 238 (2) [M⁺], 176 (7), 135 (12), 103 (100) [C₅H₁₁S⁺], 102 (47), 93 (8), 89 (54), 75 (25), 61 (38). C₁₀H₂₂S₃ (238.46): Anal. calcd C 50.37, H 9.30; found C

50.39, H 9.16. Mol. mass calcd 238.0884; found 238.0883 (HRMS).

3.1.8. (*R*,*R*)-(+)-**Bis**[2-(phenylsulfanyl)propyl]sulfide (1b). According to the previous procedure for 1a bisacetate 3e (758 mg, 2.21 mmol) in DMF (3 ml) was converted with NaSPh (1.17 g, 8.84 mmol) at 70°C. After workup twofold column chromatography on SiO₂ (1. MTB/PE 1:30, $R_{\rm f}$ =0.37; 2. MTB/PE 1:50, $R_{\rm f}$ =0.23) yielded a material, which was submitted to preparative TLC on SiO₂ (MTB/PE 1:50) to yield the analytically pure title compound 1b (180 mg, 0.539 mmol, 24%) as a colorless oil.

Analogous conversion of dichloride **3a** (374 mg, 2.00 mmol) with NaSPh in DMF at ambient temperature yielded the title compound **1b** (398 mg, 1.19 mmol, 60%) containing impurities, which could not be removed by chromatography. $[\alpha]_D^{20} = +69.5$ (*c* 5.50, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ =1.35 (d, J=6.7 Hz, 3H), 2.49 (dd, J=13.2, 9.5 Hz, 1H), 2.79 (dd, J=13.2, 4.3 Hz, 1H), 3.18-3.30 (m, 1H), 7.16–7.42 (m, 5H) ppm. ${}^{13}C{}^{1}H$ NMR $(50 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 19.60 \text{ (CH}_3)$, $39.53 \text{ (CH}_2)$, 42.93(CH), 127.29 (CH), 128.94 (CH), 132.47 (CH), 134.08 (C) ppm. IR (ATR): v=2960 (m), 2922 (m), 1583 (m), 1480 (m), 1473 (m), 1540 (m), 1438 (s), 1371 (m), 1025 (m), 738 (vs), 701 (m), 690 (vs) cm⁻¹. MS (EI, 70 eV), m/z(%): 334 (36) [M⁺], 224 (7), 184 (26), 183 (44), 151 $(100) [C_9H_{11}S^+], 150 (30), 141 (47), 137 (31), 123 (16),$ 109 (28). C₁₈H₂₂S₃ (334.55): Anal. calcd C 64.62, H 6.63; found C 64.59, H 6.66. Mol. mass calcd 334.0884; found 334.0885 (HRMS).

3.1.9. (R,R)-(-)-Bis[2-phenyl-2-(ethylsulfanyl)ethyl]sulfide (1c). NaSEt (312 mg, 3.71 mmol) was added to a solution of dichloride **3b** (289 mg, 0.928 mmol) in DMF (7 ml). The mixture was stirred overnight at ambient temperature. After dilution with MTB (50 ml) and extraction with water $(3 \times 30 \text{ ml})$ the organic layer was dried (MgSO₄), filtered and the solvent evaporated. The residue was twice column chromatographed on SiO₂ (MTB/PE 1:50, $R_f=0.11$) to give tristhioether 1c (168 mg, 0.463 mmol, 50%) as an analytically pure, colorless oil. $[\alpha]_D^{20} = -151 (c \ 6.95, \text{CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃): δ =1.14 (t, J=7.4 Hz, 3H), 2.30 (q, J=7.4 Hz, 1H), 2.31 (q, J=7.4 Hz, 1H), 2.84 (dd, J=8.9, 13.3 Hz, 1H), 2.89 (dd, J=6.3, 13.3 Hz, 1H), 3.86 (dd, J=6.3, 8.9 Hz, 1H), 7.20-7.38 (m, 5H) ppm. ¹³C{¹H} NMR (50 MHz, CDCl₃): $\delta = 14.39$ (CH₃), 25.45 (CH₂), 39.13 (CH₂), 49.68 (CH), 127.46 (CH), 127.87 (CH), 128.47 (CH), 141.05 (C) ppm. IR (ATR): ν =1490 (m), 1451 (m), 696 (vs) cm⁻¹. MS (EI, 70 eV), *m/z* (%): 362 (1) $[M^+]$, 226 (8), 165 (20), 164 (18), 151 (100) $[C_9H_{11}S^+]$, 135 (14), 123 (6), 104 (20), 103 (12), 91 (11), 77 (8). C₂₀H₂₆S₃ (362.61): Anal. calcd C 66.25, H 7.23; found C 66.36, H 7.28. Mol. mass calcd 362.1197; found 362.1199 (HRMS).

3.1.10. *rac*-Bis-1,2-(ethylsulfanyl)-1-phenylethane (4). Dichloride **3b** (85.0 mg, 0.273 mmol) was converted with (92.0 mg, 1.09 mmol) in DMF (2 ml) at 70°C according to the procedure given above for **1c** to yield the bis-thioether **4** (48.0 mg, 0.212 mmol, 78%) as a colorless oil after chromatography (SiO₂, MTB/PE 1:50, $R_{\rm f}$ =0.33). [α]_D²⁰=0.00 (*c* 6.95, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ =1.17 (t,

J=7.4 Hz, 3H), 1.19 (t, J=7.4 Hz, 3H), 2.30–2.41 (m, 2H), 2.44 (q, J=7.4 Hz, 2H), 2.99 (dd, J=8.6, 13.0 Hz, 1H), 3.04 (dd, J=6.5, 13.0 Hz, 1H), 3.99 (dd, J=6.5, 8.6 Hz, 1H), 7.24–7.38 (m, 5H) ppm. $^{13}C{^{1}H}$ NMR (50 MHz, CDCl₃): δ =14.34 (CH₃), 14.62 (CH₃), 25.42 (CH₂), 26.71 (CH₂), 37.96 (CH₂), 49.68 (CH), 127.38 (CH), 127.79 (CH), 128.41 (CH), 141.28 (C) ppm. IR (ATR): ν =2966 (s), 2926 (s), 2870 (m), 1491 (m), 1452 (s), 1265 (m), 765 (m), 733 (m), 713 (s), 698 (vs) cm⁻¹. MS (EI, 70 eV), *m*/*z* (%): 226 (21) [M⁺], 165 (26), 151 (100) [C₉H₁₁S⁺], 135 (50), 123 (24), 121 (13), 103 (47), 91 (27), 77 (27). C₁₂H₁₈S₂ (226.39): Anal. calcd C 63.66, H 8.01; found C 63.43, H 7.85. Mol. mass calcd 226.0850; found 226.0843 (HRMS).

3.1.11. (*R*,*R*)-(-)-Bis[2-phenyl-2-(phenylsulfanyl)ethyl]sulfide (1d). According to the procedure given above for 1c NaSPh (137 mg, 1.04 mmol) was converted with dichloride **3b** (81.0 mg, 0.260 mmol) in DMF (2 ml) at 70°C to give a crude material, which was purified first by column chromatography (SiO₂, MTB/PE 1:30, R_f =0.27) and subsequently by preparative TLC (SiO₂, MTB/PE 1:30) to furnish the analytically pure compound 1d (46.0 mg, 0.100 mmol, 39%) as a yellowish oil. $[\alpha]_D{}^{20} = -150 \ (c \ 1.8, \ CHCl_3).$ ¹H NMR (400 MHz, CDCl₃): $\delta = 2.85 \ (dd, \ J = 13.3, \ 9.3 \ Hz,$ 1H), 2.91 (dd, J=13.3, 5.8 Hz, 1H), 4.12 (dd, J=9.3, 5.8 Hz, 1H), 7.08–7.40 (m, 10H) ppm. ¹³C{¹H} NMR $(50 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 38.50 \text{ (CH}_2), 53.47 \text{ (CH)}, 127.56$ (CH), 127.67 (CH), 127.94 (CH), 128.44 (CH), 128.85 (CH), 132.84 (CH), 134.11 (C), 139.89 (C) ppm. IR (ATR): v=1581 (m), 1491 (m), 1479 (m), 1452 (m), 1437 (m), 1024 (m), 738 (s), 689 (vs), 658 (m) cm⁻¹. MS (EI, 70 eV), m/z (%): 458 (1) [M⁺], 349 (18), 245 (43), 213 (16), 199 (29), 141 (94), 135 (100), 109 (39), 104 (30), 91 (17), 77 (10). C₂₈H₂₆S₃ (458.71): Anal. calcd C 73.32, H 5.71; found C 73.17, H 5.84. Mol. mass calcd 458.1197; found 458.1199 (HRMS).

Acknowledgements

We are grateful to the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for generous support.

References

- 1. Christoffers, J.; Mann, A. Chem. Eur. J. 2001 (in press).
- Christoffers, J.; Mann, A. Angew. Chem. 2000, 112, 2871– 2874 (Angew. Chem. Int. Ed. 2000, 39, 2752–2754).
- Christoffers, J.; Rößler, U.; Werner, T. Eur. J. Org. Chem. 2000, 701–705.
- Christoffers, J.; Rößler, U. Tetrahedron: Asymmetry 1999, 10, 1207–1215.
- 5. Christoffers, J. J. Prakt. Chem. 1999, 341, 495-498.
- 6. Christoffers, J. Liebigs Ann./Recueil 1997, 1353-1358.
- Christoffers, J.; Mann, A.; Eur J. Org. Chem. 1999, 1475– 1479.
- Christoffers, J.; Mann, A.; Pickardt, J. *Tetrahedron* 1999, 55, 5377–5388.
- Christoffers, J.; Rößler, U. J. Prakt. Chem. 2000, 342, 654– 658.

- 10. Christoffers, J.; Rößler, U. *Tetrahedron: Asymmetry* **1998**, *9*, 2349–2357.
- 11. Coffey, S. J. Chem. Soc. 1921, 119, 94-98.
- 12. Pope, W. J.; Smith, J. L. B. J. Chem. Soc. 1921, 119, 396-400.
- 13. Edwards, D.; Stenlake, J. B. J. Chem. Soc. 1956, 3892-3900.
- 14. Schneider, H. J.; Bagnell, J. J. J. Org. Chem. **1961**, 26, 1984–1986.