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ABSTRACT

The focus of the challenges in developing embedded systems is significantly
shifting towards the integration of multiple subsystems on a powerful single
platform while considering the cost, size, and power consumption con-
straints as well as the heterogeneous, domain-specific requirements which
are characteristic in the domain of embedded systems. The rise of mixed-
critical embedded systems moreover imposes novel challenges on the spe-
cification, development, and functional validation in the design flow. In
the emerging dynamic scheduling context of mixed-criticality platforms,
the system behaviour needs to be estimated in an early step in the design
flow to assess the integration impact, especially for quality of service-driven,
low-critical subsystems.

This work provides amodelling and integration flow for specifying, estim-
ating, and evaluating software functions, ranging from an initial executable
specification to an implementation candidate on a Multi-Processor System-
on-a-Chip. The flow starts with a mixed-criticality programming model
proposed to express safety- as well as performance-critical functional beha-
viour along with their real-time requirements. A component-based refine-
ment flow then provides an implementation candidate on a contemporary
MPSoC. The integrated measurement infrastructure then allows for system-
atically analysing the functional behaviour as well as the overhead of mech-
anisms for isolating, managing, and observing the refined mixed-criticality
subsystems. Based on a data-driven model to evaluate dynamic resource con-
sumption effects of high-critical subsystems, the thesis proposes a method
for constructing workload models of safety-critical software components
on the target platform. The evaluation of this work demonstrates that these
models can support mixed-criticality system integration scenarios where in-
tellectual property issues may prevent integration or the need for fast time-
to-market goals require a decoupled development and integration phase of
mixed-critical applications.
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ZUSAMMENFASSUNG

Der Fokus der Herausforderungen in der Entwicklung eingebetteter Sys-
teme verschiebt sich immer mehr in Richtung der Integration mehrerer
Teilsysteme auf einer gemeinsamen, leistungsfähigen Plattform. Dabei spielt
die gleichzeitige Betrachtung der Einschränkungen bezüglich Kosten, Grö-
ße und Leistungsaufnahme sowie der für eingebettete Systeme charakteristi-
schen heterogenen, domänenspezifischen Anforderungen eine entscheiden-
de Rolle. Der Trend zu gemischt-kritischen eingebetteten Systemen stellt
darüber hinaus neue Herausforderungen an die Spezifikation, Entwicklung
und funktionale Validierung in deren Entwicklungsfluss. Durch den Ein-
zug dynamischer Scheduling-Verfahren in gemischt-kritischen Plattformen
ist eine Abschätzung des Systemverhaltens zur Bewertung der Auswirkung
der Integration von Teilsystemen bereits in den ersten Schritten des Ent-
wicklungsflusses erforderlich, insbesondere bei der Integration von niedrig-
kritischen, serviceorientierten Funktionen.

In dieser Arbeit wird ein Modellierungs- und Integrationsfluss zur Spe-
zifikation, Abschätzung und Bewertung von Softwarefunktionen, ausge-
hend von einer initialen, ausführbaren Spezifikation bis hin zu einer Imple-
mentation auf einem Multi-Processor System-on-a-Chip, vorgestellt. Dazu
wird zunächst ein Programmiermodell für gemischt-kritische Systeme einge-
führt, in dem sicherheitskritisches sowie leistungsorientiertes funktionales
Verhalten zusammen mit ihren Echtzeitanforderungen ausgedrückt werden
kann. Eine komponentenbasierte Verfeinerungsstrategie erlaubt dann die
prototypische Entwicklung eines Implementationskandidaten auf einem
Multi-Processor System-on-a-Chip. Darüber hinaus ermöglicht eine inte-
grierte Messinfrastruktur, den zeitlichen Mehraufwand der Mechanismen
zur Isolation, Kontextverwaltung und zeitlichen Beobachtung der gemischt-
kritischen Teilsysteme systematisch zu analysieren. Basierend auf einem da-
tengetriebenen Modell zur Bewertung der dynamischen Nutzung von Platt-
formressourcen des sicherheitskritischen Teilsystems wird in dieser Arbeit
anschließend eine Methode zur Konstruktion von Auslastungsmodellen für
die sicherheitskritischen Teilsysteme auf der Zielplattform vorgeschlagen.
Die Bewertung in dieser Arbeit zeigt, dass durch diese Modelle die Integra-
tionsszenarien gemischt-kritischer Systeme unterstützt werden können, bei
denen der Schutz geistigen Eigentums eine Integration erschweren könnte
oder bei denen kurze Vorlaufzeiten für die Marktreife eine Entkoppelung
der Entwicklung von der Integration gemischt-kritischer Anwendungen
erfordern.
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1INTRODUCT ION

The design of embedded systems is currently facing a paradigm shift, driven
by the rising complexity of hardware platforms and the economic need
for increasing the number of functionalities on each device. Until recently,
embedded systems consisted of a dedicated set of functions executed on a
single hardware device. However, the amount of embedded devices in large-
scale systems such as aircraft and automobiles currently rises significantly
to the point where an isolated approach of developing and integrating these
devices on separate hardware architectures becomes infeasible due to the size,
weight, and power consumption requirements of each individually packaged
hardware component.

Due to the continuous improvements in chip design manufacturing tech-
niques over the last decades, the physical size of transistors has been re-
duced significantly, resulting in an ever-increasing transistor count per chip
area. Moore’s Law originally states that the transistor count on a fixed area
doubles every 18 months. In recent years however, transistors are slowly
reaching the physical limitations in terms of their structural size. The chip
manufacturing industry is thus racing towards the end of Moore’s Law, an
era which has lasted for more than fifty years [58].

Moore’s Law however has not only predicted the structural improve-
ments in terms of transistor density. The symptom of these improvements,
the doubling of computing power every 18 months, still prevails, even after
reaching the physical limits in current manufacturing processes. The trend
in Figure 1.1 shows that the overall transistor count is still increasing ex-
ponentially. As a consequence, the chip area of contemporary hardware
designs continues to grow. Advances in system-level design methodolo-
gies and design automation additionally make it feasible to utilise the in-
creased chip area by specifying and implementing chip layouts consisting
of multiple complex hardware/software components on a so-called Multi-
Processor System-on-a-Chip (MPSoC). Such platforms feature multiple pro-
cessing elements and complex interconnect hierarchies, and therefore con-
tribute in further increasing the possible feature density of functionality in
embedded devices.

Another effect of the advances in chip design is the increase in the num-
ber of devices due to lower manufacturing costs. Its consequences can be ob-
served in the automotive domain, as the number of devices per automobile
constantly grows due to consumer needs and the requirements on driver as-
sistance systems. However, such embedded systems usually have tight con-
straints on the space, weight, and power consumption due to their integ-
ration environment. As a result, the automotive industry is looking into
methods for mapping multiple (independent) functionalities to powerful
MPSoCs to save on the wiring and packaging overhead compared to isolated
device solutions.
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2 introduction

Figure 1.1: 42 years of microprocessor trend data, covering transistor count, single-
thread performance, frequency, power consumption, and the number of
logical cores (from [70]).

Advances in chip design cause the embedded systems design process to be
heavily shaped by the rise of complex MPSoCs, because the resulting hard-
ware platforms allow an increased feature density through the integration
of a wide range of functionality. Such powerful hardware platforms are fur-
thermore a key enabling technology for the emerging Cyber-Physical Sys-
tems (CPS) domain. This is because, compared to single-core devices, these
platforms provide superior processing power and heterogeneous computa-
tion resources, such as general-purpose processing elements or dedicated
real-time processors, and even user-logic for application-specific logic cores.
CPS operate in the physical domain through the use of sensors and actors
for gathering information from their physical environment and the cyber
domain through their integration in large-scale cross-application commu-
nication networks. They impose novel challenges to the design process due
to their demand in computing power for communication as well as their re-
quirements towards extra-functional quantities such as time, power or tem-
perature for embedding them into the physical environment.

Embedded systems design flows play a key role in establishing an eco-
nomically feasible product: design methodologies, which cover the process
of stating system requirements and provide a guided, stepwise refinement
towards an implementation candidate, form the cornerstone of modern em-
bedded systems design automation. The heterogeneous requirements of CPS
cause academics and industry to face novel challenges in the context of
designing, validating, and integrating CPS, as stated by Tripakis [74] due
to the combination of computational demand and extra-functional require-
ments.

The economic advantage of suchMPSoCs and the need for increasing func-
tionality to meet the demand of emerging CPSs has lead to efforts for consol-
idating multiple functionalities on the same hardware platform, often times
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categorised into different criticalities. In fact, CPS by definition consist of
multiple functionalities that require different levels of assurance regarding
their criticality. Depending on the use-case, sensor data processing and actor
operations may require a high degree of reliability and therefore possess real-
time requirements, for example to avoid over- and under-sampling or to re-
act on environmental changes in a specified interval. On the other hand, a
CPSmay also provide functionality for user interaction and other best-effort,
non-critical operations such as infotainment. As such, most CPS can thus be
labelled asmixed-critical systems, since they are composed of functions with
different criticalities.

1.1 context

Until recently, the design methodology for embedded systems focussed
on implementing functionality on an isolated HW/SW platform. In such
designs, the functionality and the extra-functional properties such as timing
behaviour and power consumption are estimated in the context of the dedic-
ated hardware platform. Certification authorities from safety-critical embed-
ded domains such as automotive and avionics require that a Failure Mode
and Effect Analysis (FMEA) assess the system’s criticality in the context of
the environment. The criticality of a function is usually determined by its
failure impact. Mitigation techniques and methods need to be implemented
in these systems to achieve a criticality-dependant maximum failure probab-
ility. Possible mitigations for such failures include isolating the device from
other parts of the system, providing backup power wiring, or implement-
ing the function in a redundant setup. Besides their functional correctness,
real-time systems adhere to the timing requirements of the function they
perform. As such, they are considered malfunctioning if the function is
unable to meet the specified timing deadline. Therefore, fault mitigation in
real-time systems considers the execution time of functions implemented
on a platform. In the context of this thesis, we consider the term mixed-crit-
icality as the combination of functions with different real-time criticalities
on the same hardware platform.

Combining systems (with different criticalities) on a single platform in-
validates the timing guarantees stated in an isolated environment and need
to be reconsidered for the integrated platform. A manual integration and re-
validation process can quickly become economically infeasible. Embedded
systems design flows thus provide tools andmethods for estimating platform
timing behaviour already in the specification and refinement phases. When
functions with different criticalities are integrated on the same platform,
any inter-dependencies which may impact their timing behaviour need to
be considered rigorously.
Cullmann et al. [18] have shown that pessimistic timing estimates on com-

plex MPSoC can deviate from their observed worst-case behaviour consider-
ably. Additionally, integratingmore functionality on the same platform also
raises the potential for timing interferences, thereby increasing such pessim-
istic timing estimates even more. These factors reduce the design space con-
siderably when integrating functionality on a MPSoC, causing an utilisation
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gap between the estimated timing behaviour of safety-critical functionality
at design-time and its average timing behaviour observed at run-time.

Research regarding mixed-criticality real-time task models and run-time
strategies for observing the dynamic execution time behaviour of mixed-crit-
ical functionality consider reducing the utilisation gap. At the same time,
they can guarantee the temporal requirements specified at design-time [14].
Such mixed-criticality models provide means for describing criticality scen-
arios such that task models contain multiple execution time estimates differ-
ing in their level of assurance [33]. When a high-critical function exhibits
average-case execution time behaviour, computational resources are optim-
istically allocated to lower-critical functions and dynamically re-allocated
in case the task overruns the optimistic timing guarantees at run-time. Such
dynamic resourcemanagementmethods are especially interesting in the con-
text of mapping safety-critical and performance-critical functionality to the
same platform. While timing guarantees are given for the former, the latter
can exploit the high-performance resources available on MPSoC platforms.

1.2 motivation

When designing performance-critical functions which adhere to Quality of
Service (QoS) metrics, the refinement decisions typically depend on post-
integration performance estimates, obtained either using suitable perform-
ance models or measurements on the platform. A mixed-criticality integra-
tion flow therefore needs provide accurate models for evaluatingQoSmetrics
while considering the mapped safety-critical functions, the platform segreg-
ation overhead, and the impact of dynamic resource utilisation artefacts
caused by dynamic mixed-criticality scheduling policies. The challenge in
the integration process for mixed-criticality systems manifests in modelling
the dynamic application behaviour which criticality-aware scheduling tech-
niques exploit for increasing resource utilisation on the platform.
We claim that reducing themanual refinement step is a key factor forman-

aging the design complexity in mixed-criticality system design. In order to
rapidly provide an implementation candidate, a design and integration flow
needs to consider mixed-criticality properties along their functional beha-
viour already at the specification level and provide tool-assisted deployment
by enabling a systematic configuration of platform segregation techniques.
We argue that omitting mixed-criticality properties at the system-level pre-
vents the designer from performing scheduling analyses and delays the eval-
uation of partitioning and mapping decisions. Furthermore, integrating the
functional behaviour only in a late step in the design flow limits the possibil-
ities for re-evaluating design decisions regarding partitioning and mapping.
Mixed-criticality scheduling policies combine worst-case upper-bounded

timing properties with average-case estimates that only give a lower level
of assurance on the temporal behaviour of a software component. The tim-
ing behaviour variations of these tasks affect the dynamic scheduling policy
which influences the execution performance of lower-critical components
mapped to the same platform. Suitable models which take into account
this dynamic timing and scheduling behaviour are therefore essential to
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provide feedback during the design flow for a performance estimation in
lower-critical subsystems. Analysing the performance behaviour of lower-
critical function implementations inmixed-criticality platforms usingworst-
case timingmodels of safety-critical subsystems fails to take into account the
dynamic scheduling behaviour, since they do not consider the average-case
timing behaviour which can significantly deviate, especially when consider-
ing MPSoC platforms. As a result, a mixed-criticality design flow needs to
consist of timing models which consider the dynamic scheduling behaviour
to provide accurate modelling results for estimating performance metrics.

The complexity of mixed-criticality software mapped to MPSoC systems,
caused by the implemented segregation techniques and the requirements
on the component’s functionality is constantly rising. However, due to the
coupling effects of the dynamic scheduling behaviour in mixed-criticality
systems, the performance impact when integrating functionalities is only
visible when all components are integrated on the platform. Additional
re-iterations regarding functional refinement or other design decision re-
quire the full platform to be integrated again to re-evaluate the performance
goals. This traditional embedded systems workflow may ultimately render
many products economically infeasible due to the added cost of develop-
ment and time consumed by the integration process. Therefore, providing
timing models for performance estimation is necessary but not sufficient.
In mixed-criticality systems, the high degree of complexity regarding the
software stack, especially in performance-critical systems, requires extensive
implementation support for the integration on a platform. Such systems im-
plementing heterogeneous use-cases and design assurance levels require an
integration environment that allows to decouple the functional refinement
from the performance estimation.

1.3 scope & research questions

In this thesis, we address the challenges of designing and integrating embed-
ded mixed-critical software components on a common platform. In particu-
lar, we focus on the effect of computation resource sharing effects and segreg-
ation techniques for dual-criticality systems. They consist of functionalities
which can be categorised along their criticality into high- and low-critical
which we denote as HI- and LO-critical, respectively. The categorisation of
these functionalities can be derived from a domain-specific FMEA. In such
mixed-criticality systems, the HI-critical functionality needs to be designed
and implemented according to tight temporal constraints. On the other
hand, the LO-critical function generally represents a best-effort functional-
ity where the designer is interested in the overall performance behaviour
in terms of domain-specific metrics such as frames per second, average band-
width, or requests per minute. In contrast to the HI-critical subsystem, these
functions do not have any real-time requirements except their performance
metrics. Summarising, a HI-critical subsystem represents a function with
guaranteed real time requirements, while a LO-critical component denotes a
purely performance-driven software subsystem with requirements on QoS
metrics that need to be estimated early on in the design process.
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Currently, on the one hand, research is addressing the question of how
to sufficiently separate mixed-criticality systems both in the functional and
extra-functional sense to eliminate coupling regarding behaviour, timing,
power consumption, and temperature. On the other hand, models have
been proposed which aim at taking into account the dynamic aspects of run-
time behaviour of mixed-criticality systems to allow a more sophisticated
scheduling by considering the utilisation gap caused by design-time worst-
case assumptions and observed average run-time behaviour. These activities
consider platform-level segregation and isolation techniques, as well as activ-
ities regarding the improvement of resource utilisation.

The first scientific context of this thesis focusses on how the application-
level mixed-criticality requirements can be specified, systematically con-
sidered, and refined towards an implementation candidate, while being able
to assess the integration impact regarding timing behaviour ofmixed-critical-
ity applications and segregation techniques at multiple stages in the design
flow. The focus of this work is a technical realisation of a mixed-criticali-
ty system-level specification model and the proposal of evaluation models
suitable for performance estimation of LO-critical functionality integrated
with a HI-critical software component. In particular, this work considers
the dynamic aspects of contemporary mixed-criticality scheduling policies
by providing suitable models that capture this dynamic temporal behaviour
and the resulting impacts on platform utilisation. The second scientific con-
text of this thesis is the assessment on how to capture dynamic mixed-crit-
icality scheduling effects in timing models of the platform and application.
We formulate the following scientific questions regarding a mixed-criticality
system-level design flow:

1. How can mixed-criticality properties of safety- and performance-
critical software applications be considered along their functional
behaviour in an embedded systems design flow?

2. How can the functional description along with the mixed-criticality
properties be used to derive an implementation on an MPSoC?

3. What are the platform requirements that fulfil the needs of mixed-crit-
icality systems in terms of temporal and spatial segregation?

4. What dynamic timing properties arise from the application behaviour
as well as the platform-level scheduling behaviour in an integrated
mixed-criticality system?

5. How can we generate models which represent the integration impact
of dynamic mixed-criticality timing properties in such systems?

6. What is the timing accuracy of the models derived from the meas-
ured safety-critical temporal behaviour in terms of their estimates for
performance-critical applications?

7. How can these timing models be used to separate the individual integ-
ration process of different subsystems in a mixed-criticality system?
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To summarise, this work addresses the main scientific question on how
to provide a design flow and integration environment for mixed-critical sys-
tems consisting of safety-critical and performance-critical software compon-
ents. In particular, the work focusses on the criticality of these systems on
the specification level, and the question of how to provide a refinement
flow towards an implementation candidate on an MPSoC and suitable mod-
els along the design flow to assess the dynamic mixed-criticality timing beha-
viour. Chapter 4 will revisit these questions and formulate the contributions
of this thesis.

1.4 outline

The thesis is organised into three parts. The first part provides an overview
of the foundations for this thesis in Chapters 2 and 3. Based on the scientific
context and the research questions stated above, Chapter 4 defines the con-
tributions, while the related scientific work is discussed Chapter 5.
The second part starts with Chapter 6 containing the presentation of

OSSS/MC, the proposed mixed-critical system design flow. After specifying
the modelling components and their implementation on a target, Chapter 7
describes the performancemodelling approach for the proposedmodels. Sec-
tion 7.1 then presents the measurement infrastructure that has been integ-
rated into the implementation of the programming model components on
the target platform. Finally, Section 7.2 discusses the data-driven modelling
approach, while Section 7.3 presents the application proxy implementation.
The third part of this thesis contains the evaluation of the contributions

and discusses the results. The evaluation of the integration flow is presented
in Chapter 8, with a focus on the implications of a target implementation
in terms of its segregation properties. Chapter 9 focusses on evaluating the
data-driven performancemodelling approach as well as the proxy generation
approach embedded in our design flow. Chapter 10 concludes the thesis and
discusses possible future activities.





Part I

FOUNDAT IONS





2SYSTEM -LEVEL DES IGN

This chapter provides the foundations concerning the complexity of design-
ing embedded systems. We first describe a framework for categorising dif-
ferent design methodologies. Next, we take a closer look at each step in the
design flow and present the possible choices and highlight the challenges the
designer has to overcome.Wewill then presentOldenburg System Synthesis
Subset, a methodology for HW/SW co-design featuring high-level synthesis
and automatic target code generation.

In the next chapters, we discuss the term mixed-criticality and provide an
overview of established and current efforts as well as research areas regarding
the mapping of different criticality functions on a common platform. Based
on these topics, we then re-visit the scientific questions stated in the previous
chapter and derive the main contributions of this thesis: the extension of
Oldenburg System Synthesis Subset (OSSS) in terms of mixed-criticality and
the modelling and analysis of timing artefacts in these systems.

Designing and implementing an embedded system is challenging due
to several factors. First of all, the term embedded denotes the connection
between the system and its physical environment. As such, an embedded
system acts with real-world components and therefore possesses constraints
such as timing behaviour, power consumption, or even physical size. These
properties are the result of the implementation strategies of its functional
behaviour and depend on the physical and temporal properties of the im-
plemented system, such as the overall structural layout and the physical
components used. The refinement of a functional behaviour denotes the
transformation from an abstract description to a more detailed represent-
ation. Therefore, extra-functional properties depend on the choices made
during the refinement of functional properties to a physical implementation.

Depending on the operating context of an embedded system, these re-
quirements have varying degrees of importance to its overall functionality.
Therefore, in the embedded systems design context, one of the key chal-
lenges is the accurate estimation, validation, and even verification of extra-
functional properties during the design flow. On the one hand, a design
process should provide models for estimating the expected extra-functional
behaviour, and on the other hand, the process needs to incorporate proper
validation and verification methods to guarantee that the system operates
within the expected boundaries.

As a consequence, the embedded systems design flow particularly con-
siders modelling techniques to capture the desired functional behaviour and
their extra-functional constraints. The refinement process of an embedded
system consists of a series of decisions that affect the final system behaviour
and its extra-functional properties. Some of these questions are:

• How should the functional behaviour be partitioned on the available
system components?

11
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Figure 2.1: Gajski-Kuhn Y-Chart [26].

• What are the performance impacts on a particular partitioning con-
figuration?

• Does the mapped functional behaviour meet its real-time require-
ments when implemented on this software processing unit?

• What is the interference impact of functionality implemented on the
platform in terms of their temporal behaviour?

• Do we need to separate the functionalities spatially and temporally
on the platform to avoid unbounded timing interferences?

These questions need to be addressed by providing suitable models that
provide feedback in the design process. Furthermore, to compare the im-
pact of these design decisions, a systematic transformation from an initial
functional specification towards an implementation candidate is an essential
requirement for automating embedded systems design.
A design methodology refers to a collection of modelling techniques and

transformations, as stated by Gajski et al. [26]. These modelling techniques
need to be suitable to express the functional and extra-functional behaviour
in all stages of the design flow. Gajski et al. [26] further provides a classi-
fication of design methodologies as a means to categorise and reason about
the different challenges for each approach. The following section provides
an overview of the key design methodologies prevalent in the Electronic
Design Automation (EDA) industries and their integration challenges with
the help of the Y-Chart [26] depicted in Figure 2.1.
The Y-Chart provides a common view on different design methodolo-

gies that have been proposed in academics and used in the EDA industry.
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It provides a common structure to represent design techniques used in the
early years of circuit design, but is also capable of providingmeans to discuss
methodologies that are used today. The chart contains three axes which rep-
resent different modelling views on a system. Each view consists of multiple
levels of abstraction for categorising their corresponding models. The three
axes describe the system design in terms of behaviour, structure, and phys-
ical layout. At the behavioural axis, models describe what the system should
do in terms of its functional behaviour. In the structural level, the modelling
focus lies on how the functionality is implemented in terms of electrical com-
ponents and their structural connections. The third axis, the physical level,
describes how these components are allocated and arranged on a physical
chip layout.
Starting with a pure-functional description of the system, the Y-Chart

provides an illustration on how to refine the behavioural model towards
an implementation. Design methodologies systematically transform mod-
els from different levels of abstraction to different axes. Transforming a be-
havioural description to a structural representation is denoted as a synthesis.
Depending on the level of abstraction, the synthesis process targets different
component libraries on the structural axis. For example, on the behavioural
logic level, a suitable model for representing functionality is the boolean
algebra. A synthesis of boolean equations (representing the behaviour) res-
ults in a netlist consisting of logic gates (representing the structure). On
the System Level – the highest abstraction level in the chart – a suitable
model for specifying functional behaviour is the Hierarchical Concurrent
Finite State Machine. In the synthesis step, these state machines are then im-
plemented by mapping them on a netlist consisting of processing elements.
Gajski et al. [26], categorise multiple system-level design methodologies us-
ing the Y-chart. This section focusses on twomain categories of designmeth-
odologies, the vertical top-down or bottom-up design methodology and the
meet-in-the-middle approach, in particular platform-based design.

2.1 top-down & bottom-up approach

The top-down approach is illustrated in Figure 2.2 and starts with a system-
level description of its behavioural components, for example in the form of
Hierarchical Concurrent Finite State Machine (HCFSM). Next, a synthesis
step transforms these behavioural models into their structural representa-
tion consisting of components from the processor library. After synthes-
ising the structural layout in terms of these processor components, the next
step involves refining the behaviour of each processor component. Here,
the behaviour mapped to a single processor instance is synthesised towards
a structural representation consisting of RT-level components. Similarly, fur-
ther refinement steps are now performed on each lower level of abstraction
until the structural representation consisting fo transistor components has
been achieved. The final step involves transforming the structural transistor
layout to a physical layout and completes the top-down approach.
In contrast, the bottom-up approach focusses on providing building blocks

of low-level component libraries on the structural axis and is based on the
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Figure 2.2: Top-Down Approach illustrated in the Y-Chart [26].

idea of re-using these components on each lower level of abstraction to con-
struct more complex components at higher levels of abstraction. Compon-
ents are designed on a given abstraction layer and then provided for re-use
in component libraries. To increase flexibility, the low-level components
are often able to be parametrized to adjust their use in the higher level of
abstraction. On each abstraction layer, such a component library contains
the behavioural, structural, and physical representation of the modelling
components. Designing a system with the bottom-up approach therefore
involves selecting the existing modelling components from the library and
configuring them according to the requirements. The clear levels of abstrac-
tion using these component interfaces allow teams to communicate effect-
ively when working on the same design.
Looking at both approaches, we can see that, in order for the design flow

implementation to be economically viable, the top-down approach must be
guidedwith the help of automatedmodelling transformation, a key compon-
ent in the design automation of embedded systems. Otherwise, a manual
model transformation and validation needs to be performed for every design
decision at any level of abstraction. In the case of the bottom-up approach,
the advantage of clear levels of abstraction are quickly diminished by the
reduced flexibility and the effort of parametrizing and characterizing each
component due to the unknown context they will be used in. This ulti-
mately results in a reduced flexibility in the design of embedded systems
and increases the time-to-market duration.
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2.2 platform-based design

Ameet-in-the-middle approach for designing embedded systems is platform-
based design, as described by Sangiovanni-Vincentelli and Martin [71]. This
approach tries to provide a trade-off between the advantages of flexibility
regarding the top-down approach and the component reuseability of the
bottom-up approach. The key principle of the platform-based-design is the
definition of a platform layer which abstracts the underlying complexity
of architectural components. Typically, the platform layer exists at the sys-
tem level, where structural components are available in terms of processing
elements, bus-based communication hierarchies, and memory components.
These components are already available as a physical implementation on
the platform, as indicated in Figure 2.3. The system design starts at the
structural axis of the Y-chart, reducing the designer’s flexibility in terms
of system-level processor synthesis, since the behavioural models need to be
mapped to existing structural components.

To mitigate the loss of flexibility in this approach, most MPSoC platforms
also contain custom logic cells which allow the designer to choose between
software and hardware implementations of mapped behaviours. As we can
see in Figure 2.3, the available custom logic cells still allow the designer to
perform RT-level synthesis and map them on to logic components which
can then be implemented on the platform.
Platform-based design, as described by Sangiovanni-Vincentelli and Mar-

tin [71], defines platform layers at different levels of abstraction and de-
scribes the degrees of design exploration freedom resulting in these abstrac-
tion layers. As they state, an architecture platform specifies processor com-
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ponents and interconnect schemes (e. g. ARM Cortex processing elements
and the AMBA1 bus technology). By choosing an architecture platform,
the designer constraints the design space to this family of architectural com-
ponents and further design space exploration considers the parameters of
each component. The Application Program Interface (API) platform repres-
ents another level of abstraction consisting of a software interface which
abstracts the underlying hardware capabilities, the Real-TimeOperating Sys-
tem (RTOS) services, and the communication mechanisms. As such, the API
platform enables re-use of software components across different operating
systems and hardware implementations.

2.3 mpsoc platform challenges

The platforms in today’s embedded system design usually consist of mul-
tiple processing elements attached to a common, shared bus-based com-
munication infrastructure. They furthermore provide additional dedicated
Field-Programmable Gate Array (FPGA) cells for implementing custom
hardware logic. These MPSoC platforms are the result of a shift towards a
platform-based design approach and provide higher flexibility when target-
ing embedded systems due to their high-performance application processing
units and the presence of dedicated hardware logic cells. At the same time,
they support a variety of different application domains due to their flex-
ibility. Figure 2.4 shows an example of such an architecture. As we have
discussed in the previous section, the platform-based design methodology

1 Advanced Microcontroller Bus Architecture
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is a trade-off between the designer’s flexibility and the ability of platform
component reuse.
Platform-based design has particularly emerged due to the ongoing shift

towards a software-centric embedded systems design [25]. As a result of this
shift, processing elements onMPSoC platforms are becoming more powerful
to help implement the variety of use-cases on these platforms. On the one
hand, this rising processor complexity manifests in their support for paral-
lel execution, on the other hand, implicit resource sharing can further in-
crease the single-thread execution performance. Here, we briefly discuss the
challenges which emerge when targeting real-time sensitive software com-
ponents on such MPSoC platforms.

In the context of MPSoCs, we can distinguish between multi-processor and
multi-core systems. The former denotes a system consisting of multiple
processing elements which share a common interconnect infrastructure.
From the programmer’s perspective, a multi-processor system performs
Asymmetric Multi-Processing (AMP). The available processors are not ex-
plicitly synchronised and – with possibly dedicated cache hierarchies – can
have different views on the state of the memory subsystem. As an example,
such a multi-processor system may consist of a powerful, hard-wired applic-
ation processing unit and a set of soft-core processors implemented in the
FPGA part of the MPSoC.

The term multi-core on the other hand refers to processing elements
which contain more than one execution unit. All cores connect to the
same cache hierarchy, enabling configurations such as Symmetric Multi-
Processing (SMP), where special hardware support provides mechanisms to
ensure a coherent view on the memory subsystem by propagating cache
state changes to all attached cores.
Both AMP and SMP configurations are challenging in the context of estim-

ating the temporal behaviour of mapped software components. In general,
the parallel execution of software on multiple processing units, regardless
of their AMP or SMP configuration, leads to contention on shared resources
(e. g. memory or peripheral access) which can delay task execution and thus
invalidate any Worst-Case Execution Time (WCET) assumptions about the
software task running on one of the processing units. In the case of SMP sys-
tems, the contention can also occur on the shared cache hierarchy, which
increases the possible interference evenmore. Any contentionmay not only
delay execution, but can also cause a speed up, since a parallel executing task
can prepare cache lines for the other task running on the synchronised cache
unit.
These contention scenarios need to be taken into account when consider-

ing execution times of mapped software tasks. As a consequence, the main
consideration when targeting such MPSoCs for embedded real-time systems
is how to handle the introduced uncertainty regarding the temporal beha-
viour of software mapped on the processing elements. Especially in the case
of SMP configurations, the parallel execution of software can drastically alter
the temporal behaviour due to its interference on the shared cache.
These facts result in a limited use of SMP and AMP platforms in the con-

text of safety-critical systemswhich typically require the definition of a strict
upper bound on the execution time of their functions. Depending on the
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performance-increasing features of a platform regarding implicitly shared re-
sources (pipelines, branch prediction, caches, . . . ) and their impact on tim-
ing contention effects, they have to be controlled or configured such that
their impact on the timing behaviour is still manageable in the context of
execution time estimation [18].

2.4 system-level design with systemc

The previous sections have shown that a crucial part in the design of em-
bedded systems is the ability to specify and model the system components.
The following section provides an overview of SystemC, a System-Level
Design Language (SLDL) for the modelling, specification, and refinement
of HW/SW components. This section further demonstrates how SystemC
provides different modelling granularities and details of computational and
communication refinement.

2.4.1 Structural & Behavioural Modelling

SystemC provides system-level modelling components and an event-driven
simulation kernel implemented as a C++ library. Figure 2.5 provides an over-
view of the library components. The library contains structural and be-
havioural extensions for C++ to support the modelling and simulation of
complex HW/SW systems. It has been standardised as IEEE 1666-2011 [41]
and is widely used in today’s industrial and academic areas for prototyping,
modelling, validating, refining, and synthesising complex HW/SW system
descriptions. Although technically provided as a C++ library, SystemC is
equipped with quasi-language constructs that build upon the powerful ab-
stractions and generic programming techniques provided by the language.
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Tomodel the structure of systems, SystemC providesmodules that can be
nested and combined to provide a hierarchical view of the system. They can
further be connected via portswhichmodel communication interfaces. Such
ports are used to access channel behaviour outside of a module via a well-
defined interface. Ports can be structurally bound to matching channels, i. e.
components which implement the interface defined by the port. Ports, in-
terfaces, and channels therefore are the core concepts of SystemC for allow-
ing structural system modelling and separating communication and com-
putation. Additionally, channels can range from simple signals (primitive
channels) that model hardware wires to complex stateful communication
channels such as FIFO buffers or transactors (hierarchical channels).
Each SystemCmodulemay containmultiple processes whichmodel (con-

current) behaviour. Processes can be sensitive on certain events generated
from other processes. Events are either directly sent or indirectly triggered,
e. g.through a value change on a signal to which a process is sensitive. When
such an event occurs, the process is woken up and executes according to its
type. SystemC supports three different process types:

methods provide processes that model asynchronous behaviour and are
executed in a run-to-completion manner.

threads are suitable for modelling behaviour across multiple simulation
cycles. In fact, they are usually implemented with an endless loop which,
after waking up and processing the events, will sleep again until the next
event arrives.

clocked threads are processes based on the thread behaviour which ad-
ditionally provide a clock and reset interface to easily describe synchronous
hardware processes.

The SystemC simulation kernel provides an event-driven simulationwith
the concept of an evaluate-update phase and delta cycles to simulate concur-
rent behaviour. Due to the semantics of an event driven simulation, the
simulation strictly operates on a global event queue and simulation time is
always advanced to the timestamp of the next event. Once all events have
been processed for the current time stamp, the simulation time is advanced
to the next event in the queue. The simulation finishes when all events have
been processed and the queue is empty. Each behavioural process has a sensit-
ivity list which defines if the process is invoked when a certain event occurs.
Unless explicitly stated, at the start of the simulation, processes are executed
once to generate initial simulation events.

2.4.2 System-Level Modelling

As can be seen, each event forces to SystemC kernel to schedule and execute
the underlying process that is sensitive to the event. Therefore, a detailed
simulation which relies on fine-grained events, which is typically the case
for pin- or cycle-accurate hardware models, can significantly reduce the sim-
ulation speed. Compared to other Hardware Description Language (HDL)
simulators, the slowdown of simulation performance is amplified since the
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input models cannot be efficiently compiled and optimised with the struc-
tural information about the models, a technical consequence of the simula-
tion kernel being integrated into the SystemC library.

SystemC is therefore not suitable for modelling cycle-accurate hardware
designs. Instead, it operates on a higher level of abstraction. The SystemC
Transaction-Level Modelling (TLM) library (TLM 2.0, which is included in
the SystemC releases since 2.3.0) provides high-level components for mod-
elling Memory-Mapped I/O (MMIO) based HW/SW systems by extending
the SystemC data type library with components for MMIO initiators such
as processing elements, or direct memory access (DMA)-capable peripherals,
and targets, which represent bus peripherals or memory models. TLM 2.0
extends the existing SystemC Register-Transfer Level (RTL) modelling tech-
niques with a new level which abstracts pin-accurate communication inter-
faces with interface method calls between initiators and targets. Instead of
pin-level interface descriptions through signals and ports, a TLM peripheral
contains callbacks for bus-based MMIO access to registers.
As a consequence, the communication behaviour with TLM 2.0 is not

described in terms of hardware wires, but can be seen from a software per-
spective, thus raising the abstraction from hardware-based pin interfaces to a
software modelling view. Although obviously reducing simulation accuracy
by combining a wire-based communication protocol to a method call, this
greatly reduces the number of events the simulation kernel has to process.
TLM 2.0 further providesmeans to refine these transaction-based commu-

nication models. The designer can start at a high-level bus-functional model
containing synchronous communication operations and temporal decoup-
ling techniques with reduced timing accuracy towards a bus-cycle accurate
model, where asynchronous communication operations and cycle-accurate
cost models can be integrated. This technique enables the simulation of
complex HW/SW MPSoCs platforms with a virtual prototype, an essential
component in today’s system modelling and development processes. Sum-
marising, SystemC enables to provide virtual prototypes of completeMPSoCs
platforms and is nowadays mainly used for system-level modelling and re-
finement, whereas other hardware description languages, such as VHDL or
Verilog are used for RTL modelling.

2.5 refinement & implementation

The Y-chart has shown that the implementation of a system is realised by
starting with a specification model and then refining it towards either the
implementation (in case of a top-down approach) or the platform (in case of
a platform-based approach) on which it is implemented. Performing these
design decisions on a flexible abstract model leads to a refined model con-
taining more information and less flexibility about the final implementa-
tion. Each abstraction layer in the Y-chart contains models with various de-
grees of complexity and expressiveness regarding the functional and extra-
functional properties of the system. This section describes how the SLDL
SystemC provides tools for implementing these models at each step of the
refinement flow.
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2.5.1 Modelling Layers

Gajski et al. [26] categorise modelling granularities according to the com-
plexity of their timing annotations, as depicted in Figure 2.6. Additionally,
due to the separation of communication and computation in the system-
level specification models, it is possible to consider communication and
computation refinement independently.

Starting with the specification of the system, the model usually consists
of an untimed, pure-functional representation of the desired system beha-
viour (A) which is called the specification model. This model provides a
system-level behavioural view and it can be used to gather insights regarding
the functional correctness without considering any timing or other extra-
functional constraints.
The first refinement step then transforms the specification model to a

timed-functional model (B). The model is refined according to its computa-
tion and initial timing annotations are attached, either through the use of
execution models or measured results. Refining the communication of the
model then results in a transaction-level model (C), where communication
processes are modelled using time-accurate bus transactions.
Depending on the design flow, either the communication or computation

is now further refined towards a cycle-accurate model. The result is either a
bus-cycle accurate model (D) with pin-accurate communication behaviour
or a computation-cycle accurate model (E) of the system where computa-
tion is described using cycle-accurate timing behaviour. Finally, combin-
ing computation and communication models results in a full cycle-accurate
model (F).
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Generally, a fully refined cycle-accurate model of a complete system based
on today’sMPSoC platforms is infeasible to analyse due to the rising complex-
ity of these systems and the resulting number of artefacts in the simulation
models. Mixing different abstraction levels for describing communication
and computation components can therefore be useful. This allows the func-
tional behaviour of software components to be modelled early on in the
design process, prior to implementation and cross-compilation for a certain
target processor.

2.5.2 Computational Refinement

Computational refinement, the focus of the contributions in this thesis, con-
siders processor modelling as a means for specifying and modelling compu-
tational entities. Modelling and refinement of computation covers multiple
stages, as indicated by the Y-chart in the previous section. At the starting
point for system-level computational modelling and refinement, the func-
tional behaviour is represented as (untimed) processes and typically mod-
elled using a high-level concurrent computation model. These behavioural
models can either be natively supported by a SLDL (e. g. Program State Ma-
chines in SpecC [28]) or implemented on top of the available simulation
semantics (e. g. SystemC [35]).
The mapping of high-level execution processes in the application layer to

execution units (e. g.tasks) on the operating system level can vary. Gener-
ally, such processes are partitioned into behavioural units which are then
executed sequentially within an operating system task. If multiple tasks
are mapped to the same resource, a multi-tasking environment needs to be
provided on the processor and a runtime has to manage the sequential exe-
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cution of the mapped tasks. These scheduling policies can be categorised by
their flexibility at run-time.

Choosing the suitable policy depends on the temporal requirements of
the application-level processes as well as the platform capabilities and the
constraints on the analysis complexity of the system. Generally, tasks can
either be executed statically according to a schedule defined at design-time,
or dynamically, where decisions are performed at run-time depending on
the scheduling policy implementation and dynamic properties of the sys-
tem. In general, tasks are scheduled according to their priority, which is
chosen by the scheduler and based on application-level requirements such
as response time or criticality. If the priority of a task does not change at
run-time, the scheduling policy is called fixed priority. An example is the
deadline-monotonic scheduling policy introduced by Liu and Layland [56],
which monotonically assigns task priorities according to their period length
at design-time and executes them on the processor in the order of their pri-
ority.
A scheduling policy which assigns priorities at run-time can be further di-

vided into the categories job-level fixed priority and dynamic priority. While
task-level fixed-priority policies statically assign a priority value to each pro-
cess at design time, a job-level fixed priority policy is able to assign priorities
individually for each task instance (job) at run-time. This means that differ-
ent job instances of the same task can have different priorities, depending
on the dynamic state of the system. A prominent example of a job-level
fixed-priority scheduling policy is Earliest Deadline First (EDF) [56]. Upon
a job arrival, the scheduler determines the next deadline of all active jobs
and assigns the highest priority to it.
The job-level fixed priority scheduling policy re-evaluates the run-time

properties each time a new task instance is ready for execution. The third
category, dynamic priority, removes this restriction entirely, and thus al-
lows the scheduling policy to re-assign priorities even for active jobs. These
scheduling policies have been extensively studied according to their analysis
capabilities [44].
Figure 2.7 illustrates four steps of software refinement, starting at the

system-level down to an implementation based on a RTOS. After specifying
the behavioural processes, the next step of model-based software refinement
requires a RTOS model to ensure that tasks are executed in sequential order
according to the chosen scheduling policy and that only one task is active
at any time. The model also considers scheduling events and task preemp-
tion, such that it is possible to gain accurate results from scheduling artefacts
while performing a simulation at near-native execution speed.

Since the application-level task execution is still being performed on the
simulation host, any timing or otherwise platform-dependent behaviour
needs to be annotated to themodels. In order to achieve this, the RTOSmodel
provides an abstraction layer around the SLDL primitives and interfaces for
tasks to consume time. Furthermore, tasks use the underlying RTOSAPI for
inter-process communication. The RTOS model is therefore able to simulate
task preemption with an accuracy given by the annotated execution time.
Therefore, the modelling detail directly depends on the granularity of the
annotated execution time, both of the tasks and the RTOS. The model there-
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fore can serve as a first indicator of congestion or locality issues and provide
results for scheduling policy design decisions.

The RTOS model can be refined by adding a Hardware Abstraction Layer
(HAL) which models the HW/SW interface and connections used for com-
municating with hardware peripherals, such as interrupt generators or
memory. It is also used to implement the virtual channel-based commu-
nication on the processor interconnect. While the RTOS already provides
drivers for accessing bus-based communication, the HAL implements the
session management of the driver requests to the single bus connection. The
HAL is also responsible for mapping the external interrupts to appropriate
user-defined interrupt handlers. The next level, the hardware layer describes
the connection of a pin-accurate protocol of the underlying hardware.

Finally, the application is cross-compiled on a Instruction-Set Simulator
( ISS). Such a processor model features the final target memory layout as well
as the desired instruction set architecture. An operating system executed on
such an ISS then implements the modelled timing and interrupt handling
behaviour and the communication via the external ports. The result is a
refined computational model which can be deployed on the target platform.

2.5.3 Communication Refinement

Communication at the application layer is typically modelled using vir-
tual channels and shared variables. Its refinement is tightly coupled to the
ISO/OSI 7-layer abstraction [26]. This section gives a brief overview of
the steps. In the first refinement phase, channels and variables are enriched
with data types and a data layout to prepare their mapping to the under-
lying (untyped) data stream and communicating processing elements. The
refinement step includes determining (and possibly converting) bit width,
endianess, size, alignment, and other data-dependant properties. In the next
step, the virtual channels are mapped to communication sessions on phys-
ical channel implementations, possibly merging multiple channels originat-
ing from the same processing element.

The next layers, the network layer, transport, and link layer are respons-
ible for implementing the network infrastructure derived from the virtual
channel hierarchy. Here, channels are combined into physical representa-
tions, and bridges or transducers are inserted to ensure correct message rout-
ing across different physical protocols. Moreover, the link layer ensures a
synchronised message transfer for the virtual peer-to-peer channels by im-
plementing polling techniques or dedicated interrupt lines. The final layers,
stream, media access, and physical layer model the data streaming process,
the abstraction of the underlying medium, and the bus protocol and arbit-
ration models.

2.6 validation & verification

An essential part in the design of embedded systems is the process of val-
idation and verification during the refinement of the system components.
Its purpose is to ensure that models still behave under the assumptions and
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deliver the specified functionality when they are transformed into more de-
tailed representations along the refinement process.

The processes of validation and verification differ in their expressiveness,
level of assurance, and their capabilities regarding the input model com-
plexity. The term validation refers to the experimental assurance that un-
der some given input parameters, the refined system behaves as expected,
i. e.provides equivalent output parameters. Validating a model therefore
starts with defining the expected output trace of actions over time by the
system, storing it along with the input parameters that trigger the system
behaviour and finally compare them against the observable behaviour of
the refined model.
The challenge in validating a system therefore lies in choosing the set of in-

put parameters that accurately represents the overall input parameter space.
Since the chosen input values may not fully cover the input parameter set
due to their complexity, the validation step may not provide sufficient cer-
tainty that the refined system behaves as specified. As a consequence, the
validation process cannot cover all possible states of the system and the de-
signer often needs to provide expert knowledge for achieving the necessary
coverage of the validation tests. Depending on the design assurance level of
the component (i. e. derived by the Safety Integrity Levels (SILs) which will
be detailed Chapter 3), the process of validationmight not provide sufficient
results.
The verification process on the other hand describes methods of formally

proving assumptions about the models. They provide an exhaustive way of
searching through the model state space and can therefore prove that certain
assumptions will never be violated (safety properties), or that certain states
will eventually be reached ( liveness properties). Informally, safety proper-
ties therefore ensure that “something bad never happens”, while liveness
properties ensure that “something goodwill eventually happen” [48].While
models with a higher level of abstraction can represent reasonable complex
systems, the challenge lies in formally proving that the refinement steps of
the model do not invalidate the assumptions of the model properties on
higher levels of abstraction. This section provides an overview of formal
verification methods and simulative validation approaches.

2.6.1 Formal Verification

Formal verification is extensively used in safety-critical domains such as
aerospace, where the certification of components adhere to the highest
standards in the industry to provide the necessary level of assurance regard-
ing their specified behaviour. To achieve this level of certainty, the design
of components in the aerospace domain requires formally verifiable models
for specifying the system and a correct-by-constructionmechanism to prove
that the satisfaction of properties regarding timing or functionality as spe-
cified still hold in their implementation. Since formal approaches essentially
check the state space of a behavioural model against safety invariants and
liveness properties, the input models for specifying such systems are care-
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fully designed such that the overall expressiveness is constrained to avoid
state space explosion.

In the case of integrating multiple different functionalities on the same
platform, care must be taken to restrict their interferences. Otherwise,
formal approaches may quickly face the state space explosion problem
when different subsystem behaviours are integrated. Consider two applica-
tion models A0 and A1 which are individually verified against some input
specification consisting of safety and liveness properties. Let |Ai| denote
the state space represented by the application model Ai. Then, the overall
state space which needs to be considered for the individual verification is
|A0+A1|, since both verification checks are performed separately. After in-
tegrating the applications on the same platform however, the final integrated
model needs to be verified as well. The resulting integrated systemA0

⊕
A1

is composed of the individual components by some mechanism
⊕

. If there
is insufficient isolation between the applications, they may interfere with
each other regarding their timing properties and their functional behaviour.
Instead of checking |A0 + A1|, the overall state space may increase up to
|A0 ×A1| which can render a formal verification infeasible.

Several techniques for segregating these systems and achieving compos-
ability have been proposed throughout the literature. As an example, the
Integrated Modular Avionics ( IMA) approach provides an industry-proven
technique which guarantees that the individually verified applications do
not interfere spatially and temporally, and therefore cause a state space ex-
plosion. A prominent specification language for formal models regarding
timing requirements in the domain of embedded real-time systems are timed
automata, introduced byAlur andDill [2], which can be verified against spe-
cification invariants using the Uppaal [9] model checker. Themodel checker
can prove safety properties through the notion of invariants and provides a
temporal logic for specifying liveness properties.

2.6.2 Simulation-based Methods

Simulation-based approaches generally consist of two components: a test-
bench and a Design under Test (DUT), as illustrated in Figure 2.8. The input
and output ports of the DUT are attached to the testbench, which consists
of input stimuli and output monitors. The testbench then provides input
stimuli over time (traces) to the DUT and reads the output signals. Validat-
ing the DUT is performed by checking the output against an expected trace
output.
Simulation-based methods are categorised depending on the invasiveness

of the input and output ports of the testbench. Stimulating and observing
the observable behaviour on the ports of a DUT is referred to as black-box
testing due to the fact that no internal design knowledge other than the ex-
ternally visible behaviour is used for testing. In contrast, white-box testing
refers to a more sophisticated approach where observers and stimuli gen-
erators are attached to internal ports of the design which are hidden from
external components.
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Figure 2.8: Simulation-based validation of a Design under Test based on a specific-
ation which states the input stimuli and the expected output trace cap-
tured by monitors [26].

The overall validation result highly depends on the chosen input para-
meter set and the coverage of the input traces regarding the expected work-
loads. To solve this issue, the designer first has to identify and define the
workload characteristics of the system before specifying a subset of input
traces which sufficiently represent their state space. Since an exhaustive test
of all input parameters can quickly become infeasible, several techniques
have been proposed to increase the overall validation performance [26].

White-box testing exploits expert knowledge of the internal behaviour of
the DUT and can perform checks not only on the visible output parameters
but also on its internal state. Depending on the complexity of the initializa-
tion phase of a system, this can greatly improve the validation performance.
With an additional pre-selection of input test data, the validation methods
can be used to force corner-cases and validate the desired behaviour.

2.6.3 Performance Estimation

The term performance estimation refers to the method of determining the
execution effects regarding application-specific performance metrics when
the behaviour is executed on a certain platform configuration. The notion of
performance refers to the overall evaluation result of an application regarding
metrics such as bandwidth, frames per second, throughput, etc.

Since these metrics depend on the platform characteristics on which the
application is executed, a performance model needs to take into account not
only the behaviour of the application, but also the platform configuration
on which the application is executed. Therefore, the more detailed a plat-
form model is, the higher the accuracy for predicting performance metrics
can be. Performance estimation is an essential part in evaluating platform
and application design decisions, because it provides early feedback on the
resulting behaviour regarding essential application-specific requirements.

Simulation methods can be an effective way to gain initial performance
metrics for evaluating the system behaviour. These metrics affect the design



28 system-level design

Figure 2.9: Comparison of execution time estimation using simulation- and
analysis-based approaches [80].

decision in the design flow and as such, they are integrated in the flow in
the form of feedback loops. Usually, these evaluation methods require mod-
els from existing low-level behavioural, structural, and geometrical descrip-
tions. They are constructed using structural models, expert knowledge, or
they can be generated by a pure measurement-based, data-driven approach.

Evaluating software performance behaviour requires constructing a tim-
ing model of the underlying processor. Depending on the desired granular-
ity of the evaluation results, there are different methods for combining the
software behaviour with the timing model. The abstract method for eval-
uating timing behaviour usually consists of timing back-annotations to the
software control flow. Here, control flow blocks are annotated with their es-
timated temporal consumption on the target. Executing the behaviour then
triggers the underlying timing model and results in an overall timing estim-
ation of the software component. A more detailed timing model consists of
an instruction-accurate simulation, where the software behaviour is cross-
compiled for the chosen target and the instructions are simulated on an ISS
which contains a timing model of the underlying target instructions.

Analytical performance estimation involves constructing a model of the
software through static code analysis by evaluating the control-flow beha-
viour of the software at design-time without simulating or executing it.
Static code analysis obviously has limitations regarding the input behaviour
complexity and therefore often imposes restrictions on its expressiveness.
But even if the behaviour can be analysed completely, the overall temporal
behaviour still depends on the platform timing properties.
In today’s MPSoC platforms, the actual temporal behaviour of software

components depends on the current state of the processor and other com-
ponents on the platform which might interfere its execution. With branch
prediction, pipelining, and cache hierarchies, these processors are too com-
plex for being considered in static analysis methods [80]. As we can see in
Figure 2.9, due to the platform complexity and the complexity of the con-
trol flow behaviour, all observable execution times in a measurement-based
approach only form a subset of the possible execution time behaviour. The
obvious limitation of the measurement-based approach is due to the fact
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that a set of input parameters has to be defined which limits the observed
behaviour, indicating reduced coverage.

A complex processor micro-architecture contains many components
which are used to optimise the instruction execution speed. In a von Neu-
mann computer architecture, the main bottleneck is the slow access to the
memory subsystem. Therefore, processors aggressively optimise access to
the memory by caching, pre-fetching, speculative execution, and branch
prediction. In all of these cases, the processor will read memory which is
likely to be required in future execution paths, such that it does not have to
wait for the memory subsystem if the execution finally happens.

However, these mechanisms have great implications on the timing pre-
dictability of the processor. The optimisation components of the processor
are based on maintaining a global context to optimise future execution be-
haviour. As an example, in multi-core systems, the cache infrastructure is
shared among individual cores. Since access time to the memory depends on
the state of the cache (which determines whether themainmemory needs to
be accessed or the requested memory location already resides in the cache),
analysis methods need to consider the cache state at each possible step in the
execution. Furthermore, software executed on other cores can modify the
shared cache state at any time. The result is a state space explosion which
cannot be handled by contemporary analysis methods. The implications of
these performance optimisations regarding analysis methods can be seen in
Figure 2.9. Measurements can only identify a subset of the temporal beha-
viour due to their coverage issues, and since analysis methods are unable to
iterate through the whole state space, static analysis results in pessimistic
over-estimations, since the actual WCET cannot be determined.

The actual temporal behaviour of the software component forms a dis-
tribution over time, since it depends on the application control flow and
data dependency as well as the execution context of the components on the
platform. Thus, assuming one can trigger all possible control paths with the
input data and test them under all possible hardware states, the actual distri-
bution of the task execution time can be revealed. If the task is executed on
top of a multi-tasking RTOS and mapped along other tasks to the same pro-
cessing element, the timing analysis further needs to consider all side effects
from other tasks which might have introduced temporal interference while
running in parallel, including their functional behaviour impacting access
to caches, bus, peripherals, and so on.
The only option to handle this interference is to assume the worst case

in terms of timing properties when a task is accessing the resource. How-
ever, especially in the context of multi-processor platforms, this assumption
is a heavy penalty regarding the estimated resource consumption. A com-
plex platform therefore might be unable to guarantee timing requirements,
while it is possible to implement them in simpler platforms. We can there-
fore conclude that for a sufficiently complex MPSoC, it is impossible to per-
form a static analysis of the executed software components and provide tight
bounds on their temporal behaviour [80]. This shows that determining the
WCET on complex MPSoC platforms is a challenging task and generally res-
ults in a huge over-estimation to provide a certain level of assurance.
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The focus of performance estimation however is to provide accurate
average-case temporal behaviour instead of determining the worst-case beha-
viour. Platform models have therefore been proposed which abstract their
complex behaviour. These approaches can be categorised into static and dy-
namic profiling analysis techniques. In the static profiling analysis, the idea
is to analyse the program control flow, determine the execution frequen-
cies for each path that can be taken, and combine this information with
knowledge of the platform execution time behaviour.

The dynamic profiling approach collects execution frequencies using tar-
geted experiments with a chosen set of input parameters. Profiling the ex-
ecution behaviour then yields the path execution pattern which serves as
an input for the run-time characteristics of the task model. These models
provide an abstract view of the task’s control flow graph and are combined
in a second step with platform-dependant information to yield timing es-
timates.

However, although these approaches provide a straight-forward approach
of constructing task models due to their profiling phase, they are limited
regarding the representation of the target task behaviour. The underlying
assumption is that it is possible to reconstruct the target control flow graph
from the native graph available in a host-based execution. This assumption
does not hold in sophisticated target platforms such as Complex Instruc-
tion Set Computer (CISC) architectures. Since the profiling phase operates
on the native control flow, the relation between native and cross-compiled
target control flow needs to be preserved, which is usually only achieved
by disabling compiler optimisations. However, especially in an embedded
context, where the program size is constrained, this might limit the applic-
ability of the approaches. Generally, resulting task behaviour models can
be combined with relatively simple processor models (e. g.instruction cost
tables) to gain initial insights into the target behaviour.

Apart from the control flow profiling, another option is to directly meas-
ure the application timing behaviour on the chosen hardware component.
Themain drawback of this approach is the limited availability of target hard-
ware components for timing observability, the cost for integrating the soft-
ware components on the target, and the need for a suitable measurement
infrastructure.

2.6.4 Workload Modelling

The term workload modelling refers to models of applications and their
typical workload behaviour on a target. Workload models mimic the tar-
get behaviour in terms of their platform component usage (e. g. processor,
memory, interconnect, peripherals, . . . ). The benchmark suites such as
Dhrystone and Whetstone [19, 79] were among the first to offer generic
workload models for extracting performance characteristics regarding in-
teger arithmetic or floating-point operations. These benchmark suites how-
ever only partially fit the workload characteristics of complex embedded
software and therefore are only of limited use when estimating design trade-
offs.
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To gain more accuracy and simulation speed, methods were proposed to
derive synthetic workload models from the concrete to-be deployed embed-
ded software. One way is to synthesise benchmarks from original workload
use cases, as proposed by Noonburg and Shen [61]. One of the main mo-
tivations of this work is to provide a similar workload profile while at the
same time reduce the evaluation effort of analysing the processor models
by shortening the simulation time of the workload profiles. When paramet-
rised according to given performance metrics, such workload models can
provide an invaluable tool for platform and integration engineers to evalu-
ate their design decisions.

Besides statistical approaches [22, 62], workload models can also be con-
structed using generative approaches where the target workload is measured
and compared to an input workload. Each iteration then refines the work-
load to more accurately match the input workload. Another method is to
use a data-drivenworkloadmodelling approachwhere themodel is construc-
ted based on the measured data. Such a synthetic workload construction
appeared as a mechanism for mimicking software performance character-
istics and consists of closely evaluating the input program execution in a
profiling step and then selecting suitable control flow patterns and insert-
ing the gathered performance parameters in the generation step [39]. Some
approaches create benchmarks which depend on the micro-architectural be-
haviour of the platform [10, 76] or use randomized parameters to approxim-
ate the input program behaviour [4]. These methods mainly differ in their
choice of primitives representing certain workload aspects and their hand-
ling of micro-architectural artefacts.

A workload model which is executed on the platform can have several ad-
vantages in the design of complex MPSoC. First, the model only needs to be
integrated once and can then be parametrised according to the desired applic-
ation parameters. The results in terms of resource utilisation can further be
directly measured on the platform. Next, the model provides feedback due
to the possibility of a preliminary integration of different subsystems (with
their workload models). Finally, workload models allow distribution to ex-
ternal entities without disclosing any internal intellectual property. This can
improve communication between different working groups and provides a
technique for separating the subsystem implementation from the integra-
tion process.

Advanced workload generation methods include micro-architectural arte-
facts in their characterization process [4, 27]. These approaches thus allow
the generation of benchmarks mimicking the spatial and temporal memory
access behaviour on the target architecture beyond the CPU boundary and
consequently include the memory hierarchy properties of the platform.
However, in the case of mixed-criticality integration, this modelling com-
plexity is not required, since the interference of memory access patterns is
already mitigated on the platform-level. Therefore, in the context of mixed-
criticality itegration, workload models are especially interesting in terms of
accurately representing the application’s timing behaviour.
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2.7 oldenburg system synthesis subset
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Figure 2.10: Overview of the Oldenburg System Synthesis Subset Design Method-
ology ( [34]).

TheOldenburg System Synthesis Subset (OSSS) ( [34]) consists of a design
methodology and a synthesis subset based on SystemC. It provides mod-
elling components for specifying, simulating, and synthesising complex
HW/SW systems. OSSS thereby strictly follows the described platform-
based design methodology. The proposed flow is depicted in Figure 2.10.
First, the entrymodel and specification is described using behaviours, which
contain functionality extracted from a C++ golden model. Based on these
behaviours, the system is partitioned into SystemC modules and OSSS Soft-
ware Tasks. Communication and synchronisation is performed explicitly
via Shared Objects, which are special, C++-based objects that contain neces-
sary synchronisation operations to guarantee mutually exclusive access and
provide guarded, method-based access to their internal state.
This description of Software Tasks, SystemC modules, and Shared Ob-

jects is specified in the OSSS Application Layer (AL). The AL supports un-
timed model execution of the specified functional behaviour. Due to the
flexibility, it is also possible to quickly evaluate performance-related meas-
ures by annotating profiling results from the golden model to the ALmodel.
This approximately-timed model can serve for validating the functional cor-
rectness and provide profiling results for different design decisions regarding
function locality and mapping of functional behaviour to OSSS entities.

The next step in the implementation of a system using OSSS is the map-
ping of application-layer objects to the Virtual Target Architecture (VTA).
In this abstraction layer, models for different HW/SW components exist to
model the physical communication infrastructure (along with their target
properties such as bit width, alignment) as well as computation resource in
a cycle-accurate manner. Different models are available for evaluating final
design and architectural decisions.
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As a final step, the VTA model serves as an input to an automated high-
level synthesis process implemented by the tool FOSSY, which generates the
overall system architecture and the necessary files for third-party vendor
tools, such as Very High Speed Integrated Circuit Hardware Description
Language (VHDL) source code and other architecture description files. Be-
haviours mapped to Software Tasks are cross-compiled and linked against
the platform support library in order to be deployed on the chosen target
processor.

OSSS aims to provide a holistic design experience for embedded HW/SW
systems. Starting with the C++ golden model, the tool-assisted workflow
allows for designing hardware components as well as embedded software
running on a processor on the chosen target platform. It integrates with ex-
isting industrial solutions (e. g.Xilinx ISE2 Design Suite) to refine AL com-
ponents to hardware blocks and provides target runtime support for cross
compilation of AL components for targeting software processors.
The design methodology provides a C++ golden model consisting of Soft-

ware Tasks, Shared Objects, and ordinary SystemC modules which acts as
the common design entry point for the complete system. The advantage
of this approach is the model consistency of the design entry point. As a
result, given the annotation of early timing measurements, the analysis and
exploration of refinement and mapping decisions can already be performed
on the AL. Due to the model consistency, it is then easy for the designer
to update the mapping of AL components to the VTA and therefore explore
different HW/SW mappings. After choosing the mapping, the high-level
synthesis tool FOSSY and the integration with external tool providers allows
for quickly deriving a prototype of the described system.
As has already been discussed, the recent development in the domain

of embedded systems follows a clear shift towards integrating complex
software-based functionality on an embedded system, especially in the realm
of complex CPS due to their nature of combining real-time sensor data pro-
cessing in the physical domain with high-performance communication and
computation in the cyber domain. While OSSS provides a common entry
point for HW/SW synthesis, it does not offer the possibility of specifying
different criticality domains for the model components. As a result, there is
no method of prioritising across criticality domains in the implementation
of scheduling and arbitration policies.
Moreover, the analysis relies on the back-annotation of timing measure-

ments which need to be performed without the interference of other com-
ponents. In the case of OSSS, where a single processor serves as a target of a
Software Task, this approach might be sufficient for a software timing estim-
ation early in the design flow. However, as we have discussed earlier, today’s
complex embedded platforms consist ofmultiple processing elements where
executed software is creating timing interferences on multiple implicitly
shared computation and platform communication resources. A more de-
tailed estimation of the timing behaviour is therefore required to incorpor-
ate the uncertainties resulting from shared resource usage. However, such
timing uncertainties cannot be represented accurately with a single value, as

2 Integrated Synthesis Environment
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currently supported by OSSS. While we have already discussed the issue of
timing uncertainty whenmodelling software timing behaviour, the next sec-
tion discusses the challenges arising with the developement of mixed-critical
embedded systems and how their solutions can be integrated in an embed-
ded systems design flow such as OSSS.



3MIXED -CR IT ICAL EMBEDDED SYSTEMS

So far we have taken a look at methodologies and flows for designing embed-
ded systems in general. In this section, wewill take a closer look atmixed-crit-
ical systems, a research topic which has lately been in the focus of academic
and industrial efforts.

3.1 introduction

There currently exist different views on what constitutes a mixed-criticality
system. The term mixed-criticality used in this thesis refers to combining
functions which fulfils objectives that can be categorised into different crit-
icalities, specified by a safety assessment. The purpose is to provide an es-
timate on the required reliability of system components in hazardous envir-
onments. These reliability requirements are typically estimated by assessing
the overall environmental outcome of a failure in a component and are in
general part of a domain-specific Failure Mode and Effect Analysis (FMEA).

The categories of such analyses can typically range from low-critical oper-
ations which perform functionality irresponsible for the overall safety of the
system and its environment it operates in, to high-critical functions, which
are required to operate correctly andwhose faults can result in severe or even
catastrophic failure. Therefore, amixed-criticality system is a system consist-
ing of components with different classifications according to their criticality.
In the context of real-time requirements, the desired reliability stated by an
FMEA is achieved when high-critical components are guaranteed to operate
under their pessimistic resource estimations and therefore correctly execute
under their worst-case timing assumptions.

Mixed-criticality systems are formed whenever more than one functional-
ity is mapped to a system and the functionalities can be categorised by some
criticality property. Depending on the definition of the system boundaries,
it is thus not even necessary tomap the functionality on the same System-on-
a-Chip (SoC) for it being categorised as a mixed-criticality system. Methods
to perform a separation of concerns for such systems already exist, such that
components with different criticalities are separated in order not interfere
with each other. An example of this is the individual packaging of multiple
sensor process chains in the automotive sector.

Designing mixed-criticality systems is thus not a new issue when dealing
with multiple devices in a system. However, as the previous sections have
detailed, the emerging challenge is to guarantee sufficient independence for
functions mapped to the same MPSoC due to implicitly shared resources on
the platform, a result of the ever-increasing complexity and the desired fea-
ture density on MPSoCs. The novel aspect which gained interest in the aca-
demic community was the idea of considering these criticality properties

35
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Table 3.1: Safety Integrity Level categorization and failure probabilities per
hour [11] for a continuous mode of operation.

SIL Category Failure probability (per hour)

1 minor 10−5 > P > 10−6

2 major 10−6 > P > 10−7

3 hazardous, severe error 10−7 > P > 10−8

4 catastrophic 10−8 > P > 10−9

when specifying the system, in particular in the context of resource sharing
scenarios.

These challenge of designing mixed-criticality systems within the con-
text of complex MPSoC platforms has lead to two major research areas. The
first research objective considers analysing the coupling effects of behaviour
which arise when combining functionalities with different criticalities on
a shared hardware platform. Mitigating the resulting interferences requires
careful analysis of their platform usage behaviour and thorough evaluation
of design techniques to isolate functions of different criticalities, both in
the temporal sense through resource scheduling techniques and the spatial
dimension through the use of proper access enforcement techniques. This
research area is thus based on the fundamental challenge of designing safety-
critical, real-time sensitive embedded systems.

With the advent of mixed-criticality in the realm of real-time embed-
ded systems, system designers are now facing a multi-objective optimisa-
tion problem when developing safe and resource-sensitive embedded sys-
tems. A major aspect of mixed-criticality research is the consideration of re-
source usage optimisation. Complex MPSoC platforms provide many power-
ful computational resources which are implicitly shared between different
processing elements or even software components running on the same
processor. The fact that safety-critical timing analyses are by definition per-
formed pessimistically, specifying the system schedules based on these ana-
lyses naturally results in an under-utilisation of its resources in the average-
case usage scenarios. In the context of mixed-criticality, this constitutes a
multi-objective optimisation problem since after guaranteeing resources for
the safety-critical operation, the designer is interested in optimally utilising
its resources which may be used by lower-critical application components.

We consider the analysis of methods and scheduling policies to reduce
this utilisation gap as the challenge of optimising mixed-criticality resource
consumption which requires successful interference mitigation techniques
to be implemented on the platforms. The second objective in mixed-criti-
cality research therefore considers the question of how to exploit criticality
properties to increase the platform utilisation in mixed-criticality systems
while still adhering to the safety requirements stated by the criticality prop-
erties of an FMEA.

The result of an FMEA provides failure probabilities which are then fur-
ther categorised according to domain-specific knowledge. This classification
of functions regarding their criticality is handled in many industry stand-
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Figure 3.1: Example Time-Division Multiple Access schedule of five applications
A0, . . . , A4 on a common platform where each application is allocated
a specific slot and an overall periodic execution behaviour.

ards, most derived directly or indirectly from the IEC 61508 [11], published
by the International Electrotechnical Commission. The standard defines SILs
to classify functions performed by electronic components. SILs are defined
according to the consequences in case of a failure of such components, as
listed in Table 3.1.

The classification and SIL determination of these components is per-
formed by a domain-specific risk analysis in the context of an FMEA. The ISO
26262 [42] defines domain-specific Automotive Safety Integrity Level (ASIL)
and provides risk analysis methods to determine the ASIL for each compon-
ent. ASIL are closely related to the SIL described above. The aerospace do-
main provides the DO-178C [20] standard and defines Design Assurance
Level (DAL) which are determined using similar risk analysis methods.

In the context of mixed-criticality, these classification levels are used to
categorise functions mapped together on common platform resources. Such
mixed-criticality systems adhere to different SIL at the same time and con-
sequently need to implement proper segregation techniques. In order to in-
tegrate subsystems with different criticalities, the underlying platform needs
to support sufficient independence [42] between such functions. This is the
main consideration when integrating mixed-criticality on a common plat-
form: if sufficient independence cannot be guaranteed, such combined sys-
tems need to be implemented according to the highest criticality level of
all subcomponents, which often renders its development cost economically
infeasible.

3.2 segregation approaches

The safety standards require the design process to guarantee sufficient inde-
pendence between mixed-criticality functionalities. But which isolation tech-
niques and platforms satisfy this property? In the aerospace domain, the
ARINC 653 standard defines such a platform with Time-Division Multiple
Access (TDMA) principles, where the system is temporally split into differ-
ent execution partitions which mark an exclusively available slot to each
mapped functionality.

Figure 3.1 depicts an illustration of this segregation technique. Each ap-
plication A0, ..., A4 is given a fixed slot with start time and duration. To
ease the transition between application-level requirements such as periodic
execution behaviour, the overall schedule is often divided into periodic par-
titions which the applications can be allocated to. In this example, the first
partition starts at t0, the next at t4, then at t8 and so on.
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Functionalities mapped to such a platform can be allocated time slices
of these partitions and the underlying TDMA scheduler prevents erroneous
overruns by preempting the system at the end of the defined application
execution time. In the illustrated example, application A1 executed at t6 in
the period starting at t4 misses its deadline due to a fault in the internal
behaviour. However, the preemptive scheduling based on application time-
slices prevents the fault from propagating into the behaviour of application
A3, such that it can still operate as specified. Hence, TDMA prevents fault
propagation across applications and can therefore provide sufficient independ-
ence, as requested by the industry standards.
In the aerospace domain, the IMA platform is aimed at providing a mod-

ular integration and execution environment for achieving flexibility regard-
ing function composition and platform partitioning. It provides a modu-
lar platform which is able to execute functions of different criticalities due
guaranteeing independence between applications. Such platforms therefore
provide a solution in the context of the mixed-criticality challenges regard-
ing platform-level segregation. Mixed-criticality systems can be integrated
using these platforms, but at the loss of flexibility, since the static TDMA
partitioning is unable to consider resource dynamics, especially consider-
ing performance-related, non-critical functions. Research has therefore fo-
cussed on utilisation aspects of mixed-criticality systems and provides novel
approaches for the specification, scheduling, and enforcing segregation prop-
erties in mixed-critical embedded systems.

3.3 real-time models & analysis

The real-time systems domain considers the issue of utilisation in mixed-
criticality systems. The key motivation of mixed-criticality models is based
on the observation that with the growing complexity of today’s platforms,
a static analysis of execution times results in very pessimistic, often never
observed, upper timing bounds. This is because the actual WCET cannot be
determined due to the complexity of the platform. As a consequence, while
the design-time system scheduling and partitioning setups are configured
such that this upper bound can be guaranteed, the overall system utilisation
is reduced.
The idea of real-time mixed-criticality task models is to take into account

the dynamic average- and worst-case behaviour of the executed functions
and categorise them into different scenarios. Typically, a low-critical and a
high-critical execution behaviour is defined which considers different run-
time observed task execution time behaviours.
In general, the definition of an mixed-criticality task model T consists of

a vector of execution times ~C, with an execution time for each defined crit-
icality. This models the expected execution time on each criticality scenario
level. Such real-time analysis models require the execution semantics of the
underlying system to monitor the execution time and perform the schedul-
ing decisions based on the observed task execution time. If a task exceeds
its execution time budget, the system transitions into the higher criticality
scenario.Otherwise, the schedule is performed as defined for the low-critical
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scenario. Typically, in higher-critical scenarios, lower-critical functionality
is either not considered at all or executed in a degraded mode, such that it
is able to reduce its resource consumption and provide a feasible execution
of the overall mixed-criticality system.

Different task execution profiles have been proposed by considering task
execution time not just as a function of the underlying platform and the be-
haviour, but also by their criticality scenario. Typically, high-critical tasks re-
quire a thorough static execution time analysis which yield an upper-bound
on the expectedWCET. In the proposed real-time mixed-criticality task mod-
els, these tasks are additionally characterized according to a low-criticality
estimation method such as a measurement-based approach. Since this ap-
proach determines an upper-bound on the maximum observed WCET, both
approaches might differ in their result significantly. This is the main contri-
bution of real-time mixed criticality task models, because it results in defin-
ing dynamic execution modes which are switched according to the actual
run-time behaviour and utilisation of the tasks.

Based on the assumption that tasks can be assigned such different crit-
icality scenarios, the real-time analysis community has provided different
scheduling strategies for managing these execution scenarios. It has been
shown that mixed-criticality real-time task models combined with run-time
strategies for observing the dynamic execution time behaviour of mixed-
critical functionality can reduce the utilisation gap while guaranteeing the
temporal requirements specified at design-time [14].





4THES I S CONTR IBUT IONS

Until now, this thesis covered the basic methods and tools of embedded
system development and illustrated the challenges in the specification, mod-
elling, development, and validation in system-level design. In particular, we
have discussed the challenges regarding MPSoC platforms by focussing on
the platform-based design paradigm proposed by Sangiovanni-Vincentelli and
Martin [71] and presented OSSS which implements this methodology.

We have further provided an introduction to the domain of mixed-criti-
cality by identifying two main research challenges. First, we have discussed
methods of ensuring temporal and spatial segregation in mixed-criticality
systems implemented on a common platform. Next, we have identified the
utilisation issues stemming from safety-criticalWCET estimation, and presen-
ted optimisation concepts of scheduling policies regarding average-case and
worst-case behaviour in mixed-criticality systems.

4.1 contributions

This section presents the contributions of this thesis in the context of the
scientific questions given in Section 1.3. Figure 4.1 provides an overview of
the contributions embedded in the proposed integration flow. To continue
the discussion on future mixed-criticality research efforts by Ernst and Di
Natale [24], the following contributions aim at increasing the design pro-
cess efficiency by integrating hypervisor-based segregation techniques with
a software component specification model and by providing models for val-
idating the dynamic behaviour of mixed-criticality scheduling policies and
platform artefacts in the specification phase and during the integration pro-
cess on the platform.

contribution C1: We propose a programmingmodel for mixed-critical-
ity software components that allows describing functional behaviour along
with temporal constraints and mixed-criticality properties derived from a
system specification.

The proposed design and integration flow starts with a system-level de-
scription of the functional behaviour in the context of a programming
model. Contribution C1 is linked to our first scientific question on how
mixed-criticality properties of safety- and performance-critical software ap-
plications can be considered along their functional behaviour in an em-
bedded systems design flow. The programming model focusses on dual-
criticality software components which can be categorised into two distinct
sets of functions. Each software component is classified as high- or low-
critical, according to some classification method which considers the com-
ponent’s temporal behaviour and criticality derived by the environmental
requirements of the embedded system.
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Figure 4.1: Overview of the proposed mixed-criticality design and integration flow
along with the contributions of this thesis.

contribution C2: We provide a systematic way to derive an implement-
ation of the programming model based on a virtual resource layer imple-
mented on platform components of a MPSoC.

To answer the question of how to refine the functional description along
with its mixed-criticality properties to derive an implementation on an
MPSoC, and to determine which platform properties are required to im-
plement temporal and spatial segregation in mixed-criticality systems, we
provide an implementation of the programming model on platform com-
ponents which leverage contemporary mixed-criticality segregation and util-
isation techniques. The refinement step consists of mapping and partition-
ing decisions which can be expressed by the model. To achieve platform-
level segregation, the programming model clusters the functional behaviour
based on its annotated criticality properties. The function-level criticality
annotations are considered in the mapping and partitioning steps such that
two subsystems HI-critical and LO-critical are formed. For improving the
system utilisation, we implement a contemporary mixed-critical scheduling
policy and provide the necessary platform-level monitoring implementa-
tion to dynamically optimise mixed-criticality scheduling strategies.

contribution C3 : We propose a measurement infrastructure along
with the virtual resource implementation to capture dynamic application-
level timing behaviour as well as platform segregation overhead.

The measurement infrastructure is embedded into the programming
model implementation on the platform and addresses the question of what
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dynamic timing properties arise from the application behaviour as well as
the platform-level scheduling artefacts and the segregation overhead in an
integrated mixed-criticality system.

contribution C4 : Based on the timing behaviour of HI-critical applica-
tions and themixed-critical scheduling policy exposed by themeasurement
infrastructure, we construct a performance model to provide early estim-
ates of performance behaviour in LO-critical applications.

This contribution is linked to the question of how to generate models
which represent the integration impact of dynamic mixed-criticality timing
properties. The proposed performance model is based on the platform-level
execution time measurements observed by the measurement infrastructure
and considers the scheduling configuration as well as the segregation over-
head of the specified mixed-criticality system. Combined with isolated exe-
cution time measurements of a LO-critical software component, the model
estimates the expected end-to-end execution time of the component ex-
ecuted on the integrated mixed-criticality platform.

contribution C5: We propose a method for constructing application
proxies based on the measurements to mimic the temporal behaviour of
HI-critical subsystems and provide an integration environment for LO-crit-
ical applications on the platform without the need for integrating the func-
tional HI-critical behaviour.

With contribution C5 we answer the question of how the generated tim-
ing models of HI-critical software components can be used to separate the
individual integration process of HI- and LO-critical subsystems in a mixed-
criticality system.

contribution C6: We evaluate the accuracy of the performance model
and the application proxy by analysing the resulting timing predictions
and the timing behaviour of the LO-critical application when integrated
with the HI-critical application proxy.

Finally, to determine the timing accuracy of the models derived from the
measured HI-critical timing behaviour in terms of their estimates for LO-
critical applications, we evaluate the modelling accuracy by comparing it
against measurements with the original applications integrated on the com-
mon platform.

4.2 assumptions

The contributions listed above contain the following assumptions about the
application model and the targeted platform.

• In the context of our first contribution C1, we focus on exploring re-
source consumption behaviour of HI-critical real-time sensitive soft-
ware functionality in combination with best-effort LO-critical beha-
viour without real-time constraints.
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• We further assume that an external analysis tool is able to determ-
ine theWorst-Case Response Time (WCRT) of the HI-critical software
functionality mapped to the processing element.

• To explore platform segregation techniques regarding temporal and
spatial segregation, contribution C2 focusses on the effect of resource
sharing of software components mapped to a single processing ele-
ment.

• Since we incorporate an existing flexible, time-triggered scheduling
policy, we assume that an externally provided scheduling analysis has
determined whether the task mapping is feasible in the context of the
application-level task priorities and deadlines.

• The timing measurement and modelling approach of the contribu-
tions C3-C5 consider the temporal behaviour of HI-critical software
functions on a fixed set of input stimuli.

Section 10.2 provides an outlook and a discussion on initial concepts to
soften these restrictions.



5RELATED WORK

The work of this thesis covers many research topics due to the diversity
of the proposed contributions. This chapter therefore presents the related
research activities organised in two sections, representing the topics of the
proposed contributions. In the first section, we consider real-time models,
platforms, design flows, and industrial efforts in the realm of mixed-criti-
cality systems and compare these efforts to the contributions of this thesis.
The second section discusses related work regarding workload modelling
and performance models for embedded real-time systems.

5.1 mixed-criticality

Research considering mixed-criticality covers many aspects in the topic
of embedded systems design. This section presents a top-down approach
aligned at the level of abstractions in embedded systems design. The first
section presents mixed-criticality real-time models where mixed-criticali-
ty is considered in the modelling and scheduling analysis of real-time task
models and its criticality-dependant run-time behaviour. The challenges of
implementing mixed-criticality functionality on a common platform and
various approaches towards mixed-criticality platforms are discussed next.
We will also take a look at industrial efforts regarding mixed-criticality plat-
forms. Finally, approaches which combine behavioural models and consider
platforms with a design flow are discussed.

5.1.1 Real-Time Models

Henzinger and Sifakis [37] discuss critical and best-effort engineering as
property to classify systems engineering methodologies. They implicate a
widening gap between both approaches, due to their nearly disjoint research
communities and practices. In order to bridge this gap, the authors state
that methods are needed for guaranteeing a sufficiently strong separation
between critical and non-critical functionalities on the platform. At the
same time, design techniques need to be provided which allow a flexible
use of the platform resources. Real-time task models provide a means of
defining these critical and best-effort requirements on the same model and
evaluate the impact on scheduling analysis and dynamic run-time behaviour
regarding computational resource usage.

The first proposal of considering run-time task criticality properties for
scheduling decisions by Vestal [77] considered extending the real-time task
model withmultiple execution time estimates a taskmay exhibit at run-time.
The intuitive idea was to define multiple scheduling scenarios which depend
on the observed task execution time at run-time. In particular, Vestal pro-
posed extending the task execution time from a single WCET to consider

45



46 related work

multiple execution time estimates. Depending on their level of assurance,
the method of determining task computation time can range from estim-
ated, average case values derived by a simulative or measurement-based ap-
proach to a high-assurance, statically analysed upper bounded approach. Ad-
ditionally, besides different computation times, each task contains a critical-
ity level specified by the system designer.

The scheduling policy was then extended with a dynamic system critical-
ity context that is chosen by taking into account the (static) task critical-
ity and its (dynamic) execution time behaviour. If a high-critical task oper-
ates within its specified lower-critical execution time boundary, the schedul-
ing policy exploits the resulting available resources to execute the lower-
critical tasks. However, if a high-critical task exceeds its anticipated execu-
tion time estimates at run-time, the lower-critical task execution is discarded
to provide the required resources to the high-critical task set. An extended
scheduling analysis ensures that the high-critical tasks always meet their
deadlines, regardless of the criticality context the system operates in.

The mixed-criticality extensions proposed by Vestal are based on the peri-
odic task model [53]. The real-time research community further explored
the impact on mixed-criticality model and scheduling extensions towards
sporadic task models and their implications on scheduling analyses [8] and
existing fixed-priority periodic task models [7]. Resulting implications on
mixed-criticality scheduling analyses were extensively discussed in the con-
tributions of Baruah et al. [5], Baruah et al. [6], Baruah, Burns and Davis
[7] and Baruah and Vestal [8].
The contributions of Mollison et al. [60] and Li and Baruah [54] were

among the first to consider mixed-criticality scheduling in the context of
multi-processor execution models. The challenge in these extensions rely
on the issue of synchronisation regarding criticality scenario switches across
parallel running task instances.

Burns and Davis [14] provide an extensive overview of different mixed-
criticality task models and the ongoing efforts regarding mixed-criticality
scheduling analysis in the context of single- and multi-core systems. Based
on the established models provided in the academic literature, this work
proposes a specification and programming model based on mixed-critical-
ity properties of the real-time task model to support the notion of dual-
criticality [7, 54] tasks. Furthermore, the programming model implement-
ation on an MPSoC supports partitioned mixed-criticality systems, where
tasks are hierarchically scheduled according to their criticality and priority.
In contrast to existing scheduling analysis contributions, this work focusses
on modelling performance metrics of a LO-critical subsystem. As a con-
sequence, this work explicitly considers the impact of HI-critical resource
usage on the performance degradation in LO-critical applications and con-
sequently does not disable the LO-critical subsystem when HI-critical budget
overruns occur.

The focus of recent work on mixed-criticality task models shifted from
scheduling independent task sets to communicating tasks and resource ac-
cess protocols. The work of Giannopoulou et al. [30] and Yun et al. [81]
considers criticality-dependent properties and dynamic behaviour regarding
task dependencies and resource access protocols. Yun et al. propose platform
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support for managing implicit shared resource access of interfering cores by
throttling their cache misses. The contribution features a method of determ-
ining the task interference budget and a response time analysis incorporat-
ing these properties.

Giannopoulou et al. propose the Flexible Time-Triggered Scheduling
(FTTS) policy and provide an analysis model for adaptive, mixed-critical
systems. Their contribution consists of a flexible, resource-, and criticality-
aware scheduling policy that aims at maximising the average run-time re-
source utilisation in mixed-critical application scenarios without comprom-
ising the safety-critical properties of the task set and is thus closely related
to the work of this thesis. The FTTS scheduling analysis takes into account
the communication dependencies when determining a feasible configura-
tion. To achieve this, a task dependency graph is constructed based on the
knowledge of implicit resource sharing between tasks.

The contributions of this thesis build upon the existing research onmixed-
criticality scheduling techniques. In particular, this work implements a
scheduling policy based on FTTS in the context of single-processor schedul-
ing. The goal of the contributions in this work is to estimate the impact
on re-assigned resources for LO-critical software components. While the
scheduling policy already provides means for allocating additional resources
to the LO-critical software subsystems, ourmain contribution in this context
is the systematic integration approach for functional behaviour specified in
the programming model and an implementation based on hypervisor-based
segregation techniques.
Such a systematic integration workflow can augment the available mixed-

criticality scheduling policies by providing a performance evaluation envir-
onment. As we have already stated, the coupling effects of any dynamic
scheduling behaviour in mixed-criticality systems directly impacts the per-
formance of the mapped functionality, but it is only visible when all com-
ponents are integrated on the platform. Our evaluation will demonstrate
how a systematic integration approach significantly reduces the effort for
comparing different mapping, partitioning, and scheduling configurations.

5.1.2 Platforms

Themixed-criticality real-time task models discussed in the previous section
make strict assumptions about the underlying platform capabilities. One of
these is that the platform has the capability to restrict and monitor the exe-
cution to the boundaries of the given execution time estimates. This section
provides an overview of the work on mapping mixed-criticality functional-
ity to platforms in the academic literature.
The CompSOC approach proposed by Goossens et al. [32] enables map-

ping of mixed-criticality software taskmodels on a customMPSoC consisting
of homogeneous processor tiles which support composable and predictable
mappings. This approach solves the problem of handling post-integration
interferences in the design flow, since the platform guarantees that mapped
applications are composable regarding their timing behaviour. Resources are
statically allocated to the applications depending on their design-time estim-
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ates. To guarantee timing compositionality [80], the CompSOC approach
features the concept of a virtual execution platform for each mapped applic-
ation. Each virtual platform guarantees the same timing behaviour and is
therefore independent of other parallel executing applications.

The time-triggered architecture approach [46] provides a synchronous
mechanism for executing tasks on the platform. The resources are organ-
ised into application-specific slots which are executed through a global, time-
triggered scheduling policy configured at design time. Due to this slot-based
isolation, the mapped applications are unable to interfere their timing beha-
viour.

The focus of the efforts in the Merasa
1 project [63] lies on managing

hard real-time applications and interferences in multi-core processing envir-
onments. In particular, regarding the shared cache infrastructure, the bus
interconnect arbitration, and the access to the memory subsystems are con-
sidered. The resulting platform provides countermeasures against timing in-
terferences on these components along with suitable WCET analysis tools.

The architecture proposed by Liu, Reineke and Lee [57] considers timing
predictability by eliminating variable execution times on a software thread-
level and proposes hardware-assisted mechanisms for restricting the timing
interferences between different threads. A possible benefit of this approach
is that processor hardware support for improving the software performance
can still be exploited without reducing the analysability of parallel running
threads.
The CompSOC approach and the time-triggered architecture by Kopetz

and Bauer [46] provide timing guarantees and composability in the context
of mixed-criticality systems. However, these static isolation approaches pre-
vent the propagation of unused resources in mixed-criticality scenarios. The
Merasa project and the architecture proposed by Liu, Reineke and Lee [57]
focus on platforms for restricting timing interferences, but they do not con-
sider reducing the resource utilisation gap in mixed-criticality systems.
The approach proposed by Kritikakou, Marty and Roy [47] provides a

run-time mechanism to guarantee that high-criticality tasks can meet their
deadlines, where low-criticality tasks can use the available resources detected
by the on-line monitoring approach. This contribution is closely related
to our approach since the FTTS scheduling policy we have implemented is
based on the same principles. However, our design flow additionally features
a systematic approach of refining the functional behaviour specified in the
programming model and allows the designer to generate application proxies
which can mimic the HI-critical application behaviour on the target.

Last, the Proxima project [38] considers the timing uncertainties regard-
ing measurement-based timing analyses and the WCET. They identify so-
called sources of jitters induced by the platform components which cause
the results of measurement-base approaches and WCET estimates to signific-
antly differ. Their proposed solution is to provide mechanisms which ran-
domize the sources of jitter on the platform in order to provide a statistical
model about the probability of execution time uncertainties. The contribu-
tions of this project are closely linked to our modelling approach. However,

1 Multi-Core Execution of Hard Real-Time Applications Supporting Analysability
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the custom hardware extensions proposed in the project rule out their ap-
plicability in Commercial Off-the-Shelf (COTS) hardware which our contri-
butions focus on.

5.1.3 Industrial Efforts

The underlying platform techniques in Dreams and Safepower are based
on the bare-metal hypervisor Xtratum [17] which supports segregation
techniques and minimising platform-level interferences.

Established industrial solutions for mixed-criticality include the IMA [69]
platformwhich focusses on explicit resource access control and provides isol-
ated partitions to allow executing functionality with different certification
levels to the same platform.

Another commercial solution is PikeOS [67], which supports mixed-crit-
icality partitions, para-virtualisation for RTOSs, and dynamic re-allocation of
unused computing resources. These hypervisor techniques are emerging due
to their ability to control system partitioning and further provide support
for legacy applications with hardware emulation, para-virtualisation, and
the use of virtualisation extensions on complex MPSoC platforms.

Our contribution is based on the open source bare-metal hypervisor
Xvisor [64]. The implementation provides a virtualised execution environ-
ment for applications mapped to the same processing unit. Based on the
existing implementation, the technical contribution aims at extending the
available application context management technologies towards a dynamic
scheduling approach based on the FTTS policy.We have further extended the
hypervisor scheduler implementation to support subsystem-independent in-
tegration scenarios using the proposed application proxy mechanism and
integrated a measurement infrastructure to construct a timing model of the
HI-critical application behaviour.

5.1.4 Design Flows

As discussed above, designing a mixed-criticality system deals with consider-
ing sufficient independence between functions of different criticality on the
platform. A design flow for mixed-criticality systems therefore has to con-
sider criticality on the function level and provide a way to specify the results
of FMEA or other fault determination methods, such that the functional-
ity can be mapped to the appropriate application slots on the platform. A
mixed-criticality design flow can provide a systematic refinement process
while considering the annotated criticalities on the functional units. In this
section, we will discuss several design flows and their properties.

The mixed-criticality design flow specified as a part of the CompSOC
approach [32] features an incremental refinement with automatic transla-
tion of applications defined in cyclo-static data flow programming models
and further supporting semi-automatic refinement of applications described
with less restrictive computation models such as Kahn Process Networks.
This approach is built on top of the proposed composable SoC platform
which features timing predictability at the level of clock cycles. The res-
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ulting drawback of this design flow is obviously the limited application to
other platforms, especially COTS MPSoCs due to the assumptions performed
at the system-level and the required platform support to implement these
assumptions. An overall goal of the CompSOC design flow is to provide
a systematic refinement towards a composable platform, such that timing
guarantees can be provided in an isolated manner and still hold in the integ-
rated case. Although there are extensions of CompSOC towards scenario-
based application-level scheduling, its primary goal is to provide a time-
composable platform.

The mixed-critical design flow proposed by Poplavko et al. [68] features
a concurrency language for expressing resource management policies. The
design flow aims at integrating the dynamic criticality-aware scheduling
policy behaviour into the application models to extend the analysis towards
the dynamic criticality scheduling effects. On the platform level, a dynamic
runtime manager enforces the timing properties specified in the model. A
special focus of this approach is placed on tasks interfering on multi-core
architectures. The approach restricts the expressiveness of the application
model to enforce temporal segregation. In case of a specification written
in a high-level language such as C/C++, the description has to be enriched
with metadata to support the notion of criticalities along the functional
behaviour. In contrast, out mixed-criticality specification model OSSS/MC
combines the mixed-criticality properties with the functional behaviour in
a homogeneous environment.

The Dreams [49] project focusses on distributed mixed-criticality sys-
tems. It aims at consolidating platforms into nodes of MPSoC systems and
therefore considers CPS and their mixed-criticality properties. The focus of
this project lies in the communication across different platforms and their
dependencies. The Safepower [52] project considers the challenge of low-
power mixed-criticality systems and aims at providing a reference architec-
ture for the integration and partitioning of mixed-criticality systems on a
single device with the goal of reducing the overall power consumption [51].

In contrast to these approaches, our design and integration flow concen-
trates on the challenge of independently integrating and validating subsys-
tem specifications starting from an initial executable description based on
C/C++ to an implementation on a COTS MPSoC on one processing element.
With this focus, we make assumptions about the existing specification and
restrict the platform mapping capabilities to manage the design space com-
plexity. Our implementation flow further assumes that external scheduling
analyses methods can be applied to our programming model properties to
verify the correctness and the overall scheduling configuration in relation to
the specified performancemetrics. Based on the target behaviour, our design
flow contains resource consumption models which help in estimating the
performance impact of integrated LO-critical applications and provide integ-
ration scenarios in a subsystem-independent manner.
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5.2 performance & workload models

As we have discussed in the chapter on system-level design, the process of
validation can be generally categorised into static and dynamic approaches.
Several contributions for modelling architectural and platform-related tim-
ing properties have been proposed throughout the literature. The underly-
ing characterization to gather appropriate runtime characteristics can be ob-
tained either based on a static code analysis [12, 13, 73] or from a dynamic
profiling phase [4, 10, 22, 27, 45, 76].

The limiting factor of the static approaches is that they require accounting
for the dynamic properties on the platform at the source level of the input
behavioural model. This is especially challenging in the context of MPSoC
and shared resources on the platform. The reason for mixed-criticality util-
isation enhancements is precisely the over-estimation of platform resource
consumption that result from the static analysis approach.

Performance validation approaches can include more than just the com-
putation resource usage of tasks on their mapped processing elements. The
approach in [21], which is based on a pure source-level performance estim-
ation, has been extended in [31] with a cache model based on the resulting
host address distribution in a native source-level simulation which predicts
memory accesses on the platform. A limiting factor of this approach is the
challenge to derive the target platform behaviour from the high-level view
on the input model. The cache model used in [40] is not utilised for traffic
generation and instead adjusts the annotated delays based on miss rates. The
characterization of the target binary code proposed by Stattelmann, Bring-
mann and Rosenstiel [72] especially supports optimised code through a path
simulation of the target delay model in parallel to the native simulation of
the functional code.While these contributions provide powerful early estim-
ates of input behavioural models on the expected target platform, they are
limited in their applicability due to their reliance on incorporating platform-
specific knowledge in the modelling process.
We propose a data-driven performance model similar to statistical ap-

proaches [22, 39, 62]. Our performance modelling approach relies on meas-
ured data of the platform to train a statistical model which represents the
execution time distribution. By constructing this statistical model based on
the measured data, the model captures the execution time distribution of
software components on a target processor. In the context of our design
flow, we focus on the computational resource consumption of tasks since
our hypervisor implementation provides platform segregation mechanisms.
Thus, access to caches and the memory subsystem do not need to be rep-
resented by the model since they do not interfere the execution of other
applications regarding their timing behaviour.
Besides a performance analysis targeting end-to-end execution time estim-

ation for LO-critical software functions, we also construct an application
proxy to mimic the temporal behaviour of the HI-critical software on the
target platform. The application proxy behaviour also focusses on replaying
the timing behaviour due to our platform-level restriction of timing inter-
ferences. The hypervisor-based isolation approach therefore avoids the need
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for complex workload representations involving memory access or further
usage patterns on other resources [4, 10, 27, 76].

In summary, the presented approaches allow the generation of bench-
marks mimicking the spatial and temporal memory access behaviour on the
target architecture beyond the CPUboundary and consequently include the
memory hierarchy properties of the platform. They can therefore be used
for a fast and early performance evaluation of memory hierarchy configur-
ations including caches and page size settings. Our approach however does
not need to incorporate architectural information from the memory sub-
system or the cache infrastructure. The advantage of our application proxy
approach therefore is the flexibility towards different platform configura-
tions.

5.3 summary

This work builds upon the efforts regarding mixed-criticality real-time
scheduling and analysis by incorporating mixed-criticality task model prop-
erties in its specification model and targeting the FTTS scheduling policy
on a MPSoC. While these models and techniques aim at providing timing
guarantees on each criticality level, this work instead focusses on modelling
the timing impact of dynamic, high-critical applications on performance-
critical, QoS applications. The contributions of this thesis focus on a system-
atic integration of functional behaviour specified in an executable model
and a refinement towards a hypervisor-based implementation on a MPSoC.

As discussed, the difference to existing platform-based approaches is our
focus on COTS MPSoC which provide greater flexibility regarding platform
choices. The contributions are therefore based on a type-1 hypervisor imple-
mentation and extend it towards the dynamic mixed-criticality scheduling
aspects captured in the C++ specification model.
Finally, the contributions regarding the HI-critical timing models extend

the current state-of-the-art by exploiting the hypervisor-based segregation
techniques implemented on the mixed-criticality platform. The temporal
and spatial segregation implemented on the platform enables constructing
timing models which accurately represent the resource utilisation on the
platform, while ignoring additional resource consumption patterns such as
memory usage and cache behaviour modelling. The proposed application
proxy workload model abstracts away detailed platform information and
enables the integration of LO-critical applications independent of the func-
tional behaviour of a HI-critical application.
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The previous chapters have shown that the iterative process of designing
a MPSoC relies on the feedback of design decisions as early as possible in
the design flow. This chapter describes the proposed design flow for em-
bedded mixed-criticality systems on MPSoCs. Its goal is to provide an evalu-
ation environment during the refinement steps such that the designer can
validate its mapping, partitioning, and implementation decisions. In the con-
text of mixed-criticality system design, as has been discussed in the previous
chapters, dynamic scheduling artefacts should be modelled and evaluated
during the refinement of the system as well.

The first step in a model-based design flow is to capture the requirements
of the application. The design process typically starts with a specification
model to express the requirements of the embedded system in terms of its
(functional) behaviour as well as its (physical) constraints. This behaviour is
either manually specified using some high-level programming language, or
provided as a model of computation which can be transformed to high-level
C/C++ source code. In particular, Matlab/Simulink provides a modelling
and simulation toolchain for developing control algorithms and modelling
their environment. The models can be exported to a high-level language
such as C/C++ and targeted towards software platforms or exported for a
high-level synthesis for hardware designs. In the case of software platforms,
the next step is to partition the high-level source code into tasks and com-
munication objects of an executable specification, which define semantics
that are used for a systematic refinement to a target platform.

This section describes such a specification model consisting of two layers.
The Application Layer (AL) contains components that allow partitioning
the functional behaviour in terms of tasks and Shared Objects to express com-
putation and communication. Next, the Virtual Resource Layer (VRL) de-
scribes resource models to which the AL can be mapped. The specification
model contains the application behaviour, its timing constraints, and cap-
tures mixed-criticality properties in the AL and VRL. Based on this specifica-
tion model, the OSSS/MC programming model and its execution semantics
are introduced and described in Section 6.3.

An untimed simulation of the programming model components on re-
source models then provides feedback on the functional correctness of the
partitioning of the behaviour into tasks and Shared Objects. It therefore
defines the first validation and analysis step in the SoC design flow. Sec-
tion 6.1 proposes the specification model while Section 6.2 presents a re-
source model designed to provide further insight into the mixed-criticality
scheduling behaviour when the specified AL components are mapped to the
computation resource. Section 6.3 then discusses the behavioural semantics
of the runtime model with mapped tasks and Shared Objects. After dis-
cussing the communication and computation refinement step, Section 6.4
describes the implementation of the modelling components on a target plat-
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Figure 6.1: Application Layer with tasks and Shared Objects, clustered using two
criticality levels and mapped to the Virtual Resource Layer.

form. This refinement step consists of computation and communication
refinement as well as target code generation and platform configuration.

6.1 application layer components

The specification model components are defined in the AL, as illustrated in
Figure 6.1. The desired functional behaviour is expressed using active tasks
which are based on actor-oriented design principles [50]. Communication
between tasks is explicitly described via passive Shared Objects. The separ-
ation of communication and computation via Shared Objects and tasks is
realised through task ports which are bound to matching Shared Object in-
terfaces. Shared Objects then implement the desired functionality accessible
through the ports. The binding relation of task ports and Shared Objects is
derived by partitioning the functional behaviour into AL components. It is
therefore part of the system specification.
The AL components capture the structure and functional behaviour de-

rived from a descriptive system specification. We assume that the functions
of this description have been categorised by their criticality, e. g. as a result of
performing a domain-specific FMEA. The specification model components
provide properties to capture the determined criticality.

Definition 1 (Application Layer configuration). An Application Layer
(AL) configuration C is defined as a tuple (T, S,B,L) consisting of a set of
tasks T, Shared Objects S, a binding relation B specifying the connections of
task ports and Shared Object interfaces, and criticality levels Li ∈ L. �

As already stated, this work considers functions classified by two criti-
cality levels L = {LO, HI}, representing performance-driven LO-critical- and
safety-critical HI-critical real-time sensitive functions. As a consequence, the
specification model components either describe LO- or HI-critical behaviour
which we refer to as subsystems:

Definition 2 (LO-critical/HI-critical subsystem). A LO-critical (HI-critical)
subsystem describes the subset of AL components attributed with the criticality
LO (HI). �
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In a next step, the AL subsystems are mapped to resource models on the
VRL, where they are encapsulated in task containers. Following the typical
refinement flow in the design of embedded systems, as a first step towards
an implementation, the mapping and functional behaviour can be validated
using a SystemC-based simulation. In the next step, the AL components can
be implemented on a target platform using a backend which implements the
model semantics on top of RTOS primitives.

6.1.1 Tasks

Within the AL, a task represents an active, concurrent, periodically execut-
ing entity which can communicate via ports bound to Shared Objects. Each
task is associated to a given criticality defined in the AL configuration. Addi-
tionally, certain dynamic criticality properties that depend on the run-time
behaviour can be specified. This section provides the definition of task be-
haviour and its properties.
A general issue regarding timing estimation with a generic specification

based on high-level languages such as C++ is their richness in expressing func-
tional behaviour. To be applicable toWCET analysis tools, the behaviour has
to fulfil properties which guarantee bounded execution time, which describes
freedom from unbounded execution which can be caused by infinite loops
or recursion patterns. We therefore restrict the task behaviour in our model
by providing semantics which the C++-based implementation must adhere
to. We use the notion of activation traces to express bounded computation
and explicit synchronisation points in the execution trace of a task.

Definition 3 (Task execution trace). Given a task τi, an execution trace
~ξi ⊂ ν∗ is a finite sequence of activity tuples representing functional beha-
viour and an annotated timing property. An activity tuple ν ∈ πi × R+ de-
notes communication through a port πi or local computation (∅, t) with an
execution time t ∈ R+. �

The task can then be defined as follows.

Definition 4 (OSSS/MC task). Let I be the set of all Shared Object interfaces
in the AL configuration C. A task τi ∈ T is a tuple

(
Ti, πi, `i,~ξi

)
, consisting

of

• a period Ti ∈ R+ (equal to the task deadline),

• a set of ports πi ⊆ I, representing the binding to the associated Shared
Object interfaces,

• a static criticality `i ∈ L, and

• a set of execution traces ~ξi ⊂ ν∗ as described in Definition 3.

We assume that for each criticality levelL ∈ L, there exists away to determine
the execution time of a task’s execution trace set, which we represent with the
function CL : ~ξi → R+. As discussed, the timing analysis can therefore be
performed with different methods depending on the level of assurance and the
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resulting required execution time guarantees. Throughout the paper, the notion
CL(τi) refers to the maximum execution time of an execution trace set ~ξi of
task τi. �

In general, determining the task execution time requires the knowledge
of the AL mapping and the complete system scheduling state due to the
possible interferences induced by communication on the platform. Since
this severely limits the overall system analysability, many models of com-
putation therefore restrict the actor behaviour expressiveness by defining
phases in which communication and computation is performed and upper-
bounded [66] in the resource consumption. Although we are not focussing
on scheduling and mapping analyses in this work, our proposed execution
trace model limits the task behaviour expressiveness to support integrating
such external response time analysis methods.
We support criticality-dependant task computation times by defining dif-

ferent ways of determining the worst-case execution time of an execution
trace set ~ξi. In our model, we assume that for a task, execution traces are
functionally equivalent in all criticality levels but may differ in their tem-
poral behaviour due to a more pessimistic execution time estimates: Li >
Lj ⇒ CLi(

~ξi) > CLj(
~ξi). In contrast, a LO-critical task can exhibit dif-

ferent functional behaviour across criticalities, such that an execution trace
~ξi(LO) represents resource-demanding behaviour whereas ~ξi(HI) captures
the resource-constrained behaviour. As a consequence, for low-critical tasks,
L2 > L1 ⇒ CL2(

~ξi) 6 CL1(
~ξi). In this work, we focus on modelling

criticality-dependant temporal behaviour of HI-critical subsystems and fixed
functional behaviour in LO-critical components. Our previous work in [43]
demonstrated how to model and support criticality-dependant functional
behaviour for LO-critical applications, such that they can dynamically ad-
apt to changing resource usage scenarios. This work however focusses on
the temporal differences and does not consider the functional criticality-
dependant behaviour.

Example 1 (OSSS/MC HI-critical task). In this example we model a HI-crit-
ical task τ0 which periodically performs a local computation. The task executes
with a period of 2ms. A measurement-based worst-case execution time has de-
termined 1 µs while the statically derived, upper-bounded execution time is
200 µs. The properties of τ0 are T0 = 2ms and π0 = ∅. Due to different
execution time estimate methods, ~ξ0 models the same functional behaviour,
but its execution time varies across criticality levels: CLO(~ξ0) = 1 µs and
CHI(~ξ0) = 200 µs.

6.1.2 Shared Objects

Communication within OSSS/MC is explicitly modelled using Shared Ob-
jects, which are based on the semantics of Ada’s protected objects [16]. Each
Shared Object implements one or more interfaces which tasks can access
through a structural binding of their matching port. This separation enables
a structural refinement of task communication, since the internal task beha-
viour and the interface methods it uses are separated from the underlying im-
plementation of the communication channel. In the refinement step, where
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tasks and Shared Objects are allocated to platform resources, ports serve
as transactors which model the interface behaviour for accessing Shared
Objects depending on their allocation. If a task is structurally bound to a
shared object residing in the same resource, the port can implement simple
memory access to forward the communication requests. On the other hand,
if task and SharedObject model communication across resource boundaries,
the port implements the necessary access to the interfaces for communicat-
ing to the other resource.

Definition 5 (Shared Object). Let C be an AL configuration defining the crit-
icality set L. A Shared Object Si is a tuple (Σi,Mi, Ii) consisting of an in-
ternal state Σi, describing user-defined, abstract data types, a set of methods or
servicesMi : Σi → Σ ′i, representing operations on the object’s internal state,
and a set of interfaces Ii ⊆ P(Mi) the object provides. �

To structurally separate computation from communication, task commu-
nication is explicitly modelled using ports. Access to a particular Shared
Object is furthermore defined statically via port binding. In the context of
mixed-criticality task properties, the binding also adheres certain restric-
tions, which we define now.

Definition 6 (Shared Object binding). A task port πk can be bound to a
matching Shared Object when the Shared Object implements the corresponding
port interface, as defined in the Ii set. The functionB : π→ S defines the bind-
ing of task ports to Shared Objects. Note that multiple ports can be bound to the
same Shared Object instance. In that case, a locking mechanism guarantees mu-
tual access to the Shared Object state. Locking and access behaviour depends on
the maximum criticality of all tasks bound to the object. We call this property
the ceiling criticality ceil(Si). A task with criticality Lk < ceil(Si) can only
access methods which do not modify the internal object state Σi. This allows
LO-critical tasks to access information provided by HI-critical tasks without in-
ducing temporal or spatial interference. �

Example 2 (OSSS/MC Shared Object). A Shared Object S0 for communicat-
ing block-wise image data can be modelled as follows. We describe the interface
as I0 = {{get_block, set_block}} such that the Shared Object provides two meth-
ods get_block : Σ0 → Σ0 and set_block : Σ0 → Σ ′0 for block-wise reading
and writing of image data (with a read-only and a write access to the internal
stateΣ0). Suppose the port π0 of τ0 (from example 1) and the port π1 of a second
task τ1 with L1 = HI are both bound to S0, i.e.B = {(π0, S0), (π1, S0)}. Since
ceil(S0) = HI, τ0 can access bothmethods, while τ1 can only accessget_block
due to the Shared Object binding constraints defined above.

6.2 runtime model

As discussed in the foundations of mixed-criticality systems, mapping func-
tions of different criticality imposes requirements on the underlying plat-
form in terms of its segregation properties. In this thesis, we are interested in
evaluating segregation properties regarding temporal and spatial behaviour.
The following definition provides a distinction between segregation and isol-
ation.
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Figure 6.2: Illustration of the scheduling and execution semantics of tasks (top)
and containers (below) of two subsystems representing HI-critical and
LO-critical behaviour.

Definition 7 (Segregation and Isolation). Subsystems are segregated iff their
interference on shared resources is bounded in both space and time. Furthermore,
subsystems are considered to be isolated when their interference on shared re-
sources is prevented. �

While isolation can be achieved by statically assigning resource consump-
tion slots to each subsystem and a TDMA scheduling policy, the result obvi-
ously stands in contrast to the goals of mixed-criticality scheduling policies.
Their aim is to dynamically re-allocate unused resources from one subsys-
tem to another. Since this dynamic resource re-allocation behaviour can
change the temporal behaviour of another subsystem, a system featuring
mixed-criticality scheduling policies aims at enforcing segregation.

6.2.1 Modelling Scope

This section proposes a runtimemodel which provides scheduling and execu-
tion semantics on a computational resource for mapped tasks and shared ob-
jects. The model provides task containers for each mixed-critical subsystem
defined in the AL, which implement an isolated execution context for the
tasks and a container-local scheduling policy. The runtime model schedul-
ing semantics are based on the FTTS scheduling policy proposed by Gianno-
poulou et al. [29] which separates the computation resource temporally into
frames. Each frame consists of a series of slots – execution blocks dedicated
to each task container. Since our systemmodel considers two criticalities LO
and HI, each frame therefore consists of two slots.

The frame sequentially executes its slots according to their criticality in
descending order. Thus, in the dual-criticality model of this work, the HI-
critical slot is executed at the start of a frame, followed by the LO-critical slot.
At the root, the spanning hierarchical scheduling policy therefore schedules
a sequence of frames containing slots which encapsulate each task container.
An illustration of the scheduling semantics is depicted in Figure 6.2. As can
be seen, within each frame, task containers are executed sequentially, while
each container implements the execution sequence of its mapped tasks. Task
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containers are preempted after each frame such that it is guaranteed that the
HI-critical container can start execution in the new frame. The flexibility of
this scheduling approach – compared to a TDMA schedule – lies in its slot
execution behaviour. The duration of the HI-critical slot depends on the
WCRT of the mapped HI-critical task set in this frame. After execution the
task set, the task container yields the execution control back to the runtime
model, which in turn can directly switch the context to the LO-critical slot.

The allocation of tasks to the frames (and implicitly slots) is derived
from the periodic execution and reaction requirements defined in the sys-
tem specification. As an example, when designing control algorithms in
Matlab/Simulink, the model of the generated C/C++ code requires a specific
execution frequency to maintain its semantics. These requirements have to
be mapped to the scheduling configuration of tasks within frames. We con-
sider this task and frame allocation as an input to our approach and therefore
allow the designer to define the allocation in the model. An algorithm for
choosing the slot allocation based on such task parameters is presented in
[29].

6.2.2 Runtime Model Properties

The runtime model represents a hierarchical two-level scheduling policy
based on the FTTS policy proposed by Giannopoulou et al. [29]. In our
implementation, mapped tasks are clustered by their criticality into task
containers. On the first scheduling level, each task container is executed in a
slotwhich represents an exclusive computation timespan within a scheduling
frame of the top-level scheduling policy. On the second level, an application-
local policy manages the execution order of the task set within the slot.
Shared Objects can be mapped container-local or -global, depending on the
interface binding properties of the Shared Objects. However, they can only
be considered local when all bound tasks have the same criticality level.
The global Shared Object container allows access from different criticalities,
consequently supporting communication across task containers, under the
restrictions defined above.
Summarising, the properties of the runtime model are expressed in the

following definition.

Definition 8 (OSSS/MC runtime). A runtime Ri = (Li, θi, Πi, Fi) con-
sists of a dynamic criticality level Li, a function θi : L→ T denoting the tasks
mapped to the runtime (clustered by criticality), a function Πi : L→ π assign-
ing a scheduling policy for each criticality and a sequence of scheduling frames
Fi = 〈f0, . . .〉. For any criticality L ∈ L, the set θi(L) refers to the tasks of
runtime Ri and Πi(L) denotes the scheduling policy of the task set. We further
define the hyperperiod HF as the sum of all frame durations

∑
fi∈F δk. �

6.2.3 Scheduling Configuration

The frame scheduling configuration consists of a sequence of scheduling
frames. Each frame is further divided into slots that execute the HI-critical
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or LO-critical tasks in an order defined by the respective scheduling policy.
The properties of the scheduling frame configuration are defined as follows.

Definition 9 (Scheduling frame). Given a runtime Rk, a scheduling frame
is a tuple fi = (Ti, δi,Mi) consisting of a set of high-critical tasks Ti ⊆
P(θk(HI)) which are executed in the frame, a frame duration δi ∈ R+, and a
set of marginsMi : L → R+ representing the estimated execution time dura-
tion of the task set Ti for all criticalities L ∈ L. The margin values depend on
the end-to-end execution time of Ti. After executing Ti in the slot, the remaining
length r of the frame duration depends on the run-time behaviour of Ti, where
r > δi−Mi(HI) in a HI-critical frame run and r > δi−Mi(LO) in a LO-crit-
ical run. This duration is then allocated to the task container θk(LO). �

The margin values determine the execution mode for the LO-critical slot
in each frame. The underlying concept is to expose the dynamic resource
consumption behaviour of the HI-critical subsystem to the LO-critical tasks.
When a LO-critical task is instantiated, it can act upon the information about
the resource consumption of the HI-critical subsystem in this frame. Possible
behavioural adaptions include reduced resource consumption scenarios or
other degraded execution modes, which may prevent the LO-critical subsys-
tem from missing deadlines. We will consider this extension in the outlook
in Section 10.2, while focussing on the effects of the overall resource avail-
ability caused by dynamic scheduling effects in this thesis.

6.2.4 Mapping

The components in the AL are mapped to the resources via mapping rela-
tions. Within OSSS/MC, mapping restrictions are defined that apply to the
AL components. This ensures spatial and temporal segregation between sub-
systems of different criticalities.

Definition 10 (Application Layer (AL) to Virtual Resource Layer (VRL)
mapping). The AL to VRL mapping consists of two functions (µT, µS). A task
mapping functionµT : T → R assigns each task τi ∈ Twith the criticality `i to
a runtimemodelRk ∈ R. A Shared Object mapping is a functionµS : S→ R

which assigns each SharedObject to a task container (local use) or to the runtime
(global use) to manage access to the shared resource. �

Intuitively, tasks are clustered into their corresponding criticality subsys-
tems, and Shared Objects either exist as a means of communication within a
criticality cluster, or across. However, if information should be transmitted
across criticality clusters, the model ensures that LO-critical subsystems can-
not modify the Shared Object state. Therefore, LO-critical subsystems are
prevented from spatially interfering with HI-critical subsystems.

6.3 execution semantics & simulation

At the start of a new frame, the runtimemodelRk picks the next frame from
the sequence Fk and configures a timeout according to the frame duration.
In the first slot of the frame, the HI-critical task set executes. As soon as the
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Figure 6.3: Example execution trace of two frames f0, f1 from a scheduling config-
uration of an OSSS/MC runtime R0.

set has finished, the criticality level L is updated according to the execution
duration and the LO-critical task set executes. It will be preempted when the
frame timeout has been reached. Intuitively, margin Mi(LO) represents a
decision point which, at run-time, determines the current system criticality
mode based on the execution time of the critical task set in the frame. If
the task set takes longer than anticipated in a given criticality, the system
criticality increases and the LO-critical task container may use this system
state knowledge to adjust its computational demands. A task set executing
for longer than Mi(HI) can be considered faulty and appropriate actions
such as a system reset may be performed by the runtime.
Based on the properties and semantics of the specification model presen-

ted above, we have implemented the OSSS/MC programming model fea-
turing AL task and Shared Object components as well as the VRL runtime
model on top of SystemC. This enables describing or integrating the func-
tional behaviour in C++ and provides a consistent refinement flow from
a native, annotation-based executable specification to an implementation
candidate which can be targeted towards the platform with the help of a
cross-compilation toolchain. OSSS/MC therefore integrates with existing
code generators such as SimuLink Coder as the missing link between the
generated code and the partitioned functional behaviour. The programming
model provides a component-based seamless refinement flow towards a tar-
get implementation. Furthermore, we make extensive use of design intro-
spection by providing a configuration file that is generated at SystemC elab-
oration time. This configuration contains the application and VRL model
properties and can be used as a basis for further analysis tools to check the
system configuration consistency or evaluate its scheduling properties.

Example 3 (Runtime behaviour). Figure 6.3 depicts an example execution
trace from a runtime model R0 with tasks mapped as shown in Figure 6.1. The
scheduling policy configuration spans a hyperperiod consisting of two frames
F0 = 〈f0, f1〉 configured asT0 = {τ2, τ3, τ4}with δ0 = t4−t0 andT1 = {τ3}

with δ1 = t9 − t4. With t0 = 0, we assume that for f0, a scheduling analysis
has determinedM0(LO) = t2 andM0(HI) = t3, as well asM1(LO) = t6 and
M1(HI) = t8 for f1. The LO-critical subsystem is defined as θ(LO) = {τ0, τ1}.
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As can be seen in the example, the observed execution time of T0 is higher
thanM0(LO) (at t2) which results in an allocation ofmore thanM0(LO)−t0
and up toM0(HI) − t0 time units for the high-critical task set T0 ∈ θ0(HI)
to provide the necessary resources for completing the computation (since
the scheduling policy must assume HI-critical temporal behaviour). θ0(LO)
thus cannot use the slot duration of δ0 −M0(LO) and instead executes in
a degraded scenario when θ0(HI) yields, which is after the M0(LO) mark.
Starting with the new frame f1 at t4, the task container θ0(LO) is preempted
and T1 executes, now within its M1(LO) duration. This results in θ0(LO)
being able to execute for the remainder of the frame duration which is at
least r = δ1 −M1(LO) since the scheduling policy has observed LO-critical
temporal behaviour of T1.

6.3.1 Application Layer Components

The task and Shared Object models are provided as SystemC base class mod-
ules which contain methods and processes for executing the functional beha-
viour. A user-defined task inherits from the task base class and implements
the behaviour in an abstract virtual method. An example task definition
is shown in Listing 6.1. Each task contains its local context, enabling the
defined subclass to specify local state (such as the val attribute in the ex-
ample below). This state is preserved across invocations to the task beha-
viour. The task base constructor defines the properties specified in the task
model. The notation uses the static C++ type system to enforce compile-time
checks on the types passed, thereby minimising errors such as mixing dead-
line and period properties. Although not internally used for scheduling, the
properties defined here are nevertheless exposed in the model introspection
configuration and can be used as an input to external scheduling analysis
tools.
The inheritance approach provides great flexibility in defining the beha-

viour since it encourages code re-use across multiple similar tasks. The de-
signer can refactor similar tasks such as wrappers for external functions or
generated code and thus greatly simplify the specification overhead and re-
duce the necessary code maintenance. Convenience macros can additionally
be used to simplify the task definition.
The example in Listing 6.1 also illustrates the use of timing annotations

in the task behaviour. Depending on the task state, either 2 or 3 seconds
are consumed on the resource to which this task has been bound to. These
high-level annotations are ment to provide early insights into the runtime
model scheduling behaviour.

6.3.2 Runtime Model

The runtime model can be instantiated in a user-defined top-level module
and provides methods for defining the scheduling configuration as well as
the task binding. An example platform definition consisting of two tasks
and a runtime instance can be seen in Listing 6.2.
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#include "modelling/osssmc.h"

using namespace osssmc;

5 class MySafetyTask : application::task {
int val = 0;

public:
OSSSMC_TASK_CTOR(MySafetyTask, criticality::safety,

10 task::priority_type(2),
task::deadline_type(10_s),
task::period_type(10_s))

{}

15 OSSSMC_BEHAVIOUR(scenario) {
(void)scenario;
if (val % 2 == 0) {
OSSSMC_CONSUME(2_s) {}

} else {
20 OSSSMC_CONSUME(3_s) {}

}
val++;

}
};

Listing 6.1: OSSS/MC user-defined task behaviour.

The method create_frame defines the hierarchical scheduling setup of
the runtime instance. The first argument to create_frame is the frame
length, the second argument is a list of margins that define the relative time
stamps in the frame when a scenario switch should take place. The third ar-
gument is the sequence of tasks specifying their mapping to this frame. Each
task mapped to the frame is executed in the appropriate slot depending on
its criticality.
In this example, both task instances are mapped to the HI-critical slot

of the frame, since they are defined with the safety criticality property, as
shown in Listing 6.1. The execution order in this slot is defined by the map-
ping order. Therefore, safety_task will be executed as the first task in the
slot, followed by safety_task2. Multiple frames can be defined by sub-
sequent calls to create_frame. Once all frames have been executed by the
scheduler, the runtime repeats the configured schedule with the first frame.

6.3.3 Instantiation & Simulation

The OSSS/MC model can be simulated based on the SystemC simulation
semantics. In the elaboration phase, the system models are initialised ac-
cording to the user-defined hierarchy. This is achieved by instantiating the
user-defined modules, such as the Top module in our example. Subsequent
constructors invoked by this instantiation will perform the instantiation of
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#include "modelling/osssmc.h"

using namespace osssmc;

5 SC_MODULE(Top)
{
MySafetyTask safety_task, safety_task2;
platform::runtime rt;

10 public:
SC_CTOR(Top)
: safety_task("MySafetyTask")
, safety_task2("MySafetyTask2")
, rt("runtime")

15 {
rt.create_frame(10_s, { 5_s, 8_s },

{safety_task, safety_task2});
}

};

Listing 6.2: OSSS/MC platform definition and runtime scheduling configuration.

#include "modelling/osssmc.h"
#include "Top.h"

int osssmc_main() {
5

Top t{"Top"};

return osssmc_start();
}

Listing 6.3: OSSS/MC platform instantiation and simulation start.

the tasks and runtime as well as the setup of the scheduling frames. The
simulation finally starts with a call to osssmc_start.

By wrapping the SystemC simulation mechanism with custom methods,
we can replace the underlying functionality depending on different imple-
mentation backends. With the SystemC simulation backend, the function
osssmc_main is called from sc_main directly. A possible target implement-
ation instead can initialise the platform before calling osssmc_main. Simil-
arly, all classes presented in this section can have a corresponding backend
for an implementation on a target. The next section discusses the implement-
ation of each OSSS/MC component on an ARM-based embedded target
platform.
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Figure 6.4: Overview of the Programming Model implementation layers on a tar-
get platform.

6.4 target implementation

The previous section defined the OSSS/MC programming model compon-
ents and their properties. This section describes an implementation of the
modelling components on a Zynq 7000 seriesMPSoC target platform consist-
ing of a dual-core ARM Cortex-A9 processor and a FPGA for implementing
custom logic.

The MPSoC (as depicted in Figure 2.4 on page 16) is separated into two
parts. The Processing System (PS) consists of the dual-core Cortex A9 pro-
cessing unit, a two-level cache hierarchy, a DDR memory controller, a bus
infrastructure, and various other peripherals for accessing the external in-
terfaces such as USB, Ethernet, HDMI, etc. The Programmable Logic (PL)
can be used to implement user-defined custom logic such as additional soft-
cores, Block-RAM (BRAM) memory components, and hardware accelerat-
ors. A routing mechanism in the PS enables the use of external peripherals
in the PL by redirecting their pins into the logic part. Furthermore, bus in-
terfaces exist for communicating with the PS, which can be realised either
by accessing target memory components from the PL or by implementing
BRAM targets in the PL which can then be mapped to the memory address
space of the PS bus masters.
The programming model and the measurement infrastructure have been

implemented using both the PS and the PL. Figure 6.4 provides an over-
view of the different implementation layers of the OSSS/MC software stack.
Starting at the top, each mixed-criticality subsystem is implemented on an
isolated software stack managed by the hypervisor. Within each instance,
an OSSS/MC runtime stack implements the application-local scheduling
policy through a dedicated RTOS. Together, the hypervisor and the RTOS
instances containing the tasks form a hierarchical two-level scheduling con-
figuration. The hypervisor is running on one of the Cortex-A9 dual-core
processor andmaps themixed-criticality subsystems exclusively to the other
processor core. The measurement infrastructure, described in Section 7.1,
is instantiated on a MicroBlaze soft-core in the PL and is equipped with a
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dedicated dual-port block RAM accessible to the hypervisor via dedicated
drivers.

6.4.1 Platform Components & Constraints

Themixed-criticality programming model makes several assumptions about
the underlying platform capabilities. First, it is assumed that task computa-
tion times can be estimated (upper-bounded) and that subsystems can be ex-
ecuted independently of their mapping relation.While the first requirement
imposes restrictions on the expressiveness of the model of computation, as
discussed in Section 6.1.1, the second constraint requires platform-level sup-
port for temporal and spatial segregation. As a consequence, the hypervisor
implementation needs to provide both functional and temporal isolation
techniques for the mixed-criticality subsystems.

Managing the state of mixed-criticality subsystems therefore needs to be
handled by an abstraction layer which explicitly controls resource access
to the underlying platform. This is implemented by virtualising the plat-
form resources and control the access from guest instances to the state of
the virtualised platform resources. A common technique in hypervisors for
implementing this feature is to utilise the processor’s privilege modes to dis-
tinguish between the supervisor execution which the management instance
is running in, and the unprivileged execution mode for the guest instances.
As soon as a guest instance accesses a virtualised peripheral, a hardware ex-
ception handler allows the underlying hypervisor implementation to catch
and emulate the desired access, thereby ensuring control over the physical
device. Hardware platforms with support for virtualisation provide addi-
tional instructions for natively supporting this concept. Alternatively, these
mechanisms can be emulated (with an obvious performance penalty) on
platforms with a Memory-Management Unit (MMU) by restricting access
on a memory address basis.

Enforcing the independence of mixed-criticality temporal behaviour fur-
thermore requires the use of platform timers which need to be configured
according to the application-level time slots. The timers allow the hyper-
visor management instance to regain control by preempting the processing
unit execution once the desired slot duration expires. However, as discussed
previously, simply re-assigning the processor resource may not ensure tem-
poral isolation of mixed-criticality subsystems, since the platform state is
not necessarily in a neutral state after a context switch to another subsystem.
Therefore, it is desired to control the state of shared resources on the plat-
form, specifically the cache behaviour, before executing the next mixed-crit-
icality subsystem slot. Since disabling the cache infrastructure completely
is undesirable due to the resulting performance penalty, the underlying im-
plementation platform can instead flush the cache component to avoid tem-
poral dependencies between critical and non-critical subsystems.

The programming model provides different scheduling policies in each
mixed-criticality subsystem instance. While the HI-critical tasks are sched-
uled statically, the LO-critical subsystem components can be dynamically
scheduled to increase the response time for certain use-cases. Therefore, the
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target implementation needs to provide a hierarchical scheduling approach,
with the slot-based scheduling at the root level and the application-specific
scheduling policies at the guest-level.

To implement these requirements, we chose to extend the light-weight,
open-source hypervisor Xvisor [64] which provides virtualisation support
and manages the system criticality state. The hypervisor has been ported
to the Zynq ARM Cortex-A9 dual-core in an SMP configuration with one
core dedicated to executing the HI- and LO-critical vCPU. The second core is
used for booting the system and running the hypervisor maintenance con-
sole. Note that this decision was taken to eliminate any potential L1 cache
intereferences which can occur when switching mixed-criticality contexts
on the same core. The overhead of executing the hypervisor on a second
core can be mitigated by a more restrictive cache partitioning setup.

Xvisor provides an isolated execution environment for each subsystem
by managing a virtual CPU (vCPU) state and its transitions. Furthermore,
peripheral access and interrupts can be either configured as pass-through or
emulated, making it possible to gain complete control over the resources as-
signed to the guest instances. The hypervisor implements the requirements
stated above by providing guest instances which can be configured, con-
trolled, and executed independently. Further extensions have been imple-
mented to ensure a predictable cache state when switching mixed-criticali-
ty subsystem contexts. The Xvisor scheduler, implementing a static time-
triggered scheduling policy, has been extended to support the execution
semantics of mixed-criticality subsystems as presented in the previous sec-
tions.

6.4.2 Mapping & Scheduling Configuration

Xvisor provides a configuration infrastructure for design-time parameters
which is bundled with the deployed binary in a post-link stage, avoiding
the need for recompilation or re-linkage of the target binary executable code
when changing the configuration settings. The configuration is written in
the device-tree specification format [55], a versatile domain-specific language
for describing the structure, its features, and the address mappings of (em-
bedded) platforms and their peripherals. There exists a top-level device tree
description for the underlying platform used by the hypervisor, and a per-
subsystem configuration which contains the configuration options of the
virtualised and emulated peripherals. The advantage of these descriptions is
the comparatively low overhead when testing different configurations and
it further enables providing pre-compiled and linked binaries which can be
configured as needed in a later step of the integration process.
We have extended the top-level device tree configuration and the per-

subsystem specification to allow configuring the mixed-criticality schedul-
ing policy and the mapping of tasks to subsystems. The scheduling frame
configuration for the target software stack as well as settings related to the
measurement infrastructure are encoded in the top-level device tree. The
device tree description of each subsystem contains the mapping relation µT
and VRL runtime properties associated to each instance.
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Technically, there are different approaches for refining the model descrip-
tion to a target implementation. One approach is to use code generators
to provide input for the target compiler which will then emit the execut-
able binaries representing the specified behaviour and the configured map-
ping/scheduling policies for each target processing unit. The other approach
is to provide a runtime environment on the target and execute the system
according to a configuration read at initialization of the target system. The
second approach therefore contains a dynamic initialization phase which
sets up the execution environment, configures the scheduling policy accord-
ing to the parameters, and determines which components are scheduled,
based on the given mapping information. It is therefore more flexible due
to the possibility to modify the configuration without the need to invoke
the complete code generation and cross-compile toolchain. The refinement
flow implements the latter approach through the use of the device tree con-
figuration mechanism.

The frame configuration Fi is specified in the executable simulation
model. As discussed, these properties are extracted at elaboration time. In
the refinement step, they are used for configuring the hypervisor imple-
mentation stack on the target dynamically at boot time. One of the benefits
of this approach is a design-time consistency check of the user-supplied con-
figuration settings, because the settings are specified as API calls into the
OSSS/MC implementation of the native, C++-based simulation environ-
ment. Due to the use of expressive compile-time type checks for specifying
the frame durations as well as the task mapping, the exposure to system mis-
configurations are minimised. The elaboration step and underlying asser-
tions will check if the mappings µT and µS are consistent with the specified
resource modelRi and its task list Ti specified in the frame configuration Fi.
Additionally, the model properties are specified with the help of a type-safe
compile-time unit library to prevent conversion errors between different
units in the configuration layers. As a further simplification of deployment,
we provide the same payload binary for both criticalities by creating an
identical copy and perform the criticality-dependant configuration during
the guest boot process. As a consequence, the integration process is simpli-
fied with the low-cost overhead of an extended initialization routine.

6.4.3 Application Context Management

The hypervisor guest partitions are implemented with the help of an ab-
straction layer consisting of vCPU, emulated devices, and interrupt hand-
lers for each guest system. The hypervisor prevents access to the underlying
physical peripherals as well as special per-instance processor registers. Upon
using these privileged instructions or accessing the (virtual) peripheral ad-
dress space, the platform raises an exception due to insufficient access rights,
and allows the hypervisor implementation to emulate the operation on the
virtual representation of the resource.

The hypervisor scheduler has been modified to implement the time-
triggered frame scheduling policy FTTS according to the configured dura-
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Figure 6.5: Overview of the hypervisor and RTOS execution semantics with com-
munication across the register interface (dashed arrows).

tions δi. Each vCPU priority is then chosen to reflect the defined subsystem
criticality.

The task scheduling behaviour is implemented within each OSSS/MC
runtime instance. Note that the top-level scheduling of guest instances is
based on the task execution behaviour inside the guest instances, since the
scheduling semantics allow LO-critical subsystems to execute as soon as the
tasks of a HI-critical slot have completed their execution. To construct this
global scheduling view, the application-local task execution state needs to
be communicated to the hypervisor. The hypervisor architecture provides
a communication interface in the form of an emulated device, which is rep-
resented to the guest instance by a virtual peripheral mapped to its address
space. The register interface of the device is accessible via MMIO. This in-
terface was not only used for communicating the scheduling state, but also
serves as an interface to communicate task-level timing measurements.

The hypervisor receives payload data through the MMIO interface of the
emulated device, such as task start and end events along with their identifi-
ers. Figure 6.5 illustrates the hypervisor and OSSS/MC runtime behaviour
across the register interface. Listing 6.4 additionally provides pseudo-code
that illustrates the hierarchical scheduling implementation of vCPUs in the
hypervisor and tasks in the runtime.

The left part of Figure 6.5 and the pseudo-code depicted in Listing 6.4
illustrate the hypervisor behaviour. Upon booting the system, after all guest
instances have been initialised, the hypervisor activates the frame timer and
resumes all vCPUs. The HI-critical vCPU executes the task list of the current
frame in the defined task order. When finished, it yields control back to the
hypervisor. The hypervisor then pauses the HI-critical instance, determines
the remaining frame duration, and adjusts Li according to the execution
time duration of the slot and the marginMi(LO). When the frame duration
δi elapses, the hypervisor prepares the next frame by resuming all HI-critical
vCPUs in the new frame Fi.
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Figure 6.6: Example hypervisor frame and OSSS/MC task execution behaviour of
a HI-critical vCPUs and LO-critical vCPUp application container.

Algorithm 1 : vCPU scheduling behaviour.
FrameConfig← frame configuration;
wait for all vCPUs to be initialised;
while true do

NextFrame← NextFrame+ 1 mod size(FrameConfig);
for c ∈ vCPUList(NextFrame) do

ResumeVCPU(c);
end
WaitForNextFrame(NextFrame);

end

Listing 6.4: Pseudo-code illustrating the hypervisor frame scheduling policy beha-
viour.

The underlying priority-based scheduling policy ensures that the vCPU
which is ready and has the highest priority is always chosen to run at the
start of a frame. Orchestrating the FTTS schedule is then performed by se-
lectively pausing or resuming the execution of vCPU instances according to
their criticality and the state of the execution within a frame.

After the HI-critical vCPU has finished executing its task list Ti ∈ θk(HI),
it will send an event via MMIO to the hypervisor which then determines the
remaining frame duration and adjusts Li according to the execution time
duration of the slot and the margin Mi(LO). The HI-critical vCPU will be
paused such that the LO-critical vCPU is chosen by the priority-based schedul-
ing policy. Note that the HI-critical container will always yield the processor.
However, if a LO-critical vCPU does not yield, it will be preempted at the end
of a frame such that the HI-critical application can be executed again in the
next frame.
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Algorithm 2 : vCPU-local task scheduling behaviour.
Criticality← ReadReg(HYP_STATE);
initialise environment;
WriteReg(REGISTER) ; // blocks until first frame starts

if Criticality == LO then
// execute dynamic LO-critical schedule

while true do
t← GetNextTask;
crit← ReadReg(HYP_STATE);
ResumeTask(t, crit);

end
else

// execute HI-critical static schedule

while true do
frame← ReadReg(HYP_STATE);
for t ∈ Tframe do

ResumeTask(t);
end
wait for all tasks to finish;
WriteReg(VCPU_FINISHED);

end
end

Listing 6.5: Scheduling policy behaviour of the mixed-critical subsystems imple-
mented as guest instances in the hypervisor.

6.4.4 Programming Model Implementation

The OSSS/MC programming model tasks and Shared Objects are imple-
mented on top of FreeRTOS. Structurally, each OSSS/MC task is repres-
ented by a FreeRTOS task, while Shared Objects wrap memory which
is shared between tasks. They provide the Shared Object implementation
which is exposed through interface methods and accessible through match-
ing ports defined in the task. Each FreeRTOS task contains a private execu-
tion context that stores the task state across its invocations.

The underlying RTOS scheduling policy has also been modified to imple-
ment the execution semantics of the runtime model Πi presented in Sec-
tion 6.2.3. The state machine on the right side of Figure 6.5 and the al-
gorithm depicted in Listing 6.5 illustrate the OSSS/MC initialisation and
run-time behaviour.

Note that the design decision to provide a configuration-based initializa-
tion requires an extended initialisation phase of the RTOS. Figure 6.5 depicts
the behaviour upon system initialisation. In the state OSSS/MC init, the
runtime initializes either the HI- or LO-critical task container, depending
on the configuration of the system. To achieve this, the implementation re-
quests information from the system configuration through the HYP_STATE
register, which contains the current global system state in terms of the cur-
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rently active frame, the vCPU-local criticality, and the dynamic criticality
state. With this information, the per-application scheduling policy config-
uration Πi can initialize the system corresponding to the criticality of the
subsystem instance.

Once all guest instances have initialised the underlying RTOS and are ready
to execute the given subsystem schedule, they reach the wait for start state,
where they register themselves to the hypervisor via the REGISTER offset.
A barrier has been implemented in the hypervisor to synchronise the next
steps in the subsystems. After both the HI- and LO-critical subsystems have
reached the barrier, the hypervisor frame scheduler starts scheduling the
first frame and switches the context to the guest instance with the highest
priority in this frame.
To implement the static scheduling order defined in the runtime model,

the HI-critical instance instantiates a high-priority FreeRTOS task. This task
coordinates the static, frame-based scheduling order of the task instances
Ti ∈ θi(HI) executed in the frame (state run HI-critical). After the tasks
have been executed, the OSSS/MC runtime yields the control back to the
hypervisor by switching to the state wait for next frame and accessing the
VCPU_FINISHED register. When a new frame starts and the HI-critical vCPU
resumes in state wait, it reads the global system state register again and ex-
ecutes the tasks Ti mapped to the frame determined by the updated content
of the register value.
The dynamic schedule of the LO-critical subsystem is implemented using

the scheduling policy available in the RTOS. We have chosen a preemptive
priority-based scheduling policy that executes the mapped tasks on a best-
effort basis to maximise their throughput. LO-critical tasks are therefore ex-
ecuted according to their dynamic scheduling policy Πi(LO) and will be
preempted by the expired frame timer of the hypervisor after the frame
duration has elapsed.
The LO-critical subsystem implementation reads the current frame and

system criticality fi after each task invocation by accessing the HYP_STATE
register. This information is used to update the dynamic scenario property
Li. Note that LO-critical tasks can be preempted at the end of a frame in
which case no update to the scenario state will be performed when resuming
the task in the next frame. For future activities regarding resource availabil-
ity feedback on the system criticality state, it needs to be considered that the
criticality state may only be updated on a task boundaries which may not
necessarily be aligned to the slot execution windows. Section 10.2 contains
a more detailed discussion of this extension.

6.5 summary

This chapter presented a design flow starting from a functional behaviour
of software components which have been categorised into LO- and HI-crit-
ical subsystems. First, a specification model has been proposed to capture
the unique mixed-critical properties for the functions which should be in-
tegrated on a common platform. The functional behaviour as well as their
extra-functional timing properties are specified in the AL and partitioned
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into tasks for executing the computation, and Shared Objects representing
their communication channels.

Next, an implementation of the programming model as an executable
specification based on SystemC has been presented, allowing the designer
to functionally test the behaviour and ensure proper functional partitioning.
The executable specification allows integrating C/C++ based descriptions of
functional behaviour, which can be either manually specified or extracted
from high-level system models such as Matlab/Simulink through the use of
a code generator.

We have furthermore proposed a resource model for a platform execut-
ingmixed-criticality behaviour. TheVRL contains a runtimemodel towhich
the AL tasks and Shared Objects are mapped. The runtime model then per-
forms a hierarchical scheduling according to the semantics of a mixed-criti-
cality scheduling policy. Coupled with user-defined timing annotations, the
mapping of tasks and Shared Object to the runtime can be evaluated in
a SystemC-based environment, allowing the designer to gather initial per-
formance metrics of the partitioning and mapping decisions.
Finally, we have provided a systematic way of implementing the proposed

components of the programmingmodel. The proposed refinement flow aids
the designer in implementing the functional behaviour and make use of the
identified techniques for temporal and spatial isolation on the target MPSoC.
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The previous chapter presented the OSSS/MC programming model target
components enabling a systematic implementation of the executable spe-
cification model on an MPSoC target platform. This section describes the
modelling approach integrated into the design flow. The proposed measure-
ment infrastructure serves as the data source for evaluating the temporal be-
haviour of the application model components. The first section introduces
the measurement infrastructure implementation on the target and its integ-
ration into the hypervisor implementation and the platform components.

Next, a performance modelling approach is presented which allows to
perform an analytical estimation of the integration impact on the LO-crit-
ical subsystem in terms of its timing behaviour. Finally, we propose the
construction of application proxies, which are based on the gathered tim-
ing behaviour from the measurement infrastructure and mimic the resource
consumption of HI-critical subsystems while omitting the execution of their
functional behaviour on the target platform.

7.1 measurement infrastructure architecture

The measurement infrastructure captures two different data sources and
thus consists of two components. The first component collects execution
time durations of HI-critical slots by constructing a dynamic histogram from
a series of measurements on the target. A second module extracts average
durations of task, slot, and frame execution time in the system. Additionally,
the module collects average performance-related metrics on a per-slot basis
from the hardware platform. This section describes both components, their
configuration and run-time interfaces. It furthermore discusses the data post-
processing along with the performance model and application proxy con-
struction based on the collected data.
The OSSS/MC measurement infrastructure is depicted in Figure 7.1. Its

target software implementation consists of two independent hypervisor
modules which can be configured and used separately. The osssmc_dist

module gathers slot execution time durations and constructs a distribution
as a histogram from the collected data. The second module, osssmc_trace,
collects durations and events which can be annotated across the full software
stack, ranging from task-level execution times over bare-metal hypervisor
events to hardware performance counter metrics. Both modules use the ex-
isting hypervisor configuration infrastructure, such that each one can be
mapped independently to available memory address ranges and their para-
meters can be modified without the need for recompiling the hypervisor
binary.
Interference-free measurement data extraction has been implemented by

a dedicated MicroBlaze soft-core accessing a dual-ported block RAMwhich

77
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Figure 7.1: Overview of the HW/SWmeasurement infrastructure components in
the hypervisor and programmable logic.

stores the data gathered by the osssmc_trace and osssmc_dist modules
running on theARMcore.Note that theMicroBlaze instance is only needed
for the JTAG access and does not execute any functions. Since the data ex-
traction may alter the temporal behaviour, platforms which do not support
custom logic can alternatively stop the measurement setup before accessing
the data in the main memory.

Internally, each module provides a method-based interface for tracking
the distribution-related durations and events. Apart from the event type,
the interface provides means for gathering meta-data such as performance
counter values or vCPU identifiers, which are then stored in the mapped
BRAM along with the event type. The osssmc_trace module interface is
additionally accessible via MMI/O by an emulated device osssmc mapped
to eachOSSS/MC instance address space. A simple driver integrated into the
OSSS/MC runtime forwards annotated events in the task implementation
to the hypervisor. The osssmc_distmodule implements the functionality
for storing the hypervisor-managed slot duration of a given frame.

7.1.1 Online Pre-Processing

The osssmc_tracemodule measures two types of events: the occurrence of
absolute events and the duration between two events. The latter can repres-
ent the start and end of a state, such as the duration of a running task or slot.
For this duration-based measurement, the module continually updates the
minimum, maximum, and running average durations. A weighted moving
average across the event durations increases the stability of the determined
average value. Theweighted average is calculated asa(t) = 1

8x(t)+
7
8x(t−1),

such that new values have an impact of 12.50% on the moving average.
The module supports tracing the vCPU duration, task execution times,

frame, slot, and hyper-period start/finish events as well as platform per-
formance counter values. Each absolute event and event duration has a pre-
defined memory location in the external memory buffer which can be spe-
cified when configuring the module. Furthermore, the events are annotated
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in the provided target implementation of the AL components, such that it
is not required for the designer to insert them manually.

The execution time of a slot is recorded by an on-line dynamic histogram
mechanism to gather as many data points as possible on the target. The his-
togram captures the number of execution time observations of a particular
slot, which can be selected by a measurement infrastructure configuration
setting. A histogram typically is parametrised with a bin size which defines
the interval in which observed values are grouped. The bin size can also be
interpreted as the resolution of the histogram data. To maximise the histo-
gram resolution, the chosen bin size and data range therefore are a direct
property of the available memory space for storing the histogram (which
defines the total number of bins).

To increase the data resolution of the measurement infrastructure, the
bin size and the chosen range needs to match the expected range of values
which should be observed. The measurement infrastructure therefore dy-
namically adjusts the bin size and the range. This dynamic histogram avoids
the need for an initial measurement and a per-deployment configuration of
the histogram bin size and data range settings. It ensures that a minimum
bin size and appropriate data range is chosen which ultimately results in
a maximum histogram resolution for the available memory to which the
module is mapped to.

Listing 7.1 illustrates the adjustment. Initially, the bin size and data range
are set to provide the highest resolution possible in the statically configured
memory range. When a HI-critical slot finishes, the module checks the cur-
rent bin size, minimum value, and range of the histogram to determine
whether the new value fits into the configured value range. The histogram
bin size calculation uses the maximum and minimum data points observed
so far as well as the available memory size to determine the new minimum
bin size. When a new duration is stored in the histogram, the mechanism
checks if the data point can be mapped to the current histogram configur-
ation, consisting of the minimum duration and the range covered by the
histogram. If the new data point is not within the current range of the data
points, the histogram needs to be extended to allow storing the new data
point. After readjusting the parameters, all previously stored values are also
converted to the new histogram bins.

Note that the distribution range will never be decreased; it will start with
the highest possible resolution (constrained by the available memory re-
gion) which consequentially provides only a small range of values to be
captured. Next, the mechanism then will gradually increase the range to
match the observed execution time distribution range. Along with the his-
togram bin data, the necessary metadata to reconstruct the histogram after
extracting the BRAM contents are also stored in memory.

7.1.2 Data Extraction & Post-Processing

The measured event durations and histogram data from the osssmc_trace
and osssmc_distmodules are stored in a block RAM in the programmable
logic part of the Zynq. To extract the data from the memory without gen-
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Algorithm 3 : Dynamic histogram resizing.
Data : the measured duration and the current Histogram
Result : the updated Histogram
// get the current histogram properties

min← Histogram(min) ;
max ← min+ Histogram(range) ;
// Adjust bounds of current histogram properties

if duration < min then min← max(duration− SafetyMargin, 0) ;
if duration > max then max ← duration+ SafetyMargin ;

range← max −min ;
// check if the data layout needs to be adjusted

if min 6= Histogram(min)∨ range 6= Histogram(range) then
// keep the old data

Histogram ′ ← Histogram ;

// update histogram properties

Histogram(min)← min ;
Histogram(range)← range ;
Histogram(binsize)← 1+ range−1

AvailBins ;

// copy old data to new layout

CopyHist(Histogram’, Histogram) ;

end
return Histogram ;

Listing 7.1: Pseudo-code illustrating the dynamic histogram resizing.

erating interference on the active measurements, we use a MicroBlaze soft-
core that is accessed via JTAG and instructed to read a given memory loc-
ation over JTAG into a local file on the host machine. In this setup, the
MicroBlaze core is only used to enable JTAG-based access to the memory;
it does not execute any functions. Note that this does not restrict the use
of our measurement infrastructure to platforms with programmable user-
logic, since the online-extraction only served as a convenience method for
extracting the data. An equivalent process can be implemented by stopping
the measurements on the platform before downloading them through an
external connection.

After gathering the osssmc_trace data, they are further processed in
a python-based setup where the raw memory image extracted from the
board is parsed according to the event memory layout specified in the
osssmc_module configuration. Each duration contains the average, min,
and max value and is exported as a CSV file for further inspection.

7.2 data-driven performance modelling

This section describes the performance model construction based on the
measurements presented in the previous section. The extracted measure-
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Figure 7.2: Probability Density Function constructed from the measurements the
CoreMark benchmark.

ment results of the osssmc_dist distribution are used to construct a per-
formance model to estimate the utilisation impact on the LO-critical soft-
ware subsystem resulting from the overall frame and slot management over-
head, the scheduling configuration, and the temporal behaviour of the HI-
critical slot execution.

7.2.1 Assumptions

The performancemodelling approach uses the measured histogram data and
constructs a statistical model by determining the Probability Density Func-
tion (PDF) of the measured data. Figure 7.2 provides an example measure-
ment result of the osssmc_dist module and the constructed PDF. The un-
derlying necessary assumption for constructing a PDF is that the observed
execution time durations follow an independent and identically distributed
random process X = (x1, x2, . . . , xn). The data being independent in our
context means that the execution time does not depend on any previous
measurements. This is true due to our assumption on the temporal segreg-
ation enforcement of HI- and LO-critical slots on the platform. The data is
also assumed to be identically distributed. In our context, this means that
we assume that we manage the platform state in a way that each measures
slot execution time duration is modelled by the same distribution.

These assumptions allow us to determine the PDF f(x) by calculating the
Kernel Density Estimation (KDE) f̂(x) from the histogram data. The KDE
is defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
and can be parametrised with the kernel K (a distribution) and a bandwidth
h. Intuitively, each measured data point xi represents a kernel as the point’s
own probability distribution. As a consequence, the quality of the result-
ing PDF is determined by the histogram resolution. The KDE sums up the
weighted contribution of all kernels for a particular probability of point x
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Figure 7.3: Illustration of HI-critical slot execution time distributions in the mixed-
criticality scheduling policy implementation. Each distribution models
the overall probability of a single slot duration.

according to the estimated PDF. We have chosen the Gaussian kernel and the
data-dependant bandwidth taken from the experiment histogram results.

7.2.2 Model Construction

The PDF represents a model of the timing behaviour of a set of tasks ex-
ecuting in a HI-critical slot. Assuming that the measurements provide a reas-
onable coverage of the timing behaviours of the subsystem in the slot, we
can therefore use the timing behaviour model to analytically estimate the
integration cost in terms of performance impact to LO-critical subsystems,
since the slot behaviour of the HI-critical subsystems directly determines the
available resources of any LO-critical subsystem due to the dynamic mixed-
criticality scheduling approaches. Figure 7.3 illustrates the general idea of
the modelling approach.
The PDF represents the per-frame utilisation distribution by modelling

the HI-critical execution time of a single slot. Extending the approach for
all frames then results in a representation of the overall system utilisation
caused by the HI-critical subsystem. We have implemented the histogram
data post-processing and visualisation with the python seaborn [78] and
numpy [75] libraries. Constructing the PDF has been achieved with the KDE
implementation provided by the sklearn [65] library.

Definition 11 (LO-critical application performance model). Given a frame
configuration F and its hyperperiod HF, we define Ufi,O to represent the per-
frame utilisation caused by the HI-critical slot execution time of Ti modelled
with the PDF dfi(x), its expected value E[dfi ] to realise the distribution, and a
context switch overhead O for each slot:

Ufi,O =
E[dfi ] + 2O

δi

The utilisation over a complete frame set UF,O is defined as

UF,O =
1

HF

∑
fi∈F

δiUfi =
1

HF

2O|F|+ ∑
fi∈F

E[dfi ]
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Determining the context switching overheadO and dfi for each fi ∈ F denoted
as the set dF allows us to instantiate the performance model for our application
configuration and platform properties. Aftermeasuring the LO-critical execution
timeCk of a task in isolation, we can then determine the expected response time
Rk on the platform, given the system scheduling configuration and the resource
consumption models of the HI-critical application:

Rk = Ck
1

1−UF,O

= Ck
HF

HF + 2O|F|−
∑
fi∈F E[dfi ]

�

Note that depending on the complexity of the scheduling configuration,
multiple measurement runs may have to be performed to determine dfi for
all fi ∈ F since the measurement infrastructure can only be configured to
capture the HI-critical slot execution time durations of a particular slot in
a hyperperiod. Each measurement configuration therefore provides the HI-
critical execution time distribution of one particular frame. However, if the
underlying platform can provide sufficient memory, this approach can be
easily extended to capture histograms of multiple slots at the same time.
The following example shows how the performance model can be ap-

plied after performing measurements of the slot duration of a HI-critical
subsystem and using these with the isolated response-time measurements
of a LO-critical subsystem which should be integrated on a mixed-criticality
platform.

Example 4 (Performance model example with the compress benchmark).
In this example we define a VRL configuration with a scheduling frame f0 =
(T0, δ0,M0) where T0 contains a task running for an expected execution
time of E[df0 ] = 34 280.76 µs and the frame setup has been defined as δ0 =
171 048 µs withM0(LO) = 34 297.56 µs andM0(HI) = 102 629 µs (config-
uration taken from the compress benchmark of the evaluation). There is only
one frame, such that HF = f0 and the determined platform overhead is O =
20.52 µs. Assuming that the isolated measurements of a video frame encoder
determined an average end-to-end execution time of C0 = 4 331 585.41 µs, we
can now estimate the expected response time R0 in an integrated environment:

R0 = C0
HF

HF + 2O|F|− E[df0 ]

= 4 331 585.41 µs · 171 048 µs
171 048 µs+ 41.04 µs− 34 280.76 µs

= 5 415 792.58 µs

Under the given scheduling configuration and HI-critical execution time distri-
bution, the model therefore estimates the video frame encoder end-to-end execu-
tion time of ≈ 5.42 s.

The performance model uses the expected value of the distribution to
determine the average execution time estimation analytically. An alternative
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approach is to incorporate the generated PDF into the simulation model
presented in Section 6.3. This extension is further discussed in the outlook
in Section 10.2.

7.3 application proxy

The PDF model constructed in the previous chapter allows us to analyse the
expected performance behaviour of the LO-critical application, given an ini-
tial, isolated end-to-end execution time of the LO-critical application. This
section describes the construction of a dynamic execution time model based
on the determined PDF of the HI-critical subsystem. The idea is to use the
model data on the target to mimic the execution time behaviour of HI-criti-
cal slots. Such a timing model on the platform can provide an integration en-
vironment for LO-critical subsystems due to the combination of the HI-crit-
ical timing behaviour with the dynamic mixed-criticality scheduling policy.
As a consequence, LO-critical subsystems can be integrated on the platform
without needing to integrate the functional behaviour of the HI-critical sub-
system. For each frame fi, instead of executing the mapped HI-critical tasks,
the underlying scheduling policy consumes the duration dfi which is de-
termined by the PDF model.

7.3.1 Target Requirements

To replay themodelled execution time of a slot on the target, the implement-
ation needs to provide amechanism for generating the slot duration intervals
as defined in the constructed PDF. There are multiple ways to achieve this.
The first option is to implement the PDF on the target. This option requires
representing the PDF properties and its semantics in the target implementa-
tion. Therefore, all measurement points used to construct the PDF as well as
the KDE functionality, which generated the distribution, need to be available
on the target. Recall that the KDE accumulates theGaussian distributions for
each measurement point. This operation may therefore infeasible to be per-
formed on the limited computing resources of an embedded target. While
the model generation may be performed at the target initialisation phase,
extracting an execution time value for the HI-critical slot at the start of each
frame might induce more timing overhead than the actual execution time
that should be consumed. A possible mitigation for this effect (depending
on the platform capabilities) is the use of a special hardware random num-
ber generator [1] for reducing the software overhead when generating the
execution time duration samples from the model.
An alternative way to implement the model on the target is to pre-

compute a sequence of execution time samples on the host computer and
replay them on the target platform. To achieve this, the target platform
only needs to provide a timer which can be set to intervals in the resolution
of the measured slot durations. Then, the timer can be configured at the
start of each frame to produce a timeout event after the duration of the next
execution time sample of the pre-computed sequence.
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To account for the potential context switching overhead of the hypervisor
layer, the input duration given to the timer has to be calibrated such that
the desired execution time duration is produced. This implies determining
the context switching overhead and subtracting it from the sample before
configuring the timer. This can be achieved by measuring the application
proxy execution time durations on the platform and compare themwith the
specified sample durations. The resulting offset then needs to be considered
when setting up the timeouts. Note that this offset is independent of the
subsystem behaviour and solely depends on the platform and the overhead
of the timer and hypervisor infrastructure.

As a result of the discussion above, we have decided to pre-compute the
execution times to avoid inducing any timing uncertainties and delays which
can impact the timing resolution of the application proxy by a software
implementation of the PDF model on the target processor itself. Although
the approach is therefore limited by the sequence length of the application
proxy samples due to memory requirements, we were able to successfully
run configurations that provided execution time durations for our 10min
experiments, where some slots only lasted for an average of 320 µs. Even
in that case, the total memory footprint is less than 21MB. However, if
the storage capacity is a limiting factor, the durations can also be repeatedly
executed, as we will discuss in the in Section 9.4. The next sections describe
the implementation of the sample pre-computation and replay approach for
the HI-critical slot execution time distribution.

7.3.2 Implementation

As shown in the previous section, the PDF model dfi represents the distri-
bution of the HI-critical slot execution time observed in the frame fi. Im-
plementing this model on the target consists of two steps. The first part is
to generate a sequence of n samples (σ1, . . . , σn)i for each frame fi ∈ F. A
sample in the sequence is a duration according to the determined slot distri-
bution dfi and therefore represents a possible execution time duration of a
HI-critical slot. As discussed, the sequence is constructed at design time to
reduce the complexity of the target implementation needed to mimic the
resource usage behaviour. The next step is to iterate through the sample list
at run-time and configure the timer infrastructure accordingly.

The hypervisor implementation has therefore been extended with a new
execution mode to support replaying the sample sequence. The new beha-
viour is illustrated in Listing 7.2. When the mode is configured, the hyper-
visor implementation executes each frame schedule fk as usual but skips the
HI-critical subsystem slot execution. Instead, it configures a timer to wait for
the specified sample duration σi, thereby effectively replacing the functional
behaviour of the HI-critical subsystem with the resource consumption be-
haviour based on the samples extracted from the PDF model.

Each frame invocation of fk results in selecting the next sample σi+1 of
the pre-computed sequence (σ1, . . . , σn)k and instead of executing the HI-
critical subsystem, a timer is configured to expire after the specified duration
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FrameConfig← frame configuration;
wait for all vCPUs to be initialised;
while true do

NextFrame← NextFrame+ 1 mod size(FrameConfig);
for c ∈ vCPUList(NextFrame) do

if CriticalityOf(c) == HI then
WaitForTimeout(NextSample(NextFrame));

else
ResumeVCPU(c);

end
end
WaitForNextFrame(NextFrame);

end

Listing 7.2: Pseudo-code illustrating the hypervisor frame scheduling policy beha-
viour under the HI-critical application proxy behaviour.

has elapsed. The LO-critical slot is executed for the remainder of the frame
duration.

7.4 summary

This chapter presented the measurement infrastructure integrated with
the programming model implementation on a hypervisor-managed MPSoC
platform. The measurement infrastructure contains two modules. The
osssmc_event module provides measuring one-shot events and durations,
while the osssmc_dist module measures the slot execution times. It also
contains a dynamic approach for storing the measurements in a histogram
while ensuring the maximum possible time resolution at the given memory
constraints. This infrastructure forms the basis of the modelling approach
proposed in this thesis.
The measurement infrastructure is subsequently used to extract execu-

tion time duration for constructing an analytical model of the HI-critical
subsystem timing behaviour. The purpose of this model is to predict the in-
tegration impact of LO-critical subsystems in terms of its timing behaviour.
In combination with an (isolated) timing estimation of a LO-critical subsys-
tem, the model can estimate the impact on the end-to-end execution time
caused by the HI-critical subsystem resource consumption in combination
with the mixed-criticality scheduling policy on the platform.

Based on the extracted PDF, a method for implementing the generated
HI-critical model on the target platform has been proposed. To achieve this,
a list of samples is extracted from the constructed model and a modification
of the implementation replays the scheduling behaviour with the samples.
This application proxy mimics the HI-critical computational resource con-
sumption behaviour. As a result, a LO-critical subsystem can be integrated
into the mixed-criticality target platform and the dynamic mixed-criticality
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scheduling policy artefacts can be imitated without requiring a functional
implementation of the HI-critical subsystem.
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8INTEGRAT ION FLOW EVALUAT ION

The following evaluation sections are structured along the contributions
of this thesis. The first section provides a definition of a mixed-criticality
system with the components introduced in Chapter 6. In the next section,
their execution time characteristics are measured with the measurement in-
frastructure in order to gather initial timing estimates of the software com-
ponents. The results are then used to derive a feasible setup for the dynamic
mixed-criticality scheduling policy.

After configuring the scheduling policy, the evaluation in Section 8.3 ex-
amines the performance impact of the segregation approaches in the imple-
mentation by considering the overhead of the subsystem context as well as
the platform component state management. In particular, the evaluation fo-
cusses on the hypervisor context switch timing penalty and the impact of
cache flushes, both regarding their timing penalty on the subsystems, and
their contribution in mitigating application-level interferences. We further
demonstrate the potential gains of the dynamic mixed-criticality scheduling
policy for LO-critical subsystems due to its adaption to the resource con-
sumption behaviour of HI-critical subsystems.

The results of the segregation overhead analysis then allows us to instanti-
ate the proposed performance model and compare its timing estimates with
the target measurements. Chapter 9 then further considers the accuracy of
the application proxies by evaluating their timing behaviour on the target
and comparing it to the original HI-critical subsystem timing behaviour. Fi-
nally, we demonstrate how a LO-critical subsystems can be refined and val-
idated on the target without requiring the implementation of the HI-crit-
ical subsystem. The restrictions of the application proxy implementation
regarding their sample size are considered by providing an estimate of the
minimum samples required for achieving a given behavioural accuracy on
the target.

8.1 setup

This section describes the evaluation setup using the system specification
models introduced in Chapter 6. The overall mixed-criticality system con-
sists of a LO-critical and a HI-critical subsystem. The HI-critical subsystem
features a benchmark task executing the Märladalen WCET analysis tool
benchmark suite [36] and the CoreMark benchmark [23]. These bench-
marks provide different synthetic workloads capturing complex memory-
and control-flow workload scenarios for HI-critical applications and allow
exploring the execution time distribution behaviour on the target platform.
In contrast, the LO-critical subsystem contains a task and a Shared Object
dedicated to executing a video encoding algorithm. This section first defines

91
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the overall system configuration and then details the task properties of each
subsystem.

The system configuration Cb consists of the task set Tb = {τb, τe}, the
Shared Objects Sb = {S0}, the binding relation B, and the criticality levels
Lb = {LO, HI}. Each system configuration Cb features one benchmark b as
the HI-critical task. Instantiating the system configuration for a benchmark
bi results in a specific instance of the system where the HI-critical task ex-
ecutes the behaviour (and exhibits the temporal properties) of benchmark
bi.

Each benchmark is wrapped by an OSSS/MC task executing the bench-
mark 1000 times per invocation. For each benchmark b, the task τb consists
of the properties

(
Tb, πb, `b,~ξb

)
with

• the period Tb,

• the set of ports πb = ∅,

• the criticality `b = HI, and

• the execution trace ~ξb = ((∅, tb)1000), representing the execution of
the benchmark behaviour with duration tb for 1000 times.

Note that Tb is typically specified in the timing requirements of the be-
haviour executed in the task context and can therefore be annotated to
tasks of the programming model. This property can be used by external
analysis tools along with the task timing requirements to determine a feas-
ible scheduling configuration. In the first step of the evaluation, we determ-
ine the configuration empirically based on the overall slot duration and
therefore do not require specifying the period in the task model. A pos-
sible extension of the design flow is to incorporate scheduling analysis tools
which check the consistency of the specification requirements and the given
scheduling analysis.
The LO-critical subsystem consists of a performance-critical function rep-

resenting a video encoder. In the chosen evaluation setup, it contains an
MPEG4 video processing algorithm embedded in a task which encodes one
video second (24 frames) per iteration on a synthetic byte stream read from
a Shared Object. The video encoding task τe thus consists of

• the period Te = 0,

• the set of ports πe = I0,

• the criticality `e = LO, and

• the execution trace ~ξe = ((πe, te0), (∅, te1)), representing the read
from the Shared Object using the port πe with duration te0 and the
encoding operation with the duration te1.

The period Te is defined as 0 since the encoding should be executed
whenever possible to maximise the overall frame throughput. Therefore,
the task restarts as soon as it has finished encoding the frame.
The Shared Object S0 containing the synthetic frame data is defined as

follows:
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• Σ0 contains the synthetic frame data,

• M0 = {getFrame} with getFrame : Σ0 → Σ0 is the method for
retrieving the frame data, and

• I0 = {M0} denotes the methods exposed via the Shared Object’s in-
terface, marking the method getFrame accessible through task ports
bound to the Shared Object.

The port binding relation is defined as B = (πe, I0). Since only the
LO-critical task port is bound to the Shared Object, its ceiling criticality is
ceil(S0) = LO and the task can access all shared object interface methods,
regardless of whether they modify the Shared Object state or not.
The LO-critical subsystem therefore consists of the task τe and the Shared

Object S0, while the HI-critical subsystem contains the task τb (for each
instance of b). The remainder of the evaluation considers the effects on
scheduling, segregation techniques, and performance modelling with the
set of benchmarks by instantiating the system configuration Cb for each
benchmark b.

8.1.1 Frame & Slot Configuration

This section considers deriving the VRL parameters of each system instan-
tiation Cb. Throughout the following evaluation, the overall scheduling
policy structure consists of one frame in which the task of each subsystem
is executed. Therefore, the scheduling configuration is defined as Fb = 〈fb〉
with fb = (Tb, δb,Mb). For each benchmark b, the parameters of this
configuration will be empirically estimated in this section.
To simplify the process of determining the VRL scheduling properties for

each benchmark, the calibration measurements were performed by config-
uring the hypervisor scheduling frame with a duration of 500ms to allow
all benchmarks b to finish their execution loop within one scheduling frame.
The initial scheduling configuration Finit,b thus consists of one scheduling
frame finit,b = (Tb, δinitMinit) with the properties:

• Tb = {τb}

• δinit = 500ms

• Minit = {500ms, 500ms}

For each benchmark b, we measured the execution time durations of the
slot executing τb using the proposed measurement infrastructure in the hy-
pervisor implementation. Each benchmark behaviour b was executed on
the target board as the task τb, as specified in the system configuration, for
a total duration of 600 s. The resulting slot execution time distribution al-
lows configuring the scheduling policy of Fb by deriving appropriate values
forMb(LO),Mb(HI) and the frame lengths δb, each based on the observed
measurement results of benchmark b.
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Table 8.1: Average execution time Cmean(Tb) and frame configuration for all
benchmarks based on the maximum observed execution time CLO (in
µs).

τb Cmean(τb) CLO(τb) CHI(τb) δb

compress 34 280.76 34 297.56 102 629 171 048

coremark 131 602.82 131 784.56 395 353 658 922

cover 10 734.97 10 749.85 32 170 53 617

crc 5983.31 6029.76 18 115 30 192

expint 348.03 369.16 1054 1757

fdct 11 793.76 11 822.20 35 466 59 110

fft1 24 534.60 24 628.85 77 129 128 549

insertsort 4902.51 4948.62 14 872 24 786

lcdnum 957.71 1010.81 3032 5054

ludcmp 49 523.89 49 644.44 161 564 269 273

qsort-exam 16 935.59 16 955.40 50 839 84 733

qurt 23 610.31 23 749.87 70 801 118 002

statemate 18 801.09 18 818.83 130 261 217 101

ud 9511.25 9624.76 161 564 269 273

The measurement-based approach provides the estimation method CLO,
which we use as the mechanism for determining the maximum observed exe-
cution timeCLO(τb) for each benchmark b. Following contemporary indus-
trial and academic practices for determining task execution times on com-
plexHW/SWplatforms, we further approximate theWCET upper bound by
multiplying the maximum observed execution time by a factor of three [29].
As a consequence, we define CHI(τb) = 3CLO(τb) to represent the upper
bounded execution time determined by the CHI estimation method.

Based on these execution time durations, we define the per-benchmark
scheduling configurations with a HI-critical slot duration of Mb(HI) =
3CLO(τb) = CHI(τb) and an overall frame length of δb = 5CLO(τb) to
provide some leftover computation time for the LO-critical subsystem. As
a result, with the HI-critical benchmark consuming at most Mb(HI) pro-
cessor time, the LO-critical subsystem should theoretically be able to con-
sume at least δb−Mb(HI)

δb
= 40% of the processor time within one frame.

However, due to the dynamic mixed-criticality scheduling policy, the actual
processor time depends on the HI-critical execution time behaviour, as dis-
cussed in the previous sections.

Table 8.1 lists the average execution time (denoted as Cmean), the max-
imum observed execution time CLO on the platform, the derived value for
CHI as well as the frame duration settings δb of each benchmark b. Based on
the results,Mb(LO) is set to CLO andMb(HI) is set to CHI. This concludes
the per-benchmark frame scheduling settings.
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Figure 8.1: Absolute execution time difference at the 90th, 99th percentiles,
and maximum observed execution time, sorted by standard deviation
(baseline: average execution time).

8.1.2 Benchmark Timing Behaviour

To compare the measured execution time distribution between the bench-
marks, we have determined the average and maximum observed execution
time, the standard deviation, as well as the execution times observed at the
90th and 99th percentiles. Figure 8.1 depicts the relative execution time
differences between those values and the average execution time for each
benchmark. A low relative difference denotes a narrow execution time dis-
tribution, while a higher difference in the execution time indicates a wider
execution time distribution.

The data in Figure 8.1 show that the execution time distribution of
most benchmarks is relatively narrow, with a standard deviation of at most
89.58 µs and – except for the coremark and qurt benchmarks – only small
differences in the higher percentiles. Thus, it seems that the argument for
exploiting the execution time distribution characteristics of HI-critical tasks
with a dynamic scheduling approach is impractical. But, the main motiva-
tion for these scheduling policies stems from the difference between the
upper-bounded execution time Mb(HI) which is either determined based
on a factor of the maximum observed execution time (as discussed in the
evaluation setup) or by a static WCET analysis. Due to the execution time
uncertainty demonstrated by the measurements above, the resulting upper-
bounded WCET can easily exceed the observed maximum execution time
by a significant factor [18]. Additionally, small variations in the distribu-
tion may alter the resulting upper-bound considerably since they indicate
an execution time uncertainty on the platform. Hence, even in the case of
this benchmark suite, there exists a significant execution time variance on
complex MPSoC platforms. The results therefore indicate the need for mod-
elling this dynamic behaviour in analysis models and simulation methods to
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provide an accurate performance estimation in the mixed-criticality design
flow.

8.2 dynamic mixed-criticality scheduling

A major benefit of the dynamic mixed-criticality scheduling policy is to in-
crease the overall resource utilisation for LO-critical subsystems without sac-
rificing the scheduling and timing guarantees given by a comparable static
scheduling configuration. In this section, we compare both approaches and
measure the resulting utilisation improvements on the platform. Based on
our previously determined scheduling configurations, we define a typical
static time-triggered scheduling approach with fixed slot durations and com-
pare its run-time behaviour against the dynamic scheduling configuration
where slot lengths can vary depending on the HI-critical subsystem’s dy-
namic resource usage.

8.2.1 Scheduling Configuration

As discussed in the introduction of this chapter, we follow contemporary
industrial and academic practices for defining an upper-bound on theWCET.
Recall that we have used the maximum observed task execution times
Cmax(Tb) of each benchmark b to allocate a HI-critical slot duration of
Mb(HI) = 3Cmax(Tb), representing our WCET upper bound. We have
further configured the frame length δb = 5Cmax(Tb) such that the LO-
critical video encoding application can be executed in the same frame for
2Cmax(Tb). As a result, in the static setup, the HI-critical application is
allocated to theMb(HI) interval and the LO-critical application is allocated
δb−Mb(HI)

δb
= 40% of the processor time within one frame. The specific

configuration settings depend on each benchmark and are listed in Table 8.1
on Table 8.1. As in the previous sections, the measurements were performed
for each benchmark b by instantiating the system configuration C with the
corresponding scheduling configuration.

In the static scheduling setup, we have executed the scheduling behaviour
according to a static time-triggered scheduling approach: the hypervisor per-
forms a context switch after the fixed duration given by the configured mar-
ginMb(HI) which was determined at design time. This setup therefore re-
sembles a typical static time-triggered scheduling approach. In contrast, the
dynamic configuration allows the HI-critical subsystem to yield the control
back to the hypervisor when it has finished its computation. In this case,
the LO-critical slot is able to consume the rest of the frame duration δb dir-
ectly. Therefore, in the dynamic setup, if the HI-critical subsystem would
yield the processor after the average observed execution time Cavg(Tb), it
would increase the frame encoding throughput for the LO-critical applica-
tion by 80%. Depending on the chosen margin and frame length which are
influenced by the HI-critical slot execution time distribution, the dynamic
approach could therefore result in significantly higher resource availability
for the LO-critical subsystem.
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Figure 8.2: LO-critical video encoding end-to-end execution time speed-up in the
dynamic scheduling configuration.

8.2.2 Static & Dynamic Scheduling Comparison

We have evaluated both the static and dynamic setup by measuring the aver-
age end-to-end execution time of the video encoding task τe executed within
the LO-critical slot. As we can see in Figure 8.2, the dynamic configuration is
in fact able to decrease the response time of the LO-critical task by an average
factor of 1.99, suggesting that the HI-critical application indeed consumed
much less time than assumed when configuring the execution time upper
boundMb(HI).

As an example, in the coremark benchmark, the average execution time
of the HI-critical task was 131.05ms. In the dynamic case, the LO-critical
task was hence able to execute for an average duration of 525.50ms in each
scheduling frame, which is 80% of the total frame duration. In contrast, the
static configuration only allowed for an execution of 262.61ms (≈ 40% of
the frame duration) due to the static time-triggered scheduling approach.
We can conclude from the results that with dynamic scheduling policies in

mixed-criticality scenarios, the necessity for specifying a pessimistic upper-
bound, especially when targeting complex platforms with high execution
time uncertainties, does not consequently force a reduced overall resource
utilisation for lesser critical subsystems. When integrating subsystems in-
corporating real-time constraints, such as the HI-critical subsystem in our
evaluation, with best-effort functionality such as the video encoder of the
LO-critical subsystem, such a dynamic scheduling approach can therefore
be beneficial because it may considerably increase the LO-critical subsystem
throughput.
However, the dynamic temporal behaviour of these mapped applications

in the context of the dynamic scheduling policy imposes challenges on eval-
uating such potential resource utilisation gains in scenarios where HI- and
LO-critical software subsystems are developed independently of each other.
Since the dynamic resource utilisation depends on the temporal behaviour
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of all mapped software components, its impact is thus only revealed in a fully
integrated evaluation scenario. Chapter 9 focusses on the contribution for
providing integration scenarios through application proxies, where HI-criti-
cal software components are either modelled or even replaced by proxies
which mimic their temporal behaviour, such that it is possible to evaluate
run-time performance metrics for LO-critical subsystems without the need
for developing an integrated prototype.

8.3 segregation overhead

This section considers the overhead induced by the segregation mechanisms
of the platform and the hypervisor implementation. The proposed imple-
mentation features two mechanisms for mitigating subsystem-level interfer-
ences on the integrated mixed-criticality platform.

The firstmechanism considers the implicit sharing of resource state across
mixed-critical subsystems. In Section 6.4.3, we have discussed how hyper-
visors implement support for spatial and temporal segregation in terms of
virtualisation mechanisms for the platform resources. Processors, peripher-
als, and memory components are virtualised and the hypervisor manages
their physical state such that they can be transparently shared across differ-
ent application instances. While these mechanisms provide sufficient isola-
tion such that the state of the virtual component cannot be read or mod-
ified by another subsystem, this mechanism does not prevent leaking tem-
poral behaviour across virtual machine instances, since it depends on the
internal state of the resource. This circumstance is especially prevalent on
processors with a cache hierarchy, where the internal state of the cache de-
termines the execution time of the software. Other mechanisms in modern
processor architectures, such as branch prediction buffers, pipelines, etc.,
also leverage keeping internal state to increase the average execution time.
As a consequence, a hypervisor should also manage the internal context
of the processor and switch the state accordingly when scheduling the sub-
systems. However, current MPSoC platforms do not feature the proper hard-
ware support for this level of virtualisation and the processor Instruction-Set
Architecture ( ISA) does not support managing the internal state of all pro-
cessor components directly. Nevertheless, this section considers the most
influential source of execution time uncertainty and as a first step towards
managing internal processor state, the hypervisor implementation used in
this thesis has therefore been expanded with the mechanism of flushing the
cache before a slot is executed, such that its cache state is predictable across
slot invocations.

Besides managing the processor state, the hypervisor also emulates each
access to privileged memory regions (such as peripherals) by intercepting
the execution and updating the corresponding virtual state of the accessed
component. Thus, each access to these specially marked memory regions
will force a context switch to the hypervisor.

Considering these sources of overhead, we first evaluate the impact on
slot-based cache flushes, which is our technical contribution towards pro-
cessor state management. In the next section, we then evaluate the overhead



8.3 segregation overhead 99

−30

−25

−20

−15

−10

−5

0

5

10

compress

fft1 crc cover
expint

qsort-exam

fdct
ud lcdnum

qurt
coremark

ludcmp

insertsort

statemate

D
iff
er
en
ce

(%
)

std. dev.
mean

max. obs.

Figure 8.3: Relative change of the execution time distribution in the flush scen-
ario compared to noflush, sorted by the relative difference in their
standard deviation.

induced by managing the subsystem context as well as the integrated monit-
oring and measurement infrastructure, representing the hypervisor platform
state management.

8.3.1 Cache Flush

In this section, we define two evaluation setups to measure and compare
the performance impact of the cache flush mechanism. The system config-
uration Cb is then evaluated for each setup. In the noflush setup, the hy-
pervisor switches between different subsystems directly. In the flush setup,
a data cache flush is performed before switching to the next slot within a
frame. We then compare the effects of the cache flush in both setups on the
HI-critical execution time for each benchmark by measuring its slot execu-
tion time for each system configuration Cb.

The relative differences between the flush and noflush setups for each
benchmark are depicted in Figure 8.3. As can be seen, on average, the cache
flush overhead increases the mean run-time duration across the benchmark
suite by 0.72% and reduces the standard deviation by 4.58%. However,
these trends are inconsistent across the benchmark suite results. The varying
control flow dominance and memory footprint size characteristics of each
benchmark presumably play a significant (and expected) role in the impact
of the cache flush operations.

An additional test comparing the flush and noflush setups by consid-
ering cache refill behaviour has shown that on average, a benchmark run-
ning under the flush configuration performs 243.71 cache refill operations,
while the average number of refills in the noflush setup is only 6.43. The
number of cache refill operation varies throughout the benchmark suite
from 84 for the expint benchmark to 401 for the coremark benchmark.
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(a) statemate (b) insertsort

(c) ludcmp (d) coremark

Figure 8.4: Execution time probability distribution of the four benchmarks with
the highest standard deviation differences between the flush and
noflush configuration.

In the expint benchmark, we can see that the difference of the flush

setup manifests mainly in the mean and maximum observed execution time.
This is expected, since the benchmark itself is not heavily utilising the cache.
Hence, the cache flush operation overhead impact is more significant due to
the absence of any narrowing effects. The number of cache refill operations
also correlates with the impact on the benchmark’s timing distribution. We
can therefore conclude that the segregation mechanism is effective, but its
impact on the execution time distribution highly depends on the application
characteristics.

Figure 8.4 illustrates the distributions of the four benchmarks with the
highest standard deviation. The visual comparison of the distributions ob-
served in both setups demonstrate the effect of cache flushes on the exe-
cution time behaviour. As we can see, the general observation is that the
flush operations induce a constant overhead to the overall execution time.
This effect is especially visible for the coremark and the statemate bench-
mark. Both benchmarks perform multiple memory operations and there-
fore profit from keeping the cache state across invocations which manifests
in their average execution time.

Besides this constant overhead, we can also identify that the distribu-
tion shape is transformed to be more narrow. An interesting effect of both
of these transformations can be seen when comparing the distributions
of insertsort and ludcmp in both setups. Even in the context of the
cache flush penalty, the distribution of the flush setup has been narrowed
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Figure 8.5: Absolute frame durations compared to the configurations and the sum-
marised slot execution duration inside a frame.

such that the maximum observed execution time is lower compared to the
noflush setup.

8.3.2 Application Context Switching

We have further measured the context switching overhead (including cache
flushes) by comparing the slot execution time duration with the overall
frame execution time duration. To demonstrate the overall hypervisor con-
text switching overhead with the actual subsystem execution time duration,
the measured frame execution time duration δ ′b and the difference to the
configured duration δb were observed for each system configurationC. The
results were furthermore compared to the execution time duration of both
slots θi(LO) and θi(HI) which are active within a scheduling frame.
The results depicted in Figure 8.5 show that on average, the measured

frame execution δ ′b takes 11.08 µs longer than the configured duration δb.
There is also a relatively constant offset between the configured frame and
observed summarised slot execution time duration averaging at 29.96 µs
which includes the measurement infrastructure overhead and the overhead
of managing the virtualised state of the platform. This relatively high over-
head is caused by the lack of hardware virtualisation support. Since the eval-
uation was performed on an ARMv7 architecture without virtualisation
extensions, the hypervisor needs to emulate the virtualisation, which in-
cludes managing the context switch for the processor as well as the MMU
using software routines. Each context switch therefore involves storing the
general-purpose and control registers to a dedicated memory structure and
retrieving the old state from the corresponding internal structures. Further-
more, it involves issuing a context switch on the MMU.

In total, from the perspective of the configured frame duration δb, the ob-
served per-frame overhead averages at 41.04 µs. This duration covers the hy-
pervisor context switches, the cache flush operation described in the previ-
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ous section, the measurement overhead during a frame duration, and the off-
set of the configured and the measured frame duration. In the next chapter,
this overhead serves as an input to our performance model.



9MODELL ING ACCURACY

This chapter considers the modelling accuracy of the performance model in-
troduced in Section 7.2 and the application proxy described in Section 7.3.
The previous sections of the evaluation serve as a basis for the input para-
meters of both models. After having determined F and dF in Section 8.1.1
as well as the scheduling overhead O in Section 8.3, we can now apply the
results to our proposed design and integration flow.
In an isolated experiment, we have determined that the video frame en-

coding duration of 24 frames requires 4.33 s of computation time on the
platform. Using this information, we now evaluate the modelling accuracy
by comparing the predicted QoS penalty for the LO-critical video encoding
task with its implementation and integration with the HI-critical subsystem
on the platform.We also compare the measurement results of the LO-critical
end-to-end execution time when instantiated with an application proxy of
the HI-critical subsystem. Finally, we estimate the goodness of fit regarding
the HI-critical timing model and the generated samples used in the applica-
tion proxies.
The evaluation in this chapter consists of three different measurement

configurations. First, we estimate the temporal behaviour of the LO-critical
application with the performance model (configuration model) and then
evaluate the temporal behaviour in a setup where the HI-critical application
is substituted by an application proxy (configuration proxy). The results are
compared against a full integration of both HI- and LO-critical subsystems on
the target (configuration original). In all three configurations we compare
the resulting end-to-end execution time of the LO-critical video encoding
task to evaluate the modelling accuracy. As in the previous sections, each
of these three evaluation configurations were measured under the system
specification C instantiated for each benchmark b.

9.1 performance model

The results of themeasured end-to-end execution time of encoding 24 frames
in the LO-critical subsystem were compared to the predicted execution time
penalty of the performance model and are depicted in Figure 9.1. Across
all benchmarks, the duration for encoding one video frame spanned 4.50 s
to 5.53 s. As can be seen in the results, on average, the model estimates are
within 0.37% of the measured results. The median deviation for the model
estimates is −0.02%.
The expint benchmark exhibits a maximum deviation of 4.97% from

the target measurements. Compared to the other benchmarks, expint has
the smallest average slot duration of 348.03 µs, which allows for compar-
atively minor variations in the target measurements to accumulate over
time and result in higher differences when estimating the end-to-end exe-
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Figure 9.1: LO-critical video encoding duration estimates from the model estimates
compared to the original measurements.

cution time of the LO-critical subsystem. Furthermore, the scheduling con-
figuration in the system configuration instantiated for the expint bench-
mark (listed in Table 8.1 on Table 8.1) shows that the frame length is only
1757 µs. This length combined with an average LO-critical encoding dura-
tion of 5.52 s indicates that in this particular configuration, the HI-critical
subsystem interrupted the LO-critical execution approximately 3144 times
during its encoding operation. The difference of execution times by more
than three orders of magnitude explain the relatively high error of the per-
formance model.
In contrast, with the coremark benchmark containing an average slot

duration of 131 602.82 µs, the highest of the benchmarks, the performance
model result error is only 0.38%. The coremark scheduling configuration
has a frame length of 658 483 µs, and with an end-to-end execution time
of 5.39 s, the LO-critical encoder was only interrupted approximately eight
times during execution. This demonstrates the performance model sensitiv-
ity in the presence of short HI-critical slots and a long LO-critical end-to-end
execution time.

9.2 application proxy

The measurement results of the configuration proxy in relation to the
original measurements are shown in Figure 9.2. In the proxy configur-
ation, the maximum deviation from the original video encoding duration
is 1.14% for the ud benchmark. Overall, the average error is 0.37%, with a
median of 0.44%.
When comparing the results of the expint benchmark run to the corres-

ponding performance model estimates, we can see that the proxy provides
better estimates with an error of 0.17% than the performancemodel, which
produced an error of −4.97%. In fact, the expint benchmark has the smal-
lest error of all proxy configuration measurements. The increased accuracy
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Figure 9.2: Video frame encoding duration estimates of the LO-critical task from
the proxy subsystem compared to the original measurements.

is a result of measuring the actual overhead on the platform instead of using
the abstracted valueO in the performance model. Variations in the overhead
are therefore more accurately represented in the proxy approach.

While the ud benchmark exhibits the highest error of 1.14% in the
proxy configuration, it is still within the range of the corresponding error
of 0.93% in the model configuration. The results therefore demonstrate
that application proxies can provide accurate results for evaluating the per-
formance metrics of LO-critical subsystems, and they are in fact even more
accurate when representing slots with a short duration.

9.3 proxy & model distribution properties

In addition to the LO-critical behaviour in terms of its execution time, we
have also examined the distribution properties of the HI-critical distribution
of the original implementation and the application proxy. To achieve this,
we have used the measurement infrastructure again in the proxy mode to
determine the overall slot duration distribution on the platform while the
samples were replayed on the target, as discussed in Section 7.3.
Figure 9.3 illustrates the results of the original and proxy distributions

for ud, crc, insertsort, and qurt, the four benchmarks with the highest
error in the proxy configuration. The depicted PDF of the original and the
sampled measurements show that the application proxy is able to represent
the characteristic target execution time behaviour of the original meas-
urements. This demonstrates a clear benefit in terms of modelling details
regarding the run-time dynamics with a PDF compared to the expected exe-
cution time in the performance model.
A detailed view on the relative differences in the target measurements

of the original and the proxy distribution is depicted in Figure 9.4. The
plot shows the relative difference between observed average and maximum
observed execution times as well as the execution time at the 90th and 99th
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(a) ud (b) ludcmp

(c) coremark (d) lcdnum

Figure 9.3: Visualisation of the proxy and original Probability Density Func-
tions of the four benchmarks with the highest error in their LO-critical
performance estimation.

percentiles. In all measurement points, the error is less than 1% with the
highest deviating value being the 99th percentile of the lcdnum benchmark
at 0.91%.

Figure 9.5 additionally illustrates the difference between the proxy and
the original measurements regarding their standard deviation. Interest-
ingly, despite the relatively low error in the LO-critical estimates in Fig-
ure 9.4, the difference in the standard deviation averages at 11.09% with
the highest deviation at the expint benchmark at 33.96%. Looking at the
PDF visualisation of expint in Figure 9.3 however, we can see that the extrac-
ted PDF still closely matches the distribution of the original configuration.
However, it seems that measurement points at the margin are overrepresen-
ted in the proxy case, while the original measurements produced more
samples around the distribution mean value. The reason for this behaviour
is – again – the duration of the expint slot. Since one expint slot dura-
tion only takes 1757 µs, the number of samples needed for accurately rep-
resenting the distribution is the highest across the benchmark suite. Due
to the fact that the experiment lasted ten minutes, we would have to gener-
ate at least 341 491 samples for the proxy measurements, which consumes
2.73MB and exceeds the current technical limitation of 1MB in the hy-
pervisor configuration structures. Therefore, we have chosen to limit the
number of samples in the expint configuration to 5000 (only 1.46% of the
full sample duration) and replay the sample list from the start when the list
has been consumed. However, in the case of the expint benchmark, this
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Figure 9.4: Relative change of the HI-critical proxy distribution characteristics
compared to the original measurements.

limitation in the proxy approach still yields more accurate results than the
model estimates.

Another reason for the differences in the standard deviation is the dy-
namic bin size adjustment performed by the measurement infrastructure
at run-time. Since the distribution range and bin size will be dynamically
chosen, they depend on the sample resolution. The standard deviation is es-
pecially sensitive to the quantization error introduced by the histogram bins
and therefore shows the highest deviation from the original measurements
in the results. The quantization error can be seen in the similar patterns of
the distributions in Figure 9.6, illustrating four benchmarks with the highest
standard deviation error. Due to the dynamic properties of the histogram
storing mechanism, any execution time outliers can have a more significant
impact on the overall data quality, since they influence the overall histogram
resolution.

However, the results have also shown that the error of the standard devi-
ation does not correlate with the modelling accuracy. The average relative
differences in the mean duration, the percentiles and the maximum execu-
tion time of the measured distributions compared to the original distribu-
tions in Figure 9.4 are negligible with less than 0.10%.

Although at first glance the overall estimates in the perf and proxy con-
figurations are similar and presumably both model the HI-critical timing
behaviour with a maximum error of 5%, the measured distribution char-
acteristics of the proxy configuration not only show a more complex tem-
poral behaviour in their distribution characteristics, but they also have the
advantage of a more accurate representation of subsystem-agnostic imple-
mentation artefacts such as the overhead for the mixed-criticality schedul-
ing. These artefacts are abstracted away when modelled using the expected
value and an average overhead, as performed in the perf model.

While the proxy approach can yield better results, it is still more complex
in terms of the integration effort for measuring performance values, since
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Figure 9.5: Relative change of the proxy standard deviation compared to the
original measurements.

the LO-critical subsystem needs to be implemented on the platform. This is
however countered with the possibility to integrate the subsystem without
the HI-critical subsystem and simply using isolated measurement results as
samples for the proxy configuration. This approach therefore is a clear be-
nefit in the context of mixed-critical integration scenarios where LO-critical
functional behaviour should be integrated into an existing platform along a
HI-critical subsystem: the possibility to synthesise the HI-critical behaviour
into a timingmodel on the platform removes the need for integrating it with
the LO-critical subsystem in order to gain performance impact results.

9.4 application proxy sample size

In Section 7.3.1, we noted that the possible number of application proxy
samples is constrained by the memory size of the dedicated buffer. We con-
cluded that for small sample sizes, the necessary number of samples to per-
form an experiment for a given amount of time might be limited. We pro-
posed that by repeating the sequence, the experiment can run for a duration
independent of the number of samples. This section considers the question
of how many samples are needed to be drawn from the original distribu-
tion to sufficiently represent themeasured timing behaviour on the platform
while repeating the samples. To answer this question, we first have to specify
what sufficiently means in this context.

The problem of determining this sufficiency is that we cannot determine
whether the generated proxy distribution matches the measured original

distribution with a statistical test such as the Anderson-Darling [3] test or
the Kolmogorov-Smirnov [59] test, since they can only help in providing sig-
nificant evidence for disproving their H0 hypothesis, which states that two
sample sets are drawn from the same distribution. The reason for this issue
is that one can never gather enough data to prove that the proxy samples are
drawn from the original distribution. Instead, the evaluation in this sec-
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(a) expint (b) cover

(c) statemate (d) compress

Figure 9.6: Visualisation of the proxy and original Probability Density Func-
tions of four benchmarks with the highest standard deviation error. The
benchmark lcdnum is shown in Figure 9.3.

tion focusses on what constitutes a representative distribution in our setup
and what its possible impacts are on the estimation of a LO-critical applica-
tion.We therfore first determine which properties of the proxy distribution
are relevant the context of this work.

Regarding the dynamic scheduling policy behaviour, a sufficiently accur-
ate description of the software timing behaviour provides equal probabilities
of exceeding certain timing margins in both the original and the proxy
configuration. Since the duration of the HI-critical slot directly defines the
LO-critical slot length, we choose to compare the probabilities at a set of
quantiles of both distributions. If they are similar, we can deduce that the
LO-critical slot will be allocated a comparable slot duration under both the
original and proxy distributions.

This experiment is therefore constructed as follows. First, we derive the
PDF from the original data, as previously done in the evaluation on the ap-
plication proxy behaviour. Each originalmeasurement data consists ofN
measurement points and the benchmarks were executed for 10min. From
the constructed PDF, we then extract n samples which should be used for
the application proxy. Note that when executing the proxy for 10min,
the sequence of n samples might be repeated, depending on the number
of samples. Thus, a proxy sample list can be identified by its ratio of nN
unique samples. In the experiment, 1 − n

N of the replayed samples are re-
peated by re-iterating the sample list, as discussed in the application proxy
implementation in Section 7.3.1.
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Figure 9.7: Comparison of different ratios for samples.

The goal of this experiment is to determine how many samples n in re-
lation to the measured sample count N are needed to represent a similar
behaviour at the quantiles as the original distribution. To evaluate this good-
ness of fit for each sample list, we construct a PDF from each sample list and
compare their percentiles at quantiles 50, 90, 99, and 100 to the percentiles
of the original measurement data. The error at these quantiles was calcu-
lated by a normalized root-mean-square error (RMSE). The resulting value
provides an estimate on the error induced by repeating the sample list with
ratio n

N in terms of modelling the distribution quantiles of the original
application.

As we can see in Figure 9.7, in all benchmarks, a low ratio (high replay
rate) results in a higher error regarding the quantile values. However, as
the ratio of unique samples in the sequence increases, the error gradually
decreases. Starting with a ratio of 0.40, the error does not decrease further
in any benchmark. This indicates that only about 40% of data was needed
to construct an application proxy from the measurement data and that re-
peating the sample subset with can provide similar results to the original
measurements in terms of their quantile values.

9.5 summary

In this chapter, we have evaluated the programming model, the perform-
ance model, and the application proxy mechanism proposed in this thesis.
First, Section 8.1 discussed the evaluation setup in terms of the OSSS/MC
models and their properties introduced in Chapter 6 along with the evalu-
ation method and the experimental setup. The evaluation considered vari-
ous WCET benchmarks as the HI-critical subsystem and a video encoder ap-
plication as the LO-critical subsystem. We described the process of empiric-
ally estimating suitable scheduling properties for the different system con-
figurations and produced a system configurations Cb for each benchmark
b.
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Next, we have compared the distributions of the slot duration of each
benchmark and identified the potential benefits of dynamic mixed-critical-
ity scheduling policies in terms of the overall platform resource utilisation.
These dynamic effects were evaluated in Section 8.2, where we could observe
that in our scheduling setup, the overall resource availability for LO-critical
subsystems under a dynammic mixed-criticality scheduling policy increases
by a factor of 1.99.

Section 8.3 then considered the overhead of the hypervisor implementa-
tion and its mechanisms for ensuring the segregation of mixed-critical sub-
system in terms of the temporal and spatial integration artefacts. In partic-
ular, we focussed on the effects of cache flushing after each subsystem in-
vocation and the general overhead induced by the hypervisor processor and
platform context management.

Empirically setting up the scheduling configuration and measuring the
overhead then allowed us to evaluate the estimates of our performance
model in Section 9.1. On average, the model estimates produced an error
of 0.37% compared to measurements of the actual implementation on the
mixed-criticality platform. The results of the application proxy mechanism
for modelling the HI-critical subsystem timing behaviour were presented
in Section 9.2. They indicate that the application proxy provides a more
accurate timing model of the HI-critical application when comparing the
estimates of the LO-critical behaviour with both approaches.

While the average estimation error with the application proxy method is
nearly identical to the results of the performance model estimates, we could
identify several improvements regarding the representation of the timing be-
haviour using the proxy application approach and identified shortcomings
regarding the performance model approach. The discussion in Section 9.3
revealed some limitations of the proxy approach regarding the number of
samples required for accurately representing the HI-critical subsystem tim-
ing behaviour. We concluded that the application proxy provides a more
accurate representation of the implementation artefacts on the platform
and thus yields more accurate results for a performance estimation. The
downside of the application proxy approach is clearly the requirement to
implement and integrate the LO-critical subsystem on the target platform.
However, this process is greatly simplified since the HI-critical application
does not need to be integrated as well. The application proxy, which can
be constructed once and then re-used across different implementation and
integration stages for the LO-critical subsystem, enables separating the devel-
opment process for both subsystems which can be exploited by increasing
the parallelism in embedded mixed-criticality systems design processes.
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10.1 conclusion

This thesis started with the observation of the importance of considering
mixed-criticality scheduling and resource utilisation effects in the design
flow of embedded CPS consisting of safety-critical and performance-critical,
QoS software applications. The contributions of this thesis address the chal-
lenges of designing and integrating embedded mixed-critical software com-
ponents on a common platform, where the functionality can be categorised
along their criticality into high- and low-critical.

The first contribution aimed at answering the question of considering the
mixed-criticality properties of safety- and performance-critical software ap-
plications along their functional behaviour in an embedded systems design
flow. This thesis answers this question with OSSS/MC, a programming
model and integration flow for mixed-criticality software components. The
programming models allows considering the criticality of functionality
along its functional behaviour in the embedded systems design flow. It
additionally provides structural and behavioural components to perform
function partitioning into computation and communication units, and an
overall clustering of functional behaviour by their criticality.

A major focus of this thesis has been the systematic refinement from the
programming model OSSS/MC towards an implementation on a MPSoC
platform to answer the question of how to use the functional description
along with the mixed-criticality properties to derive an implementation
on a MPSoC. The thesis provides a method for mapping the programming
model components to a runtime model of the VRL. This yields an execut-
able functional specification in a SystemC-based simulation environment
and allows checking the functional correctness of the partitioned behaviour
during simulation. The configuration of virtual platform resources is embed-
ded in the specification model as well. A systematic deployment approach
can therefore extract all relevant platform configuration properties from the
model, including the scheduling configuration and the task mapping. The
proposed implementation of the runtime model on the platform features a
hypervisor-based subsystem approach that implements spatial and temporal
segregation. A systematic refinement of the runtime model then considers
the application-level model structures and their resource binding properties
and implements its semantics based on a flexible, time-triggered mixed-crit-
icality scheduling policy on the platform.

The evaluation of the target implementation considered the impact of re-
ducing the inter-application interference through explicit cache invalidation
when switching between subsystems. The differences in the timing beha-
viour of this approach demonstrated that the effect on the timing behaviour
is highly application-dependant and needs to be considered when estimating
timing behaviour on the platform. While there is a noticeable impact of the
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cache invalidation and the context management with 20.52 µs on our plat-
form,modern embedded target platforms already contain hardware support
for these segregation techniques which reduce the overhead significantly.

The second part of this thesis considered the performance estimation of
low-critical subsystems mapped to the mixed-criticality platform. The ques-
tion which dynamic timing properties arise from the application behaviour
as well as the platform-level scheduling behaviour in an integrated mixed-
criticality system has been answered by providing a measurement infrastruc-
ture embedded in the hypervisor-based implementation which allows the
designer to capture dynamic application-level timing behaviour as well as
the platform segregation overhead. The measurement infrastructure allows
exploring the dynamic timing properties that arise from the application be-
haviour as well as the platform-level scheduling behaviour on the mixed-crit-
icality platform.

Gathering the data from the measurement infrastructure lead to the con-
tribution of two performance estimation methods that aim at representing
the integration impact of dynamic mixed-criticality timing properties. The
first estimation features a performance model derived from the measure-
ment results and the scheduling configurationwhere the timingmodels were
constructed from the measurements on the platform and represented as the
Probability Density Function of the timing behaviour. The performance
model considers the dynamic behaviour of a high-critical subsystem on the
platform and yields the integration impact in terms of a timing penalty for
best-effort, low-critical subsystems. These models can be parametrised with
the scheduling setup and the isolated timing properties of the low-critical
subsystem, thereby enabling performance estimation of the system before
integrating it on the platform.

Given an end-to-end response time as the performance characteristic of
the low-critical application, the proposed performancemodel uses the estim-
ated value of the distribution and the platform-dependant segregation over-
head measurements to provide an estimate about the expected end-to-end
execution time when integrated with the modelled high-critical application
on the flexible, time-triggered platform. The discussion of the results lead
to the conclusion that this modelling technique can be especially valuable in
early analysis steps when implementing a low-critical application. Results of
the modelling accuracy have shown that on average across the benchmark
suite, the model estimates only exhibit an error of 0.37% when compared
to the measured results.
The second approach of estimating the performance impact considers

a typical mixed-criticality integration scenario, where both high- and low-
critical software components are to be integrated on the platform featuring
the dynamic mixed-criticality scheduling policy. The presented application
proxies are implementations of the high-critical subsystem’s timing model
on the platform and therefore resemble the temporal behaviour of the high-
critical subsystem. As a result, the performance impact on a low-critical
subsystem can be measured on the target platform without requiring to in-
tegrate the functional behaviour of the high-critical application as well.
The results of the application proxy approach only yielded an error of

0.37% compared to the measurement of the fully integrated setup with
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both mixed-criticality subsystems running on the platform. This allows for
two conclusions. First, the results indicate that the application proxy is able
to provide accurate timing estimates for a performance estimation of the
low-critical subsystem. Seond, since the high-critical functionality was not
executed, this demonstrates that the segregation efforts implemented by the
hypervisor layer indeed enforce the subsystem independence. In the con-
text of a performance evaluation, the difference of whether executing the
original high-critical subsystem or the timing model is negligible. The clear
benefit of the application proxy approach however is that it provides an
integration context for low-critical subsystems in the absence of the func-
tional behaviour of the high-critical subsystem. The application proxies are
therefore a viable approach for decoupling the development and integration
process on mixed-criticality platforms with dynamic scheduling artefacts.

10.2 future work

Support for parallel execution on multi-core processors.

This work considers multi-processor platforms by implementing timing in-
terference mitigation techniques for isolating mixed-criticality software ap-
plications mapped to the same processing element. We have demonstrated
our approach bymanaging processor state segregation through a hypervisor
implementation and mitigate timing interference caused by the processor
cache subsystem through explicit cache flushes. As concluded in the evalu-
ation, the techniques effectively prevent timing interferences of sequentially
executing mixed-criticality subsystems executed on the same processing ele-
ment. When moving towards supporting multi-core systems with parallel
executing tasks, there are two main challenges to consider regarding timing
segregation.

The first issue is that parallel executing processor cores cause interference
on platform resources which are implicitly shared on the architecture, such
as memory subsystems, peripherals, and shared cache hierarchies. The work
in this thesis assumes that the complexity and the optimisations of the pro-
cessor core itself and the cache state can be captured in the timing uncertain-
ties modelled by the PDF. A restriction of this approach therefore is that it
does not consider timing effects induced by parallel executing tasks on these
shared resources. As a consequence, executing tasks on multiple processor
cores in parallel invalidates the timing assumptions currently captured in
the model. Therefore, the first step towards supporting parallel executing
tasks is to prevent the tasks from causing timing interferences. The locally
observed timing properties on a processing element need to be composable
in the sense that they cannot depend on the behaviour of other tasks run-
ning in parallel on other processing elements on the platform.

An application model which is consistent with these timing isolation re-
quirements therefore cannot allow arbitrary synchronisation of tasks across
the cores, since that would result in communication delays that depend on
the exact execution time of each task, which cannot be determined exactly,
as demonstrated by the PDF modelling approach and the discussions on de-
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termining execution times on complex platforms. Therefore, the second re-
quirement of supporting parallel task execution is to explicitly model com-
munication in the application model and consider these synchronisation
points when mapping the tasks on the parallel running cores.

The proposed mixed-criticality application model already provides expli-
cit communication through Shared Objects, such that performing required
dependency analysis is straight-forward. Extending this work towards sup-
portingmulti-core systems first requires combining this dependency inform-
ation with the scheduling analysis. The analysis can then restrict the map-
ping decisions based on the task dependency information. Additionally, the
targeted platform needs to guarantee composability regarding parallel task
execution time. Considering the MPSoC platform used in this thesis, a pos-
sible technique for limiting cache behaviour interferences is to partition the
cache, such that parallel executing tasks do not interfere with the state (and
therefore the timing) of both cores and are instead limited to the core where
the task is mapped to. Our implemented cache flush operations would then
again guarantee freedom from interference for tasks running on the same
core (in the same cache partition) while the partitioning isolates the paral-
lel running tasks from each other.

Integrating scheduling analyses in the application model.

In the current setup, the scheduling configuration chosen by the designer is
assumed to be consistent with the overall task requirements on the specified
periodicity and deadlines. This step currently requires the designer to con-
sider the WCRT of each task mapped to the slots of the scheduling policy
manually. A straight-forward future extension of the proposed configura-
tion approach is to provide the periodicity and deadline information of the
specification model along with the desired scheduling configuration to an
external analysis step and check for inconsistencies. With this additional
step, the refinement setup could reject scheduling policy misconfigurations
automatically.

As a further improvement, the configuration approach presented in this
thesis could be used to skip the manual scheduling configuration entirely
by incorporating the scheduling analysis results into the specification model
again, thereby automatically deducing a feasible schedule for the FTTS policy
during the specification phase.

Support for data-dependant timing models.

This work demonstrated how to construct PDF-based timing models from
tasks without considering any possible data dependencies regarding their
temporal behaviour. Currently, data-dependency is only supported by gen-
erating different timing models in isolation, given that the designer specifies
different workload scenarios for representative clusters of input parameters
of the high-critical application. Each workload scenario would then require
a full integration test with the proposed application proxies, since the im-
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plementation is unable to dynamically change to different PDFs during the
execution on the platform.

To model data-dependent timing behaviours with the PDF approach, a
possible extension is to categorise different input stimuli into clusters which
are expected to show similar timing behaviour. Constructing a PDF for each
of these clusters with the existing measurement infrastructure then yields
multiple PDFs for each slot. Furthermore, switching between these behavi-
oural clusters can be modelled and simulated using a stochastic process, e. g.
with the help of Markov Chains [15].

The limitation of this approach is that the designer needs to provide ex-
pert knowledge for clustering the application timing behaviour and derive
the parameters of the stochastic process. In the simulation and application
proxy, the implementation would then switch between different timing be-
haviours by simulating the Markov Chains to determine the distribution
set for the next slot invocation. However, in case of highly data-dependant
high-critical applications, this extension could provide a more refined tim-
ing model and improve the performance estimation of low-critical timing
behaviour.

Timing distribution simulation in the executable specification model.

We have shown that the current simulation backend provides methods for
functional validation of the task partitioning and supports single-value tim-
ing annotations. However, our measurement and modelling results have
shown that a single timing annotation is a highly abstract approach when
trying to reflect the actual timing behaviour, as seen by the constructed PDF
models.
A possible future extension is to allow simulating the extracted PDF from

the measurements. The generated samples of the PDF could be integrated
back into the SystemC-based simulation model in a straight-forward man-
ner, either by a list of samples in the same manner as the timing model
implementation on the target, or by implementing the PDF in the simula-
tionmodels.With this approach, the simulation environment would be able
to provide performance estimates of low-critical behaviour, even if their an-
notation is still based on a single estimated execution time annotation.

Functional behaviour scenarios in low-critical applications.

The contributions of this thesis focussed on the integration impact of a low-
critical applicationwhen integratedwith a high-critical application.We have
shown that in the case of a purely performance-driven low-critical applica-
tion, we can estimate the integration impact with models derived from the
timing behaviour of a high-critical application. In our scheduling setup, the
scheduling policy can preempt the low-critical slot and resume its execution
in the next slot dedicated to the low-critical application.
As discussed in the related work section, most mixed-criticality schedul-

ing policies allow executing low-critical behaviour in different scenarios de-
pending on the resource availability on the platform. If the high-critical
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application was able to finish execution below a certain threshold, the low-
critical application is allowed to operate in a more resource-demanding scen-
ario. In the other case, the low-critical applicationmay operate in a degraded
scenario and adjust its resource consumption according to the available time
in its slot.

A necessary requirement for such a low-critical scenario mode switching
is to communicate the resource state at each slot invocation and the possibil-
ity of the functional behaviour to switch between these scenarios at the slot
boundary. To support this dynamic scenario switching, the designer needs
to configure the scheduling policy in such amanner that all low-critical tasks
finish within their slot. Then, the invocation of a task at a slot boundary can
take the current resource consumption into account and adjust its scenario
to the available slot length in the remaining scheduling frame.

The proposed implementation already provides support for communicat-
ing the available length of the low-critical slot in the framewith the introduc-
tion of theMi frame property. On the platform, the underlying hypervisor
implementationmanages a dynamic scenario variable which is set according
to the duration consumed by the high-critical slot in the current frame. A
low-critical task can read this information upon invocation. However, since
the remaining frame duration and therefore the scenario variable is only
valid for the current frame, preempting a low-critical task and resuming it
in the next slot results in outdated information for the low-critical task and
may not have the desired effects on its resource consumption behaviour.

The challenge in supporting multiple low-critical scenarios therefore is
how to manage mode switches after a task resumes in the next slot. Con-
temporary mixed-criticality scheduling policies such as FTTS restrict low-
critical task preemption such that all tasks of all criticalities require finishing
within their assigned slot. This restriction limits the possible low-critical ap-
plication behaviour, as it would prevent use-cases where short periodic high-
critical tasks are integrated with resource-consuming, best-effort low-critical
functionality which cannot be trivially partitioned into the available slots of
the scheduling frames. Another approach would be to integrate checkpoints
into the control flow graph of a low-critical task where it is able to adjust its
resource behaviour in coordination with its functional behaviour. Assum-
ing that low-critical tasks or their control flow graphs can be partitioned
at such a level of granularity, our proposed simulation model may support
the designer in identifying issues with functional behaviour and criticality
scenario switches.
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