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Abstract

Well-structured transition systems are an abstract class of infinite-state
systems with transitions that are compatible with a simulation relation.
In the context of automatic verification of these models, it often suffices to
consider certain coverability problems which can be decided by the basic
backward analysis algorithm introduced by Abdulla et al. When instan-
tiating this algorithm for concrete system classes like extended Petri nets
and lossy channel systems, similar questions for suitable optimizations
and data structures have to be answered repeatedly.
In this thesis we present an abstract algorithmic framework based on
the basic backward analysis algorithm. We introduce functions for wit-
ness traces and generalized predecessors that encompass well-known opti-
mizations such as pruning and partial-order reduction as instances. With
backward acceleration, a novel optimization is presented that is indepen-
dent of the concrete system class. Moreover, we discuss search strategies
inspired by the A∗ algorithm and offer a general approach for the imple-
mentation of practical data structures. An empirical performance eval-
uation of the newly created reference implementation of the framework
shows excellent results.
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Zusammenfassung

Eine abstrakte Klasse zustandsunendlicher Systeme sind die sogenann-
ten wohlstrukturierten Transitionssysteme, deren Transitionen mit einer
Simulationsrelation harmonieren. Bei der automatischen Verifikation die-
ser Modelle genügt es häufig bestimmte Probleme der Überdeckbarkeit zu
betrachten, die durch den Rückwärtsalgorithmus von Abdulla et al. ent-
schieden werden. Bei der Instanziierung des Algorithmus für konkrete
Systemklassen wie erweiterte Petrinetze und Lossy Channel Systems sind
wiederholt Fragen nach geeigneten Optimierungen und Datenstrukturen
zu beantworten.
In dieser Arbeit stellen wir ein auf dem Rückwärtsalgorithmus basie-
rendes abstraktes Rahmenwerk vor. Dabei werden Funktionen für Zeu-
genpfade und verallgemeinerte Vorgänger eingeführt, die es erlauben, be-
kannte Optimierungsverfahren wie Pruning und Partial-Order Reduction
als Instanzen zu verstehen. Mit Backward Acceleration wird eine neue
Optimierung vorgestellt, die unabhängig von der konkreten Systemklasse
ist. Ferner besprechen wir vom A∗-Algorithmus inspirierte Suchstrategi-
en und bieten einen allgemeinen Ansatz zur Implementierung geeigneter
Datenstrukturen. Eine empirische Laufzeitauswertung des entstandenen
Programms zeigt ausgezeichnete Ergebnisse.
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C H A P T E R O N E

Introduction
“. . . when things are simple, fewer mistakes are made. The
most expensive part of a building is the mistakes.”

— Ken Follett, The Pillars of the Earth

Contents
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Related Approaches . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . 7
1.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 How to Read this Thesis . . . . . . . . . . . . . . . . 8

In our modern world, computers are ubiquitous. Unfortunately, so are
costly programming errors that effect diverse fields: The crashing of the
AT&T long distance telephone network in 1990 (which carried over 115
million calls daily) might be seen as annoying, whereas the 2004 bug
in the German A2LL software which caused unemployment benefit to
be sent to invalid bank accounts was a financial disaster for the unem-
ployed. The software bug that lead to the 2003 North American blackout
resulted in contamination of drinking water due to failing pumps and
massive disruption of communication services and public transportation.
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1. Introduction

It left 55 million people without electrical energy for up to 48 hours.
Sadly, there are examples where programming errors in systems resulted
in direct physical harm—such as the accidents in context of the Therac-
25 radiation therapy machine in the 1980s where patients were subjected
to massive overdoses of radiation. The examples indicate that software
errors can influence diverse areas of life and that they occur on a mul-
titude of platforms. The most common method to find bugs is testing:
trying out a program with different input values and observing whether
unwanted behaviour commences. This technique is of particular impor-
tance in the context of large software systems. However, while tests can
show the existence of bugs, tests do not prove their absence.
“How can one check a routine in the sense of making sure that it is right?”
is the introductory question to Turing’s 1949 paper Checking a Large
Routine [Tur49]1. He suggests to annotate programs with “assertions
which can be checked individually, and from which the correctness of the
whole programme easily follows.”
The field of theoretical computer science has since evolved and (amongst
others) lifted Turing’s idea of manual axiomatic correctness proofs for
programs to the computer aided verification of models of systems. While
the automation of the verification process is ruled impossible due to the
undecidability of non-trivial properties of general models, restricting the
considered models allows for an automated analysis.
In this work we focus on model checking of well-structured transition
systems where an automatic process determines if a model with few re-
strictions can evolve to reach a given set of states. From our perspective,
the beauty of well-structured transition systems (WSTSs) is their ubiq-
uity, or, as Finkel and Schnoebelen put it in the title of their 2001 paper
[FS01], Well-Structured Transition Systems Everywhere!
Well-structured transition systems are a framework for the automatic
verification of infinite-state systems that was found independently by
Finkel [Fin87] and Abdulla [AČJT96] when they worked on generaliza-
tions of decision procedures that were known for particular models. Tech-
nically, WSTSs are infinite-state transition systems where the transition
relation is monotonic w.r.t. a well-quasi ordering on the states. Mono-
tonicity means larger states can imitate the behaviour of smaller states

1The original publication contained several transcription errors. A corrected and
commented version was published in 1984 [MJ84].
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1.1. Contribution

or, phrased differently, smaller states let us conclude about the behaviour
of larger ones. The well-quasi ordering guarantees finite representations
of infinite sets of states, forming the foundation of termination results
for verification algorithms.
Indeed, one goal of WSTS research is the generalization of decision pro-
cedures that are known for particular models. Most notably, in [AČJT96]
Abdulla et al. extended the decidability result for coverability in Petri
nets [KM69] to a decision procedure for coverability that works for gen-
eral WSTSs. Given some target state, coverability asks for a path to a
state that dominates the target. For many systems, coverability is what
is needed for (safety) verification. To give an example, mutual exclusion
immediately relates to a coverability query. In contrast to the Karp &
Miller algorithm for Petri nets, the extension to WSTSs works backwards
and maintains a set of minimal elements rather than limit configurations.
It is this backward algorithm that we generalize to a framework for rapid
prototyping programs for model checking WSTSs.

1.1. Contribution
We conduct an axiomatic proof of the basic backward analysis procedure
for well-structured transition systems.
We develop an algorithmic framework—an extension of the basic analysis—
for checking coverability in well-structured transition systems and intro-
duce an abstract distance function to formulate constraints for adequate
instantiations of the framework via so-called search space constructions.
We show the total correctness of the framework via an axiomatic Hoare-
style proof.
We present a novel search space construction called backward acceleration
which cuts recurring paths from the analysis. We show that our frame-
work is a conservative generalization of the backward analysis in the sense
that the established optimization techniques of pruning and partial-order
reduction are search space constructions. We present search strategies for
specific classes of well-structured transition systems to guide the analysis.
We develop a general approach to induce data structures via necessary
conditions. These data structures represent infinite sets of states and
can be used in the analysis. We identify three prototypical conditions
and discuss the use of well-understood data structures for checking two
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types of conditions. Subsequently, we introduce the powerset search tree
data structure for checking conditions of the remaining type and conduct
preliminary experiments to test the effectiveness.
We present a reference implementation of the framework and the meth-
ods developed in this thesis. For this software framework we lay focus
on extensibility, meaning that we enable the user to easily construct
prototype coverability checkers for user-defined system classes by pro-
viding new software modules with little effort. We discuss the results of
a comprehensive experimental evaluation of the implementation and a
comparison with state-of-the-art programs.

1.2. Related Approaches

Due to their ubiquity, well-structured transition systems and many of
their concrete system classes have been studied extensively.
In 1978 Rackoff showed that the coverability problem for Petri nets has
a lower-bound exponential space requirement [Rac78] (the bound was
refined by [RY85]). Recently, Bozzelli and Ganty showed that the basic
backward coverability analysis [AČJT96] is optimal in the Petri net case
[BG11].
In addition to the backward analysis, several other efforts have been car-
ried out, mainly for the class of (extended) Petri nets. Abdulla et al. pre-
sented a SAT-based approach for Petri net coverability where they em-
ploy unfolding techniques for unbounded nets [AIN04]. For Petri nets,
a minimal coverability set can be constructed that allows for deciding
coverability problems [FRSV03, GRV07, VH12]. Leuschel and Lehmann
examined the use of partial deduction to attack coverability problems
for Petri nets [LL00]. Ganty investigated an automatic abstraction re-
finement procedure for coverability in Petri nets [GRV08, Gan07].
In 2005, Bingham and Hu presented a backward analysis for a subclass of
WSTSs based on the data structure of binary decision diagrams [Bin05,
BH05] and Geeraerts et al. introduced the first forward analysis for the
whole class of WSTSs called expand, enlarge, and check (EEC) which
constructs a converging sequence of over- and under-approximations of
the system [GRV06b, GRV05]. Shortly after the introduction of the new
EEC approach, Ganty et al. presented an abstract interpretation based
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approach to solve coverability for WSTSs using a forward algorithm
[GRV06a].
In 2008, Dimitrova and Podelski showed that the lazy abstraction of Hen-
zinger et al. [HJMS02] (a partly automated counter-example guided ab-
straction refinement technique [CGJ+00]) can be effectively instantiated
with deterministic control for WSTSs and that it is a decision procedure
for the coverability problem [DP08].
Most recently, Kaiser et al. implemented a novel approach of target set
widening for coverability analysis, employing a combined forward and
backward search for WSTSs [KKW12]. Furthermore, Kloos et al. present
an incremental, inductive (IC3) procedure to check coverability for a large
subclass of WSTSs [KMNP13].
Even years after the first general decidability result of Abdulla et al,
the interest in the automatic analysis of coverability problems of well-
structured transition systems remains unbroken. While there exists a
plethora of approaches to solve coverability problems for (extended) Petri
nets and several well-received methods for (subclasses of) WSTSs, we are
not aware of any simple algorithmic framework that has the stated goal
to be easily instantiated for new classes of WSTSs with little effort.

1.3. Thesis Structure
In the first part of this thesis we establish an abstract algorithmic frame-
work for checking coverability in well-structured transition systems. Basic
definitions and results are captured in Chapter 2. There, we also reca-
pitulate some well-known instances of well-structured transition systems
and introduce a running example. In Chapter 3 we present a novel Hoare-
style proof of the basic backward analysis and develop our algorithmic
framework by extending the basic algorithm. The detailed proof of our
framework in Chapter 4 shows its (total) correctness.
The second part of the thesis is concerned with an intermediate con-
cretization of our algorithmic framework that reduces the costs to in-
stantiate it for specific models. Chapter 5 introduces a novel optimization
for backward analysis of general well-structured transition systems and
shows that established optimizations are instances of our framework. In
that chapter, we also discuss the effect of strategies to guide the search
during a coverability analysis. Chapter 6 shows how necessary conditions

7



1. Introduction

for a well-quasi ordering are used to speed up the analysis and with pow-
erset search trees a novel data structure is introduced. We present an
extensible reference implementation of our framework in Chapter 7 and
show its effectiveness and performance in an extensive comparison with
several state-of-the-art tools. In Chapter 8 we summarize our work and
sketch directions for future work.
The third part of the thesis consists of three appendices. In Appendix A
we give some details on the reference implementation. Appendix B de-
scribes four selected case studies in detail. In Appendix C we list the
numerical data of the experimental evaluation.

1.4. Sources
The roots of this thesis go back to the development of the Petruchio
tool [MS10, MKS09, Str07] which provides a verification environment
for π-calculus processes. Petruchio calculates the Petri net semantics
[Mey09]. In the course of computing the semantics, a set of coverability
problems have to be solved.
Motivated by this work, the present thesis develops a general algorithmic
framework for solving coverability problems in well-structured transition
systems. Parts of this thesis stem from joint work with Roland Meyer
or have been partially published before. The backward acceleration we
present in Chapter 5 was first introduced in [Str11]. Our algorithmic
framework that we describe in this thesis was inaugurated in [SM12] and
the results of this publication are used throughout this work.

1.5. How to Read this Thesis
While this thesis is intended to be read from front to back, the depen-
dencies between the contents of this thesis allow for different selections
of topics.
Unless already familiar with the notions of well-structured transition
systems and coverability, we suggest reading Sections 2.2 to 2.6 of the
preliminaries. To follow the examples, we advise to also read Section 2.1.
For readers who are interested in the Hoare-style proofs of the basic back-
ward reachability analysis in Section 3.1 and the proof of our algorithmic

8



1.5. How to Read this Thesis

framework in Chapter 4, reading Section 2.8 on program correctness is
mandatory.
Readers who want to concentrate on optimization techniques could read
Chapter 5 and then turn to the experimental evaluation in Section 7.2.3.
Those readers who are concerned with implementation details should
read Section 3.3 and Section 3.4 which introduce our algorithmic frame-
work, Chapter 6 on data structures, and Section 7.1 where we describe
our reference implementation. Reading Chapter 5 on optimizations is
encouraged.
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To start with, we introduce the system class of Petri nets to provide
tangible illustrations for the abstract concepts of the following sections.
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2. Preliminaries

With a running example at hand, we examine well-structured transition
systems and the coverability problem. Following the discussion of decid-
ability results and respective algorithms, we recall further instances of
the general framework of well-structured transition systems: Petri nets
with transfer, and lossy channel systems.

2.1. First Glance: Petri Nets
Figure 2.1 shows a simple Petri net together with three different states.
The net consists of four places and two transitions that are connected
via weighed arcs. A Petri net’s state is defined by the distribution of
tokens on its places. For example, in Fig. 2.1a there is one token on each
of the places p1 and p4, two tokens on place p2, and no token on place
p3. Before we discuss the semantics of Petri nets we turn to the formal
definition of their syntax.

p1 p2

t1 t2

p3 p4

2

2

(a) Marking m.

p1 p2

t1 t2

p3 p4

2

2

(b) Marking m′.

p1 p2

t1 t2

p3 p4

2

2

(c) Marking m′′.

Figure 2.1.: Example of a Petri net and different markings.

Definition 2.1 (Petri net). A Petri net (PN) is a triple N = (P, T,W )
where P =

{
p1, . . . , p|P |

}
is a finite set of places, T a finite set of

transitions, and W : (P ×T )∪ (T ×P ) −→ N is a weight function. Places
and transitions are disjoint, P ∩ T = ∅. (Cf. for example [PW08])
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Graphically, places are represented by circles with dots for tokens, tran-
sitions are drawn as boxes. Net elements e1, e2 (places or transitions) for
which the weight function yields a positive value, i.e. W (e1, e2) > 0, are
connected via arcs (arrows) labelled with the weight (labels of weight 1
are omitted).
For any net element e (place or transition), its preset •e consists of
all net elements f from which arcs with non-zero weights originate and
point towards e, i.e. •e = { f ∈ P ∪ T |W (f, e) 6= 0 } . Analogously, the
net element’s postset e• consists of all net elements f that are con-
nected to e by arcs with non-zero weights that originate in e, i.e. e• =
{ f ∈ P ∪ T |W (e, f) 6= 0 } .
The semantics of Petri nets relies on markings that can be understood
as the state of a Petri net at runtime. Formally, a marking is a vector
m ∈ NP that assigns a natural number to every place. The execution
of a transition t, called firing and denoted by m1

t−→ m2, changes the
token count. But as markings are defined to be semi-positive, there is
a restriction. A transition can only be fired if the places in its preset
contain enough tokens. Formally, transition t ∈ T is enabled in m if
m ≥ W (−, t), where W (−, t) is the vector (W (p1, t), . . . ,W (p|P |, t))T.
The ordering among vectors is defined component-wise. If the transition
is enabled, its firing produces W (t, p) tokens on every place p in its
postset and, at the same time, consumes W (p, t) tokens from the places
in its preset: m1

t−→ m2 if t is enabled in m1 and m2 = m1 −W (−, t) +
W (t,−). ♦

In marking m, depicted in Fig. 2.1a, both transitions t1 and t2 are en-
abled. Firing t1 in m consumes one token each from p1, p2 and produces
two tokens in p3 and one in p4. It results in markingm′ shown in Fig. 2.1b,
thus m t1−→ m′. Firing t2 in m leads to m′′, represented in Fig. 2.1c. In
both m′ and m′′ no transition is enabled.
We call these nets Place/Transition Petri nets or P/T Petri nets for short
and discuss the differences to extended Petri nets in Sect. 2.7.2.
In Fig. 2.2, Petri net Nex , our running example for the next chapters,
is shown together with two different markings. The Petri net consists of
five transitions t1, . . . , t5 and seven places p1, . . . , p7 of which exactly p1
and p2 are initially marked with one token each. A concise shorthand
notation is mα = p1 + p2, which relates to so-called multisets. By mα we
denote the initial marking of Petri net Nex . The marking is depicted in
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p2
t1

t2

p1 p3

t3

p4 p5

t4 t5

p6 p7

(a) Marking mα.

p2
t1

t2

p1 p3

t3

p4 p5

t4 t5

p6 p7

(b) Marking mΩ.

Figure 2.2.: P/T Petri net Nex .

Fig. 2.2a. Moreover, we introduce the final marking mΩ of Nex , shown in
Fig. 2.2b, where p2 contains one token and p7 contains two tokens while
all other places are empty. In the shorthand notation mΩ = p2 + 2p7.
The coverability problem for Petri nets asks whether a marking can be
reached that covers the final marking, i.e, in the case of Nex , “is ‘mΩ+X’
reachable?” Where “+X” means to “add tokens to your liking.”
Is it possible to reach a marking covering mΩ when starting from mα?
Yes, via transition sequence t3 t1 t5 t3 t1 t5 = (t3 t1 t5)2 for example. (If
not stated differently, we order places lexicographically when writing out
markings.) The marking reached is

m = (1, 1, 0, 0, 0, 0, 2)T = p1 + p2 + 2p7
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which covers mΩ as it adds one token to p1 in comparison to mΩ. We
write mΩ ≤ m. The fact that the transition sequence (t3 t1)2 (t5)2, which
forms a simple reordering of the previous sequence, leads to the same
marking is of interest in Sect. 5.3 on p. 147, where partial-order reduction
is discussed.
Instead of guessing a transition sequence, let us take a more systematic
approach that reveals certain properties of Nex . The set of reachable
markings together with transition firings forms a labelled transition sys-
tem which is infinite if and only if the number of tokens on a place can
grow arbitrarily. For any given P/T Petri net, one can construct the
so-called coverability graph which overapproximates the net’s labelled
transition system by introducing ω-markings. These markings are vec-
tors over (N ∪ {ω } )P and whenever a place contains ω tokens, there
may be arbitrarily many tokens.
In Fig. 2.3, the coverability graph of Nex is given and the two markings
coveringmΩ are underlined. Each transition sequence of Nex is contained
within this graph and furthermore, due to the occurrence of the ω symbol
in some markings, we know that places p5, p6, p7 are unbounded, i.e. there
are runs that can put arbitrary numbers of tokens on these places. How-
ever, the other places may never contain more than one token each. We
will look into more of these details in Sect. 5.2 on p. 143 when we discuss
pruning.
From the graph, we can see that many transition sequences lead to cov-
ering markings drawn bold. Please note that while every sequence of the
net can be matched by a path in the graph, the converse does not hold
as the Petri net may need to perform more repetitions of a subsequence
than the sequence of the graph dictates. Nevertheless, for any ω-marking
in a coverability graph and any natural number n, we can create a firing
sequence of the net that puts at least n tokens in place of the ω’s.
Unfortunately, it is very costly to construct a coverability graph as the
number of ω-markings grows with non-primitive recursive complexity in
the worst case. In practice, construction of complete coverability graphs
is no viable option to check coverability problems for large Petri nets.
With Petri nets, we now have a simple visualization at hand and are
ready for the details of well-structured transition systems and see how
they apply to our running example Nex . However, we return to Petri nets
later in this chapter.
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(1, 1, 0, 0, 0, 0, 0)T

(0, 0, 0, 1, 0, 0, 0)T

(1, 0, 1, 0, 1, 0, 0)T (1, 1, 0, 0, ω, 0, 0)T

(1, 0, 1, 0, 0, 0, 1)T

(1, 1, 0, 0, ω, 0, ω)T

(1, 0, 1, 0, ω, 0, 0)T

(1, 1, 0, 0, 0, 0, ω)T

(1, 0, 1, 0, ω, 0, ω)T

(0, 0, 0, 1, 0, 0, ω)T

(0, 0, 0, 1, ω, 0, ω)T

(0, 0, 0, 1, ω, ω, ω)T

(0, 0, 0, 1, ω, 0, 0)T

(0, 0, 0, 1, ω, ω, 0)T

t2

t3

t1

t5

t5

t3

t1

t1

t5

t2

t3t1

t5
t5

t2

t5

t4

t4,
t5

t3

t2

t4

t5

t5

t4

Figure 2.3.: Coverability graph of Nex .

2.2. Basics of Well-Structure
A well-structured transition system consists of states, transitions and
a well-quasi ordering. In order to investigate these systems algorithmi-
cally, we recall the definitions of (well-) quasi orderings and some of their
properties.
Definition 2.2 (Quasi Ordering). A quasi ordering (QO) is a relation
� over some set X s.t.

1. ∀x ∈ X : x � x, i.e. � is reflexive, and

2. ∀x, y, z ∈ X : (x � y ∧ y � z ⇒ x � z), i.e. � is transitive.

By x ≺ y we abbreviate x � y ∧ y 6� x. ♦

Note that a QO is not antisymmetric, meaning that x � y � x does not
imply x = y. However, a QO � over X induces an equivalence relation

16



2.2. Basics of Well-Structure

over X by x ≡� y iff x � y ∧ y � x for x, y ∈ X. Thus, a QO induces
a partial order over equivalence classes of ≡�.
In extending quasi orderings by stipulating the existence of comparable
elements in infinite sequences, well-quasi orderings are defined.
Definition 2.3 (Well-Quasi Ordering). A well-quasi ordering (WQO)
is a quasi ordering � over some set X s.t. for any infinite sequence
x0, x1, . . . ∈ X, there exist indices i < j with xi � xj . ♦

Example 2.1. Remember the marking reached from mα via transition
sequence (t3 t1 t5)2 in our running example Nex is

m = (1, 1, 0, 0, 0, 0, 2)T

which is component-wise greater or equal to mΩ = (0, 1, 0, 0, 0, 0, 2)T

and we wrote mΩ ≤ m. The relation ≤ on markings is the well-quasi
ordering we are interested in the PN setting. Further, Dickson’s Lemma
[Dic13] states that any component-wise partial order over vectors of nat-
ural numbers is a well-quasi ordering. In fact, it is even a well-partial
order, i.e. it is antisymmetric: x ≤ y ≤ x⇒ x = y. As an example, take
vector x = (0, 0, 0, 0, 5, 6, 7)T. There are 5 · 6 · 7 = 210 different vectors
that are less than or equal to X. ♦

The first of the components that make up a well-structured transition
system is fully defined. However, Higman [Hig52, Theorem 2.1] states
the equivalence of the WQO property [Hig52, Theorem 2.1, (v)] to five
more properties, four of which we recall over the course of this chapter
in the lemmas 2.2 and 2.1 (well-foundedness and absence of infinite anti-
chains)1, 2.3 (infinite monotone subsequence), 2.6 (finite basis), and 2.9
(stabilization).2 These properties are the building blocks of the decid-
ability results for well-structured transition systems (cf. Sect. 2.5).
One of the properties of WQOs is that they are well-founded and contain
no infinite anti-chains, which we capture in the definitions and the lemma
that follow.

1The WQO property is implied by lemmas 2.2 (well-foundedness) and 2.1 (absence
of infinite anti-chains) only in conjunction.

2Left out: “For a WQO � over X and Y ⊆ X, there exists a finite set basis(Y )
s.t. basis(Y ) ⊆ Y ⊆ ↑basis(Y )” [Hig52, Theorem 2.1 (iii)], which simply states
that any set Y has a finite basis (cf. Def. 2.7 and Lemma 2.6) w.r.t. the WQO
that is contained in Y and that the basis’ upward-closure contains Y . Higman
cites [Bir40] for proofs of some implications and equivalences.
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Definition 2.4 (Anti-Chain). Let � be a quasi-ordering over some
set X. An anti-chain is a (possibly infinite) sequence x1, x2, . . . ∈ X of
pairwise incomparable elements, i.e. for all indices i, j, elements xi and
xj are incomparable: xi 6� xj holds. ♦

Lemma 2.1 (Absence of Infinite Anti-Chains in Well-Quasi Or-
derings). A WQO � over some set X does not contain infinite anti-
chains, i.e. there is no infinite sequence without comparable elements
[Hig52, Theorem 2.1 (vi)].

Proof. Assume an infinite anti-chain, i.e. an infinite sequence x0, x1, . . . ∈
X of pairwise incomparable elements. This trivially contradicts the WQO
property, as there exist indices i < j of comparable elements s.t. xi �
xj .

Definition 2.5 (Well-Foundedness). A relation > over some set X
is well-founded if no infinite strictly decreasing sequence exists, i.e. there
is no infinite sequence x0 > x1 > · · · ∈ X. ♦

Lemma 2.2 (Well-Foundedness of Well-Quasi Orderings). A well-
quasi ordering � over some set X is well-founded, i.e. there is no infinite
strictly decreasing sequence [Hig52, Theorem 2.1 (vi)].

Proof. Assume an infinite strictly decreasing sequence x0 � x1 � · · · ∈
X. This trivially contradicts the WQO property, as there exist indices
i < j s.t. xi � xj .

The well-foundedness lemma denies the existence of infinite strictly de-
creasing sequences, whereas the following lemma lifts the WQO property
from the existence of two comparable elements xi � xj to an infinite
monotone subsequence.
Lemma 2.3 (Infinite Monotone Subsequence). For a WQO � over
some set X, any infinite sequence x0, x1, . . . ∈ X contains an infinite
monotone subsequence, i.e. there exist indices i0 < i1 < · · · s.t. xi0 �
xi1 � · · ·. [Hig52, Theorem 2.1 (iv)]

Proof. Consider a WQO � over X and an infinite sequence x0, x1, . . . ∈
X. Construct set M = { i ∈ N | ∀j > i : xi 6� xj } . M has to be finite,
otherwise it would lead to an infinite sequence xi0 , xi1 , . . . which would
contradict the WQO property. Since M is finite, for any i > max(M)
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there is a j > i s.t. xi � xj . Thus, any i0 > max(M) can start an infinite
monotone subsequence xi0 � xi1 � · · ·.

Equipped with the basic understanding of well-quasi orderings, well-
structured transition systems follow naturally.

2.3. Well-Structured Transition Systems

Well-structured transition systems are (typically infinite) transition sys-
tems where the set of states is equipped with a well-quasi ordering.
Definition 2.6 (Well-Structured Transition System). A triplet
(S,→,�) is a well-structured transition system (WSTS) if S is a set
of states, → ⊆ S × S is a transition relation and � is a decidable3

WQO. The transition relation is upward-compatible with �, i.e.

∀s1, s2, t1 ∈ S : (s1 � t1 ∧ s1 → s2 ⇒ ∃t2 ∈ S : s2 � t2 ∧ t1 →∗ t2) . ♦

Note that→∗ is the reflexive, transitive closure of the transition relation.
Example 2.2. Upward-compatibility for Petri nets comes for free: If a
transition is enabled in some marking m1, we cannot disable that tran-
sition by adding more tokens to m. Even more so, if m2 is reached by
firing t from m1, i.e. m1

t−→ m2, and m′1 covers m1, i.e. we can represent
it as m′1 = m1 +m for some marking m, then m′1

t−→ m2 +m, where the
summation of markings is applied component-wise. More formally:

∀t ∈ T ∀m1,m2,m ∈ NP : (m1
t−→ m2 ⇒ m1 +m

t−→ m2 +m) . ♦

The notion of upward-compatibility corresponds to Milner’s weak sim-
ulation relation (see for example [Mil04, p. 53]). In a weak simulation,
larger states can imitate the behaviour of smaller ones via (multiple) in-
ternal actions and one visible action. Here, we consider unlabelled tran-
sition systems and identify our → with Milner’s τ−→. This imitation of
behaviour allows for transitive closure of the transition relation as stated
in the following lemma.

3The fact that the WQO has to be decidable closes the doors for systems such as
Turing machines.
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s1

s2

t1

t2

∗

�

∗
�

∀

∃

Figure 2.4.: Upward-compatibility of → for WSTSs.

Lemma 2.4 (Transitivity of Upward-Compatibility). Given a well-
structured transition system (S,→,�), the upward-compatibility holds
for the reflexive transitive closure of the transition relation, i.e.

∀s1, s2, t1 ∈ S : (s1 � t1 ∧ s1 →∗ s2 ⇒ ∃t2 ∈ S : s2 � t2 ∧ t1 →∗ t2) .

Proof. Consider WSTS S = (S,→,�) and t1, s1, s2, . . . , sn ∈ S with
s1 � t1 and s1 → s2 → · · · → sn, so s1 →∗ sn. By Def. 2.6 (WSTS) for
every i > 0 there is a ti+1 s.t. ti →∗ ti+1 and si+1 � ti+1.

Upward-compatibility is presented diagrammatically in Fig. 2.4 where we
quantify existentially over dashed lines and universally over solid lines
[FS01]. Intuitively, the WQO property together with upward-compatibi-
lity forces every infinite sequence of states into a useful form of repetition
(where states may grow).

2.4. The Coverability Problem
We are interested in the coverability problem for WSTSs. Coverability
is a variant of the reachability problem that comes with two advantages.
It is often sufficient for verification in practice and it remains decidable
for many models where reachability becomes undecidable.
For the definition of coverability, we need upward-closed sets of states.
Definition 2.7 (Upward Closed Set). Given a QO � over S, an up-
ward-closed set (UCS) is a set X ⊆ S s.t. ∀x ∈ X ∀s ∈ S : (x � s⇒ s ∈
X). To any Y ⊆ S we denote its upward-closure { s ∈ S | ∃y ∈ Y : y � s }
with ↑Y . A basis of a UCSX is a set basis(X) s.t.X =

⋃
x∈basis(X) ↑ {x } .
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The closure adds all states that dominate elements in X according to the
QO. A set X ⊆ S is upward-closed if it satisfies X = ↑X.
If the set under the upward-closure operator is a singleton, we may omit
the curly braces: ↑x = ↑ {x } . ♦

In Lemma 2.6, we will learn that any UCS has a finite basis and therefore
use only finite bases in this work.
Lemma 2.5 (Properties of Upward Closure). Given a QO � over
some set S and sets X,Y ⊆ S, the following properties hold.

1. ↑X = ↑ ↑X (Idempotence)

2. ↑(X ∪ Y ) = ↑X ∪ ↑Y (Distributivity over ∪)

3. X ⊆ Y ⇒ ↑X ⊆ ↑Y (Monotonicity)

Proof. Let � a QO over some set S and sets X,Y ⊆ S.

1. ↑ ↑X = { s ∈ S | ∃x ∈ ↑X : x � s }
= { s ∈ S | ∃x′ ∈ { s′ ∈ S | ∃x ∈ X : x � s′ } : x � s }
= { s ∈ S | ∃x ∈ X ∃x′ ∈ S : x � x′ � s }
= { s ∈ S | ∃x ∈ X : x � s }
= ↑X

2. ↑(X ∪ Y ) = { s ∈ S | ∃x ∈ (X ∪ Y ) : x � s }
= { s ∈ S | (∃x ∈ X : x � s) ∨ (∃y ∈ Y : y � s) }
= { s ∈ S | ∃x ∈ X : x � s } ∪ { s ∈ S | ∃y ∈ Y : y � s }
= ↑X ∪ ↑Y

3. Let X ⊆ Y . We decompose Y and use distributivity of ↑ over ∪.
↑Y = ↑(X ∪ (Y \X)) = ↑X ∪ ↑Y \X
Hence, ↑X is a subset of ↑Y .

Example 2.3. Turning to our running example of PNs and vectors of
natural numbers, Dickson’s Lemma [Dic13] can be formulated equiva-
lently to express that for any subset of NP there are finitely many mini-
mal elements w.r.t. ≤. We can identify the minimal vectors of the infinite
set

U = ↑
{

(1, 0, 0, 0, 0, 0, n)T
, (0, 1, 2, 0, 0, 3 + n, 2n)T | n ∈ N

}
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quite easily: We choose n = 0 and ensure that there is no pair of vectors
comparable w.r.t. the well-quasi ordering. The set of minimal vectors is

B =
{

(1, 0, 0, 0, 0, 0, 0)T
, (0, 1, 2, 0, 0, 3, 0)T

}
.

It is a (finite and minimal) basis of the former set, i.e. the upward-closure
of the basis B coincides with the UCS U :

↑
{

(1, 0, 0, 0, 0, 0, 0)T
, (0, 1, 2, 0, 0, 3, 0)T

}

= ↑
{

(1, 0, 0, 0, 0, 0, n)T
, (0, 1, 2, 0, 0, 3 + n, 2n)T | n ∈ N

}
. ♦

Upward-closed sets—in particular a representation by finite bases—are
the foundation for the underlying data structures for the implementation
(cf. Ch. 6 on p. 160). The following lemma shows that any UCS can be
described finitely.

Lemma 2.6 (Finite Basis). If � is a WQO, then any UCS has a finite
basis. [Hig52, Theorem 2.1 (i)]

Proof. Consider WQO � over X, some UCS I ⊆ X and some set of
minimal elements of I, I ′ = {x ∈ I | ∀y ∈ I : (y � x⇒ x = y) } . Set I ′
is a basis of I as � is well-founded. Furthermore, I ′ cannot be infinite,
otherwise it would form an infinite sequence of incomparable elements
contradicting the WQO property.

There can be several different sets of minimal elements of a UCS as
the WQO is not antisymmetric by definition. There may exist elements
s.t. x ≤ y ≤ x in spite of x 6= y.
As mentioned before, we restrict ourselves to the use of finite bases. A
finite basis of set X is a subset basis(X) of minimal elements that are
pairwise incomparable (w.r.t. the WQO). By minimality of the elements
in the basis, we have ↑ basis(X) = ↑X.4

To define the coverability problem, we also need the notion of covering
transition sequences.

4Note that ↑Y = ↑X holds for any set Y with basis(X) ⊆ Y ⊆ ↑X.
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Definition 2.8 (Coverability Relation and Covering Predeces-
sors). Given a WSTS (S,→,�) and sets of states X,Y ⊆ S, by X ↪−→ Y
we denote the fact that there is a (possibly empty) transition sequence
from state X to a state in ↑Y . Formally,

X ↪−→ Y :⇔ ∃x ∈ X, y ∈ ↑Y : x→∗ y .

We say that Y is coverable from X and that X contains covering prede-
cessors of Y . ♦

If one of the sets is a singleton, we may omit the curly braces. For ex-
ample, we would write x ↪−→ Y instead of {x } ↪−→ Y .
Example 2.4. In Fig. 2.2b, final marking mΩ = (0, 1, 0, 0, 0, 0, 2)T for
Nex is shown. Marking mΩ is coverable from initial marking mα =
(1, 1, 0, 0, 0, 0, 0)T which is depicted in Fig. 2.2a. A transition sequence
which certifies the coverability of mΩ from mα is (t3 t1 t5)2 is depicted in
Fig. 2.5 together with the reached states. ♦

(1, 1, 0, 0, 0, 0, 0)T

= mα

(1, 0, 1, 0, 1, 0, 0)T (1, 1, 0, 0, 1, 0, 0)T

(1, 1, 0, 0, 0, 0, 1)T(1, 0, 1, 0, 1, 0, 1)T(1, 1, 0, 0, 1, 0, 1)T

(1, 1, 0, 0, 0, 0, 2)T

≥ mΩ

t3 t1

t5

t3t1

t5

Figure 2.5.: Witness trace for mα ↪−→ mΩ in Nex .

The coverability problem takes as input a WSTS S, a finite set of initial
states I, and a finite set of final states F (also called the target states).
The problem is to decide whether some initial state from I can reach
↑F . Intuitively, this means a state is reachable that covers some state
in F . Later in this chapter, in Sect. 2.6, we will refine the coverability
problem to go beyond a yes or no question.
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Definition 2.9 (Coverability Problem Cov).

Given: WSTS S = (S,→,�) and I, F ⊆ S finite.

Problem: Does I ↪−→ F hold?

Equivalently, the coverability problem Cov can be formulated as the
question

“Does I ∩ pre∗(↑F ) 6= ∅ hold?”, (2.1)

where we use the following definition of the predecessor function.
Definition 2.10 (Predecessors). Given a WSTS (S,→,�) and set
X ⊆ S, the predecessors are those from which X is reachable in one
step, i.e,

pre(X) := { y ∈ S | ∃x ∈ X : y → x } .
The reflexive transitive closure of pre is pre∗ and the transitive closure is
pre+, formally, pre∗(X) :=

⋃
i∈N prei(X) and pre+(X) :=

⋃
i∈N prei+1(X).

As usual, the identity is used to define the base case, s.t. pre0(X) = X.
If the predecessor function is applied to an upward-closed set, we speak
of covering predecessors. ♦

When convenient, we write the (reflexive) transitive closure of pre by
directly using the transition relation → as

pre∗(X) = { y ∈ S | ∃x ∈ X : y →∗ x } and
pre+(X) =

{
y ∈ S | ∃x ∈ X : y →+ x

}
,

respectively. The following lemma gives some properties of the predeces-
sor function which we will use for our correctness proofs.
Lemma 2.7 (Properties of Predecessors). For any WSTS (S,→,�)
and any sets X,Y ⊆ S, following equalities hold:

1. pre(X ∪ Y ) = pre(X) ∪ pre(Y ) (Distributivity over ∪)
pre∗(X ∪ Y ) = pre∗(X) ∪ pre∗(Y )
pre+(X ∪ Y ) = pre+(X) ∪ pre+(Y )

2. X ⊆ Y ⇒ pre(X) ⊆ pre(Y ) (Monotonicity)
X ⊆ Y ⇒ pre∗(X) ⊆ pre∗(Y )
X ⊆ Y ⇒ pre+(X) ⊆ pre+(Y )
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3. pre∗(X) = pre∗(pre∗(X)) (Idempotence of pre∗)
pre∗(pre+(X)) = pre+(pre∗(X)) = pre+(X)

4. pre∗(X) = X ∪ pre∗(pre(X)) (Expansion of pre∗)

5. pre+(X) = pre(X) ∪ pre+(pre(X)) (Expansion of pre+)

6. pre∗(X) = X ∪ pre+(X) (Relationship of pre+ and pre∗)
pre+(X) = pre∗(pre(X)) = pre(pre∗(X))

Proof. Let (S,→,�) a WSTS and sets X,Y ⊆ S. We closely follow the
definitions of pre, pre∗ and pre+.

1. pre(X ∪ Y ) = { z ∈ S | ∃x ∈ (X ∪ Y ) : z → x }
= { z ∈ S | (∃x ∈ X : z → x) ∨ ∃y ∈ Y : z → y) }
= { z ∈ S | ∃x ∈ X : z → x } ∪ { z ∈ S | ∃y ∈ Y : z → y }
= pre(X) ∪ pre(Y )
Proofs for pre∗ and pre+ are analogous.

2. Let X ⊆ Y . We decompose Y and use distributivity of pre over ∪.
pre(Y ) = pre(X ∪ (Y \X)) = pre(X) ∪ pre(Y \X)
Hence, pre(X) is a subset of pre(Y ). Proofs for pre∗ and pre+ are
analogous.

3. pre∗(pre∗(X)) =
⋃
i∈N prei(pre∗(X))

=
⋃
i∈N prei(

⋃
j∈N prej(X))

=
⋃
i,j∈N prei(prej(X))

=
⋃
i,j∈N prei+j(X)

=
⋃
k∈N prek(X)

= pre∗(X)
Proof for pre∗(pre+(X)) = pre+(pre∗(X)) = pre+(X) is analogous.

4. pre∗(X) =
⋃
i∈N prei(X)

= pre0(X) ∪⋃i∈N prei+1(X)
= X ∪⋃i∈N prei(pre(X))
= X ∪ pre∗(pre(X))

5. pre+(X) =
⋃
i∈N prei+1(X)

= pre1(X) ∪⋃i∈N prei+2(X)
= pre(X) ∪⋃i∈N prei+1(pre(X))
= pre(X) ∪ pre+(pre(X))
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6. pre+(X) =
⋃
i∈N prei+1(X) =

⋃
i∈N prei(pre(X))

=
⋃
i∈N pre(prei(X)) and

pre∗(X) =
⋃
i∈N prei(X) = pre0(X) ∪⋃i∈N prei+1(X)

= X ∪ pre+(X)

The following lemma uses the upward-compatibility of WSTSs to provide
some insight in properties of the predecessor function.

y↑ pre∗(↑X) 3

pre
∗ (↑X

) 3

y′↑X 3

x ∈ pre∗(↑X)

x′ ∈ ↑X

∗

�

∗

�

Figure 2.6.: Upward-compatibility in the proof of Lemma 2.8.

Lemma 2.8 (Predecessors of Upward Closed Sets). Given aWSTS
(S,→,�) and set X ⊆ S, the reflexive transitive closure of predecessors
of an upward-closed set is upward-closed:

pre∗(↑X) = ↑ pre∗(↑X)

Proof. Let (S,→,�) a WSTS and X ⊆ S a set of states.

1. Show pre∗(↑X) ⊆ ↑ pre∗(↑X): This holds by definition of the
upward-closure (cf. Def. 2.7).

2. Show ↑ pre∗(↑X) ⊆ pre∗(↑X): Let y ∈ ↑ pre∗(↑X). From the defi-
nition of pre∗ and ↑, it follows that there exist x ∈ pre∗(↑X), x′ ∈
↑X, s.t.

y � x→∗ x′ ∈ ↑X .

By upward-compatibility of WSTSs (cf. Def. 2.6), we know that
state y′ exists with y →∗ y′ � x′. As y′ covers x′, y′ too is in
the upward-closure of X. Therefore, y must belong to pre∗(↑X). A
graphical representation is given in Fig. 2.6. Dashed lines represent
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guarantees by the upward-compatibility of the WQO with → and
underlined sets indicate deductions via upward-compatibility.

We conclude that pre∗(↑X) = ↑ pre∗(↑X) holds.

The following lemma captures a central property of upward-closed sets
that is used throughout our work.

Lemma 2.9 (Stabilization). For a WQO � over some set X, any
infinite monotone sequence I0 ⊆ I1 ⊆ · · · of UCSs eventually stabilizes,
i.e. ∃k ∈ N ∀i ∈ N : Ik = Ik+i. [Hig52, Theorem 2.1 (ii)]

Proof. Consider a counter-example, i.e. an infinite monotone sequence
with ∀k ∈ N ∃i ∈ N : Ik 6= Ik+i. We extract an infinite subsequence
with strict inclusion In0 ⊂ In1 ⊂ · · ·. For any i > 0 we select some
xi ∈ Ini \ Ini−1 and conclude by the WQO property that the infinite
sequence x1, x2, . . . contains indices j < k s.t. xj � xk. Since xj ∈ Inj

and Inj
is a UCS, xk ∈ Inj

, contradicting xk /∈ Ink−1 . Thus, the assumed
counter-example does not exist.

As a first application of the stabilization lemma, we show that pre∗ sta-
bilizes, i.e. a finite union over prei suffices when the set of states under
consideration is upward-closed.

Lemma 2.10 (Stabilization of UCS-Predecessors). Given a WSTS
(S,→,�) and set X ⊆ S, a basis of the (upward-closed) reflexive tran-
sitive closure of predecessors of an upward-closed set is reached after a
finite number of steps:

∃k ∈ N ∀j ∈ N : ↑
k+j⋃

i=0
prei(↑X) = pre∗(↑X)

Proof. Let (S,→,�) a WSTS and X ⊆ S a set of states. Observe, that

↑
0⋃

i=0
prei(↑X) ⊆ ↑

1⋃

i=0
prei(↑X) ⊆ ↑

2⋃

i=0
prei(↑X) ⊆ · · ·
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is an infinite monotone sequence of upward-closed sets, as inclusion

n⋃

i=0
prei(↑X) ⊆

n+1⋃

i=0
prei(↑X)

holds and the upward-closure operator is monotone (Lemma 2.5-3).
By the stabilization lemma (Lemma 2.9), there is a natural k, s.t. for
any j ∈ N:

↑
k⋃

i=0
prei(↑X) = ↑

k+j⋃

i=0
prei(↑X) .

Henceforth, we deduce that for any j ∈ N

↑
k+j⋃

i=0
prei(↑X) = ↑

∞⋃

i=0
prei(↑X)

holds. From Lemma 2.8 we know that the set of predecessors of a UCS
is a UCS itself, i.e. pre∗(↑X) = ↑ pre∗(↑X). By definition of pre∗, this
leads to the equality of pre∗(↑X) and ↑⋃∞i=0 prei(↑X) which concludes
the proof.

Example 2.5. In Nex , the predecessors of set ↑mΩ are

pre(↑mΩ) =
↑
{

(0, 0, 1, 0, 0, 0, 2)T
, (1, 2, 0, 0, 0, 0, 2)T

, (0, 1, 0, 0, 1, 0, 1)T
}

.

The three elements of the minimal basis are covering predecessors w.r.t.
the transitions t1, t2 and t5, meaning that their successors w.r.t. the
transitions cover marking mΩ: For any m ∈ NP we have

(0, 0, 1, 0, 0, 0, 2)T +m
t1−→ (0, 1, 0, 0, 0, 0, 2)T +m ≥ mΩ

(1, 2, 0, 0, 0, 0, 2)T +m
t2−→ (0, 1, 0, 1, 0, 0, 2)T +m ≥ mΩ

(0, 1, 0, 0, 1, 0, 1)T +m
t5−→ (0, 1, 0, 0, 0, 0, 2)T +m ≥ mΩ .

Therefore, markings (0, 0, 1, 0, 0, 0, 2)T + m, (1, 2, 0, 0, 0, 0, 2)T + m, and
(0, 1, 0, 0, 1, 0, 1)T + m are in pre(mΩ). One-step predecessors w.r.t. the
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other transitions are

(0, 1, 1, 0, 0, 0, 2)T +m
t3−→ (0, 2, 0, 0, 0, 0, 2)T +m ≥ mΩ

(0, 1, 0, 1, 1, 0, 2)T +m
t4−→ (0, 1, 0, 1, 0, 1, 2)T +m ≥ mΩ .

These predecessors are already contained in the upward-closure of the
predecessors w.r.t. t1, t2 and t5. Hence, they do not show up in the min-
imal basis.

Note that the predecessors w.r.t. t2, t3 and t4 each cover mΩ. In practice,
such predecessors are superfluous and can be safely ignored. We will
discuss this property in Sect. 2.5 and comment again in the context of
building our framework in Sect. 3.2 on p. 69, more precisely, we discuss
it together with Alg. 3.2 on p. 70. ♦

As we will learn, the coverability problem is decidable if the WSTS under
consideration possesses an effectively computable pred-basis.

Definition 2.11 (Pred-Basis). Let (S,→,�) be a WSTS and X a
subset of S. By pb(X) := basis(pre(↑X)) we denote a basis for the set
of one-step predecessors (pred-basis) of the upward-closure of X. ♦

As a consequence, we only consider WSTSs for which pb is effectively
computable.

In Example 2.5 we have already given an example for the pred-basis
pre(↑mΩ) of {mΩ } .

In contrast to upward-closed sets, we define downward-closed sets by
finite bases. While downward-closed sets have their place in the proce-
dures to analyse well-structured transition systems, they are not used as
prominently as upward-closed sets.

Definition 2.12 (Downward-Closed Set). Given a QO � over X
and some finite set J ′, an downward-closed set (DCS) is a set J ⊆ X
which contains all elements that are less than or equal to an element in
J ′ w.r.t. QO, i.e. J = ↓ J ′ = {x ∈ X | ∃y ∈ J ′ : x � y } . Set J ′ is the
finite basis of J . ♦
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2.5. Decidability Results

A main result in the theory of WSTSs is the decidability of the coverabil-
ity problem Cov via a backward reachability analysis (BR)5. The corre-
sponding and by now standard backward algorithm stems from [AČJT96].
It performs a fixed-point iteration to compute the transitive closure of
the predecessor relation when starting at the final states. Recently, it
has been shown that this approach is optimal for Petri nets w.r.t. the
complexity of the coverability problem [BG11].

Input : WSTS S = (S,→,�), finite set of states F ⊆ S
Output : A set V ⊆ S, s.t. ↑V = pre∗(↑F )
Comment: Given finite base F , the algorithm computes a finite

base V of backward reachable states.
1 W := F ;
2 V := ∅;
3 while W 6= ∅ do

/* States to process in W. */
4 x := select(W ) ; /* Select some x from basis W. */
5 W := W \ {x } ; /* Remove x from basis W. */
6 if x /∈ ↑V then

/* x not yet processed. */
7 V := V ∪ {x } ; /* Add x to basis V. */
8 W := W ∪ pb(x) /* Add x’s predecessors to W. */
9 fi

10 od
/* All states processed. */

Algorithm 2.1: Basic backward reachability analysis Basic BR.

In Alg. 2.1, we present the basic algorithm to discuss the core mechanisms
of BR. The selection function used in this algorithm has to satisfy a single
property.

5While the analysis decides coverability problems, it is called backward reachability
analysis for historic reasons. We use both terms interchangeably.
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Definition 2.13 (Selection Function). Function select is admissible
if it returns a single element when given a non-empty set. Formally, for
any set W ,

W 6= ∅ ⇒ select(W ) ∈W . ♦

As input, the algorithm takes a WSTS and a finite set of final states F . It
computes a finite base V of all states that are backward reachable from
the upward-closure of F , i.e. pre∗(↑F ). The result V can thus be used
to answer the coverability problem Cov via the formulation of Eq. 2.1:
Let I be a finite set of initial states and F the finite basis of final states.

“The answer to coverability problem I ∩ pre∗(↑F ) 6= ∅ is
I ∩ ↑V 6= ∅.”

As both I and V are finite, we may formulate it operationally:

“The answer to coverability problem I ∩ pre∗(↑F ) 6= ∅ is
∃s ∈ I, t ∈ V : s � t.”

The algorithm works as follows. Final states F are interpreted as a finite
basis W of a UCS which contains all states that are backward reachable
from ↑F and have to be explored further. A second UCS of states back-
ward reachable from ↑F which are already fully explored is represented
by the finite basis V .
In each iteration a single state x—standing for a whole UCS ↑x—is
removed from W . If all the states in ↑x are fully explored, that is ↑x ⊆
↑V or simply x ∈ ↑V , the next iteration is commenced. If ↑x is not
fully explored yet, i.e. x /∈ ↑V , it is added to V and a finite basis pb(x),
describing the one-step predecessors of ↑x, is added to W . When there
are no more states to explore, the loop condition W 6= ∅ becomes false
and ↑V is the set of states backward reachable from ↑F , pre∗(↑F ).
Note that when predecessors of x are added to W , state x is guaranteed
to be in ↑V as it has just been added to V . As hinted in Example 2.5,
predecessors of x which cover x can be safely ignored: since x ∈ ↑V each
such predecessor of x will be removed from W without further action.
Example 2.6 (Coverable Final State). In Fig. 2.7, we have drawn
the search space of Nex w.r.t. mΩ in a condensed way. Markings are
written in multiset notation and predecessors of states that immediately
cover that respective state are omitted. Each path from a marking that
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p2 + 2p7mΩ = p3 + 2p7

p2 + p5 + p7 p3 + p5 + p7

p2 + 2p5 p3 + 2p5

p2 + p7

p2 + p5

p3 + p7

p3 + p5

p2mα ≥

p3

2p2 + p5

2p2 + p7

p2 + p3 + p5

p2 + p3 + p7 2p3 + p7

2p3 + p5

p2 + p32p2

t1

t5

t3

t5

t1

t5 t5

t3

t3t1

t5

t1

t1

t3

t5

t3

t1 t3
t3t3

t5

t1

t1

t3
t5

t1

t3

t1

t5

t3t3

t3

t1

Figure 2.7.: Backward exploration of Nex , starting in mΩ.

is covered by initial marking mα to marking mΩ represents a witness
transition sequence. For example, in the graph, the path from p2, the only
marking covered bymα = p1+p2, via transitions (t3 t1)3 (t3 t1 t5)2 (t3 t1)4

leads to some marking which covers mΩ. Indeed, the marking reached by
firing this transition sequence from mα is p1 + p2 + 7p5 + 2p7.

The subgraph at the top does not contain a state covered by the initial
marking. None of the markings of that subgraph can be covered from
mα as no transition sequence leads into that part of the graph. The
backward analysis is obviously able to explore states that are not part of
the system’s state space. We will discuss pruning techniques to alleviate
this effect in Sect. 5.2 on p. 143.
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Here, arrows do not represent the transition relation. They are explored
backwards and lead to the minimal basis of covering predecessors w.r.t. a
single transition. ♦

p2 + p4

p1 + 2p2 p1 + p2 + p3 p1 + 2p3

p3 + p4
t1

t2

t3

t2
t3

t1

t3

t1

Figure 2.8.: Backward exploration of Nex , starting in p2 + p4.

Example 2.7 (Uncoverable Final State). In Fig. 2.8, we have drawn
the search space of Nex w.r.t. marking p2 + p4 in a condensed way. This
marking is not coverable from mα. Again, markings are written in mul-
tiset notation and predecessors of states that immediately cover that
respective state are omitted and arrows do not represent the transition
relation. They are explored backwards and lead to the minimal basis of
covering predecessors w.r.t. a single transition.
As no state covered by the initial marking is contained in the graph, it
poses as a witness for the uncoverability of p2 + p4. ♦

Observe that no states are ever removed from V . Therefore, the number
of loop iterations is either finite or the sequence ↑V0 ⊆ ↑V1, ↑V2 ⊆ . . .
of UCSs represented by the content of V in each loop iteration forms
an infinite monotone sequence. The stabilization lemma (Lemma 2.9)
provides insight in why the algorithm is bound to terminate: The infinite
monotone sequence of upward-closed sets ↑V0 ⊆ ↑V1, ↑V2 ⊆ . . . stabilizes
in a finite number of steps.
As an informal argument for correctness, consider equality

↑V ∪ pre∗(↑W ) = pre∗(↑F )

which is an invariant of the algorithm’s loop. It is fulfilled at loop entry
with W = F and V = ∅. At the end of the loop’s body it is satisfied
because every state that is removed from W is ensured to be contained
in V . The only way for a state to enter the algorithm is by pb. After
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termination of the loop, W is empty and the invariant collapses to ↑V =
pre∗(↑F ).
We prove this formally in Sect. 3.1 on p. 52.
It is Alg. 2.1 that we generalize and optimize in the following chapters of
this work. Our goal is to answer quickly to common and positive instances
of the coverability problem.

2.6. Well-Structured Labelled Transition
Systems

As stated in Sect. 2.4, we want to go further than the question whether
a set of states is coverable. We want to know how it is coverable.
To be able to identify transition sequences, we turn to the definition of
labelled transition systems and extend WSTSs correspondingly. Upward-
compatibility in the context of well-structured labelled transition systems
is depicted in Fig. 2.9.
Definition 2.14 (Well-Structured Labelled Transition System).

A structure S = (S,L,→,�) is a well-structured labelled transition sys-
tem (WSLTS) if S is a set of states,→ : S×L×S is a transition relation,
� is a decidable WQO, such that the transition relation is consistent and
upward-compatible with �, i.e.

∀s1, s2, t1 ∈ S ∀a ∈ L : (s1 � t1∧s1
a−→ s2 ⇒ ∃t2 ∈ S : s2 � t2∧t1 a−→ t2) .

By s0
a1a2···ak−−−−−−→ sk, we denote the existence of a transition sequence

from s0 to sk labelled with a1a2 · · · ak ∈ L∗, i.e. s0
a1−→ s1

a2−→ · · · ak−1−−−→
sk−1

ak−→ sk. ♦

The predecessor function (cf. Def. 2.10) can remain unchanged as it dis-
regards labels.
We will use the two definitions of WSTSs and WSLTSs synonymously
and distinguish only when it is not clear from context.
Definition 2.15 (Labelled Coverability Relation). Consider well-
structured labelled transition system (S,L,→,�), sets of states X,Y ⊆
S, and a finite sequence σ ∈ L∗ of transition labels. By X

σ
↪−→ Y we
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Figure 2.9.: Upward-compatibility of → for WSLTSs.

denote the fact that there is a transition sequence from a state in X to
a state in ↑Y that is labelled by σ. Formally,

X
σ
↪−→ Y :⇔ ∃x ∈ X, y ∈ ↑Y : x σ−→ y .

We write X ↪−→ Y if there is σ ∈ L∗ for which X σ
↪−→ Y holds. ♦

If one of the sets is a singleton, we may omit the curly braces. For ex-
ample, we would write x σ

↪−→ Y instead of {x } σ
↪−→ Y .

The labelled coverability problem we are concerned with takes as input a
WSLTS S, a finite set of initial states I, and a finite set of final states F .
The problem is to decide whether some state in ↑F can be reached from
a state in I. Intuitively, this means that a state is reachable which covers
some state in F . To be useful for verification, the coverability analysis
should also come up with a transition sequence that leads to this covering
state.
The running Petri net example and both the example search spaces Ex-
ample 2.6 and Example 2.7 of Alg. 2.1 already make use of transition
labels.

Definition 2.16 (Labelled Coverability Problem LCov).

Given: WSLTS S = (S,L,→,�) and I, F ⊆ S finite.

Problem: Does I ↪−→ F hold? In that case, determine (x, σ) with
x ∈ I and σ ∈ L∗ s.t. x σ

↪−→ F .

Clearly, a solution to Cov can be generated from a solution to LCov as
it contains more information in case I ↪−→ F holds.
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While this problem can be solved by a variation of the basic backward
reachability analysis (Alg. 2.1), we strive to generalize the algorithm to
a framework which can be instantiated easily and provides optimizations
independent of the concrete system class, as well as efficient data struc-
tures out of the box.

2.7. Instances of WSLTSs
The importance of WSLTSs stems from the fact that they capture in a
uniform way Petri nets, lossy channel systems, and other seemingly dif-
ferent formalisms. Since some of our optimizations are specific to certain
classes of WSLTSs, we introduce them in more detail.

2.7.1. Petri Nets
The class of P/T Petri nets we introduced in Sect. 2.1 is often used
to model concurrent processes such as business processes and parallel
programs where mutual exclusion is of interest. Note that mutual ex-
clusion fails if at least two programs enter some critical section. Hence,
in the corresponding correctness proof one ensures that no marking m′
is reachable that dominates marking m where two programs are in the
critical section.
For PNs, a coverability problem asks for a transition sequence from some
initial marking m0 to a marking which puts at least as many tokens on
places as some final marking does. In this setting, the problem is known
to be EXPSPACE-complete [Rac78, Lip76].
There are many extensions of Petri nets available, one of which we will
consider in Sect. 2.7.2. Other extensions, such as inhibitor arcs or timed
Petri nets, often introduce Turing-completeness or make use of true con-
currency semantics. We are not concerned with those extensions.
Example 2.8 (PN Example: Mutual Exclusion). In the Petri net of
Fig. 2.10, two processes that synchronize on a shared resource, the token
of place p5, are modelled where places p2 and p4 represent activities that
cannot not occur at the same time. Mutual exclusion of these activities is
forced by the single token on place p5. When a process fires a transition
(t1 or t3 respectively) to enter its critical activity, it takes the token from
p5 and disables the other process’s transition, prohibiting it from entering
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t1

p1 p2

t2

p5

p4

t3

p3

t4

Figure 2.10.: P/T Petri net example: Mutual exclusion of p2 and p4.

its critical activity. When the first process leaves its critical activity by
firing the only enabled transition of the net, a token is created on p5 and
the whole process starts anew. ♦

2.7.2. Petri Nets With Transfer
Petri nets with transfer (PNT) extend Petri nets by arcs whose weight
depends on the current marking. This allows for transitions that empty a
place in one step and transitions that add up tokens on different places.
The model has been proven useful in the analysis of synchronization
skeletons for parametrized and synchronized multi-threaded programs
[DRV02, KKW10].
Compared to Petri nets, the additional expressiveness of transfer nets
results from an extended weight function. Transfer nets not only have
natural numbers as weights but linear polynomials over the places. The
following definition is taken from [SM12].
Definition 2.17 (Petri Net With Transfer). A transfer net (PNT) is
a triple N = (P, T,W ) where P =

{
p1, . . . , p|P |

}
is a finite set of places,

T a finite set of transitions, and W : (P × T ) ∪ (T × P ) −→ N[P ] is a
weight function. Thus, the weights are polynomials over the places with
natural-valued coefficients. The weight function satisfies two conditions:

1. The weight of an arc from transition t to place p, W (t, p), has the
form k +

∑|P |
i=1 λipi, where the λi and k are natural numbers.

2. The weight of an arc from place p to transition t, W (p, t), is either
p itself (a reset arc) or a natural number (a classical arc).
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Given a marking m and (x, y) ∈ (P × T ) ∪ (T × P ), we denote by
W (x, y)(m) the application of function W (x, y) to m: if W (x, y) is k +∑|P |
i=1 λipi then the application to m is k +

∑|P |
i=1 λim(pi). This includes

the special cases of reset and classical arcs.
In this extended class of Petri nets, a transition is enabled in marking m,
if m ≥ W (−, t)(m). The result of firing an enabled transition t from a
marking m1 to marking m2 now is defined as m2 = m1−W (−, t)(m1) +
W (t,−)(m1). ♦

This class of Petri nets matches so-called reset post self-modifying nets
[DFS98], a special case of Valk’s self-modifying nets introduced in [Val78a,
Val78b]. Our definition closely relates to [DFS98]6 and subsumes reset
nets, so that the coverability problem is of non-primitive recursive com-
plexity [Sch10]. Among others, this class of extended Petri nets is also
investigated in [Cia94].
Example 2.9 (Buffered Consumer / Producer). In Fig. 2.11 a
PNT modelling a buffered producer-consumer system is shown. The sys-
tem consists of a producer process (places and transitions labels with p)
and a consumer process (labels with c) that share two resources: a place
chan representing a channel between the processes and a place mutex to
enable mutual exclusion for accessing the channel. Both processes con-
tain internal buffers pbuffer and cbuffer which are used to minimize the
interactions on the shared channel.
The system works as follows.
The producer may create arbitrarily many tokens on its internal buffer.
When it decides to transfer the tokens from its buffer to the channel, it
first acquires the mutex token and then shifts all tokens from its buffer to
the channel in one step. This is expressed by transition psend which takes
all tokens from pbuffer and transfers them to place chan as is described
by the input arc from pbuffer with weight 1 · pbuffer (remove all tokens)
and the output arc to chan with weight 1 · pbuffer (add as many tokens).
After the transfer, the producer releases the acquired mutex token and
loops.
The consumer works analogously to the producer. It may process and
consume as many tokens as it has stored in its internal buffer. When

6Dufourd et al. show that coverability is decidable even for reset post G-nets (gener-
alized reset post self-modifying), a Petri net class that allows for not only linear,
but arbitrary polynomials over the places on output arcs.
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Figure 2.11.: Petri net with transfer example:
Buffered Producer / Consumer.
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it decides to transfer the channel’s contents to its buffer, it will acquire
the mutex token and move all tokens from chan to cbuffer in one step,
followed by release of the mutex token and consummation of the tokens
on its buffer. ♦

2.7.3. Lossy Channel Systems
Lossy channel systems formalize network protocols like the alternating
bit protocol and more general sliding window protocols. Technically,
lossy channel systems are finite state programs that communicate via
asynchronous message transfer over unbounded FIFO channels. The re-
striction that yields decidability is inspired by the following observation
about the application domain. Network protocols are designed to oper-
ate correctly in the presence of package loss. Therefore, a weaker model
with unreliable channels should be sufficient for their verification. Lossy
channel systems formalize unreliability by lossiness: channels may drop
packages at any moment. They have been studied extensively in the work
of Abdulla et al. [AJ93, AJ94, AJ96, AKP97]. We recall the definition of
lossy channel systems from [SM12].
Definition 2.18 (Lossy Channel System). A lossy channel system
(LCS) is a tuple L = (Q,C,M,→) where Q is a finite set of control states
and C is a finite set of channels over which we transfer messages in the
finite set M . Transitions in → ⊆ Q × OP × Q perform operations in
OP := (C × { !, ? } ×M)∪ { τ } . A transition (q1, op, q2) ∈ →, typically
denoted by q1

op−→ q2, yields a change in the control state from q1 to q2
while performing operation op. A local operation τ in OP does not change
any channel contents. A send operation c!a in OP appends message a to
the current content of channel c. A receive operation c?a in OP removes
message a from the head of channel c. Therefore, the last two operations
indeed define a FIFO channel.
The semantics of LCSs relies on the notion of configurations. A configu-
ration of L is a pair γ = (q,W ) ∈ Q×M∗C consisting of a control state
q ∈ Q and a vector W ∈M∗C that assigns to each channel c ∈ C a finite
word W (c) ∈M∗.
Transitions change the channel content. We capture this by update op-
erations [c := x] with c ∈ C, x ∈ M∗ that operate on vectors of
words. Applying the update to a channel content W ∈ M∗C results
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in a new content W [c := x] ∈ M∗C defined by W [c := x](c) := x and
W [c := x](c′) := W (c′) for all c′ 6= c with c′ ∈ C.
Lossiness is formalized by an ordering on configurations. For the defini-
tion, we first compare words by Higman’s subword ordering [Hig52]. It
sets u �∗ v if u is a not necessarily contiguous subword of v. More for-
mally, let u = u1 . . . um and v = v1 . . . vn in M∗. We have u �∗ v if there
are indices 1 ≤ i1 < . . . < im ≤ n with uj = vij for all 1 ≤ j ≤ m. With
a component-wise definition, we lift the ordering to vectors of words,
W1 �∗ W2 if W1(c) �∗ W2(c) for all c ∈ C. For configurations, we pose
the additional requirement that the control states coincide. This means,
we have (q1,W2) � (q2,W2) if q1 = q2 and W1 �∗ W2.
The behaviour of LCSs is defined in terms of transitions between con-
figurations, → ⊆ (Q ×M∗C) × (Q ×M∗C). The transitions are derived
with the following rules:

• (q1,W )→ (q2,W ) if q1
τ−→ q2 (a local operation)

• (q1,W )→ (q2,W [c := W (c) ·m]) if q1
c!m−−→ q2 (a send operation)

• (q1,W [c := m ·W (c)]) → (q2,W ) if q1
c?m−−→ q2 (a receive opera-

tion)

• γ′1 → γ′2 if γ′1 � γ1 → γ2 � γ′2 (loss of channel contents)

for some configurations γ1, γ2 ∈ Q×M∗C . ♦

For LCSs, a coverability problem is the question whether there exists a
transition sequence leading from an initial control state q0 with empty
channels to any of the final control states regardless of the channel con-
tent, i.e. a configuration is reached with a final control state and a chan-
nel content that covers the empty channel content. In this setting, the
problem is of non-primitive recursive complexity [Sch02, Sch10].
Example 2.10 (Alternating Bit Protocol [AJ96]). The lossy chan-
nel system in Fig. 2.12 models a part of the alternating bit protocol of
[BSW69] with the goal that messages are transmitted from the sender
to the receiver in the correct order over FIFO channels, although the
channels may drop messages non-deterministically. To ensure the mes-
sages are delivered in the correct order, sequence numbers are appended
and transferred with the messages. In this model, the actual messages
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τ

(b) Receiver.

Figure 2.12.: Lossy channel system example: Alternating bit protocol.

are omitted and only sequence numbers are transmitted. The LCS con-
sists channels cM and cA, messages 0 and 1 and the two automata of
Fig. 2.12. Channel cM is used to transmit messages from the sender to
the receiver and channel cA is used to transmit acknowledgements back
from the receiver to the sender.
The protocol works as follows. The sender sends a message over chan-
nel cM (transition from s1 to s2, actual message omitted) followed by
the current sequence number (initially 0). It then waits for an acknowl-
edgement over channel cA with the same sequence number. During the
process of waiting, the sender may repeat sending the message and the
sequence number. In an actual implementation of the protocol, the rep-
etition would only happen after some delay. After the acknowledgement
has arrived, the procedure is repeated for the next message and the next
sequence number (modulo 1).
The receiver receives message and sequence numbers from the message
channel cM (actual message omitted). If the sequence number has the
expected value (initially 0), it passes the message off to some handler
(transition from r2 to r3) and sends the sequence number over the ac-
knowledgement channel cA and waits for the next message accompanied
by the next expected sequence number. The process of sending acknowl-
edgement messages over cA is repeated until a message with the next
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sequence number is received and the procedure is repeated. Messages
with non-expected sequence numbers are discarded.
Through the procedure of repeatedly sending messages, sequence num-
bers and acknowledgement with sequence numbers, the protocol tries to
balance the lossiness of the channels to ensure that messages are handled
in the correct order on the receiver side. ♦

2.8. Program Correctness

To formally show the correctness of our main algorithms, we employ
Hoare-style proofs in the proof system PW for partial correctness of while
programs and TW for total correctness of while programs of [ABO09].

Definition 2.19 (Syntax of While Programs). While programs are
generated by the following grammar:

S ::= skip | u := t | S1; S2

| if B then S1 else S2 fi | while B do S od .

Letter u stands for a variable, t for an expression of the same type as
variable u, and B stands for a boolean expression. As a shorthand, we
define

if B then S fi ≡ if B then S else skip fi . ♦

The skip command does a program step without modifying any vari-
ables. The rest of the semantics of these simple programs is as expected.
See [ABO09, p. 58] for a complete definition.
We express program correctness by so-called correctness formulas of the
form

{ p } S { q }
where S is a while program and p and q are assertions. Assertion p is the
precondition and q is the postcondition of the correctness formula. The
truth of correctness formulas is defined via the semantics of while pro-
grams. For sake of brevity, we paraphrase the definition without having
to establish the formal semantics of while programs, which suffices for
our purposes of proving algorithms via so-called proof outlines.
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Definition 2.20 (Correctness). We distinguish partial and total cor-
rectness.

(i) We say that the correctness formula { p } S { q } is true in the sense
of partial correctness, and write |= { p } S { q }, if every terminating
computation of S that starts in a state satisfying precondition p
terminates in a state satisfying postcondition q.

(ii) We say that the correctness formula { p } S { q } is true in the sense
of total correctness, and write |=tot { p } S { q }, if every computa-
tion of S that starts in a state satisfying p terminates in a state
satisfying precondition p terminates in a state satisfying postcon-
dition q. ♦

The following proof systems and relations between these systems and
above definition of correctness give means to formulate detailed correct-
ness proofs of while programs.
Definition 2.21 (Proof System PW). The proof system PW consists
of following axioms and rules.
AXIOM 1: SKIP

{ p } skip { p }
AXIOM 2: ASSIGNMENT

{ p[u := t] } u := t { p }

where p[u := t] describes the substitution of u in p by t.

RULE 3: COMPOSITION

{ p } S1 { r } , { r } S2 { q }
{ p } S1; S2 { q }

RULE 4: CONDITIONAL

{ p ∧B } S1 { q } , { p ∧ ¬B } S2 { q }
{ p } if B then S1 else S2 fi { q }

RULE 5: LOOP

{ p ∧B } S { p }
{ p } while B do S od { p ∧ ¬B }
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RULE 6: CONSEQUENCE

p→ p1, { p1 } S { q1 } , q1 → q

{ p } S { q }

♦

In loop rule 5, p is understood as an invariant of the loop under consid-
eration.
While proof system PW suffices to show that if a program terminates
the results meet the specification, we also want to show that programs do
terminate. Proof system TW for total correctness empowers us to prove
program termination.
Definition 2.22 (Proof System TW). The proof system TW consists
of axioms and rules 1–4, 6, and the following rule 7.7
RULE 7: LOOP II

{ p ∧B } S { p } ,
{ p ∧B ∧ t = α } S { t < α } ,
p⇒ t ∈W
{ p } while B do S od { p ∧ ¬B }

where

(i) t is an expression which takes values in an irreflexive partial order
(P,>) that is well-founded on the subset W ⊆ P ,

(ii) α is a simple variable ranging over P and not occurring in p, t, B
or S. ♦

When a correctness formula { p } S { q } is deducible from some set of
assumption formulas A in proof system P , we write

A `P { p } S { q }
7In fact, proof system TW is defined in [ABO09, p. 70], but we need the while
fragment of the more general notion of fair total correctness of nondeterministic
programs which exploits well-founded structures for bound functions. To be pre-
cise, we use rule 39’ of [ABO09, p. 432] for the special case while B do S od ≡
do 2B → S od. We restrict these nondeterministic programs to while programs
and dismiss the fairness requirement.
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and when the set of assumption A is empty, we simply write

`P { p } S { q }

and call it a theorem of proof system P .
Both proof systems PW and TW are shown to be sound in [ABO09,
Theorem 3.1, p. 74] and we use this result with following lemma.
Lemma 2.11 (Soundness of PW and TW). Proof systems PW and
TW are sound.

(i) Every theorem of proof system PW is correct. Formally,

`PW { p } S { q } implies |= { p } S { q } .

(ii) Every theorem of proof system TW is correct. Formally,

`TW { p } S { q } implies |=tot { p } S { q } .

Proof. Shown in [ABO09, Theorem 3.1, p. 74].

In practice, we are interested in decoupling proofs for correctness and
termination. The following definition introduces the decomposition rule
which allows for the combination of two separate correctness and termi-
nation proofs.
Definition 2.23 (Decomposition). By the decomposition rule, sepa-
rate proofs for correctness and termination with a trivial postcondition
allow for the deduction of total correctness.
RULE A1: DECOMPOSITION

`PW { p } S { q } ,
`TW { p } S { true } ,
|=tot { p } S { q }

♦

For our proofs to be easier to follow, we use proof outlines which were first
introduced by Owicki and Gries in [OG76]. Roughly speaking, in a proof
outline, each line of the underlying program is enclosed in assertions
representing pre- and postconditions according to axioms and rules of
proof system PW.
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Definition 2.24 (Proof Outline for Partial Correctness). Let S∗
stand for the program S interspersed with assertions. We define the no-
tion of a proof outline for partial correctness inductively by the following
formation axioms and rules. A formation axiom ϕ should be read here
as a statement: ϕ is a proof outline (for partial correctness). A formation
rule

ϕ1, . . . , ϕk
ϕk+1

should be read as a statement: if ϕ1, . . . , ϕk are proof outlines, then ϕk+1
is a proof outline.
(i) { p } skip { p }
(ii) { p[u := t] } u := t { p }

(iii) { p } S
∗
1 { r } , { r } S∗2 { q }

{ p } S∗1 ; { r } S∗2 { q }

(iv) { p ∧B } S∗1 { q } , { p ∧ ¬B } S∗2 { q }
{ p } if B then { p ∧B } S∗1 { q } else { p ∧ ¬B } S∗2 { q } fi { q }

(v) { p ∧B } S∗ { p }
{ inv: p } while B do { p ∧B } S∗ { p } od { p ∧ ¬B }

(vi) p→ p1, { p1 } S∗ { q1 } , q1 → q

{ p } { p1 } S∗ { q1 } { q }

(vii) { p } S
∗ { q }

{ p } S∗∗ { q }
where S∗∗ results from S∗ by omitting some assertions of the form
{ r }. Thus all assertions of the form { inv: r } (and {bd: r }) re-
main. ♦

Like proof systems TW and PW, proof outlines for total correctness differ
only little from proof outlines for partial correctness.
Definition 2.25 (Proof Outline for Total Correctness). Let S∗
stand for a program annotated with assertion, some of them labelled by
the keyword inv, and integer expressions, all labelled by the keyword
bd. The notion of a proof outline for total correctness8 is defined as for

8For the formation rule which corresponded to the LOOP II rule in [ABO09, p. 83],
we have substituted the respective case of rule 39’ of [ABO09, p. 432] and varied
it to use a single proof outline.
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partial correctness (cf. Def. 2.24), except for formation rule (v) dealing
with loops, which is replaced by

(viii) { p ∧B } α := t; { p ∧B ∧ t = α } S∗ { p ∧ t < α } ,
p⇒ t ∈W
{ inv: p } {bd: t }
while B do
α := t; { p ∧B ∧ α = t } S∗ { p ∧ t < α }

od { p ∧ ¬B }
where
(i) t is an expression which takes values in an irreflexive partial

order (P,>) that is well-founded on the subset W ⊆ P ,
(ii) α is a simple variable ranging over P and not occurring in

p, t, B or S. ♦

The connection between proof outlines and provability with proof sys-
tems is established in Theorem 3.2 of [ABO09, p. 81]. We recall it as the
following lemma.
Lemma 2.12 (Proof Outlines Imply Correctness Theorems).
The existence of a proof outline implies the a correctness theorem in
the respective proof system.

(i) Every proof outline for partial correctness implies a theorem of
proof system PW. Formally, if { p } S∗ { q } is a proof outline for
partial correctness, then

`PW { p } S { q } .

(ii) Every proof outline for total correctness implies a theorem of proof
system TW. Formally, if { p } S∗ { q } is a proof outline for total
correctness, then

`TW { p } S { q } .

Proof. Shown in [ABO09, Theorem 3.2, p. 81].

Example 2.11. Consider the simple while program shown in Alg. 2.2,
which computes the factorial n! =

∏n
i=1 i of some natural number n (and

by convention 0! = 1) in a straightforward way. We claim that this pro-
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1 r := 1;
2 i := 0;
3 while i < n do
4 i := i+ 1;
5 r := r · i
6 od
Algorithm 2.2: Example algorithm for program correctness: Facto-
rial.

gram satisfies the correctness formula {n ∈ N } Factorial { r = n! } in
the sense of total correctness, i.e. it terminates for all inputs of n ∈ N
with the value of variable r being n!.

1 {n ∈ N }
2 r := 1;
3 {n ∈ N ∧ r = 1 }
4 i := 0;
5 {n ∈ N ∧ r = 1 ∧ i = 0 }
6 { inv: n ∈ N ∧ r = i! } {bd: n− i }
7 while i 6= n do
8 α := n− i;
9 { i 6= n ∧ n ∈ N ∧ r = i! ∧ n− i = α }

10 {n ∈ N ∧ r = i! ∧ n− i = α }
11 i := i+ 1;
12 {n ∈ N ∧ r = (i− 1)! ∧ n− (i− 1) = α }
13 r := r · i
14 {n ∈ N ∧ r = (i− 1)! · i ∧ n− (i− 1) = α }
15 {n ∈ N ∧ r = i! ∧ n− i < n− i+ 1 = α }
16 od
17 { i = n ∧ n ∈ N ∧ r = i! }
18 { r = n! }

Figure 2.13.: Example proof outline for total correctness:
Factorial.

To verify this claim, we present proof outline Fig. 2.13 for total correct-
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ness which makes use of the assignment axiom and the consequence rule
(Def. 2.21). The invariant states that in each iteration, variable r reflects
the factorial of the current number of iterations i and that n remains
a natural number. It is preserved over the execution of the loop body.
Invariant n ∈ N∧r = !i together with the negated loop condition implies
r = !n which is the result we wanted for partial correctness. Bound func-
tion n − i expresses that the number of iterations does not exceed the
value of n. It takes values in the naturals which are well-founded w.r.t. <.
Termination then follows from the fact that n− i strictly decreases with
each iteration. ♦

In the following chapter we will put the methodology of employing proof
outlines to show correctness to use: We will present separate proof out-
lines for partial correctness and termination (total correctness with a
trivial postcondition) of algorithms, deduce that the corresponding cor-
rectness formulas consisting of precondition, algorithm, and postcondi-
tion are theorems by Lemma 2.12 (proof outlines are theorems), and
combine the two correctness formulas for partial correctness and termi-
nation via Def. 2.23 (decomposition) to show that the partial correctness
formula is true even in the sense of total correctness as described in
Def. 2.20, i.e. every computation that starts in a state that satisfies the
precondition terminates in a state that satisfies the postcondition.
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C H A P T E R T H R E E

Algorithmic Framework
Technological progress has [. . . ] provided us with more effi-
cient means for going backwards.

— Aldous Huxley, Writer
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The decision procedure from [AČJT96, FS01] performs a fixed-point iter-
ation to compute the basis of states that are backward reachable from ↑F
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3. Algorithmic Framework

(cf. Sect. 2.5 on p. 30). In this chapter, we provide an axiomatic Hoare-
style proof for the basic backward reachability analysis (basic BR) and
introduce our algorithmic framework as a refinement of the basic back-
ward reachability analysis. We discuss general means to apply optimiza-
tions and refrain from computing a basis of the complete set of backward
reachable states if a transition sequence to prove coverability is found. In
Sect. 3.5 we give high-level arguments for termination and correctness,
whereas a detailed proof follows in Ch. 4 on p. 87.
Users of our algorithmic framework benefit in different ways: on the
one hand, they may get to a decision procedure for some new system
class that is a WSTS with less effort and on the other hand, proofs for
optimizations—possibly specially crafted for their class—may become
more elegant, as we will discuss in Ch. 5 on p. 130.
Beginning this chapter, we formulate a new axiomatic Hoare-style proof
for the basic backward reachability analysis that we base our framework
on.

3.1. Proof of the Basic BR

There exist correctness and termination proofs for an abstract set-sa-
turation method, that iteratively computes pre∗(↑X) =

⋃∞
i=0 prei(↑F )

(cf. [FS01, AČJT96]), which basically use some form of the property
that pre∗(↑X) can be computed in a finite number of steps as stated
in Lemma 2.10 on p. 27. While such high-level proofs are beautifully
concise, we strive for a proof in close relation to program code.
Moreover, the basic backward reachability analysis, in the form we stated
in the previous chapter, works differently than the abstract set-saturation
methods. In each iteration it selects a single element of W to compute
a pred-basis for, as opposed to compute the pred-basis of the whole set
W . The basic backward reachability analysis in the previous chapter is
closer to the algorithm of [AJKP98], where a proof by induction on the
length of some transition sequence from the initial states to the UCS of
final states is employed to show correctness.
We believe that, despite the size of our axiomatic proof of the relatively
small algorithm, the benefits of understanding the basic BR and its prop-
erties more thoroughly are worthwhile.
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3.1. Proof of the Basic BR

The proof consists of three parts. We begin by showing that if the al-
gorithm terminates, its result is an answer to the coverability problem
described by the input. After establishing that the algorithm terminates
for every valid input, we combine both proofs to conclude total correct-
ness.

3.1.1. Partial Correctness
To create an axiomatic Hoare-style proof for partial of the algorithm,
we need to establish the following lemma. It reveals a nice property
of the predecessors pre∗(↑X) of some upward-closed set. In detail, it
allows the introduction of a ↑-operator at a certain place where it is
not obvious. While pre(↑X) ⊆ ↑ pre(↑X) holds by the definition of ↑,
the inverse inclusion is not true in general: With upward-compatibility,
several transition steps may be performed on the right-hand side for
every single step on the left-hand side (cf. Fig. 2.4 on p. 20).
Lemma 3.1 (Expansion of pre∗ and the Upward Closure). Given
a WSTS (S,→,�) and a set X ⊆ S, for the expansion of pre∗(↑X) =
↑X ∪ pre∗(pre(↑X)) (cf. Lemma 2.7-4 on p. 25) the following equality
holds:

↑X ∪ ↑ pre∗(pre(↑X)) = ↑X ∪ ↑ pre∗(↑ pre(↑X))

Proof. Let (S,→,�) be a WSTS and X ⊆ S a set of states.
We show the inclusion ↑X ∪↑ pre∗(pre(↑X)) ⊆ ↑X ∪↑ pre∗(↑ pre(↑X)):
This holds by definition of upward-closure and monotonicity of pre∗
(cf. Def. 2.7 on p. 20, Lemma 2.7-2 on p. 24).
To show the inverse inclusion,

↑X ∪ ↑ pre∗(↑ pre(↑X)) ⊆ ↑X ∪ ↑ pre∗(pre(↑X)) ,

we distinguish the following two cases. Let y ∈ ↑X ∪ ↑ pre∗(↑ pre(↑X)).

• In case y ∈ ↑X, it follows immediately that state y is in ↑X ∪
↑ pre∗(pre(↑X)).

• In case y /∈ ↑X, we intend to prove ↑ pre∗(↑ pre(↑X)) ⊆ ↑ pre∗(↑X)
in order to use ↑X ∪ ↑ pre∗(pre(↑X)) = ↑ pre∗(↑X) by the expan-
sion of pre∗ and the distributivity of ↑ over ∪ (cf. Lemma 2.7-4 on
p. 25, Lemma 2.5-2 on p. 21).
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Figure 3.1.: Upward-compatibility in the proof of Lemma 3.1.

Let y ∈ ↑ pre∗(↑ pre(↑X)). By the definition of predecessors and
the upward-closure, there exist states x ∈ pre∗(↑ pre(↑X)), x′ ∈
↑ pre(↑X), z ∈ pre(↑X) and z′ ∈ ↑X with

y � x→∗ x′ � z → z′ ∈ ↑X .

The upward-compatibility in turn ensures the existence of states
x′′ � z′, y′ � x′, and y′′ � x′′ s.t. y →∗ y′ →∗ y′′ � x′′ � z′ ∈ ↑X
which expresses that y is a predecessor of a state in ↑X, i.e. y ∈
pre∗(↑X).

A graphical representation is given in Fig. 3.1. Dashed lines repre-
sent guarantees by the upward-compatibility of the WQO with →
and underlined sets indicate deductions via upward-compatibility.

Hence, by Lemma 2.8 on p. 26, ↑ pre∗(↑ pre(↑X)) ⊆ pre∗(↑X) =
↑ pre∗(↑X) = ↑X ∪ ↑ pre∗(pre(↑X)).

We conclude that ↑X∪↑ pre∗(pre(↑X)) = ↑X∪↑ pre∗(↑ pre(↑X)) holds.
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3.1. Proof of the Basic BR

To formally show the correctness of Alg. 2.1 on p. 30 we give a proof
outline for partial correctness in Fig. 3.2 on p. 62. There, we will use the
following abbreviations:

InvVW (V,W ) := pre(↑V ) ⊆ ↑V ∪ ↑W (3.1)
InvF (V,W ) := |V | ∈ N ∧ ↑V ∪ pre∗(↑W ) = pre∗(↑F ) (3.2)

To begin with, we show a useful property of the first invariant which
states that if the one-step predecessors of ↑V are contained in the union
of ↑V and ↑W , then this inclusion can be lifted to pre∗(↑V ) ⊆ ↑V ∪
pre∗(↑W ). Notice that, on the right-hand side of the inclusion, pre∗ is
applied only on ↑W . The intuition for both inclusions is that if ↑W
is empty, ↑V is transitively closed w.r.t. pre. If ↑V is not closed in
this sense, then ↑W contains all the states which ↑V is missing to be
transitively closed w.r.t. pre. This relationship is lifted to pre∗.
Lemma 3.2. If (S,→,�) is a WSTS and V,W are subsets of S, then

pre(↑V ) ⊆ ↑V ∪ ↑W implies pre∗(↑V ) ⊆ ↑V ∪ pre∗(↑W ) .

Proof. Let (S,→,�) be a WSTS and V,W subsets of S. By induction
we prove that the implication

pre(↑V ) ⊆ ↑V ∪ ↑W implies
n⋃

i=0
prei(↑V ) ⊆ ↑V ∪

n⋃

i=0
prei(↑W )

holds for any natural n.

Base case. Let n = 0. The implication obviously holds as the upward-
closed set

⋃n
i=0 prei(↑V ) = ↑V is a subset of ↑V ∪⋃ni=0 prei(↑W ) =

↑V ∪ ↑W .

Induction hypothesis. Let the implication be proved for n.

Inductive step. We show that under the assumption of the induction
hypothesis, the statement is also true for n+ 1.
Consider some state x ∈ ⋃n+1

i=0 prei(↑V ). If state x is a member of
some set prei(↑V ) for i ≤ n, then, by application of the induction
hypothesis, it is also a member of ↑V ∪⋃ni=0 prei(↑W ) which is a
subset of ↑V ∪⋃n+1

i=0 prei(↑W ).
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3. Algorithmic Framework

We assume x is in set pren+1(↑V ). By the definition of the pre-
decessors (Def. 2.10 on p. 24) there exists a state x′ ∈ pren(↑V )
to which x is a predecessor, i.e. x → x′. From the induction hy-
pothesis we know that pren(↑V ) ⊆ ⋃ni=0 prei(↑V ) is a subset of
↑V ∪⋃ni=0 prei(↑W ). Therefore, state x is a member of

pre(↑V ∪
n⋃

i=0
prei(↑W ))

which can be written with the use of distributivity (Lemma 2.7-1
on p. 24) as pre(↑V ) ∪⋃ni=0 pre(prei(↑W )).
From the implication’s prerequisite, pre(↑V ) ⊆ ↑V ∪ ↑W , we de-
duce

pre(↑V )∪
n⋃

i=0
pre(prei(↑W )) ⊆ ↑V ∪↑W ∪

n⋃

i=0
pre(prei(↑W ))

which we rearrange to

pre(↑V ) ∪
n⋃

i=0
pre(prei(↑W )) ⊆ ↑V ∪

n+1⋃

i=0
prei(↑W ) .

Therefore, x is in ↑V ∪⋃n+1
i=0 prei(↑W ) and we conclude that the

following subset relation holds.

n+1⋃

i=0
prei(↑V ) ⊆ ↑V ∪

n+1⋃

i=0
prei(↑W )

By the principle of induction, the statement

pre(↑V ) ⊆ ↑V ∪ ↑W implies
n⋃

i=0
prei(↑V ) ⊆ ↑V ∪

n⋃

i=0
prei(↑W )

(3.3)

holds for any natural n.
As we know from the stabilization of predecessors of upward-closed sets
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3.1. Proof of the Basic BR

(Lemma 2.10 on p. 27), there exist natural numbers k1 and k2, s.t. for
any j ∈ N,

↑
k1+j⋃

i=0
prei(↑V ) = pre∗(↑V ) and ↑

k2+j⋃

i=0
prei(↑W ) = pre∗(↑W ) .

Thus, we are allowed to set n = max { k1, k2 } and substitute the unions
from 0 to n in Eq. 3.3 by pre∗-operations and conclude our proof: State-
ment

pre(↑V ) ⊆ ↑V ∪ ↑W implies pre∗(↑V ) ⊆ ↑V ∪ pre∗(↑W )

holds.

Most steps in the proof outline Fig. 3.2 on p. 62 work mechanically by
forward elimination of conjunctions by the consequence rule and back-
ward substitution by the assignment axiom (cf. Def. 2.21 on p. 44 or
rather Def. 2.24 on p. 47). For the implication between lines 15 and 17,
we employ Lemma 3.3 and Lemma 3.4.

The first of these lemmas establishes the fact that the relationship be-
tween sets V and W remains intact over a single loop iteration. The
lemma is used for the case that the test in line 6 of Alg. 2.1 on p. 30,
if x /∈ ↑V then, is positive and the body of the if -construct is executed
and the predecessors of x are added to W . The condition x /∈ ↑V is not
needed for the proof.

Lemma 3.3. Let (S,→,�) be a WSTS, x ∈ S a state and V,W ⊆ S
finite sets of states. The following implication holds.

InvVW (V,W ∪ {x } ) ⇒ InvVW (V ∪ {x } ,W ∪ pb(x))

Proof. The implication without abbreviation by Eq. 3.1 is

pre(↑V ) ⊆ ↑V ∪ ↑(W ∪ {x } )
⇒ pre(↑(V ∪ {x } )) ⊆ ↑(V ∪ {x } ) ∪ ↑(W ∪ pb(x)) .
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Using distributivity of ↑ and pre over ∪ (Lemma 2.5-2 on p. 21,
Lemma 2.7-1 on p. 24) and the definition of the pred-basis (Def. 2.11
on p. 29), we have to prove the following implication.

pre(↑V ) ⊆ ↑V ∪ ↑W ∪ ↑x
⇒ pre(↑V ) ∪ pre(↑x) ⊆ ↑V ∪ ↑x ∪ ↑W ∪ ↑ basis(pre(↑x)) .

Assume the implication’s left-hand side holds. We turn to the right-hand
side and use commutativity of ∪ and apply the definition of a basis
(Def. 2.7 on p. 20) which leaves us with the following condition to prove:

pre(↑V ) ∪ pre(↑x) ⊆ ↑V ∪ ↑W ∪ ↑x ∪ ↑ pre(↑x) (3.4)

We know pre(↑V ) ⊆ ↑V ∪ ↑W ∪ ↑x from the left-hand side of the im-
plication and obviously pre(↑x) ⊆ ↑ pre(↑x) holds. Therefore, the above
inclusion is implied by pre(↑V ) ⊆ ↑V ∪ ↑(W ∪ {x } ) and we conclude
that the implication holds.

The second lemma guarantees that the algorithm’s result V is in fact a
basis of the states backward reachable from ↑F , even when the algorithm
performs the step from x to pb(x).

Lemma 3.4. Let (S,→,�) be a WSTS, x ∈ S a state and V,W,F ⊆ S
finite sets of states.

InvF (V,W ∪ {x } ) ⇒ InvF (V ∪ {x } ,W ∪ pb(x))

Proof. The fact that V is finite implies that V ∪ {x } is finite. By ab-
breviation Eq. 3.2, we remain to show equality of following two sets.

↑V ∪ pre∗(↑(W ∪ {x } )) = ↑(V ∪ {x } ) ∪ pre∗(↑(W ∪ pb(x)))

We apply the lemmas of the previous section on upward-closure and the
predecessor functions to show a direct transformation from one set to the
other. Let (S,→,�) be a WSTS, x ∈ S a state and V,W,F ⊆ S finite
sets of states. For convenience, we underlined the parts of each line that
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changed w.r.t. the previous.

↑V ∪ pre∗(↑(W ∪ {x } ))
= ↑V ∪ pre∗(↑W ∪ ↑x) (Distr. ↑,∪ [Lemma 2.5-2 on p. 21])
= ↑V ∪ pre∗(↑W ) ∪ pre∗(↑x) (Distr. pre,∪ [Lemma 2.7-1 on p. 24])
= ↑V ∪ pre∗(↑W ) ∪ ↑ pre∗(↑x)

(pre∗ of a UCS [Lemma 2.8 on p. 26])
= ↑V ∪ pre∗(↑W ) ∪ ↑(↑x ∪ pre∗(pre(↑x)))

(Expan. pre∗ [Lemma 2.7-4 on p. 25])
= ↑V ∪ pre∗(↑W ) ∪ ↑ ↑x ∪ ↑ pre∗(pre(↑x))

(Distr. ↑,∪ [Lemma 2.5-2 on p. 21])
= ↑V ∪ pre∗(↑W ) ∪ ↑x ∪ ↑ pre∗(pre(↑x))

(Idem. ↑ [Lemma 2.5-1 on p. 21])
= ↑V ∪ pre∗(↑W ) ∪ ↑x ∪ ↑ pre∗(↑ pre(↑x)) (Lemma 3.1)
= ↑V ∪ pre∗(↑W ) ∪ ↑x ∪ pre∗(↑ pre(↑x))

(pre∗ of a UCS [Lemma 2.8 on p. 26])
= ↑V ∪ ↑x ∪ pre∗(↑W ) ∪ pre∗(↑ pre(↑x)) (Comm. ∪)
= ↑V ∪ ↑x ∪ pre∗(↑W ∪ ↑ pre(↑x))

(Distr. pre∗,∪ [Lemma 2.7-1 on p. 24])
= ↑V ∪ ↑x ∪ pre∗(↑W ∪ ↑ basis(pre(↑x)))

(↑ basis(X) = ↑X [Def. 2.7 on p. 20])
= ↑V ∪ ↑x ∪ pre∗(↑W ∪ ↑ pb(x)) (pred-basis [Def. 2.11 on p. 29])
= ↑(V ∪ {x } ) ∪ pre∗(↑(W ∪ pb(x)))

(Distr. ↑,∪ [Lemma 2.5-2 on p. 21])

Thus, the two sets are equal and the implication between InvF (V,W ∪
{x } ) and InvF (V ∪ {x } ,W ∪ pb(x)) holds.

The next lemma ensures that the relationship between sets V and W
remains intact over a single loop iteration in case that x, the state selected
and removed fromW , is contained in the upward-closure of V . We have to

59



3. Algorithmic Framework

explain, why it is admissible to not add the basis of one-step predecessors
of x, pb(x), to W .

Lemma 3.5. Let (S,→,�) be a WSTS, x ∈ S a state and V,W,F ⊆ S
finite sets of states. Then the following implication is correct.

x ∈ ↑V ∧ InvVW (V,W ∪ {x } ) ∧ InvF (V,W ∪ {x } )
⇒ InvVW (V,W ) ∧ InvF (V,W )

Proof. Expand abbreviations Eq. 3.1 and Eq. 3.2 to

x ∈ ↑V ∧ pre(↑V ) ⊆ ↑V ∪ ↑(W ∪ {x } )
∧ |V | ∈ N ∧ ↑V ∪ pre∗(↑(W ∪ {x } )) = pre∗(↑F )

⇒ pre(↑V ) ⊆ ↑V ∪ ↑W
∧ |V | ∈ N ∧ ↑V ∪ pre∗(↑W ) = pre∗(↑F ) .

Assume the left-hand side of the implication holds and show that each
conjunct of the right-hand side follows.

1. Show that pre(↑V ) ⊆ ↑V ∪ ↑W is implied. By distributivity of ↑
(Lemma 2.5-2 on p. 21), we know that ↑(W ∪ {x } ) is the same
as ↑W ∪ ↑x. As the implication’s left-hand side tells us that x
is a member of ↑V which implies ↑x ⊆ ↑V , we can collapse the
inclusion on the left-hand side, pre(↑V ) ⊆ ↑V ∪ ↑W ∪ ↑x, to
pre(↑V ) ⊆ ↑V ∪ ↑W and conclude this part of the proof.

2. Show that |V | ∈ N is implied. This is preserved as it already holds
on the left-hand side.

3. Show that ↑V ∪ pre∗(↑W ) = pre∗(↑F ) is implied. We rather show
the equality of ↑V ∪pre∗(↑W ) and ↑V ∪pre∗(↑(W ∪ {x } )), as we
know from the premise that the latter set is the same as pre∗(↑F ).
a) Show ↑V ∪ pre∗(↑W ) ⊆ ↑V ∪ pre∗(↑(W ∪ {x } )): This direc-

tion is rather obvious as the inclusion

↑V ∪ pre∗(↑W ) ⊆ ↑V ∪ pre∗(↑W ) ∪ pre∗(↑x)
= ↑V ∪ pre∗(↑(W ∪ {x } ))
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clearly holds as application of distributivity of ↑ and pre∗
(Lemma 2.5-2 on p. 21, Lemma 2.7-1 on p. 24) yields that
pre∗(↑(W ∪ {x } )) is the same as pre∗(↑W ) ∪ pre∗(↑x).

b) Show ↑V ∪ pre∗(↑(W ∪ {x } )) ⊆ ↑V ∪ pre∗(↑W ): Again, we
use that pre∗(↑(W ∪ {x } )) = pre∗(↑W ) ∪ pre∗(↑x), as well
as ↑V being a subset of ↑V ∪ pre∗(↑W ). Therefore, we can
further reduce both sides of the inclusion we are to prove, and
it remains to show

pre∗(↑x) ⊆ ↑V ∪ pre∗(↑W ) .

As x ∈ ↑V and therefore, ↑x ⊆ ↑V , we use monotonicity of
the pre∗ (Lemma 2.7-2 on p. 24), to show

pre∗(↑V ) ⊆ ↑V ∪ pre∗(↑W )

instead. In fact, this inclusion was already shown to hold in
Lemma 3.2 under the assumption pre(↑V ) ⊆ ↑V ∪↑W , which
holds by item 1.

In summary, we have shown that if the implication’s left-hand side is
true, then sets ↑V ∪ pre∗(↑(W ∪ {x } )) and ↑V ∪ pre∗(↑W ) are equal
and that pre(↑V ) ⊆ ↑V ∪ ↑W indeed follows from the implication’s
left-hand side.
This closes the proof of the implication.

The characteristics of the selection function are comprised in the follow-
ing lemma.

Lemma 3.6. Given a set W , the following axiom is true in the sense of
partial and total correctness.
AXIOM: SELECT

{W 6= ∅ } x := select(W ) {x ∈W }

Proof. The definition of the selection function (Def. 2.13 on p. 30) states
that select satisfies W 6= ∅ ⇒ select(W ) ∈W for any set W .
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// InvVW (V,W ) := pre(↑V ) ⊆ ↑V ∪ ↑W
// InvF (V,W ) := |V | ∈ N ∧ ↑V ∪ pre∗(↑W ) = pre∗(↑F )

1 { |F | ∈ N } // Needed only in the termination proof.
2 W := F ;
3 {W = F }
4 V := ∅;
5 {V = ∅ ∧W = F ∧ InvVW (V,W ) ∧ InvF (V,W ) }
6 { inv: InvVW (V,W ) ∧ InvF (V,W ) }
7 while W 6= ∅ do
8 {W 6= ∅ ∧ InvVW (V,W ) ∧ InvF (V,W ) }
9 x := select(W );

10 {x ∈W ∧ InvVW (V,W ) ∧ InvF (V,W ) }
11 W := W \ {x } ;
12 { InvVW (V,W ∪ {x } ) ∧ InvF (V,W ∪ {x } ) }
13 if x /∈ ↑V then
14 {x /∈ ↑V
15 ∧ InvVW (V,W ∪ {x } ) ∧ InvF (V,W ∪ {x } ) }

/* See Lemma 3.3 and Lemma 3.4. */
16 { InvVW (V ∪ {x } ,W ∪ pb(x))
17 ∧ InvF (V ∪ {x } ,W ∪ pb(x)) }
18 V := V ∪ {x } ;
19 { InvVW (V,W ∪ pb(x)) ∧ InvF (V,W ∪ pb(x)) }
20 W := W ∪ pb(x)
21 { InvVW (V,W ) ∧ InvF (V,W ) }
22 else
23 {x ∈ ↑V
24 ∧ InvVW (V,W ∪ {x } ) ∧ InvF (V,W ∪ {x } ) }

/* See Lemma 3.5. */
25 { InvVW (V,W ) ∧ InvF (V,W ) }
26 skip
27 { InvVW (V,W ) ∧ InvF (V,W ) }
28 fi
29 { InvVW (V,W ) ∧ InvF (V,W ) }
30 od
31 {W = ∅ ∧ InvVW (V,W ) ∧ InvF (V,W ) }
32 { |V | ∈ N ∧ ↑V = pre∗(↑F ) }

Figure 3.2.: Proof outline for partial correctness of
Alg. 2.1 on p. 30.
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3.1. Proof of the Basic BR

We are now fit to construct a proof outline for partial correctness of the
basic BR. The proof outline given in Fig. 3.2 allows us to state Propo-
sition 3.7. At the top of the figure, the abbreviations InvVW (V,W ) and
InvF (V,W ) are listed. As mentioned before, most steps in the proof
outline work mechanically by forward elimination of conjunctions and
backward substitution. The effect of statement x := select(W ) is defined
in Lemma 3.6. For partial correctness, precondition true would suffice,
but as we intent to combine the partial correctness proof with a termina-
tion proof to gain a total correctness proof by decomposition (Def. 2.23
on p. 46), we have to anticipate a precondition that matches the one for
termination. Thus, the precondition demands the set of final states F to
be finite, as is needed for termination.

Proposition 3.7. Consider (S,→,�) a WSTS with decidable � and
effective pred-basis. If the basic BR is applied on a finite set F ⊆ S and
it terminates, its result V is finite and ↑V = pre∗(↑F ) holds. Formally,

`PW { |F | ∈ N } Basic BR { |V | ∈ N ∧ ↑V = pre∗(↑F ) } .

Proof. By the proof outline in Fig. 3.2 and Lemma 2.12 on p. 48 (proof
outlines imply correctness theorems).

3.1.2. Termination

To answer the question whether the basic backward reachability analy-
sis terminates, we have to construct a bound expression t which takes
values in an irreflexive partial order and which decreases with each loop
iteration. For the expression t and the irreflexive partial order, we choose
t = (V,W ) ∈ S × S and the following lexicographical order.

Definition 3.1 (Lexicographical Order for Termination of the
Basic BR). Given a QO �, we define the lexicographical order >bbrlex on
pairs of finite sets s.t. the upward-closures of the first components are
in proper subset relation or they are equal and the second components
are in proper subset relation. Formally, for pairs of finite sets (V,W ) and
(V ′,W ′), we define

(V,W ) >bbrlex (V ′,W ′) :⇔ ↑V ⊂ ↑V ′ ∨ (↑V = ↑V ′ ∧W ⊃W ′) . ♦
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While it may seem contra-intuitive that (V,W ) >bbrlex (V ′,W ′) if ↑V ′
is larger than ↑V (and thus V ⊂ V ′), this property is exactly what is
needed to keep the axiomatic Hoare-style proof for termination simple.
It spares us from computing a precise integer bound on the number of
loop iterations.
Note that the subset relation ⊆ is a partial order and ⊂ is an irreflexive
partial order. The argument we want to make is that t = (V,W ) decreases
with each iteration of Alg. 2.1 on p. 30 w.r.t. >bbrlex and that >bbrlex is
well-founded on pairs of finite sets, i.e. there are no infinite decreasing
sequences, as required for total correctness of loops (Def. 2.25 on p. 47).
We formalize this fact in the following lemma.

Lemma 3.8 (Well-Foundedness of >bbrlex ). The lexicographical order
for termination of Alg. 2.1 on p. 30, >bbrlex , is well-founded on pairs of
finite sets.

Proof. We prove the well-foundedness of >bbrlex on pairs of finite sets in
two steps:

1. The proper superset relation ⊃ is well-founded on finite sets as
there exists no infinite strictly decreasing sequence X1 ⊃ X2 ⊃ · · ·
of finite sets X1, X2, . . ..

2. From Lemma 2.9 on p. 27 (stabilization) we know that every as-
cending chain of upward-closed sets eventually stabilizes, or, phra-
sed differently, there exists no strictly increasing sequence
↑X1 ⊂ ↑X2 ⊂ · · · of upward-closed sets ↑X1, ↑X2, . . . (cf. proof of
Lemma 2.9 on p. 27). Hence, the subset relation is well-founded on
upward-closed sets.
The lexicographical order >bbrlex uses the subset relation on the
upward-closure operator of the first component of the pair of fi-
nite sets.

As both relations used by >bbrlex are well-founded on the sets they are
applied to, the lexicographical order itself is well-founded on pairs of
finite sets.
This concludes the proof.
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With the lexicographical order at hand, we can turn to the proof outline
for total correctness in Fig. 3.3 and summarize the termination of the
algorithm in a lemma following below. But first, we take a detailed look
at the outline. Again, the effect of statement x := select(W ) is defined
in Lemma 3.6 and most steps in the proof outline work mechanically by
forward elimination of conjunctions and backward substitution. We use
the abbreviation

Invfin := |V | ∈ N ∧ |W | ∈ N

to shorten the assertions. The precondition states that the set of final
states F has to be finite. It follows, that both sets V (= ∅) and W (= F )
are finite at loop entry. Finiteness of these two sets is the invariant for
our termination proof. It is preserved as the union-operations are applied
on finite sets only—note that pb(x) is finite (cf. Def. 2.11 on p. 29).
The pair (V,W ) is the term whose value decreases with each iteration
w.r.t. the particular lexicographical order <bbrlex , which is just the inverse
of >bbrlex . The first assertion within the loop body contains the conjunct
(V,W ) = α, where α is a variable that is used to store the current value
of (V,W ) in order to compare the values of (V,W ) at the beginning and
at the end of each iteration. Over the statements in the loop body, the
relation between α and the pair (V,W ), which changes by the various
assignments, is kept visible by application of backward substitution.
We explore the main implication step in the proof outline for termination
of the algorithm in the following lemma.
Lemma 3.9. The implication between line 20 and line 22 in the proof
outline of Fig. 3.3 for termination of the basic BR holds.

Proof. Assume the assertion in line 20,

x ∈ V ∧ x /∈ ↑(V \ {x } ) ∧ Invfin ∧ (V \ {x } , (W ∪ {x } ) \ pb(x)) = α ,

holds. We need to show that

Invfin ∧ (V,W ) <bbrlex α

follows.
As the satisfaction of Invfin is preserved, we concentrate on (V,W ) <bbrlex
α. Here, we compare the values of V andW at the beginning of the loop,
α, with the updated sets (V,W ).
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The question is: “Does (V,W ) <bbrlex (V \ {x } , (W ∪ {x } )\pb(x)) hold?”
Observe, that for any set X and any state y, it holds that if y /∈ ↑X it
follows that ↑(X ∪ { y } ) ⊃ ↑X as y is in ↑(X ∪ { y } ) by the definition
of the upward-closure operator (Def. 2.7 on p. 20).
From x /∈ ↑(V \ {x } ) and the above statement ↑V ⊃ ↑(V \ {x } ) follows
if x ∈ V . The assumption already states x ∈ V and we can conclude that

↑V ⊃ ↑(V \ {x } )

holds indeed.
By definition of the order <bbrlex (Def. 3.1), the fact that ↑V is a proper
superset of ↑(V \ {x } ) suffices for the question to be answered positively.
The condition

(V,W ) <bbrlex (V \ {x } , (W ∪ {x } ) \ pb(x))

is satisfied and the implication holds.
This concludes the proof.

The second implication that does not stem from mechanical backward
substitution or elimination of conjuncts is between line 24 and line 25.
We prove the implication in the following lemma.

Lemma 3.10. The implication between line 24 and line 25 in the proof
outline of Fig. 3.3 for termination of the basic BR holds.

Proof. We need to show the implication

x ∈ ↑V ∧x /∈W∧Invfin∧(V,W∪{x } ) = α ⇒ Invfin∧(V,W ) <bbrlex α .

We assume that the implication’s left-hand side holds and show that the
right-hand side follows.
Obviously, conjunct Invfin holds. As intent to compare α = (V,W∪ {x } )
with (V,W ), we observe that V is unchanged. By Def. 3.1 of <bbrlex we
have to prove that W ⊂ W ∪ {x } holds. This simply follows from the
assumption x /∈W .
Therefore we conclude (V,W ) <bbrlex α and the implication holds.
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3.1. Proof of the Basic BR

// Invfin := |V | ∈ N ∧ |W | ∈ N
1 { |F | ∈ N }
2 W := F ;
3 { |W | ∈ N }
4 V := ∅;
5 { |V | ∈ N ∧ |W | ∈ N }
6 { inv: Invfin } {bd: (V,W ) }
7 while W 6= ∅ do
8 α := (V,W );
9 {W 6= ∅ ∧ Invfin ∧ (V,W ) = α }

10 x := select(W );
11 {x ∈W ∧ Invfin ∧ (V,W ) = α }
12 W := W \ {x } ;
13 {x /∈W ∧ Invfin ∧ (V,W ∪ {x } ) = α }
14 if x /∈ ↑V then
15 {x /∈ ↑V ∧ x /∈W ∧ Invfin ∧ (V,W ∪ {x } ) = α }
16 V := V ∪ {x } ;
17 {x ∈ V ∧ x /∈ ↑(V \ {x } ) ∧ Invfin
18 ∧ (V \ {x } ,W ∪ {x } ) = α }
19 W := W ∪ pb(x) /* Note: pb(x) is finite. */
20 {x ∈ V ∧ x /∈ ↑(V \ {x } ) ∧ Invfin
21 ∧ (V \ {x } , (W ∪ {x } ) \ pb(x)) = α }

/* See Lemma 3.9. */
22

{
Invfin ∧ (V,W ) <bbrlex α

}

23 else
24 {x ∈ ↑V ∧ x /∈W ∧ Invfin ∧ (V,W ∪ {x } ) = α }

/* See Lemma 3.10. */
25

{
Invfin ∧ (V,W ) <bbrlex α

}

26 skip
27

{
Invfin ∧ (V,W ) <bbrlex α

}

28 fi
29

{
Invfin ∧ (V,W ) <bbrlex α

}

30 od
31 {W = ∅ ∧ Invfin }
32 { true }

Figure 3.3.: Proof outline for termination of
Alg. 2.1 on p. 30.
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In Fig. 3.3 we present the full proof outline for termination of the basic
BR which is used in the following proposition. In the comment at the
top of the figure, the abbreviation Invfin(V,W ) is listed.
Proposition 3.11. Given a WSTS (S,→,�) with decidable � and ef-
fective pred-basis, the basic BR terminates for any finite set F ⊆ S.
Formally,

`TW { |F | ∈ N } Basic BR { true } .

Proof. By the proof outline in Fig. 3.3 and Lemma 2.12 on p. 48 (proof
outlines imply correctness theorems).

3.1.3. Total Correctness

The decomposition lemma allows to combine both partial correctness
and termination to deduce total correctness of the basic backward reach-
ability analysis.
Theorem 3.12. Consider a WSTS (S,→,�) with decidable � and ef-
fective pred-basis. When executed with a finite set F ∈ S, the basic BR
as shown in Alg. 2.1 on p. 30 terminates with finite result set V s.t. the
upward-closure of V is the set of predecessors of the upward-closure of
F , i.e. ↑V = pre∗(↑F ). Formally,

|=tot { |F | ∈ N } Basic BR { |V | ∈ N ∧ ↑V = pre∗(↑F ) } .

Proof. The total correctness of the basic backward reachability analysis
(Alg. 2.1 on p. 30) follows from Proposition 3.7 (partial correctness of the
basic BR) and Proposition 3.11 (termination of the basic BR), together
with Def. 2.23 on p. 46 (decomposition rule).

For any WSTS and finite set of initial states I and any finite set of final
states F , the basic BR delivers a finite result set V , s.t. ↑V = pre∗(↑F ).
By testing for each initial state y in I successively, whether V contains
some state x with x � y, we answer the corresponding coverability prob-
lem I ∩ pre∗(↑F ) ?= ∅.
The basic backward reachability analysis is the foundation of our frame-
work.
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3.2. Extending the Basic BR

3.2. Extending the Basic BR
In this section, we work towards our algorithmic framework by gradually
extending the basic backward reachability analysis. The full framework
algorithm together with a description of how to instantiate it will be
introduced in the following section. We will not prove the claims we make
about the intermediate algorithms, but we will show total correctness of
the framework algorithm later in this chapter.

Extension I: Minimization
The first extension exploits the fact that if state x is covered by state y,
i.e. x � y, first selecting x fromW in a loop iteration and then y fromW
in a later iteration yields the same result: since x is already in V , state
y obviously is in ↑V and therefore no further update on V and W is
performed. By leaving out y the algorithm’s performance benefits both
in terms of memory consumption and runtime—y does not have to be
stored and there is at least one less loop iteration.
The idea is to simply make W a minimal basis, i.e. it only contains mini-
mal elements w.r.t. �. Furthermore, the same principle can be applied to
V , as we are only interested in the upward-closure of V and the upward-
closure of any basis of a UCS is the UCS itself, i.e. ↑ basis(↑V ) = ↑V .
Since set V is only accessed in the sense of a (finite) basis of a UCS—for
example in the test x ∈ ↑V—, we can make it aminimal basis. Therefore,
we apply the same minimization mechanism as for set W .
In Alg. 3.1, we employ a function minimize(·) that simply reduces a finite
set of states to a finite set of minimal states w.r.t. �.

Extension II: Disjoint ↑V and W

During the analysis with Alg. 3.1, whenever a predecessor basis is added
to W which has a non-empty intersection with ↑V superfluous loop iter-
ations may occur. Consider states x′ and x ∈ ↑V ∩ pb(x′). Clearly, when
x is selected and removed from W no further update on V and W is
executed.
The second extension, shown in Alg. 3.2, elaborates on this fact and
avoids the addition of such states to W . Therefore, it subtracts ↑V from
the predecessor basis that is added to W . Due to the property that W
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3. Algorithmic Framework

Input : WSTS S = (S,→,�), a finite set of states F ⊆ S
Output : A finite set V ⊆ S, s.t. ↑V = pre∗(↑F )
Comment: Given a finite base F , the algorithm computes a

finite basis V of backward reachable states.
1 W := minimize(F );
2 V := ∅;
3 while W 6= ∅ do
4 x := select(W );
5 W := W \ {x } ;
6 if x /∈ ↑V then
7 V := minimize(V ∪ {x } );
8 W := minimize(W ∪ pb(x))
9 fi

10 od
Algorithm 3.1: BR Extension I: Minimization.

contains only minimal states w.r.t. �, the removal of some x from W
leaves W and ↑(V ∪ {x } ) disjoint. Therefore, W and ↑V are disjoint
during the whole computation and the condition x /∈ ↑V that was used
in the basic BR can be omitted.

Input : WSTS S = (S,→,�), a finite sets of states F ⊆ S
Output : A finite set V ⊆ S, s.t. ↑V = pre∗(↑F )
Comment: Given a finite base F , the algorithm computes a

finite basis V of backward reachable states.
1 W := minimize(F );
2 V := ∅;
3 while W 6= ∅ do
4 x := select(W );
5 W := W \ {x } ;
6 V := minimize(V ∪ {x } );
7 W := minimize(W ∪ (pb(x) \ ↑V ))
8 od

Algorithm 3.2: BR Extension II: Disjoint ↑V and W .
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In Example 2.5 on p. 28 we said that in the context of example Petri net
Nex , predecessors of mΩ that cover mΩ are superfluous for the search
algorithm and can safely be ignored. This follows from the argument
for this extension, as state mΩ is added to V prior to the addition of
pb(mΩ) \ ↑V to set W . Therefore, all predecessor states that cover mΩ
are left out from being added to W and they might as well be left out in
the computation of pb(mΩ).

Extension III: Shortcut

The third extension of the basic BR is presented in Alg. 3.3. It differs
from the previous algorithm by introduction of a shortcut, terminating
the loop as soon as a state in the intersection of pre∗(↑F ) and ↓ I is
found. The rationale is that the existence of such a state x suffices to
deduce that some initial state y with y � x is in I ∩ pre∗(↑F ). As this
intersection is non-empty, the coverability problem is answered positively.
The shortcut works as follows. After selection and removal of a state x
from W , a test x ∈ ↓ I is performed. If the result is positive, set V is
set to only contain x and set W is emptied. With W being the empty
set, the loop condition is violated and the algorithm terminates. In this
case, from the result V , the set of initial states from which ↑F can be
reached can be calculated to be ↑V ∩ I. If the shortcut is not taken, the
algorithm works just as Alg. 3.2.

Extension IV: Explicit Inner Loop

Most of the set operations in the previous algorithms have operands
consisting of an arbitrary set and a singleton, but the statement with
which elements are added to W does not have a singleton operand: W ∪
(pb(x) \ ↑V ) (earlier W ∪ pb(x)). In Alg. 3.4 we exchange this operation
by an explicit loop that checks for each state in pb(x) if it does not belong
to ↑V and, in that case, adds it to W .
The operation W := minimize(W ∪ (pb(x) \ ↑V )) is written explicitly
with the use of a foreach loop. In the context of while programs (Def. 2.19
on p. 43) the loop

foreach x ∈ X do S od
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Input : WSTS S = (S,→,�), finite sets of states I, F ⊆ S
Output : A finite set V ⊆ S as a solution to Cov.
Comment: Given finite bases I and F , if I ↪−→ F , then the

algorithm computes V , s.t. V ∩ ↓ I 6= ∅, else the
algorithm computes a finite basis V of backward
reachable states.

1 W := minimize(F );
2 V := ∅;
3 while W 6= ∅ do
4 x := select(W );
5 W := W \ {x } ;
6 if x ∈ ↓ I then
7 V := {x } ;
8 W := ∅
9 else

10 V := minimize(V ∪ {x } );
11 W := minimize(W ∪ (pb(x) \ ↑V ))
12 fi
13 od

Algorithm 3.3: BR Extension III: Shortcut.

is an abbreviation for

Y := X; while Y 6= ∅ do let x ∈ Y ; Y := Y \ {x } ; S od ,

where the variable Y 6= X does neither occur in S nor in the rest of the
program. The nondeterministic assignment statement let x ∈ Y means
that x takes any value in Y which closely corresponds to what select(Y )
does. However, in our framework, the selection function will be allowed to
guide the analysis by selecting specific states fromW , whereas let x ∈ Y
is not used to guide the analysis.

Definition 3.2 (Nondeterministic Assignment). Given a non-emp-
ty set X, the nondeterministic assignment statement let x ∈ X has the
effect of x nondeterministically taking some value in X, i.e. x ∈ X holds
after execution of the statement. ♦
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Input : WSTS S = (S,→,�), finite sets of states I, F ⊆ S
Output : A finite set V ⊆ S as a solution to Cov.
Comment: Given finite bases I and F , if I ↪−→ F , then the

algorithm computes V , s.t. V ∩ ↓ I 6= ∅, else the
algorithm computes a finite basis V of backward
reachable states.

1 W := minimize(F );
2 V := ∅;
3 while W 6= ∅ do
4 x := select(W );
5 W := W \ {x } ;
6 if x ∈ ↓ I then
7 V := {x } ;
8 W := ∅
9 else

10 V := minimize(V ∪ {x } );
11 foreach y ∈ pb(x) do
12 if y /∈ ↑V then
13 W := minimize(W ∪ { y } )
14 fi
15 od
16 fi
17 od

Algorithm 3.4: BR Extension IV: Explicit Inner Loop.

The net effect of the explicit loop for adding elements pb(x) \ ↑V to
W and minimizing W is the same as performing the one higher-level
set operation and minimizing W . The algorithm’s net behaviour is not
altered by this change.
A benefit of replacing the higher-level set operation with this explicit
inner loop is, however, that for an instantiation of the algorithmic frame-
work, only a small set of simple operations on data structures has to be
implemented. In fact, with the set of general data structures we provide,
it involves only very little implementation effort to get efficient opera-
tions on upward-closed sets for our framework algorithm (see Ch. 6 on
p. 160).
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Extension V: Optimized Predecessors
For the next extension, observe that each of the previous algorithms per-
formed a single step backward in every iteration by use of the predecessor
basis pb. However, the result set V is either a finite basis of the predeces-
sors of ↑F or it contains states that are covered by initial states. Thus,
the limitation to the computation of one-step predecessors during the
analysis may be loosened.

Input : WSTS S = (S,→,�), finite sets of states I, F ⊆ S
Output : A finite set V ⊆ S as a solution to Cov.
Comment: Given finite bases I and F , if I ↪−→ F , then the

algorithm computes V , s.t. V ∩ ↓ I 6= ∅, else the
algorithm computes a finite basis V of backward
reachable states.

1 W := minimize(F );
2 V := ∅;
3 while W 6= ∅ do
4 x := select(W );
5 W := W \ {x } ;
6 if x ∈ ↓ I then
7 V := {x } ;
8 W := ∅
9 else

10 V := minimize(V ∪ {x } );
11 foreach y ∈ opb(x) do
12 if y /∈ ↑V then
13 W := minimize(W ∪ { y } )
14 fi
15 od
16 fi
17 od

Algorithm 3.5: BR Extension V: Optimized Predecessors.

We relax the predecessor computation by use of the predecessor basis
function pb to a function opb which returns a basis of optimized prede-
cessors. In Sect. 3.4, we discuss the properties of opb in more detail, but
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for now, we give a rough intuition for the function. Consider a finite set
of states I and some state x, then an optimized predecessor basis is a set
with

1. the optimized predecessors of x are proper predecessors of ↑x,
i.e. set opb(x) is a finite subset of pre+(↑x),

2. if x is coverable from I via a non-empty transition sequence, then
the optimized predecessors are coverable from I, i.e. x /∈ ↓ I ∧ I ↪−→
x, then I ↪−→ opb(x), and

3. if x is not coverable from I, then the optimized predecessors are
not coverable from I, i.e. I 6↪−→ x, then I 6↪−→ opb(x).

The idea is that in the computation of predecessors of state x, the al-
gorithm is allowed to take leaps over portions of the search space if the
resulting answer to the coverability problem remains unaffected.
The difference between the previous extension and the one presented in
Alg. 3.5 simply is the substitution of opb for pb. In Sect. 3.4 we will learn
that property 3 can be omitted in the context where witness traces are
available.

Extension VI: Witness Traces
This extension lifts the algorithm from answers to the Cov problem
to the LCov problem, i.e. if F is coverable from I, then a transition
sequence σ ∈ L∗ has to be presented with I σ

↪−→ F . The ability to store a
transition sequence is accomplished by the introduction of a function T :
S −→ L∗ which is used to keep track of traces from each explored state
to some final state in ↑F and a witness function wit that delivers traces
in correspondence with the optimized predecessor function, s.t. witx(y)
returns a covering trace from y to x, i.e. y

witx(y)
↪−−−−→ x.

In Alg. 3.6 the function T is initialized to return ⊥ for all states, which
represents “no trace”. From a programming perspective, function T re-
turns ⊥ for any state where it is not instructed to return a proper trace.
The next step sets function T to return the empty trace ε for all states in
W which is the minimal base of final states ↑F at that time—of course,
for any final state x ∈ ↑F we expect x ε

↪−→ F to hold. We choose the
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semantics of an assignment to function T to be fixed by the following
definition. It is closely related to the notion of substitutions in [ABO09].
Definition 3.3 (Function Assignment). Given a variable T which
represents a function T : X −→ Y , we denote an update to the function
by

T (Z) := y

where Z is an arbitrary subset of the (potentially infinite) domain X
and y is an element of target set Y . The assignment denotes a function
T ′ : X −→ Y with

T ′(x) =
{
y if x ∈ Z
T (X) otherwise

.

If set Z is a singleton, we omit the curly braces and write T (z) := y
instead of T ( { z } ) := y. ♦

Remark 3.1 (Operational View on the Function Assignment).
We employ an operational perspective on the notion of function assign-
ments. In general, an assignment T (Z) := y takes a number of compu-
tation steps proportional to the cardinality of the set Z. In particular,
if Z is infinite, the assignment would take an infinite number of steps.
There is one exception: if Z coincides with the function’s domain X,
the number of steps is still finite. Technically, we consider the function
to have a default value and a distinct mapping from a finite subset Z
of the domain to the codomain. Every element not in the finite subset,
i.e. each element in X \Z, is mapped to the default value. If the function
is updated for the whole domain, the default value is updated and the
mappings for the finite subset Z are removed. In case the function is
updated on a finite set, the mappings are updated accordingly but the
default value remains unchanged. ♦

After the test that x /∈ ↓ I, the algorithm proceeds as before until all
optimized predecessors are added to the search. As soon as a new state
y, a predecessor of x, is added to set W , we have to update the function
T to return a trace from y to the final states s.t. y

T (y)
↪−−−→ F holds.

Since we introduced the witness function with y
witx(y)
↪−−−−→ x and we already

have a trace T (x) from x to the final states, we can compose the two
transition sequences and update function T to return witx(y) · T (x) for
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state y. Notice that the trace from y to x is composed before T (x) as
search proceeds backwards
At the end of the computation, function T holds traces to the final states
for every state in V , thus answering the LCov problem.
The difference between T and the witx function lies in their purpose and
scope: When instantiating the algorithm, functions opb and wit have to
be implemented in close correspondence, s.t. the witness function gives
traces to some state from its optimized predecessor. Usually, the witness
function comes as a byproduct of the optimized predecessor function and
is computed in a—so to say—local scope. In contrast, function variable
T acts as a memory where the results of the various calls to the witness
function are combined to form longer traces—from the perspective of the
whole algorithm, this happens in a global scope.

Extension VII: Drop Obsolete Witness Traces

With the previous algorithm, we observe that for any state that was
added to W , a trace to the final states is stored and never removed. At
the end, T contains traces for every state that was explored—which may
be even more states than are stored in V as it is a minimal basis. While
this works, it certainly uses more memory than necessary. Upon closer
inspection, we only need to store traces for states that are in W and—in
one special case—for the one state that is added to V if a F is found to
be coverable from I.
We therefore introduce some amount of cleaning up by “dropping” values
from T when they are no longer needed. Cleaning up the trace for some
state x is accommodated by assignments τ := T (x);T (x) := ⊥ which
resets the function to return ⊥ for state x whenever state x is removed
from W . We keep the trace in a temporary variable τ as we may need
it for composition of traces of predecessors that are added to W . For
predecessor y of x, the trace then is witx(y) · τ . And while we are at it,
we may as well limit the assignment T (y) := witx(y) · τ to those cases
where there is no shorter trace currently stored for y, i.e. if T (y) = ⊥ or
|T (y)| > |witx(y) · τ |.
With this final extension of the procedure, we arrive at our algorithmic
framework.
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Input : WSLTS S = (S,L,→,�), finite sets of states
I, F ⊆ S

Output : A finite set V ⊆ S and a function
T : S −→ L∗ ∪ {⊥} , a solution to LCov.

Comment: Given finite bases I and F , if I ↪−→ F , then the
algorithm computes ∅ 6= V ⊆ ↓ I and T
s.t. ∀x ∈ V : x

T (x)
↪−−−→ F , else the algorithm computes

a finite base V of backward reachable states.
1 W := minimize(F );
2 T (S) := ⊥;
3 T (W ) := ε;
4 V := ∅;
5 while W 6= ∅ do
6 x := select(W );
7 W := W \ {x } ;
8 if x ∈ ↓ I then
9 V := {x } ;

10 W := ∅
11 else
12 V := minimize(V ∪ {x } );
13 foreach y ∈ opb(x) do
14 if y /∈ ↑V then
15 W := minimize(W ∪ { y } );
16 T (y) := witx(y) · T (x)
17 fi
18 od
19 fi
20 od

Algorithm 3.6: BR Extension VI: Witness Traces.
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3.3. Framework
Our algorithmic framework for backward reachability analysis is depicted
in Alg. 3.7. It is parametrized in three functions.

(1) The Function select picks an element to explore and allows for guided
search.

(2) The optimized predecessor function opb constructs the search tree.

(3) It comes together with a witness function wit that holds the se-
quences of labels connecting states to their optimized predecessors.

Therefore, the algorithmic framework is called back(select, opb,wit). We
shall refer to the pair (opb,wit) as a search space construction (SSC),
provided it satisfies the constraints discussed in Sect. 3.4.
An SSC combined with a selection function select is also called an ade-
quate instantiation of back(select, opb,wit). We will show that it forms a
decision procedure for coverability in WSTSs.
Definition 3.4 (Minimization Function). The minimization func-
tion reduces a basis X of a UCS to a minimal basis s.t. minimize(X) is
a subset of X and that ↑minimize(X) = ↑X holds. ♦

Algorithm back(select, opb,wit) (Alg. 3.7) uses three main variables: fi-
nite sets of states V , W , and the function T that associates states with
transition sequences (or ⊥). Technically, the T function can be imple-
mented in several ways, for example as a hash map or by augmenting
states with a corresponding trace, while finite bases V and W have to
allow for certain efficient operations which we will discuss in Ch. 6 on
p. 160, where we present general abstract data structures that are easy
to use when instantiating the framework.
We use the three main variables in the following way. Set V is the basis
of the currently explored part of the search space backward reachable
from ↑F . Set W is the basis of certain predecessor states of ↑V that
have to be explored. Function T maps a state y to either ⊥ or to a
sequence σ s.t. y σ

↪−→ F – for states in W , function T does not map to ⊥
but a sequence. So if there exists a path from ↓ I to ↑F , the algorithm
terminates in a state where x ∈ ↓ I and sequence σ = T (x) with x σ

↪−→ F
is determined. The algorithm checks for hitting ↓ I rather than I. The
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Input : WSLTS S = (S,L,→,�), finite sets of states
I, F ⊆ S

Output : A finite set V ⊆ S and a function
T : S −→ L∗ ∪ {⊥} , a solution to LCov.

Comment: The algorithm computes set V and function T
s.t. ∀x ∈ V ∩ ↓ I : x

T (x)
↪−−−→ F . The set V is

non-empty if and only if I ↪−→ F .
1 W := minimize(F );
2 T (S) := ⊥;
3 T (W ) := ε;
4 V := ∅;
5 while W 6= ∅ do
6 x := select(W );
7 τ := T (x);
8 W := W \ {x } ;
9 T (x) := ⊥;

10 if x ∈ ↓ I then
11 V := {x } ;
12 T (W ) := ⊥;
13 T (x) := τ ;
14 W := ∅
15 else
16 V := minimize(V ∪ {x } );
17 foreach y ∈ opb(x) do
18 if y /∈ ↑V then
19 W := minimize(W ∪ { y } );
20 σ := witx(y) · τ ;
21 if T (y) = ⊥ ∨ |T (y)| > |σ| then
22 T (y) := σ
23 fi
24 fi
25 od
26 fi
27 od
Algorithm 3.7: Algorithmic Framework back(select, opb,wit).
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simulation property of ≤ and I being a subset of ↓ I guarantees that ↑F
is reachable from I if and only if it is reachable from ↓ I.
The algorithm proceeds as follows. In each iteration of the main loop, a
state x is selected and removed from the basisW of states to be explored.
For that state, the sequence returned from function T is stored in τ and
T is updated to map x to ⊥ in order to reduce the memory footprint—
a definition of the semantics of an assignment to function T can be
found in Def. 3.3. Sequence τ leads from x to ↑F . If x is covered by
an initial state z, a solution (z, τ) to the coverability has been found
and the algorithm terminates. Otherwise, x is processed: ↑x is added to
the set of processed states, ↑V , and the optimized predecessors returned
by opb(x) are handled. Each optimized predecessor y is checked to be
new in the sense that it does not lie in the processed states ↑V . This
is a deviation from the basic approach to ensure that ↑V and W are
kept disjoint (the main loop satisfies invariant ↑V ∩W = ∅)—to reduce
the memory footprint and give a quick argument for termination as the
size of ↑V increases with every iteration. Predecessor y is then added to
the set of states to be processed and function T is updated to store the
shortest currently known trace from y to ↑F . If the algorithm terminates
with V ∩ ↓ I = ∅, the solution to the coverability problem is ⊥ as there
is no path from ↓ I to ↑F .
In the upcoming section, we take a closer look at the properties of search
space constructions.

3.4. Search Space Constructions

We present the concept of search space construction (SSC) for the back-
ward coverability analysis on WSTSs. The formulation is general enough
to capture invariant-based pruning [DRV01] (Sect. 5.2 on p. 143) and
partial-order reduction [AJKP98] (Sect. 5.3 on p. 147) as instantiations.
We also propose a new search space construction, called backward accel-
eration (Sect. 5.1 on p. 131), that is based on path-learning. It again fits
the new framework.
To build SSCs we need the notion a labelling function:
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Definition 3.5 (Labelling Function). By lbly(x) we denote the la-
belling function, delivering a label of a transition step from x to ↑ y:

lbly(x) ∈
{
` ∈ L | x `

↪−→ y

}
. ♦

Technically, a search space construction for back(select, opb,wit) is a pair
(opb,wit) of functions, satisfying the conditions we describe in the up-
coming sections. As we will argue, already the pair (pb, lbl) is an SSC.
Adequate instantiations of SSCs lead to decision procedures for cover-
ability. More precisely, the instantiation is a decider that additionally
computes a witness path in case coverability holds. In Ch. 5 on p. 130
we take a look at instances of SSCs.

3.4.1. Optimized Predecessors and Distance Reduction
The optimized predecessor function opb takes as input a state x and
returns a finite set of states opb(x). The idea is to replace the predecessor
basis construction pb(x) by opb(x). For the change to be correct, we
require the optimized predecessor computation to be finite and distance
reducing. Before we turn to the formal definition of opb, we introduce
our distance function.
Function dist maps two sets of states to the length of the shortest path
from some element in the first set to some element in the second. The
function returns ∞ if no such path exists.
Definition 3.6 (Distance Function). The distance function is the
function

dist : P(S)× P(S) −→ N ∪ {∞} s.t.

(X,Y ) 7→ min(
{
k ∈ N | X →k Y

}
∪ {∞} ) ,

where X →k Y denotes the fact that there is a transition sequence of
length k from a state in X to a state in Y . ♦

Corollary 3.13 (Some Properties of the Distance Function).

1. The distance between some set X and the empty set is ∞ as
there exists no transition sequence connecting the two: dist(X, ∅) =
dist(∅, X) =∞.
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2. For any two sets I, F , if I contains covering predecessors of F ,
i.e. I ↪−→ F , then and only then the distance between I and ↑F is
finite, s.t. dist(I, ↑F ) 6=∞ holds.

3. Due to the transition relation being upward-compatible with the
WQO (cf. Def. 2.6 on p. 19), I ↪−→ F is also equivalent to
dist(↓ I, ↑F ) 6=∞.

We use this corollary in the correctness proof of our framework.
Definition 3.7 (Optimized Predecessor Function). Given a WSTS
(S,→,�), a finite I ⊆ S and a state x ∈ S, an optimized predecessor
function opb satisfies the following two constraints.

1. Finiteness:

| opb(x)| ∈ N (Fin)

2. Distance Reduction:

0 6= dist(↓ I, ↑x) 6=∞ ⇒ dist(↓ I, ↑ opb(x)) < dist(↓ I, ↑x)
(Dist)

♦

The reader should note that during the development of an SSC, the
constraint Dist can often be checked locally, by comparing x and opb(x).
Also note that for sets X,Y with X ⊆ Y and some set Z, dist(Z, Y ) ≤
dist(Z,X) is implied due to � being a simulation relation. We formalize
this property in the following corollary.
Corollary 3.14 (Inverse Montonicity of Distance). The distance
does not increase if the sets under consideration only grow. Formally, for
any sets X,Y, Z with X ⊆ Y , the relations

1. dist(Z, Y ) ≤ dist(Z,X) and

2. dist(Y,Z) ≤ dist(X,Z)

hold. ♦
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Finally, consider the classical predecessor basis construction, i.e. when
opb is pb. Already by definition of predecessors, if ↓ I is backward reach-
able from ↑x, then ↑ opb(x) is closer to the downward-closure of initial
states ↓ I than ↑x is.

3.4.2. Witness Traces and Search Strategies

While the major effort for instantiating the framework lies in an adequate
implementation of the optimized predecessor function, the constraints of
the other two procedures wit and select are potentially more simple to
comply to. This holds at least from our point of view, where we assume
the use of the framework’s reference implementation that we present in
Sect. 7.1 on p. 192.

Witness Traces. To be useful, a search space construction should also
preserve witness paths that lead to a covering state. To construct such
paths we need a relation between opb(x) and x. It is the task of the
witness function wit to establish this link. Given a state x ∈ S, it pro-
vides a function witx : opb(x) −→ L∗ that explains how the optimized
predecessors reach x.

Definition 3.8 (Witness Function). Given a WSLTS (S,L,→,�), a
finite set I ⊆ S, a state x ∈ S and an optimized predecessor y of x, a
witness function witx computes a path witx(y) ∈ L∗ that leads from y
to x. Formally, wit has to obey the following constraint:

for all y ∈ opb(x) we have y
witx(y)
↪−−−−→ x . (Wit)

♦

For the trivial opb implementation, pb, the matching implementation of
wit is lbl.

Definition 3.9 (Trivial Witness Function). Consider some WSLTS
(S,L,→,�), a finite set I ⊆ S, a state x ∈ S and a basis pb(x) of one-step
predecessor of x.
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For any one-step predecessor y ∈ pb(x), the trivial witness function lblx
returns a transition label `, s.t. there is a transition from y to x with
label `. Formally, lblx : S −→ L with

for all y ∈ pb(x) we have y
lblx(y)
↪−−−−→ x .

Search Strategies. The only requirement for the selection function is
that it returns a state from the finite basis of states W , i.e. select(W ) ∈
W . However, choosing states from W in a certain order can be very
beneficial: If F is coverable from I, selecting the next state on the shortest
path (backwards) from ↑F to ↓ I in each loop iteration doubtlessly leads
to a smaller number of iterations (in general) than performing a complete
breadth-first search or, even worse, first selecting all those states from
W that do not lie on a path to the initial states. Also in case that F is
not coverable from I, there may be states which lead to a smaller search
space if they are selected earlier than other states.
The loose requirement for the selection function allows for implementa-
tion of search strategies via guided search. We discuss varieties of search
strategies tailored for specific models as well as general strategies in
Sect. 5.5 on p. 155.

3.5. Arguments for Termination and
Correctness

Before we give a formal proof that the algorithmic framework solves
LCov for every adequate instantiation of select, opb, and wit in the next
chapter, we discuss its correctness on a higher, more intuitive level.

Termination. Leaving out the case where the shortcut x ∈ ↓ I is taken,
termination is guaranteed as UCS ↑V is enlarged in every iteration. This
converges in a finite number of steps and only finitely many iterations
take place due to the stabilization lemma (Lemma 2.9 on p. 27). If the
shortcut is taken, then W is explicitly set to the empty set and the loop
terminates anyway.
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Partial Correctness. We distinguish two cases. In case ↑F is reachable
from ↓ I, there is some x ∈ F with dist(↓ I, ↑x) <∞. From termination it
follows that some element y ≤ x will be selected fromW . By requirement
Dist and ↑x ⊆ ↑ y, we conclude dist(↓ I, ↑ opb(y)) < dist(↓ I, ↑ y) ≤
dist(↓ I, ↑x). We iterate the argument and derive a decreasing chain of
distances in N. By well-foundedness of (N,≤), we eventually arrive in ↓ I.
For the reverse direction, assume ↑F is not reachable from ↓ I. The reader
may be suspicious since we only pose a requirement on opb(x) in case
↓ I is backward reachable from x. The reason Dist is sufficient is in the
second constraint Wit. It ensures optimized predecessors indeed yield
a path to ↑F . So if they hit ↓ I, we would be sure about reachability.
Hence, in case ↑F is not reachable from ↓ I, the optimized predecessors
will not hit ↓ I.
In detail, when the algorithm terminates, set V and function T satisfy

(dist(↓ I, ↑F ) 6=∞⇔ ↑V ∩ ↓ I 6= ∅)

∧ ∀x ∈ V ∩ ↓ I : x
T (x)
↪−−−→ F ,

expressing that V contains a state in ↓ I if and only if it is reachable
from ↑F and T then provides a witness path.
To generate a solution to a coverability problem from x ∈ V ∩ ↓ I, some
z ∈ I is chosen which covers x. The solution then is (z, T (x)) as x

T (x)
↪−−−→ F

implies z
T (x)
↪−−−→ F as ≤ is a simulation relation.

In the later chapters, we give well-known search space exploration tech-
niques that fall into our framework of search space constructions and
we discuss our practical contributions. But first, in the next chapter, we
show that our framework behaves well in the sense of total correctness.
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Proof of the Algorithmic
Framework

We are stuck with technology when what we really want is
just stuff that works.

— Douglas Adams, The Salmon of Doubt

Contents
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Partial Correctness . . . . . . . . . . . . . . . . . . . 92
4.3 Termination . . . . . . . . . . . . . . . . . . . . . . . 110
4.4 Total Correctness . . . . . . . . . . . . . . . . . . . . 124
4.5 Differences in the Partial Correctness Proofs . . . . . 125

While the high-level arguments for partial correctness and termination
of the framework (Sect. 3.5 on p. 85) give an intuition why it works, in
this chapter, we present a formal axiomatic proof to understand its inner
workings in detail.
As with the proof for the basic BR in Sect. 3.1 on p. 52, our proof
consists of proof outlines in the form introduced by Owicki and Gries
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which imply the truth of corresponding Hoare-style correctness formulas
[OG76, ABO09]. We distinguish between a proof of partial correctness
and a proof for termination which we combine at the end of this chapter
by employing the decomposition rule (Def. 2.23 on p. 46) to conclude
total correctness of the framework, i.e. we show that it terminates with
correct results.
Before we turn to partial correctness, in the upcoming preliminary section
we introduce axioms and abbreviations for groups of statements of the
algorithmic framework. We call these abbreviations subalgorithms. These
enable us to split the proof outlines into smaller chunks with lemmas
that capture correctness formulas regarding the subalgorithms. At the
end of the proofs for partial correctness and termination, we present
proof outlines that reference the proof outlines for the corresponding
subalgorithms.

4.1. Preliminaries
For our proofs of partial correctness and termination of the algorithmic
framework, we employ an abbreviation of subalgorithms that enables us
to talk about different parts of the algorithm independently. In Alg. 4.1,
the algorithmic framework (cf. Alg. 3.7 on p. 80) is presented with place-
holders for groups of statements.
The following lemma comprises the characteristics of the minimization
function. It will be used throughout the proofs of partial correctness and
termination of our framework.
Lemma 4.1 (Minimize). Given a set Y , the following axiom is true
in the sense of partial and total correctness.
AXIOM: MINIMIZE

{ true } X := minimize(Y ) {X ⊆ Y ∧ ↑X = ↑Y }

Proof. The definition of the minimization function (Def. 3.4 on p. 79)
states that minimize satisfies minimize(Y ) ⊆ Y ∧ ↑minimize(Y ) = ↑Y
for any set Y .

In certain situations we do not use all the information from the mini-
mization axiom but are only interested in the special case captured by
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Input : WSLTS S = (S,L,→,�), finite I, F ⊆ S
Output : A finite finite set V ⊆ S and a function

T : S −→ L∗ ∪ {⊥} , a solution to LCov.
Comment: The algorithm computes set V and function T

s.t. ∀x ∈ V ∩ ↓ I : x
T (x)
↪−−−→ F . The set V is

non-empty if and only if I ↪−→ F .
1 W := minimize(F );
2 T (S) := ⊥;
3 T (W ) := ε;
4 V := ∅;
5 while W 6= ∅ do
6 x := select(W );
7 τ := T (x);
8 W := W \ {x } ;
9 T (x) := ⊥;

10 if x ∈ ↓ I then
11 V := {x } ;
12 T (W ) := ⊥;
13 T (x) := τ ;
14 W := ∅
15 else
16 V := minimize(V ∪ {x } );
17 O := opb(x);
18 while O 6= ∅ do
19 let y ∈ O;
20 O := O \ { y } ;
21 if y /∈ ↑V then
22 W := minimize(W ∪ { y } );
23 σ := witx(y) · τ ;
24 if T (y) = ⊥ ∨ |T (y)| > |σ| then
25 T (y) := σ
26 else
27 skip
28 fi
29 fi
30 od
31 fi
32 od

init

next_state

found_trace

add_
predecessors

process_
new

_
state

update_
trace

Algorithm 4.1: Subalgorithms of the Algorithmic Framework.
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the following corollary. It holds due to the fact that ↑minimize(Y ∪ { y } )
is equal to ↑(Y ∪ { y } ) and that Y ∪ { y } is a subset of ↑(Y ∪ { y } ) by
definition of the upward-closure operator ↑ (Def. 2.7 on p. 20).

Corollary 4.2 (Minimize with Singleton). Given a set Y , the fol-
lowing axiom is true in the sense of partial and total correctness.
AXIOM: MINIMIZE (ADD SINGLETON)

{ true } X := minimize(Y ∪ { y } ) { y ∈ ↑X } ♦

In the algorithmic framework, several assignments of the form T (W ) := σ
occur, where T is a function from the states of an WSLTS to finite words
over transition labels (cf. Def. 3.3 on p. 76). The following lemma in-
troduces corresponding axioms that we use in the proofs for partial cor-
rectness and termination. As noted in Remark 3.1 on p. 76, we approach
function assignments from an operational perspective. We distinguish
two axioms that hold in the proof system for total correctness and one
more general axiom that only holds in the proof system for partial cor-
rectness.

Lemma 4.3 (Function Assignment Axioms). Consider a variable T
which represents a function T : X −→ Y with a possibly infinite domain
X and a possibly infinite target set Y .
In the first axiom, the function is updated on a finite subset Z of its
domain. It holds in both PW and TW.
AXIOM: FUNCTION ASSIGNMENT (FINITE)

{ |Z| ∈ N ∧ Z ⊆ X ∧ y ∈ Y ∧ T : X −→ Y }
T (Z) := y
{ ∀z ∈ Z : T (z) = y }

The second axiom considers the case when a default value is assigned,
s.t. it is returned for any value in the function’s domain. This axiom is
true in the proof systems PW and TW.
AXIOM: FUNCTION ASSIGNMENT (DOMAIN)

{ y ∈ Y ∧ T : X −→ Y } T (X) := y { ∀z ∈ X : T (z) = y }
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The third axiom will be used as a shorthand for partial correctness proofs.
Here, finiteness of Z is not required and thus, termination is not guar-
anteed, s.t. this axiom is only true in the system PW.
AXIOM: FUNCTION ASSIGNMENT (ARBITRARY)

{Z ⊆ X ∧ y ∈ Y ∧ T : X −→ Y } T (Z) := y { ∀z ∈ Z : T (z) = y } ♦

Proof. By Def. 3.3 on p. 76 (function assignment).

The idea behind the axioms “domain” and “finite” stems from the pro-
gramming perspective: It is easily possible to implement a (hash-) table
which associates keys and values. This table can be updated to associate
a fixed value to some finite set of keys (“finite”). For any key that has no
value associated, we simply return some default value that was initially
determined (“domain”). Both actions, update finite subset of domain and
update default value, can be implemented to adhere the axioms above.
We introduce a last axiom in the context of assignments that abbreviates
the finite function assignment in the special case of a singleton set.

Corollary 4.4. Let T be a variable which represents a function T :
X −→ Y . The following axiom is true in both the proof systems PW
and TW.
AXIOM: FUNCTION ASSIGNMENT (SINGLETON)

{ z ∈ X ∧ y ∈ Y ∧ T : X −→ Y } T (z) := y {T (z) = y } ♦

Remark 4.1 (Function Assignment Axioms and Notation). For
the sake of brevity in the context of this chapter we silently assume that
the prerequisites T : X −→ Y , Z ⊆ X, z ∈ X, and y ∈ Y are satisfied
and omit them in the proofs. ♦

Finally, we need a correctness formula for the nondeterministic assign-
ment.

Lemma 4.5. Given a non-empty set X, the following axiom is true in
the sense of partial and total correctness.
AXIOM: NONDETERMINISTIC ASSIGNMENT

{X 6= ∅ } let x ∈ X {x ∈ X }
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Proof. The definition of the nondeterministic assignment (Def. 3.2 on
p. 72) states that let x ∈ X results in x ∈ X if X is a non-empty
set.

4.2. Partial Correctness
As the code of our algorithmic framework has roughly three times the
number of lines of the basic BR and it employ more variables, it is more
intricate to show that its result is an answer to the posed labelled cover-
ability problem if it is adequately instantiated. In this section, we exam-
ine the behaviour of the framework under the assumption that a labelled
coverability problem is given, consisting of a WSLTS (S,L,→,�) to-
gether with a finite set I of initial states and a finite set F of final states.
The partial correctness proof is divided into several lemmas and mostly
consists of proof outlines for the subalgorithms that we have defined in
the previous section (cf. Alg. 4.1).

Abbreviations. For the sake of clarity, we employ several abbreviations,
the first of which simply captures the constraint that every sequence of
transition labels associated with a state represents a valid trace from
that state to the upward-closure of the final states.

InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F (4.1)

The second abbreviation is easier understood in four stages. (1) It in-
cludes the first abbreviation, InvT . (2) It demands that for certain states
the function T gives a sequence of transition labels, i.e. a value different
from ⊥. (3) The abbreviation is parametrized in the sense that it con-
cerns only states in some set Z. In our proof, this set is empty unless
a state is added to W and the trace function T has not been updated.
(4) Except for states in Z, the abbreviation ensures that T gives traces
to ↑F for states that have to be processed, i.e. those in W , and those
with which the initial states have been reached, i.e. those in V ∩ ↓ I.

InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥) (4.2)
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While the first two shorthands are concerned with traces, the third rep-
resents the core of correctness by relating the current state of the algo-
rithm’s variables with the overall answer to the coverability problem. It
says that if the final states are coverable from the initial states then and
only then (1) the set ↑V must have a nonempty intersection with ↓ I or
(2) there is a path from the set ↑W ∪ Z to the initial states and the set
↑W ∪Z must be closer to ↓ I w.r.t. dist than ↑V is. The last constraint
is used to ensure that the algorithm works its way towards the initial
states if and only if final states are coverable from the initial states. Just
as the second abbreviation, the third is parametrized in set Z. Usually, Z
is the empty set unless some state x was removed from W and we want
to maintain information about it.

Invdist(Z) := dist(↓ I, ↑F ) 6=∞ (4.3)
⇔ (dist(↓ I, ↑V ) = 0
∨∞ 6= dist(↓ I, ↑W ∪ Z) < dist(↓ I, ↑V ))

In summary, the third abbreviation is used to guarantee that the algo-
rithm returns a correct yes-or-no answer while the first two abbreviations
are used to then present a labelled transition sequence. We introduce a
fourth abbreviation considering the optimized predecessors of some state
later in this section.

Overview of the Proof Outline in Fig. 4.1. The proof outline Fig. 4.1
on p. 95 is central to Proposition 4.13 on p. 108 which ties together the
partial correctness of our algorithmic framework. We present this outline
early in this section to provide the context for the upcoming lemmas
which state suitable correctness formulas for each subalgorithm.
Our goal is to show that the invariant InvTW (∅) ∧ Invdist(∅) 1. is mean-
ingful enough to imply the algorithm’s postcondition if the loop exits
and that it 2. holds at loop entry.

1. If loop exits, the set W is empty. In that case the invariant implies
that ↑V contains initial states if and only if the final states F are
coverable from the initial states I and that for any state x in V
that is covered by an initial state, the trace from that state to
↑F can be accessed as T (x). This is exactly what is needed to
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answer the corresponding labelled coverability problem. To accept
this implication, we write down Invdist(∅) in the case thatW is the
empty set,

dist(↓ I, ↑F ) 6=∞⇔ (dist(↓ I, ↑V ) = 0
∨∞ 6= dist(↓ I, ∅) < dist(↓ I, ↑V )) ,

and lay our focus on the fact that dist(↓ I, ∅) is ∞. As the second
disjunct on the right-hand side of the equivalence is false in any
case, we drop it and retain

dist(↓ I, ↑F ) 6=∞⇔ dist(↓ I, ↑V ) = 0 .

Now that we have established that the invariant together with W = ∅
in fact implies the property we want to show for the algorithm, we show
that it holds in the first place—at loop entry.

2. Assume that init satisfies the postcondition

V = ∅ ∧ (∀z ∈W : T (z) 6= ⊥) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F .

Due to V being empty and dist(↓ I, ∅) =∞ (cf. Def. 3.6 on p. 82),
the invariant InvTW (∅) ∧ Invdist(∅) collapses to

InvT ∧ (∀z ∈W : T (z) 6= ⊥)
∧ (dist(↓ I, ↑F ) 6=∞⇔ (∞ = 0 ∨∞ 6= dist(↓ I, ↑W ) <∞)) ,

which is equivalent to

InvT ∧ (∀z ∈W : T (z) 6= ⊥)
∧ (dist(↓ I, ↑F ) 6=∞⇔∞ 6= dist(↓ I, ↑W )) .

Since we assumed init’s postcondition to be true, we know that
↑W is the same as ↑F . Thus, the invariant holds at loop entry.

Partial Correctness of the Subalgorithms. We begin the formal proof
of the subalgorithms by examining the one for initialisation in Lemma 4.6.
Just as with the partial correctness proof for the basic BR (cf. Sect. 3.1.1
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))

1 { |I| ∈ N ∧ |F | ∈ N }
2 init; /* see Lemma 4.6 */
3 {V = ∅ ∧ (∀z ∈W : T (z) 6= ⊥) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F }
4 { inv: InvTW (∅) ∧ Invdist(∅) }
5 while W 6= ∅ do
6 {W 6= ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
7 next_state; /* see Lemma 4.7 */
8

{
x

τ
↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)

}

9 if x ∈ ↓ I then
10

{
x ∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

11 found_trace /* see Lemma 4.8 */
12 { InvTW (∅) ∧ Invdist(∅) }
13 else
14

{
x /∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

15 add_predecessors /* see Lemma 4.10 */
16 { InvTW (∅) ∧ Invdist(∅) }
17 fi
18 { InvTW (∅) ∧ Invdist(∅) }
19 od
20 {W = ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
21 { InvTW (∅)
22 ∧ dist(↓ I, ↑F ) 6=∞⇔ (dist(↓ I, ↑V ) = 0 ∨∞ 6= dist(↓ I, ∅)) }
23 { InvTW (∅) ∧ dist(↓ I, ↑F ) 6=∞⇔ dist(↓ I, ↑V ) = 0 }
24 { InvT ∧ (∀z ∈ V ∩ ↓ I : T (z) 6= ⊥)
25 ∧ dist(↓ I, ↑F ) 6=∞⇔ dist(↓ I, ↑V ) = 0 }
26

{
(∀z ∈ S : T (z) 6= ⊥ ⇒ z

T (z)
↪−−−→ F ) ∧ (∀z ∈ V ∩ ↓ I : T (z) 6= ⊥)

27 ∧ dist(↓ I, ↑F ) 6=∞⇔ dist(↓ I, ↑V ) = 0 }
28

{
(dist(↓ I, ↑F ) 6=∞⇔ ↑V ∩ ↓ I 6= ∅) ∧ ∀x ∈ V ∩ ↓ I : x

T (x)
↪−−−→ F

}

Figure 4.1.: Proof outline for partial correctness of
Alg. 3.7 on p. 80.
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4. Proof of the Algorithmic Framework

on p. 53), the precondition that ensures the input sets to be finite is dis-
missed as it is only actively needed to show termination. Lemma 4.1 is
employed for the effect of statementW := minimize(F ) and the following
assignments to function T are resolved via Lemma 4.3 (cases “domain”
and “finite”). It is noteworthy that the assertion right after the assign-
ment T (S) := ⊥, i.e.

(∀z ∈ S : T (z) = ⊥) ∧W ⊆ F ∧ ↑W = ↑F ,

implies ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F (which we abbreviate by

InvT ) as there is no state z in S with T (z) different from ⊥. Then, after
T (W ) is set to the empty word ε, condition InvT still holds due to W
being a subset of the final states. Each state z in W is automatically
in ↑F , s.t. z ε

↪−→ F holds. Since InvT is a strong enough requirement,
we dispose of the information on the concrete value for T (z) and simply
state ∀z ∈W : T (z) 6= ⊥ in the following assertion. The effect of the last
statement, V := ∅, results in meeting the postcondition for init that we
aimed for.
Lemma 4.6 (init and Partial Correctness). The correctness for-
mula

{ |I| ∈ N ∧ |F | ∈ N }
init
{V = ∅ ∧ (∀x ∈W : T (x) 6= ⊥) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F }

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.2, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

In the first part of the loop body, next_state, some state x is selected
from the set W of states to process and the sequence T (x) is stored in a
temporary variable τ . Then, the state x is removed fromW and function
T is updated to return the default value ⊥ for state x. The following
lemma shows that x τ

↪−→ F holds after the assignment τ = T (x) which
follows directly from InvTW (∅): in essence, it states that for any z in W ,
the value of T (z) is a transition label sequence that leads from z to the
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

1 { |I| ∈ N ∧ |F | ∈ N }
2 { true }
3 W := minimize(F );
4 {W ⊆ F ∧ ↑W = ↑F }
5 T (S) := ⊥;
6 { (∀z ∈ S : T (z) = ⊥) ∧W ⊆ F ∧ ↑W = ↑F }
7 { InvT ∧W ⊆ F ∧ ↑W = ↑F }
8 T (W ) := ε;
9 { (∀z ∈W : T (z) = ε) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F }

10 { (∀z ∈W : T (z) 6= ⊥) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F }
11 V := ∅;
12 {V = ∅ ∧ (∀z ∈W : T (z) 6= ⊥) ∧ InvT ∧W ⊆ F ∧ ↑W = ↑F }

Figure 4.2.: Proof outline for partial correctness – init.

upward-closure of F . More importantly, Invdist(↑x) holds after removal
of x from W as ↑(W ∪ {x } ) is equal to ↑W ∪ ↑x.
Lemma 4.7 (next_state and Partial Correctness). The correct-
ness formula

{W 6= ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
next_state{

x
τ
↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)

}

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.3, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

In case a trace from the upward-closure of the final states is found back-
wards to the initial states, found_trace is executed. Lemma 4.8 cap-
tures the correctness of this subalgorithm in the sense that the main
loop’s invariant is also the postcondition of found_trace. The main
goal of the shortcut that is taken when a state x is reached backwards
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))

1 {W 6= ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
2 x := select(W );
3 {x ∈W ∧W 6= ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
4 τ := T (x);
5 { τ = T (x) ∧ x ∈W ∧W 6= ∅ ∧ InvTW (∅) ∧ Invdist(∅) }
6
{
x

τ
↪−→ F ∧ InvTW (∅) ∧ Invdist(∅)

}

7 W := W \ {x } ;
8
{
x

τ
↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)

}

9 T (x) := ⊥;
10

{
T (x) = ⊥ ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

11
{
x

τ
↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)

}

Figure 4.3.: Proof outline for partial correctness –
next_state.

that lies in the downward-closure of the initial states is to gracefully stop
the algorithms loop. Therefore, all traces that are stored in T but the
one for x are dismissed by setting T (W ) := ⊥ and T (x) := τ , where τ
is a sequence of transition labels from x to ↑F , and setting V to the
singleton set {x } . Finally, W is cleared which leads to the main loop’s
condition being evaluated to false. If we keep in mind that x is covered
by an initial state and that it is also set to be the sole element of V , the
proof outline in Fig. 4.4 can be followed up to the assignment W := ∅
rather easily. There, we end up with the assertion

W = ∅ ∧ ↓ I ∩ V = {x } ∧ x T (x)
↪−−−→ F ∧ InvT ∧ Invdist(↑x)

which implies that for any state z in the intersection of V and ↓ I, func-
tion T (z) yields a value different from ⊥. To be exact, there is only one

98



4.2. Partial Correctness

state in the intersection, x, and T (x) yields τ , the trace from x to ↑F .
Therefore, we can introduce the abbreviation InvTW (∅) and deduce the
truth of the next assertion, i.e.

↓ I ∩ V = {x } ∧ InvTW (∅) ∧ Invdist(↑x) .

As we know that the intersection of V and ↓ I is nonempty, it follows
that the distance between the two is zero, i.e. dist(↓ I, ↑V ) = 0. This
enables us to bring down Invdist(↑x) to Invdist(∅) and conclude that the
subalgorithm found_trace satisfies the required postcondition when
its precondition is met.
Lemma 4.8 (found_trace and Partial Correctness). The correct-
ness formula

{
x ∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

found_trace
{ InvTW (∅) ∧ Invdist(∅) }

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.4, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

For the partial correctness proofs of the remaining subalgorithms, we
introduce an abbreviation that maintains information on the set O which
contains only optimized predecessors of x and a relationship between the
set of optimized predecessors of x, opb(x), and other variables of the
algorithm.

Invopb(Z) = x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ
↪−→ F ∧O ⊆ opb(x) (4.4)

∧ opb(x) ⊆ ↑W ∪ ↑V ∪O ∪ Z

The add_predecessors subalgorithm iterates over the set of optimized
predecessors of x. It does so by storing the optimized predecessors in
a temporary variable O and successively removing elements from it—
and processing those elements—until it is empty. For the inner loop,
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))

1
{
x ∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

2
{
x ∈ ↓ I ∧ x τ

↪−→ F ∧ InvT ∧ Invdist(↑x)
}

3 V := {x } ;
4
{
V = {x } ∧ x ∈ ↓ I ∧ x τ

↪−→ F ∧ InvT ∧ Invdist(↑x)
}

5
{
↓ I ∩ V = {x } ∧ x τ

↪−→ F ∧ InvT ∧ Invdist(↑x)
}

6 T (W ) := ⊥;
7
{

(∀z ∈W : T (z) = ⊥) ∧ ↓ I ∩ V = {x } ∧ x τ
↪−→ F

8 ∧ InvT ∧ Invdist(↑x) }
9
{
↓ I ∩ V = {x } ∧ x τ

↪−→ F ∧ InvT ∧ Invdist(↑x)
}

10 T (x) := τ ;
11

{
T (x) = τ ∧ ↓ I ∩ V = {x } ∧ x τ

↪−→ F ∧ InvT ∧ Invdist(↑x)
}

12

{
↓ I ∩ V = {x } ∧ x T (x)

↪−−−→ F ∧ InvT ∧ Invdist(↑x)
}

13 W := ∅
14

{
W = ∅ ∧ ↓ I ∩ V = {x } ∧ x T (x)

↪−−−→ F ∧ InvT ∧ Invdist(↑x)
}

15 { ↓ I ∩ V = {x } ∧ InvTW (∅) ∧ Invdist(↑x) }
16 { InvTW (∅) ∧ Invdist(∅) }

Figure 4.4.: Proof outline for partial correctness –
found_trace.
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InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) is an invariant. As mentioned, in
each iteration the algorithm picks some state y from the set of optimized
predecessors and runs process_new_state, after which the invariant
holds again. At this level, there are two implications we need to discuss:
(1) the invariant holds at loop entry and (2) the negated loop condition
and the invariant together imply the postcondition InvTW (∅)∧Invdist(∅).
To accept that the invariant is satisfied at the beginning of the loop, we
observe that O = opb(x) implies O ⊆ opb(x)∧opb(x) ⊆ ↑W∪↑V ∪O∪Z.
In order to see that the postcondition is implied by O = ∅ ∧ InvTW (∅)∧
Invdist(↑x) ∧ Invopb(∅), we turn to the following lemma.

Lemma 4.9. The following implication holds.

O = ∅∧ InvTW (∅)∧ Invdist(↑x)∧ Invopb(∅) ⇒ InvTW (∅)∧ Invdist(∅)

Proof. We substitute the abbreviations and use O = ∅ to observe that
we are actually to show

InvTW (∅)
∧ (dist(↓ I, ↑F ) 6=∞

⇔ (dist(↓ I, ↑V ) = 0 ∨∞ 6= dist(↓ I, ↑W ∪ ↑x) < dist(↓ I, ↑V ))

∧ x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ
↪−→ F ∧ opb(x) ⊆ ↑W ∪ ↑V

⇒
InvTW (∅)
∧ (dist(↓ I, ↑F ) 6=∞

⇔ (dist(↓ I, ↑V ) = 0 ∨∞ 6= dist(↓ I, ↑W ) < dist(↓ I, ↑V )) ,

where we have underlined the crucial detail. We prove this using a case
distinction.

• Case dist(↓ I, ↑W ∪ ↑x) = ∞. Here, the implication is trivially
satisfied due to the inverse monotonicity of the distance function
(Corollary 3.14 on p. 83) and thus dist(↓ I, ↑W ) =∞.

• Case dist(↓ I, ↑W ∪ ↑x) 6=∞. We show the implication by contra-
diction.
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Assume the right-hand side of the implication is violated, i.e.

dist(↓ I, ↑W ) ≥ dist(↓ I, ↑V )

holds.
First, we use the inequalities

dist(↓ I, ↑W ∪ ↑x) <︸ ︷︷ ︸
implication’s left-hand side

dist(↓ I, ↑V ) ≤ dist(↓ I, ↑W )︸ ︷︷ ︸
assumption

to conclude that dist(↓ I, ↑W ∪ ↑x) < dist(↓ I, ↑W ) holds.
This, together with the definition of the distance function (Def. 3.6
on p. 82) and with Corollary 3.14 on p. 83 (inverse monotonicity of
distance), means that the shortest path from ↓ I to ↑W ∪↑x must
stem from ↑x, i.e.

dist(↓ I, ↑x) = dist(↓ I, ↑W ∪ ↑x) .

From this equality and the condition ∞ 6= dist(↓ I, ↑W ∪ ↑x) of
the current case under consideration, it follows that x is coverable
from ↓ I, i.e. ∞ 6= dist(↓ I, ↑x).
Second, the Dist property (cf. Def. 3.7 on p. 83) and x not being
element of ↓ I, but x being coverable from ↓ I, tells us that the
initial states ↓ I are closer to ↑ opb(x) than they are to ↑x. Formally,
dist(↓ I, ↑ opb(x)) < dist(↓ I, ↑x).
We now show that opb(↑x) is not a subset of ↑W ∪ ↑V which
contradicts the conjunct opb(↑x) ⊆ ↑W ∪↑V on the implication’s
left-hand side.
Let y be a state in opb(x), s.t. dist(↓ I, ↑ y) < dist(↓ I, ↑x). The
existence of such a state is guaranteed by the fact that the UCS of
optimized predecessors is closer to the initial states, i.e.

dist(↓ I, ↑ opb(x)) < dist(↓ I, ↑x) ,

as there is some y′ ∈ ↑ opb(x) that is closer than ↑x and this y′ is
in the upward-closure of y. From the implication’s left-hand side
we know that y is in ↑W or in ↑V .
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– Assume the state y is in ↑V . By the inverse monotonicity of
the distance function (Corollary 3.14 on p. 83) this implies
that ↑V at least as close to the initial states as ↑ y is, i.e.

dist(↓ I, ↑V ) ≤ dist(↓ I, ↑ y) < dist(↓ I, ↑x) ,

which implies that ↑V is closer than ↑W ∪ ↑x. But this con-
tradicts the left-hand side of the implication that states

dist(↓ I, ↑W ∪ ↑x) < dist(↓ I, ↑V ) .

Hence, y is not an element of ↑V .

– Assume the state y is in ↑W . By the inverse monotonicity of
the distance function (Corollary 3.14 on p. 83) this implies
that ↑W at least as close to the initial states as ↑ y is, i.e.

dist(↓ I, ↑W ) ≤ dist(↓ I, ↑ y) < dist(↓ I, ↑x) ,

which directly contradicts the fact

dist(↓ I, ↑x) < dist(↓ I, ↑W )

that we have established earlier in the case that the distance
dist(↓ I, ↑W ∪ ↑x) is different from ∞. Hence, y is not an
element of ↑W .

Therefore, y is neither part of ↑W nor of ↑V , leaving us to conclude
that opb(x) is no subset of ↑W ∪↑V . This is a contradiction to the
left-hand side of the implication. Hence, the assumption is wrong
and ∞ 6= dist(↓ I, ↑W ) < dist(↓ I, ↑V ) holds.

This concludes the proof of the implication.

With Lemma 4.9, we are able to capture partial correctness of the sub-
algorithm add_predecessors in the upcoming lemma.
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Lemma 4.10 (add_predecessors and Partial Correctness). The
correctness formula

{
x /∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

add_predecessors
{ InvTW (∅) ∧ Invdist(∅) }

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.5, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

Lemma 4.11 captures the effect of process_new_state when it is
executed in the context of add_predecessors, i.e. the algorithm is in
a state where

y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb( { y } )

holds and the subalgorithm has to satisfy InvTW (∅) ∧ Invdist(↑x) ∧
Invopb(∅) as its postcondition if it terminates. It does so by ensuring
that x’s optimized predecessor y is either already contained in ↑V or it
is made sure that it is in the upward-closure of the set W of states to be
processed.
First, consider the case when y is in ↑V . The conjunction of the pre-
condition and y ∈ ↑V has to directly imply the postcondition which is
rather simple as the following implication, which highlights the central
part of the implied postcondition, is easily accepted:

y ∈ ↑V ∧ opb(x) ⊆ ↑W ∪↑V ∪O∪ { y } ⇒ opb(x) ⊆ ↑W ∪↑V ∪O

In the case that y it not an element of ↑V , the effect of
W := minimize(W ∪ { y } ) is explained by Corollary 4.2 (minimize with
singleton) and theWit (cf. Def. 3.8 on p. 84) constraint is used to resolve
the assignment σ := witx(y) · τ . The main proof obligation of this case
is relayed to the last subalgorithm update_trace.
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))
// Invopb(Z) := x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ

↪−→ F ∧O ⊆ opb(x)
// ∧ opb(x) ⊆ ↑W ∪ ↑V ∪O ∪ Z

1
{
x /∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

2 V := minimize(V ∪ {x } );
3
{
x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ

↪−→ F ∧ InvTW (∅) ∧ Invdist(↑x)
}

4 O := opb(x);
5
{
O = opb(x) ∧ x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ

↪−→ F

6 ∧ InvTW (∅) ∧ Invdist(↑x) }
7 { inv: InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
8 while O 6= ∅ do
9 {O 6= ∅ ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

10 let y ∈ O;
11 { y ∈ O ∧O 6= ∅ ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
12 { y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
13 O := O \ { y } ;
14 { y /∈ O ∧ y ∈ opb(x) ∧ InvTW (∅)
15 ∧ Invdist(↑x) ∧ Invopb( { y } ) }
16 { y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb( { y } ) }
17 process_new_state /* see Lemma 4.11 */
18 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
19 od
20 {O = ∅ ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

/* See Lemma 4.9. */
21 { InvTW (∅) ∧ Invdist(∅) }

Figure 4.5.: Proof outline for partial correctness –
add_predecessors.
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Lemma 4.11 (process_new_state and Partial Correctness). The
correctness formula

{ y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb( { y } ) }
process_new_state
{ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.6, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

In order to accept the partial correctness of the algorithmic framework,
the correctness of the subalgorithm update_trace remains to be shown.
There, the function T that associates states in W with traces to the
upward-closure of final states is updated with a new trace for the opti-
mized predecessors y under consideration if T does not already associate
it with a trace or the associated trace is longer than the new trace.
We begin with the case when no update to T is performed as it already
associates a shorter trace with y. For this case, we highlight the central
points of the implication (between lines 13 and 16 in Fig. 4.7), where we
need to show:

T (y) 6= ⊥ ∧ (∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ { y } ∨ T (z) 6= ⊥))
⇒ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ ∅ ∨ T (z) 6= ⊥)

We accept this implication due to the fact that the disjunction on the
left-hand side is true for z = y because of T (y) 6= ⊥ and the condition
z ∈ { y } can be dropped.
In case the function T is updated to associate trace σ with y, we employ
Corollary 4.4 for the effect of function assignment (singleton) T (y) := σ.
As y σ

↪−→ F holds, we are sure that InvT is still valid after the assignment
and apply the reasoning from the above case to conclude the implication
between lines 8 and 11 in Fig. 4.7. Therefore, InvTW (∅) ∧ Invdist(↑x) ∧
Invopb(∅) holds after update_trace has been executed.

106



4.2. Partial Correctness

// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))
// Invopb(Z) := x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ

↪−→ F ∧O ⊆ opb(x)
// ∧ opb(x) ⊆ ↑W ∪ ↑V ∪O ∪ Z

1 { y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb( { y } ) }
2 if y /∈ ↑V then
3 { y /∈ ↑V ∧ y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x)
4 ∧ Invopb( { y } ) }
5 W := minimize(W ∪ { y } );
6 { y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)
7 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
8 σ := witx(y) · τ ;
9 {σ = witx(y) · τ ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)

10 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
11

{
y

σ
↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)

12 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
13 update_trace /* see Lemma 4.12 */
14 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
15 else
16 { y ∈ ↑V ∧ y ∈ opb(x) ∧ InvTW (∅) ∧ Invdist(↑x)
17 ∧ Invopb( { y } ) }
18 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
19 skip
20 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
21 fi
22 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

Figure 4.6.: Proof outline for partial correctness –
process_new_state.
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Lemma 4.12 (update_trace and Partial Correctness). The cor-
rectness formula

{
y

σ
↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)

∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
update_trace
{ InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

is true in the sense of partial correctness.

Proof. By the proof outline in Fig. 4.7, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

Without further ado, we are able to present the following proposition
which expresses the partial correctness of our algorithmic framework.

Proposition 4.13. Consider (S,L,→,�) a WSLTS with a decidable
� and an effective pred-basis. Let select, opb,wit be adequately instan-
tiated. If the algorithmic framework is run with finite sets I, F ⊆ S as
input, it terminates with a finite result V, T , s.t. if and only if F is cov-
erable from I, i.e. I ↪−→ F , then ↑V ∩ ↓ I is non-empty. For each state x
in the intersection of V and ↓ I, T (x) is a trace from x to ↑F . Formally,

`PW { |I| ∈ N ∧ |F | ∈ N }
Algorithmic Framework{

(dist(↓ I, ↑F ) 6=∞⇔ ↑V ∩ ↓ I 6= ∅)
∧ ∀x ∈ V ∩ ↓ I : x

T (x)
↪−−−→ F

}
.

Proof. By Corollary 3.13 on p. 82, the finiteness of dist(↓ I, ↑F ) is equiv-
alent to F being coverable from I. By the proof outline in Fig. 4.1 on p. 95
together with Lemma 4.6 (init), Lemma 4.7 (next_state), Lemma 4.8
(found_trace), Lemma 4.10 (add_predecessors),
Lemma 4.11 (process_new_state), Lemma 4.12 (update_trace)
and Lemma 2.12 on p. 48 (proof outlines imply correctness theorems).
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// InvT := ∀z ∈ S : T (z) 6= ⊥ ⇒ z
T (z)
↪−−−→ F

// InvTW (Z) := InvT ∧ ∀z ∈W ∪ (V ∩ ↓ I) : (z ∈ Z ∨ T (z) 6= ⊥)
// Invdist(Z) := dist(↓ I, ↑F ) 6=∞
// ⇔ (dist(↓ I, ↑V ) = 0∨∞ 6= dist(↓ I, ↑W ∪Z) < dist(↓ I, ↑V ))
// Invopb(Z) := x ∈ ↑V ∧ x /∈ ↓ I ∧ x τ

↪−→ F ∧O ⊆ opb(x)
// ∧ opb(x) ⊆ ↑W ∪ ↑V ∪O ∪ Z

1
{
y

σ
↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)

2 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
3 if T (y) = ⊥ ∨ |T (y)| > |σ| then
4 { (T (y) = ⊥ ∨ |T (y)| > |σ|)
5 ∧ y σ

↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)
6 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
7 T (y) := σ
8 {T (y) = σ

9 ∧ y σ
↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)

10 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
11 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
12 else
13 {¬(T (y) = ⊥ ∨ |T (y)| > |σ|)
14 ∧ y σ

↪−→ F ∧ y ∈ ↑W ∧ y /∈ ↑V ∧ y ∈ opb(x)
15 ∧ InvTW ( { y } ) ∧ Invdist(↑x) ∧ Invopb(∅) }
16 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
17 skip
18 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }
19 fi
20 { InvTW (∅) ∧ Invdist(↑x) ∧ Invopb(∅) }

Figure 4.7.: Proof outline for partial correctness –
update_trace.
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Now that we established that the framework solves the labelled cover-
ability problem if the algorithm returns a result, we face the task to prove
that it terminates for any valid input.

4.3. Termination

In order to show termination of the algorithmic framework, we have to
employ a term that takes values in a set that is well-founded w.r.t. some
ordering. This termination term has to decrease in value with each loop
iteration. The lexicographical ordering >bbrlex (Def. 3.1 on p. 63) that we
used to show termination of the basic BR does not suffice as the UCS ↑V
does not grow monotonically with each iteration: If the shortcut x ∈ ↓ I
is taken when the initial states are reached, V is set to {x } which is
disjoint to the previous value of V . However, up to the iteration when
the shortcut is taken, the ordering for termination of the basic BR is
fine. Remember that when the shortcut is taken, the loop terminates
immediately, as W is emptied and up to that point in time, sets I and
↑V are disjoint. Therefore, our idea for a well-founded ordering to show
termination of the framework augments the ordering >bbrlex (Def. 3.1 on
p. 63) by a proper subset relation on I \ ↑V that ensures the strict
decrease of the termination term in case the shortcut is taken: Unless
the shortcut is taken, I \ ↑V is I as the sets are disjoint. If the shortcut
is taken, then there is an x ∈ ↓ I—which means that there is an x′ ∈ I
with x � x′—and I \ ↑x is a proper subset of I.

Definition 4.1 (Lexicographical Order for Termination of the
Framework). Given a QO �, we define the lexicographical order >termlex
on triplet of finite sets s.t. the upward-closures of the first components
are in proper subset relation or they are equal and the pairs consisting
of the second and third components are in relation >bbrlex . Formally, for
tuples of finite sets (I, V,W ) and (I ′, V ′,W ′), we define

(I, V,W ) >termlex (I ′, V ′,W ′) :⇔ I \ ↑V ⊃ I ′ \ ↑V ′
∨ (I \ ↑V = I ′ \ ↑V ′

∧ (V,W ) >bbrlex (V ′,W ′)) ,
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where (V,W ) >bbrlex (V ′,W ′) is defined in Def. 3.1 on p. 63 as

(V,W ) >bbrlex (V ′,W ′)⇔ ↑V ⊂ ↑V ′ ∨ (↑V = ↑V ′ ∧W ⊃W ′) . ♦

Lemma 4.14. The lexicographical order for termination of Alg. 3.7 on
p. 80, >termlex , is well-founded on triplets of finite sets.

Proof. We prove the well-foundedness of >termlex on triplets (I, V,W ) of
finite sets in two steps:

1. The difference ↓ I \ ↑V is finite if I is finite. The proper superset
relation ⊃ is well-founded on finite sets as there exists no infinite
strictly decreasing sequenceX1 ⊃ X2 ⊃ · · · of finite setsX1, X2, . . ..

2. From Lemma 3.8 on p. 64 we know that >bbrlex is well-founded on
pairs of finite sets.

As both relations used by >termlex are well-founded on the sets they are
applied to, the lexicographical order itself is well-founded on triplets of
finite sets.
This concludes the proof.

Abbreviations. For the termination proof of our framework, we define
the following abbreviations. To ease readability, we recall these abbre-
viations in comments at the top of the proof outlines where they are
used.
The first abbreviation Invterm(V,W ) states that sets I, V , and W are
finite and furthermore that sets W and ↑V are disjoint—while the dis-
jointness of these sets was introduced on intention (cf. Extension II of
Sect. 3.2 on p. 69), it was neither necessary for the proof of partial cor-
rectness nor was it established as an invariant before. In our termination
proof, however, we verify the claim of disjointness and exploit it.

Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅ (4.5)

The second abbreviation expresses that if W is empty, i.e. the frame-
work’s loop terminates, then the set of initial states and set ↑V are
disjoint. The idea behind this formula is simple: As soon as some path
backwards from the final states ↑F to the initial states ↓ I is found, set
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4. Proof of the Algorithmic Framework

W is emptied and only then the corresponding state is contained in ↑V .
Unless such a path is found, ↑V does not contain any initial state.

InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅) (4.6)

In conjunction, these formulas are a loop invariant of the framework and
we use them in the proof outline. As for partial correctness, the proof
outline for termination is divided into several fragments as described in
Alg. 4.1. The proof outline in Fig. 4.8 presents the invariant and ter-
mination term, and states pre- and postconditions for every placeholder
which we will discuss in the rest of this section. All in all, it shows that
the framework terminates if the input sets I and F are finite.
Throughout the proof outlines used to show termination, the value of
variable T is of no interest. Therefore, the consequence rule (cf. Def. 2.21
on p. 44 or rather Def. 2.24 on p. 47) is applied after each assignment to
T .

Overview. In contrast to the one for partial correctness, the proof out-
line for termination, presented in Fig. 4.8, does not contain any two con-
secutive assertions for which (non-trivial) logical implication has to be
shown—but for the last two lines where there is a trivial implication. As
in the termination proof of the basic BR, the proof is not concerned with
what the algorithm does in detail. This is reflected by the trivial postcon-
dition true. In the rest of this section, we show that every subalgorithm
satisfies the necessary postcondition in the sense of total correctness.
Termination of the complete algorithm is captured in Proposition 4.21
on p. 122.

Termination of the Subalgorithms. Correctness of the first subalgo-
rithm init used in the proof outline is captured in the following lemma
which describes that the initialisation of the algorithm’s variables yields
a state in which the invariant Invterm(V,W ) ∧ InvVW (V,W ) holds. The
important detail in the proof outline Fig. 4.9 for this lemma is that
V—and therefore ↑V—is empty. We use the “domain” and the “finite”
cases of function assignment axioms (cf. Lemma 4.3) for the effect of the
statements T (S) := ⊥ and T (W ) := ε.
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// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 { |I| ∈ N ∧ |F | ∈ N }
2 init; /* see Lemma 4.15 */
3 { |I| ∈ N ∧ |V | ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
4 ∧ (W 6= ∅ ⇒ I ∩ ↑V = ∅) }
5 { inv: Invterm(V,W ) ∧ InvVW (V,W ) } {bd: (I, V,W ) }
6 while W 6= ∅ do
7 α := (I, V,W );
8 {W 6= ∅ ∧ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) = α }
9 next_state; /* see Lemma 4.16 */

10 {x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
11 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
12 if x ∈ ↓ I then
13 {x ∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
14 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
15 found_trace /* see Lemma 4.17 */
16 { Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }
17 else
18 {x /∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
19 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
20 add_predecessors /* see Lemma 4.18 */
21 { Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }
22 fi
23 { Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }
24 od
25 {W = ∅ ∧ Invterm(V,W ) ∧ InvVW (V,W ) }
26 { true }

Figure 4.8.: Proof outline for termination of
Alg. 3.7 on p. 80.
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Lemma 4.15 (init and Termination). The correctness formula

{ |I| ∈ N ∧ |F | ∈ N }
init
{ |I| ∈ N ∧ |V | ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
∧ (W 6= ∅ ⇒ I ∩ ↑V = ∅) }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.9, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

1 { |I| ∈ N ∧ |F | ∈ N }
2 W := minimize(F );
3 {W ⊆ F ∧ ↑W = ↑F ∧ |I| ∈ N ∧ |F | ∈ N }
4 { |I| ∈ N ∧ |W | ∈ N }
5 T (S) := ⊥;
6 { (∀z ∈ S : T (z) = ⊥) ∧ |I| ∈ N ∧ |W | ∈ N }
7 { |I| ∈ N ∧ |W | ∈ N }
8 T (W ) := ε;
9 { (∀x ∈W : T (x) 6= ⊥) ∧ |I| ∈ N ∧ |W | ∈ N }

10 { |I| ∈ N ∧ |W | ∈ N }
11 V := ∅;
12 {V = ∅ ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅ }
13 { |I| ∈ N ∧ |V | ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
14 ∧ (W 6= ∅ ⇒ I ∩ ↑V = ∅) }

Figure 4.9.: Proof outline for termination – init.

Every iteration of the algorithmic framework’s main loop begins with
the selection of a state in W to be processed. The trace from x to the
UCS of final states is stored in some temporary variable and the state x
is then removed from W . In the following lemma we show that after the
execution of code next_state, x is guaranteed to be neither in ↑V nor
in W—because x was in W which is disjoint from ↑V as Invterm tells
us—and we describe the effect on the loop invariant. For the termination
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of this subalgorithm, we also employ the “singleton” special case of the
function assignment axiom (cf. Corollary 4.4) for the effect of T (x) := ⊥.
Lemma 4.16 (next_state and Termination). The correctness for-
mula

{W 6= ∅ ∧ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) = α }
next_state
{x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.10, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

In case the condition x ∈ ↓ I holds, a trace from ↑F to the initial states
has been found and a shortcut is taken by setting W to be the empty
set, i.e. the algorithm terminates. The following lemma about found_-
trace states that the invariant holds after the shortcut code has been
executed and, equally important, that the tuple (I, V,W ) indeed de-
creased w.r.t. <termlex . The corresponding proof outline Fig. 4.11 uses that
InvVW (V,W ∪ {x } ) implies that ↑V and I are disjoint as W ∪ {x } is
non-empty. In the proof outline, we are not interested in the relationship
between (I, V,W ) and the value of variable α, regarding V and W , so
we simply state that I did not change and α is (I, V ′,W ′), where we
use some temporary variables V ′,W ′. While we introduce these tempo-
rary variables via existential quantification, their values do not change
between assertions due to the equality (I, V ′,W ′) = α and α being fixed.
With the previous observation we can deduce that I ∩ ↑V ′ = ∅ holds.
Notice that x ∈ ↓ I implies I ∩↑x 6= ∅ as there is some x′ ∈ I, s.t. x � x′
holds and that this x′ is also element of ↑x. Therefore, as V is set to
{x } , the intersection of I and ↑V is non-empty and we can conclude
that I \ ↑V is a proper subset of I \ ↑V ′. In turn, this means that the
tuple (I, V,W ) is strictly less than (I, V ′,W ′) = α w.r.t. <termlex . This
property is maintained until the end of found_trace. As W is set to
∅, the invariant Invterm(V,W )∧ InvVW (V,W ) holds as well. We use the
“finite” case of function assignment axioms (cf. Def. 3.3 on p. 76) and its
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// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 {W 6= ∅ ∧ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) = α }
2 x := select(W );
3 {x ∈W ∧W 6= ∅ ∧ Invterm(V,W )
4 ∧ InvVW (V,W ) ∧ (I, V,W ) = α }
5 {x /∈ ↑V ∧ Invterm(V,W ) ∧ InvVW ∧ (I, V,W ) = α }
6 τ := T (x);
7 { τ = T (x) ∧ x /∈ ↑V ∧ Invterm(V,W )
8 ∧ InvVW (V,W ) ∧ (I, V,W ) = α }
9 {x /∈ ↑V ∧ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) = α }

10 W := W \ {x } ;
11 {x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ) ∪ {x } )
12 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
13 T (x) := ⊥;
14 {T (x) = ⊥ ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
15 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
16 {x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
17 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }

Figure 4.10.: Proof outline for termination – next_state.

“singleton” special case (cf. Corollary 4.4) for the effect of the statements
T (W ) := ⊥ and T (x) := τ .
Lemma 4.17 (found_trace and Termination). The correctness for-
mula

{x ∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }

found_trace
{ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.11, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).
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// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 {x ∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
2 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
3 { ∃V ′,W ′ : V ′ = V ∧W ′ = W ∪ {x } ∧ x ∈ ↓ I ∧ x /∈ ↑V
4 ∧ x /∈W ∧ Invterm(V,W ) ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
5 { ∃V ′,W ′ : x ∈ ↓ I ∧ Invterm(V,W )
6 ∧ x /∈ V ′ ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
7 V := {x } ;
8 { ∃V ′,W ′ : V = {x } ∧ x ∈ ↓ I ∧ Invterm(V,W )
9 ∧ x /∈ V ′ ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }

10 { ∃V ′,W ′ : I \ ↑V ⊂ I \ ↑V ′
11 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
12 T (W ) := ⊥;
13 { ∃V ′,W ′ : (∀z ∈W : T (z) = ⊥) ∧ I \ ↑V ⊂ I \ ↑V ′
14 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
15 { ∃V ′,W ′ : I \ ↑V ⊂ I \ ↑V ′
16 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
17 T (x) := τ ;
18 { ∃V ′,W ′ : T (x) = τ ∧ I \ ↑V ⊂ I \ ↑V ′
19 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
20 { ∃V ′,W ′ : I \ ↑V ⊂ I \ ↑V ′
21 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
22 W := ∅
23 { ∃V ′,W ′ : W = ∅ ∧ I \ ↑V ⊂ I \ ↑V ′
24 ∧ Invterm(V,W ) ∧W ′ 6= ∅ ∧ InvVW (V ′,W ′) ∧ (I, V ′,W ′) = α }
25 { Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }

Figure 4.11.: Proof outline for termination – found_trace.

Now we turn to the case when no trace has yet been found. Of course, this
is more involved than the shortcut and we therefore follow the top-down
approach where we dissect add_predecessors into further subalgo-
rithms.
Since add_predecessors contains a loop itself, it is required to give
a term that takes values in some well-founded domain. The loop under
consideration simply empties a finite set O element by element and we
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therefore choose O to be the termination term. The fact that O actually
is finite stems from the finiteness constraint Fin of the optimized prede-
cessor function (cf. Def. 3.7 on p. 83) to which it is set by O := opb(x).
The proper subset relation is well-founded on finite sets, so that we can
deduce that this inner loop terminates if the subalgorithm process_-
new_state does not interfere. As we will show in Lemma 4.19, this
subalgorithm behaves well and does neither mess with O, nor does it
break any other property necessary for our termination proof.

In a more detailed look into Lemma 4.18, which forms the main step in
our termination proof, we first observe that the state under consideration
x is neither in ↓ I, nor in ↑V . Due to the properties of the minimization
function (Def. 3.4 on p. 79), the value of minimize(V ∪ {x } ) is a subset
of V ∪ {x } and a finite basis of ↑(V ∪ {x } ) but we do not know its
concrete elements. We therefore introduce a helper variable V ′ which
has the old value of V , s.t. (I, V,W ∪ {x } ) = α.1 Remember that α
is the variable which stores the value of the termination term (I, V,W )
from the beginning of the current iteration of the main loop. After the
assignment V := minimize(V ∪ {x } ), it holds that V is both a subset of
V ′ ∪ {x } and a finite basis of ↑(V ′ ∪ {x } ). From the precondition we
know that before the update to V , x was not in ↑V which implies that
x /∈ ↑V ′ holds and furthermore that ↑V ′ is a proper subset of ↑V which
in turn means that (I, V,W ) <termlex (I, V ′,W ∪ {x } ) holds, if I \ ↑V ′ is
a subset of or equal to I \ ↑V .2 As x is not in ↓ I, we know that I \ ↑V ′
and I \ ↑V are the same and that (I, V,W ) <termlex (I, V ′,W ∪ {x } )
holds in fact. In the proof outline, we carry two conjuncts that imply
(I, V,W ) <termlex (I, V ′,W ∪ {x } ): (1) ↑V ′ ⊂ ↑V and (2) InvVW (V,W ∪
{x } ) which states that I and ↑V are disjoint as W ∪ {x } is non-
empty. In conjunction, we get that I and ↑V ′ are also disjoint and that
(I, V,W ) <termlex (I, V ′,W ∪ {x } ) is implied indeed. For the proof that
process_new_state behaves well, we turn to Lemma 4.19.

Lemma 4.18 (add_predecessors and Termination). The correct-

1Note that α being fixed forces the existential quantifier we use to introduce the
helper variable to always choose the same value.

2 In this case, the lexicographical ordering is independent from the third component,
W ∪ {x } . (I, V,W ) <termlex (I, V ′, X) holds for any finite set X.
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4.3. Termination

ness formula

{x /∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }

add_predecessors
{ Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.12, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

Subalgorithm process_new_state tests whether the optimized pre-
decessor state y is new in the sense that it is not contained in ↑V and, in
the positive case, updates the set of states to be processed, as well as the
stored trace for y. If state y is not new, it is discarded and no update is
performed. The following Lemma 4.19 contains the corresponding proof
outline where most assertions are mechanical but for the two following
assignmentW := minimize(W ∪ { y } ). There, it is crucial to accept that
Invterm(V,W ) holds for the updated set W as it is still disjoint from ↑V
due to the fact that y is not in ↑V .

Lemma 4.19 (process_new_state and Termination). The cor-
rectness formula

{ ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

process_new_state
{ ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.13, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).
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4. Proof of the Algorithmic Framework

// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 {x /∈ ↓ I ∧ x /∈ ↑V ∧ x /∈W ∧ Invterm(V,W ∪ {x } )
2 ∧ InvVW (V,W ∪ {x } ) ∧ (I, V,W ∪ {x } ) = α }
3 { ∃V ′ : V ′ = V ∧ I ∩ ↑(V ′ ∪ {x } ) = ∅ ∧ x /∈ ↑V ′ ∧ x /∈W
4 ∧ Invterm(V ′,W ∪ {x } ) ∧ (I, V ′,W ∪ {x } ) = α }
5 V := minimize(V ∪ {x } );
6 { ∃V ′ : ↑(V ′ ∪ {x } ) = ↑V ∧ I ∩ ↑V = ∅ ∧ x /∈ ↑V ′ ∧ x /∈W
7 ∧ Invterm(V ′,W ∪ {x } ) ∧ (I, V ′,W ∪ {x } ) = α }
8 { ∃V ′ : I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
9 ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

10 O := opb(x);
11 { ∃V ′ : |O| = opb(x) ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
12 ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
13 { ∃V ′ : |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
14 ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
15 { inv: ∃V ′ : |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
16 ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α } {bd: O }
17 while O 6= ∅ do
18 β := O;
19 { ∃V ′ : O 6= ∅ ∧O = β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
20 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
21 let y ∈ O;
22 { ∃V ′ : y ∈ O ∧O = β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
23 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
24 O := O \ { y } ;
25 { ∃V ′ : y /∈ O ∧O ∪ { y } = β ∧ |O ∪ { y } | ∈ N ∧ I ∩ ↑V = ∅
26 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
27 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
28 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
29 process_new_state /* see Lemma 4.19 */
30 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
31 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
32 od
33 { ∃V ′ : O = ∅ ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
34 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
35 { Invterm(V,W ) ∧ InvVW (V,W ) ∧ (I, V,W ) <termlex α }

Figure 4.12.: Proof outline for termination –
add_predecessors.
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4.3. Termination

// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
2 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
3 if y /∈ ↑V then
4 { ∃V ′ : y /∈ ↑V ∧O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
5 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
6 W := minimize(W ∪ { y } );
7 { ∃V ′ : y ∈ ↑W ∧ y /∈ ↑V ∧O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
8 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
9 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅

10 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
11 σ := witx(y) · τ ;
12 { ∃V ′ : σ = witx(y) · τ ∧O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
13 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
14 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
15 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
16 update_trace /* see Lemma 4.20 */
17 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
18 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
19 else
20 { ∃V ′ : y ∈ ↑V ∧O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
21 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
22 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
23 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
24 skip
25 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
26 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
27 fi
28 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
29 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

Figure 4.13.: Proof outline for termination –
process_new_state.
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4. Proof of the Algorithmic Framework

The remaining Lemma 4.20 uses that update_trace only changes T—
which does not occur in its pre- and postcondition—and nothing else.
Here, every assertion is mechanical, i.e. the property

{ ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

is conserved throughout the execution of the subalgorithm and the con-
juncts introduced by statements are discarded. We employ the “single-
ton” special case of the function assignment axiom (cf. Corollary 4.4) for
the effect of T (y) := σ.
Lemma 4.20 (update_trace and Termination). The correctness
formula

{ ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

update_trace
{ ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

is true in the sense of total correctness.

Proof. By the proof outline in Fig. 4.14, Lemma 2.12 on p. 48 (proof out-
lines imply correctness theorems) and Lemma 2.11 on p. 46 (soundness
of PW and TW).

Employing the lemmas 4.15 through 4.20, we accept the validity of the
proof outline shown in Fig. 4.8 which we presented at the beginning of
this section and conclude with the following proposition.
Proposition 4.21 (Termination of the Algorithmic Framework).
Given a WSLTS (S,L,→,�) with a decidable � and an effective pred-
basis, our algorithmic framework terminates for any finite sets I, F ⊆ S
if select, opb,wit are adequately instantiated. Formally,

`TW { |I| ∈ N ∧ |F | ∈ N } Algorithmic Framework { true } .

Proof. By the proof outline in Fig. 4.8 on p. 113 together with Lemma 4.15
(init), Lemma 4.16 (next_state), Lemma 4.17 (found_trace),
Lemma 4.18 (add_predecessors), Lemma 4.19
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4.3. Termination

// Invterm(V,W ) := |V | ∈ N ∧ |I| ∈ N ∧ |W | ∈ N ∧W ∩ ↑V = ∅
// InvVW (V,W ) := (W 6= ∅ ⇒ I ∩ ↑V = ∅)

1 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅ ∧ ↑V ′ ⊂ ↑V
2 ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
3 if T (y) = ⊥ ∨ |T (y)| > |σ| then
4 { ∃V ′ : (T (y) = ⊥ ∨ |T (y)| > |σ|)
5 ∧ O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
6 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
7 T (y) := σ
8 { ∃V ′ : T (y) = σ ∧O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
9 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

10 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
11 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
12 else
13 { ∃V ′ : ¬(T (y) = ⊥ ∨ |T (y)| > |σ|) ∧O ⊂ β ∧ |O| ∈ N
14 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
15 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
16 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
17 skip
18 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
19 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }
20 fi
21 { ∃V ′ : O ⊂ β ∧ |O| ∈ N ∧ I ∩ ↑V = ∅
22 ∧ ↑V ′ ⊂ ↑V ∧ Invterm(V,W ) ∧ (I, V ′,W ∪ {x } ) = α }

Figure 4.14.: Proof outline for termination – update_trace.
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4. Proof of the Algorithmic Framework

(process_new_state), Lemma 4.20 (update_trace) and
Lemma 2.12 on p. 48 (proof outlines imply correctness theorems).

4.4. Total Correctness

In the previous sections we have shown that each adequate instantia-
tion of the framework terminates for any valid input that is a labelled
coverability problem and that if it terminates its result is a correct an-
swer to that problem. The decomposition lemma allows to combine both
partial correctness and termination to conclude total correctness of our
algorithmic framework.

Theorem 4.22. Consider WSLTS (S,L,→,�) with decidable � and
effective pred-basis and let select, opb,wit be adequately instantiated. If
the algorithmic framework is run with finite sets I, F ⊆ S as input, it
terminates with a finite result V, T , s.t. if and only if F is coverable
from I, i.e. I ↪−→ F , then ↑V ∩ ↓ I is non-empty. For each state x in the
intersection of V and ↓ I, T (x) is a trace from x to ↑F . Formally,

|=tot { |I| ∈ N ∧ |F | ∈ N }
Algorithmic Framework{

(dist(↓ I, ↑F ) 6=∞⇔ ↑V ∩ ↓ I 6= ∅)
∧ ∀x ∈ V ∩ ↓ I : x

T (x)
↪−−−→ F

}
.

Proof. By Corollary 3.13 on p. 82, the finiteness of dist(↓ I, ↑F ) is equiv-
alent to F being coverable from I. The total correctness of the algorith-
mic framework (Alg. 3.7 on p. 80) follows from Proposition 4.13 (partial
correctness of the algorithmic framework) and Proposition 4.21 (termi-
nation of the algorithmic framework), together with Def. 2.23 on p. 46
(decomposition rule).

This closes the proof of our algorithmic framework.
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4.5. Differences in the Partial Correctness
Proofs

While the termination proofs for the basic BR and the algorithmic frame-
work work alike, there is a greater difference between the proofs of partial
correctness of the two algorithms. One point that factors into the differ-
ence between the two proofs are the types of problems they solve. The
framework algorithm solves the labelled coverability problem and thus
is concerned with sequences of transition labels whereas the basic algo-
rithm does not have to keep track of such traces. More importantly, in
the proof of the basic BR (Sect. 3.1.1 on p. 53), we had to use funda-
mental properties of the reflexive, transitive closure of the predecessor
relation, the upward-closure operator and the definition of the predeces-
sor basis (lemmas 3.3, 3.4, and 3.5). To some extent, these properties can
be considered to be low-level. Contrastingly, the framework was proved
under the application of the reasonably high-level properties Dist and
Wit of the distance and witness functions, defined in Sect. 3.4 on p. 81.
As the predecessor basis function pb is an instantiation of the optimized
predecessor function opb (cf. Sect. 3.4.1 on p. 82), the powerful distance
function and the Dist constraint are available if one has to show further
properties of the basic algorithm.
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Instantiating the Framework
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C H A P T E R F I V E

SSC Instances and Guided
Search

I may not have gone where I intended to go, but I think I
have ended up where I needed to be.
— Douglas Adams, The Long Dark Tea-Time of the Soul
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5. SSC Instances and Guided Search

In this chapter, we inspect several methods to increase the performance of
backward reachability analysis and show that these are, in fact, instances
of our concept of search space constructions by proving that they adhere
to conditionsDist andWit. These proofs are elegant, rather straightfor-
ward implications from the definitions of the methods which emphasizes
the generality and accessibility of our framework to new optimizations.
In Sect. 5.5, we discuss how the analysis can be improved by employing
strategies to guide the search.
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Figure 5.1.: Schematic example search space.

To visualize and compare the instances of search space constructions, we
show their effect when applied to a schematic state space (as well as our
running example Petri net Nex). The state space displayed in Fig. 5.1 is
explored backwards from state a. Transitions are labelled with numbers
1, . . . , 5 and four interesting states are labelled with a, b, c, d. The set of
initial states is I = { c } and the final state is F = { a } . The part to
the left of a is extraneous to our examples. In this example, the WQO
between states is irrelevant for unlabelled states, but for labelled states it
is a > b > c > d. Triangles indicate large regions of the state space that
have to be explored if the adjacent state is explored. When an SSC can
avoid the exploration of certain states in the following examples, these
are marked grey. Note that the portion of the state space to the right of
initial state c usually is not explored. However, it is allowed for SSCs to
skip over c and explore one of those states. Our acceleration may do so.
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5.1. Backward Acceleration – A Novel Approach

5.1. Backward Acceleration – A Novel
Approach

When we inspected the backward search space for several case studies,
we found regions that formed recurring patterns. The reason was the
repetition of transition sequences. The idea of backward acceleration is
to identify such repeating sequences. Intuitively, at the second occurrence
of σ in y σ

↪−→ x
σ
↪−→ z with y ≺ x ≺ z we compute the maximal extension of

σ: the transition sequence y′ τ
↪−→ x with τ = σk, k maximal. This means

the acceleration computes, in one step, the effect of a maximal number
of iterations of σ.
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Figure 5.2.: Recurring patterns in the search space of
the Kanban case study.
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Where applicable, backward acceleration can drastically reduce the ex-
plored search space. Take for example the two graphs in Fig. 5.2 which
represent different search spaces of the Kanban case study (which we
recall in Sect. B.3 on p. 250), a P/T Petri net. Both graphs were auto-
matically generated by our tool Petruchio/BW and both show traces
from the top to the bottom. Some marking, covered by the initial mark-
ing, is located at the top and the single target marking is located at the
bottom. Black lines of the graph were explored backwards and the gray
lines indicate the exact trace found in order to give evidence that the
target marking indeed is coverable from the initial marking.

In Fig. 5.2a, a form of repetition is clearly visible—both in the graph’s
upper part with large “plateaus” and in its lower part. Our backward
acceleration is capable of detecting some specific case of repetition and
may then introduce a short-cut in the exploration of the search space
as depicted in Fig. 5.2b. Here, after a single occurrence of the repeating
“plateau”-pattern (center of graph), backward acceleration kicks in and
delivers the maximal extension of the pattern in one step while still
conserving information on the transition sequence. The long gray line on
the right hints on how many exploration steps are omitted.1

We propose a two-step approach for the implementation of backward
acceleration: Given some state x and y ∈ pb(x), we construct a set of
states x′ ∈ S so that y is backward reachable from x′ and x′ is greater
than y. (In Fig. 5.3 it corresponds to x = ◦, y = b, and x′ = a.) Transition
sequences σ connecting x′ and y, i.e. y σ

↪−→ x′, are candidate sequences
for extension to some maximal k s.t. state y′ ≺ y is reached via y′ σk

↪−→ y.
In this example, we call y′, y and all the intermediate states y0, . . . , yk
in the sequence

y′ = yk
σ
↪−→ yk−1

σ
↪−→ · · · σ

↪−→ y0 = y
σ
↪−→ x′ ,

accelerated predecessors of x′. Formally, the set of (acceleration candidate)
states from which candidate sequences might originate is

{x′ ∈ S | y ≺ x′ ∧ y ∈ pre∗(x′) } .

1The nose-like bend to the right stems from the automatic layout of the graph. The
gray line goes around the (very long) inscription of the one long black arrow.
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The definition of the backward acceleration SSC takes some subset of
the accelerated predecessors and uses it in an conservative extension
of the predecessor basis to determine function opb. The reason to only
take a subset instead of all the accelerated predecessors is to allow for
reasonable implementations of the optimization: As the set of accelera-
tion candidates takes into account all states x′, s.t. y ≺ x′ ∈ suc∗(y),
constructing this set itself poses a labelled coverability problem.2 The
weakened restriction of asking for a subset of acceleration candidates
enables implementations to consider only those acceleration candidates
that are “easy” to find, for example those in set V of our framework
algorithm. We will go into more detail in Sect. 5.1.2 where we discuss
our implementation.

Definition 5.1 (Backward Acceleration). Given a WSLTS (S,L,→
,�) and some state x. Consider a subset Ax of the set of all accelerated
predecessors of x, i.e.

Ax ⊆ { y′ ∈ pre∗(↑ pb(x)) | ∃y ∈ pb(x), x′ ∈ S, σ ∈ L∗, k ∈ N :

y′ ≺ y ≺ x′ ∧ y′ σk

↪−→ y
σ
↪−→ x′ } .

The optimized predecessor function backward acceleration is defined as

opbaccel(x) := minimize(Ax ∪ pb(x)) .

The corresponding witness function witaccel,x maps each y′ ∈ opbaccel(x)
to either lblx(y′) if y′ is a one-step predecessor of x or to the path σk ·
lblx(y), where σ and y are used in the computation of set Ax. ♦

This definition implies that for each acceleration y′
σk

↪−→ y only those
y′ with maximal k are retained as optimized predecessors by the basis
construction via minimize. Note that y is strictly larger than each of its
accelerated states y′ and is removed.

2We begin at initial states I = { y } and ask the question if a finite basis of the set of
states that are strictly greater than y, i.e. F = basis( {x′ ∈ S | y ≺ x′ } )—which
exists due to Lemma 2.6 on p. 22 (finite basis) as the set of states greater than y
is upward-closed—, is coverable (cf. Def. 2.16 on p. 35). If the answer is “yes”, we
have found an acceleration candidate x′ and a corresponding trace σ with y

σ
↪−→ x′

as returned by algorithm Alg. 3.7 on p. 80.
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Figure 5.3 illustrates the effect of backward acceleration. Assume a is in
the basis of processed states V and we currently explore the unlabelled
state ◦. In a first step, the algorithm follows transition 1 and finds state
b. It discovers that a is strictly larger than b and that a is a successor
of b. Sequence 3 2 1 leads backward from a to b, and is thus a candidate
for backward acceleration. To compute its maximal extension, we follow
3 2 1 from b to state c. Since c again is strictly smaller than b, we repeat
the procedure and reach d ≺ c. From d the sequence does not lead to a
smaller state, which terminates the acceleration. The set of accelerated
states { c, d } is combined with the predecessor basis pb(◦). Minimization
of the resulting set yields { d } .
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Figure 5.3.: Schematic example search space for acceleration.

Example 5.1 (Backward Acceleration for Nex). In Fig. 5.4 we have
drawn the search space of Nex w.r.t. mΩ where we used backward accel-
eration to reduce the number of states visited. States that are visited in
the full search space (cf. Fig. 2.7 on p. 32) but not in the reduced space
in this example are coloured gray.
The effect of the backward acceleration is clearly visible in the two long
arrows labelled (t3t1)1t3 and (t3t5t1)1t3 that originate in p2 and point
to p3 + 2p5 and p3 + p5 + p7. To understand the process of acceleration
starting from p3 + p5 + p7, we observe the covering predecessor w.r.t. t3,
i.e. p2 + p7, which is strictly less than state p2 + 2p7 which the algorithm
has already visited at this stage (it is the final state mΩ). Backward
acceleration tells us that p2 + 2p7 is an acceleration candidate and a
candidate sequence is σ = t3t5t1 as p2 +2p7

σ
↪−→ p2 +p7 holds. Notice that

while there are several different candidate sequences that we can describe
by the regular expression t3t5t1(t3t1)∗ + t3t1t5(t3t1)∗ in this example we
consider only one sequence.
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Figure 5.4.: Exploration of Nex ,mΩ with backward acceleration.

In the second step of backward acceleration, the set of accelerated pre-
decessors is constructed. Therefore, from the current state p2 + p7 the
algorithm constructs the search space along the candidate sequence. Fol-
lowing the sequence once leads to state p2 (as p2

σ
↪−→ p2 + p7) which is

strictly less than p2 + p7. Taking the sequence a second time leads to
p2 + p5. Since this state is not strictly less than p2, backward acceler-
ation does not consider p2 + p5 as part of the accelerated predecessors.
No further iteration of the sequence leads to a lesser state and the set of
accelerated predecessors is determined to be { p2 } .
The result of the backward acceleration is defined to be minimize( { p2 } ∪
pb(p3 +p5 +p7)) which is minimize( { p2 } ∪ { p2 + p7, p3 + 2p5 } ). Mini-
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mization leaves us with optimized predecessors p3 + 2p5 (via t5) and the
accelerated predecessor p2 (via (t3t5t1)1t3).
To complete the picture, backward acceleration has a positive effect when
exploring the pred-basis of p3+2p5. There, acceleration candidate p2+2p5
is found as a greater successor of p2 + p5 via trace t3t1 which is then
followed to lead to p2.
A situation were backward acceleration has no positive effect is found
at the top part of the graph. A covering predecessor of p2 + p3 + p5
w.r.t. transition label t3 is 2p2 which is strictly less than both 2p2+p7 and
2p2 +p5. Nevertheless, attempting to follow the corresponding candidate
sequences leads to 2p2—both via t3t1t5 and t3t1—which is not less than
2p2 and therefore is not considered an accelerated predecessor.
In comparison to the original search space, backward acceleration allowed
the backward analysis to skip over four states. ♦

In the sections 5.2 and 5.3 we recall pruning and partial-order tech-
niques which reduce the “out-degree” of the traversed state space, i.e. its
“breadth”. Contrasting to those techniques, backward acceleration can
reduce its “depth”. Another difference is that backward acceleration is
applicable to WSLTSs in general, no notion of dependence of transitions
(as needed for partial-order reduction) and no over-approximation of the
system’s state space (as for pruning) is required. This generality hints
that backward acceleration may not perform as well as model-specific op-
timizations. We will discuss the performance in Sect. 7.2 on p. 207 where
we present the results of our experimental evaluation. In Sect. 5.1.2 we
discuss how the maximal extension can be computed in general. However,
for certain WSLTSs the state resulting from the maximal extension σk
of a candidate sequence σ might be computed directly without actually
executing σk. In Sect. 5.1.3 we look at the computation of accelerated
predecessors for PN markings.

5.1.1. Backward Acceleration is an SSC

As a high-level argument for backward acceleration being an SSC, con-
sider the set

↑ opbaccel(x) = ↑minimize(Ax ∪ pb(x)) = ↑Ax ∪ ↑ pb(x)
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which subsumes the upward-closure of the pred-basis, i.e. ↑ pb(x) ⊆
↑ opbaccel(x). Since already pb(x) is distance reducing, we conclude

dist(↓ I, ↑ opbaccel(x)) ≤ dist(↓ I, pb(x)) < dist(↓ I, ↑x) .

The full proof is captured in Proposition 5.1.

Proposition 5.1. Backward acceleration is a search space construction.

Proof. Let S = (S,L,→,�) a WSLTS, V, I ⊆ S sets of states, x ∈ S
a state, and Ax a set of accelerated states w.r.t. x and opbaccel(x) =
minimize(Ax ∪ pb(x)).

• Due to the well-foundedness property of the WQO, implying that
there are no infinite strictly decreasing sequences of states, set Ax
is finite, i.e. condition Fin is satisfied. With the finiteness of pb(x)
and the finiteness of the result of the minimize function, opbaccel(x)
is finite.

• To show that condition Dist is met, we relate pre∗(↑ opbaccel(x))
with pre∗(↑Ax) and pre∗(↑ pb(x)).

pre∗(↑ opbaccel(x))
= pre∗(↑minimize(Ax ∪ pb(x)))

(backward acceleration [Def. 5.1])
= pre∗(↑(Ax ∪ pb(x))) (minimize [Def. 3.4 on p. 79])
= pre∗(↑Ax ∪ ↑ pb(x)) (Distr. ↑,∪ [Lemma 2.5-2 on p. 21])
= pre∗(↑Ax) ∪ pre∗(↑ pb(x))

(Distr. pre,∪ [Lemma 2.7-1 on p. 24])

To simplify this union, we show that pre∗(↑Ax) is a subset of
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pre∗(↑ pb(x)).

Ax ⊆ pre∗(↑ pb(x)) (backward acceleration [Def. 5.1])
⇒ ↑Ax ⊆ ↑ pre∗(↑ pb(x))

(Monotonicity ↑ [Lemma 2.5-3 on p. 21])
⇒ pre∗(↑Ax) ⊆ pre∗(↑ pre∗(↑ pb(x)))

(Monotonicity pre∗ [Lemma 2.7-2 on p. 24])
⇒ pre∗(↑Ax) ⊆ pre∗(pre∗(↑ pb(x)))

(pre∗ of a UCS [Lemma 2.8 on p. 26])
⇒ pre∗(↑Ax) ⊆ pre∗(↑ pb(x))

(Idempotence pre∗ [Lemma 2.7-3 on p. 25])

In conjunction, we conclude that

pre∗(↑ opbaccel(x)) = pre∗(↑ pb(x))

holds, expressing that the states backward reachable from the op-
timized (accelerated) predecessors of x are exactly those back-
ward reachable from the one-step predecessors of x. Assume that
dist(↓ I, ↑x) 6=∞ and further that condition Dist is violated, i.e.

dist(↓ I, ↑ opbaccel(x)) ≥ dist(↓ I, ↑x) .

This implies that for every state y ∈ pre∗(↑ opbaccel(x)) the dis-
tance dist(↓ I, y) is at least dist(↓ I, ↑x). As we have seen, this is
equivalent to the statement that for every state y ∈ pre∗(↑ pb(x))
the distance dist(↓ I, y) is at least dist(↓ I, ↑x), which implies

dist(↓ I, ↑ pb(x)) ≥ dist(↓ I, ↑x) .

This contradicts the definitions of pb and dist. Hence, condition
Dist is satisfied by opbaccel .

• The witaccel,x function meets the Wit condition by definition.

We conclude that backward acceleration is a search space construction.
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5.1.2. Practical Approach to Backward Acceleration

As stated in the context of Def. 5.1, the question whether a state can
be accelerated, i.e. if there is a acceleration candidate and a candidate
sequence, is a coverability problem in itself and we therefore allow to
restrict the search for such candidates. In our reference implementation
of this SSC, upon the inspection of some state y ∈ pb(x) the basis of
visited states V (cf. algorithmic framework Alg. 3.7 on p. 80) is searched
for acceleration candidates x′ � y. The framework knows the trace from
y to the final states to be lbly(x) · τ , where τ is a trace from x to the

upward-closure of final states, i.e. y
lbly(x)
↪−−−−→ x

τ
↪−→ F .

There are at least two methods to find a candidate sequence from x′ to
y and also to check if y indeed is a covering predecessor of x′.

1. Starting from y, follow along trace lbly(x) · τ and keep track if one
of the intermediate states is greater or equal to x′. For example, let
lbly(x) · τ be t1t2 . . . tn and compute y t1

↪−→ s1
t2
↪−→ s2

t3
↪−→ · · · tn

↪−→ sn.
If si � x′, then the prefix t1t2 . . . ti is a candidate sequence since
x′ is coverable from y via that sequence, i.e. y t1t2···ti

↪−−−−−→ x′.

2. To retrieve a candidate trace σ from a state y and an acceleration
candidate x′, we may use that the algorithmic framework allows to
lose traces of states not in W , but the correctness proof does not
require to do so: Function T may associate ⊥ with states in W ,
but if it associates a trace with state x′, then the trace has to lead
from that state to the upward-closure of the final states.

Let γy be lbly(x) · τ from above, s.t. y
γy

↪−→ F . If we have a trace
γx′ from x′ to ↑F , i.e. x′ γx′

↪−−→ F , then we can easily identify if y
is a covering predecessor of x′ by testing if γx′ is a suffix of γy.
Furthermore, the prefix of γy of length |γy| − |γx′ |—where |γ| is
the length of sequence γ—is a candidate sequence. In Fig. 5.5 an
example of this approach is given with transition labels 0, 1, . . . , 7.
This is the option we chose for our reference implementation.

Computing the accelerated predecessors of y w.r.t. the candidate se-
quence σ is rather straight-forward. Consider the next accelerated pre-
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γx′ = 6 7 6 5
γy = 0 1 2 3 6 7 6 5

candidate equal suffix
sequence

Figure 5.5.: Example of constructing a candidate sequence

decessor of y is y′, as y′ σ
↪−→ y, and the sequence σ is t1t2 . . . tn. We

construct the sets Y1,n+1 = { y } and

Y1,i = basis(
{
z ∈ S | z ti

↪−→ Y1,i+1

}
) for each n ≥ i ≥ 1 ,

s.t. Y1,i is the predecessor basis of the states in Y1,i+1 w.r.t. transition
label ti. To compute the covering predecessors w.r.t. a specific transition
label t, we can use the pred-basis of the respective states, for example
pb(y), and retain only those states z ∈ pb(y) with lblz(y) = t.3

As the result, the set Y1,1 is a basis of states from which y is cover-
able via σ1. Thus, all states in Y1,1 which are strictly less than y are
accelerated predecessors of y. Starting from these accelerated predeces-
sors, i.e. Y2,n+1 = { y1 ∈ Y1,1 | ∃z ∈ Y1,n+1 : y1 ≺ z } , we reiterate the
process to construct a basis of states from which y is coverable via σ2.
Successively, we build the sequence of sets

Yj,n+1 = { yj ∈ Yj−1,1 | ∃yj−1 ∈ Yj−1,n+1 : yj ≺ yj−1 } and

Yj,i = basis(
{
z ∈ S | z ti

↪−→ Yj,i+1

}
)

for each n ≥ i ≥ 1 and j ≥ 2 until for some j = k, set Yj,n+1 will
be empty. This termination is guaranteed by Lemma 2.2 on p. 18 (well-
foundedness) as we construct a strictly decreasing sequence of states
y � y1 (∈ Y1,n+1) � y2 (∈ Y2,n+1) � · · · which is bound to be finite.

Assume, the k + 1-th set Yk+1,n+1 is empty, then the set of accelerated

3In our reference implementation of the algorithmic framework, the pred-basis com-
putation is enforced to be done w.r.t. a given transition label.
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predecessors we compute this way is

Ax =
k⋃

j=1
Yj,n+1 .

5.1.3. Computation of Maximal Extensions for Petri
Nets

In the setting of P/T Petri nets the construction of the maximal exten-
sions from an acceleration candidate and a candidate sequence is cheap as
the basis of covering predecessors of a marking is a singleton. Let us dip
into the details needed to compute the pred-basis of Petri net markings.

Definition 5.2 (Monus [Ame84]). For natural numbers a, b ∈ N, we
define the monus operation to be

a	 b := max { 0, a− b } . ♦

With this definition, we can easily compute a minimal basis of covering
predecessors w.r.t. a given transition.

Lemma 5.2 (PN Pred-Basis Computation). Given a PN (P, T,W ),
a transition t ∈ T , and a marking m ∈ NP , a minimal basis of covering
predecessors of m w.r.t. transition t consists solely of the marking mc =
(m	W (t,−)) +W (−, t).

Proof. To show that {mc } is a minimal basis as promised, we prove
1. that its successors w.r.t. t do cover m and 2. that there is no strictly
smaller marking with this property.

1. The successor of mc w.r.t. t is

mc −W (−, t) +W (t,−)
= ((m	W (t,−)) +W (−, t))−W (−, t) +W (t,−)
= (m	W (t,−)) +W (t,−) ,
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5. SSC Instances and Guided Search

i.e. for each p ∈ P , the marking contains (m(p)	W (t, p))+W (t, p)
tokens on the place. More precisely, by Def. 5.2, for each p ∈ P , we
have max { 0,m(p)−W (t, p) } +W (t, p) which we transform to

max { 0 +W (t, p),m(p)−W (t, p) +W (t, p) }
= max {W (t, p),m(p) } .

This means that the successor marking is greater or equal tom and
therefore the marking under consideration is a covering predecessor.

2. Assume there is a marking ms that is strictly smaller than mc and
its successor w.r.t. t covers m, formally, mc > ms

t
↪−→ m. Without

loss of generality, let p ∈ P be a place with ms(p) < mc(p). Again
w.l.o.g, we choose ms(p) = mc(p)−1. When firing transition t from
ms we end up with

mc(p)− 1−W (p, t) +W (t, p)
= ((m(p)	W (t, p)) +W (p, t))− 1−W (p, t) +W (t, p)
= max { 0,m(p)−W (t, p) } +W (t, p)− 1
= max {W (t, p)− 1,m(p)− 1 }

tokens on the successor marking. As this successor covers m it fol-
lows that max {W (t, p)− 1,m(p)− 1 } ≥ m(p) holds and there-
fore

max {W (t, p)− 1,m(p)− 1 } = W (t, p)− 1 .

This implies that W (t, p) is strictly larger than m(p). Since mc is
defined to have (m(p) 	W (t, p)) + W (p, t) tokens on place p and
with the definition of monus we havemc(p) = W (p, t). But now the
successormc+W (−, t)+W (t,−) contains exactlymc(p)−W (p, t)+
W (t, p) = W (t, p) tokens on place p and we know from the proof of
mc being a covering predecessor of m, that its successor covers m,
i.e. that W (t, p) is greater than or equal to m(p)! Thus, W (t, p) >
m(p) ≤ W (t, p) holds. This is a contradiction and therefore the
assumption that there exists a covering predecessor w.r.t. t that is
strictly smaller than mc is false.

The minimal basis of covering predecessors of marking m consists of
marking mc only.
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With this pred-basis computation, the method to find the maximal ex-
tension of a candidate sequence σ for some marking m is simply to

1. start with m1 = m and i = 1 and

2. find the covering predecessor mi+1 of mi w.r.t. σ = t1t2 · · · tn by
computing

mi+1 = (· · · ((mi 	W (tn,−)) +W (−, tn))	 · · ·
	W (t1,−)) +W (−, t1) ,

3. if mi+1 < mi, then mi+1 is an accelerated predecessor of m and we
can increment i and repeat step 2,

4. else there are no more accelerated predecessors.

Summing up, in the Petri net setting, where there is no branching in the
pred-basis computation, finding the maximal extension of a candidate
sequence can be achieved rather conveniently.

5.2. Pruning

During backward reachability analysis, states may be explored which
are backward reachable from ↑F , but are not forward reachable from
↓ I, i.e, they lie in pre∗(↑F ) \ suc∗(↓ I). Here, suc(X) is the set of one-
step successors of X and pre∗, suc∗ are the reflexive transitive closures
of pre, suc. Such states do not contribute to coverability and should be
avoided during the search. This is a typical problem of backward analysis
methods (cf. for example [HKQ03]). To our knowledge, the first to attack
this problem in the context of Petri nets and the basic BR by employing
structural properties of the model under consideration were Delzanno
et al. [DRV01].
For pruning, it is assumed that there is a known over-approximation
P ⊇ suc∗(↓ I) which is then used to cut off states from outside P dur-
ing the analysis. Figure 5.6 shows the effect of pruning with an over-
approximation guaranteeing that states reached backward from a, b, c, d
via transition 5 are not reachable from ↓ I.
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Figure 5.6.: Schematic example search space for pruning.

Definition 5.3 (Pruning). Given a WSLTS (S,L,→,�), a finite set
of initial states I ⊆ S, an over-approximation of the reachable states
P ⊇ suc∗(↓ I), and some state x, we define the pruning SSC by

opbprune(x) := ↓P ∩ pb(x) .

As only one-step predecessors are returned by opbprune, function witprune
is the trivial

witprune,x(y) := lblx(y) . ♦

Example 5.2 (Pruning for Nex). In Fig. 5.7 we have drawn the search
space of Nex w.r.t. mΩ where we used pruning via the structural heuris-
tics of place invariants to reduce the number of states visited. States that
are visited in the full search space (cf. Fig. 2.7 on p. 32) but not in the
reduced space in this example are coloured gray.
A place invariant of the example Petri net Nex w.r.t. initial marking mα

is p2 + p3 = 1, ensuring that every marking that is reachable from mα

contains exactly one token on either place p2 or place p3. We represent the
downward-closure of this invariant by p2 + p3 ≤ 1 which means that any
marking m coverable from mα satisfies the equation m(p2) +m(p3) ≤ 1
and vice versa, for any marking m′ with m′(p2) + m′(p3) > 1 that is
explored (backwards) by our algorithm, we immediately know that is it
not coverable from mα.
In the search space depicted in Fig. 5.7, we see that pruning allows us
to identify the states 2p2 + p7 and 2p2 + p5 to violate the constraint
p2 + p3 ≤ 1, as already p2 contains two tokens. Therefore, these states
are not explored.
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Figure 5.7.: Exploration of Nex ,mΩ with pruning.

As the invariant provides only an over-approximation of the state space,
there are cases where the marking is not reachable but not pruned. Con-
sider (a new) final state p1 + p6 for example which is not coverable as
both p1 and p6 cannot be marked at the same time. The token from p1
has to be consumed by transition t2 in order to produce a token on p4
which then enables transition t4 (if p5 is has tokens)—the only transition
that produces tokens in p6 (cf. Fig. 2.2 on p. 14). As p6 is unbounded,
meaning that an arbitrary number of tokens can be produced on this
place, Petri net theory (cf. for example [STC98]) tells us that there is
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5. SSC Instances and Guided Search

no P-invariant with a non-zero weight for p6.4 The result is that pruning
via P-invariants cannot reject the marking p1 + p6. ♦

Lemma 5.3. Pruning is a search space construction.

Proof. Let (S,L,→,�) a WSLTS, I ⊆ S a finite set of initial states,
x ∈ S a state, and P ⊇ suc∗(I) an over-approximation of the reachable
state space.

• Since opbprune(x) ⊆ pb(x), it is finite, i.e. condition Fin is satisfied.

• For case dist(↓ I, ↑x) =∞ condition Dist is trivially satisfied.
Let dist(↓ I, ↑x) = k ∈ N. The definition of dist guarantees the
existence of a y ∈ pb(↑x) = ↑ pb(x) with dist(↓ I, y) = k − 1. In
order to show satisfaction of Dist, we prove that y does not get
pruned, i.e. y ∈ ↑ opbprune(x) = ↑(↓P ∪ pb(x)) = ↑(↓P ∪ ↑ pb(x)):
For y to lie in the intersection, y ∈ ↓P has to hold as y ∈ ↑ pb(x)
already applies.
From P ⊇ suc∗(I) ⊇ I and ↓P ⊇ P follows ↓P ⊇ ↓ I. Together
with dist(↓ I, y) = k − 1, which implies that y is reachable from
↓ I, it follows that y ∈ ↓P . Thus y ∈ ↓P ∩ ↑ pb(x) and moreover
y ∈ ↑ opbprune(x).
Therefore, condition Dist is satisfied by opbprune.

• The witprune,x function is simply lblx , for which we know that it
satisfies Wit.

We conclude that pruning is a search space construction.

We stress that pruning depends on an over-approximation of the con-
crete model under consideration, i.e, the technique requires knowledge
of the system class. As mentioned in Sect. 5.1 on backward acceleration,
our experiments (cf. Sect. 7.2 on p. 207) show that knowledge gained by
static analysis of the model under consideration, like pruning by struc-
tural heuristics as P-invariants, has a rather high positive impact on the
running time of our reference implementation.

4More precisely, place p6 is not structurally bounded. If a place is structurally
bounded, it is bounded for any initial marking. Of course, p6 is bounded if the
initial marking is empty as Nex cannot fire any transition in that case.
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5.3. Partial-Order Reduction

As shown in Example 5.2 for Petri nets—and even Petri nets with
transfer—, over-approximations of the search space can be obtained by
classical P-invariants [STC98, Cia94].5 For LCSs, one can use symbolic
configurations that represent alternative channel contents by simple reg-
ular expressions [ABJ98]. This data structure is then wrapped into an
EEC [GRV06b] style over-approximation.

5.3. Partial-Order Reduction

Partial-order reduction (POR) tries to avoid the exploration of several
interleavings of independent transitions [Val90, Pel93, Pel96, ABH+97].
In the context of backward reachability analysis, this means we perform a
selection of direct predecessors rather than inspecting them all [AJKP98].
Figure 5.8 shows that from the three possible states leading to a, only
one is explored: the transition sequences 4, 1 2 3, and 3 2 1 were identified
to lead to the same state and two of them were discarded.
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Figure 5.8.: Schematic example search space for POR.

Definition 5.4 (Partial-Order Reduction). Consider (S,L,→,�) a
WSLTS, a finite set of initial states I ⊆ S, and a state x ∈ S. Par-
tial-order reduction relies on a function choose : S −→ P(L) which maps

5The computation of good, i.e. “minimal semi-positive” P-invariants efficiently is
an important subject of research—especially with their connection to so-called
siphon-trap structures in Petri nets. See for example [CS91, TITW05, OWW10,
DT88].
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5. SSC Instances and Guided Search

a state to a set of transition labels. The function has to satisfy the fol-
lowing constraints in order to yield a correct algorithm [AJKP98]6:

1. Taking a transition with a chosen label backwards from state x
yields a smaller state than taking a transition with a label not
chosen.
In detail, every selected transition label ` ∈ choose(x) has to be
independent from each sequence σ ∈ (L \ choose(x))∗ of labels not
selected. Independence means that for any partition τ1τ2 of σ, state
y reached backwards from x with τ1τ2` has to be smaller than
or equal to state y′ reached backward from x with ` postponed,
i.e. with sequence τ1`τ2. More formally, with the above x, y, y′,
and `,

∀τ1, τ2 ∈ (L \ choose(x))∗ : x τ1τ2`←−−−↩ y ≤ y′ τ1`τ2
↪−−−→ x .

2. There is no sequence σ ∈ (L \ choose(x))∗ of transition labels that
are not chosen but with which ↑x is reachable from ↓ I.
Technically, for any σ ∈ (L \ choose(x))∗ and any set X ⊆ S,
↓ I σ

↪−→ X implies X ∩ ↑x = ∅.

Partial-order reduction then keeps those states of pb(x) that result from
backward application of transitions with selected labels:

opbpor(x) df= { y ∈ pb(x) | lblx(y) ∩ choose(x) 6= ∅ } .

As only one-step predecessors are computed, the witpor function is the
trivial

witpor,x(y) := lblx(y) . ♦

Example 5.3 (Partial-Order Reduction for Nex). In Fig. 5.9 we
have drawn the search space of Nex w.r.t. mΩ where we used POR to
reduce the number of states visited. States that are visited in the full
search space (cf. Fig. 2.7 on p. 32) but not in the reduced space in this

6In [AJKP98] it is stated that the second condition on choose can be replaced by
three other conditions leading to a more general version. However, for sake of
brevity, we stick to the simpler, more specialized version. Please see [Pel98] for an
overview of POR methods.
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Figure 5.9.: Exploration of Nex ,mΩ with partial-order reduction.

example are coloured gray. We assume it is always allowed to postpone
transitions t1 and t3 in relation to t5, i.e. if minimal covering predecessors
are reached backwards via t1 or t3 and t5, then only the predecessor
w.r.t. t5 remains in the optimized predecessor basis. For example, from
the final marking p2 + 2p7, there are two markings, p2 + p5 + p7 (via
t5) and p3 + 2p7 (via t1), in the minimal basis of covering predecessors.
As transition t1 can be postponed w.r.t. t5, the choose operation returns
{ t5 } and only covering predecessor p2 + p5 + p7 is retained in the basis
of optimized predecessor. Observe that every path from the final state to
the initial state contains the chosen transition label t5 so that the second
constraint for partial-order reduction is satisfied.

149



5. SSC Instances and Guided Search

The effect in this specific Petri net example is rather drastic: except for
one detour from p2 +2p5 backwards via t3 into a part of the search space
which is not reachable from the initial marking, the explored search space
is almost reduced to only the sequence of transition labels with which
the final state is coverable (marking p3 is explored, too).
As an example for an invalid choose operation, consider that t5 is chosen
over t3 and t3 is chosen over t1. In this case, the path from p2 + p5 + p7
to the initial marking would be not be explored in the search, as only
transition t3 would be taken backwards to marking 2p2 + p5. This would
violate constraint 2 of Def. 5.4. ♦

Lemma 5.4. Partial-order reduction is a search space construction.

Proof. Let (S,L,→,�) a WSLTS, x ∈ S a state, and choose(x) a selec-
tion function for partial-order reduction.

• Since opbpor(x) ⊆ pb(x), it is finite, i.e. condition Fin is satisfied.

• For case dist(↓ I, ↑x) =∞ condition Dist is trivially satisfied.
Let dist(↓ I, ↑x) = k ∈ N. Let σ = `1 · · · · · `k ∈ L∗ be a se-
quence from y′ ∈ ↓ I to ↑x, i.e. y′ σ

↪−→ ↑x. By property 2 there
is an `i ∈ choose(x) with i minimal. By property 1, the state y
reached backward from ↑x by postponing `i is less equal to y′,
i.e. y

`1·····`i−1·`i+1·····`k·`i

↪−−−−−−−−−−−−−−→ x⇒ y ≤ y′, and thus y ∈ ↓ I.
As `i is in choose(x), no labels of transitions on a path to ↓ I are
neglected by opbpor(x). Furthermore, as opbpor(x) ⊆ pb(x), the
distance to ↓ I decreases: dist(↓ I, opbpor(x)) < k.

• The witpor,x function is simply lblx , for which we know that it
satisfies Wit.

We conclude that partial-order reduction is a search space construction.

As for pruning, we stress that partial-order reduction is an optimiza-
tion that takes into account specific knowledge about the system class
or about the concrete model under consideration. For Petri nets, the
dependence of transitions depends on the net’s structure as well as the
current marking for which its covering predecessors have to be computed.
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The technical details are presented and discussed in [AJKP98]. An in-
stantiation for lossy channel systems (LCSs) is introduced in [AKP97]
by three simple rules: 1. Operations of the same process are dependent.
2. A receive operation is chosen over a send operation if they use the
same channel, the same message and the channel is empty. 3. All other
operations are independent s.t. choose may make an arbitrary pick. To
understand the second rule, we turn to the computation of a minimal
basis of covering predecessors as stated in [AKP97, Def. 4].

Definition 5.5 (LCS Pred-Basis Computation). Let (Q,C,M,→)
be a lossy channel system and (q,W ) be a configuration of that LCS with
control states q1, q2 ∈ Q and channel content W2 ∈ M∗C . Furthermore,
let c ∈ C be a channel and m ∈ M be a message. The only configu-
ration in the minimal pred-basis of (q2,W ) depends on the considered
transition’s operation.

• In case the transition is a local operation, i.e. q1
τ−→ q2, then the

covering predecessor configuration is (q1,W ).

• If the transition is a receive operation, i.e. q1
c?m−−→ q2, then the

covering predecessor configuration is (q1,W [c := m ·W (c)]).

• For a send operation, i.e. q1
c!m−−→ q2, then the covering predecessor

configuration is one of two possible: 1. If W = v ·m for some v ∈
M∗, then the predecessor is (q1,W [c := v]), 2. otherwise (q1,W ) is
obtained which means that message m has been lost after sending.

♦

From this definition, we see why the second rule for partial-order re-
duction in LCSs favors receive operations over send operations in the
specific case that the message introduced (backwards) by the receive op-
eration can then be consumed by the send operation. Here, the POR’s
core idea is to omit the backward execution of a send operation on an
empty channel (which does not change the channel content) followed by
a receive operation that produces the same message on the channel. In
the execution order enforced by POR, the message is first produced and
then consumed, leading to a smaller configuration.
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5.4. Combination of Search Space
Constructions

In order to build a fast decider for the coverability problem, we are in-
terested in exploiting more than one SSC. Care has to be taken when
combining SSCs in order to construct a stronger SSC: While the intersec-
tion of pruning and POR, (opbprune ∩ opbpor , lbl), is an SSC because both
optimized predecessor functions give subsets of pb and they are compat-
ible, the intersection of pruning, POR, and the backward acceleration,
(opbprune ∩ opbpor ∩ opbaccel ,witaccel), is not. The result of backward ac-
celeration may lie outside of pb, so the intersection can be empty.
In our tool, we found that chaining yields best results when the three
SSCs are combined s.t.

(1) first, partial-order reduction is applied, leaving opbpor(x), then

(2) a variation of pruning is applied on opbpor(x), leaving

opbprune′(x) = ↓P ∩ opbpor(x) ,

and finally,

(3) backward acceleration is modified to be applied on opbprune′(x), in
the sense that pb(x) is replaced by opbprune′(x).

Thus, a partial-order reduction is performed on the predecessors of some
state, leaving few; of these predecessors, those contradicting an over-
approximation get pruned, and the remaining states are accelerated.
This chaining is particularly useful for an implementation of backward
acceleration if the POR is deterministic in choosing certain transitions
over others, leading to more homogeneous transition sequences between
states, making them easier to exploit.
While it is sufficient to compute the predecessor basis of x w.r.t. POR and
then remove states according to the pruning SSC from an implementation-
focused perspective, to show that the proposed combination of partial-
order reduction, pruning and backward acceleration is an SSC, we use
that the result is the same when backward acceleration is applied on the
intersection opbprune(x) ∩ opbpor(x).
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Definition 5.6 (Combined Optimization PORPA). Consider some
state x of a WSLTS (S,L,→,�). Let Z be a shorthand for opbpor(x) ∩
opbprune(x). Let Ax be a subset

Ax ⊆ { y′ ∈ pre∗(↑Z) | ∃y ∈ Z, x′ ∈ S, σ ∈ L∗, k ∈ N :

y′ ≺ y ≺ x′ ∧ y′ σk

↪−→ y
σ
↪−→ x′ } .

The optimized predecessor function PORPA is defined as

opbporpa(x) := minimize(Ax ∪ Z) .

The corresponding witness function maps each y′ ∈ opbporpa(x) to either
lblx(y′) = witpor,x(y′) = witprune,x(y′) if y′ is a one-step predecessor of
x or to the path σk · lblx(y), where σ and y are used in the computation
of set Ax. ♦

Lemma 5.5. The combined optimization PORPA is an SSC.

Proof. The proof is analogous to the one from Proposition 5.1 via the
argument that X = opbpor(x)∩opbprune(x) is distance reducing as POR
is an SSC and pruning only removes predecessors that are unreachable
(cf. Lemma 5.4 and Lemma 5.3).

Example 5.4 (Effect of Combined SSC PORPA for Nex). The
search space of Nex w.r.t. mΩ where we used the combined optimization
PORPA to reduce the number of states visited is depicted in Fig. 5.9.
States that are visited in the full search space (cf. Fig. 2.7 on p. 32) but
not in the reduced space in this example are coloured gray.
For the partial-order reduction part of PORPA (cf. Fig. 5.9) we assume
it is always allowed to postpone transitions t1 and t3 in relation to t5,
resulting in following transition t5 backwards from frommΩ to p2+p5+p7
and further to p2 + 2p5 before any other marking is explored.
From the pruning component of PORPA (cf. Fig. 5.7) we know that
2p2 + p5—which would be reached from p2 + 2p5 via t3—does not lie
in the reachable states space’s over-approximation via the downward-
closure of the net’s structural P-invariant p2 + p3 = 1 as the sum of the
tokens on places p2 and p3 is larger than 1.
The remaining predecessor p3 + 2p5 is examined. It has only one prede-
cessor in its minimal pred-basis: p2+p5. This marking is not added to the
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Figure 5.10.: Exploration of Nex ,mΩ with combined SSC PORPA.

search space as the backward acceleration part of PORPA (cf. Fig. 5.4)
kicks in and jumps directly to marking p2 via sequence t3 (t1 t3)1.

In conclusion, the search space explored with PORPA is much smaller
than with any of the optimizations alone—at least in this example. Also
we can observe that the effect of the model-independent backward ac-
celeration appears to be less pronounced (two states omitted vs. twelve
states omitted) than the effects of the two optimizations that base on
model-specific knowledge. ♦
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5.5. Guided Search
As we have seen in the previous section, methods that reduce the back-
ward search space while retaining paths (or at least one path) to the
initial states if they exist, are highly important for the performance of
the search algorithm. In fact, as we will see in the experiments of Sect. 7.2
on p. 207, a blind search without any optimizations does not suffice to
answer even “simple” coverability queries.
While the optimizations of the previous section actively decrease the
number of explored states, there is another well-known technique to in-
crease the analysis’ performance: In guided search the analysis is directed
via a search strategy7 to explore certain states before others, hoping that
the initial states are reached earlier.
In our algorithmic framework (cf. Alg. 3.7 on p. 80) we allow for search
strategies to be implemented in the selection function select which chooses
a state from a basis of an upward-closed set. The only condition it has
to satisfy to be adequately instantiated is select(W ) ∈ W—where W is
a finite basis of the states that are to be explored next—and thus allows
for an arbitrary order for the states returned from W .
The order in which elements are chosen from W does neither influence
correctness nor termination of the algorithm. However, certain order-
ings are preferable as they lead to fewer loop iterations and in the best
case—if ↑F is reachable from ↓ I—a corresponding transition sequence
is explored backwards immediately.
Let (S,L,→,�) be a WSLTS, I ⊆ S a finite set of initial states, F ⊆ S a
finite set of final states, x, y ∈ S some states, and γx, γy ∈ L∗ sequences
of transition labels with x

γx
↪−→ F and y

γy

↪−→ F . In the context of our
algorithmic framework, we have the function T that gives sequences of
transition labels from elements of W to the final states and thus we may
have γx = T (x) and γy = T (y). Several common search strategies are
imaginable under the assumption that select picks an element minimal
w.r.t. a partial order ≤:

DFS) Let x ≤ y :⇔ |γx| ≥ |γy|. The selection function chooses a state
from W where the trace length is maximal, hence leading to a
depth-first search.

7See [LCL87] for some overview of early strategies.
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BFS) Let x ≤ y :⇔ |γx| ≤ |γy|. The selection function chooses a state
from W where the trace length is minimal, hence leading to a
breadth-first search.

BF) If we take a heuristic function h(x) that estimates (but does not
overestimate) the number necessary transition steps from ↓ I to
the state under consideration, we end up with a so-called greedy
best-first search and have x ≤ y :⇔ h(x) ≤ h(y).

A∗) Consider a heuristic function h(x) that is consistent, i.e, it estimates
(but does not overestimate) the minimal trace length from ↓ I to
state x and satisfies the triangle inequality. In other words: for any
predecessor y ↪−→ x of x, value h(x) does not exceed dist(y, ↑x) +
h(y) and every state in ↓ I is mapped to 0 [HNR68]. Let x ≤ y :⇔
|γx|+h(x) ≤ |γy|+h(y). The search order followed by the algorithm
then mimics the well-known A∗ search [HNR68] which combines the
approaches of greedy best-first search and breadth-first search.

In the context of BF and A∗, there exists a vast number of approaches
for such heuristic distance estimates. To name a few, the authors of
[DFP06, KHDB06, KHL08] propose to infer distance from certain ab-
stractions (on-the-fly), in [YD98]—among other ideas—the Hamming
distance between bit-vector representations of states is employed, and
in the more current approach of [WKP09], Wehrle et al. turn the focus
on so-called “useless transitions” which allow to provide a finer-grained
distance heuristics.
For our example classes of WSLTSs—Petri nets (with transfer) and lossy
channel systems (LCSs)—we can formulate a lower bound on the distance
of a state to ↓ I based on the model’s syntax.

5.5.1. Syntactic Distance and Syntactic Weight
For Petri nets (with transfer), the syntactic distance of a marking m
to the downward-closure of initial states is determined by the maximal
syntactic distance of the places marked in m. Here syntactic distance
of a place to ↓ I is the number of transitions in the shortest path from
that place to the set of transitions with empty presets and to places that
are marked initially. Transitions with empty presets have to be included
as targets for the heuristic because they provide short-cuts to smaller
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markings in the context of backward analysis. The syntactic distance
is lifted to markings by taking the maximum syntactic distance of the
places with positive token count in that marking.
As an example, consider a PN and a marking m where the shortest
path from m to the initially marked places has at least two transitions.
Assume further that there is a transition t with W (t,−) = m and an
empty preset. Clearly, the empty marking me is reached as a predecessor
of m under t and me ∈ ↓ I, taking only one step.
We choose to enhance the heuristic by taking into account the effect of
transitions, upgrading ≤ to a lexicographical ordering: First, states are
compared w.r.t. the syntactic distance and if the distances are equal,
we aim to select that state where the transitions seem to consume more
tokens when fired backward. Therefore, we infer the number of tokens
each transition produces by subtracting the number of incoming arcs
from the number of outgoing arcs which we call the transition’s syntactic
weight. The syntactic weight of a marking is the sum of the number of
tokens on each place multiplied by the syntactic weights of the transition
in the preset of that place. While the notion of syntactic weight is rather
coarse, it tends to improve our search.

Example 5.5 (PN Syntactic Distance and Weight). Figure 5.11
depicts our running example Nex where places have been annotated with
their syntactic distance and transitions have been annotated with syn-
tactic distance and syntactic weight. In the postset of initially marked
places p1 and p2 are transitions t2 and t3. Therefore, these transitions
have syntactic distance 1. As t2 has two incoming arcs and one outgoing
arc, the transition consumes one token more than it produces and its
syntactic weight is −1. Transition t3 on the other hand produces one
token more than it consumes and has syntactic weight 1. Consider mark-
ings p2 + 2p5 and p3 + 2p5. The maximal syntactic distance is d = 1 in
both cases, so the syntactic weight of the transitions in the preset of the
marked places is observed. For marking p2 + 2p5 the transitions are t1
and t3 with a total weight of w = 2 (two times the weight of t3). For the
other marking, transition t3 is in the preset of p3 and of p5 and therefore
the syntactic weight is w = 3 as there are three tokens in the postset of
t3. Hence, we roughly assume that t3 may consume more tokens when
fired backward and select marking p3 + 2p5 over p2 + 2p5. Indeed, this
marking is closer to the initial marking p1 + p2. ♦
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d = 2

p7

d = 2

Figure 5.11.: Syntactic distance and weight in Petri net Nex .

In the LCS case, the syntactic distance of a configuration (q, γ) to the
initial states is the length of the shortest sequence of transitions leading
from q0 to q, thus ignoring channel contents. This means that the distance
heuristics and identifies the minimal number of transitions necessary to
reach the initial control state of each automaton in the LCS. From this
set of minimal distances the maximum is taken, representing a minimal
number of transitions necessary to reach all initial control states of the
LCS. The syntactic distance for LCS is a close relative of the “local
state distance” of Edelkamp et al. who consider concurrent finite state
machines [ELLL01, ELLL04].
Our experiments in Sect. 7.2 on p. 207 show an altogether improved
performance when using BF with the syntactic distance and local state
distance heuristics as compared to breadth-first search.
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C H A P T E R S I X

Data Structures

When you make something, cleaning it out of structural
debris is one of the most vital things you do.

— Christopher Alexander, Architect
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In our algorithmic framework (Sect. 3.3 on p. 79), we modify upward-
closed sets (UCSs) via finite bases. For reasons of efficiency we intend
to have minimal (and thus finite, cf. Lemma 2.6 on p. 22) bases where
the elements form an anti-chain, i.e. they are incomparable w.r.t. the
underlying well-quasi ordering (WQO). While an implementation of our
framework is free to choose an arbitrary data structure for minimal bases
of upward-closed sets, we propose to employ a simple and generic data
structure that can be readily adapted to the different concrete models.
We begin by inspecting some well-known data structures used in the
context coverability analysis. While these are all specialized for certain
concrete models of well-structured transition systems (WSTSs), we strive
for integrated techniques applicable to several models.

6.1. Related Work
Some earlier approaches to store large sets of states (with a main fo-
cus on Petri net markings and reachability problems) come from Ciardo
and Miner [CM97] who partitioned the model under consideration and
used multiple levels of search trees in the style of Chiola [Chi90], one
for each partition. This led to a decrease in running time in compari-
son to the use of a single search tree. Building on their results, Miner
and Ciardo [MC99] then employed generalizations of binary decision di-
agrams (BDDs) [Bry86] to arbitrary integer functions on integer vari-
ables, so-called multi-valued decision diagrams (MDDs, cf. [SKMB90]),
and structured the model under consideration into partitions each of
which is covered by an MDD.
Different approaches for the efficient handling of sets of tuples (e.g. Petri
net markings) where undertaken by Delzanno et al. who introduced cov-
ering sharing trees [DR00, DRV02]1 and Ganty et al. who extended the
idea to interval sharing trees [GMV+07]. Both techniques build upon the
sharing trees of Zampunieris and Le Charlier [ZL95] that use directed
acyclic graphs with a root and a terminal node to “share” common parts
of tuples. In sharing trees, each path from the root node to the terminal
node stands for a tuple in the set and checking if a tuple is contained in

1Finkel et al. later translated the idea to downward-closed covering sharing trees
[FRSV03] to allow for forward coverability analysis. The prefix sharing of the
sharing tree data structure relates to Chiola’s multi-level technique [Chi90].

160



6.2. Operations

the upward-closure of the set represented by the tree requires time linear
in the number of edges of that tree.
The framework of Bingham and Hu [Bin05, BH05] uses BDDs as its
fundamental data structure for a backward reachability analysis of a
subclass of well-structured transition systems.
Most of the previously mentioned data structures aim for compression of
the sets they represent and increase the program’s performance via segue
way of reduced data size. They are complex data structures and intricate
operations are necessary to ensure that integrity and normal forms are
maintained.

6.2. Operations
In our work, we intend to provide data structures that are easily em-
ployable in an implementation of our algorithmic framework, that are
extensible in the sense that interfaces are lightweight, and that allow for
simple proofs. Therefore, we choose to focus on structuring minimal sets
(anti-chains) of states by basic rules rather than to represent them most
compactly. To identify the operations needed on the underlying data
structure, we recall how our algorithmic framework Alg. 3.7 on p. 80
accesses finite bases V and W :

• Set W to be a minimal basis of the final states.
W := minimize(F )

• Test if W is non-empty.
while W 6= ∅ do . . .

• Select and remove a state x from W .
x := select(W ); W := W \ {x }

• Add a state x to the basis V and keep the basis minimal.
V := minimize(V ∪ {x } )

• Test if a state y is not in the upward-closure of V .
if y /∈ ↑V then . . .

• Add a state y to the basis W and keep the basis minimal.
W := minimize(W ∪ { y } )
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• Assign V (and W ) explicitly.
V := {x } and W := ∅

With these program statements in mind, we choose to allow for access to
the data structure we are constructing via the following basic operations
where we consider some minimal basis X and a state x. To allow for an
efficient implementation of the select statement x := select(W ) in the
context of data structures, we aim to impress a total ordering on the
states in W as proposed in Sect. 5.5 on p. 155. In Sect. 6.8 we discuss
our choice of storing X both for access via the select function and the
following operations.

1. Clear
X := ∅

2. Test if empty
X

?= ∅

3. Add an element
X := X ∪ {x }

4. Remove an element
X := X \ {x }

5. Given state x, remove all elements covering x
X := X \ ↑x

6. Given state x, test if an element covered by x is contained
x

?∈ ↑X

Note that X := minimize(X ∪ {x } ) is split into to the operations of
ensuring that x is not in ↑X, removing elements covering x by X :=
X \ ↑x, and lastly adding x to set X. This way, even the statement
W := minimize(F ), which can be replaced by

W := ∅; foreach x ∈ F do W := minimize(W ∪ {x } ) od ,

is supported and V := {x } can be handled analogously.
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x

↑x

x′

↑x′

• ∈ X

↑X

(a) Before checking x, x′ ∈ ↑X.

y1

y2

x

↑x

• ∈ X

↑X

(b) Before enlarging by ↑x.

x

↑x

• ∈ X ′

↑X ′

(c) After removing X ∩ ↑x.
• ∈ X ′′

↑X ′′ = ↑X ∪ ↑x

x

(d) After enlarging by ↑x.

Figure 6.1.: Updating minimal basis X with x, x′.
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Example 6.1. The intuition is to have a structure storing a UCS ↑X
in a way which, given a UCS ↑x, allows for fast check of x /∈ ↑X, and,
in case that the check succeeds, the computation of { y ∈ X | y � x } ,
which is X∩↑x as ↑x 6⊆ ↑X holds. If ↑X is to be enlarged by ↑x, the set
↑X ∩↑x of elements subsumed by ↑x is removed from the minimal basis
X and x is added. Figure 6.1 shows the process of enlarging ↑X by ↑x
graphically. Black dots represent the elements of X and the area above
of black lines indicates ↑X. The area above the gray lines indicates ↑x.
Figure 6.1a depicts the relationship between two elements x, x′ and X.
While x′ lies above of some element of X and thus x′ ∈ ↑X, element
x lies below all of X’s elements, so that ↑x 6⊆ ↑X. As ↑x′ is already a
subset of ↑X, we discard it (cf. Fig. 6.1b). To build the union of ↑X and
↑x, thus enlarging X, the two elements y1, y2 of X that are subsumed
by x are removed from X (cf. Fig. 6.1c). The minimal basis of ↑X ∪ ↑x
contains x and all elements of X except y1, y2 (cf. Fig. 6.1d). ♦

As a starting point, consider a very basic but general implementation of
bases for upward-closed sets: a linked list of minimal elements in the set.
To test for x ∈ ↑X we iterate over each y ∈ X and check for y � x.
Removing non-minimal elements, adding a minimal element, and the
other operations are similarly simple. However, to improve performance,
we are interested in structuring the set to relieve us from inspecting each
of its elements.

6.3. From Necessary Conditions to Equivalence
Classes

Our idea to reduce the number of elements that have to be examined
when testing inclusion of a state in an upward-closed set is to employ
necessary conditions for states to be in WQO relation. We want to be
able to efficiently divide the UCS’s minimal basis into those states that
satisfy the necessary conditions and those that do not—which in turn do
not have to be examined further.
Take Petri net (PN) markings for example: m1 ≤ m2 implies that the
number of tokens in m1, tok(m1), does not exceed the number of tokens
inm2, tok(m1) ≤ tok(m2). This necessary condition gives rise to a simple
equivalence relation on a set of markings: two markings are in the same
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equivalence class if they contain the same number of tokens. To test for
x ∈ ↑X only those equivalence classes have to be checked where the
number of tokens does not exceed the number in x. Equivalence classes
of markings with more tokens are skipped as the necessary condition is
violated.
As a generalization, let � be a WQO, x and x′ some states, and

x � x′ imply ϕ1(x, x′) ∧ · · · ∧ ϕn(x, x′) .

We structure the necessary conditions ϕ1, . . . , ϕn to form a hierarchy
in the sense that a set X of states is divided into equivalence classes
X

(1)
ϕ1 , . . . , X

(k1)
ϕ1 by ϕ1, and we proceed to divide each X(i)

ϕ1 into equiva-
lence classes with respect to ϕ2 and so forth. Under the assumption that
accessing the equivalence class of a state x is efficient, the performance
the operations identified in the previous section may be drastically im-
proved.
Let us turn to formal definitions of what we call indicator functions and
equivalence classes of functions.
Definition 6.1 (Indicator Function). Let � be a well-quasi ordering
on X, f : X −→ Y be a function and x, x′ ∈ X. We call f an indicator
function if there exists a relation ∼ ⊆ Y × Y with f(x) ∼ f(x′) being
a necessary condition for x � x′ and a value f(x) is called indicator
value. ♦

Before we will inspect partitions of finite bases w.r.t. indicator functions
in the following sections, we introduce the notions of induced equivalence
relations and blocks.
Definition 6.2 (Equivalence Relation Induced by a Function).
Let Z, Y be arbitrary sets, f : Z −→ Y be a function, and x, y ∈ Z.
The equivalence relation induced by function f is defined as x ∼f y :⇔
f(x) = f(y). We call [x]∼f

the equivalence class of x w.r.t. function f
and write [x]f = {x′ ∈ Z | f(x′) = f(x) } as a shorthand. It is the set
of elements with the same image as x, or simply put f−1(f(x)).
The induced equivalence ∼f partitions any set X ⊆ Z into the quotient
set X/ ∼f consisting of the subsets of the equivalence classes of ∼f that
lie in X, i.e. [x]f ∩X for x ∈ X. We call these parts of equivalence classes
blocks of X w.r.t. f , or simply blocks if the referenced set and function
are clear from the context. ♦
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While several types of necessary conditions can be conceived of—especially
with specific models in mind—, in the following we present three classes
of generic conditions which utilize indicator functions like tok(m):

• Equality conditions, which use equality of indicators of states. Take
LCSs for example: The well-quasi ordering requires the control
states of two configurations to match (and the channel states to
be in Higman’s subword ordering).

• Total order conditions, which use a total order ≤ on indicators of
states. Examples are the number of tokens in a Petri net marking
or the number of messages in a specific channel of an LCS.

• Subset conditions, which use the subset relation ⊆ on indicators of
states. Here, examples are the set of places marked with at least
one token for Petri nets or the set of messages in a specific channel
of an LCS.

For these classes of conditions, we show how they can be translated into
effective and efficient data structures. Therefore, we consider an indicator
function f , a necessary condition of the form

x � x′ implies f(x) ∼ f(x′) ,

where ∼ is one of {=,≤,⊆} , and discuss how a set X of states can be
represented to quickly allow access to equivalence classes of f in X. If we
have to test for x ∈ ↑X, we only need to test for x ∈ ↑ { y ∈ X | y ∼f x }
which considers a potentially smaller set of states than X.
We lift this idea to collect the intersection of X with equivalence classes
and we allow relation ∼ to be one of {=,≤,≥,⊆,⊇} . We define the
subset X∼f(x) ⊆ X by

X∼f(x) = { y ∈ X | f(y) ∼ f(x) } .

This subset X∼f(x) subsumes the intersection of equivalence classes of
indicator function f with X which contain states that can be in WQO
relation with x. Only the states in X∼f(x) have to be explicitly compared
to x w.r.t. the WQO and comparison to those states in X \ X∼f(x) is
being efficiently omitted.

166



6.4. Equality Conditions

6.4. Equality Conditions

For an indicator function f and a necessary condition of the form

x � x′ implies f(x) = f(x′)

we need means to retrieve the states in a finite set X that belong to the
equivalence class X=f(x). Our approach is to partition X into non-empty
subsets of the equivalence classes of f in a way that allows efficient access
to partitions with a matching indicator value.

Example 6.2. As an example consider a set of LCS configurations

X = { (q1,W1), (q1,W2), (q2,W3), (q3,W4), (q3,W5) }

together with the indicator function that maps a configuration to its
control state, fcs(q,W ) := q. We partition X into three sets according
to the value of fcs for each element:

X = { (q1,W1), (q1,W2) }︸ ︷︷ ︸
X=q1

∪ { (q2,W3) }︸ ︷︷ ︸
X=q2

∪ { (q3,W4), (q3,W5) }︸ ︷︷ ︸
X=q3

.

If we need to test if (q3,W6) ∈ ↑X holds, we find the subset of X with
matching value of the indicator function, i.e. the subsetX∩[(q3,W6)]fcs =
X=fcs(q3,W6) of equivalence class [(q3,W6)]fcs . Thus, we reduced the ques-
tion if (q3,W6) ∈ ↑X holds to the question if (q3,W6) is in the upward-
closure of { (q3,W4), (q3,W5) } holds. So fewer states have to be com-
pared. ♦

Out of the many data structures that allow for efficient access to key-
value pairs (indicator value and block) we chose hash tables (cf. for ex-
ample [Knu98, Sed02]). With hash tables we can efficiently associate an
indicator value with a block and find the block for an indicator value.
On average, all operations on hash tables only take constant time if the
hash function that takes indicator values as input has certain desirable
properties such as a small number of colliding hash values.
Assume that the indicator function f takes values in Y and we have
a function H : Y −→ 2X representing a hash table associating indica-
tor values with subsets of X. The six basic operations we identified in
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Sect. 6.2 are easily translated for a hash table implementation (cf. Def. 3.3
on p. 76 for function assignment).

1. Clear
X := ∅ is represented by H(Y ) := ∅.

2. Test if empty
X

?= ∅ is represented by an emptiness test on the hash table.

3. Add an element
X := X ∪ {x } becomes H(f(x)) := H(f(x)) ∪ {x } .

4. Remove an element
X := X \ {x } becomes H(f(x)) := H(f(x)) \ {x } .

5. Given state x, remove all elements covering x
X := X \ ↑x becomes H(f(x)) := H(f(x)) \ ↑x.

6. Given state x, test if elements covered by x are contained
x

?∈ ↑X is represented by the test x
?∈ ↑H(f(x)).

As mentioned in the previous section, each block of X can be structured
using another necessary condition. In Sect. 6.7 we discuss this subject.

6.5. Total Order Conditions
Consider we have an indicator function f and a necessary condition which
employs a total order in the form

x � x′ implies f(x) ≤ f(x′) .

In contrast to equality conditions it does not suffice to find a single block
X=f(x) of finite setX which we have to compare against when performing
operations like x ∈ ↑X. Here, we have to find the set X≤f(x), which is a
collection of blocks with an indicator value that is at most f(x).
Example 6.3. Let X be a set of markings of Petri net Nex (cf. Fig. 2.2
on p. 14)

X = { p6, p7, p1 + p2, 2p3, p1 + 2p4, 2p2 + 2p4 + p5 }
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and fΣ : NP −→ N be an indicator function that maps a marking to the
sum of its tokens, i.e. fΣ(m) :=

∑
p∈P m(p). We partition X into blocks

according to the indicator function:

X = { p6, p7 }︸ ︷︷ ︸
X=1

∪ { p1 + p2, 2p3 }︸ ︷︷ ︸
X=2︸ ︷︷ ︸

X≤2

∪ { p1 + 2p4 }︸ ︷︷ ︸
X=3

∪ { 2p2 + 2p4 + p5 }︸ ︷︷ ︸
X=5

Testing if marking 2p4 is in the upward-closure of X requires only to
test if 2p4 is in subset X≤fΣ(2p4) = X≤2, i.e. X=0 ∪ X=1 ∪ X=2, since
every state in a block with a greater indicator value than 2 contains more
tokens and violates the necessary total order condition. Thus, a state in
X≥3 cannot be less than or equal to 2p4.
There exist similar indicator functions for lossy channel systems. For an
LCS with channels C, we can take an indicator function f#,c(q,W ) =
|W (c)| that maps a configuration to the number of messages on a specific
channel c ∈ C. Of course, another function may return the total number
of messages on all channels. ♦

For this type of condition, we want to store the blocks of a finite set
X in an ascending order w.r.t. the total order ≤ on indicator values,
so that (balanced) search trees, simple arrays, or lists (cf. for example
[Knu98, Sed02]) are viable data structures. As we need to go through the
list in ascending and in descending order of indicator values, we choose a
simple doubly linked list of key-value pairs (indicator values and blocks)
for our structure.2
Since the access to and modification of doubly linked list is well-under-
stood, we abstract from actual code and describe the necessary actions
verbally.

1. Clear
X := ∅ is represented by clearing the doubly linked list.

2. Test if empty
X

?= ∅ is represented by an emptiness test on the list.
2Of course, balanced search trees have lower average complexity operations. For the
benchmarks we discuss in Sect. 7.2 on p. 207, the number of blocks stayed below
a thousand—which is considered “small”—, so that the overhead of maintaining
a balanced search tree ruled in favour of a simple list structure.
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3. Add an element
X := X ∪ {x } becomes traversing the list in ascending order until
either X=f(x) is reached and x is added to that block, or an X=f(x′)
with f(x′) > f(x) or the end of the list is reached. In the latter
case, block X=f(x) = {x } is inserted before X=f(x′) or appended
at the end of the list.

4. Remove an element
X := X \ {x } is achieved by traversing the list in ascending order
until either X=f(x) is reached and the element x is removed from
that block (if the block is empty, it is removed from the list), or an
X=f(x′) with f(x′) > f(x) or the end of the list is reached. In that
case, we are sure that x was not contained in X.

5. Given state x, remove all elements covering x
X := X \ ↑x is represented by traversing the list in descending
order and removing ↑x from each of the partitions in X≥f(x). The
traversal stops when either an X=f(x′) with f(x′) < f(x) or the
beginning of the list is reached.

6. Given state x, test if elements covered by x are contained
x

?∈ ↑X is achieved by traversing the list in ascending order and
testing for x ∈ ↑X=f(x′) for every block with f(x′) ≤ f(x). If one

of the tests returns true, the result of the request x
?∈ ↑X is also

true. As soon as an X=f(x′) with f(x′) > f(x) or the end of the
list is reached the search stops and the result is false.

6.6. Subset Conditions
In the case of subset conditions we have an indicator function f and a
necessary condition of the form

x � x′ implies f(x) ⊆ f(x′) ,

where f : X −→ 2Y takes elements of a set X as input and maps
it to finite sets over some arbitrary codomain Y . As with total order
conditions, we delegate the check x ∈ ↑X to a set of blocks X⊆f(x) of
X, immediately excluding comparisons with states not in X⊆f(x).
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Example 6.4. Let X be a set of markings of Petri net Nex (cf. Fig. 2.2
on p. 14)

X = { 3p2, p1 + 2p2, 3p1 + p2, 2p3 + p5, p3 + 9p5, p6 }

and fsupp : NP −→ 2P be an indicator function that maps a marking to
the set of marked places (support), i.e. fsupp(m) := { p ∈ P | m(p) 6= 0 } .
We partition X into the subsets according to the indicator function:

X = { 3p2 }︸ ︷︷ ︸
X={ p2 }

∪{ p1 + 2p2, 3p1 + p2 }︸ ︷︷ ︸
X={ p1,p2 }︸ ︷︷ ︸

X⊆{ p1,p2 }

∪{ 2p3 + p5, p3 + 9p5 }︸ ︷︷ ︸
X={ p3,p5 }

∪{ p1 + p6 }︸ ︷︷ ︸
X={ p1,p6 }

Testing if marking 2p1 + p2 is in the upward-closure of X requires only
to check if 2p1 + p2 is in the subset

X⊆fsupp(2p1+p2) = X⊆{ p1,p2 } = X=∅ ∪X={ p1 } ∪X={ p2 } ∪X={ p1,p2 } ,

since every marking in a block with a different indicator value puts tokens
on places that are not marked in x and violates the necessary subset
condition. Thus, a state in X \ X⊆{ p1,p2 } cannot be greater than or
equal to p1 + p2.
There exist similar indicator functions for lossy channel systems. For an
LCS with channels C, we can take an indicator function

fmsg,c(q,W ) = {m ∈M | ∃v, w ∈M∗ : W (c) = v ·m · w }

that maps a configuration to the set of messages on a specific channel
c ∈ C. Of course, another function may return the set of messages on all
channels. ♦

These conditions ask for a data structure that is more involved than
simple lists as the blocks that belong to all subsets of an indicator value
have to be retrieved efficiently. The data structure we propose to use for
this type of necessary condition is a special instantiation of a binary tree.
Definition 6.3 (Binary Tree). A binary tree is a connected graph
(V,E, v0) without cycles, consisting of a set of nodes V , a set of edges
E ⊆ V × V and a root node v0 ∈ V . A directed edge (v, v′) ∈ E goes
from the parent node v to the child node v′. The root node v0 is the only
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node without a parent and every node has exactly 0, 1, or 2 child nodes.
If a node has no children it is called a leaf node, else it is an inner node.
The number of edges in the path from the root node to a node is the
height of that node. The tree height is the maximal node height in the
tree. ♦

If the nodes of a binary tree impose some form of ordering on values that
are attached to nodes—for example, all “left” descendants are smaller
than the current node—, we speak of binary search trees (BSTs).
We will introduce our specialized data structure that allows to search a
powerset via a BST in two steps: First, we discuss the use of full binary
trees that have 2|Y | − 1 internal nodes and 2|Y | leaves and then turn
to trees that are not necessarily full and can have a considerably less
number of internal nodes and leaves and do not require the codomain
Y of the indicator function f to be finite. As we use the trees to search
through the powerset of Y , we call them powerset search trees (PSTs).

6.6.1. Full Powerset Search Trees
In the context of full powerset trees, we constrain the indicator function
to have a finite codomain, s.t. f : Z −→ 2Y and X ⊆ Z which gives rise
to a finite search tree over the powerset of Y .
Definition 6.4 (Full Powerset Search Tree). Let f : Z −→ 2Y be a
function with Y finite. A full powerset search tree for X ⊆ Z over finite
set Y is a rooted binary tree (V,E, v0, λ, σ) with labelled edges and nodes
that are labelled via the two functions λ and σ. Full powerset search trees
satisfy the following constraints:

• Every leaf node has height |Y |.

• E ⊆ V × {⊥,>}×V is the labelled edge relation. We write E(v) to
denote the set { v′ ∈ V | (v, q, v′) ∈ E } of child nodes of v. Every
inner node has one child with an ⊥-labelled edge and one child
with an >-labelled edge.

• λ : V −→ (Y ∪ {⊥} ) is the labelling function that assigns to each
inner node an element from Y and ⊥ to every leaf node. For every
sequence of edges

(va0 , q0, va1), (va1 , q1, va2), . . . , (va|Y |−1 , q|Y |−1, va|Y |)
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from the root node va0 = v0 to a leaf node va|Y | , the set of visited
labels of inner nodes

⋃
0≤i<|Y | λ(vai

) is exactly the set Y .

• σ : V −→ P(X) attaches to each node a set of elements fromX and
the union of all attached sets is X, formally X =

⋃
v∈V σ(v). Only

leaf nodes have non-empty sets attached: σ(v) 6= ∅ ⇒ E(v) = ∅.

• If a node v that is connected to the root node via edge sequence

(va0 , q0, va1), (va1 , q1, va2), . . . , (vak−1 , qk−1, vak
)

(with v0 = va0 and v = vak
), we define the characteristic set of v

to be

χ(v) := { y ∈ Y | ∃1 ≤ i < k : (λ(vai
) = y ∧ qi = >) } .

The set attached to each node by σ is a subset of the block X=χ(v),
formally

∀v ∈ V : σ(v) ⊆ X=χ(v) ,

meaning that for any x ∈ σ(v) the indicator value f(x) of x is
exactly the characteristic set χ(v) of node v. ♦

The last two items of the definition ensure that all the blocks of X are
attached to the leaf nodes that are reached from the root node via a path
which describes the value of the indicator function for the elements in
that block. As a shorthand, we call a node v′ that is connected to its
parent via a ⊥-labelled edge v,⊥, v′ a ⊥-child—analogously, >-children
are defined. The following example gives a nice visualization of a full
powerset search tree.

Example 6.5. Let X be a set of markings of some Petri net with only
four places,

X = { 7p4, p2 + p3 + 2p4, p2 + 2p3 + p4, p1 + p3 + 2p4, p1 + p2 + 2p3 } ,

and fsupp : NP −→ 2P be the indicator function from Example 6.4. We
partition X into blocks according to the indicator function and attach
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Figure 6.2.: Example of a full powerset search tree.

these blocks to the full powerset search tree presented in Fig. 6.2.3 We
omitted drawing the empty sets attached to every other node by σ.
As we can see, marking 7p4 in contained the set attached to a node that
is reached (from the root node) via a path where the only >-labelled edge
originates from a node labelled with p4. Therefore the characteristic set of
the node is { p4 } , just like the indicator value of 7p4: fsupp(7p4) = { p4 } .
The two markings p2 +p3 +2p4 and p2 +2p3 +p4 have the same indicator
value and therefore are contained in the same set.
In this example we observe that the tree is only sparsely populated in
terms of non-empty sets attached to (leaf) nodes. ♦

With this data structure, we are fit to adapt the set of operations for
efficient use of subset conditions. Consider a full powerset search tree
(V,E, v0, λ, σ) for some set X with indicator function f : Z −→ 2Y ,
X ⊆ Z, and Y finite.

3For this tree we chose to have a fixed order in the labelling of the nodes: Each
node’s label corresponds to its height plus one. However, the definition does not
require such a fixed ordering.
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1. Clear
X := ∅ is represented by clearing out every set of states attached
via σ.

2. Test if empty
X

?= ∅ is represented by an emptiness test on the attached sets.
In an actual implementation, an integer variable would be used to
keep track of the number of stored elements. The emptiness test
would check if that variable is 0.

3. Add an element
X := X ∪ {x } becomes finding the leaf node v with the match-
ing characteristic set χ(v) = f(x) and updating the function that
attaches sets to nodes by σ(v) := σ(v) ∪ {x } .
To find the leaf note, we begin at root node v0 and test if λ(v0) is
an element of f(x) to decide which of the two outgoing edges to
take. If λ(v0) ∈ f(x), then we take edge (v0,>, v′) to the v′-rooted
subtree where each leaf node has λ(v0) in its characteristic set.
Else, if λ(v0) /∈ f(x), edge (v0,⊥v′′) leads to the v′′-rooted subtree
where no leaf node has λ(v0) in its characteristic set. We iterate
this procedure until we end up at the desired leaf node v.

4. Remove an element
X := X \ {x } becomes finding the leaf node v with the matching
characteristic set χ(v) = f(x) and updating the function that at-
taches sets to nodes by σ(v) := σ(v) \ {x } . The process to find v
is the same as to add an element.

5. Given state x, remove all elements covering x
X := X \↑x becomes finding all leaf nodes vi where the character-
istic set χ(vi) is a superset of the indicator value of x, i.e. χ(vi) ⊇
f(x), and updating the function that attaches sets to nodes by
σ(vi) := σ(vi) \ ↑x for any such leaf node.
The search for all the leaf nodes with suitable characteristic sets
differs from the procedure described in the context of adding an
element by including both subtrees for further search in case the
node’s label λ(v0) is not contained in f(x). If λ(v0) ∈ f(x), the
search proceeds as usual and only the subtree connected by the
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>-labelled edge is searched. This way, the search maintains a set of
nodes as the current state and collects all leaf nodes with χ(vi) ⊇
f(x).

6. Given state x, test if elements covered by x are contained
x

?∈ ↑X is represented by finding all leaf nodes vi where the
characteristic set χ(vi) is a subset of the indicator value of x,
i.e. χ(vi) ⊆ f(x), testing if state x is in the upward-closure of
the set attached to any of these nodes: x

?∈ ↑⋃i σ(vi). The pro-
cess to find all the wanted leaf nodes is analogous to the one for
removing ↑x from X but with the search looking at the subtree
connected via the ⊥-labelled edge if λ(v0) /∈ f(x) and the search
being expanded to both children in case that λ(v0) ∈ f(x).

We will see an example of the a involved operation in the upcoming
section where we also discuss correctness of our method.
In Example 6.5 we observed that full powerset search trees experience
sparsely populated leaves which creates an overhead in memory con-
sumption and running time. We intend to relax the constraints of full
powerset search trees in order to allow for superfluous nodes to be left
out. The construction of a relaxed powerset search tree aligns to the el-
ements that are added to it, meaning that the tree grows subtrees and
leaves with certain characteristic sets on demand. By beginning with
a smaller tree and extending it upon insertion of new elements, trees
with fewer leaves—and more significantly with reduced tree height—are
created, which is of great benefit.

6.6.2. Relaxed Powerset Search Trees

For relaxed powerset trees, the indicator function f : Z −→ 2Y can have
an arbitrary (possibly infinite) codomain Y , as long as f is image-finite,
i.e. |f(x)| ∈ N for every x ∈ Z. The following formal definition of relaxed
powerset trees does neither require the tree to have a fixed number of
nodes, nor does σ attach non-empty (subsets of) blocks to leaf nodes
only.
Definition 6.5 ((Relaxed) Powerset Search Tree). Let f : Z −→
2Y be an image-finite function. A (relaxed) powerset search tree for X ⊆
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Z over set Y is a binary tree (V,E, v0, λ, σ) with labelled nodes and
labelled edges satisfying the following constraints:

• E ⊆ V × {⊥,>} × V is the labelled edge relation and we write
E(v) to denote the set { v′ ∈ V | (v, q, v′) ∈ E } of child nodes of
v. Every inner node has one child with an ⊥-labelled edge and one
child with an >-labelled edge.

• λ : V −→ (Y ∪ {⊥} ) is the labelling function that assigns to each
inner node an element from Y and ⊥ to every leaf node. For every
sequence of edges

(va0 , q0, va1), (va1 , q1, va2), . . . , (vak−1 , qk−1, vak
)

from the root node va0 = v0 to a leaf node vak
, the set of visited

labels of inner nodes
⋃

0≤i<k λ(vai
) is a subset of Y .

• σ : V −→ P(X) attaches to each node a set of elements from X
and the union of all attached sets is X, formally X =

⋃
v∈V σ(v).

• If a node v that is connected to the root node via edge sequence

(va0 , q0, va1), (va1 , q1, va2), . . . , (vak−1 , qk−1, vak
)

(with v0 = va0 and v = vak
), we define the characteristic set of v

to be

χ(v) := { y ∈ Y | ∃1 ≤ i < k : (λ(vai
) = y ∧ qi = >) } .

The set attached to each node by σ is a subset of the block X=χ(v),
formally

∀v ∈ V : σ(v) ⊆ X=χ(v) ,

meaning that for any x ∈ σ(v) the indicator value f(x) of x coin-
cides with the characteristic set χ(v) of node v. ♦

For sake of brevity, we mean relaxed powerset search trees when we write
powerset search trees.
In contrast to full powerset search trees, relaxed powerset search trees
may have a height lower than |Y | + 1 and may be imbalanced. A full
powerset search tree thus is a special case of a relaxed powerset search
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tree where the tree has the maximal number of nodes and only leaves
have non-empty sets attached.
The last two items of the definition ensure that all the blocks of X are
attached to some nodes that are reached from the root node via a path
which describes the value of the indicator function for the elements in
that block. A block may be split into several subsets that are attached
to different nodes with the same characteristic set. Take for example the
(full) powerset search tree from Example 6.5 where the characteristic set
of the node reached by the sequences >,> (a node labelled with p3) and
>,>,⊥ (a node labelled with p4) and >,>,⊥,⊥ (a node labelled with
⊥) of edge labels are all the same: { p1, p2 } . We fix this observation in
the following corollary.
Corollary 6.1 (Characteristic Sets of Connected Nodes). Let
f : Z −→ 2Y be an image-finite function and let (V,E, v0, λ, σ) be a
relaxed powerset search tree.

• For any pair of nodes v, v′ that is connected via a ⊥-labelled edge
(v,⊥, v′), the characteristic sets of the nodes coincide: χ(v) = χ(v′).

• For any pair of nodes v, v′ that is connected via a >-labelled edge
(v,>, v′), the characteristic set of the parent node is a subset of
the characteristic set of the child node: χ(v) ⊆ χ(v′).

Proof. Theses properties follow directly from the last item of the defini-
tion of characteristic sets for relaxed powerset search trees (Def. 6.5).

In order to read a block from a relaxed powerset search tree, the union
of sets attached to several nodes of the tree may have to be constructed.
While the relaxed powerset search tree allows for arbitrary descendant
nodes of a node v to have the same label λ(v), it is of no benefit to have
such a constellation of nodes as it artificially blows up the node height.
Furthermore, a relaxed powerset search tree does not need to have a node
with a characteristic set for any element of 2Y .
The following example shows two relaxed powerset search trees repre-
senting the same set of states.
Example 6.6. Both trees in Fig. 6.3 show relaxed PST representations
of the same set that we introduced in Example 6.5. Again, we omitted
drawing the empty sets attached to nodes by σ.
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(a) Example of a relaxed powerset search tree I.
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Figure 6.3.: Examples of relaxed powerset search trees.
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As we can see, marking 7p4 in contained the set attached to a node that
is reached (from the root node) via a path where the only >-labelled edge
originates from a node labelled with p4. The differences between the full
PST of Fig. 6.2 and Fig. 6.3a lies in the removal of inner nodes that
have only children with empty sets attached and moving the marking
p1 + p2 + 2p3 that was attached to a ⊥-child upwards in the tree until a
>-child was reached.
The representation of a set of states via PSTs is not unique. Observe
that Fig. 6.3a and Fig. 6.3b have a different number of nodes which are
differently labelled. Observe that marking 7p4 belongs to a set that is
attached to an inner node with characteristic set { p4 } . ♦

A takeaway of the two trees in Example 6.6 is that there exist orderings of
node labels that result in smaller trees than other orderings. As we strive
for a rather simple data structure, at this stage we are not interested
in restructuring the PST by rotating, merging, or swapping nodes as
common in the field of balanced BSTs to reduce the tree height or the
number of nodes.
We want to construct a PST for a set step by step and in a lazy fashion.
Therefore, we extend a PST by predefined tree extensions which can be
merged with existing PSTs to form larger PSTs (see Example 6.7 for a
visualization).
Definition 6.6 (Tree Extension). Let f : Z −→ 2Y be an image-finite
indicator function, x an element of Z, and R = { y1, . . . , yk } ⊆ f(x) a
subset of the indicator value of x. A tree extension for x w.r.t. R is a
rooted binary tree (V,E, v>1 , λ, σ) with

• V :=
{
v>1
}
∪
{
v⊥2 , v

>
2 , v

⊥
3 , v

>
3 , . . . , v

⊥
k+1, v

>
k+1

}
,

• E :=
{

(v>1 ,⊥, v⊥2 ), (v>1 ,>, v>2 ), . . . , (v>k ,⊥, v⊥k+1), (v>k ,>, v>k+1)
}
,

• λ(v>k+1) := λ(v⊥i ) := ⊥ for all 1 < i ≤ k+ 1 and λ(v>i ) := yi for all
1 ≤ i ≤ k,

• σ(v>k+1) := {x } and σ(v>i ) := σ(v⊥i+1) := ∅ for all 1 ≤ i ≤ k. ♦

With the definition of characteristic sets as for PSTs, we see that χ(v>k ) is
R. This means that if the root node of a tree extension was connected to
a PST node with characteristic set R′, the characteristic set of v>k would
become R∪R′. To put tree extensions to use, we introduce a specialized
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merge operation that connects the root node of a tree extension for x
to a node of a PST so that the characteristic set of node v>k —where x
is stored—is forced to be f(x). This is achieved by requesting the node
where the tree extension is merged to have characteristic set f(x) \R.
Definition 6.7 (Merge). Let f : Z −→ 2Y be an image-finite indicator
function, x an element of Z, and R ⊆ f(x) a subset of the indicator value
of x. Consider a relaxed PST P = (V,E, v0, λ, σ) for X over Y , some leaf
node v ∈ V with λ(v) = ⊥ and characteristic set χ(v) = f(x) \R, and a
tree extension Q = (V e, Ee, v>1 , λe, σe) for x w.r.t. R.
The result of merging P and Q at v is the binary tree (V ′, E′, v′0, λ′, σ′)
with

• V ′ := (V \ { v } ) ∪ V e,

• E′ is Ee if v is the root node v0 of P , else, if there exists an edge
(v′, q, v) ∈ E in P , it is (E \ { (v′, q, v) } ) ∪ Ee ∪

{
(v′, q, v>1 )

}
,

• v′0 is v>1 if v is the root node of P , else v′0 is v0,

• λ′(w) :=
{
λ(w), if w ∈ V
λe(w), else

, and

• σ′(w) :=





σ(v) ∪ σe(v>1 ), if w = v>1
σ(w), if w ∈ V \ { v }
σe(w), else

.

Thus, the tree extension replaces node v in the PST and the set attached
to v is added to the root node of the tree extension. ♦

As we can see, the merge operation is a simple operation on graphs
that can also be understood as a relabelling of node v and appending
a leaf and a subtree to that node. In Example 6.7, we apply our pro-
posed mechanism to extend a powerset search tree and show a graphical
representation of a tree extension.
Example 6.7. In this example, we extend the PST from Fig. 6.3b by
adding a marking 2p2 + p3 for which no node with matching character-
istic set exists. Figure 6.4 shows a tree extension (marked gray) for the
marking w.r.t. set { p2, p3 } and where it can be added to the PST. By
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Figure 6.4.: Merging a tree extension with a PST.

replacing the dashed leaf node by the root node of the tree extension—
and adding the set attached to the leaf node to the set attached to the
extension’s root node—a merge operation is carried out. The PST prop-
erties are maintained and marking 2p2 + p3 is added to the tree. ♦

The following lemma shows that the result of the merge operation indeed
is an extended powerset search tree.
Lemma 6.2 (Effect of Merge). Merging a PST for X and a tree
extension for x results in a PST for X ∪ {x } .

Proof. Let f : Z −→ 2Y be an image-finite indicator function, x an
element of Z, and R ⊆ f(x) a subset of the indicator value of x. Consider
a relaxed PST P = (V,E, v0, λ, σ) for X over Y , some leaf node v ∈ V
with λ(v) = ⊥ and characteristic set χ(v) ⊆ R, and a tree extension
Q = (V e, Ee, v>1 , λe, σe). Let P ′ = (V ′, E′, v′0, λ′, σ′) be the result of the
merge operation of P and Q.
As the nodes v (in P ) and v>1 (in P ′) have the same characteristic sets
and by Corollary 6.1 (characteristic sets of connected nodes), we have
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that by merging P and Q, the characteristic sets of the nodes in tree
extension Q are enlarged by χ(v) (now in P ′). Thus, the characteristic
set of the leaf node that x is attached to is f(x) and the PST properties
are retained. Since the contents of the set attached to v, i.e. σ(v), are
transferred into σ(v>1 ) and the only element attached to a node of the
tree extension is x, the resulting tree is a relaxed powerset search tree
for X ∪ {x } w.r.t. indicator function f .

We are now fit to translate the abstract operations of Sect. 6.2 to the
context of PSTs. Consider a powerset search tree (V,E, v0, λ, σ) for some
set X with image-finite indicator function f : Z −→ 2Y with X ⊆ Z.

1. Clear
X := ∅ is represented by clearing out the sets of states attached
via σ, i.e. σ(V ) := ∅

2. Test if empty
X

?= ∅ is represented by an emptiness test on the attached sets.
As stated for full PSTs: In an actual implementation, a counter
variable for the number of contained elements would be used and
tested if it is 0.

3. Add an element
X := X ∪ {x } becomes finding some node v with a characteristic
set that matches the indicator value, i.e. χ(v) = f(x), and adding x
to the attached set: σ(v) := σ(v)∪ {x } . If no such node exists, the
tree is extended at v with a suitable tree extension for x w.r.t. f(x)\
χ(x).
Formally, a leaf node v with a characteristic set that is a subset of
f(x) is found analogous to the search described in the add operation
for full PSTs. If χ(v) = f(x), then the state is added to σ(v), else
the difference f(x) \ χ(v) is non-empty. In case x was not added
to σ(v), we merge (Def. 6.7) the tree extension (Def. 6.6) for x
w.r.t. f(x)\χ(v) with the PST at node v. The result is a PST with
states X ∪ {x } as shown in Lemma 6.2.

4. Remove an element
X := X \ {x } is realized analogously to the operation for full
PSTs with the difference being that the attached sets of all nodes
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v with χ(v) = f(x) that lie on the traversed path to a leaf node
are updated.

5. Given state x, remove all elements covering x
X := X \ ↑x too is realized in analogy to the operation for a full
PST with the difference being that the attached sets of all nodes v
with χ(v) ⊇ f(x) that are visited are updated.

6. Given state x, test if elements covered by x are contained
x

?∈ ↑X is realized analogously to the method for full PSTs with the
difference being that the attached sets of all nodes v with χ(v) ⊆
f(x) that are visited are tested.

As mentioned before, we are interested in a simple data structure that
performs reasonably efficiently. Despite the fact that certain orderings of
node labels are preferable over others, we choose not to (globally) rear-
range the tree upon insertion or deletion of states, but to only perform
local changes. In our experiments (cf. Sect. 7.2 on p. 207), we observed
that even when a set attached to a leaf node is emptied by a remove
operation, it is sensible to leave the tree structure unchanged as it was
common that other states with the same indicator value were later added
to the tree. If the tree would be kept minimal at every time, removed
subtrees are likely to be added back to the tree in a later iteration of the
framework algorithm. Based on our experience from the experiments, we
decided to avoid further pursuit for minimality of PSTs—which leaves
room for future work.

6.6.3. Preliminary Experiments
To practically test the effect on performance by using a tree structure
to exploit subset conditions, we ran a set of benchmarks. We wanted
to see if partitioning the sets of Petri net (with transfer) markings by
the indicator function fsupp of Example 6.4 had a positive effect on the
running time. Therefore, we deviated a bit from our definition of PSTs
and limited the number of blocks, a set of markings could be divided into
by setting a bound on the height of the search tree. A tree with height
1 would divide a set into two blocks, a height of 2 would result in up
to four blocks, etc. We hoped to observe an exponential drop in running
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time with increasing tree height as the number of markings to examine
should shrink the more blocks the set was divided into.
We carried out a small4 benchmark test with different bounds on the
height of the relaxed powerset search trees for one of the more involved
problems, Petri net delegatebuffer.16.1 with 6503 target markings (cf. Ta-
ble 7.1 on p. 209 and Fig. 7.7 on p. 222), with an older version of Petru-
chio/BW. The results, depicted in Fig. 6.5, clearly show the anticipated
exponential reduction in average running time and standard deviation.
With the benchmark Petri net containing 52 places, the tree height can-
not exceed this number. Benchmarks have been executed for trees with
k-bounded height, 1 ≤ k ≤ 52, as well as the unbounded case, iterated
300 times each to give comparable average running times and standard
deviations. The lines “Avg. no. of markings created” and “Avg. no. of
markings examined” nearly parallel to the abscissa show that for each
bound on tree height the number of objects to be stored in the data
structure was about the same.
The standard deviation for “Avg. no. of markings examined” lies around
650 which is a value that is to small for the error bars to be visible in
the figure. For the whole benchmark set, the maximal height of trees ex-
perienced was 39. The average maximal height was 31.93—not counting
those iterations where the maximal height of the tree reached the bound
on the tree height. The fact that the average maximal height is much
smaller than the theoretical limit of 52 for the tree height reinforces our
decision to create powerset search trees on demand and only w.r.t. the
elements in the concrete indicator sets of states.

6.7. Hierarchy of Necessary Conditions

For the basic set of necessary conditions we identified—equality condi-
tions, total order conditions, and subset conditions—, we have created
a simple construction kit to hierarchically structure large sets of states.
To employ these building blocks, a user of our framework inputs a se-
quence of indicator functions together with the corresponding relation
and immediately is presented a data structure. Take Petri nets for ex-
ample, where a data structure according to the method presented in this

4It took 6 days and 18 hours to complete the benchmark.
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Figure 6.5.: Runtime benefit of partitioning via subset conditions.

chapter can be characterized by the sequence (fΣ,≤), (fsupp,⊆), meaning
that a set of states will be partitioned via indicator function fΣ (cf. Ex-
ample 6.3) which gives rise to a total order condition and the blocks of
the set w.r.t. fΣ are then partitioned via indicator function fsupp (cf. Ex-
ample 6.4) which occurs in a subset condition. However, more complex
hierarchies that depend on the concrete model under consideration are
possible. As an example, consider an LCS with channel set C = { a, b } .
Here, we could have sequence (f#,a,≤), (f#,b,≤), (fmsg,a,⊆), (fmsg,b,⊆)
as the characterization of a data structure that takes into account the
specific set of channels in the system.

Since the data structures can be defined rather easily by indicator func-
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tions with corresponding relations, the hierarchical order of conditions
is something a user may play with. In the following Sect. 6.7.1, we have
experimented with different data structures for Petri nets (with transfer)
in order to find out whether ordering (fΣ,≤), (fsupp,⊆) is preferable over
(fsupp,⊆), (fΣ,≤).
We want to stress that the idea of structuring a set of states by neces-
sary conditions is a highly extensible framework in itself. Furthermore,
the data structures we employ for total order conditions and subset con-
ditions open the doors for parallel processing: In the case of a test if
x ∈ ↑X holds for example, states of several different blocks may have
to be compared to x. The data structures guarantee these blocks to
be disjoint and therefore—in theory—processing them in parallel can
be achieved without further precautions. Since there may be very large
number of blocks, the overhead of spawning new threads/processes has
to be considered when looking for a sweet-spot for the number of parallel
processes. Investigation on how the operations on the data structures can
be efficiently parallelized to increase the performance is future work.

6.7.1. Preliminary Experiments
In Fig. 6.6 the results of a comparison of both orderings of (fΣ,≤) and
(fsupp,⊆) are shown.5 For this benchmark only a subset of models from
the following Sect. 7.2 on p. 207 has been chosen as a control sample.
Two models—where an early version of Petruchio/BW took consid-
erable time to complete the model checking task—stand out: delegate-
buffer.16.1, where a trace is found rather quickly and few markings are
created and examined, and HTS , for which fewer markings are created
but more markings are examined. The rest of the benchmark set was
chosen so that from each level of hardness (solvable in under 0.1 ms, in
roughly 0.1 ms, 1 ms, 10 ms, 100 ms, and roughly in 1 s) at least two
representative models were present, where at least one marking was to
store in the data structure.
For each pair of benchmarks on a model, the number of iterations was the
same. The solid bars show average running times where the minimal basis
was first divided into blocks w.r.t. fΣ and these classes were represented
by PSTs. Crosshatched bars indicate average running times where the

5The benchmark set took 2 days and 6 hours to complete.
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minimal basis was represented by a PST and the blocks w.r.t. fsupp at its
leaves were further divided into blocks w.r.t. fΣ. Numbers above the bars
give the factor of slow down in running time of “crosshatched” approach
vs. “solid” approach. Note the logarithmic scales of both running time
and number of markings. Clearly, the “solid” approach outperforms the
“crosshatched” counterpart and scales well.

6.8. Select Operation
One of the operations we identified in Sect. 6.2 is the selection and re-
moval

x := select(W ); W := W \ {x }
of a state minimal w.r.t. a total ordering as described in Sect. 5.5 on
p. 155. Observe that select is the fundamental operation for guiding the
search. In particular, the total order on states for search guidance does
not depend on the well-quasi ordering on states. Therefore, we have to
consider two non-related orderings when defining a data structure for
sets of states.
In our opinion, there are two apparent options to store a set of states in
a way that allows for efficient retrieval of the smallest state w.r.t. one
ordering as well as to quickly find states that are comparable to a given
state w.r.t. a different ordering:

1. Find a clever method to store information on the ordering of the
contained elements for each of the data structures described for
equality conditions, total order conditions, and subset conditions.
In addition, force every user who extends the construction kit with
a new necessary condition and data structure to also find such a
method for her data structure.

2. Store a copy of the set of states as an ordered set representation.
Use efficient well-understood (standard) data structures.

We decided to go with the second option where we can choose between
different data structures for priority queues, for example red-black trees,
AVL trees, binary heaps, etc. (see [Knu98, Sed02] for more information).
The method is simple and sufficient.
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While storing the setW in two different data structures comes at the cost
of memory, our benchmarks in the next chapter showed that our refer-
ence implementation did not exceed the memory limit of our benchmark
system—even for case studies for which another tool struggled.
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Reference Implementation and
Experiments

Architecture starts when you carefully put two bricks
together. — Ludwig Mies van der Rohe, Architect
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7. Reference Implementation and Experiments

The algorithmic framework we present in this work is implemented as
an extensible, object-oriented Java package together with the general
backward acceleration search space construction (SSC), search guides
and data structures. In Sect. 7.1, we show how easily it can be extended
using the example of Petri nets. Furthermore, we discuss design decisions
and show the output of an example run of the program.
In Sect. 7.2, the second part of this chapter, we turn to an extensive
experimental evaluation of the performance of our reference implemen-
tation on several case studies and compare it with the performance of
other tools.

7.1. Reference Implementation BW

With the reference implementation—called BW—we describe in this sec-
tion, we aim to provide a Java framework that is simple to use and easy
to extend.1 It is geared towards prototyping coverability checkers for new
system classes and experimenting with novel optimizations for the back-
ward reachability analysis (BR) via the use of SSCs, without having to
“re-implement the wheel”.
We give an overview of our implementation, discuss design decisions, and
show our process of testing the framework.2 In this section we demon-
strate what is necessary to instantiate it to solve coverability problems
for a class of systems using the example of Petri nets (PNs).
Remark 7.1 (Naming of Classes for Data Structures). In the
context of our reference implementation, we call the data structures pre-
sented in Ch. 6 on p. 160 (data) abstractions as the indicator functions
abstract from concrete states. For example, the class SupportAbstrac-
tion represents a set of Petri net markings by the use of a powerset search
tree (cf. Sect. 6.6 on p. 170) and a corresponding indicator function.

Design Goals and Performance. Reference implementations are de-
signed with code clarity, encapsulation, and levels of abstraction in mind

1It is available at http://csd.informatik.uni-oldenburg.de/~critter/bw.tar.gz.
2In this work, we will discuss only few of the implementation’s 26 000 non-comment
lines of code.
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to enhance extensibility; performance is not the main concern—aside
from efficient algorithms.
Besides the reference implementation, we have implemented the methods
presented in this work in the software tool Petruchio/BW with per-
formance and flexibility as the main goals. It was developed as a part of
Petruchio [MS10] where it serves as the back-end coverability checker
that is needed to compute Meyer’s structural semantics of π-calculus
processes [Mey08, Mey09] as described in [Str07]. Petruchio/BW is
implemented in a more compact fashion, leaving out abstraction levels
and disregarding extensibility. The tool represents our previous attempt
to implement a coverability checker for the specific system class of Petri
nets and grew over the years and in communication with A. Kaiser to
support Petri nets with transfers.3 Experimental results are discussed in
Sect. 7.2, together with a comparison to the reference implementation
and the tools MIST24 [GRV08] and BFC5 [KKW12].

7.1.1. Architecture
We chose to create the reference implementation using a multi-layered
architecture where we have an abstract base layer of interdependent Java
interfaces which determine operations (Java methods) of entities (Java
objects) visible to the public. Any implementation may choose to have a
larger set of operations publicly available but by the use of interfaces, it
is treated as a black box w.r.t. the interfaces implemented. By relying on
a defined set of interfaces, we allow for all the concrete implementations
we provide to be substituted by programs written by a user.
In the example of Listing 7.1, a class that represents a state of a well-
structured labelled transition system (WSLTS) has to implement the
State interface which forces the concrete class to provide the public
methods setTrace(...) and getTrace(). Moreover, as the State in-
terface extends the SimpleState interface, a concrete class also has to
implement the operations required by that interface, i.e. a set of compar-
isons. As the Transition interface does not require any visible opera-

3A. Kaiser used the MIST2 tool prior to switching to Petruchio/BW for the speed
benefit. He later built his own program BFC that is optimized for the models he
encountered in his work.

4https://github.com/pierreganty/mist/
5http://www.cprover.org/bfc/
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tions, it is a so-called flag interface.6 If it is used, the implementing class
is “flagged” to be a transition. Since our framework algorithm does not
rely on properties of transitions, a flag interface suffices: we only have to
know what objects are transitions.

Listing 7.1: Interfaces for states and transitions
1 package bw.interfaces;

3 public interface Transition<T extends Transition<T>> { }

5 public interface SimpleState<S extends SimpleState<S>> {
6 boolean isLessThan(S s);
7 boolean isGreaterThan(S s);
8 boolean isLessEqualThan(S s);
9 boolean isGreaterEqualThan(S s);

10 boolean isEqualTo(S s);
11 }

13 public interface State<S extends State<S, T>,
14 T extends Transition<T>> extends SimpleState<S> {
15 void setTrace(Trace<T> trace);
16 Trace<T> getTrace();
17 }

Besides the interfaces that are used to define WSLTSs, implementa-
tions of search space constructions, different forms of upward-closed sets
(UCSs) and downward-closed sets (DCSs), as well as the analysis that
captures our framework algorithm are hidden behind interfaces.

Generics. We decided to heavily rely on the Java generics facility that
allows for programs that are type-safe at compile-time.7

Package and Folder Structure. The reference implementation BW
consists of the Java package bw for the source code and some additional
folders containing libraries, configuration files, shell scripts, and a few
examples. The package is structured as follows.

6In our reference implementation, the transitions are labelled intrinsically and we
distinguish them in the analysis by their object identity.

7Confer Sect. A.1 on p. 235 for more information on generics.
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bw: The main package with the executable Java class Runner.
interfaces: Interfaces for WSLTSs, SSCs, parsers, main data

structures, and analysis classes.
analysis: Implementation of our framework algorithm

(cf. Sect. 3.3 on p. 79).
base: Abstract classes for states and models that contain default

implementations of most of the interface methods.
cs: Different implementations of data structures for (down-

ward- and) upward-closed sets based on some abstract
structuring of sets of states, inter alia, that allow for the
ordering of states as discussed in Sect. 6.8 on p. 189.
abstractions: Various implementations of data struc-

tures induced by generic necessary conditions to struc-
ture sets of states as described in Ch. 6 on p. 160.

interfaces: Interfaces for the data structures in the cs
package.

ssc: Implementations of the backward acceleration SSC (as
described in Sect. 5.1 on p. 131) and a “chaining” opera-
tion on SSCs in relation to Sect. 5.4 on p. 152.

util: Utility classes for formatting, logging, etc.
concurrent: Utility classes to simplify the implementation

of concurrent operations on data structures using Execu-
torServices (cf. [Lea99, Blo08]).

benchmark: Code to repeatedly solve coverability problems and
perform some statistical analysis over the resulting data.

impl: Contains subpackages for different implementations of well-
structured labelled transition systems.
cfg: Instantiation of the framework for context-free gram-

mars (CFGs).
lcs: Instantiation of the framework for lossy channel systems.
pn: Instantiation of the framework for Petri nets.
pnt: Instantiation of the framework for Petri nets with trans-

fers (PNTs).
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Furthermore, every subpackage of bw contains a package test with JU-
nit-code to run tests on the classes implemented in that package (if
any).

7.1.2. Extensibility
As mentioned in the previous section, the reference implementation BW
contains instantiations for PNs, PNTs, LCSs, and CFGs. These were cre-
ated by implementing the interfaces for 1. states, 2. transitions, 3. models,
4. data abstractions, and 5. parsers. In this section, we focus on a single
class of WSLTSs and show that the time and effort needed to extend our
reference implementation by the class of Petri nets is rather small.
To relieve the user from implementing non-essential operations—meaning
operations that can be derived from a set of core operations—, we have
abstract classes that implement most methods of the above interfaces.
For example, the interface bw.interfaces.State of a WSLTS state
(cf. Listing 7.1) asks for the implementation of many comparison op-
erations (for convenience of a user of that interface) and methods to get
and set transition sequences (seven in total). When implementing the ab-
stract class bw.base.State for the Petri net case, we only have to code
the two methods shown in Listing 7.28: a single comparison operation
and a method to retrieve a hash value for the state to allow for the use of
hash tables as needed for our equality conditions (cf. Sect. 6.4 on p. 167).
The necessity to implement the latter method stems from the abstract
state, not the interface.

Listing 7.2: Actual methods to implement for a state
1 package bw.impl.pn;
2 public class Marking extends bw.base.State<Marking, Transition> {
3 @Override
4 public boolean isLessEqualThan(Marking s) { ... }

6 @Override
7 public int hashCode() { ... }

9 // ... (remainder of class omitted)
10 }

8The Java annotation @Override ensures that the method actually overrides an
inherited method.

196



7.1. Reference Implementation BW

The interface for models, shown in Listing 7.3, requires the large number
of 19 methods to be implemented. However, many of these methods are
optional and some of them are even allowed to throw an Unsupported-
OperationException, indicating that they are not implemented (which
methods may do so is documented in the actual source file). Again, an
abstract implementation bw.base.Model exists that reduces the number
of methods that have to be implemented to built a meaningful model to
just four. We demonstrate this on our running example of Petri nets in
Listing 7.4: The methods to implement fulfill the following purposes of
1. declaring the finite set of initial states of the WSLTS, 2. declaring the
finite basis of final states of the WSLTS, 3. choose a set of transitions
which are to be used in the computation of covering predecessors of a
state, and of 4. computing the set of covering predecessors of a state and
w.r.t. a transition.

Listing 7.3: Interface for a model
1 package bw.interfaces;
2 import java.util.Collection;
3 import java.util.Comparator;
4 import java.util.List;
5 import bw.analysis.AnalysisState;
6 public interface Model<S extends State<S, T>,
7 T extends Transition<T>> {
8 void getBackwardEnabledTransitions(S state, Collection<T>

bucket);
9 void getOptimizedPredecessors(S state, T transition,

10 AnalysisState<S, T> anaState, Collection<S> bucket);
11 void getPredecessors(S state, T transition, Collection<S>

bucket);
12 Collection<S> executeTrace(S state, Trace<T> trace);
13 Comparator<S> getSearchGuide();
14 boolean prune(S state);
15 IterableDcs<S, T> getInitialStates();
16 Iterable<S> getFinalStates();
17 Ucs<S, T> newUcs();
18 Dcs<S, T> newDcs();
19 IterableDcs<S, T> newIterableDcs();
20 SortedUcs<S, T> newSortedUcs();
21 SortedDcs<S, T> newSortedDcs();
22 Trace<T> newTrace(T transition, Trace<T> suffix);
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23 void initializeBeforeModelChecking();
24 void finalizeAfterModelChecking();
25 void handleArgs(List<String> args);
26 Model<S, T> shuffle();
27 String usage();
28 }

Listing 7.4: Actual methods to implement for a model
1 package bw.impl.pn;
2 import java.util.Collection;
3 import bw.interfaces.IterableDcs;

5 public class PetriNet
6 extends bw.base.Model<Marking, Transition> {
7 @Override
8 public IterableDcs<Marking, Transition> getInitialStates() {

... }

10 @Override
11 public Iterable<Marking> getFinalStates() { ... }

13 @Override
14 public void getBackwardEnabledTransitions(Marking state,
15 Collection<Transition> bucket) { ... }

17 @Override
18 public void getPredecessors(Marking state, Transition

transition,
19 Collection<Marking> bucket) { ... }

21 // ... (remainder of class omitted)
22 }

Data Structures for UCSs. In order to employ the data structures
from Ch. 6 on p. 160, subclasses of bw.base.cs.EqualityAbstrac-
tion, bw.base.cs.TotalOrderAbstraction, or bw.base.cs.Subset-
Abstraction are created.
For the case of Petri nets—our running example—, we show how two
necessary conditions can be implemented to exploit our predefined data
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structures. The schematic UML class diagram9 of Fig. 7.1 depicts the
dependencies between the classes we will discuss. The diagram shows
that to employ our data structures in the analysis, the user derives her
model class PetriNet (in the package bw.impl.pn) from the abstract
bw.base.Model and provides the implementations TokenSumAbstrac-
tion and SupportAbstraction of the corresponding abstract classes by
defining the indicator functions (and a total order). One of the abstract
classes, namely the SupportAbstraction, contains an implementation
of our powerset search trees from Sect. 6.6 on p. 170. Later in this sec-
tion, we comment on the user supplied classes that we omitted from the
diagram.
We begin by showing most of the class TokenSumAbstraction in List-
ing 7.5. It uses the indicator function fΣ from Example 6.3 on p. 168,
meaning that it maps a PN marking to an integer value and uses the
basic integer comparison which is implemented for Integer objects via
the compareTo(...) method. In our implementation of PN markings,
the total sum of tokens in that marking can be accessed via the method
getTokenSum() of a Marking object.

Listing 7.5: PN TokenSumAbstraction
1 package bw.impl.pn;
2 import bw.base.cs.abstractions.TotalOrderAbstraction;

4 public class TokenSumAbstraction
5 extends TotalOrderAbstraction<Marking, Transition, Integer> {
6 // ... (constructor omitted)

8 @Override
9 protected Integer getIndicator(final Marking state) {

10 return state.getTokenSum();
11 }

13 @Override
14 protected int compare(final Integer a, final Integer b) {
15 return a.compareTo(b);
16 }
17 }

9For an introduction to the unified modeling language (UML) see [PP05] for example.
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Figure 7.1.: Dependencies between classes for data structures.
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The subset condition for Petri nets is even easier to utilize since the
comparison is fixed to be the subset relation ⊆. In Listing 7.6 the im-
plementation of such a condition based on indicator function fsupp from
Example 6.4 on p. 171 is shown. As the indicator function takes values
in sets of PN places, the class SupportAbstraction expects the get-
Set(...) method to return a set of places for a given marking.

Listing 7.6: PN SupportAbstraction
1 package bw.impl.pn;
2 import java.util.Set;
3 import bw.base.cs.abstractions.SubsetAbstraction;

5 public class SupportAbstraction
6 extends SubsetAbstraction<Marking, Transition, Place> {
7 // ... (constructor omitted)

9 @Override
10 protected Set<Place> getSet(final Marking state) {
11 return state.getSupport();
12 }
13 }

The brevity of the two classes TokenSumAbstraction and SupportAb-
straction highlights the convenience of using our reference implemen-
tation. In our experience from the supported system classes, finding suit-
able necessary conditions for the well-quasi ordering of states is straight-
forward. Putting them to use with our pre-assembled data structures
comes virtually for free.
With these two data abstractions instantiated, they remain to be put
into a hierarchy (cf. Sect. 6.7 on p. 185). In Listing 7.7, the code that
expresses the hierarchy for our implementation of Petri nets is shown.

Listing 7.7: PN abstraction hierarchy
1 switch(level) {
2 case 1 : return new TokenSumAbstraction(...);
3 case 2 : return new SupportAbstraction(...);
4 case 3 : return new NoAbstraction<Marking, Transition>(...);
5 default : throw new IllegalArgumentException(
6 "No␣abstraction␣for␣level␣" + level + ".");
7 }
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It states that for the first level, the TokenSumAbstraction is used, the
second level is formed by the SupportAbstraction, and the last level is
a basic collection of states (a doubly linked list to be exact) which we
have implemented in the class NoAbstraction.
In addition to the three levels for which abstractions (resp, NoAbstrac-
tion) are defined, in the default case an exception is thrown.

Search Guide. To employ a search guide as discussed in Sect. 5.5 on
p. 155, the user provides an implementation of the standard Compara-
tor<X> interface that represents a total order via the interface method
compare(X x1, X x2). An instance of the comparator has to be re-
turned by the method getSearchGuide() of the model.

Model Parser. We provide a unified starter bw.Runner to execute the
analysis for models of different system classes. Therefore, we require users
to implement the parser interface shown in Listing 7.8. It constructs a
model from a textual representation (read from the InputStream) and
returns it.

Listing 7.8: Parser interface
1 package bw.interfaces;
2 import java.io.InputStream;

4 public interface Parser<S extends State<S, T>,
5 T extends Transition<T>> {
6 Model<S, T> parse(InputStream in);
7 }

Concluding Remarks on the Implementation for Petri Nets. To sum-
marize the prototypical instantiation of our framework for Petri nets
in our reference implementation, the bw.impl.pn package contains the
following classes that are visible to the reference implementation.

Transition which extends bw.base.Transition<Transition>. It con-
tains data and methods that are used by the PetriNet class to
compute covering predecessors.
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Marking which extends bw.base.State<Marking, Transition>. It al-
lows for fast comparison between markings w.r.t. the well-quasi
ordering. Furthermore, it contains methods to compute indicator
values w.r.t. fΣ and fsupp.

Place is the type of the elements in the indicator values for the Sup-
portAbstraction. Like the Transition class, it contains methods
that simplify the covering predecessor computation.

TokenSumAbstraction is depicted in Listing 7.5 and it extends bw.-
base.cs.TotalOrderAbstraction<Marking, Transition, Inte-
ger>. The listing omits only the constructor which passes its pa-
rameters to the super class.

SupportAbstraction is depicted in Listing 7.6. It extends bw.base.-
cs.SubsetAbstraction<Marking, Transition, Place>. The list-
ing omits only the constructor which passes its parameters to the
super class.

SearchGuide which implements java.util.Comparator<Marking> in
direct relation to the total order on markings chosen in Sect. 5.5.1
on p. 156.

PetriNet extends the abstract bw.base.Model<Marking, Transition>.
It implements the method getAbstractionFor(...)
(cf. Listing 7.7) which defines the hierarchy of the data struc-
ture to use by the (abstract) parent class. The search strategy
SearchGuide is provided by the getSearchGuide() method and
the computation of the pred-basis is implemented in the method
getPredecessors(...) as described in Lemma 5.2 on p. 141.
Furthermore, pruning is implemented per static analysis (carried
out in the method initializeBeforeModelChecking()) of the
nets inequality P-invariants and accessed through the prune(...)
method. Partial-order reduction is implemented in the method get-
BackwardEnabledTransitions(...). Since there is no branching
in the pred-basis computation for Petri nets, the backward accel-
eration SSC is incorporated as described in Sect. 5.1.3 on p. 141.
We allowed our Petri net implementation to have a single initial
state. It is returned by the method getInitialStates(). The fi-
nite basis of final states is accessible via getFinalStates(). Lastly,
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the method executeTrace(...) is implemented to allow for for-
ward execution of transition sequences.

Parser which implements bw.interfaces.Parser<PetriNet>. It reads
a (textual) PEP [Gra97, Gra98] ll_net description10 of a Petri net
together with a description of the final states and returns a corre-
sponding instance of the PetriNet class. In the configuration file
cfg/types.cfg for our reference implementation, the line .ll_-
net=bw.impl.pn.Parser expresses that an input file is to be read
by this parser if its file name ends on .ll_net.

7.1.2.1. The Cost of Extending our Reference Implementation

Let us summarize the advantages of our framework: if a new system class
already has a Java implementation, the main part of the additional effort
to use our framework lies in finding the covering predecessor computation
and a suitable well-quasi ordering. While it is very beneficial to have
a search guide and indicator functions to employ our predefined data
structures, it is not required. We believe that the cost to implement a
backward reachability analysis around an existing implementation of a
model outweighs the work needed to connect that implementation to our
interfaces and abstract classes.

7.1.3. Unit Tests
While the description of the data structures of Ch. 6 on p. 160 is rather
abstract, we had to exercise due diligence for their implementation. This
embodied the creation of specialized structures like class SortedUcs for
UCSs with a total order on states where the minimal state is accessible
(likeW in our framework Alg. 3.7 on p. 80), class IterableUcs for UCSs
where elements are enumerable (like F in our framework), and class Ucs
for UCSs where the states do not have to be accessed individually (like
V in our framework).
For most of the classes we provide in the bw.base package and its sub-
packages, we have created unit tests using the JUnit framework to min-
imize the number of programming bugs in the reference implementation.
10PEP is available at http://peptool.sourceforge.net/. The format is described in

http://parsys.informatik.uni-oldenburg.de/~pep/Paper/formats_all.ps.gz.
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Specifically our implementations of the (abstract) generic data structures
for UCSs that use the classes EqualityAbstraction, TotalOrderAb-
straction, and NoAbstraction—with their interaction with the data
structures used to incorporate a total order on states w.r.t. a search
strategy—have been thoroughly tested.
We decided to employ two sets of test cases for our data structures:
1. hard-coded tests where we called the classes’ methods in a meaningful
order with sensible parameters and tested the return values and 2. “stress
tests” that created tens of thousands of states that were added and re-
moved repeatedly to the data structure in a randomized order. For both
tests, we maintained a second, naive implementation of a respective data
structure as a control to check the tested structure against.

Use of Java Assertions. Another means to test the framework’s code
as well as code provided by the user stems from our commitment to use
Java assertions for the reference implementation.
Java assertions are statements in the form of assert <condition> :
<message>; that are ignored by the Java virtual machine (JVM) unless
instructed otherwise.11 When disabled, they do not influence the perfor-
mance, when enabled, the condition is checked and if it resolves to false,
an AssertionException is thrown with the message as the exception’s
detail message.
We have added assertions to implement control tests of results returned
both by our algorithms and by those the user has to implement. This
way, the user may test many of the methods during experimental runs
of his implementation without having to provide test code herself. For
example, if a model inherits from our abstract class bw.base.Model and
implements the executeTrace(S state, Trace<T> trace) method to
allow for forward execution of a transition sequence (resulting in a col-
lection of reached states) and the JVM is instructed to check assertions,
then every computation of the covering predecessors is checked against
the successor computation via executeTrace(...).

11Start Java with argument -enableassertions, or -ea, on the command-line
before naming the class to run, e.g. our tool with java -ea bw.Runner
examples/pn/hts.ll_net.
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7.1.4. Usage: An Example
To solve a coverability problem with the reference implementation BW
of our framework, run the following command:

java bw.Runner input-file [options]

Currently, the supported file types are 1. .lcs for our textual represen-
tation of lossy channel systems, 2. .ll_net for Petri nets in the format
used by the PEP tool, 3. .spec for Petri nets with transfer in the format
used by the MIST2 tool, and 4. .cfg for our textual representation of
context-free grammars.
The set of permitted command-line options depends on the type of the
model under consideration and the employed analysis module—both may
be defined by the user.12

As an example, we ran the program on the large case study of a holonic
transportation system (HTS) [BR99, BR01] (cf. Sect. B.1 on p. 239 for
a description) by executing the command

java bw.Runner examples/pn/hts.ll_net --trace

and got the output shown in Listing 7.9. Before the backward reachability
analysis is conducted, the program performs some static analysis and
information on the system under consideration is printed: 1. A number
of invariants is computed (which are used for pruning). 2. Most oft the
target states—i.e. the states in the basis of final states—are pruned (as
they violate at least one of the found invariants). 3. There is one state
in the basis of initial states. During the actual analysis, information on
the current status is printed periodically.

Listing 7.9: Example output of the reference implementation
1 Computing inequality p-invariants...
2 Found 132 inequality p-invariants, covering 370 places.
3 12 state(s) in basis of target (37 pruned)
4 1 state(s) in basis of initial
5 10697 explored, 38049 created, 7.447s running time
6 Target states are coverable from state [1*p8, 1*p7, 1*p9] in 30

step(s).

12See Sect. A.2 on p. 236 for command-line options of the Petri net implementation
and the default analysis module.
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7 That state is covered by initial state [1*p4, 1*p5, 1*p3, 1*p11,
1*p8, 1*p10, 1*p7, 1*p1, 1*p9, 1*p6, 1*p2].

8 Trace: t38, t756, t497, t277, t256, t53, t330, t560, t409, t218,
t518, t756, t38, t497, t277, t256, t53, t330, t560, (t38)^2,
t330, t409, t44, t420, t174, t66, t330, t460, t253

9 Executing the trace from the found state leads to 1 state(s), the
following 1 of which cover(s) some target state(s):

10 [1*p169, 1*p172, 1*p8, 1*p180, 1*p7, 2*p171] covers the state
[1*p172, 1*p180] in the basis of the target.

The program’s output ends with either stating that the final states are
not coverable or by showing details on the covering transition sequence as
in the case of our example. There, the state is shown which was reached
by the backward analysis and the covering initial state—in this context,
we call it x. In our example the final states (target states) are bad states.
As the found state x contains far fewer tokens (on a smaller number of
places) than the actual initial state, we observe a core of the problem
with our Petri net where the unessential tokens of the initial state are
omitted. With the well-quasi ordering for WSLTSs being a simulation
relation, it is reasonable to examine minimal “problem states”.
Lastly, the found transition sequence is printed that leads from the found
state to the upward-closure of the final states. Since we used the –trace
command-line option, the BW tool attempts to execute the found se-
quence of transitions beginning from an initial state and then verifies
that the reached state—here, we call it y—indeed covers an element of
the basis of final states. (In general, there may be several states reached
via the transition sequence.) The state reached from the found state x via
the found transition sequence may be smaller than the state reached from
the covering initial states. Again, this may help to examine the problem
of the bad states being reachable as the states x and y are potentially
easier to understand than the actual system behaviour.

7.2. Experiments
In this section, we present and discuss the results of an extensive set
of benchmarks we conducted to experimentally evaluate our algorithmic
framework. Since we are neither aware of other tools for checking cov-
erability in LCSs nor of a large enough set of benchmark models for a

207



7. Reference Implementation and Experiments

meaningful experimentation, we present our experiments on LCSs and
then turn the focus on Petri nets and Petri nets with transfer as the
input models.13

After a short overview of the problem instances we use for benchmarking,
we test and discuss

• how the different search space constructions (SSCs) and our simple
search guidance influence the runtime and

• how a set of different tools for checking coverability stack up each
other.

7.2.1. Lossy Channel Systems
For lossy channel systems, we implemented the following search space
constructions: 1. Partial order reduction as described Abdulla et al. in
[AKP97, AJKP98]. 2. Our backward acceleration (cf. Sect. 5.1 on p. 131).
Additionally, the search is guided towards initial locations of the au-
tomata as described in Sect. 5.5.1 on p. 156. Our prototypical implemen-
tation was able to solve the coverability problem for the sliding window
protocol with 30 messages in less than 3 minutes.
In the course of experimentation, a previously unknown bug in Schnoe-
belen’s construction [Sch02] of a lossy channel system weakly computing
the Ackermann function was discovered [SM12]:14 In the definition of
channel system Tn, which is supposed to transfer a number in unary
notation from one channel to another, the number was accidentally in-
creased by one by the very last transition to location xn.15

7.2.2. PN and PNT Benchmark Models
In Table 7.1 properties of the considered 49 benchmark models are listed.
The columns |P | and |T | denote the number of places and transitions in
the Petri net (with transfer), whereas the column |F | gives the number
13From the literature on LCSs, we know of the bounded retransmission protocol,

the sliding window protocol (which subsumes the alternating bit protocol), and
Schnoebelen’s construction of the Ackermann function.

14We would like to thank Philippe Schnoebelen and Eike Möhlmann for discussions
on this topic.

15The transition is labelled with actions cn?e, cn!1e, while they should read cn?e, cn!e.
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of markings in the (not necessarily minimal) basis of the final states. The
set of final states is not coverable for models where column “Cov.” con-
tains a cross. Numbers in column “Cov.” are lengths of shortest known16

transition sequence from an initial state to the upward-closure of the final
states . Petri nets (with transfer) that are finite state systems (there is a
bound on the number of tokens in the Petri net’s marking) are marked
with tick in the “Bound.” column. Those models that are Petri nets with
transfer (and not Petri nets) have a tick in column “Transf.”
Most of the models come from the benchmark set of the MIST2 tool.17

Those models with two numbers at the end come from the authors of the
BFC tool.18 The glotter model comes from M. Heizmann. Models set in
italics are described in Appendix B on p. 239. We will discuss the tools
in Sect. 7.2.4.
Note that the models vary heavily in the number of places and transi-
tions: ranging from three places and two transitions up to over 700 places
and nearly 800 transitions. Also, the maximal number of states in the
basis of final states exceeds 63 000.

Table 7.1.: Properties of benchmark case studies
Model |P | |T | |F | Cov. Bound. Transf.
basicextransfer 3 2 1 × X X
basic-me 5 4 3 × × ×
bingham-h250 253 501 63251 × X ×
consprod 18 14 1 × × X
consprod2 18 14 1 × × X
csm 14 13 1 × × ×
csm-broad 13 8 1 × × X
delegatebuffer 50 52 1 × × X
delegatebuffer.15.1 50 52 1011 13 × X
delegatebuffer.16.1 50 52 6503 13 × X

Continued on next page

16As MIST2 performs a breadth-first search, we took the length of the transition
sequences that it found as the shortest paths (if any). For the hts case study,
MIST2 did not finish in time. We chose to present the length of the transition
sequence returned by Petruchio/BW in the table.

17https://github.com/pierreganty/mist/tree/master/examples
18We received the models in the context of personal communication.
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Table 7.1 – continued from previous page
Model |P | |T | |F | Cov. Bound. Transf.
efm 6 5 1 × × ×
examplelea 48 52 1 × × X
ext-rw 24 22 1 × × ×
ext-rw-smallconst 24 22 1 × × ×
fms 22 20 1 × × ×
fms2 22 20 26 × × ×
german 12 8 1 × × X
glotter 55 80 5 7 X ×
hts 734 788 49 29 × ×
java 44 37 1 14 × X
java.10.0 44 37 551 10 × X
java.11.0 44 37 3256 10 × X
java2 44 38 1 × × X
java2.10.2 44 38 595 10 × X
java2.11.2 44 38 3303 10 × X
kanban 16 16 1 48 × ×
km-nonterm.4.3 5 4 20 12 × X
km-nonterm.5.4 5 4 15 20 × X
km-nonterm.6.5 5 4 10 30 × X
lamport 11 9 1 × X ×
leabasicapproach 16 12 1 4 × X
leaconflictset 30 15 1 15 × X
lifo 7 10 1 × × X
manufacturing 13 6 1 × × ×
mesh2x2 32 32 1 × × ×
mesh3x2 52 54 1 × × ×
moesi 9 11 1 × × X
moesi5 45 55 5 × × X
multi-me 12 11 3 × × ×
multipoll 18 21 1 × × ×
newdekker 16 14 1 × X ×
newrtp 9 12 1 × X ×
peterson 14 12 1 × X ×
pncsacover 31 36 1 32 × ×
pncsasemiliv 31 36 1 10 × ×
queuedbusyflag 80 104 1 × × X

Continued on next page
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Table 7.1 – continued from previous page
Model |P | |T | |F | Cov. Bound. Transf.
read-write 13 9 1 × X ×
simplejavaexample 32 28 1 10 × X
transthesis 90 117 7 × × X

31 × 41 × 26 X

The benchmark models differ strongly in how challenging they are for
the coverability checkers we test with. We will see that some problems
that are hard to solve for one tool are readily solved by another and that
the size of the model is no reliable indicator for the complexity of the
problem.

Input Randomization. In the following sections, we run the bench-
marks for each model repeatedly to compute decent median values for
the runtime per model. As the order in which places, transitions, and
arcs appear in the input file may influence random choices (that are
non-deterministic on an abstract level of description)19, we decided to
“shuffle” every net for each benchmark iteration. By shuffling we mean
to build the same net structure anew but in random order of object
instantiation to alleviate the effect of the fixed ordering in the input file.

7.2.3. Experiments on SSCs and Search Guidance
To observe their effects on runtime, we have tested every combination
of the methods described in Ch. 5 on p. 130. For each combination of
backward acceleration (A), pruning by inequality P-invariants (I), par-
tial order reduction (P), and search guidance (G), we let our tool try
to solve the benchmark models. The ordering of the different SSCs is
fixed to partial-order reduction (if used), then pruning (if used), then
backward acceleration (if used). In order to get meaningful results in
reasonable time, we limited the runtime per model. The schematic pro-
cess of benchmarking the different combinations for each model is shown
19For Java in particular, the default hash value of an object depends on its place in

memory which in turn depends on the state of the memory and the order in which
objects are created.
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in Alg. 7.1: for each attempt to solve a problem instance, the tool had 20
minutes and at least three attempts were started. When the first three
attempts were finished in less than 15 minutes, the benchmark was re-
peated until the 15 minutes were reached. The idea behind this process
is to get the average of a large number of benchmark iterations when a
problem was solved quickly and to have at least three data points if the
problem took longer to solve.

1 foreach opt ∈ P( {A,G, I, P } ) do
2 i := 0;
3 reset clock x;
4 while i < 3 ∨ x < 15 minutes do
5 attempt to solve the model with opt and a timeout of 20

minutes
6 i := i+ 1
7 od
8 od

Algorithm 7.1: Benchmarking SSCs and search guidance.

The results of these benchmarks are shown in Fig. 7.2 (the benchmarks
in total took 13 days and 18 hours, cf. Sect. C.2 on p. 269 for a tabularly
listing of the results). It relates the number of problems that were solved
within 20 minutes (per problem) to the median runtime it took to solve
all those problems. For example, consider the line for the empty set of
methods: 17 problems could be solved within 20 minutes each and it
took roughly two seconds to solve those 17 problems. Using backward
acceleration as the only method, also 17 problems were solved in 20
minutes each—but it took over a minute to solve them. On the right-hand
side of the plot we indicated how many problems were solved by which
combinations of methods where “GI±AP” stands for “search guidance
and pruning together with any combination of backward acceleration and
partial-order reduction”, or, in our short form, GI, AGI, GIP, and AGIP.
Figure 7.2 allows us to rate the importance of search guidance and SSCs
in the context of instantiating our framework for Petri nets (with trans-
fer): First of all, the single most beneficial method is search guidance!
With this technique alone, 45 problems are solved. Pruning was the next
best method, as it enables our tool to solve all but one problem when
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Figure 7.2.: Comparison of effects of SSCs and search guidance.
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Model GIP AGIP Factor
bingham-h250 2.477 2.577 0.961
delegatebuffer.15.1 3.745 3.758 0.997
delegatebuffer.16.1 12.345 11.305 1.092
examplelea 14.397 10.092 1.427
hts 63.682 56.491 1.127
java2 4.671 4.716 0.991
queuedbusyflag 8.113 8.068 1.006

Table 7.2.: Selected benchmark data for AGIP vs. GIP.

combined with search guidance. Then comes partial-order reduction and
lastly our backward acceleration which appears to lower the performance
of the tool as more calculations have to be carried out in order to find can-
didate sequences and acceleration candidates. Keep in mind that back-
ward acceleration is a general SSC which is independent of the system
class, whereas the aforementioned methods require a (possibly deep) un-
derstanding of the class to be effectively implemented. Moreover, the
runtime seems to increase significantly only for small problems and if
the search guidance is not active; in absolute terms, the effect is of little
account as the increase does not exceed 100 milliseconds.
In conjunction with search guidance and the other methods backward ac-
celeration tends to decrease the runtime for the more difficult problems as
Table 7.2 shows. In that table, we listed the median runtimes in seconds
for problems that took at least one second to solve with search guid-
ance, pruning, and partial-order reduction (GIP) and compared it to the
median runtimes when backward acceleration is also enabled (AGIP).
Better runtimes are bold. We observe that the results differ only very
slightly except for the harder problems. In summary, for the easy prob-
lems in our benchmark set, backward acceleration can result in a little
slow-down (in Table 7.2 at most 4%); for the harder problems, it tends
to result in a significant speed-up (of up to 42%).

7.2.4. Tool Comparison
For an experimental evaluation of our approach, we carried out an ex-
tensive comparison with the following tools.
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MIST2 takes Petri nets (with transfer) as input and performs a breadth-
first backward search with pruning (classical P-invariants are read
from the input file) using the interval sharing-tree data structure
[GMV+07]. The tool contains several analysis algorithms [DRV01,
GRV05, GRV06a, GRV08] but only the implementation of the back-
ward reachability analysis supports Petri nets with transfer so that
we consider only MIST2/BW. The tool runs a single thread.
https://github.com/pierreganty/mist/

BFC 2.0 is the current version of the tool of A. Kaiser et al. and is
intended to solve coverability problems formonotone dual-reference
programs which extend thread transition systems (TTSs) and are
as expressive as Petri nets with transfer. The tool implements a
variant of the target set widening algorithm [KKW12] and runs two
threads: one for a forward analysis and one for a backward analysis.
It also uses partial-order reduction (POR) techniques during the
analysis.20

http://www.cprover.org/bfc/

BFC 1.0 is an older version of the BFC tool that performs better than
BFC 2.0 on the type of systems we consider in our evaluation.
As version 2.0, this tool uses a variant of the target set widening
algorithm [KKW12] and runs two threads: one for a forward anal-
ysis and one for a backward analysis. However, it does not employ
partial-order reduction.21

http://www.cprover.org/bfc/

Petruchio/BW is our older coverability checker for Petri nets (with
transfer) that we implemented for the tool Petruchio22 [SM12].

20During our benchmarks process, we spotted a spurious answer from this tool: it
falsely reports the final states of the basicextransfer problem to be coverable. The
bug has since been fixed but we were unable to rerun the benchmark for this tool
due to time constraints.

21This older version contains bugs that lead to occasional deadlocks or segfaults
during the benchmarks. In the runtime measurement of this tool, we have only
considered attempts to solve problems that went without error (cf. Sect. C.3 on
p. 286 for details).

22The Petruchio tool [MS10] translates π-calculus processes into Petri nets w.r.t. the
structural semantics [Mey09]. During the incremental construction of the corre-
sponding Petri net, coverability problems have to be solved.
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It was an early testing ground for some of the ideas presented in
this thesis and employs pruning via inequality P-invariants, POR,
backward acceleration and the search guidance of Sect. 5.5.1 on
p. 156. The tool was developed over several years without having
a clean architecture so that it is far from being easily extensible.
We will see that on average this tool performs a bit better than the
reference implementation of the framework. While the Java virtual
machine may run multiple threads, e.g. for garbage collection, the
analysis algorithm runs in a single thread.

http://csd.informatik.uni-oldenburg.de/~critter/petruch
io.tar.gz

Framework is the reference implementation of our algorithmic frame-
work that we presented in the previous section. The implementa-
tion’s focus lay on the creation of a framework with multiple layers
of abstraction that allows for straightforward instantiation as op-
posed to maximal performance. While the Java virtual machine
may run multiple threads, e.g. for garbage collection, the analysis
algorithm runs in a single thread.

http://csd.informatik.uni-oldenburg.de/~critter/bw.tar.
gz

Overall Benchmark Results. We divide the results of benchmarks of
the five tools into three figures that we discuss collectively. Figure 7.3
shows the accumulated median runtimes for the number of solved prob-
lems. For example, the reference implementation of our framework took
ca. 1 millisecond to solve its 10 “fastest” problems and it solved all 49
problem instances in ca. 5 hours total. The MIST2 tool solved only 40
problems and took roughly 2 days for all of them. In this figure the run-
times are median values of a number of repeated benchmarks per prob-
lem. The graph leads us to the conclusion that while Petruchio/BW
is the fastest of the five tools, despite the focus on extensibility, our ref-
erence implementation is able to keep up with it performance-wise. The
MIST2 tool is able to solve more problems than the BFC tool and the
older version of BFC is more suited for the models we consider in our
benchmarks.
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Figure 7.3.: Tool comparison: Median time.

The other two figures, Fig. 7.4 and Fig. 7.5, show maximum runtimes and
the upper bound of the 97%-confidence interval—meaning that in 97%
of the benchmark repetitions, the presented runtime was not exceeded.
We observe that the overall picture looks similar to the median runtimes
shown in Fig. 7.3. However, the tool Petruchio/BW experiences (max-
imal) outliers that are small in absolute value but large in comparison to
the other four tools. The figures show that our reference implementation
is superior even to Petruchio/BW when extremal runtimes are taken
into consideration.

Set-Up. The benchmarks were run on an Intel Xeon E5430 machine
with eight 2.66 GHz CPUs each with 6144 KB cache, which shared 32
GB of memory running Gentoo Linux 2.6.34-gentoo-r1 and Java SE Run-
time Environment build 1.6.0_24-b07 (Java HotSpot 64-Bit Server VM
build 19.1-b02, mixed mode). During measurement, no two benchmarks
were run at the same time, leaving most CPUs spare for background pro-
cesses. For each case study, the benchmarks were repeated at least three
times and for at least two hours before computing the median runtime.
No timeout was imposed on each iteration of an attempt to solve the
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given problem. Due to the nature of Java’s Virtual Machine, which has a
“slow” start-up phase, the standard deviation for benchmarks, for which
the reference implementation and Petruchio/BW were capable to an-
swer in well under one second, significantly decreases (mostly to values
near 0.2 milliseconds), when more iterations of the benchmarks are run
(however, the average runtime stays virtually the same). To get a fair
comparison, we refrained from countering this circumstance by running
the benchmarks of our Java programs over a longer period of time. To
extend the runtime of the benchmarks for all five tools was impractical.

Detailed Results. More detailed results of the comparison are depicted
in Fig. 7.6 and Fig. 7.7, where runtimes are given on a logarithmic scale.
The models are ordered according to the median runtime of our tool.
For models where final states are coverable, the median length of the
found trace is printed atop the bar for the tool’s runtime. Interestingly,
our method tends to return longer witness paths than the other tools do.
This is a result of guided search and the use of our acceleration SSC.
While our tool was able to present a transition sequence of length 29
for the holonic transportation system (HTS)23—a benchmark case study
described in [MKS09]—in 76 seconds, MIST2 was stopped after running
for nine weeks without results. However, for that particular problem the
BFC 2.0 tool was even faster: it solved the HTS problem in a little
over 3 seconds. The problem instance pncsacover [Fin93], a PN mod-
elling a portion of an authorization protocol, was solved in roughly 18
milliseconds median runtime over ca. 295 000 iterations by our reference
implementation and in roughly 47 seconds median runtime by MIST2
over 152 iterations.
Three of the benchmark models contain constellations of PNT arcs24

which are not supported by MIST2 and the program spec2tts that
creates the input files for the BFC tool. For the basicextransfer model,
BFC 2.0 outputs a spurious transition sequence. In four cases, the BFC
tool attempted to allocate more than 32 GB of memory and was stopped.
In total, the benchmarks of the five tools took 28 days and 8 hours to

23http://csd.informatik.uni-oldenburg.de/~critter/pet-bw-examples.tar.gz
24A place p is reset by transition t (input arc of t) which also adds a fixed number of

tokens to p (output arc of t). e.g. a net with W (p, t) = p and W (t, p) = 5.
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complete—not counting the roughly 63 days MIST2 ran without com-
pleting the HTS problem. See Sect. C.3 on p. 286 for numerical bench-
mark data.

Related Work. While we focused on the system classes of Petri nets
and Petri nets with transfer in our benchmarks and economized on only
49 problem instances, of which the majority comes from a competitor
tool, there exists a plethora of benchmark case studies and tools.
Most of the benchmark case studies we are aware of (e.g. cf. [Cor96, Pel06,
Pel07]) are designed with explicit model checking, state space generation,
deadlock checking, and reachability problems in mind. Although cover-
ability checkers can be used to semi-decide some reachability problems—
as the uncoverability of a set of final states implies their unreachability
but not vice versa—, we find it advisable to employ well-established and
efficient reachability checkers for these problems.
There is a large set of more specialized coverability checkers, some of
which we discuss in the following. However, we cease to include them in
our benchmarks as they are tailored for specific problems. In [MMW13],
a SPIN-based coverability checker for provenance tracking in concurrent
programs is introduced which is several orders of magnitude faster for
their benchmark set of problems than the Petri net coverability checkers
MIST2 and Petruchio/BW. An incremental, inductive procedure to
check coverability of a subclass of WSTSs is given in [KMNP13] where
the authors show that their implementation is several orders of magni-
tude faster on a set of Petri net benchmarks than the backward anal-
ysis MIST2/BW, the expand, enlarge, and check (EEC) procedure in
MIST2/EEC [GRV06b, GRV05], and the target set widening technique
of BFC.
Earlier work compared the performance of coverability checkers against
the polyhedron-based tool HyTech of Henzinger et al. [HHWT97] which
is intended for the model checking of hybrid systems. In [DRV01, DRV02],
Delzanno et al. evaluate their coverability checker based on covering shar-
ing trees (CSTs) and find a vast performance improvement in comparison
to HyTech. Bingham et al. produced a tool BUCSUB [Bin05, BH05]
based on binary decision diagrams (BDDs) for a subclass of WSTSs and
show that it outperforms both the CST-based approach of Delzanno
et al. and HyTech.
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Concluding Remarks. In our opinion, while the five tools we tested all
perform well on our set of PN and PNT benchmarks, our reference imple-
mentation provides excellent performance in terms of both the observed
median runtime and the observed worst-case runtime even in comparison
to state-of-the-art competitor tools.
In the discussion of related work we have seen that fine-grained observa-
tions and optimizations can be exploited and employed for more specific
system classes to gain a significant speed-up. However, our intention is to
not to compete with each of the above tools but to provide a framework
that is an extensible platform for experimentation and a test bench for
novel ideas.
Our framework and its reference implementation provide adequate means
for rapid prototyping when investigating new approaches in terms of sys-
tems under consideration, efficient data structures, and optimizations
such as search-space constructions and search guidance.
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C H A P T E R E I G H T

Conclusion
The Guide is definitive. Reality is frequently inaccurate.
— Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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In this chapter, we summarize the results of this thesis and address di-
rections for future work.

8.1. Summary

This thesis is divided into two parts: an algorithmic framework and in-
stantiating the framework.
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In the first part of this thesis, we have developed an algorithmic frame-
work for checking coverability of well-structured labelled transition sys-
tems (WSLTSs) that generalizes the established basic backward cover-
ability analysis (BR). We gave a novel, axiomatic proof of total correct-
ness of the BR that allows for a precise understanding of the algorithm.
Subsequently, we created incremental extensions of the basic analysis
and arrived at our parametrized framework algorithm. An abstract dis-
tance and a witness function were used to formalize the requirements for
adequate instantiations, called search space constructions (SSCs), of the
framework in a concise fashion. We discussed high-level arguments for
partial correctness and termination of the framework and conducted an
axiomatic proof of total correctness.
The thesis’ second part was concerned with an intermediate concretiza-
tion of our algorithmic framework that reduces the costs to instantiate
it for specific models. We began by the introduction of a novel search
space construction, called backward acceleration, which is applicable for
the whole class of WSLTSs. We showed that it can reduce the search
space by identifying and cutting out recurring patterns in the explored
transition sequences. We studied how it is to be implemented first in
general and second, more efficiently, for the case of Petri net models.
Thereafter, we showed that the notion of SSCs is conservative in the
sense that it captures the well-known optimizations pruning—for which
we extended the common technique for Petri nets by inequality P-inva-
riants—and partial-order reduction. Furthermore, we examined methods
to combine different search space constructions and illustrated the effects.
We discussed means to incorporate search guidance into our framework
and implemented it on the example of syntactic distance (and weight)
for Petri nets and lossy channel systems (LCSs).
In order to allow for the virtually effortless instantiation of our frame-
work, we presented the simple concept of employing necessary conditions
to partition finite bases of upward-closed sets of states. These partitions
were used to reduce the number of comparisons that have to be made
during a coverability analysis. We identified basic types of necessary
conditions and discussed how two of them can be implemented using
well-understood data structures. For a third type of condition, we intro-
duced a novel data structure, called powerset search trees, and showed
their beneficial effect on the runtime in an preliminary experiment. We
discussed how data structures induced by necessary conditions can be

226



8.2. Directions for Future Work

structured into hierarchies. We presented possible instantiations for LCS
configurations and experimented with data structures for sets of Petri
net markings.
We implemented our abstract framework, tested it thoroughly, and show-
ed its practicality by illustrating how we instantiated it for Petri nets. In
an empirical evaluation of the different search space constructions and
the search guidance, we found that a (simple) search guidance is the most
effective means to improve the programs performance. We discussed the
positive results for our model-independent SSC backward acceleration
and documented its impact on the tools runtime. We carried out a com-
prehensive set of benchmark experiments in order to draw comparisons
between five coverability checkers for Petri nets with transfer. The data
showed excellent results for our algorithmic framework and lead us to
the conclusion that it is well suited as a test bed for newly found opti-
mizations and for prototyping coverability checkers for novel classes of
WSLTSs.

8.2. Directions for Future Work
We classify the starting points for future work into three groups: 1. those
in context of our algorithmic framework, 2. those concerned with the
reference implementation, and 3. those on the general topic of well-
structured transition systems (WSTSs).

8.2.1. Algorithmic Framework and Distance
For the development of our algorithmic framework, we made some design
decisions in the extensions of the basic backward analysis and introduced
abstract constraints for adequate instantiations of our framework.

Memory Footprint. In the framework we presented in Sect. 3.3 on p. 79,
the finite bases V and W are disjoint. The algorithm might be altered
to have W being a subset of V .1 This could be accomplished by storing
only the set V and marking those states that are in W as schematically
shown in Alg. 8.1.

1We would like to thank Jochen Hoenicke for the discussion on this topic.
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1 V := minimize(F );
2 foreach y ∈ V do
3 mark y
4 od;
5 while there is a marked state in V do
6 x := selectmarked(V );
7 unmark x;
8 if x ∈ ↓ I then
9 V := {x } ;

10 else
11 foreach y ∈ opb(x) do
12 if y /∈ ↑V then
13 mark y;
14 V := minimize(V ∪ { y } )
15 fi
16 od
17 fi
18 od

Algorithm 8.1: Suggested algorithm for a reduced memory footprint.

The benefit of this approach is that there is only a single basis of an
upward-closed set to be stored. This reduces the memory consumption
and may increase the algorithm’s performance as the minimal basis prop-
erty has to be maintained for a single set only. Additionally, non-minimal
states that are removed from V are automatically omitted in the search
as they cannot be selected.

Distance Function. An anonymous reviewer of our paper [SM12] posed
an interesting question: Does our approach that requires search space
constructions to be distance reducing (cf. Sect. 3.4.1 on p. 82) extend to
other analysis methods that are based on fixpoint iterations for WSTSs?
The reviewer suggested to investigate if the notion of distance reduction
is applicable to the results of Baier et al. [BBS06] who prove a general
finite convergence property for “upward-/downward-guarded” fixpoint
expressions over well-quasi-ordered sets. They show that theit fixpoint
expressions—which allow for stating richer temporal properties than just
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coverability—can be evaluated symbolically by an iterative procedure in
a finite number of operations.

8.2.2. Implementation
Due to the use of interfaces, most instantiations of data structures and
algorithms for the reference implementation of our framework can be
exchanged easily. Therefore, we can understand the implementation as
being wide open to change. There are several topics offering themselves
as natural starting points for future work.

Application. The self-evident next step is to take our reference im-
plementation and create prototype coverability checkers for classes of
well-structured transition systems. De Boer et al. were able to show that
restricted actor systems are well-structured transition systems [BJLZ12].
It is desirable to instantiate our framework for the class of restricted actor
systems.

Data Structures. In Ch. 6 on p. 160 we have discussed how generic
data structures for finite sets of states can be implemented. It would
be interesting to see how they compare directly to the data structures
of competing approaches. Covering sharing trees, interval sharing trees,
binary decision diagrams, and multi-valued decision diagrams have been
used for the coverability analysis of Petri nets or even larger classes of
well-structured transition systems (cf. Sect. 6.1 on p. 160). If they were
implemented in our instantiation of the reference implementation for
Petri nets, an immediate empirical comparison could be commenced.

Parallel Processing for Data Structures. As addressed in Sect. 6.7 on
p. 185, the data structures induced by necessary conditions are used
to partition finite sets of states and therefore produce disjoint subsets.
Read operations and some write operations could easily be carried out in
parallel on disjoint subsets. The data structures for total order conditions
and subset conditions may be extended to allow for searching through
several subsets at the same time. The method might even be extended
to enable the parallel execution of several different operations accessing
the data structure for a single finite set, i.e. checking if x is in ↑V in
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parallel to checking if y is in ↑V . The correctness of such methods has to
be shown and it has to be checked if they result in an actual performance
gain.

8.2.3. Well-Structured Transition Systems
We have two suggestions for future work on well-structured transition
systems that are not necessarily tied to our algorithmic framework.

Subclasses of Well-Structured Transition Systems. In Sect. 1.2 on p. 6
we referenced several related approaches that consider only subclasses of
WSTSs. Since Finkel and Schnoebelen identified several abstract classes
of WSTSs [FS01], Bingham and Hu introduced “nicely sliceable” WSTSs
[BH05], Chambart et al. used “trace bounded” WSTSs [CFS11], and
Kloos et al. [KMNP13] analysed “downward-finite” WSTSs. How are
these classes connected to those defined by Finkel and Schnoebelen? As
some of these classes cover Petri nets and lossy channel systems, is there
a common property that our framework can easily exploit to increase its
performance?

An Easily Comprehensible Example of a WSLTS. Well-structured
transition systems are rather abstract. In conversations outside of the
scientific community we experienced difficulties explaining the subject
when concepts like Petri nets or lossy channel systems were unavailable.
We believe that it is meaningful to create a WSLTS or an analogy that
is comprehensible for people that are not considered insiders.
As an initial idea, we would imagine a card2 game that meets the follow-
ing requirements.

1. There is an infinite number of states—perhaps by introducing an
infinite pack of cards or used cards being returned to the pack.

2. The notion of a state is clear—perhaps in the style of LCSs with
a control state (a turn indicator) and a collection of channel states
(the player’s hands).

2Any type of game where players may gather an unbounded amount of resources
could work.
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3. There is a well-quasi ordering on states that is a simulation w.r.t. the
rules of the game—perhaps players may choose a card to use from
their hands; having more cards increases the options to choose from.

4. Transitions are labelled—the name of a card and the name of the
player using that card may suffice.

5. There is a winning move or an upward-closed set of winning states.

6. The stakes are high; it is tangible why it is important not to lose—
this motivates the need for model checking.3

7. It is not (or hardly) a game of chance, i.e. the outcome should not
depend on some randomized order of cards in the pack.

8. It is be easily agreeable that there is a large number of likewise
card games that all are WSLTSs.

Of course, some requirements might be relaxed if it serves the tangibility
of the game.

3The loser(s) might be obliged to do the dishes.
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Implementation Details
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In this appendix, we comment on some conceptual details of the reference
implementation.

A.1. Generics
In the example of Listing 7.1 on p. 194, we see that the head of the in-
terface of a simple state (one without a sequence of transitions) reads
SimpleState<S extends SimpleState<S>>, meaning that it depends
on the type parameter S. The type parameter S has a constraint at-
tached: It is required to extend the type SimpleState<S>. While this
constraint is circular and thus may be confusing, it is a standard tech-
nique and enables us to define the comparison operation to be between
two states of the same type.
In Listing A.1, we give two other approaches to exemplify the use of
generics. If we had not used generics as in interface SimpleStateOne, we
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would have to specify the type of parameter s of the comparison opera-
tions explicitly to be SimpleStateOne which forces any implementation
of a state to be comparable to any arbitrary implementations of a state,
e.g. Petri net markings and lossy channel system (LCS) configurations
would have to be comparable. In case of a simple generic type parameter
as in interface SimpleStateTwo, we are not allowed to call the compari-
son operation on an abstract level, i.e. SimpleState<S> state = ...;
if(state.isLessThan(state)) ..., as the type parameter and the in-
terface are not related.
With a type parameter as defined in the actual interface SimpleState,
we are able to implement, e.g, PN markings and use them even on an
abstract level without effort: The SimpleMarking class implements the
SimpleState interface with itself as the type parameter, resulting in
objects of that class being comparable to other objects of that particular
class—as forced by the interface.

Listing A.1: Choice of generic types for states
1 public interface SimpleStateOne {
2 boolean isLessThan(SimpleStateOne s);
3 // ...
4 }

6 public interface SimpleStateTwo<S> {
7 boolean isLessThan(S s);
8 // ...
9 }

11 public class SimpleMarking implements SimpleState<Marking> {
12 public boolean isLessThan(Marking s) { ... }
13 // ...
14 }

A.2. Command-Line Options
In Listing A.2 we have listed the (abbreviated) options for the frame-
work’s reference implementation BW with the Petri net implementation
and the reference implementation bw.analysis.Analysis of our frame-
work algorithm.
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Listing A.2: Command-line options of the reference implementation
1 Usage:
2 java bw.Runner input-file [options]
3 Options:
4 --help prints this help
5 --help-more prints help of loaded model
6 / analysis module
7 --quiet short for "--log-level␣OFF"
8 --trace executes trace
9 --no-acceleration disables acceleration

10 --shortest searches for shortest trace
11 --shuffle model = model.shuffle before analysis
12 --parser class uses given parser to load input
13 --analysis class uses given class for analysis
14 --log-level level sets log level to use
15 --properties file sets file to read for the configuration

17 Options of bw.impl.pn.PetriNet:
18 --search-order order sets search order to use.
19 one of the following:
20 depth-first Explore states with longest
21 traces first; if equal let the greedy
22 search guide decide.
23 breadth-first Explore states with shortest
24 traces first; if equal let the greedy
25 search guide decide.
26 greedy Use the greedy search guide.
27 a-star Explore states with minimal
28 trace length + distance heuristic
29 first; if equal let the greedy search
30 guide decide.
31 --no-partial-order disables partial order reduction
32 --no-pruning disables pruning

34 Options of bw.analysis.Analysis:
35 --print-search-space file writes a GraphViz DOT
36 representation of the explored
37 search space
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Sources of Selected Case
Studies
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This appendix describes several more complex case studies together with
associated control-state reachability problems and gives source files as
inputs to a model checker.

B.1. Holonic Transportation System

The holonic transportation system from [BR99, BR01] is an industrial
case study from the automated manufacturing domain consisting of au-
tonomous transport vehicles carrying work pieces between machine tools,
and input/output store.
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The case study can be understood as a workshop in which e.g. drilling,
sawing and bending machines are located and metal plates have to be
drilled, then sawed and finally bent, whereas metal tubes are sawn first,
then drilled and lastly bent.
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Work pieces carry information on the order in which
they have to be processed by machine tools. When-
ever a work piece arrives at the input store or exits a
machine tool (by being placed on the respective out-
put buffer), a message is sent to the transport vehicles,
upon which an idle vehicle fetches it and delivers it to
the machine tool or store next in order of the work
piece. Analogously, machine tools and stores send a
message, when their respective input buffer is free for
another work piece.
In a refined model, human mechanics are introduced,
machine tools and transport vehicles may fail. Also,
these refined, multi-functional vehicles may act as res-
cue vehicles and are called robots. In failure mode, a
robot sends a message to an idle robot stating its point
of failure to allow the rescue vehicle to perform the
remaining part of the transportation. After the work
piece has been taken away from the broken robot, a
mechanic is called who may repair the robot. Machine
tools may fail only when a work piece is being processed
and they too send a message to the mechanic who may
repair it.
The case study was formalized in [MORW04] and
adapted for the π-calculus in [Gri07] and model checked
using Petri net translations from [Mey08]. In [MKS09]
a deadlock of Gringel’s implementation was found us-
ing net unfoldings and a correction is proposed.
The deadlock-free, refined version of [MKS09] is given
in Listing B.1, modelling three different types of ma-
chine tools with two instances each, an unbounded
number of robots and work pieces, one input buffer,
one output buffer, and one mechanic.
An (unbounded) Petri net representation has been au-
tomatically generated by the tool Petruchio [MS10], consisting of 734
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places, 788 transitions and 2443 arcs. As Fig. B.1 indicates, the net easily
exceeds the size for which manual model checking appears to be practical.
The property to be checked represents a situation where there are at
least two robots in rescuing mode, one in stage A and one in stage B
(i.e. processes where either process identificator RHTV_A or RHTV_B can
perform a transition), which both fail at the same time and call for the
mechanic. Due to the two different paths a work piece can take through
the process, there are seven Petri net places for each of the malfunctioning
rescue robots. The property consists of 49 individual control-states each
of which is reachable. The shortest known trace, leading to a covering
control-state, consists of 29 steps in the generated Petri net.
For the files hts.pi.ll_net and hts.pi.spec attached to the digital
version of this document the places corresponding to critical control-
states are p172, p358, p383, p528, p588, p593, p696 for RHTV_A and p180,
p193, p375, p465, p503, p612, p617 for RHTV_B while the trace to a state
which marks p172 and p193 is t756, t756, t38, t497, t277, t256, t238,
t330, t140, t409, t218, t114, t38, t497, t277, t256, t330, t406, t38, t38,
t409, t44, t330, t420, t145, t768, t601, t330, t617.

Listing B.1: π-Calculus process of the holonic transportation system
([MKS09])

1 main
2 SYSTEM :=
3 ( MECHANIC(mtBroken , htvBroken )
4 | IN( createChan , id_in , htvC)
5 | OUT( out , id_out )
6 | MT( id_mt_1 , mt_1 , htvC , mtBroken ,
7 i_1 , Iyes_1 , Ino_1 , Iempty_1 , I fu l l_1 , Iinput_1 ,

Ioutput_1 ,
8 o_1 , Oyes_1 , Ono_1 , Oempty_1 , Ofull_1 , Oinput_1 ,

Ooutput_1 )
9 | MT( id_mt_2 , mt_2 , htvC , mtBroken ,

10 i_2 , Iyes_2 , Ino_2 , Iempty_2 , I fu l l_2 , Iinput_2 ,
Ioutput_2 ,

11 o_2 , Oyes_2 , Ono_2 , Oempty_2 , Ofull_2 , Oinput_2 ,
Ooutput_2 )

12 | MT( id_mt_3 , mt_3 , htvC , mtBroken ,
13 i_3 , Iyes_3 , Ino_3 , Iempty_3 , I fu l l_3 , Iinput_3 ,

Ioutput_3 ,
14 o_3 , Oyes_3 , Ono_3 , Oempty_3 , Ofull_3 , Oinput_3 ,

Ooutput_3 )
15 | MT( id_mt_4 , mt_1 , htvC , mtBroken ,
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16 i_4 , Iyes_4 , Ino_4 , Iempty_4 , I fu l l_4 , Iinput_4 ,
Ioutput_4 ,

17 o_4 , Oyes_4 , Ono_4 , Oempty_4 , Ofull_4 , Oinput_4 ,
Ooutput_4 )

18 | MT( id_mt_5 , mt_2 , htvC , mtBroken ,
19 i_5 , Iyes_5 , Ino_5 , Iempty_5 , I fu l l_5 , Iinput_5 ,

Ioutput_5 ,
20 o_5 , Oyes_5 , Ono_5 , Oempty_5 , Ofull_5 , Oinput_5 ,

Ooutput_5 )
21 | MT( id_mt_6 , mt_3 , htvC , mtBroken ,
22 i_6 , Iyes_6 , Ino_6 , Iempty_6 , I fu l l_6 , Iinput_6 ,

Ioutput_6 ,
23 o_6 , Oyes_6 , Ono_6 , Oempty_6 , Ofull_6 , Oinput_6 ,

Ooutput_6 )
24 | ROBOTS(htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C)
25 | WPs( createChan , mt_1 , mt_2 , mt_3 , out )
26 ) ;

28 ROBOTS(htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C) :=
29 ( ROBOTS(htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C)
30 | new r .ROBOT( r , htvC , htvBroken , Ichan_A , Ichan_B ,

Ichan_C)
31 ) ;

33 WPs( createChan , mt_1 , mt_2 , mt_3 , out ) :=
34 ( WPs( createChan , mt_1 , mt_2 , mt_3 , out )
35 | new wp. CreateWP(wp, createChan , mt_1 , mt_2 , mt_3 , out )
36 ) ;

38 // Create a work p i e c e ( two d i f f e r e n t p r o c e s s i n g o r d e r s )
39 CreateWP(wpID , createChan , addressMT_1 , addressMT_2 ,

addressMT_3 , addressOUT) :=
40 createChan<wpID>.
41 ( WP( createChan , wpID , addressMT_1 , addressMT_2 ,

addressMT_3 , addressOUT)
42 + WP( createChan , wpID , addressMT_2 , addressMT_1 ,

addressMT_3 , addressOUT)
43 ) ;

46 // A work p i e c e ( u n r o l l e d t h e d e f i n i t i o n )
47 WP( createChan , id , addr_1 , addr_2 , addr_3 , addr_4 ) :=
48 id<addr_1>. id<addr_2>. id<addr_3>. id<addr_4>. id ( ) .
49 WP_OUT( createChan , id , addr_1 , addr_2 , addr_3 , addr_4 ) ;

51 // Spawn new work p i e c e when one has been c o m p l e t e l y
p r o c e s s e d
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52 WP_OUT( createChan , id , addr_1 , addr_2 , addr_3 , addr_4 ) :=
53 createChan<id >.WP( createChan , id , addr_1 , addr_2 , addr_3 ,

addr_4 ) ;

55 // The i n p u t s t o r e
56 IN( createChan , storeID , htvC) :=
57 createChan (wp) . htvC<storeID >. storeID<wp>.
58 IN( createChan , storeID , htvC) ;

60 // The o u t p u t s t o r e
61 OUT( address , s tore ID ) :=
62 address<storeID >. store ID (wp) .wp<>.OUT( address , s tore ID ) ;

64 // A m u l t i f u n c t i o n a l r o b o t
65 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C)

:=
66 ( htvC( bu f f e r ) .HTV(htvID , htvC , htvBroken , Ichan_A ,

Ichan_B , Ichan_C , bu f f e r )
67 + Ichan_A( bu f f e r ) .RHTV_A(htvID , htvC , htvBroken , Ichan_A ,

Ichan_B , Ichan_C , bu f f e r )
68 + Ichan_B(wp, des t ) .RHTV_B(htvID , htvC , htvBroken ,

Ichan_A , Ichan_B , Ichan_C , wp, des t )
69 + Ichan_C(wp, bu f f e r ) .RHTV_C(htvID , htvC , htvBroken ,

Ichan_A , Ichan_B , Ichan_C , wp, bu f f e r )
70 ) ;

72 // A h o l o n i c t r a n s p o r t v e h i c l e w i th i n t e r r u p t s
73 HTV(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,

bu f f e r ) :=
74 ( Interrupt_A ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,

Ichan_C , bu f f e r )
75 + tau . b u f f e r (wp) .wp( dest ) .HTV_B(htvID , htvC , htvBroken ,

Ichan_A , Ichan_B , Ichan_C , wp, des t )
76 ) ;

78 RHTV_A(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,
bu f f e r ) :=

79 tau . b u f f e r (wp) .wp( dest ) . des t ( bu f f e r ) . tau . bu f f e r<wp>.
80 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C) ;

82 Interrupt_A (htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C , bu f f e r ) :=

83 ( Ichan_A<buf f e r >.HTV_defect ( htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C)

84 + htvBroken<htvID>.htvID ( ) .RHTV_A(htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C , bu f f e r )

85 ) ;
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86 HTV_B(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,
wp, des t ) :=

87 ( Interrupt_B ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C , wp, des t )

88 + dest ( bu f f e r ) .HTV_C(htvID , htvC , htvBroken , Ichan_A ,
Ichan_B , Ichan_C , wp, bu f f e r )

89 ) ;

91 RHTV_B(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,
wp, des t ) :=

92 tau . des t ( bu f f e r ) . bu f f e r<wp>.
93 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C) ;

95 Interrupt_B ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C , wp, des t ) :=

96 ( Ichan_B<wp, dest >.HTV_defect ( htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C)

97 + htvBroken<htvID>.htvID ( ) .RHTV_B(htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C , wp, des t )

98 ) ;

100 HTV_C(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,
wp, bu f f e r ) :=

101 ( Interrupt_C ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C , wp, bu f f e r )

102 + tau . bu f f e r<wp>.
103 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C

)
104 ) ;

106 RHTV_C(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C ,
wp, bu f f e r ) :=

107 tau . bu f f e r<wp>.
108 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C) ;

110 Interrupt_C ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C , wp, bu f f e r ) :=

111 ( Ichan_C<wp, bu f f e r >.HTV_defect ( htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C)

112 + htvBroken<htvID>.htvID ( ) .RHTV_C(htvID , htvC , htvBroken ,
Ichan_A , Ichan_B , Ichan_C , wp, bu f f e r )

113 ) ;

115 HTV_defect ( htvID , htvC , htvBroken , Ichan_A , Ichan_B ,
Ichan_C) :=

116 htvBroken<htvID>.htvID ( ) .
117 ROBOT(htvID , htvC , htvBroken , Ichan_A , Ichan_B , Ichan_C) ;
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119 MECHANIC(mtBroken , htvBroken ) :=
120 ( mtBroken ( id ) . tau . id<>.MECHANIC(mtBroken , htvBroken )
121 + htvBroken ( id ) . tau . id<>.MECHANIC(mtBroken , htvBroken )
122 ) ;
123 // Tool machines ///////////////////////////////

125 // One−p l a c e b u f f e r
126 Buf f e r ( channel , input , output ) :=
127 channel ( yes , no ) . yes<>.input<channel >. channel (wp) .
128 Buf f e rFu l l ( channel , wp, input , output ) ;

130 Buf f e rFu l l ( channel , wp, input , output ) :=
131 channel ( yes , no ) . no<>.output<channel >. channel<wp>.
132 Buf f e r ( channel , input , output ) ;

134 // C o n t r o l l e r
135 Ctr l ( channel , yes , no , input , output , empty , f u l l ) :=
136 channel<yes , no>.
137 ( yes ( ) . empty<input >.
138 Ctr l ( channel , yes , no , input , output , empty , f u l l )
139 + no ( ) . f u l l <output >.
140 Ctr l ( channel , yes , no , input , output , empty , f u l l )
141 ) ;

143 Handler ( inte rn , extern ) :=
144 i n t e rn ( i o ) . i o ( channel ) . extern<channel >.
145 Handler ( inte rn , extern ) ;

147 B(mtID , mtBroken , f u l l , empty ) :=
148 f u l l ( input ) . input ( channel ) .
149 Work(mtID , mtBroken , f u l l , empty , channel ) ;

151 Work(mtID , mtBroken , f u l l , empty , channel ) :=
152 channel (wp) . tau .
153 ( Put (mtID , mtBroken , f u l l , empty , wp)
154 + mtBroken<mtID>.mtID ( ) . tau .
155 Put (mtID , mtBroken , f u l l , empty , wp)
156 ) ;

158 Put (mtID , mtBroken , f u l l , empty , wp) :=
159 empty ( output ) . output ( channel ) . channel<wp>.
160 B(mtID , mtBroken , f u l l , empty ) ;

162 MT(mtID , address , htvC , mtBroken ,
163 i , Iyes , Ino , Iempty , I f u l l , I input , Ioutput ,
164 o , Oyes , Ono , Oempty , Oful l , Oinput , Ooutput ) :=

245



B. Sources of Selected Case Studies

165 ( Buf f e r ( i , I input , Ioutput )
166 | Bu f f e r ( o , Oinput , Ooutput )
167 | Ctr l ( i , Iyes , Ino , I input , Ioutput , Iempty , I f u l l )
168 | Ctr l ( o , Oyes , Ono , Oinput , Ooutput , Oempty , Ofu l l )
169 | Handler ( Iempty , address )
170 | Handler ( Oful l , htvC)
171 | B(mtID , mtBroken , I f u l l , Oempty)
172 ) ;

B.2. PNCSA Protocol
Part of the PNCSA protocol (Standard Protocol for Connection to the
Authorisation System)1 was introduced as a Petri net case study in
[Fin93] (see Fig. B.2) and has since been used in several publications,
e.g. [BF99, Van04, GRV05, Gee07]. The textual representation of the
Petri net in the format used by the MIST2 tool2 is given in Listing B.2.
The shortest transition sequence to reach the control-state CL2, AP, CR,
FN, GTDT110 (marked grey in Fig. B.2) is t1, t19, t2, t20, t3, t21, t4,
t5, t22, t26, t27, t30, t35, t6, t11, t17, t1, t19, t2, t20, t3, t21, t4, t9, t27,
t10, t11, t25, t17, t1, t19, t2, t13, t17, t1 with a length of 35.

Listing B.2: Source of the PNCSA
protocol

1 v a r s
2 LI1 CL1 ILC1 WCA WCC WAC

WSTD1req WDT1 WDN1 WLI1
WCL1 LI2 CL2 ILC2 WCR WCN
WDT2 WSTD2req WDN2 WLI2
WCL2 AP CA CR CC CN ON AC
FN GTDT100 GTDT110

3 r u l e s
4 # t1
5 ILC1>=1 −>
6 ILC1 ’ = ILC1−1,
7 WCA’ = WCA+1,
8 AP’ = AP+1;

10 # t2
11 WCA>=1, CA>=1 −>
12 WCA’ = WCA−1,
13 WCC’ = WCC+1,
14 CA’ = CA−1,
15 CR’ = CR+1;

17 # t3
18 WCC>=1, CC>=1 −>
19 WCC’ = WCC−1,
20 WAC’ = WAC+1,
21 CC’ = CC−1,
22 CN’ = CN+1;

24 # t4
25 WAC>=1, AC>=1 −>
26 WAC’ = WAC−1,

1Unfortunately, the publication from which it originated, [GIE88], wasn’t available
to the author.

2See https://github.com/pierreganty/mist/wiki#input-format-of-mist.
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Figure B.2.: Considered part of the PNCSA protocol ([Fin93])

27 WSTD1req ’ = WSTD1req+1,
28 AC’ = AC−1;

30 # t5

31 WSTD1req>=1 −>
32 WSTD1req ’ = WSTD1req−1,
33 WDT1’ = WDT1+1,
34 GTDT100’ = GTDT100+1;
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36 # t6
37 WDT1>=1 −>
38 WDT1’ = WDT1−1,
39 WLI1 ’ = WLI1+1;

41 # t7
42 WLI1>=1, LI2>=1 −>
43 CL1 ’ = CL1+1,
44 ILC1 ’ = ILC1+1,
45 WLI1 ’ = WLI1−1,
46 LI2 ’ = LI2−1;

48 # t8
49 WSTD1req>=1 −>
50 WSTD1req ’ = WSTD1req−1,
51 WDN1’ = WDN1+1,
52 FN’ = FN+1;

54 # t9
55 WDT1>=1, GTDT110>=1 −>
56 WSTD1req ’ = WSTD1req+1,
57 WDT1’ = WDT1−1,
58 GTDT110’ = GTDT110−1;

60 # t10
61 WDN1>=1 −>
62 WDN1’ = WDN1−1,
63 WLI1 ’ = WLI1+1;

65 # t11
66 WLI1>=1 −>
67 LI1 ’ = LI1+1,
68 WLI1 ’ = WLI1−1,
69 WCL1’ = WCL1+1;

71 # t12
72 WDN1>=1, ON>=1 −>
73 LI1 ’ = LI1+1,
74 WDN1’ = WDN1−1,
75 WCL1’ = WCL1+1,
76 ON’ = ON−1;

78 # t13
79 WCC>=1 −>
80 LI1 ’ = LI1+1,
81 WCC’ = WCC−1,

82 WCL1’ = WCL1+1;

84 # t14
85 WCA>=1 −>
86 LI1 ’ = LI1+1,
87 WCA’ = WCA−1,
88 WCL1’ = WCL1+1;

90 # t15
91 WCL1>=1, CL2>=1 −>
92 ILC1 ’ = ILC1+1,
93 WCL1’ = WCL1−1,
94 CL2 ’ = CL2−1;

96 # t16
97 WCL1>=1, LI2>=1 −>
98 ILC1 ’ = ILC1+1,
99 WCL1’ = WCL1−1,

100 LI2 ’ = LI2−1;

102 # t17
103 WCL1>=1 −>
104 ILC1 ’ = ILC1+1,
105 WCL1’ = WCL1−1;

107 # t18
108 WCL1>=1 −>
109 LI1 ’ = LI1+1;

111 # t21
112 ILC2>=1, AP>=1 −>
113 ILC2 ’ = ILC2−1,
114 WCR’ = WCR+1,
115 AP’ = AP−1,
116 CA’ = CA+1;

118 # t22
119 WCR>=1, CR>=1 −>
120 WCR’ = WCR−1,
121 WCN’ = WCN+1,
122 CR’ = CR−1,
123 CC’ = CC+1;

125 # t23
126 WCN>=1, CN>=1 −>
127 WCN’ = WCN−1,
128 WDT2’ = WDT2+1,
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129 CN’ = CN−1,
130 AC’ = AC+1;

132 # t24
133 WDT2>=1, GTDT100>=1 −>
134 WDT2’ = WDT2−1,
135 WSTD2req ’ = WSTD2req+1,
136 GTDT100’ = GTDT100−1;

138 # t25
139 WSTD2req>=1 −>
140 WSTD2req ’ = WSTD2req−1,
141 WDN2’ = WDN2+1;

143 # t26
144 WDN2>=1 −>
145 WDN2’ = WDN2−1,
146 WLI2 ’ = WLI2+1;

148 # t27
149 LI1>=1, WLI2>=1 −>
150 LI1 ’ = LI1−1,
151 CL2 ’ = CL2+1,
152 ILC2 ’ = ILC2+1,
153 WLI2 ’ = WLI2−1;

155 # t28
156 WSTD2req>=1 −>
157 WDT2’ = WDT2+1,
158 WSTD2req ’ = WSTD2req−1,
159 GTDT110’ = GTDT110+1;

161 # t29
162 WDT2>=1 −>
163 WDT2’ = WDT2−1,
164 WLI2 ’ = WLI2+1;

166 # t30
167 WDT2>=1, FN>=1 −>
168 WDT2’ = WDT2−1,
169 WLI2 ’ = WLI2+1,
170 ON’ = ON+1,
171 FN’ = FN−1;

173 # t31
174 WCN>=1 −>
175 LI2 ’ = LI2+1,

176 WCN’ = WCN−1,
177 WCL2’ = WCL2+1;

179 # t32
180 WLI2>=1 −>
181 LI2 ’ = LI2+1,
182 WLI2’ = WLI2−1,
183 WCL2’ = WCL2+1;

185 # t33
186 WDN2>=1 −>
187 LI2 ’ = LI2+1,
188 WDN2’ = WDN2−1,
189 WCL2’ = WCL2+1;

191 # t34
192 WCR>=1 −>
193 LI2 ’ = LI2+1,
194 WCR’ = WCR−1,
195 WCL2’ = WCL2+1;

197 # t35
198 CL1>=1, WCL2>=1 −>
199 CL1 ’ = CL1−1,
200 ILC2 ’ = ILC2+1,
201 WCL2’ = WCL2−1;

203 # t36
204 LI1>=1, WCL2>=1 −>
205 LI1 ’ = LI1−1,
206 ILC2 ’ = ILC2+1,
207 WCL2’ = WCL2−1;

209 # t37
210 WCL2>=1 −>
211 ILC2 ’ = ILC2+1,
212 WCL2’ = WCL2−1;

214 # t38
215 WCL2>=1 −>
216 LI2 ’ = LI2+1;

218 i n i t
219 LI1=0, CL1=0, ILC1=1, WCA

=0, WCC=0, WAC=0, WSTD1req
=0, WDT1=0, WDN1=0, WLI1=0,
WCL1=0, LI2=0, CL2=0, ILC2
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=1, WCR=0, WCN=0, WDT2=0,
WSTD2req=0, WDN2=0, WLI2=0,
WCL2=0, AP=0,CA=0, CR=0,

CC=0, CN=0, ON=0, AC=0, FN
=0, GTDT100=0, GTDT110=0

221 t a r g e t
222 CL2>=1, AP>=1, CR>=1, FN

>=1, GTDT110>=1
223 i n v a r i a n t s
224 ILC1=1, WCA=1,WCC=1, WAC=1,

WSTD1req=1, WDT1=1, WDN1
=1, WLI1=1, WCL1=1

225 ILC2=1, WCR=1, WCN=1, WDT2
=1, WSTD2req=1, WDN2=1,
WLI2=1, WCL2=1

B.3. Kanban Production System

The Kanban production system from [MBC+95]3 consists of a fixed num-
ber of equally-structured cells depicted in Fig. B.3. A single cell models
control flow of a single part of a production process. It contains a bul-
letin board containing cards which represent requests for assembly parts.
Whenever a part is to enter the input storage of a Kanban cell, a card
is taken from the bulletin board and attached to the part. Parts at the
input storage are then processed sequentially and moved to the output
storage. When exiting the output storage and being transported to an-
other cell, the card is removed from the part and added to the bulletin
board. Each cell owns a fixed number of cards. At any point in time, a
cell contains at most parts as the number of cards it owns.
To model larger production systems, several Kanban cells can be inter-
connected. In our model, there is an infinite number of parts available to
the first cell and we assume an infinite storage as an output of the last
cell.
The cell design was modified for concurrent processing of parts in [CT96],
where also the interconnection of four cells was introduced. Also, a re-
duction of certain transitions and places was proposed, resulting in cells
as pictured in Fig. B.4. A modified cell checks if the production step
for the currently processed part is finished or if the part is erroneous

3The specification from [MBC+95] was introduced in 1989 by G. Balbo and G.
Fanceschinis: “Modelling flexible manufacturing systems with generalized stochas-
tic Petri nets” as well as P. Legato, A. Bobbio, and L. Roberti: “The effect of
failures and repairs on multiple cell production lines” which were not available to
the author.
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Figure B.3.: A Kanban production cell according to [MBC+95]

and it is decided whether the production step has to be repeated. More-
over, arbitrarily many parts can be processed concurrently. In [CM97] the
model consisting of those reduced cells was analysed. It has parametrised
markings for the bulletin boards and is shown in Fig. B.5.
The property to check asks, if a marking is reachable where at least
four cards are located at bulletin boards of cells 2, 3, and 4 and two
parts are at place check2 of cell 2 and six parts are at place busy4 of
cell 4. A shortest trace of length 48 to such a marking starts with six
cards in cells 1, 2, 3, and nine cards in cell 4. It is enter1, ok1, exit1,
ok2, ok3, enter4, (enter1, ok1, exit1)3, (ok2, ok3, enter4, enter1, ok1, exit1)4,
ok2, ok3, enter4, (redo4), putting six (additional) tokens at the bulletin
board of cell 1 and two (additional) tokens on place check3. The textual
representation of the Petri net in the format used by the MIST2 tool4
is given in Listing B.3.

4See https://github.com/pierreganty/mist/wiki#input-format-of-mist.
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Figure B.4.: A Kanban production cell similar to [CM97]
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Figure B.5.: Considered Kanban production system ([CM97])
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Listing B.3: Source of the Kanban
production system

1 v a r s
2 check1 busy1 cards1 out1

check2 busy2 cards2 out2
check3 busy3 cards3 out3
check4 busy4 cards4 out4

4 r u l e s
5 # e n t e r 1
6 cards1>=1 −>
7 check1 ’ = check1+1,
8 cards1 ’ = cards1 −1;

10 # redo1
11 check1>=1 −>
12 check1 ’ = check1−1,
13 busy1 ’ = busy1+1;

15 # done1
16 busy1>=1 −>
17 check1 ’ = check1+1,
18 busy1 ’ = busy1−1;

20 # ok1
21 check1>=1 −>
22 check1 ’ = check1−1,
23 out1 ’ = out1+1;

25 # e x i t 1
26 out1>=1, cards2 >=1, cards3

>=1 −>
27 cards1 ’ = cards1+1,
28 out1 ’ = out1−1,
29 check2 ’ = check2+1,
30 cards2 ’ = cards2 −1,
31 check3 ’ = check3+1,
32 cards3 ’ = cards3 −1;

34 # redo2
35 check2>=1 −>
36 check2 ’ = check2−1,
37 busy2 ’ = busy2+1;

39 # done2

40 busy2>=1 −>
41 check2 ’ = check2+1,
42 busy2 ’ = busy2−1;

44 # ok2
45 check2>=1 −>
46 check2 ’ = check2−1,
47 out2 ’ = out2+1;

49 # e n t e r 4
50 out2>=1, out3>=1, cards4>=1

−>
51 cards2 ’ = cards2+1,
52 out2 ’ = out2−1,
53 cards3 ’ = cards3+1,
54 out3 ’ = out3−1,
55 check4 ’ = check4+1,
56 cards4 ’ = cards4 −1;

58 # redo3
59 check3>=1 −>
60 check3 ’ = check3−1,
61 busy3 ’ = busy3+1;

63 # done3
64 busy3>=1 −>
65 check3 ’ = check3+1,
66 busy3 ’ = busy3−1;

68 # ok3
69 check3>=1 −>
70 check3 ’ = check3−1,
71 out3 ’ = out3+1;

73 # redo4
74 check4>=1 −>
75 check4 ’ = check4−1,
76 busy4 ’ = busy4+1;

78 # done4
79 busy4>=1 −>
80 check4 ’ = check4+1,
81 busy4 ’ = busy4−1;

83 # ok4
84 check4>=1 −>
85 check4 ’ = check4−1,
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86 out4 ’ = out4+1;

88 # e x i t 4
89 out4>=1 −>
90 cards4 ’ = cards4+1,
91 out4 ’ = out4−1;

93 i n i t
94 check1=0, busy1=0, cards1

>=1, out1=0, check2=0,
busy2=0, cards2 >=1, out2=0,
check3=0, busy3=0, cards3

>=1, out3=0, check4=0,
busy4=0, cards4 >=1, out4=0

96 t a r g e t

97 check2>=2, busy4>=6, cards2
>=4, cards3 >=4, cards4>=4

99 i n v a r i a n t s
100 check3=1, busy3=1, cards2

=1, out3=1
101 check3=1, busy3=1, cards3

=1, out3=1
102 check2=1, busy2=1, cards2

=1, out2=1
103 check2=1, busy2=1, cards3

=1, out2=1
104 check4=1, busy4=1, cards4

=1, out4=1
105 check1=1, busy1=1, cards1

=1, out1=1

B.4. Delegate Buffer Program

In [Lea99, pp. 271–272], Lea gives a bounded queue using the delegation
pattern (cf. [GHJ94]), i.e. calls to put(Object) and take() methods of
the main class are delegated to helper classes which perform the actual
operations.
The Java code of Lea’s example is given in Listing B.4.
Here, the put(Object) method is meant to append the given object
to the queue and block when the capacity is exceeded. Analogously,
the take() method is intended to block until there are objects in the
queue and then remove and return the oldest one. The queue is imple-
mented as a circular buffer using the object array array. Lea observes
that the helpers can be implemented as two instances of the same class
Exchanger, offering method exchange(Object). An Exchanger contains
a number of available slots and a (circular) index to the next slot to pro-
cess. Method exchange(Object) performs the actual exchange: block-
ing until at least one slot is available and then returning the contents
of that slot while overwriting it with the given object. To implement
take() method exchange(null) is called and to implement put(o) ex-
change(o) is called: Removing an object from the buffer inserts null
while adding an object to the buffer returns null.
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Synchronization is achieved by the synchronization keyword and by us-
ing wait() and notify() mechanics of monitor objects. To accomplish
the blocking when the buffer is full and an object is to be added or the
buffer is empty and take() is called, an Exchanger object calls wait()
on itself when no slots are available. At the end of an exchange(Object)
call by a helper object, the main class’s method removedSlotNotifica-
tion(Exchanger) is called which performs a case distinction to inform
the other helper object by calling addedSlotNotification() that one
more slot is available. In the addedSlotNotification() method, no-
tify() is called on the object to awaken one wait()ing thread which
then re-checks if slots are available.
Although it is commonly considered good practice to choose notifyAll()
over notify()5, Lea uses the notify() mechanism for performance rea-
sons. Furthermore, Lea declares the monitor objects putter and taker
(on which wait() is called) private and class BoundedBufferWithDel-
egates is declared final, prohibiting inheriting from this class.
L. Van Begin constructed a Petri net with transfer which represents the
concurrent BoundedBufferWithDelegates program [Van04]. The Petri
net is generated by Van Begin by utilizing predicate abstraction tech-
niques in sense of [GS97, BMMR01, BPR02] to retrieve a concurrent
boolean program which in turn is translated (with an intermediate step
of a so-called global machine) into the given PNT . The textual form of
L. Van Begin’s Petri net with transfer in the format used by the MIST2
tool6 is given in Listing B.5.
The unsafe control-state is both putter and taker assigning a value to
the same array slot (both with ptr == 0) in line 60 of Listing B.4. It is
not reachable.

Listing B.4: Java source of class BoundedBufferWithDelegates
([Lea99])

1 final class BoundedBufferWithDelegates {
2 private Object[] array;
3 private Exchanger putter;
4 private Exchanger taker;

5The notify() mechanism awakens some wait()ing thread for the respective mon-
itor object m. Particularly in the case that object m is accessible (from out-
side the defining class) this poses a risk for adverse behaviour, e.g. deadlocks
(cf. [Lea99, GBB+06, Blo08]).

6See https://github.com/pierreganty/mist/wiki#input-format-of-mist.
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6 public BoundedBufferWithDelegates(int capacity)
7 throws IllegalArgumentException {
8 if (capacity <= 0) throw new IllegalArgumentException();
9 array = new Object[capacity];

10 putter = new Exchanger(capacity);
11 taker = new Exchanger(0);
12 }

14 public void put(Object x) throws InterruptedException {
15 putter.exchange(x);
16 }

18 public Object take() throws InterruptedException {
19 return taker.exchange(null);
20 }

22 void removedSlotNotification(Exchanger h) { // relay
23 if (h == putter) taker.addedSlotNotification();
24 else putter.addedSlotNotification() ;
25 }

27 protected class Exchanger { // inner class
28 protected int ptr = 0; // circular index
29 protected int slots ; // number of usable slots
30 protected int waiting = 0; // number of waiting threads

32 Exchanger(int n) { slots = n; }

34 synchronized void addedSlotNotification() {
35 ++slots;
36 if (waiting > 0) // unblock a single waiting thread
37 notify () ;
38 }

40 Object exchange(Object x) throws InterruptedException {
41 Object old = null; // return value

43 synchronized(this) {
44 while ( slots <= 0) { // wait for slots
45 ++waiting;

257



B. Sources of Selected Case Studies

46 try {
47 wait() ;
48 }
49 catch(InterruptedException ie) {
50 notify () ;
51 throw ie;
52 }
53 finally {
54 −−waiting;
55 }
56 }

58 −−slots; // use slot
59 old = array[ptr ];
60 array[ptr] = x;
61 ptr = (ptr + 1) % array.length; // advance position
62 }

64 removedSlotNotification(this) ; // notify of change
65 return old;
66 }
67 }
68 }

Listing B.5: Source of the delegate
buffer program

1 v a r s
2 unlockT lockT unlockP lockP

nots lotTeq0 s lotTeq0
nots lotTeq1 s lotTeq1
nots lotTeq2 s lotTeq2
nots lotPeq0 s lotPeq0
nots lotPeq1 s lotPeq1
nots lotPeq2 s lotPeq2
notptrTeq0 ptrTeq0
notptrTeq1 ptrTeq1
notptrPeq0 ptrPeq0
notptrPeq1 ptrPeq1 put
Pwhile P1 Pwait Pa f t e rwa i t
Pdecs lo t Pincptr Pass ign
Pnot i fy P s l o t i n c

Pbe f o r eno t i f y Pa f t e r n o t i f y
Pend take Twhile T1 Twait
Taf te rwa i t Tdecs lot Tincptr
Tass ign Tnot i fy Ts l o t i n c
Tbe fo r eno t i f y Ta f t e r no t i f y
Tend

4 r u l e s
5 #p u t t e r
6 put>=1, unlockP>=1 −>
7 put ’=put−1,
8 Pwhile ’=Pwhile+1,
9 unlockP ’=unlockP−1,

10 lockP ’= lockP+1;

12 Pwhile>=1, s lotPeq0>=1 −>
13 Pwhile ’=Pwhile−1,
14 P1’=P1+1;
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16 Pwhile>=1, nots lotPeq1 >=1,
nots lotPeq2>=1 −>

17 Pwhile ’=Pwhile−1,
18 P1’=P1+1;

20 P1>=1, lockP>=1 −>
21 P1’=P1−1,
22 Pwait ’=Pwait+1,
23 lockP ’=lockP−1,
24 unlockP ’=unlockP+1;

26 Pafterwait >=1, unlockP>=1
−>

27 Pafterwait ’=Pafterwait
−1,

28 Pwhile ’=Pwhile+1,
29 unlockP ’=unlockP−1,
30 lockP ’= lockP+1;

32 Pwhile>=1, nots lotPeq0>=1
−>

33 Pwhile ’=Pwhile−1,
34 Pdecs lot ’=Pdecs lo t +1;

36 Pwhile>=1, nots lotPeq1 >=1,
nots lotPeq2 >=1,

nots lotPeq0>=1 −>
37 Pwhile ’=Pwhile−1,
38 Pdecs lot ’=Pdecs lo t +1;

40 Pdecs lot >=1, s lotPeq0>=1
−>

41 Pdecs lot ’=Pdecs lot −1,
42 Pincptr ’=Pincptr+1,
43 s lotPeq0 ’= slotPeq0 −1,
44 nots lotPeq0 ’=nots lotPeq0

+1;

46 Pdecs lot >=1, s lotPeq1>=1
−>

47 Pdecs lot ’=Pdecs lot −1,
48 Pincptr ’=Pincptr+1,
49 s lotPeq1 ’= slotPeq1 −1,
50 nots lotPeq1 ’=nots lotPeq1

+1,
51 nots lotPeq0 ’=0 ,
52 s lotPeq0 ’= s lotPeq0+

nots lotPeq0+0;

54 Pdecs lot >=1, s lotPeq2>=1
−>

55 Pdecs lot ’=Pdecs lot −1,
56 Pincptr ’=Pincptr+1,
57 s lotPeq2 ’= slotPeq2 −1,
58 nots lotPeq2 ’=nots lotPeq2

+1,
59 nots lotPeq1 ’=0 ,
60 s lotPeq1 ’= s lotPeq1+

nots lotPeq1+0;

62 Pdecs lot >=1, nots lotPeq0
>=1, nots lotPeq1 >=1,
nots lotPeq2>=1 −>

63 Pdecs lot ’=Pdecs lot −1,
64 Pincptr ’=Pincptr+1;

66 Pdecs lot >=1, nots lotPeq0
>=1, nots lotPeq1 >=1,
nots lotPeq2>=1 −>

67 Pdecs lot ’=Pdecs lot −1,
68 Pincptr ’=Pincptr+1,
69 nots lotPeq2 ’=nots lotPeq2

−1,
70 s lotPeq2 ’= s lotPeq2+1;

72 Pincptr >=1, ptrPeq0>=1 −>
73 Pincptr ’=Pincptr −1,
74 Passign ’=Pass ign+1,
75 ptrPeq0 ’=ptrPeq0−1,
76 notptrPeq0 ’=notptrPeq0

+1,
77 ptrPeq1 ’=ptrPeq1+

notptrPeq1+0,
78 notptrPeq1 ’=0;

80 Pincptr >=1, ptrPeq1>=1 −>
81 Pincptr ’=Pincptr −1,
82 Passign ’=Pass ign+1,
83 ptrPeq1 ’=ptrPeq1−1,
84 notptrPeq1 ’=notptrPeq1

+1,
85 ptrPeq0 ’=ptrPeq0+

notptrPeq0+0,
86 notptrPeq0 ’=0;
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88 Pincptr >=1, notptrPeq1>=1,
notptrPeq0>=1 −>

89 Pincptr ’=Pincptr −1,
90 Passign ’=Pass ign+1,
91 ptrPeq0 ’=ptrPeq0+1,
92 notptrPeq0 ’=notptrPeq0

−1;

94 Pincptr >=1, notptrPeq1>=1,
notptrPeq0>=1 −>

95 Pincptr ’=Pincptr −1,
96 Passign ’=Pass ign+1,
97 ptrPeq1 ’=ptrPeq1+1,
98 notptrPeq1 ’=notptrPeq1

−1;

100 Passign >=1, lockP>=1 −>
101 Passign ’=Passign −1,
102 Pnoti fy ’=Pnot i fy+1,
103 lockP ’=lockP−1,
104 unlockP ’=unlockP+1;

106 Pnoti fy >=1, unlockT>=1 −>
107 Pnoti fy ’=Pnoti fy −1,
108 Ps lo t inc ’= Ps l o t i n c +1,
109 unlockT ’=unlockT−1,
110 lockT ’= lockT+1;

112 Ps lo t inc >=1, s lotTeq0>=1
−>

113 Ps lo t inc ’=Ps lo t inc −1,
114 Pbe fo renot i fy ’=

Pbe f o r eno t i f y +1,
115 s lotTeq0 ’= slotTeq0 −1,
116 nots lotTeq0 ’=nots lotTeq0

+1,
117 s lotTeq1 ’= s lotTeq1+

nots lotTeq1+0,
118 nots lotTeq1 ’=0;

120 Ps lo t inc >=1, s lotTeq1>=1
−>

121 Ps lo t inc ’=Ps lo t inc −1,
122 Pbe fo renot i fy ’=

Pbe f o r eno t i f y +1,
123 s lotTeq1 ’= slotTeq1 −1,

124 nots lotTeq1 ’=nots lotTeq1
+1,

125 s lotTeq2 ’= s lotTeq2+
nots lotTeq2+0,

126 nots lotTeq2 ’=0;

128 Ps lo t inc >=1, s lotTeq2>=1
−>

129 Ps lo t inc ’=Ps lo t inc −1,
130 Pbe fo renot i fy ’=

Pbe f o r eno t i f y +1,
131 s lotTeq2 ’= slotTeq2 −1,
132 nots lotTeq2 ’=nots lotTeq2

+1;

134 Ps lo t inc >=1, nots lotTeq0
>=1, nots lotTeq1 >=1,
nots lotTeq2>=1 −>

135 Ps lo t inc ’=Ps lo t inc −1,
136 Pbe fo renot i fy ’=

Pbe f o r eno t i f y +1;

138 Ps lo t inc >=1, nots lotTeq0
>=1, nots lotTeq1 >=1,
nots lotTeq2>=1 −>

139 Ps lo t inc ’=Ps lo t inc −1,
140 Pbe fo renot i fy ’=

Pbe f o r eno t i f y +1,
141 s lotTeq0 ’= s lotTeq0+1,
142 nots lotTeq0 ’=nots lotTeq0

−1;

144 #a t t e n t i o n , c ’ e s t un
n o t i f y normalement !

145 Pbe fo renot i fy >=1 −>
146 Pbe fo renot i fy ’=

Pbe fo renot i fy −1,
147 Pa f t e rno t i f y ’=

Pa f t e r n o t i f y +1,
148 Pafterwait ’=Paf te rwa i t+

Pwait+0,
149 Pwait ’=0 ,
150 Tafterwait ’=Taf te rwa i t+

Twait+0,
151 Twait ’=0;

153 Pa f t e rno t i f y >=1, lockT>=1

260



B.4. Delegate Buffer Program

−>
154 Pa f t e rno t i f y ’=

Pa f t e rno t i f y −1,
155 Pend’=Pend+1,
156 lockT ’=lockT−1,
157 unlockT ’=unlockT+1;

159 Pend>=1 −>
160 Pend’=Pend−1,
161 put ’=put+1;

163 #t a k e r
164 take >=1, unlockT>=1 −>
165 take ’=take−1,
166 Twhile ’=Twhile+1,
167 unlockT ’=unlockT−1,
168 lockT ’= lockT+1;

170 Twhile>=1, s lotTeq0>=1 −>
171 Twhile ’=Twhile−1,
172 T1’=T1+1;

174 Twhile>=1, nots lotTeq1 >=1,
nots lotTeq2>=1 −>

175 Twhile ’=Twhile−1,
176 T1’=T1+1;

178 T1>=1, lockT>=1 −>
179 T1’=T1−1,
180 Twait ’=Twait+1,
181 lockT ’=lockT−1,
182 unlockT ’=unlockT+1;

184 Tafterwait >=1, unlockT>=1
−>

185 Tafterwait ’=Tafterwait
−1,

186 Twhile ’=Twhile+1,
187 unlockT ’=unlockT−1,
188 lockT ’= lockT+1;

190 Twhile>=1, nots lotTeq0>=1
−>

191 Twhile ’=Twhile−1,
192 Tdecslot ’=Tdecs lot +1;

194 Twhile>=1, nots lotTeq1 >=1,

nots lotTeq2 >=1,
nots lotTeq0>=1 −>

195 Twhile ’=Twhile−1,
196 Tdecslot ’=Tdecs lot +1;

199 Tdecslot >=1, s lotTeq0>=1
−>

200 Tdecslot ’=Tdecslot −1,
201 Tincptr ’=Tincptr+1,
202 s lotTeq0 ’= slotTeq0 −1,
203 nots lotTeq0 ’=nots lotTeq0

+1;

205 Tdecslot >=1, s lotTeq1>=1
−>

206 Tdecslot ’=Tdecslot −1,
207 Tincptr ’=Tincptr+1,
208 s lotTeq1 ’= slotTeq1 −1,
209 nots lotTeq1 ’=nots lotTeq1

+1,
210 nots lotTeq0 ’=0 ,
211 s lotTeq0 ’= s lotTeq0+

nots lotTeq0+0;

213 Tdecslot >=1, s lotTeq2>=1
−>

214 Tdecslot ’=Tdecslot −1,
215 Tincptr ’=Tincptr+1,
216 s lotTeq2 ’= slotTeq2 −1,
217 nots lotTeq2 ’=nots lotTeq2

+1,
218 nots lotTeq1 ’=0 ,
219 s lotTeq1 ’= s lotTeq1+

nots lotTeq1+0;

221 Tdecslot >=1, nots lotTeq0
>=1, nots lotTeq1 >=1,
nots lotTeq2>=1 −>

222 Tdecslot ’=Tdecslot −1,
223 Tincptr ’=Tincptr+1;

225 Tdecslot >=1, nots lotTeq0
>=1, nots lotTeq1 >=1,
nots lotTeq2>=1 −>

226 Tdecslot ’=Tdecslot −1,
227 Tincptr ’=Tincptr+1,
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228 nots lotTeq2 ’=nots lotTeq2
−1,

229 s lotTeq2 ’= s lotTeq2+1;

232 Tincptr >=1, ptrTeq0>=1 −>
233 Tincptr ’=Tincptr −1,
234 Tassign ’=Tassign+1,
235 ptrTeq0 ’=ptrTeq0−1,
236 notptrTeq0 ’=notptrTeq0

+1,
237 ptrTeq1 ’=ptrTeq1+

notptrTeq1+0,
238 notptrTeq1 ’=0;

240 Tincptr >=1, ptrTeq1>=1 −>
241 Tincptr ’=Tincptr −1,
242 Tassign ’=Tassign+1,
243 ptrTeq1 ’=ptrTeq1−1,
244 notptrTeq1 ’=notptrTeq1

+1,
245 ptrTeq0 ’=ptrTeq0+

notptrTeq0+0,
246 notptrTeq0 ’=0;

248 Tincptr >=1, notptrTeq1>=1,
notptrTeq0>=1 −>

249 Tincptr ’=Tincptr −1,
250 Tassign ’=Tassign+1,
251 ptrTeq0 ’=ptrTeq0+1,
252 notptrTeq0 ’=notptrTeq0

−1;

254 Tincptr >=1, notptrTeq1>=1,
notptrTeq0>=1 −>

255 Tincptr ’=Tincptr −1,
256 Tassign ’=Tassign+1,
257 ptrTeq1 ’=ptrTeq1+1,
258 notptrTeq1 ’=notptrTeq1

−1;

261 Tassign >=1, lockT>=1 −>
262 Tassign ’=Tassign −1,
263 Tnotify ’=Tnot i fy+1,
264 lockT ’=lockT−1,
265 unlockT ’=unlockT+1;

267 Tnotify >=1, unlockP>=1 −>
268 Tnotify ’=Tnoti fy −1,
269 Tslot inc ’=Ts l o t i n c +1,
270 unlockP ’=unlockP−1,
271 lockP ’= lockP+1;

273 Tslot inc >=1, s lotPeq0>=1
−>

274 Tslot inc ’=Ts lot inc −1,
275 Tbeforenot i fy ’=

Tbe fo r eno t i f y +1,
276 s lotPeq0 ’= slotPeq0 −1,
277 nots lotPeq0 ’=nots lotPeq0

+1,
278 s lotPeq1 ’= s lotPeq1+

nots lotPeq1+0,
279 nots lotPeq1 ’=0;

282 Tslot inc >=1, s lotPeq1>=1
−>

283 Tslot inc ’=Ts lot inc −1,
284 Tbeforenot i fy ’=

Tbe fo r eno t i f y +1,
285 s lotPeq1 ’= slotPeq1 −1,
286 nots lotPeq1 ’=nots lotPeq1

+1,
287 s lotPeq2 ’= s lotPeq2+

nots lotPeq2+0,
288 nots lotPeq2 ’=0;

290 Tslot inc >=1, s lotPeq2>=1
−>

291 Tslot inc ’=Ts lot inc −1,
292 Tbeforenot i fy ’=

Tbe fo r eno t i f y +1,
293 s lotPeq2 ’= slotPeq2 −1,
294 nots lotPeq2 ’=nots lotPeq2

+1;

296 Tslot inc >=1, nots lotPeq0
>=1, nots lotPeq1 >=1,
nots lotPeq2>=1 −>

297 Tslot inc ’=Ts lot inc −1,
298 Tbeforenot i fy ’=

Tbe fo r eno t i f y +1;
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300 Tslot inc >=1, nots lotPeq0
>=1, nots lotPeq1 >=1,
nots lotPeq2>=1 −>

301 Tslot inc ’=Ts lot inc −1,
302 Tbeforenot i fy ’=

Tbe fo r eno t i f y +1,
303 s lotPeq0 ’= s lotPeq0+1,
304 nots lotPeq0 ’=nots lotPeq0

−1;

306 #a t t e n t i o n , c ’ e s t un
n o t i f y normalement !

307 Tbeforenot i fy >=1 −>
308 Tbeforenot i fy ’=

Tbe forenot i fy −1,
309 Taf t e rno t i f y ’=

Ta f t e r no t i f y +1,
310 Pafterwait ’=Paf te rwa i t+

Pwait+0,
311 Pwait ’=0 ,
312 Tafterwait ’=Taf te rwa i t+

Twait+0,
313 Twait ’=0;

315 Taf t e rno t i f y >=1, lockP>=1
−>

316 Taf t e rno t i f y ’=
Ta f t e rno t i f y −1,

317 Tend’=Tend+1,
318 lockP ’=lockP−1,
319 unlockP ’=unlockP+1;

321 Tend>=1 −>
322 Tend’=Tend−1,
323 take ’= take+1;

325 i n i t
326 unlockT=1, lockT=0, unlockP

=1, lockP=0, nots lotTeq0=0,
s lotTeq0=1, nots lotTeq1=1,
s lotTeq1=0, nots lotTeq2=1,
s lotTeq2=0, nots lotPeq0=1,
s lotPeq0=0, nots lotPeq1=1,
s lotPeq1=0, nots lotPeq2=0,
s lotPeq2=1, notptrTeq0=0,
ptrTeq0=1, notptrTeq1=1,

ptrTeq1=0, notptrPeq0=0,
ptrPeq0=1, notptrPeq1=1,
ptrPeq1=0, put>=1, Pwhile=0,
P1=0, Pwait=0, Pa f t e rwa i t

=0, Pdecs lo t=0, Pincptr=0,
Pass ign=0, Pnot i fy=0,
P s l o t i n c =0, Pbe f o r eno t i f y =0,
Pend=0, take >=1, Twhile=0,

T1=0, Twait=0, Taf te rwa i t=0,
Tdecs lot=0, Tincptr=0,

Tass ign=0, Tnot i fy=0,
Ts l o t i n c =0, Tbe fo r eno t i f y =0,
Tend=0, Pa f t e r n o t i f y =0,
Ta f t e r no t i f y=0

328 t a r g e t
329 Passign >=1, ptrPeq0>=1,

Tassign >=1, ptrTeq0>=1
330 #Passign >=1, ptrPeq1 >=1,

Tassign >=1, ptrTeq1 >=1
331 #nots l o tTeq0 >=1,

no t s l o tTeq1 >=1, no t s l o tTeq2
>=1

332 #n o t s l o t P e q 0 >=1,
n o t s l o t P e q 1 >=1, n o t s l o t P e q 2
>=1

335 i n v a r i a n t s
336 unlockT=1, lockT=1
337 unlockP=1, lockP=1
338 nots lotTeq0=1, s lotTeq0=1
339 nots lotTeq1=1, s lotTeq1=1
340 nots lotTeq2=1, s lotTeq2=1
341 nots lotPeq0=1, s lotPeq0=1
342 nots lotPeq1=1, s lotPeq1=1
343 nots lotPeq2=1, s lotPeq2=1
344 notptrTeq0=1, ptrTeq0=1
345 notptrTeq1=1, ptrTeq1=1
346 notptrPeq0=1, ptrPeq0=1
347 notptrPeq1=1, ptrPeq1=1
348 unlockT=1, Ps l o t i n c =1,

Pbe f o r eno t i f y =1,
Pa f t e r n o t i f y =1, Twhile=1, T1
=1, Tdecs lot=1, Tincptr=1,
Tass ign=1

349 unlockP=1, Pwhile=1, P1=1,
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Pdecs lo t=1, Pincptr=1,
Pass ign=1, Ts l o t i n c =1,

Tbe fo r eno t i f y =1,
Ta f t e r no t i f y=1
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We showed visual representations of the different effects on the runtime
of our tools and compared several tools that solve coverability problems
in the previous part of the thesis. In this appendix, we give most of the
hard numbers that were the foundation of the visualizations.
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C. Benchmark Data

C.1. Data Structures
In this section we present most of the benchmark results that went into
the preliminary experiments in Ch. 6 on p. 160 (see Sect. 6.6.3 on p. 184
and Sect. 6.7 on p. 185 for the experimental set-up).
The tables contain the following columns (time measured in millisec-
onds).

H The height of the powerset search tree (PST) used to partition the
set of states.

Model Name of the PN or PNT model, i.e. a coverability problem.

Iter. Number of successful benchmark iterations.

Max. ms Maximal time the tool needed to solve the coverability prob-
lem.

Mean ms Mean time the tool needed to solve the coverability problem.

σ ms Standard deviation of the time the tool needed to solve the cover-
ability problem.

Max. M Maximal number of markings the tool created while solving the
coverability problem.

Mean M Mean number of markings the tool created while solving the
coverability problem.

σ M Standard deviation of the number of markings the tool created
while solving the coverability problem.

For the first table, the number of iterations was fixed to 300.
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C.1. Data Structures

H Max. ms Mean ms σ ms Max. M Mean M σ M
1 3.43 · 105 2.17 · 105 23,894.87 5.38 · 105 4.56 · 105 16,240.78
2 3 · 105 1.9 · 105 24,044.85 5.39 · 105 4.58 · 105 18,604.33
3 2.45 · 105 1.65 · 105 19,404.91 5.39 · 105 4.58 · 105 17,471.15
4 2.06 · 105 1.34 · 105 15,129.94 5.38 · 105 4.58 · 105 17,267.07
5 1.91 · 105 1.15 · 105 15,952.62 5.38 · 105 4.6 · 105 19,094.31
6 1.36 · 105 96,895.87 11,920.55 5.39 · 105 4.58 · 105 17,802.1
7 1.22 · 105 80,262.15 10,361.3 5.39 · 105 4.57 · 105 16,610.07
8 92,298.02 65,299.04 9,731.34 5.39 · 105 4.57 · 105 16,694.63
9 78,112.16 55,419.82 9,022.25 5.39 · 105 4.57 · 105 16,616.51

10 76,180.49 46,505.28 8,218.19 5.39 · 105 4.59 · 105 18,563.67
11 63,104.64 38,979.32 7,084.86 5.39 · 105 4.57 · 105 16,737.31
12 51,223.81 31,976.84 5,948.33 4.98 · 105 4.56 · 105 15,343.26
13 42,237.65 27,396.5 4,632.5 5.39 · 105 4.58 · 105 17,097.5
14 37,084.89 24,152.01 4,359.24 5.39 · 105 4.59 · 105 18,846.45
15 38,144.6 21,485.11 3,670.95 5.39 · 105 4.58 · 105 18,593.41
16 32,755.77 19,605.69 3,222.49 5.38 · 105 4.57 · 105 18,272.59
17 27,177.92 18,490.23 2,797.27 5.38 · 105 4.6 · 105 18,622.07
18 29,047.25 17,564.43 2,563.93 5.39 · 105 4.57 · 105 16,038.01
19 24,119.68 17,156.03 2,215.33 5.38 · 105 4.57 · 105 15,924.13
20 24,430.71 16,506.66 2,149.13 5.38 · 105 4.58 · 105 18,067.07
21 22,423 16,503.31 2,123.74 5.38 · 105 4.58 · 105 17,276.64
22 21,290.02 16,169.51 1,868.53 5.38 · 105 4.59 · 105 18,051.33
23 24,315.9 16,043.69 2,002.39 5.38 · 105 4.57 · 105 17,120.95
24 22,417.36 16,199.76 2,060.51 5.38 · 105 4.58 · 105 17,958.66
25 22,099.42 15,474.58 1,739.2 5.38 · 105 4.56 · 105 14,915.89
26 22,680.02 16,324.54 1,980.95 4.99 · 105 4.59 · 105 17,573.03
27 22,566.83 16,097.56 1,957.2 5.39 · 105 4.59 · 105 19,880.58
28 23,001.33 15,898.82 1,973.4 5.38 · 105 4.57 · 105 17,053.11
29 21,282.33 16,018.94 1,862.77 5.38 · 105 4.58 · 105 17,837.36
30 24,723.81 16,071.9 2,078.95 5.38 · 105 4.58 · 105 17,734.37
31 21,625.47 16,278.1 1,957.39 5.39 · 105 4.59 · 105 18,244.58
32 22,632.61 15,903.08 2,006.55 5.39 · 105 4.57 · 105 16,707.19
33 27,101.73 16,139 2,047.25 5.39 · 105 4.58 · 105 17,991.03
34 24,011.62 16,073.84 2,057.46 5.38 · 105 4.6 · 105 18,981.53
35 24,138.18 16,334.95 1,917.85 5.39 · 105 4.58 · 105 19,336.96
36 22,595.08 15,846.97 1,894.37 4.98 · 105 4.55 · 105 13,974
37 28,047.21 16,048.97 2,059.14 5.39 · 105 4.57 · 105 17,943.67
38 22,725.02 15,920.65 1,943.33 5.38 · 105 4.58 · 105 17,955.94
39 23,047.49 15,828.31 1,972.08 5.39 · 105 4.58 · 105 18,690.29
40 25,454.77 16,198.34 2,265.97 5.38 · 105 4.6 · 105 18,956.85
41 22,034.04 15,893.65 1,896.83 4.99 · 105 4.57 · 105 15,679.64
42 25,266.77 15,708.97 1,851.09 4.99 · 105 4.58 · 105 16,784.64
43 23,156.55 15,888.59 2,064.3 5.38 · 105 4.59 · 105 17,826.37
44 22,170.93 15,470.33 1,862.09 5.38 · 105 4.58 · 105 17,921.17
45 23,531.76 15,678.14 1,956.07 5.39 · 105 4.59 · 105 19,558.81
46 22,332 16,017.05 1,929.93 5.38 · 105 4.59 · 105 18,350.94
47 23,501.83 15,938.26 2,004.24 5.38 · 105 4.58 · 105 17,468.82
48 24,108.64 16,396.15 1,890.35 5.38 · 105 4.58 · 105 18,068.4
49 24,425.97 15,945.96 1,973.65 5.39 · 105 4.58 · 105 17,911.98
50 30,488.89 16,546.44 2,131.68 5.38 · 105 4.57 · 105 17,726.62
60 24,017.2 15,888.26 1,931.95 4.99 · 105 4.57 · 105 16,223.33

Table C.1.: Benchmark data for Tree Height in Sect. 6.6.3
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C. Benchmark Data

Model Iter. Mean ms σ ms Mean M σ M
basic-me 7.47 · 107 5.99 · 10−2 9.53 3 0
basicextransfer 5.91 · 107 9.58 · 10−2 3.39 11 0
lifo 4.29 · 107 0.1 5.48 6 0
kanban 1.02 · 107 0.58 4.12 85 0.82
java2 6.39 · 106 0.81 11.11 8 0
moesi5 6.11 · 106 0.83 13.77 15 0
pncsacover 8.2 · 105 8.57 1.52 807.85 7.36
leaconflictset 3.16 · 105 22.45 1.97 3,913.03 113.1
glotter 74,454 96.03 13.13 10,186.25 1,044.36
examplelea 69,699 102.98 21.58 12,314.12 2,090.46
queuedbusyflag 7,124 1,009.95 109.64 1.33 · 105 139.35
java2.11.2 6,763 1,062.54 125.09 82,729.04 474.31
delegatebuffer.16.1 551 13,028.11 1,703.4 4.59 · 105 19,346.13
hts 59 1.69 · 105 6.29 · 105 3.8 · 105 3.35 · 105

Table C.2.: Benchmark data for fΣ before fsupp in Sect. 6.7.1

Model Iter. Mean ms σ ms Mean M σ M
basic-me 7.47 · 107 9.89 · 10−2 2.88 3 0
basicextransfer 5.91 · 107 0.18 2.74 11 0
lifo 4.29 · 107 0.16 5.09 6 0
kanban 1.02 · 107 0.74 4.36 85 0.82
java2 6.39 · 106 1.15 9.19 8 0
moesi5 6.11 · 106 1.42 26.03 15 0
pncsacover 8.2 · 105 14.64 2.16 807.84 7.37
leaconflictset 3.16 · 105 38.54 4.31 3,888.62 92.66
glotter 74,454 131.78 25.18 9,661.51 1,505.86
examplelea 69,699 205.28 54.1 12,678.54 2,499.49
queuedbusyflag 7,124 1,851.29 280.69 1.33 · 105 115.44
java2.11.2 6,763 2,181.47 214.95 1.14 · 105 1,931.87
delegatebuffer.16.1 551 21,307.79 3,216.28 5.38 · 105 49,218.13
hts 59 4.25 · 105 68,494.69 3.3 · 105 43,039.18

Table C.3.: Benchmark data for fsupp before fΣ in Sect. 6.7.1
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C.2. Search Space Constructions and Search Guidance

C.2. Search Space Constructions and Search
Guidance

In this section we present most of the benchmark results that went into
Sect. 7.2.3 in which we compare the different combinations of search
space constructions (SSCs) and optimizations we discussed in Ch. 5 on
p. 130. See Sect. 7.2 on p. 207 for the experimental set-up.
The tables contain the following columns (time measured in millisec-
onds).

Model Name of the PN or PNT model, i.e. a coverability problem.

Iter. Number of successful benchmark iterations.

Max. ms Maximal time the tool needed to solve the coverability prob-
lem.

Med. ms Median time the tool needed to solve the coverability problem.

σ ms Standard deviation of the time the tool needed to solve the cover-
ability problem.

Med. T Median length of the found trace if a target state was coverable
(else the table cell reads NaN). As the lengths of the found traces
depend on the model’s representation for each specific tool, they
are not directly comparable but give a rough estimate.

If no data was collected due to a coverability problem not being solved
within the time constraint of 5 minutes, each cell in the row for that
model reads NaN.
The different SSCs and optimizations are

A acceleration,

G search guidance via syntactic distance and weight,

I pruning via inequality invariants, and

P partial-order reduction.
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,818 3.1 6.03 · 10−2 1.27 · 10−2 NaN
basicextransfer 2.27 · 105 587.76 0.12 1.35 NaN
bingham-h250 135 7,423.04 2,577.01 2,299.28 NaN
consprod 2.1 · 105 231.79 2.1 1.63 NaN
consprod2 59,633 236.16 6.06 · 10−2 0.97 NaN
csm 60,481 13.32 2.62 · 10−2 6.42 · 10−2 NaN
csm-broad 2.75 · 105 271.05 1.22 1.08 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 238 5,001.24 3,758.76 307.05 17
delegatebuffer.16.1 79 14,978.31 11,304.91 1,130.58 18
efm 4.05 · 105 204.53 0.25 0.64 NaN
examplelea 85 28,028.86 10,091.62 9,088.48 NaN
ext-rw 59,411 11.36 6.99 · 10−2 7.32 · 10−2 NaN
ext-rw-smallconsts 59,669 812.06 6.92 · 10−2 3.32 NaN
fms 1.17 · 105 10.92 3.04 · 10−2 6.18 · 10−2 NaN
fms2 1.16 · 105 11.61 7.44 · 10−2 6.92 · 10−2 NaN
german 2.03 · 105 721.04 0.11 1.84 NaN
glotter 21,852 146.02 30.42 10.28 7
hts 12 72,474.41 56,490.6 5,932.95 29
java 1,989 706.3 448.63 44.88 15
java.10.0 1,509 899.42 587.91 58.65 14
java.11.0 3,980 384.34 220.27 18.77 15
java2 189 6,903.47 4,716.23 582.2 NaN
java2.10.2 1,375 914.04 648.83 52.4 14
java2.11.2 1,249 1,203.36 710.53 66.53 15
kanban 1.22 · 106 1,253.8 0.44 3.63 109
km-nonterm.4.3 4.11 · 105 226.8 0.21 0.55 18
km-nonterm.5.4 3.93 · 105 268.94 0.3 0.66 28
km-nonterm.6.5 3.75 · 105 241.52 0.41 0.6 40
lamport 60,507 5.66 5.41 · 10−2 2.87 · 10−2 NaN
leabasicapproach 59,748 239.36 0.14 0.98 5
leaconflictset 33,197 54.15 25.61 1.8 20
lifo 4.33 · 105 277.4 4.22 · 10−2 0.79 NaN
manufacturing 60,630 1,070.22 4.83 · 10−2 4.35 NaN
mesh2x2 1.12 · 105 12.78 4.21 · 10−2 9.46 · 10−2 NaN
mesh3x2 1.6 · 105 470.92 5.95 · 10−2 1.19 NaN
moesi 1.18 · 105 225.37 4.46 · 10−2 0.66 NaN
moesi5 1.36 · 105 258.66 0.12 1.19 NaN
multi-me 60,463 883.59 6.15 · 10−2 4.44 NaN
multipoll 59,941 9.66 3.72 · 10−2 5.77 · 10−2 NaN
newdekker 1.7 · 105 103.35 2.77 2.74 NaN
newrtp 60,610 6.82 2.85 · 10−2 2.77 · 10−2 NaN
peterson 60,030 979.29 9.12 · 10−2 4.71 NaN
pncsacover 1.32 · 105 204.68 4.16 1.84 35
pncsasemiliv 1.1 · 105 436.09 0.19 1.97 10
queuedbusyflag 110 10,463.62 8,068.63 684.9 NaN
read-write 1.11 · 105 570.01 0.84 1.91 NaN
simplejavaexample 1.26 · 105 99.23 4.41 1.12 13
transthesis 14,062 71.69 46.15 2.84 NaN

Table C.4.: Benchmark data for AGIP in Sect. 7.2.3
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Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,757 0.35 6.08 · 10−2 3.34 · 10−3 NaN
basicextransfer 2.26 · 105 623.05 0.12 1.46 NaN
bingham-h250 134 7,720.72 2,476.63 2,383 NaN
consprod 2.11 · 105 246.77 2.08 1.66 NaN
consprod2 1.16 · 105 244.68 6.25 · 10−2 0.72 NaN
csm 60,338 9.64 2.59 · 10−2 3.92 · 10−2 NaN
csm-broad 2.75 · 105 301.07 1.21 1.15 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 239 4,854.8 3,745.03 320.17 17
delegatebuffer.16.1 72 16,595.37 12,345.44 1,374.45 18
efm 4.07 · 105 455.35 0.25 0.94 NaN
examplelea 82 26,121.89 14,397.02 8,832.12 NaN
ext-rw 59,163 8.02 7.03 · 10−2 4.65 · 10−2 NaN
ext-rw-smallconsts 59,793 12.63 6.64 · 10−2 8.06 · 10−2 NaN
fms 1.17 · 105 10.55 2.95 · 10−2 6.09 · 10−2 NaN
fms2 1.16 · 105 482.53 7.4 · 10−2 2.12 NaN
german 2.03 · 105 372.2 0.11 1.26 NaN
glotter 21,742 108.22 30.36 10.15 7
hts 11 80,187.69 63,681.68 7,497.49 29
java 1,917 782.02 464.26 46.8 15
java.10.0 1,514 816.03 588.7 46.19 14
java.11.0 3,950 428.61 221.76 19.71 15
java2 192 7,520.69 4,670.56 612.45 NaN
java2.10.2 1,348 904.52 661.35 55.93 14
java2.11.2 1,211 1,060.76 735.93 64.06 15
kanban 3.73 · 105 26.67 2.13 0.46 81
km-nonterm.4.3 4.09 · 105 178.62 0.22 0.58 18
km-nonterm.5.4 3.91 · 105 1,017.63 0.3 1.75 28
km-nonterm.6.5 3.81 · 105 226.78 0.36 0.56 40
lamport 60,437 8.07 5.3 · 10−2 3.71 · 10−2 NaN
leabasicapproach 59,843 237.68 0.14 0.97 5
leaconflictset 33,551 46.7 25.32 1.87 20
lifo 2.25 · 105 703.1 6.22 · 10−2 1.56 NaN
manufacturing 60,688 5.4 4.9 · 10−2 2.25 · 10−2 NaN
mesh2x2 1.1 · 105 1,887.74 4.53 · 10−2 5.68 NaN
mesh3x2 1.6 · 105 472.35 6.03 · 10−2 1.19 NaN
moesi 1.17 · 105 225.18 4.46 · 10−2 0.66 NaN
moesi5 1.37 · 105 238.21 0.13 0.66 NaN
multi-me 60,494 7.66 6.32 · 10−2 3.58 · 10−2 NaN
multipoll 1.17 · 105 880.49 3.62 · 10−2 2.94 NaN
newdekker 1.68 · 105 70.79 2.79 2.67 NaN
newrtp 60,825 5.17 2.76 · 10−2 2.11 · 10−2 NaN
peterson 60,205 694.1 8.85 · 10−2 2.83 NaN
pncsacover 1.41 · 105 267.27 3.75 2.23 35
pncsasemiliv 1.1 · 105 620.7 0.19 3 10
queuedbusyflag 112 9,554.87 8,112.61 683 NaN
read-write 1.11 · 105 937.6 0.82 3.07 NaN
simplejavaexample 1.26 · 105 189.29 4.38 1.69 13
transthesis 11,970 86.29 56.36 4.38 NaN

Table C.5.: Benchmark data for GIP in Sect. 7.2.3
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Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,754 3.71 5.9 · 10−2 1.51 · 10−2 NaN
basicextransfer 2.24 · 105 247.68 0.15 0.69 NaN
bingham-h250 128 7,717.41 6,619.38 2,352.25 NaN
consprod 2.12 · 105 177.54 2.06 1.29 NaN
consprod2 60,016 230.8 5.92 · 10−2 0.94 NaN
csm 60,327 11.43 2.73 · 10−2 6.29 · 10−2 NaN
csm-broad 2.69 · 105 378.59 1.27 1.45 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 241 5,668.96 3,701.45 372.72 17
delegatebuffer.16.1 81 13,517.55 11,164.16 1,010.94 18
efm 4.07 · 105 343.5 0.24 0.77 NaN
examplelea 44 39,168.67 26,513.23 12,881.34 NaN
ext-rw 59,417 9.74 7 · 10−2 6.37 · 10−2 NaN
ext-rw-smallconsts 59,042 11.2 7.16 · 10−2 6.84 · 10−2 NaN
fms 1.17 · 105 15.65 2.99 · 10−2 8.95 · 10−2 NaN
fms2 1.16 · 105 554.55 7.6 · 10−2 1.63 NaN
german 2.01 · 105 735.28 0.11 1.89 NaN
glotter 20,231 263.58 33.47 11.34 7
hts 7 1.42 · 105 1.28 · 105 8,160.96 29
java 1,999 692.47 445.77 45.83 15
java.10.0 1,609 802.97 554.72 46.81 14
java.11.0 4,057 386.09 215.97 18.97 15
java2 196 6,456.47 4,538.38 548.55 NaN
java2.10.2 1,320 1,028.27 673.03 69.43 14
java2.11.2 1,217 993.57 732.99 60.72 15
kanban 3.67 · 105 35.68 2.1 0.52 110
km-nonterm.4.3 2.17 · 105 481.21 0.26 1.27 18
km-nonterm.5.4 3.92 · 105 194.5 0.31 0.67 28
km-nonterm.6.5 3.75 · 105 132.81 0.4 0.49 40
lamport 60,519 5.57 5.33 · 10−2 2.88 · 10−2 NaN
leabasicapproach 59,641 6.33 0.15 3.58 · 10−2 5
leaconflictset 33,910 51.03 25.05 1.73 20
lifo 2.24 · 105 247.99 6.02 · 10−2 0.53 NaN
manufacturing 60,487 1,670.19 5.46 · 10−2 6.79 NaN
mesh2x2 1.12 · 105 13.89 4.41 · 10−2 0.11 NaN
mesh3x2 1.61 · 105 26.68 6.13 · 10−2 0.24 NaN
moesi 1.16 · 105 233.62 4.66 · 10−2 0.69 NaN
moesi5 1.35 · 105 246.02 0.13 0.68 NaN
multi-me 60,292 6.83 6.3 · 10−2 2.79 · 10−2 NaN
multipoll 59,696 11.79 3.52 · 10−2 6.65 · 10−2 NaN
newdekker 1.68 · 105 64.25 2.81 2.71 NaN
newrtp 60,683 5.21 2.99 · 10−2 2.13 · 10−2 NaN
peterson 60,157 362.37 9.24 · 10−2 1.48 NaN
pncsacover 1.21 · 105 141.27 5.76 1.43 38
pncsasemiliv 1.1 · 105 798.43 0.22 3.26 10
queuedbusyflag 44 26,596.9 20,318.75 2,411.76 NaN
read-write 1.11 · 105 752.01 0.9 2.45 NaN
simplejavaexample 1.28 · 105 98.28 4.3 1.1 13
transthesis 14,395 67.98 45.91 2.53 NaN

Table C.6.: Benchmark data for AGI in Sect. 7.2.3
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Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,601 3.46 5.96 · 10−2 1.41 · 10−2 NaN
basicextransfer 2.32 · 105 250.16 9.5 · 10−2 0.52 NaN
bingham-h250 135 7,399.57 2,560.04 2,305.92 NaN
consprod 2.13 · 105 183.41 2.05 1.37 NaN
consprod2 59,764 1,144.88 6.07 · 10−2 4.78 NaN
csm 56,868 40.69 2.84 · 10−2 2.04 NaN
csm-broad 2.77 · 105 220.44 1.18 0.83 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 240 4,737.87 3,734.98 315.6 17
delegatebuffer.16.1 76 17,120.86 11,826.04 1,424.84 18
efm 4.04 · 105 634.02 0.25 1.15 NaN
examplelea 63 43,028.9 8,055.04 13,464.02 NaN
ext-rw 59,601 720.66 6.78 · 10−2 2.95 NaN
ext-rw-smallconsts 59,340 8.71 6.76 · 10−2 6.03 · 10−2 NaN
fms 1.16 · 105 11.22 3 · 10−2 6.41 · 10−2 NaN
fms2 1.16 · 105 13.61 7.41 · 10−2 7.98 · 10−2 NaN
german 1.98 · 105 159.61 0.1 1.24 NaN
glotter 20,204 219.07 33.17 11.6 7
hts 6 1.47 · 105 1.32 · 105 7,635.76 29
java 1,906 792.64 467.07 46.34 15
java.10.0 1,498 887.06 594.53 64.64 14
java.11.0 3,938 411.95 222.86 19.23 15
java2 188 7,047.03 4,742.84 604.03 NaN
java2.10.2 1,410 1,144.19 630.86 57.18 14
java2.11.2 1,171 1,131.64 763.45 70.71 15
kanban 1.02 · 105 25.92 8.38 0.58 88
km-nonterm.4.3 2.17 · 105 1,590.35 0.25 3.44 18
km-nonterm.5.4 3.96 · 105 274 0.28 0.76 28
km-nonterm.6.5 3.76 · 105 94.22 0.38 0.4 40
lamport 60,332 6.73 5.23 · 10−2 3.24 · 10−2 NaN
leabasicapproach 59,870 905.89 0.17 4.06 5
leaconflictset 32,404 51.34 26.23 1.73 20
lifo 2.24 · 105 968.17 6.11 · 10−2 2.11 NaN
manufacturing 60,438 2,824.63 4.92 · 10−2 11.49 NaN
mesh2x2 1.13 · 105 14.03 4.57 · 10−2 9.95 · 10−2 NaN
mesh3x2 1.58 · 105 20.22 5.99 · 10−2 0.17 NaN
moesi 1.18 · 105 234.68 4.41 · 10−2 0.69 NaN
moesi5 1.38 · 105 232.72 0.12 0.65 NaN
multi-me 60,469 12.29 6.11 · 10−2 5 · 10−2 NaN
multipoll 59,934 10.93 3.68 · 10−2 6.35 · 10−2 NaN
newdekker 1.72 · 105 135.44 2.7 2.73 NaN
newrtp 1.04 · 105 202.28 3.26 · 10−2 5.9 NaN
peterson 60,034 972.41 9.08 · 10−2 4.71 NaN
pncsacover 97,701 191.95 7.53 1.58 38
pncsasemiliv 1.09 · 105 975.45 0.23 2.96 10
queuedbusyflag 44 27,321.24 19,818.77 2,777.1 NaN
read-write 1.11 · 105 544.21 0.9 1.92 NaN
simplejavaexample 1.3 · 105 110.05 4.24 1.16 13
transthesis 13,820 77.31 47.64 4.21 NaN

Table C.7.: Benchmark data for GI in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 5.04 · 106 2,130.6 0.1 2.34 NaN
basicextransfer 7.33 · 106 8,197.24 7.52 · 10−2 3.62 NaN
bingham-h250 107 11,805.81 9,953.22 2,555.99 NaN
consprod 249 5,675.64 3,566.26 520.79 NaN
consprod2 50,872 40.02 17.18 1.43 NaN
csm 3.46 · 106 6,373.33 0.17 5.36 NaN
csm-broad 7 · 105 32.65 1.16 0.32 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 164 7,691.4 5,428.85 490.31 17
delegatebuffer.16.1 57 22,614.77 15,856.88 1,948.71 18
efm 3.14 · 106 3,794.5 0.21 2.82 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 67 18,677.17 12,967.4 2,611.59 NaN
fms 5.18 · 106 5,382.04 5.37 · 10−2 5.49 NaN
fms2 9.91 · 105 972.47 0.75 3.58 NaN
german 3.62 · 105 17.48 2.21 0.56 NaN
glotter 4,483 312.76 198.73 15.16 7
hts 84 13,369.21 10,706.65 1,038.75 29
java 344 3,917.42 2,589.92 280.33 15
java.10.0 1,129 1,130.45 794.22 64.72 14
java.11.0 2,740 555.24 323.03 30.92 15
java2 19 68,003.52 48,092.05 7,830.72 NaN
java2.10.2 937 1,326.75 953.77 82.16 14
java2.11.2 788 1,609.91 1,132.06 94.62 15
kanban 1.46 · 106 3,974.07 0.44 5.85 109
km-nonterm.4.3 3.09 · 106 6,551.47 0.2 4.16 18
km-nonterm.5.4 2.43 · 106 2,086.01 0.27 1.51 28
km-nonterm.6.5 1.8 · 106 360.4 0.38 0.4 40
lamport 9.28 · 105 49.73 0.8 0.54 NaN
leabasicapproach 5.33 · 106 9,860.43 6.73 · 10−2 6.03 5
leaconflictset 8,454 215.11 105.11 9.39 20
lifo 7.37 · 106 4,462.35 2.2 · 10−2 2.46 NaN
manufacturing 1,212 989.73 745.29 69.07 NaN
mesh2x2 2.78 · 106 5,957.9 0.14 9 NaN
mesh3x2 1.76 · 106 5,815.19 0.18 13.58 NaN
moesi 7.74 · 106 5,397.55 1.77 · 10−2 2.79 NaN
moesi5 1.6 · 106 5,422.95 7.16 · 10−2 5.43 NaN
multi-me 1.08 · 106 2,275.84 0.73 2.87 NaN
multipoll 2.01 · 106 2,858.27 0.31 6.02 NaN
newdekker 65,061 38.92 13.47 1.2 NaN
newrtp 4.97 · 106 7,318.98 0.12 5.36 NaN
peterson 1.31 · 105 24.6 6.63 0.7 NaN
pncsacover 2.38 · 105 39.61 3.48 0.69 35
pncsasemiliv 2.94 · 106 5,145.8 0.11 10.18 10
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.35 · 105 28.04 6.44 0.77 NaN
simplejavaexample 30,918 52.83 28.46 2.14 11
transthesis 8 1.38 · 105 1.21 · 105 10,141.55 NaN

Table C.8.: Benchmark data for AGP in Sect. 7.2.3
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C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 5.57 · 106 2,131.19 0.11 2.62 NaN
basicextransfer 5.84 · 106 3,033.61 9.72 · 10−2 3.28 NaN
bingham-h250 113 12,048.94 6,414.91 2,493.74 NaN
consprod 256 5,474.29 3,372.46 538.03 NaN
consprod2 43,530 46.89 20.17 1.35 NaN
csm 3.43 · 106 2,863.38 0.17 3.9 NaN
csm-broad 7.02 · 105 39.71 1.15 0.33 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 163 7,667.78 5,531.4 466.5 17
delegatebuffer.16.1 59 21,570.79 15,025.99 1,805.9 18
efm 3.18 · 106 1,908.08 0.21 2.54 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 65 18,528.57 13,465.04 2,364 NaN
fms 5.22 · 106 6,849.37 5.43 · 10−2 7.74 NaN
fms2 9.31 · 105 942.28 0.79 3.79 NaN
german 3.73 · 105 23.74 2.25 0.34 NaN
glotter 4,476 339.58 199.32 15.51 7
hts 81 14,074.79 11,211.23 955.52 29
java 351 3,787.34 2,536.72 272.66 15
java.10.0 1,116 1,126.54 801.32 69.39 14
java.11.0 2,705 543.49 327.45 30.42 15
java2 20 65,901.85 44,822.31 6,826.3 NaN
java2.10.2 884 1,491.22 1,011.03 98.78 14
java2.11.2 790 1,677.9 1,124.99 99.24 15
kanban 3.6 · 105 33.48 2.21 0.52 81
km-nonterm.4.3 3.22 · 106 2,713.63 0.19 1.98 18
km-nonterm.5.4 2.39 · 106 1,430.19 0.27 1.09 28
km-nonterm.6.5 1.81 · 106 311.93 0.38 0.33 40
lamport 1.02 · 106 387.34 0.78 0.65 NaN
leabasicapproach 5.19 · 106 4,943.65 6.8 · 10−2 5.05 5
leaconflictset 7,648 207.22 116.4 10.91 20
lifo 7.52 · 106 6,453.33 2.4 · 10−2 3.85 NaN
manufacturing 1,447 881.43 621.22 61.73 NaN
mesh2x2 2.68 · 106 5,170.81 0.15 10.05 NaN
mesh3x2 1.89 · 106 5,853.88 0.17 8.18 NaN
moesi 7.9 · 106 4,772.07 1.61 · 10−2 1.92 NaN
moesi5 1.66 · 106 3,954 6.98 · 10−2 3.44 NaN
multi-me 1.15 · 106 2,188.62 0.68 2.74 NaN
multipoll 2.07 · 106 2,076.16 0.3 5.87 NaN
newdekker 64,561 35.13 13.57 1.22 NaN
newrtp 5.05 · 106 7,977.93 0.12 5.94 NaN
peterson 1.31 · 105 24.08 6.64 0.72 NaN
pncsacover 2.41 · 105 55.23 3.43 0.75 35
pncsasemiliv 2.77 · 106 6,319.69 0.13 9.5 10
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.37 · 105 25.93 6.37 0.76 NaN
simplejavaexample 31,089 51.6 28.27 2.17 11
transthesis 8 1.52 · 105 1.24 · 105 15,313.05 NaN

Table C.9.: Benchmark data for GP in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 5.06 · 106 5,136.75 0.1 3.28 NaN
basicextransfer 7.24 · 106 2,143.27 7.7 · 10−2 2.04 NaN
bingham-h250 85 14,982.59 12,105.28 2,630.79 NaN
consprod 252 5,481.98 3,452.37 525.34 NaN
consprod2 50,164 37.92 17.46 1.34 NaN
csm 2.65 · 106 4,974.88 0.25 4.66 NaN
csm-broad 7.14 · 105 108.39 1.14 0.62 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 159 7,853.59 5,595.34 528.84 17
delegatebuffer.16.1 58 19,596.41 15,195.49 1,744.2 18
efm 3.08 · 106 5,007.63 0.21 3.63 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 30 42,520.48 30,468.86 5,228.85 NaN
fms 4.82 · 106 7,068.16 6.5 · 10−2 7.43 NaN
fms2 70,671 34.6 12.2 1.48 NaN
german 3.79 · 105 44.97 2.21 0.4 NaN
glotter 4,118 338.61 216.73 17.54 7
hts 9 1.23 · 105 1.11 · 105 9,771.3 29
java 354 3,794.99 2,519.02 257.26 15
java.10.0 1,008 1,276.27 884.64 80.94 14
java.11.0 2,717 635.05 325.4 31.99 15
java2 18 74,757.25 51,032.64 10,596.97 NaN
java2.10.2 925 1,510.94 962.73 80.22 14
java2.11.2 791 1,518.78 1,123.57 92.94 15
kanban 3.57 · 105 27.84 2.27 0.44 110
km-nonterm.4.3 3.2 · 106 1,033.91 0.19 1.28 18
km-nonterm.5.4 2.33 · 106 579.61 0.29 0.68 28
km-nonterm.6.5 1.45 · 106 347.4 0.47 0.47 40
lamport 7.35 · 105 29.61 1.02 0.56 NaN
leabasicapproach 4.99 · 106 3,404.73 7.99 · 10−2 3.6 5
leaconflictset 8,250 291.83 107.5 11.27 20
lifo 7.5 · 106 6,762.54 2.34 · 10−2 4.52 NaN
manufacturing 1,476 931.53 609.69 64.75 NaN
mesh2x2 1.25 · 106 2,102.78 0.52 6.49 NaN
mesh3x2 8.94 · 105 2,560.54 0.67 9.96 NaN
moesi 1.75 · 106 2,174.75 1.61 · 10−2 4.14 NaN
moesi5 1.61 · 106 5,319.89 6.94 · 10−2 8.59 NaN
multi-me 1.02 · 106 3,078.62 0.78 3.59 NaN
multipoll 55,726 34.08 15.71 1.04 NaN
newdekker 65,231 37.34 13.44 1.15 NaN
newrtp 3 · 106 5,357.09 0.23 4.5 NaN
peterson 1.34 · 105 33.44 6.47 0.69 NaN
pncsacover 26,302 54.59 33.58 2.08 38
pncsasemiliv 2.7 · 106 5,711.22 0.14 7.83 10
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.05 · 105 25.63 8.32 0.97 NaN
simplejavaexample 27,487 60.95 32.06 2.22 11
transthesis 7 1.81 · 105 1.45 · 105 17,845.05 NaN

Table C.10.: Benchmark data for AG in Sect. 7.2.3
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C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 5.36 · 106 1,774.03 0.11 2.07 NaN
basicextransfer 7.18 · 106 8,844.64 7.55 · 10−2 3.85 NaN
bingham-h250 81 14,934.65 12,527.25 2,826.91 NaN
consprod 266 5,337 3,303.37 489.61 NaN
consprod2 50,623 50.45 17.3 1.4 NaN
csm 2.77 · 106 6,280.61 0.23 5.24 NaN
csm-broad 6.66 · 105 33.36 1.22 0.33 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 167 7,547.13 5,309.15 513.29 17
delegatebuffer.16.1 58 20,196.8 15,524.54 1,669.49 18
efm 3.26 · 106 4,253.04 0.2 3.16 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 29 40,458.15 31,163.17 4,160.75 NaN
fms 4.44 · 106 17,045.53 6.86 · 10−2 13.34 NaN
fms2 68,897 34.74 12.54 1.5 NaN
german 3.68 · 105 17.3 2.29 0.37 NaN
glotter 3,877 342.94 227.92 22.48 7
hts 9 1.2 · 105 1.07 · 105 9,296.21 29
java 349 4,442.49 2,544.63 301.64 15
java.10.0 1,118 1,140.01 797.83 66.2 14
java.11.0 2,694 562.33 328.8 30.71 15
java2 18 76,057.5 49,058.83 9,502.74 NaN
java2.10.2 945 1,322.93 947.98 80.33 14
java2.11.2 814 1,505.32 1,096.98 92.85 15
kanban 1.04 · 105 37.47 8.35 0.65 88
km-nonterm.4.3 2.95 · 106 3,361.71 0.21 2.54 18
km-nonterm.5.4 2.43 · 106 591.68 0.27 0.64 28
km-nonterm.6.5 1.86 · 106 336.6 0.37 0.51 40
lamport 7.98 · 105 24.85 1 0.34 NaN
leabasicapproach 5.12 · 106 3,358.93 7.79 · 10−2 4.51 5
leaconflictset 8,424 175.58 105.5 9.49 20
lifo 7.41 · 106 6,638.17 2.47 · 10−2 2.78 NaN
manufacturing 1,459 1,056.45 615.76 59.86 NaN
mesh2x2 1.21 · 106 7,872.34 0.53 11.23 NaN
mesh3x2 9.13 · 105 3,995.66 0.64 13.93 NaN
moesi 7.63 · 106 6,222.43 1.58 · 10−2 3.1 NaN
moesi5 1.56 · 106 4,992.37 7.07 · 10−2 7.21 NaN
multi-me 1 · 106 510.76 0.79 1.91 NaN
multipoll 54,165 31.38 16.06 1.32 NaN
newdekker 64,150 31.93 13.67 1.17 NaN
newrtp 2.92 · 106 3,675.58 0.23 4.1 NaN
peterson 1.29 · 105 26.48 6.7 0.73 NaN
pncsacover 26,551 55.87 33.23 2.16 38
pncsasemiliv 2.67 · 106 5,846.31 0.14 9.36 10
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.03 · 105 23.01 8.49 0.99 NaN
simplejavaexample 31,336 58.29 28.05 2.16 11
transthesis 7 1.72 · 105 1.4 · 105 15,774.4 NaN

Table C.11.: Benchmark data for G in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,826 0.2 6.21 · 10−2 3.04 · 10−3 NaN
basicextransfer 2.27 · 105 596.54 0.12 1.36 NaN
bingham-h250 131 7,460.39 6,697.92 2,338.61 NaN
consprod 1.94 · 105 120.4 2.46 1.03 NaN
consprod2 59,958 1,048.09 6.04 · 10−2 4.38 NaN
csm 60,318 10.06 2.65 · 10−2 5.36 · 10−2 NaN
csm-broad 91,541 331.58 7.46 8.27 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 3.76 · 105 556.76 0.4 1.13 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 59,411 11.37 7.11 · 10−2 6.57 · 10−2 NaN
ext-rw-smallconsts 59,614 763.2 6.94 · 10−2 3.13 NaN
fms 1.17 · 105 13.69 2.99 · 10−2 7.49 · 10−2 NaN
fms2 2.2 · 105 230.87 7.24 · 10−2 0.7 NaN
german 32 17.31 0.38 3.57 NaN
glotter 21 14,494.85 1,074.61 2,897.87 11
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 70,177 2,947.56 1.71 65.65 146
km-nonterm.4.3 4.12 · 105 1,068.37 0.21 1.8 25
km-nonterm.5.4 3.96 · 105 257.69 0.3 0.87 37
km-nonterm.6.5 3.8 · 105 224.87 0.37 0.61 51
lamport 60,434 213.82 5.49 · 10−2 0.87 NaN
leabasicapproach 1.15 · 105 1,934.93 0.24 5.87 11
leaconflictset 3 53,805.09 48,324.68 19,880.32 891
lifo 2.24 · 105 1,088.78 6.4 · 10−2 2.3 NaN
manufacturing 60,742 4.58 4.72 · 10−2 1.86 · 10−2 NaN
mesh2x2 1.12 · 105 8.25 4.17 · 10−2 7.2 · 10−2 NaN
mesh3x2 1.61 · 105 15.55 6.1 · 10−2 0.13 NaN
moesi 1.17 · 105 232.04 4.52 · 10−2 0.68 NaN
moesi5 1.35 · 105 678.79 0.12 1.96 NaN
multi-me 60,284 5.83 6.2 · 10−2 2.87 · 10−2 NaN
multipoll 1.17 · 105 11.55 3.62 · 10−2 6.58 · 10−2 NaN
newdekker 728 2.36 · 105 19.34 9,737.79 NaN
newrtp 60,549 7.05 2.85 · 10−2 2.86 · 10−2 NaN
peterson 59,993 6.76 8.39 · 10−2 2.8 · 10−2 NaN
pncsacover 1 282.4 282.4 0 2,410
pncsasemiliv 5 3.35 · 105 4,752.91 1.33 · 105 569
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.82 · 105 566.18 0.87 2.62 NaN
simplejavaexample 3 1.29 · 105 96,497.48 43,371.6 171
transthesis 12,667 84.76 54.61 2.7 NaN

Table C.12.: Benchmark data for AIP in Sect. 7.2.3
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C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,720 3.72 5.91 · 10−2 1.52 · 10−2 NaN
basicextransfer 2.27 · 105 278.99 0.12 0.59 NaN
bingham-h250 136 7,385.07 2,646.99 2,213.42 NaN
consprod 1.95 · 105 345.42 2.41 1.44 NaN
consprod2 59,998 230.91 5.98 · 10−2 0.95 NaN
csm 60,114 1,920.6 2.55 · 10−2 7.83 NaN
csm-broad 90,673 482.32 7.54 8.54 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 3.74 · 105 173.7 0.4 0.74 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 59,741 1,018.68 6.6 · 10−2 4.17 NaN
ext-rw-smallconsts 59,585 10.38 6.79 · 10−2 6.7 · 10−2 NaN
fms 1.17 · 105 14.01 3.03 · 10−2 8.13 · 10−2 NaN
fms2 2.2 · 105 479.79 7.66 · 10−2 1.41 NaN
german 12 15.65 0.61 4.88 NaN
glotter 4 2,199.95 800.3 655.15 11
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 35,863 3,104.83 5.56 89.37 168
km-nonterm.4.3 4.02 · 105 506.99 0.26 1.3 25
km-nonterm.5.4 3.95 · 105 798.86 0.29 1.45 37
km-nonterm.6.5 3.78 · 105 244.19 0.39 0.62 51
lamport 60,494 5.85 5.54 · 10−2 2.98 · 10−2 NaN
leabasicapproach 1.14 · 105 5,280.01 0.24 15.73 11
leaconflictset 1 15,351.37 15,351.37 0 196
lifo 2.23 · 105 238.2 6.41 · 10−2 0.51 NaN
manufacturing 61,006 2.57 3.9 · 10−2 1.08 · 10−2 NaN
mesh2x2 1.12 · 105 11.64 4.38 · 10−2 8.5 · 10−2 NaN
mesh3x2 1.6 · 105 478.01 5.69 · 10−2 1.21 NaN
moesi 1.17 · 105 230.88 4.78 · 10−2 0.68 NaN
moesi5 1.27 · 105 616.51 0.13 5.61 NaN
multi-me 60,428 7.21 6.1 · 10−2 3.4 · 10−2 NaN
multipoll 59,953 15.82 3.68 · 10−2 9.43 · 10−2 NaN
newdekker 458 1.63 · 105 21.58 8,552.6 NaN
newrtp 60,396 210.82 2.91 · 10−2 0.86 NaN
peterson 60,087 1,714.63 8.55 · 10−2 6.99 NaN
pncsacover 1 3,068.49 3,068.49 0 5,673
pncsasemiliv 7 71,247.81 1,137.44 24,447.02 529
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.78 · 105 354.74 0.87 2.65 NaN
simplejavaexample 2 11,374.31 10,176.69 1,197.62 95.5
transthesis 12,740 79.62 54.19 3.3 NaN

Table C.13.: Benchmark data for IP in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,733 0.27 5.97 · 10−2 2.68 · 10−3 NaN
basicextransfer 2.27 · 105 572.32 0.12 1.51 NaN
bingham-h250 129 7,947.19 2,757.4 2,384.47 NaN
consprod 1.95 · 105 350.02 2.42 1.38 NaN
consprod2 59,888 237 6.14 · 10−2 0.97 NaN
csm 60,482 7.68 2.54 · 10−2 3.12 · 10−2 NaN
csm-broad 88,498 295.43 7.71 8.66 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 3.67 · 105 183 0.44 0.74 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 59,542 10.68 6.69 · 10−2 6.25 · 10−2 NaN
ext-rw-smallconsts 59,593 636.63 6.95 · 10−2 2.61 NaN
fms 1.17 · 105 11.56 2.87 · 10−2 6.51 · 10−2 NaN
fms2 1.16 · 105 658.77 7.6 · 10−2 1.94 NaN
german 17 14.52 0.33 4.57 NaN
glotter 44 2.13 · 105 878.13 35,298.55 11
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 2 217.28 134.79 82.49 1,034
km-nonterm.4.3 4.07 · 105 425.51 0.21 1.09 25
km-nonterm.5.4 3.97 · 105 351.28 0.29 0.69 37
km-nonterm.6.5 3.73 · 105 233.39 0.41 0.63 51
lamport 60,699 8.07 4.99 · 10−2 3.27 · 10−2 NaN
leabasicapproach 2 · 105 3,034.66 0.32 10.05 17
leaconflictset 0 NaN NaN NaN NaN
lifo 2.26 · 105 14.86 5.83 · 10−2 6.46 · 10−2 NaN
manufacturing 60,644 2.67 4.91 · 10−2 1.12 · 10−2 NaN
mesh2x2 1.12 · 105 12.36 4.55 · 10−2 8.24 · 10−2 NaN
mesh3x2 1.59 · 105 21.21 5.9 · 10−2 0.17 NaN
moesi 1.17 · 105 225.3 4.52 · 10−2 0.66 NaN
moesi5 1.37 · 105 487.47 0.12 1.47 NaN
multi-me 60,232 694.63 6.07 · 10−2 2.83 NaN
multipoll 1.16 · 105 471.93 3.74 · 10−2 1.39 NaN
newdekker 1,575 1.29 · 105 21.63 5,104.23 NaN
newrtp 60,572 7.76 2.87 · 10−2 3.16 · 10−2 NaN
peterson 60,157 1,051.81 8.79 · 10−2 4.4 NaN
pncsacover 1 1.76 · 105 1.76 · 105 0 4.36 · 105

pncsasemiliv 0 NaN NaN NaN NaN
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.67 · 105 380.17 0.97 2.76 NaN
simplejavaexample 1 5,151.58 5,151.58 0 108
transthesis 12,638 102.95 54.65 3.14 NaN

Table C.14.: Benchmark data for AI in Sect. 7.2.3
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C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 60,608 5.22 6.14 · 10−2 2.12 · 10−2 NaN
basicextransfer 2.27 · 105 664.75 0.12 1.4 NaN
bingham-h250 129 7,892.83 4,732.44 2,403.49 NaN
consprod 1.89 · 105 196.5 2.59 1.3 NaN
consprod2 59,818 6.74 6.1 · 10−2 4.22 · 10−2 NaN
csm 60,654 9.73 2.44 · 10−2 5.21 · 10−2 NaN
csm-broad 89,764 356.88 7.58 8.95 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 3.73 · 105 196.81 0.41 0.95 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 59,584 785.04 6.97 · 10−2 3.35 NaN
ext-rw-smallconsts 59,541 615.41 6.77 · 10−2 2.52 NaN
fms 1.18 · 105 10.02 2.74 · 10−2 6.12 · 10−2 NaN
fms2 2.2 · 105 485.94 7.35 · 10−2 1.04 NaN
german 25 22.32 0.46 6.62 NaN
glotter 14 1,874.75 771.52 413.68 11
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 1 7.79 7.79 0 300
km-nonterm.4.3 4.13 · 105 316.8 0.21 0.85 25
km-nonterm.5.4 3.96 · 105 908.29 0.29 1.57 37
km-nonterm.6.5 3.74 · 105 846.06 0.39 1.63 51
lamport 60,582 5.69 5.15 · 10−2 2.45 · 10−2 NaN
leabasicapproach 1.06 · 105 33,487.17 0.32 104.29 17
leaconflictset 6 99,130.4 15,661.27 32,932.1 567
lifo 2.25 · 105 241.31 5.97 · 10−2 0.51 NaN
manufacturing 60,503 4.55 4.76 · 10−2 2.17 · 10−2 NaN
mesh2x2 1.13 · 105 12.57 4.47 · 10−2 8.98 · 10−2 NaN
mesh3x2 1.57 · 105 15.97 5.85 · 10−2 0.13 NaN
moesi 1.18 · 105 448.12 4.29 · 10−2 1.31 NaN
moesi5 1.37 · 105 536.82 0.12 2.09 NaN
multi-me 60,413 3,048.4 6.24 · 10−2 12.4 NaN
multipoll 59,912 10.64 3.54 · 10−2 6.41 · 10−2 NaN
newdekker 767 2.2 · 105 21.58 9,945.97 NaN
newrtp 60,516 8.95 2.82 · 10−2 4.44 · 10−2 NaN
peterson 60,088 1,678.05 8.66 · 10−2 6.85 NaN
pncsacover 0 NaN NaN NaN NaN
pncsasemiliv 3 1.39 · 105 69,983.42 65,567.84 37,983
queuedbusyflag 0 NaN NaN NaN NaN
read-write 1.68 · 105 406.51 0.95 2.72 NaN
simplejavaexample 0 NaN NaN NaN NaN
transthesis 12,663 84.17 54.24 2.65 NaN

Table C.15.: Benchmark data for I in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 4.15 · 106 3,147.68 0.16 2.37 NaN
basicextransfer 7.09 · 106 2,626.39 7.35 · 10−2 2.35 NaN
bingham-h250 96 16,840.26 10,034.68 3,453.56 NaN
consprod 0 NaN NaN NaN NaN
consprod2 0 NaN NaN NaN NaN
csm 14 1.31 · 105 28.51 33,659.82 NaN
csm-broad 634 35,604.33 21.74 1,755.67 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 1.06 · 106 405.5 0.64 0.71 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 0 NaN NaN NaN NaN
fms 1.35 · 106 4,018.98 0.16 5.51 NaN
fms2 73,495 11,183.07 4.9 54.51 NaN
german 1 3,294.36 3,294.36 0 NaN
glotter 0 NaN NaN NaN NaN
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 65,927 2,547.77 1.81 71.44 146
km-nonterm.4.3 2.61 · 106 1,943.86 0.25 1.51 25
km-nonterm.5.4 2.01 · 106 1,101.2 0.34 1.82 37
km-nonterm.6.5 1.47 · 106 302.27 0.49 0.32 51
lamport 1 239.59 239.59 0 NaN
leabasicapproach 3 4.09 · 105 2.19 · 105 1.86 · 105 10
leaconflictset 0 NaN NaN NaN NaN
lifo 7.45 · 106 4,575.62 2.25 · 10−2 2.64 NaN
manufacturing 0 NaN NaN NaN NaN
mesh2x2 1.52 · 106 6,037.23 0.35 7.42 NaN
mesh3x2 6.79 · 105 1,655.3 0.7 8.33 NaN
moesi 7.56 · 106 4,988.73 1.62 · 10−2 2.21 NaN
moesi5 1.57 · 106 3,797.74 6.59 · 10−2 4.03 NaN
multi-me 170 4.91 · 105 63.7 45,033.75 NaN
multipoll 1.42 · 106 4,630.65 0.5 6.43 NaN
newdekker 0 NaN NaN NaN NaN
newrtp 5.45 · 106 3,175.15 0.1 4.43 NaN
peterson 0 NaN NaN NaN NaN
pncsacover 0 NaN NaN NaN NaN
pncsasemiliv 0 NaN NaN NaN NaN
queuedbusyflag 0 NaN NaN NaN NaN
read-write 0 NaN NaN NaN NaN
simplejavaexample 0 NaN NaN NaN NaN
transthesis 0 NaN NaN NaN NaN

Table C.16.: Benchmark data for AP in Sect. 7.2.3
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C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 4.15 · 106 3,457.83 0.16 2.53 NaN
basicextransfer 6.92 · 106 11,160.35 7.43 · 10−2 4.9 NaN
bingham-h250 90 16,983.35 10,221.42 3,331.12 NaN
consprod 0 NaN NaN NaN NaN
consprod2 0 NaN NaN NaN NaN
csm 24 1.22 · 105 22.83 24,386.92 NaN
csm-broad 519 1.36 · 105 22.36 6,375.55 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 1.03 · 106 364.42 0.67 0.68 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 0 NaN NaN NaN NaN
fms 1.29 · 106 3,920.43 0.16 5.94 NaN
fms2 76,802 4,037.73 4.68 45.36 NaN
german 0 NaN NaN NaN NaN
glotter 0 NaN NaN NaN NaN
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 36,211 2,496.4 5.49 82.03 167
km-nonterm.4.3 2.64 · 106 793.62 0.25 0.98 25
km-nonterm.5.4 2.05 · 106 2,593.92 0.34 2.11 37
km-nonterm.6.5 1.51 · 106 327.23 0.48 0.36 51
lamport 8 10,735.77 188.29 3,701.37 NaN
leabasicapproach 0 NaN NaN NaN NaN
leaconflictset 0 NaN NaN NaN NaN
lifo 7.37 · 106 6,275.12 2.55 · 10−2 2.42 NaN
manufacturing 0 NaN NaN NaN NaN
mesh2x2 1.49 · 106 5,910.92 0.35 8.96 NaN
mesh3x2 6.78 · 105 1,800.24 0.7 7.7 NaN
moesi 4.48 · 106 5,557.28 1.54 · 10−2 4.55 NaN
moesi5 1.65 · 106 6,573.15 6.78 · 10−2 8.55 NaN
multi-me 117 49,469.12 125.18 7,986.17 NaN
multipoll 1.46 · 106 5,183.4 0.47 6.84 NaN
newdekker 0 NaN NaN NaN NaN
newrtp 5.23 · 106 7,038.06 0.11 5.52 NaN
peterson 0 NaN NaN NaN NaN
pncsacover 0 NaN NaN NaN NaN
pncsasemiliv 0 NaN NaN NaN NaN
queuedbusyflag 0 NaN NaN NaN NaN
read-write 0 NaN NaN NaN NaN
simplejavaexample 0 NaN NaN NaN NaN
transthesis 0 NaN NaN NaN NaN

Table C.17.: Benchmark data for P in Sect. 7.2.3
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 4.04 · 106 5,619.97 0.16 4.38 NaN
basicextransfer 6.84 · 106 2,666.84 7.66 · 10−2 2.49 NaN
bingham-h250 0 NaN NaN NaN NaN
consprod 0 NaN NaN NaN NaN
consprod2 0 NaN NaN NaN NaN
csm 0 NaN NaN NaN NaN
csm-broad 64 4.1 · 105 25.92 50,857.88 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 8.8 · 105 25.62 0.81 0.6 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 0 NaN NaN NaN NaN
fms 1 0.62 0.62 0 NaN
fms2 1 96,514.52 96,514.52 0 NaN
german 0 NaN NaN NaN NaN
glotter 0 NaN NaN NaN NaN
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 1 14.46 14.46 0 453
km-nonterm.4.3 2.57 · 106 2,029.26 0.25 1.54 25
km-nonterm.5.4 1.98 · 106 294.55 0.35 0.37 37
km-nonterm.6.5 1.51 · 106 317.17 0.47 0.35 51
lamport 1 8,463.1 8,463.1 0 NaN
leabasicapproach 1 12.19 12.19 0 5
leaconflictset 0 NaN NaN NaN NaN
lifo 7.41 · 106 5,260.63 2.51 · 10−2 3.24 NaN
manufacturing 0 NaN NaN NaN NaN
mesh2x2 0 NaN NaN NaN NaN
mesh3x2 0 NaN NaN NaN NaN
moesi 7.2 · 106 5,039.68 1.7 · 10−2 2.72 NaN
moesi5 1.61 · 106 5,669.09 6.79 · 10−2 6.43 NaN
multi-me 14 4.95 · 105 99.17 1.27 · 105 NaN
multipoll 0 NaN NaN NaN NaN
newdekker 0 NaN NaN NaN NaN
newrtp 3.53 · 106 4,801.41 0.18 4.18 NaN
peterson 0 NaN NaN NaN NaN
pncsacover 0 NaN NaN NaN NaN
pncsasemiliv 0 NaN NaN NaN NaN
queuedbusyflag 0 NaN NaN NaN NaN
read-write 0 NaN NaN NaN NaN
simplejavaexample 0 NaN NaN NaN NaN
transthesis 0 NaN NaN NaN NaN

Table C.18.: Benchmark data for A in Sect. 7.2.3

284



C.2. Search Space Constructions and Search Guidance

Model Iter. Max. ms Med. ms σ ms Med. T
basic-me 4.2 · 106 4,670.94 0.16 3.12 NaN
basicextransfer 6.9 · 106 2,941.33 7.69 · 10−2 2.49 NaN
bingham-h250 0 NaN NaN NaN NaN
consprod 0 NaN NaN NaN NaN
consprod2 0 NaN NaN NaN NaN
csm 1 1.52 1.52 0 NaN
csm-broad 250 2.48 · 105 19.25 18,755.54 NaN
delegatebuffer 0 NaN NaN NaN NaN
delegatebuffer.15.1 0 NaN NaN NaN NaN
delegatebuffer.16.1 0 NaN NaN NaN NaN
efm 1.01 · 106 38.16 0.67 0.6 NaN
examplelea 0 NaN NaN NaN NaN
ext-rw 0 NaN NaN NaN NaN
ext-rw-smallconsts 0 NaN NaN NaN NaN
fms 6 18.63 0.67 6.72 NaN
fms2 1 2,253.25 2,253.25 0 NaN
german 0 NaN NaN NaN NaN
glotter 0 NaN NaN NaN NaN
hts 0 NaN NaN NaN NaN
java 0 NaN NaN NaN NaN
java.10.0 0 NaN NaN NaN NaN
java.11.0 0 NaN NaN NaN NaN
java2 0 NaN NaN NaN NaN
java2.10.2 0 NaN NaN NaN NaN
java2.11.2 0 NaN NaN NaN NaN
kanban 1 20.67 20.67 0 415
km-nonterm.4.3 2.63 · 106 4,981.67 0.25 3.25 25
km-nonterm.5.4 2.05 · 106 551.97 0.34 0.47 37
km-nonterm.6.5 1.53 · 106 283.67 0.48 0.31 51
lamport 0 NaN NaN NaN NaN
leabasicapproach 0 NaN NaN NaN NaN
leaconflictset 0 NaN NaN NaN NaN
lifo 7.17 · 106 6,559.47 2.42 · 10−2 3.93 NaN
manufacturing 0 NaN NaN NaN NaN
mesh2x2 0 NaN NaN NaN NaN
mesh3x2 0 NaN NaN NaN NaN
moesi 7.76 · 106 4,781.08 1.54 · 10−2 2.31 NaN
moesi5 1.63 · 106 3,665.66 6.76 · 10−2 3.71 NaN
multi-me 5 1.16 · 105 187.82 46,337.6 NaN
multipoll 1 301.32 301.32 0 NaN
newdekker 0 NaN NaN NaN NaN
newrtp 3.51 · 106 2,352.83 0.18 3.76 NaN
peterson 0 NaN NaN NaN NaN
pncsacover 0 NaN NaN NaN NaN
pncsasemiliv 0 NaN NaN NaN NaN
queuedbusyflag 0 NaN NaN NaN NaN
read-write 0 NaN NaN NaN NaN
simplejavaexample 0 NaN NaN NaN NaN
transthesis 0 NaN NaN NaN NaN

Table C.19.: Benchmark data for ∅ in Sect. 7.2.3
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C. Benchmark Data

C.3. Tool Comparison

In the following pages, we present most of the benchmark results that
went into the comparison of the five tools (see Sect. 7.2 on p. 207 for
the experimental set-up). A more detailed summary of the benchmark
results can be found at
http://csd.informatik.uni-oldenburg.de/~critter/bw-results.tar.gz.

Framework The reference implementation of our framework.
http://csd.informatik.uni-oldenburg.de/~critter/bw.tar.gz
The program took 4 days and 15.68 hours to complete this bench-
mark set.

Petruchio/BW Our (older) coverability checker built into the Petru-
chio tool.
http://csd.informatik.uni-oldenburg.de/~critter/petruchio.tar.gz
The program took 4 days and 17.27 hours to complete this bench-
mark set.

MIST2 https://github.com/pierreganty/mist/
The program took 9 days and 10.77 hours to complete this bench-
mark set.

BFC 2.0 http://www.cprover.org/bfc/
The program took 4 days and 11.72 hours to complete this bench-
mark set.

BFC 1.0 http://www.cprover.org/bfc/
The program took 5 days and 0.72 hours to complete this bench-
mark set.

Unfortunately, the MIST2 tool was unable to solve the coverability prob-
lem described in the HTS case study within acceptable time constraints
and we stopped it after it ran for a little over 9 weeks. In total—not
counting the 9 weeks just mentioned—, the benchmark set took 28 days
and 7.92 hours to complete.
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C.3. Tool Comparison

The tables contain the following columns (time measured in millisec-
onds).

Model Name of the PN or PNT model, i.e. a coverability problem.

Iter. Number of successful benchmark iterations.

Max. ms Maximal time the tool needed to solve the coverability prob-
lem.

Med. ms Median time the tool needed to solve the coverability problem.

σ ms Standard deviation of the time the tool needed to solve the cover-
ability problem.

Med. T Median length of the found trace if a target state was coverable
(else the table cell reads NaN). As the lengths of the found traces
depend on the model’s representation for each specific tool, they
are not directly comparable but give a rough estimate.

E Number of unsuccessful benchmark iterations (segfault or memout
over 32 GB).

If no data was collected due to a model not being supported or when
nothing but errors occurred, each cell in the row for that model reads
NaN.
Note that BFC 2.0 ran out of memory for four problems and BFC 1.0
had sporadic segfaults, deadlocks and memouts for many models. Also,
there appears to be a bug in BFC 2.0 as it gives the wrong answer for
the coverability problem of benchmark basicextransfer: While it finds
a solution trace, all other tools—even BFC 1.0—agree that there is
no trace connecting initial and final states. We reported the bug to the
author who fixed the problem (in the module for partial-order reduction).
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T E
basic-me 5.78 · 106 12.14 5.32 · 10−2 4.84 · 10−2 NaN 0
basicextransfer 7.22 · 106 25.58 8.78 · 10−2 7.21 · 10−2 NaN 0
bingham-h250 2,146 16,452.09 2,570.65 601.71 NaN 0
consprod 1.24 · 106 71.7 1.83 0.34 NaN 0
consprod2 1.79 · 106 11.38 0.2 9.47 · 10−2 NaN 0
csm 2.78 · 106 12.01 0.13 6.84 · 10−2 NaN 0
csm-broad 2.41 · 106 15.08 0.81 0.2 NaN 0
delegatebuffer 3 1.81 · 107 1.81 · 107 4.28 · 105 NaN 0
delegatebuffer.15.1 3,383 2,566.39 2,098.48 114.22 17 0
delegatebuffer.16.1 1,361 6,198.48 5,179.96 275.01 18 0
efm 4.01 · 106 89.89 0.41 0.16 NaN 0
examplelea 10,884 1,168.59 637.88 113.74 NaN 0
ext-rw 1.56 · 106 12.04 0.31 0.13 NaN 0
ext-rw-smallconsts 1.46 · 106 10.84 0.33 0.13 NaN 0
fms 2.19 · 106 12.26 0.24 0.13 NaN 0
fms2 2.01 · 106 11.57 0.25 0.13 NaN 0
german 2.6 · 106 70.19 0.14 8.5 · 10−2 NaN 0
glotter 35,249 257.93 126.93 8.46 7 0
hts 64 3.3 · 105 76,076.83 74,535.36 29 0
java 2,712 3,761.29 2,620.75 281.89 15 0
java.10.0 9,513 950.7 738.42 47.82 14 0
java.11.0 16,797 580.38 383.88 22.67 16 0
java2 584 17,421.63 12,230.14 1,135.71 NaN 0
java2.10.2 9,073 962.48 774.05 50.55 16 0
java2.11.2 5,616 1,593.59 1,233.42 88.69 16 0
kanban 1.5 · 106 140.66 2.04 0.53 84 0
km-nonterm.4.3 4.46 · 106 225.81 0.31 0.17 25 0
km-nonterm.5.4 4.39 · 106 205.52 0.37 0.19 85 0
km-nonterm.6.5 4.15 · 106 17.63 0.52 0.17 109 0
lamport 3.26 · 106 12.96 9.35 · 10−2 6.2 · 10−2 NaN 0
leabasicapproach 2.22 · 106 60.47 0.23 0.11 5 0
leaconflictset 73,308 155.81 88.61 8.59 20 0
lifo 2.64 · 106 147.76 0.36 0.12 NaN 0
manufacturing 4.26 · 106 153.53 0.11 9.58 · 10−2 NaN 0
mesh2x2 1.27 · 106 12.45 0.62 0.34 NaN 0
mesh3x2 6.79 · 105 70.18 2.11 1.09 NaN 0
moesi 2.37 · 106 61.79 0.13 8.24 · 10−2 NaN 0
moesi5 4.42 · 105 64.79 2.77 1.22 NaN 0
multi-me 3.26 · 106 68.62 9.94 · 10−2 7.34 · 10−2 NaN 0
multipoll 1.88 · 106 80.73 0.69 0.32 NaN 0
newdekker 2.34 · 106 11.35 0.15 7.52 · 10−2 NaN 0
newrtp 3.73 · 106 12.16 7.21 · 10−2 4.83 · 10−2 NaN 0
peterson 2.83 · 106 14.53 0.18 8.75 · 10−2 NaN 0
pncsacover 2.95 · 105 168.49 17.81 1.46 40 0
pncsasemiliv 1.01 · 106 161.75 0.8 0.42 10 0
queuedbusyflag 747 12,781.91 9,535.59 624.05 NaN 0
read-write 2.12 · 106 145.17 1.2 0.29 NaN 0
simplejavaexample 7.19 · 105 84.97 3.41 0.48 11 0
transthesis 1.15 · 105 583.62 34.35 7.79 NaN 0

Table C.20.: Benchmark data for Framework in Sect. 7.2.4
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C.3. Tool Comparison

Model Iter. Max. ms Med. ms σ ms Med. T E
basic-me 4.87 · 105 1,479.14 0.12 2.36 NaN 0
basicextransfer 1.83 · 106 1,220.93 0.18 1.43 NaN 0
bingham-h250 991 13,059.12 9,089.99 2,718.81 NaN 0
consprod 1.66 · 106 351.72 2.3 0.79 NaN 0
consprod2 4.79 · 105 3,184.43 0.21 6.62 NaN 0
csm 4.83 · 105 1,448.23 0.12 5.44 NaN 0
csm-broad 2.18 · 106 292.31 1.32 0.65 NaN 0
delegatebuffer 3 1.86 · 107 1.76 · 107 2.17 · 106 NaN 0
delegatebuffer.15.1 1,882 5,478.67 3,803.8 302.57 17 0
delegatebuffer.16.1 599 17,465.35 11,950.25 1,104.46 18 0
efm 3.26 · 106 986.21 0.29 1.51 NaN 0
examplelea 665 32,851.13 10,951.63 8,796.13 NaN 0
ext-rw 4.77 · 105 1,862.91 0.26 4.9 NaN 0
ext-rw-smallconsts 4.77 · 105 1,217.59 0.25 3.86 NaN 0
fms 9.37 · 105 2,142.56 0.2 3.87 NaN 0
fms2 9.31 · 105 3,368.74 0.22 5.78 NaN 0
german 1.67 · 106 514.83 0.17 1.71 NaN 0
glotter 1.76 · 105 447.51 35.89 13.9 7 0
hts 89 1.5 · 105 81,275.65 13,507.94 29 0
java 15,696 906.58 455.38 45.99 15 0
java.10.0 12,111 999.45 591.08 50.81 14 0
java.11.0 31,940 484.3 221.94 20.34 15 0
java2 1,480 7,896.15 4,789.06 583.89 NaN 0
java2.10.2 11,468 1,069.87 624.57 51.58 14 0
java2.11.2 9,741 1,251.11 733.6 65.87 15 0
kanban 1 · 107 5,594.82 0.52 6.13 109 0
km-nonterm.4.3 3.28 · 106 677.12 0.25 0.94 18 0
km-nonterm.5.4 3.17 · 106 1,797.2 0.32 1.36 28 0
km-nonterm.6.5 3.03 · 106 506.38 0.42 0.7 40 0
lamport 4.84 · 105 1,280.61 0.13 2.29 NaN 0
leabasicapproach 4.81 · 105 1,676.6 0.23 5.46 5 0
leaconflictset 2.69 · 105 193.96 25.91 2.19 20 0
lifo 1.8 · 106 2,224.24 0.17 2.92 NaN 0
manufacturing 4.86 · 105 2,294.24 0.12 4.71 NaN 0
mesh2x2 9.03 · 105 766.86 0.4 3.09 NaN 0
mesh3x2 1.29 · 106 2,437.92 1.2 5.73 NaN 0
moesi 9.39 · 105 1,553.36 0.16 4.14 NaN 0
moesi5 1.09 · 106 5,070.46 2.18 9.59 NaN 0
multi-me 2.44 · 105 3,206.84 0.14 6.68 NaN 0
multipoll 9.39 · 105 1,601.95 0.19 3.43 NaN 0
newdekker 1.35 · 106 217.95 2.89 2.75 NaN 0
newrtp 4.86 · 105 826.7 0.1 2.82 NaN 0
peterson 4.82 · 105 1,223.76 0.18 3.12 NaN 0
pncsacover 1.13 · 106 406.55 4.16 1.44 35 0
pncsasemiliv 8.82 · 105 1,415.6 0.56 5.36 10 0
queuedbusyflag 884 11,589.93 8,076.56 699.74 NaN 0
read-write 8.94 · 105 1,039.07 0.9 2.27 NaN 0
simplejavaexample 1.16 · 106 359.37 4.85 1.13 13 0
transthesis 1.17 · 105 873.58 59.14 10.32 NaN 0

Table C.21.: Benchmark data for Petruchio/BW in Sect. 7.2.4
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T E
basic-me 9.83 · 106 7.42 0.61 0.31 NaN 0
basicextransfer 1.05 · 108 6.4 5.3 · 10−2 9.23 · 10−2 NaN 0
bingham-h250 436 16,794.03 16,529.99 156.84 NaN 0
consprod 3.84 · 105 26.75 18.63 1.51 NaN 0
consprod2 1.03 · 107 9.11 0.66 0.26 NaN 0
csm 2.47 · 105 38.79 29.05 1.58 NaN 0
csm-broad 6.15 · 105 19.63 11.44 1.19 NaN 0
delegatebuffer 3 8.98 · 107 8.65 · 107 3.02 · 106 NaN 0
delegatebuffer.15.1 19 3.86 · 105 3.81 · 105 8,235.38 13 0
delegatebuffer.16.1 7 1.2 · 106 1.2 · 106 13,107.87 13 0
efm 7.22 · 106 10.93 0.97 0.4 NaN 0
examplelea 834 9,210.04 8,647.29 249.09 NaN 0
ext-rw 5 1.74 · 106 1.74 · 106 73,060.2 NaN 0
ext-rw-smallconsts 98,164 94.57 72.14 4.97 NaN 0
fms 5.71 · 108 2.57 9 · 10−3 3.35 · 10−2 NaN 0
fms2 158 47,913.54 45,917.27 1,560.36 NaN 0
german 1.42 · 107 8.58 0.48 0.23 NaN 0
glotter 3 7.6 · 107 7.36 · 107 2.09 · 106 7 0
hts NaN NaN NaN NaN NaN NaN
java 2,692 2,850.81 2,680.04 73.65 14 0
java.10.0 112 70,656.45 65,229.55 3,474.03 10 0
java.11.0 213 35,641.2 34,611.14 1,490.5 10 0
java2 6.28 · 105 22.96 11.32 1.69 NaN 0
java2.10.2 100 75,962.04 72,885.62 2,441.72 10 0
java2.11.2 93 79,674.6 77,197.61 1,544 10 0
kanban 3 4.27 · 106 4.09 · 106 1.6 · 105 48 0
km-nonterm.4.3 1.74 · 106 15.51 3.81 1 12 0
km-nonterm.5.4 1.29 · 106 14.82 5.27 0.88 20 0
km-nonterm.6.5 9.22 · 105 15.48 7.49 1.01 30 0
lamport 7.07 · 106 8.98 0.97 0.25 NaN 0
leabasicapproach 6.4 · 105 17.46 11 1.02 4 0
leaconflictset 8,871 938.54 809.63 36.94 15 0
lifo NaN NaN NaN NaN NaN NaN
manufacturing 560 13,245.45 12,956.92 342.12 NaN 0
mesh2x2 9,363 903.03 765.86 26.47 NaN 0
mesh3x2 504 14,714.71 14,335.89 237.25 NaN 0
moesi NaN NaN NaN NaN NaN NaN
moesi5 NaN NaN NaN NaN NaN NaN
multi-me 3.91 · 105 26.04 18.41 1.35 NaN 0
multipoll 3,027 2,534.6 2,381.39 61.24 NaN 0
newdekker 6.25 · 105 21.8 11.34 1.24 NaN 0
newrtp 4.3 · 108 2.24 1.4 · 10−2 2.92 · 10−2 NaN 0
peterson 6.41 · 105 20.91 10.92 1.37 NaN 0
pncsacover 152 49,031.9 47,527.11 794.75 32 0
pncsasemiliv 13,532 595.39 534.47 22.77 10 0
queuedbusyflag 3 5.89 · 106 5.56 · 106 3.01 · 105 NaN 0
read-write 52,977 160.62 135.71 5.5 NaN 0
simplejavaexample 23,965 371.11 302.46 16.92 10 0
transthesis 82,333 130.44 86.43 7.28 NaN 0

Table C.22.: Benchmark data for MIST2 in Sect. 7.2.4
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C.3. Tool Comparison

Model Iter. Max. ms Med. ms σ ms Med. T E
basic-me 3.05 · 106 145.94 2.34 0.23 NaN 0
basicextransfer 3.32 · 106 338.23 2.15 0.31 3 0
bingham-h250 79 94,802.06 91,978.45 1,003.15 NaN 0
consprod 8.98 · 105 109.72 8 0.28 NaN 0
consprod2 9.31 · 105 51.57 7.71 0.24 NaN 0
csm 2.07 · 106 216.89 3.46 0.31 NaN 0
csm-broad 2.42 · 106 333.19 2.96 0.4 NaN 0
delegatebuffer 0 NaN NaN NaN NaN 3
delegatebuffer.15.1 310 35,188.18 22,495.12 2,831.31 40 0
delegatebuffer.16.1 37 2.64 · 105 1.9 · 105 22,819.99 39 0
efm 3.09 · 106 135.48 2.31 0.23 NaN 0
examplelea 3 3.87 · 106 3.86 · 106 22,784.61 NaN 0
ext-rw 0 NaN NaN NaN NaN 3
ext-rw-smallconsts 0 NaN NaN NaN NaN 3
fms 83,602 523.18 85.47 7.21 NaN 0
fms2 420 20,380.59 17,003.27 846 NaN 0
german 2.51 · 106 476.98 2.84 1.32 NaN 0
glotter 1.57 · 105 543.2 45.54 4.72 15 0
hts 2,059 12,398.89 3,172.68 1,098.57 31 0
java 2.62 · 105 107.31 25.31 10.5 30 0
java.10.0 2,381 4,344.01 2,995.92 116.63 34 0
java.11.0 285 30,681.37 25,100.68 1,030.3 35 0
java2 17 4.94 · 105 4.4 · 105 19,278.98 NaN 0
java2.10.2 2,419 3,963.38 2,934.29 144.88 30 0
java2.11.2 295 31,379.67 24,046.2 1,360.08 30 0
kanban 1.34 · 105 138.53 55.45 3.98 13 0
km-nonterm.4.3 1.47 · 106 178.46 4.87 0.36 20 0
km-nonterm.5.4 1.26 · 106 327.29 5.67 1 30 0
km-nonterm.6.5 1.1 · 106 338.8 6.46 0.97 42 0
lamport 2.65 · 106 385.51 2.69 0.57 NaN 0
leabasicapproach 2.32 · 106 136.82 3.09 0.28 6 0
leaconflictset 7.52 · 105 53.1 9.64 1.37 33 0
lifo NaN NaN NaN NaN NaN NaN
manufacturing 2.76 · 106 218.48 2.58 0.29 NaN 0
mesh2x2 104 1.41 · 105 85,046.49 32,483.66 NaN 0
mesh3x2 3 8.12 · 106 7.73 · 106 3.82 · 105 NaN 0
moesi NaN NaN NaN NaN NaN NaN
moesi5 NaN NaN NaN NaN NaN NaN
multi-me 2.21 · 106 222.16 3.24 0.38 NaN 0
multipoll 4,398 1,836.2 1,635.16 35.69 NaN 0
newdekker 1.99 · 106 213.01 3.58 0.45 NaN 0
newrtp 3.41 · 106 146.63 2.09 0.26 NaN 0
peterson 2.35 · 106 195.91 3.04 0.34 NaN 0
pncsacover 3,873 4,312.86 1,783.81 486.75 38 0
pncsasemiliv 1.53 · 106 129.39 4.68 0.26 12 0
queuedbusyflag 0 NaN NaN NaN NaN 3
read-write 2.02 · 106 288.16 3.55 0.36 NaN 0
simplejavaexample 1.4 · 106 509.34 5.03 1.02 12 0
transthesis 41 2.1 · 105 1.77 · 105 8,357.4 NaN 0

Table C.23.: Benchmark data for BFC 2.0 in Sect. 7.2.4
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C. Benchmark Data

Model Iter. Max. ms Med. ms σ ms Med. T E
basic-me 2.99 · 106 764.49 2.37 1.1 NaN 1
basicextransfer 2.18 · 106 466.04 3.17 1.23 NaN 0
bingham-h250 15 5.35 · 105 4.94 · 105 14,144.29 NaN 0
consprod 1.4 · 105 433.67 49.61 5.71 NaN 285
consprod2 1.78 · 105 560.22 38.71 5.38 NaN 335
csm 1.08 · 106 4,211.59 6.42 4.22 NaN 1
csm-broad 4.66 · 105 524.95 14.39 2.57 NaN 0
delegatebuffer 0 NaN NaN NaN NaN 3
delegatebuffer.15.1 157 52,650.14 45,633.79 2,200.56 40 0
delegatebuffer.16.1 21 5.07 · 105 3.38 · 105 44,978.54 32 0
efm 3.17 · 106 507.99 2.25 0.5 NaN 1
examplelea 2,247 3,619.31 3,209.76 84.86 NaN 8
ext-rw 0 NaN NaN NaN NaN 3
ext-rw-smallconsts 0 NaN NaN NaN NaN 5
fms 4.63 · 105 3,585.2 14.64 11.29 NaN 119
fms2 163 48,767.7 44,594.4 2,136.18 NaN 1
german 2.53 · 106 991.06 2.81 0.88 NaN 1
glotter 76,044 234.58 73.32 30.94 13 46
hts 286 1.36 · 105 21,165.79 19,761.4 31 0
java 14,915 100.34 47.73 9.48 22 183
java.10.0 347 26,312.76 20,787.34 2,017.85 36 1
java.11.0 50 1.7 · 105 1.45 · 105 11,604.87 35 1
java2 4,184 5,244.54 1,575.98 584.29 NaN 46
java2.10.2 346 29,016.35 20,999.18 2,064.9 32 2
java2.11.2 54 1.54 · 105 1.35 · 105 9,127.46 33 0
kanban 5,988 8,935.39 719.58 1,286.96 18 284
km-nonterm.4.3 1.27 · 106 128.34 5.75 0.58 20 0
km-nonterm.5.4 6.17 · 105 544.73 8.3 1.89 30 9,379
km-nonterm.6.5 6.73 · 105 397.9 10.76 2.37 42 0
lamport 2.51 · 106 196.22 2.84 0.29 NaN 1
leabasicapproach 1.6 · 106 208.92 3.1 1.86 6 561
leaconflictset 2.76 · 105 52.25 16.19 2.16 21 803
lifo NaN NaN NaN NaN NaN NaN
manufacturing 2.29 · 106 247.78 3.12 0.39 NaN 0
mesh2x2 8,530 6,168.31 765 640.22 NaN 298
mesh3x2 2 73,120.58 65,975.85 7,144.73 NaN 2
moesi NaN NaN NaN NaN NaN NaN
moesi5 NaN NaN NaN NaN NaN NaN
multi-me 1.38 · 106 293.95 5.33 0.73 NaN 107
multipoll 482 17,066.78 14,831.42 695.27 NaN 13
newdekker 1.79 · 106 409.24 3.98 1 NaN 1
newrtp 3.63 · 106 677.56 1.96 0.78 NaN 0
peterson 2.23 · 106 553.92 3.19 0.66 NaN 166
pncsacover 2,409 8,124.96 2,843.38 903.88 38 0
pncsasemiliv 1.46 · 106 131.44 4.86 0.49 12 1
queuedbusyflag 172 45,465.84 41,885.04 1,131.48 NaN 0
read-write 4.58 · 105 37.44 7.89 1.24 NaN 1
simplejavaexample 9.61 · 105 42.99 5.31 5.37 12 31
transthesis 129 63,475.64 55,912.98 2,062.1 NaN 0

Table C.24.: Benchmark data for BFC 1.0 in Sect. 7.2.4
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