
Carl von
Ossietzky Universität Oldenburg

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Globally Accurate Locally Inaccurate (GALI):
On the Combination of Time-Triggered Architectures

with Instruction Accurate Simulators
for the Analysis of System Behavior

Von der Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaftender Carl von
Ossietzky Universität Oldenburgzur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Herrn Razi Seyyedi

Razi Seyyedi: Globally Accurate Locally Inaccurate (GALI):
On the Combination of Time-Triggered Architectures
with Instruction Accurate Simulators
for the Analysis of System Behavior

Gutachter:
Prof. Dr.-Ing. Wolfgang Nebel

Weitere Gutachter:
Prof. Dr. Martin Fränzle

Tag der Disputation:
2023-03-02

Abstract

Time-Triggered (TT) architectures are widely used in safety-critical computer sys-
tems. Time-triggered systems execute tasks based on a predetermined static or
dynamic scheduling. Time-triggered system behavior is deterministic, which makes
the verification of real-time systems more convenient. There is a demand to test the
functionality (behavior) of the integration of complex time-triggered MPSoCs. The
functionality is validated together with the system’s static timing/schedule concern-
ing the timing behavior of the environment. Existing solutions support high-level
functional and low-level target platform implementation models that usually lack
observability and debuggability.

In this work, we introduce a novel simulation technique called GALI which stands for
“Globally Accurate, Locally Inaccurate” to speed up the simulation of time-triggered
systems and its necessary ecosystem targeting more observability and debugging
capabilities. The proposed approach consists of a new simulation model based
on an instruction-accurate simulation with a predetermined time-triggered system
configuration. The simulation technique benefits from the discrete timed execution
of a time-triggered architecture and applies it to the instruction accurate simulation
and scheduling structure to produce a fast and accurate result. The supporting
tooling ecosystem supports the generation of the platform and applications assigned
to different processors and partitions for the provided schedule from the user. It
generates the board-support package, binary files for different processor architecture,
channels for communication, and the corresponding infrastructure required by the
time-triggered architecture. The evaluation of this work on a safety-critical and
time-sensitive flight control system demonstrates that our simulation technique
achieves precisely the same control behavior as the cycle-accurate platform and only
has negligible overhead compared to an untimed instruction accurate simulation.

iii

Zusammenfassung

Time-Triggered (TT)-Architekturen sind in sicherheitskritischen Computersystemen
weit verbreitet. Zeitgesteuerte Systeme führen Aufgaben basierend auf einer vorbe-
stimmten statischen oder dynamischen Planung aus. Das zeitgesteuerte Systemver-
halten ist deterministisch, was die Überprüfung von Echtzeitsystemen vereinfacht.
Es besteht der Bedarf, die Funktionalität (Verhalten) der Integration komplexer
zeitgetriggerter MPSoCs zu testen. Die Funktionalität wird zusammen mit dem
statischen Timing/Zeitplan des Systems in Bezug auf das Timing-Verhalten der Um-
gebung validiert. Vorhandene Lösungen unterstützen Funktionsmodelle auf hoher
Ebene und Implementierungsmodelle auf niedriger Ebene der Zielplattform, denen
es normalerweise an Beobachtbarkeit und Debugging-Fähigkeit mangelt.

In dieser Arbeit stellen wir eine neuartige Simulationstechnik namens GALI vor,
die für “Globally Accurate, Locally Inaccurate” steht, um die Simulation zeitge-
steuerter Systeme und deren notwendigem Ok̈osystem zu beschleunigen sowie die
Beobachtbarkeit und die Debugging-Fähigkeiten zu verbessern. Der vorgeschlagene
Ansatz besteht aus einem neuen Simulationsmodell, das auf einer befehlsgenauen
Simulation mit einer vorgegebenen zeitgesteuerten Systemkonfiguration basiert. Die
Simulationstechnik profitiert von der diskreten zeitgesteuerten Ausführung einer
zeitgesteuerten Architektur und wendet sie auf die befehlsgenaue Simulations- und
Planungsstruktur an, um ein schnelles und genaues Simulationsergebnis zu erzie-
len. Das begleitende Tooling-Ökosystem unterstützt die Generierung der Plattform
und der Anwendungen, die den verschiedenen Prozessoren und Partitionen unter
Berücksichtigung des vom Benutzer vorgegebenen Zeitplans zugewiesen werden. Es
generiert das Board-Support-Package, Binärdateien für verschiedene Prozessorarchi-
tekturen, Kommunikationskanäle und die entsprechende Infrastruktur, die von der
zeitgesteuerten Architektur benötigt wird. Die Evaluation dieser Arbeit an einem
sicherheitskritischen und zeitkritischen Flugsteuerungssystem zeigt, dass unsere
Simulationstechnik genau das gleiche Steuerungsverhalten wie die zyklusgenaue
Plattform erreicht und nur einen vernachlässigbaren Overhead im Vergleich zu einer
nicht zeitgenauen, aber befehlsgenauen Simulation hat.

v

Publications

Some ideas and figures have appeared previously in the following publications:

[1] Razi Seyyedi, Sören Schreiner, Maher Fakih, Kim Grüttner, and Wolfgang
Nebel. “Functional Test Environment for Time-Triggered Control Systems in
Complex MPSoCs”. In: Microprocessors and Microsystems (2020), p. 103072.

[2] Maher Fakih, Kim Grüttner, Sören Schreiner, Razi Seyyedi, Mikel Azkarate-
Askasua, Peio Onaindia, Tomaso Poggi, Nera González Romero, Elena Que-
sada Gonzalez, Timmy Sundström, et al. “Experimental evaluation of SAFE-
POWER architecture for safe and power-efficient mixed-criticality systems”.
In: Journal of Low Power Electronics and Applications 9.1 (2019), p. 12.

[3] Razi Seyyedi, Sören Schreiner, Maher Fakih, Kim Grüttner, and Wolfgang
Nebel. “Functional Test Environment for Time-Triggered Control Systems in
Complex MPSoCs using GALI”. In: 2018 21st Euromicro Conference on Digital
System Design (DSD). IEEE. 2018, pp. 711–718.

[4] Sören Schreiner, Razi Seyyedi, Maher Fakih, Kim Grüttner, and Wolfgang
Nebel. “Towards power management verification of time-triggered systems
using virtual platforms”. In: Proceedings of the 18th International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation. 2018,
pp. 81–88.

[5] Maher Fakih, Alina Lenz, Mikel Azkarate-Askasua, Javier Coronel, Alfons
Crespo, Simon Davidmann, Juan Carlos Diaz Garcia, Nera González Romero,
Kim Grüttner, Sören Schreiner, et al. “SAFEPOWER project: Architecture for
safe and power-efficient mixed-criticality systems”. In: Microprocessors and
Microsystems 52 (2017), pp. 89–105.

[6] Razi Seyyedi, Mt Mohammadat, Maher Fakih, Kim Grüttner, Johnny Oberg,
and Duncan Graham. “Towards virtual prototyping of synchronous real-time
systems on NoC-based MPSoCs”. In: 2017 12th IEEE International Symposium
on Industrial Embedded Systems (SIES). IEEE. 2017, pp. 1–4.

vii

Contents

Contents ix

1 Introduction 1

1.1 Context . 3

1.2 Motivation & Problem Definition . 4

1.3 Scope & Research Questions . 5

1.4 Outline . 6

I Foundations 7

2 System-Level Design 9

2.1 Development Process . 9

2.2 Virtual Platform-Based Design . 12

2.3 Model of Computation . 13

2.4 Correct-by-Construction Design . 15

2.5 System Simulation . 16

2.5.1 Instruction Accurate Simulation 17

2.5.2 Cycle Accurate Simulation . 17

3 System Architecture 19

3.1 Time-Triggered Architecture . 19

3.2 Time-Triggered Computation . 20

3.3 Time-Triggered Communication . 21

4 System Verification and Validation 23

4.1 Formal Method . 23

4.2 Simulation-Based Approach . 24

4.3 Hardware-in-the-Loop . 24

5 Thesis Contribution 27

5.1 Contributions . 27

5.2 Assumptions & Constraints . 28

ix

6 Related Work 31

6.1 Generating Configuration . 31

6.2 Simulation of time-triggered Systems 32

II Design Flow & Modeling Approach 37

7 System Model 39

7.1 Modeling the Application . 40

7.2 Modeling the Platform . 42

7.3 Modeling the Mapping . 44

8 GALI Simulation 47

8.1 IA Simulation Technology . 48

8.2 GALI Technique . 49

8.3 GALI Configuration Environment . 53

8.3.1 System Model Creation . 53

8.3.2 System Model Generation . 54

8.3.3 Output Flavors . 55

8.3.4 Verification . 56

9 Target Implementation 57

9.1 Instantiations & Definitions . 57

9.2 Verification . 61

III Evaluation and Results 65

10 Overview 67

10.1 Goals of the Evaluation . 67

10.2 Evaluation Setup . 68

10.2.1 AeroSim Flight Simulator . 68

10.2.2 Multirotor . 68

10.2.3 Adapter Board . 75

10.2.4 Virtual Platform . 77

11 Experiments 81

11.1 Hardware-in-the-Loop . 81

11.2 Virtual Platform-in-the-Loop . 83

11.3 Discussion . 86

11.3.1 GALI Scheduler . 87

x

11.3.2 Simulation Time . 87
11.3.3 Functional Accuracy . 90
11.3.4 Summary . 92

12 Conclusion & Outlook 95
12.1 Conclusion . 95
12.2 Future Work . 95

IV Appendix 99

Bibliography 101

List of Figures 107

List of Tables 109

List of Listings 111

Listings 111

Acronyms 113

xi

Introduction 1
Embedded systems more and more surround us. These systems gain control over so
many aspects of our life that the number of embedded systems we have to regard
as safety-critical is ever rising. These devices are available, among others, in cars,
medical devices, and airplanes, from infrastructure to medicine and transportation.

Such systems usually have a real-time response because of their direct interaction
with the environment. The essential characteristic of the real-time system is deter-
ministic processing, which means that we must guarantee that a particular activity
concludes within the time boundary or at precise intervals. If the implementation
does not match the specification, this application can render a security threat.

A widely used architecture in safety-critical and mixed-criticality computer systems
is Time-Triggered Architecture (TTA). These systems execute tasks based on prede-
termined static or dynamic schedules. A static schedule does not change during the
operation. On the other hand, a dynamic schedule relies on dynamic parameters
that may vary based on scheduling decisions in each iteration. Dynamic scheduling
is flexible and offers better resource utilization, but it is more complex with higher
runtime.

Time-triggered system’s behavior is deterministic. Predictable systems are a good fit
for real-time and safety-critical systems. It makes the system applicable for industrial
use-cases and the verification convenient. Time-triggered architecture is a suite
of distributed algorithms for functions such as clock synchronization and group
membership and their implementation in the form of TTA controllers, buses, and
hubs. It is part of a comprehensive approach to safety-critical real-time system
design that builds on time-triggered operation [1–4].

In the last few years, there has been an undertaking in the automotive industry to
realize by-wire applications (brake-by-wire or steer-by-wire) without mechanical
or hydraulic backup systems in vehicles. Therefore the electronic systems must be
highly reliable and cost-effective to be feasible for mass production. Time-triggered
architectures satisfy these requirements.

With the improvement of chip design manufacturing technology, the transistor
density on dies increased drastically (e.g., making them smaller and stacking several

1

Figure 1.1.: Transistor count trends Continue to follow Moore’s law (from [5]).

atop each other). The consequence is the more than ever packed transistors per chip
area. Moore’s Law predicted that the transistor count on a fixed chip area would
double every two years due to shrinking transistor dimensions. Figure 1.1 shows the
transistor count, which is still increasing exponentially.

To address the constantly growing demands on the available computing capacity
and with advances in technology, platforms are gradually shifting from a distributed
architecture with several different hardware components towards a centralized
design with more minor but more powerful processing components. The fabrication
of chips with multiple complex hardware components on a so-called Multi-Processor
Systems-on-a-Chip (MPSoCs) brings advantages in terms of cost, space, and weight.
Such central computing units typically consist of multiple microprocessors (e.g.,
ARM), reconfigurable logic (FPGA), and accelerators (GPUs) with complex inter-
connect hierarchies on one board, for instance, Xilinx UltraScale+ ZCU102. It also
brings challenges to the integration of embedded software applications. The most
crucial challenge is that another application must not influence the behavior of one
application in terms of computation and communication resources. Currently, the
standard solution is the time-triggered scheduling, in a simple case of time-division
access, to periodically assign resources to tasks of the system for efficient resource
management.

2 Chapter 1 Introduction

As chips become more populated with multiple heterogeneous processing elements,
a scalable and flexible simulation infrastructure becomes more demanding. It
prevents mistakes in the taped-out design and accelerates the time-to-market process.
Designing and programming an MPSoC is a complex activity and debugging such
a system is even more complicated because of its concurrent many-core nature.
Therefore, a simulation and debugging infrastructure is necessary and makes this
process convenient.

Providing a real-time response for the critical applications imposes the need to
carefully simulate the system and its environment during the design time. A test
environment to test the functionality and timing of complex multicore systems
should enable the designer to test the software development and the functionality of
the target platform before deployment in an acceptable amount of time.

1.1 Context

At the early design time, the correct functionality of the final system must be exam-
ined. This investigation includes testing the functional behavior implementation
under the predefined time-triggered schedule together with an environment model.
Functional testing becomes even more critical when the time-triggered architecture
exhibits adaptive behavior to react to changing environmental conditions or scenar-
ios [6]. Configuration and implementation of such a time-triggered system without
any tool support is complex and could be another source of error. Implementing
a time-triggered schedule that works correctly among different distributed compo-
nents is very error-prone. For example, if a task performs memory access before the
required valid data are received, this would lead to wrong computations. In addition,
an incorrect configuration of messages’ injection time could cause a significant delay
in the safety-critical control cycle due to message collision on the communication
medium.

Simulation of time-triggered systems differs from other kinds of system simulations.
Since the notion of time plays an essential role in the functionality of the system,
simply running the application on an Instruction-Set Simulator (ISS) is not enough.
Time-triggered system execution follows a specific chain of activation and slack time
that plays no role in a standard ISS. A more accurate simulation technique should
guarantee that the simulation matches the real-world execution.

A fine-granular simulation at the clock pace can solve this problem, but it costs a
considerable time overhead that a designer would like to avoid. Using the target

1.1 Context 3

implementation for testing (i.e., Hardware-in-the-Loop (HIL) simulation) provides
the most accurate result. Although it gets accurate results and timing, it faces the
weak observability concern that a host-based simulation was trying to solve.

In short, testing a time-dependent Design under Test (DUT) is a critical and chal-
lenging task, and the Electronic Design Automation (EDA) industry should provide
more easy-to-use and reliable tools to facilitate the test and verification of such
systems. This work facilitates the simulation-based verification approach for the
time-triggered architecture to check if the system implementation fulfills its specifi-
cations, including real-time constraints.

1.2 Motivation & Problem Definition

Design and verification of time-triggered systems are becoming more difficult as the
complexity of the systems grows, especially with the advent of multicore architecture
and Network-on-Chip (NoC) communication. As these systems take control of safety-
critical tasks, simulating and verifying them before deploying them on the hardware
will lower the design’s risk of having a bug or fatal problem. Relying on the
mainstream approaches like Correct-by-Construction is not sufficient. There should
also be a functional verification after the deployment of the system. It is because
the formal analysis of the system is based on some ideal (primarily mathematical)
semantics of a programming language. Nevertheless, the target platform may be
compromised by various failures occurring at runtime (e.g., insufficient resources,
soft error). A significant verification effort should be spent to guarantee the absence
of such runtime errors.

Time-triggered architectures are commonly used in safety-critical systems due to
their ease of verification and industrial applicability. With advancements in hardware
architectures, the integration of such systems on a complex programmable MPSoC
architecture is challenging, especially when there is a need to validate the interplay
of functional behavior and timeliness properties. The available approaches to test
these systems either use high-level functional models with annotated time or a
hardware prototype in a HIL configuration. The former method does not represent
the final implementation and undergoes reformulation of algorithms, data structure
adaptation, and memory management alteration. While the latter approach suffers
from costly changes and complex testing due to a lack of observability and debugging
features.

4 Chapter 1 Introduction

Both Instruction Accurate (IA) and Cycle Accurate (CA) simulators can be used for
functional verification. However, the preferred choice is a simulator that is as fast as
Instruction Accurate and as time accurate as Cycle Accurate to correctly capture the
component’s interactions. The IA supports only a limited notion of time, namely the
average execution frequency measured in Million Instructions Per Second (MIPS).

1.3 Scope & Research Questions

This thesis proposes a generic intermediate testing environment intending to achieve
better observability and debugging capabilities to test time-triggered implementa-
tions and facilitate the development of complex time-triggered systems by automat-
ing the code generation. The proposed approach is called Globally Accurate Locally
Inaccurate (GALI) a simulation model that combines Instruction Accurate simulation
with predetermined time-triggered system configuration. It is an approach quicker
than Cycle Accurate but more accurate than IA.

Our first and foremost goal in the project is the functional testing of the time-
triggered scheduling for timing behavior. To do that, we test the fully binary
compatible version of the partitioned system on an instruction accurate Virtual
Platform (VP). The platform that we are focusing on in this work consists of tiles
that are processor(s) executing time-triggered schedules that are connected via a
time-triggered interconnect.

We claim a fast and accurate simulation through instruction accurate simulation
by function timing back-annotation to avoid unwanted time drift. We formulate
the following scientific questions regarding a functional test environment for time-
triggered architectures in complex MPSoCs:

RQ1: How can the simulation of time-triggered systems on an instruction-accurate
simulator be fast and sufficiently accurate to replace Hardware-in-the-Loop or
Cycle Accurate simulation-based verification?

RQ2: What are the constraints and assumptions under which the proposed GALI
technique works?

RQ3: Which properties shall be preserved in the GALI model abstraction concerning
functional behavior, time-triggered schedule verification, and system profiling?

RQ4: Which verification step of a time-triggered system can be supported by the
proposed GALI approach?

1.3 Scope & Research Questions 5

RQ5: Despite the timing inaccuracy (instruction-level) in the computation model,
which profiling information can be obtained for system analysis?

RQ6: Which properties of the system have to be represented in the model so that
the configuration flow can automatically generate the GALI model?

To summarize, this work addresses the central scientific question of how to provide a
simulation model and the supportive design flow for the simulation of time-triggered
systems. In particular, we use the natural features of time-triggered systems to tune
up their simulation speed and reduce simulation time. Section 5 will revisit the
scientific questions and formulate the contributions of the thesis.

1.4 Outline

The thesis is organized into three parts. The first part (Section 2 to Section 4)
provides an overview of the foundations for this thesis, including background
knowledge and prerequisites to understand better the flow and technique explained
in part two. Section 5 presents our contribution based on the scientific context
and the research questions mentioned before and compares our contribution to the
related scientific work (Section 6).

The second part starts with Section 7 containing our GALI simulation technique.
After specifying the modeling of the application, Section 8 describes the platform,
mapping, and the implementation of them on the target platform. The tooling which
supports the GALI simulation is also explained in Section 9.

The third part of this thesis contains the evaluation of the contributions and discusses
the results. The evaluation of the integration flow is introduced in Section 10, and
further explained in Section 11. Two different experiments, one hardware imple-
mentation in a Hardware-in-the-Loop (HIL) setup and another virtual platform in a
Virtual Platform-in-the-Loop (VPIL) are compared against each other. We evaluate
the accuracy of the GALI simulation technique by comparing the flight trajectory of
a multirotor to demonstrate the difference between each flight behavior.

Finally, we assess the use of GALI model and conclude the thesis with a discussion
of possible future activities in Section 12.

6 Chapter 1 Introduction

Part I

Foundations

System-Level Design 2
This chapter provides the foundations concerning the design, test, and simulation
of time-triggered embedded systems. We first describe the V model used for the
development process and how we have extended our tool flow based on the V model.
It describes steps to be taken to design, implement, and test the system.

The virtual platform-based design methodology is explained next. This approach is
used to test the generated binary code of the time-triggered system before deploying
it on the hardware. Next, we take a closer look at the Synchronous Data Flow (SDF)
Model of Computation (MoC) that helps us to execute the Time-Triggered (TT)
schedule for the feasibility check-in first steps of our design flow. We will then
present Correct-by-Construction design, which is the fundamental assumption in the
GALI tool flow to ensure that the generated platform and the application are aligned
with the TT specification.

At the end of this chapter, an overview of two different simulation technologies will
be presented that can support the flow of design, verification, and validation.

2.1 Development Process

The verification and validation of requirements are a demanding part of a system
design. The importance of testing has caused the traditional waterfall development
cycle to be modified to create a new model called V model. In the traditional waterfall,
the project cycle is usually displayed as a linear sequence of steps executed in a
sequential manner separated by significant reviews. However, in the V model, every
early development activity is linked to its corresponding testing activity. Several
design phases begin in parallel, including requirements and proof of technical
feasibility (prototyping).

As illustrated in Figure 2.1, the V model builds upon the traditional waterfall model
by emphasizing the concept of verification and validation. Verification means static
analysis (review) of the system development phase to check if the specific require-
ments are met. Validation means dynamic analysis (functional, non-functional)

9

System
Requirements
Engineering

Architecture
Engineering

Design

Coding (SW)
Fabrication (HW)

System
Testing

System
Integration

Testing

Subsystem
Integration

Testing

Unit Testing

User
Requirements
Engineering

Acceptance
Testing

Figure 2.1.: V Model for Testing

of the system development by evaluating the system to determine whether the
implementation meets the expectations and requirements.

To do verification and validation, the V model takes the bottom half of the waterfall
model and bends it upward to make a V shape so that the activities on the right
side verify or validate the result on the left side. More specifically, the development
phase is planned parallel to the testing stage.

V model, like all other approaches, has both advantages and disadvantages. Never-
theless, the V model is still a convenient way of thinking about development and
simplifying the abstraction. As it is shown in Figure 2.1, the model starts with
the Requirement Analysis (also known as Requirement Gathering). It involves a
detailed gathering of the requirements and expectations. Then Architectural Design
should be performed. The requirements are broken down further into modules
with different functionalities. In this stage, the data transfer and communication
between the internal and external modules are being examined. Next is system
Design, which involves designing the complete system, followed by software and
hardware development for the product under design.

Afterward, on the right wing of the V model, Unit Testing is executed to eliminate
bugs at the code or unit level. After completion of unit testing, the Integration Testing
is performed. Submodules and modules are tested as a combined entity. Integration
testing is associated with the Architecture Design stage. System Testing tests the
complete application, including its functionality, dependency, and communication.

10 Chapter 2 System-Level Design

Functional
Specification

Software/Hardware
Specification

Safety Relevant
System
Implementation

Functional
Integration Test

Time-Triggered
Xilinx Zynq®

Safety Relevant
System
Specification

Time-Triggered

Specification

Time-Triggered

Functional

Decomposition

Time-Triggered

HW/SW

Platform

Figure 2.2.: GALI V model

It also tests the functional and non-functional requirements of the developed ap-
plication. Ultimately, the test is performed in a user environment that resembles
the production environment. This Acceptance Testing is the final stage in the cycle
and verifies that the delivered system meets all the user requirements and, if so, the
design is ready to ship.

All the steps mentioned above have a specific output and a review process. Further-
more, the development phases on the left-hand side are performed parallel to their
corresponding test phase on the right-hand side, and therefore, defects can be found
at early stages.

We build the proposed development cycle in our design flow based on the V model
(see Figure 2.2). All life cycle steps have to be supported with tools to handle the
complexity of the systems, advance the development process, and improve reliability.
The tooling topic is discussed in detail in Section 9.

• Safety Relevant Specification↔ Safety Relevant Testing

As it is shown in Figure 2.2, it starts with the requirement specification of
the time-triggered system. Specification of the requirement is the most error-
prone phase if done manually by the user. The time-triggered specification
(TT Spec) is a time-triggered schedule that includes start time, Worst-Case
Execution Time (WCET), the system period, and the period of each task. The
hyper-period of the system is constructed from the time-triggered specification.
We check if the implemented design meets the specification of safety-relevant
testing. Mistakes in this phase may lead to most faults and critical failures.

2.1 Development Process 11

Most design errors are not low-level implementation errors but originate from
the specification phase.

• Functional Specification↔ Functional Integration Test

The next step is architecture engineering. In the functional decomposition
phase, the design is mapped to the actual hardware, and each task and its
timing behavior is assigned to the specific processing unit. In this phase, inter-
processor dependencies that affect our design and communication infrastruc-
ture should be formed between processing units according to the time-triggered
functional decomposition. For the testing phase of the validation progress,
we can run an SDF representation (a data flow model represented as a graph
rather than a sequence of statements) of our system to check if the scheduling
and mapping concerning the dependencies meet all the requirements or not.

• SW/HW Specification↔ Time-Triggered Xilinx Zynq

In this stage, the time-triggered implementation will be generated from the
Software (SW) implementation mapped to the Hardware (HW) platform
concerning the time-triggered specification. The result would be a periodic
time-triggered system realized on the target board (a Zynq platform). Like
all other stages, the implemented platform will be tested entirely through a
Hardware-in-the-Loop setup that will be discussed thoroughly in Section 10.2.

2.2 Virtual Platform-Based Design

The process is delayed in the traditional board-based design methodology because of
its sequential hardware and software development. The software developers can start
the tasks in this methodology once the hardware becomes available. Considering
several months of development for both HW and SW teams, the prototype is ready
more than a year after specification.

Some bugs that were not seen during the hardware Testing will become visible
during software development. There will be several iterations between the software
and hardware teams to fix them. It can be possible that these bugs will be originated
from different views and understanding of the HW and SW from the specification. It
can further delay production.

Virtual platform-based design is one way to avoid these delays. In this methodology,
first, a model of the hardware platform for software development is built [7]. This

12 Chapter 2 System-Level Design

model is not used for the prototyping board. However, it gives the possibility to the
SW team to start developing software for the target platform. This model is called
Virtual Platform (VP).

Because abstractions used in developing a virtual platform take less effort and time
to develop than a prototyping board. The internal micro-architecture implementa-
tion of components and processing elements is not necessary for the VP. What is
needed, however, is that the VP must provide a programmable model of all software
processors and functional models of all custom hardware components [7]. These
models are usually at a level of abstraction higher than a cycle-accurate model but
with visible registers and bus transactions. It helps debug and run-time analysis of
the developed embedded software.

In VPs, processors are usually modeled in C/C++ and peripherals as remote function
calls. Therefore, it provides the simulation speed essential for rapid embedded
software development.

Another advantage of the VP is that it can serve as a common golden model for both
HW and SW modules. And since the development can be performed in parallel, it
shortens the overall prototyping time. However, a disadvantage of the VP is that any
changes to the platform must be manually applied to the VP. A model-based design
methodology like UML and SDF can solve this problem.

2.3 Model of Computation

A MoC is a method of representing system behavior in an abstract, conceptual
form [7]. MoCs offer the advantage of being understandable by both humans and
automated tools. They define the requirements and constraints of computations to
be performed. MoCs are typically expressed in a formal manner using mathematical
notation.

As it was mentioned in Section 2.2, Unified Modeling Language (UML) has become
the standard modeling language for embedded system software. UML facilitates
the modeling of system structure and provides constructs for representing control
flow. However, data flow modeling is not well-supported in UML, especially for
applications like Digital Signal Processing (DSP) and video systems, where data
flow is a critical aspect of the system behavior. In practice, data flow modeling
is often used in conjunction with UML, where data flow diagrams can be used to
complement UML models to provide a more comprehensive view of the system

2.3 Model of Computation 13

Figure 2.3.: Synchronous Data Flow (SDF) Example (from [7])

behavior. To model our system more comprehensively, we employ both state-based
and data flow behavioral descriptions in this work.

SDF is an ideal modeling paradigm for the time-triggered domain. In this domain,
all computation and data communication can be scheduled statically, ensuring
that the implementation takes a finite time to complete all tasks and uses limited
memory. This feature makes SDF suitable for applications that require periodic
execution without the need for additional resources during runtime. This type of
execution is particularly well-suited for applications such as digital signal processing,
communication systems, and time-triggered systems. Additionally, SDF provides the
advantage of determinism for time-triggered modeling. If the model is deterministic,
the same inputs will consistently produce the same outputs.

SDF’s determinism and static scheduling make it an attractive option for implement-
ing safety-critical systems. In such systems, the correctness of the system’s behavior
is critical, and any deviations from expected behavior can lead to catastrophic conse-
quences. By using SDF, the system designer can ensure that the system’s behavior is
fully deterministic, and the execution can be scheduled and analyzed statically. This
level of predictability and determinism is crucial for safety-critical systems, and SDF
provides an excellent framework for implementing such systems.

Overall, SDF’s data-driven communication, static scheduling, and determinism make
it a powerful modeling paradigm for implementing real-time embedded systems and
safety-critical applications. SDF’s suitability for time-triggered modeling makes it
an ideal choice for applications that require periodic execution and deterministic
behavior.

Figure 2.3 shows a simple SDF graph comprising four actors. In each iteration, actor
a produces two tokens, while actor b consumes three tokens: one from actor a and
two from actor d. Subsequently, actor b produces two tokens for actor c. Actor c
consumes one of actor b’s tokens and sends one token to actor d. Finally, actor d
consumes and produces two tokens on each of its input and output arcs. The two

14 Chapter 2 System-Level Design

tokens on the arc between actors c and d are initialization tokens intended to resolve
any deadlocks that may occur in the raw graph, which is the case in this example.
Deadlocks can occur when there is a circular dependency between two or more
actors, and each actor possesses an exclusive token that the next actor in the chain
requires to proceed.

Timed Synchronous Data Flow is an extension of SDF that introduces a notion of
time to the SDF model. Timed Synchronous Dataflow (TSDF) includes a timed data
type with both a timestep and a carrier frequency attribute. In our tool flow, we
utilize TSDF to simulate and test the time-triggered schedule for feasibility.

2.4 Correct-by-Construction Design

Correct-by-Construction is the enforcement of specification used in the early stage
of the design through constraints. The philosophy behind it is to trade optimality
for predictability. An advantage of Correct-by-Construction design is that it provides
all the required functionality and guarantees the correct behavior, generating a
predictable system. Furthermore, high-level optimization becomes more compelling
in a predictable system due to the decreased error boundary. Correct-by-Construc-
tion is at the bottom a sequence of small, guaranteed-correct design transformations
contrary to the more widely common Construction-by-Correction approach that
encourages the integration of various phases of the design process into broad iterative
loops [8]. Correct-by-Construction design techniques avoid the micro-engineering
of every piece of the design that can become expensive in the design. Therefore, it
is evident that Correct-by-Construction design techniques are worth applying. In
Correct-by-Construction, the predictability comes with the necessary infrastructure
and excessive resource consumption, which is a disadvantage. This means that
high-performance design cannot benefit a lot from Correct-by-Construction.

To apply the Correct-by-Construction concept, the construction should begin with
decomposing the system-level requirement into granular functions. Then, each func-
tion should be allocated to a component. This process builds a modular component
architecture [9] that is easy to test and maintain. Correct-by-Construction does not
mean that testing is not performed. However, testing is performed to validate the
Correct-by-Construction process rather than finding bugs. Correct-by-Construction is
at the heart of our approach, which guarantees that the binary generated by the tool
exhibits the correct behavior. Any further changes to the specification will produce
the same effect on the final product.

2.4 Correct-by-Construction Design 15

Figure 2.4.: Simulation Technologies (from [10])

2.5 System Simulation

Simulation is the most commonly used method to verify system models [7]. The
design to be tested is described in a modeling language and is referred to as Design
under Test (DUT). Stimuli which are a set of values that are input to the DUT, trigger
a chain of events and computations in the DUT model. It is the job of the simulator
to manage all these events and propagate them through the DUT. Propagation of
the events through the DUT changes the values of various variables in the model.
Whenever the variables’ values are updated, a new event is generated to inform the
simulator of this update. A critical input to the system is the clock signal. Based
on the priorities of the simulation, different stimuli might have greater importance.
Once the output of the DUT is updated at a given simulation time, the result must
be checked if it is equivalent to the expected outcome.

Figure 2.4 shows different simulation technologies concerning their accuracy and
speed in performing the simulation and obtained results. Based on the simulation’s
focus, one can choose the proper simulation technology. If the focus is on the
accuracy, then the simulation should be as low-level as Register-Transfer Level (RTL).
However, the simulation speed is decreased drastically. As the abstraction level goes
upward toward the system level, the simulation speed increases exponentially. Two
common major simulation techniques are instruction-accurate (IA or ISS) and cycle-
accurate (CA or CAS). IA runs the program in batch mode without the knowledge of

16 Chapter 2 System-Level Design

the clock cycles. CA, however, takes care of all the changes in the DUT state during
the simulation.

2.5.1 Instruction Accurate Simulation

An instruction-accurate simulator is a simulation model which mimics the behavior
of a processing system by reading instructions and maintaining internal states which
represent the processor’s registers [11].

This simulation technique is used in different situations, such as

1. Simulating the machine code of another hardware device or entire computer
on a host machine.

2. Monitoring and executing the binary instructions on the same hardware for
test and debugging purposes.

3. Improving the speed performance of simulations without using a cycle-accurate
simulator.

The amount of detail and debugging capability that an Instruction Accurate simulator
provides is lower than a Cycle Accurate simulator. And if the timing is essential, this
simulation technique is not helpful due to a lack of clock cycle accuracy.

2.5.2 Cycle Accurate Simulation

Cycle-accurate simulators are a widely used method for computer-based simulations.
They simulate systems in a clock-by-clock manner, accurately modeling the system’s
internal behavior. Specifically, a CA simulator models a system’s micro-architecture
by simulating it in discrete time-ticks that depend on the system’s clock speed. This
approach is commonly used in designing new microprocessors to accurately simulate,
test, and debug the entire system, including its operating system, compilers, and
utilities, before physically manufacturing the chip.

However, cycle-accurate simulators are typically slow, sometimes orders of mag-
nitude slower than other simulators, but they provide accuracy at the clock cycle
level. To mitigate the slow speed of this simulation method, some researchers use
techniques like "reduced execution" [12] or simulating only a specific part of the
system. However, using these speed-up techniques may result in errors and poor
accuracy.

2.5 System Simulation 17

Despite their usefulness, cycle-accurate simulators have several disadvantages and
limitations that restrict their widespread use in various applications. One major
drawback is that they are usually slower than other simulators, which can limit their
practical utility, especially when simulating large and complex systems. Another
limitation is that cycle-accurate simulators are often closed-source, making it chal-
lenging to validate their accuracy and correctness against real hardware. Finally,
the more general and configurable the simulators are, the less accurate and reliable
their results tend to be. These limitations make cycle-accurate simulators less than
ideal for many real-world applications.

In summary, while cycle-accurate simulators are useful for accurately modeling
the behavior of a system at the clock cycle level, they are often slower than other
simulators which limits their practical utility, particularly when simulating large
and complex systems. Additionally, their limitations, including being closed-source
and less accurate and reliable as they become more configurable, can restrict their
widespread use in various applications.

18 Chapter 2 System-Level Design

System Architecture 3
In this chapter, the time-triggered architecture is described. However, our system
architecture (described in Section 7) is a subset of time-triggered architecture, and
for simplicity, many detailed communication protocols (e.g., fault tolerance) are not
considered. We only consider the time-triggered system, which means every action
in the system is performed based on a predefined static schedule.

3.1 Time-Triggered Architecture

Safety-critical systems that are based on time-triggered architecture (TTA) are more
convenient to design and verify than other available architectures [14]. The critical
characteristic of time-triggered systems is that all significant events must adhere
to a predetermined schedule, including tasks and messages. The time-triggered
paradigm of a real-time system is based on the unique view of the world: time-
triggered systems are not driven by the events that happen in their environment, but
they decide when to look at different events based on a global schedule [15].

Time-triggered architecture is a set of state machines triggered by the progress of
the time. A time slot and specific resources are available in each state, and it is
guaranteed that while the system is in one state, no collision between different states
can happen. In time-triggered architecture, the time is partitioned between different
tasks, and the designer dedicates a timing slot to each task. A task must start at a
specific time and should not take more than a defined length (i.e., WCET). Each
task in the task set can either be a computation (Section 3.2) or a communication
(Section 3.3) task which is repeated identically in each cycle.

This model of computation (MoC) and communication guarantees the timeliness
of the system. This feature makes time-triggered architecture uniquely suited for
the complex safety-critical system by bringing the separation between different
computation and communication tasks. Time-triggered architecture consists of
several nodes connected. A node is a combination of a host and its time-triggered
architecture controller. This modularity implements the partitioning feature and
guarantees that a fault in one node of time-triggered architecture, or one application

19

Figure 3.1.: Example of cyclic execution of a control loop in time-triggered architecture
(from [13])

supported by time-triggered architecture, does not propagate to other nodes and
applications.

The example taken from [13] gives more insights into the time-triggered architecture.
Figure 3.1 demonstrates a control loop realized by three components of A) sensor
data acquisition, C) control algorithm processing, and E) actuation. It shows the
periodic execution and temporal alignment of different tasks in the time-triggered
architecture. The perimeter in this cyclic model of time representation represents
the duration of tasks’ periods.

Although the time-triggered strategy provides many benefits, it may also lead to
resource waste when fully implementing the time-triggered architecture. Also, while
time-triggered schedules excel at determinism and jitter control, they are hard to
design and lack flexibility.

3.2 Time-Triggered Computation

The time-triggered architecture provides a computing infrastructure for safety-critical
real-time control systems. It focuses on time-triggered operations and provides ser-
vices to guarantee applications’ timeliness. The time-triggered model of computation

20 Chapter 3 System Architecture

(MoC) is based on dividing an extensive distributed system into almost autonomous
subsystems with an interface between these subsystems [16].

The four building blocks of a time-triggered MoC is as follows [16]:

1. An interface acting as a boundary between subsystems. It consists of a memory
element that is shared between two subsystems. An interface can be viewed as
a dual-ported memory.

2. A communication system which is a medium that connects interfaces. It can
be imagined as a train between stations with a timetable about the departure
time and expected arrival time.

3. A processing element that reads and writes to the interface. It encapsulates one
or more processors, including a memory, system, and application software.

4. A transducer connects a real-time entity in the environment to an interface and
vice versa. It models the input/output system of a real-time system.

These elements have access to a globally synchronized time base with sufficient
precision.

3.3 Time-Triggered Communication

A time-triggered system not only schedules activity within nodes it also handles the
reliable transmission of messages between nodes. The predefined static schedule
dictates the starting points of all communication tasks.

Time-triggered architectures rely on a communication network to realize a reliable
distribution. None of the commonly used communication systems in vehicles meet
the safety-related systems requirements. They all do not guarantee determinism.
The Time-Triggered Protocol (TTP) is designed for safety-related applications and
fulfills the following criteria [17]:

Membership service; every node knows about the actual state of other distributed
nodes.

• Fault-tolerant clock synchronization service (global time-base).

• Mode change support.

• Distributed redundancy management.

3.3 Time-Triggered Communication 21

Time-triggered architecture does not use dedicated wires to communicate clock
reading. It exploits the fact that communication is time-triggered according to a
global schedule. When one node receives a message from another node, it records
the local clock. It subtracts a fixed network delay, which indicates the difference
between this adjusted clock and the global schedule, indicating the skew between
both nodes’ clocks. The time-triggered nature of the protocol means that each node
expects a message from other nodes at a specific time and, therefore, can detect a
dropped message.

Time-triggered architectures can have a different implementation. In the Time-
Division Multiple Access (TDMA) method, it operates as a broadcast bus. The global
schedule allocates a slot for nodes on each repetition of execution. In the Network-
on-Chip (NoC) method, each node is connected via an interface to a switch of the
network. Each interface has a schedule that indicates the time to send a message
and expect a message in its inbox.

22 Chapter 3 System Architecture

System Verification and
Validation

4
As mentioned in Section 2.1, the V model is used to design, develop and test high-
quality systems. The V model emphasizes the concept of verification and validation.
The ultimate goal is to generate an accurate and credible system.

Verification checks if a system meets a set of design specifications. It involves
performing tests to model or simulate a system and then analyzing the results.
Verification is performed during the development and also the post-development
phase.

Validation ensures that a system meets the user’s operational needs. It involves using
simulations to find faults or gaps that might cause invalid or incomplete verification
or development of a system.

Informally speaking, validation can be expressed by the question "Are you building
the right thing?" and verification by "Are you building it right?" It is possible that a
system passes the verification phase but fails under validation. A sample scenario can
be when a system is built as per the specifications, but the specifications themselves
fail to address the user’s needs.

Here we introduce different V&V (Verification and Validation) techniques. There is
no one solution to check everything. Different approaches are needed, as they com-
plement each other in their purpose and capabilities at different levels of abstraction
and various phases of the development.

4.1 Formal Method

Formal methods assure the safety-critical claims to the developers and users of the
time-triggered architecture. The proofs depend massively on arithmetic reasoning
[18]. The correct operation of components is generally formalized in terms of
assume-guarantee reasoning.

23

Formal verification is intended to prove the absence of errors. To perform a formal
verification, it is required to have adequate modeling at an acceptable level of
abstraction. Therefore, the impact is limited by the model accuracy, which typically
neglects most of the hardware-specific effects and anomalies [19].

4.2 Simulation-Based Approach

It is the most commonly used verification approach. During simulation-based
verification, the DUT receives the input stimuli from the testbench. Then the output
from the DUT is compared with the reference (golden) output.

Before simulation a design, it goes through a static code analysis tool to flag errors,
bugs, stylistic errors, and suspicious constructs. It checks static errors, errors that
can be uncovered without input stimuli. Then, stimuli vectors of the inputs are
generated. These inputs are both designed inputs and pseudo-random tests to
explore all the aware and unaware areas of the design. When the test vector is
ready, the simulator performs the simulation. A simulator can be an event-driven,
cycle-accurate, or hardware simulator. The quality of simulating a test on a design is
measured by the code coverage and fault coverage the test provides. The coverage
measures how much the design is stimulated and verified.

To be able to verify and test the whole embedded system, a simulation technique
should be used to test hardware (HW) and software (SW) components together.
This approach is called co-simulation, where the integration and the synchronization
of HW and SW modules require a permanent control of consistency and correctness.
Co-simulation is ideal for checking the presence of expected behavior. However, it
is impossible to have an exhaustive co-simulation. It is not adequate to check the
absence of erroneous behaviors, which is the goal of verification methods [19].

4.3 Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) bridges the gap between testing a model and the actual
implementation by incorporating the dynamic behavior of the physical prototype.
HIL provides the possibility of replacing incomplete and/or inaccurate models with
the real-world counterpart. It is an actual hardware setup coupled with simula-
tion software for testing the hardware and software components under realistic
conditions.

24 Chapter 4 System Verification and Validation

A HIL setup usually has three main components:

1. The environment simulator

It models the environment and provides the needed I/O ports to reproduce the
behavior of the simulated system under desired conditions—a communication
medium exchanges data between the simulator and the hardware under test.

2. The hardware design under test (DUT)

It helps test the actual physical controller device connected to the controlled
environment.

3. The software partition

The SW partition of the system is tested running on the actual hardware
together in the simulated environment.

HIL has, however, drawbacks and limitations, especially missing the flexibility
in designing and performing test scenarios like in the simulation. Also, when
integrating HIL to the co-simulation, it is critical to make sure that the data flow
is synchronous between different components of the setup. The synchronization
strongly influences the accuracy of the experimental result. Nevertheless, ensuring
synchronization is not always an easy task since HW runs much faster than the
environment simulator. These two should be synchronized. Also, the connection
medium delay should be calculated and considered.

Despite HIL being very accurate, it lacks enough visibility because of the limited
capacity of capturing internal signals of the hardware. Also, the complexity of
making the setup is non-linear when adding new features.

4.3 Hardware-in-the-Loop 25

Thesis Contribution 5
In the previous chapters, we have provided an introduction to the domain of time-
triggered architecture and covered background knowledge, basic methods, and
current challenges. In this chapter, we present the contributions of the thesis
concerning the scientific questions discussed in Section 1.3.

5.1 Contributions

The following contributions aim at improving the flow of design, test, and simulation
of time-triggered systems.

Contribution C1: We propose a novel simulation technique called Globally Ac-
curate Locally Inaccurate (GALI), to speed up simulation of time-triggered
architecture using instruction accurate simulators (see Section 8.2).

The proposed simulation technique starts with the specification of the time-triggered
architecture and its features that help us speed up the simulation by using instruction
accurate simulation technique. Contribution C1 is the approach to joining these two
(TTA and IA simulation) to perform a fast and accurate simulation in the domain of
time-triggered architecture. This contribution answers the RQ1 scientific question.

Contribution C2: We provide a systematic way to define and configure system
architecture, tasks, and communication channels in our proposed simula-
tion technique. It is called GALI Configuration Environment (GALI-CE) (see
Section 8.3).

To answer the question about the design flow and the properties that help in model-
based simulation, we have developed a front-end to facilitate task definition and
specification, correct-by-construction system implementation, and hardware project
generation. This contribution is linked to the RQ2 scientific question. GALI-CE
considers, under the hood, all the constraints and assumptions under which the
proposed GALI technique works.

27

Contribution C3: We propose evaluation of different backend implementations
(see Section 8.3.3). GALI Configuration Environment (GALI-CE) automates
cross-platform transformation for native host compilation, ARM, and Microb-
laze processing elements.

GALI configuration environment front-end offers generic system definition indepen-
dent from the target processor. The designer can test and verify the design with the
native flavor, also known as host-based simulation. After successfully passing the
native simulation, then the designer has the option to provide the cross-platform
toolchain, and the tool can handle the configuration and compilation. This con-
tribution answers the RQ4 and RQ6 scientific questions. GALI-CE provides the
infrastructure for future work to perform power and performance profiling which is
explained more in Section 12 and answers the RQ5 research question.

Contribution C4: The evaluation setup (described in Section 10.2) is also a con-
tribution to this thesis. This setup has helped the SAFEPOWER project to
evaluate the proposed concepts and then further improve to address the issues
in this thesis.

It has also won the first prize in the Xilinx Open Hardware 2019 competition in the
Ph.D. category. Many hours of this thesis have been dedicated to preparing the setup.
It consists of simulator coupling, configuring the flight simulator to be able to talk to
the board, developing an adapter board to imitate the sensor and actuator interface,
and a real-time co-simulation synchronization was also introduced into the setup.
This contribution evaluated RQ1 to RQ6 possible.

5.2 Assumptions & Constraints

The contributions mentioned in the previous section contain the following assump-
tions and constraints regarding the hardware, application model, platform architec-
ture, and schedulability. We have evaluated them by answering the RQ3 scientific
question.

A&C1: The platform consists of multiple tiles (a.k.a. nodes). Each tile can contain
multiple Processing Elements (PEs) and shared and private memory.

A&C2: Processing elements (PEs) are timing predictable. Time predictability is
necessary to verify the correct operation of a time-triggered system. It refers
to the ability to precisely calculate the duration of actions on the system (the

28 Chapter 5 Thesis Contribution

predictability of the Worst-Case Execution Time and the Best-Case Execution
Time).

A&C3: The communication infrastructure is also timing predictable (for instance a
TDMA interconnect such as a predictable NoC).

A&C4: The application model consists of a set of tasks and communication channels.
Tasks communicate via a uni-directional virtual channel that transports a
message between sender and receiver tasks.

A&C5: Tasks and Messages are characterized by the pair of execution time/injection
time and worst-case execution and transport delay belonging to the processor
it is assigned to, and therefore no interference.

A&C6: The schedule is static, predetermined, and timing deterministic and is given
as an input to our design flow. The schedule consists of repetitive tasks, which
will form a hyper-period to be executed each time.

A&C7: Instruction-Set Simulator for the target platform should be available.

Detailed assumptions and constraints on application, platform, and mapping model,
which are acceptable by GALI are explained in Section 7.

5.2 Assumptions & Constraints 29

Related Work 6
Available approaches to test time-triggered systems use primarily high-level func-
tional models with annotated time (to express the time-triggered (TT) schedule)
or Hardware-in-the-Loop (HIL) prototypes with precisely reproducible timed envi-
ronmental simulation models. High-level functional models do not represent the
final implementation and may undergo reformulation of algorithms, an adaptation
of data types, or changes in memory management. Thus, these models do not
represent the functional implementation deployed on the actual hardware platform.
On the contrary, the low-level HIL models are based on the final product, where
changes are very costly, and testing and debugging are complicated on the target
hardware platform. Time-triggered systems can be simulated with cycle-accurate
processors and full system simulators, but it takes enormous time. Hardware models
may be specified as low as at the RTL level simulation (Hardware Description Lan-
guage (HDL) level with nanosecond resolution), making the simulation usually take
days to run a large simulation. In the following, we divide our contributions into
two categories and compare them with different research results and try to highlight
our contributions.

6.1 Generating Configuration

Plenty of works address modeling frameworks to help the system designer configure
the system. Xoncrete[20] for instance, is a scheduling tool that provides a user-
friendly interface for capturing and editing all elements of a partitioned system.
Its primary purpose is to generate configuration files compatible with the XtratuM
hypervisor. Work presented in [21] maps synchronous data flow model to time-
triggered architecture to develop an optimized scheduling configuration. Both works
follow the ARINC 653 time and space partitioning mechanism.

There are other frameworks to study the temporal behavior of applications to see
if they meet the system constraints. For example, Cheddar[22] is a framework
for designing and testing custom schedulers. MAST[23] is an open-source tool for
modeling real-time applications and performing timing analyses of those applications.

31

RapidRMA[24] is an analysis and simulation scheduling tool for different scheduling
methodologies.

Another direction of work generates code from a high-level model. For example, [25]
is an off-line mapping tool that allows scheduling and automatic code generation
for time-triggered platforms. [26, 27] are UML/MARTE based model which enables
capturing the set of possible design solutions abstractly and graphically by relying
on UML and the standard MARTE profile. The framework produces an executable
functional code of the application components.

UML modeling environment and automatically generated SystemC code from UML
designs are explained in [28]. Also, [29] uses SystemC-based modeling and simula-
tion framework for time-triggered safety-critical embedded system.

The framework in [30] provides formal specification and formal verification of a
time-triggered protocol without any functional code. The work in [31] uses high-
level modeling for verification of the system design via functional simulation, fault
modeling, functional test, and fault injection.

Our framework does not perform scheduling or scheduling optimization. We assume
that the schedule is given and all the values are correct. It can, however, check if
the system’s functionality concerning that timing is still consistent or not. Also, we
derive no code from a high-level model such as UML, the model that we have is our
canonical architecture that the user code would instantiate. Our original simulation
approach at the core of the modeling framework distinguishes our work.

6.2 Simulation of time-triggered Systems

There are two approaches to speed-up system simulation:

1. Dynamic Translation of target processor instructions to simulation host instruc-
tions.

2. Native Simulation, where the target code is statically analyzed and transformed
into a host-compilable code where timing properties of the target platform can
be back annotated.

Native simulation can be faster (factor 10-100) than dynamic translation. In contrast,
on the downside, native simulation approaches have difficulties supporting target
platform traceable debugging because the original binary code is not retained.
Our approach requires annotating the functions with the time-triggered scheduling

32 Chapter 6 Related Work

information at the instruction level, so we cannot use a native simulation approach.
Instead, we use existing time-triggered functional simulation approaches and more
generic approaches that include timing information into functional and instruction-
accurate simulation models.

The work done in [32] is very similar to this work. However, the main difference
is the simulation platform. The actual processor model (i.e., ARM or Microblaze)
and final binary files are used in our work. However, [32] executes the tasks
on the simulation Personal Computer (PC) and assumes that there is a strong
correlation between execution time on PC and the actual embedded processor. In
the GALI model, the simulator works at the instruction level. Therefore helpful
information regarding functional and extra-functional properties can be extracted
and used further. Another difference is the underlying architecture. GALI targets
time-triggered architecture, which works based on target ticks and a predetermined
schedule. It does not divide the system Into individual cyber and physical parts
and, unlike [32] does not only keep the data and time correctness only at the
physical interaction points, but it is synchronized after the end of tasks because of
the time-triggered nature. Synchronization points should not always be software
and hardware interaction points. GALI simulates the complete system and is not just
focused on the cyber systems.

An exciting work that aims at abstracting timing information to a minimum required
amount is called Result Oriented Modeling (ROM). The approach has been success-
fully applied to the functional simulation of on-chip communication [33]. The main
goal of ROM is to produce a correctly timed result of a process as fast as possible.
ROM uses the fact that internal states in the communication are not interesting for
the caller. Therefore, it omits the internal forms entirely and optimistically predicts
the result. It helps to optimize the unnecessary details by ignoring intermediate
states. It reduces the amount of computation and, thus, increases the execution
performance. Our work is, to some extent, similar, as we do not rely on a detailed
processor timing model to be executed during target processor instruction simu-
lation but apply timing information from the time-triggered configuration in the
functional simulation. We need to use a mapping between Observable system states
and pre-known time-stamps in line with ROM. The essential part of our goal is to
produce only the result of the process, not intermediate timing states. Like SystemC
TLM wait-for-time statement, our work assigns the execution time, the actual time
needed to execute a function, set of Functions, or tasks.

A SystemC simulation framework for time-triggered architecture that provides a
modeling framework for safety-critical systems is introduced by [34]. It presents a

6.2 Simulation of time-triggered Systems 33

SystemC-based extension for modeling generic time-triggered architecture-based
safety-critical embedded systems called Executable Time-Triggered Model (E-TTM).
There are a couple of incremental works using SystemC-based modeling and sim-
ulation like [34, 35], which are all SystemC-based functional extensions for the
modeling of time-triggered architecture. [36, 37] are also focused on TLM-based
approaches. The main shortcoming of these approaches is that there is no final
target binary available, and it completely abstracts from a specific target execution
environment. There are also papers on co-simulation frameworks for simulation of
systems, which use a combination of different simulation technology for the other
parts of the system. For instance, [38] uses SystemC to model the cyber part of the
platform, which forms the backbone of the virtual prototyping, and TTEthernet [39]
enables TT communication systems. The co-simulation approach resembles the final
product better than pure SystemC simulation but still has the same disadvantages.

For applying simulation technology on time-triggered systems, accurate modeling
of the system’s temporal behavior should be supported. The correct functional
behavior of time-triggered systems is inextricably connected with a functionally
aligned progress in time. Instruction-accurate (IA) simulators are fast, but they
insufficiently capture timing events because of abstraction. Therefore, they are
not suitable for testing time-triggered systems. For instance, Simics1, QEMU2, and
OVP3 are instruction-accurate simulators and have A limited notion of time, and
therefore not suitable for a time-triggered system simulation. Gem54 can simulate
both instruction-accurate (IA) and cycle-accurate (CA) models. Gem5, in cycle-
accurate mode, can simulate a time-triggered system accurately. However, it is too
slow [44]. The same applies to ZSim5. OVP QCA (Quasi-Cycle Accurate) [46] is
aimed at improving timing accuracy. A processor timing model improves the OVP
simulator’s timing accuracy. This technique can be applied on time-triggered system
simulation, but the simulation time overhead is significant due to the complexity of
the Quasi Cycle Accurate (QCA) timing model.

The GALI approach tackles the shortcoming of instruction-accurate simulators by
producing the accurate end-result of the IA simulators concerning the start and end

1Simics[40] is a processor and complete system simulator that is capable of executing the target
processor binary, which focuses on functional software validation.

2QEMU[41] is a machine emulator that uses JIT to execute unmodified target processor code on the
host computer.

3OVP[42] uses similar JIT technology as QEMU but has been designed initially for fast embedded
microprocessor simulation.

4The gem5[43] simulator provides four different CPU models, each of which with different speed
versus accuracy trade-offs.

5ZSim[45] is a micro-architectural simulator that uses dynamic binary translation and has s simple
cycle-per-instruction timing model and a cycle-approximate timing model that uses program timing
instrumentation.

34 Chapter 6 Related Work

of the execution time of an event. However, it ignores the unimportant detail of
timing between start and endpoint (similar to the ROM[33] approach mentioned
above). To the best of our knowledge, GALI allows for the first time to combine
instruction-accurate simulators with time-triggered system functionally, as there is
no support for time-triggered static scheduling architectures in available instruction-
level simulators. GALI can be applied to all the well-known simulators.

6.2 Simulation of time-triggered Systems 35

Part II

Design Flow & Modeling Approach

System Model 7
The previous chapters have emphasized the importance of time-triggered systems in
safety-critical systems and the need to have a platform for verification and validation
of the system in the early design stage. This chapter describes the system model
definition and the proposed design flow for time-triggered embedded systems on
MPSoCs. Its goal is to provide a test and evaluation environment during the design
phase such that the designer can verify and validate the given static schedule,
mapping, and implementation decisions.

Based on the GALI V model described in Section 2.1 (Figure 2.2), the first step in the
development process is to capture the requirements of the application. The design
process typically starts with a specification model to express the requirements of the
embedded system in terms of functional behavior and physical constraints.

We opted for a hardware platform with timing predictable processing elements and a
timing predictable communication infrastructure (for instance, – but not limited to –
a predictable NoC). A platform consists of multiple tiles (a.k.a. nodes). Each tile can
contain multiple Processing Elements (PEs), shared and private memory. We assume
that every task and message is characterized by its WCET for the processor it is
running on, as we do not consider processor interference [47]. Each communication
between tasks on different processors is realized by a Virtual Channel (VC). A VC is
an abstraction of a directed connection between two ports of two communication
interfaces. It is mapped to a time-triggered predictable communication fabric,
and a time-triggered communication interface [48]. The communication timing’s
properties are characterized by a message injection time and a worst-case transport
delay (i.e., Worst-Case Response Time (WCRT)). Figure 7.1 depicts an overview of
our system model. To better understand such a system, first, we describe the three
elements of the model:

• Application models the application consisting of tasks and their connections
(Figure 7.1-a).

• Platform models the TTA hardware platform (Figure 7.1-b).

• Mapping represents the synthesis decisions of the software to the hardware
(Figure 7.1-c).

39

c) Mapping

Tile 1

Tile 2

Comp.

Comp.

Comm.

Comm.

Busy

Slack

Time

Execution Paltform

TT Communication Fabric

b) Platform Model

Tile 1

Processing
Element

Message
Timer

Task
Timer

Tile 2

Processing
Element

Message
Timer

Task
Timer

a) Application Model

End-to-End Periodic

T1

T2

T3

T5

T4

T6

T1 T2 T4

T3 T5 T6

Com.
Interface

Com.
Interface

Message

Scheduled Time

Figure 7.1.: Overview of the System Model

7.1 Modeling the Application

As shown in Figure 7.1-a, the application model consists of a set of Tasks (T1 to
T6) and communication channels (arrows). The communication Channels between
tasks represents a uni-directional channel that transports a message between a
sender and receiver tasks.

In formal language, the application model Ai is defined as a tuple (K, C) consisting
of:

1. A set of tasks K, where a tuple characterizes each task (p, φ, τ), where p is the
period, φ is the offset time of the task (i.e., the time elapsed between time 0
and the release of the first instance of the task) and τ is the task Worst-Case
Execution Time. An obvious assumption is that: ∀k ∈ K : τk ≤ pk.

2. A set of C communication channels between tasks where cj ∈ C is defined as
cj = (koj ,m, kij) representing an uni-directional channel which transports a
message of unique type (m ∈ M) between a sender task koj and a receiver
task kij (where koj , kij ∈ K and koj 6= kij).

3. A relation E : K × M → K denoting the directed communication edges
transporting messages between tasks where E(k,m) = {k′ ∈ K|〈k,m, k′〉 ∈ E}

40 Chapter 7 System Model

Application

getHyperPeriod() : EInt

Channel

name : EString

getMessageCount() : EInt

Message

name : EString

Task

period : EInt

name : EString

offset : EInt

release : EInt
getPacketSize() : EInt

[0..*] outgoingChannels
[1..1] sender[0..*] incomingChannels
[1..1] receiver

[1..1] channel

[0..*] messages

[1..1] application

[1..*] tasks

[0..*] channels

release : EInt

Figure 7.2.: UML Diagram of Application

indicates the number of messages (m ⊆M) transferred between sender task
k and receiver task k′. E is realized throughout our work as virtual channels
(VC).

Both tasks and messages have a specific timing associated with them which deter-
mines when these tasks have to be executed and when the messages have to be sent.
Figure 7.2 illustrates the connection between Message, Task and Channel, and how
they are related to the Application. Three parameters describe the timing features
shown in the UML diagram for the task:

• Period determines the time between the starting points of two invocations of
a task.

• Release time describes when the task starts in its period.

• Offset determines how many basic periods or iterations the task should skip
until its first release.

The basic period is defined as the minor period in the set of all tasks, representing
the frequency at which the system meets its control timing requirement. The hyper
period H is the time after which the pattern of the periodic tasks repeats itself (i.e.,
a cyclic schedule representing the maximum time interval between two consecutive
completions of execution). It specifies the time for all tasks to get executed at least

7.1 Modeling the Application 41

2ms
basic period

T2
T1

T3
T4
T5
T6

Hyperperiod

t

T1 T2 T3 T4 T5 T6
Period 2 6 4 6 4 2
Offset 0 0 2 0 2 0

Release 0 0.37 0.37 1 1.05 1.5

Figure 7.3.: A Hyperperiod of given tasks T1 to T6 – Values are in ms

once. The hyper period is defined as the least common multiple of all tasks’ (of a
total number of n) periods:

H = lcmn
i=1(pi)

Figure 7.3 shows tasks T1 to T6 of our illustrative example that we use throughout
this paper. It assumes that the system is working at a frequency of 500Hz. Therefore
it has a 2ms basic period. Period, Offset, and Release time of tasks indicate how
they appear in a hyperperiod. The period parameter shows how often a task
repeats. It is multiple of the basic period. The hyper period of all tasks is therefore
lcm(2, 6, 4, 6, 4, 2) = 12ms. The offset shows how much time a task is shifted in
one hyperperiod for the first execution. The reason for having an offset is that
there are tasks that should wait for the input of other previous tasks. Therefore
instead of starting right from the first period, they need to wait for one or more
periods. The release time shows when, within the basic period, a task should be
executed/released.

7.2 Modeling the Platform

As mentioned earlier, Figure 7.1-b shows one example of the supported architecture.
It consists of two processing tiles connected via a communications subsystem. Each
Processing Element (PE) has a timer to set the deadline for the next task. Each
communication interface also has a dedicated timer controlled by the PE to enable
the time-triggered communication functionality.

Figure 7.4 depicts the platform model. The main element of the execution platform
is defined as EP = (T , CS,VC) consisting of:

42 Chapter 7 System Model

1. A finite set T of tiles.

2. A shared time-triggered communication subsystem CS.

3. A finite set of virtual channels (VC) which can be mapped to one physical
communication channel (e.g., in the case of a bus) or to multiple dedicated
physical channels of a CS (e.g., in the case of a Network-on-Chip) transporting
messages between tiles.

A tile is defined as T = (PE, I) consisting of:

1. A processing element PE = (PEtype, f, δPE) with local data and instruction
memory, where PEtype is the type of the processor and f is its clock frequency.
δPE is the PE schedule, configured at design time, that assigns each task k ∈ K,
which is mapped to this PE, on a computation time slot δPE : K → SLcomp.

2. A communication interface I = (O,A, δI) that is connected to the PE through
a local bus and connected to the communication resource on the other side. O
is a set of output ports, and A is a set of input ports. Each port is realized as a
buffer that can store one message and is accessible through memory-mapped
I/O. Output ports store a message that will be sent through the communication
subsystem to an input port in another tile’s communication interface. δI is
the I ’s schedule, configured at design time, that assigns each virtual channel
vca ∈ VC that has its origin in this communication interface (i.e. vca.po ∈ O)
to a communication time slot δI : VC → SLcom.

A Virtual Channel VC = {vc1, vc2, · · · , vcn} denotes the set of dedicated communi-
cation channels transporting messages between tiles. If PO is the set of all output
ports of all communication interfaces of all tiles (

⋃
I O) and PA is the set of all input

ports of all tiles (
⋃
I A), then vcj = (poj ,m, pij) represents an uni-directional virtual

channel which transports a message of unique type (m ⊆M) between sender port
poj ∈ PO to a receiver port pij ∈ PI throughout the time-triggered communication
subsystem CS.

At the current version of the communication implementation, there is only send_message
task. receive_message is implicitly done when a functional task starts. In other
words, it begins with reading its memory-mapped I/O. The send_message is sched-
uled right after the end time of a functional task, which means the release time of
the task added to the WCET.

7.2 Modeling the Platform 43

Memory

size : EInt

CommInterface

name : EString

bandwidth : EDouble = 0.0

name : EString

PortProcessingElement

type : EString

frequency : EDouble = 0.0

name : EString
 localmemory : LocalMemory

Tile

name : EString

busWidth : EInt

busArbitrationPolicy : EString

busType : EString

[0..*] tiles

[1..*] virtualchannels

[1..*] processingelements
[1..1] localMemory [1..1] inPort

[1..1] outPort

[1..1] comminterface

[1..*] ports

[1..1] comminterface

[1..1] tile

ExecutionPlatform

name : EString

VirtualChannel CommSubsystem

[1..1] commsubsystem

Figure 7.4.: UML diagram of Platform

7.3 Modeling the Mapping

The system mapping includes the processes of binding and scheduling the application
model onto the resources of the platform model. It is the transformation of a directed
graph of tasks’ dependencies (Figure 7.1-a) into the task and message schedules
(Figure 7.1-c).

If K is the set of tasks of all applications A, C the set of all channels, and T the set
of all tiles, and VC is the set of virtual channels configured at the hardware design
time, then a mapping can be defined as a tuple M = (α, β) with:

1. The function α : K → T maps every task to a unique tile (multiple tasks can
be assigned to one tile).

2. The function β : C →

VC → CST
maps every channel either to a com-

munication subsystem (which results in the creation of a dedicated physical
channels for the virtual channels realizing the transfer of messages between
two tasks on two different tiles), or to a private memory of tile (in the case
where both communicating tasks are mapped on the same tile).

In the implementation phase, the mapping, as modeled in Figure 7.5, consists of
four steps:

1. Task-on-Tile assigns each task to a unique tile.

44 Chapter 7 System Model

ChannelMapping

 channel : Channel

ChannelOnMemory

 memory : Memory

ChannelToVC

 virtualChannel : VirtualChannel

Mapping

getMaximumPacketSize(tile Tile) : EInt

MessageOnChannel

 message : Message

MessageTiming

time : EDouble = 0.0

 message : Message

Schedule

name : EString

getWCDeliveryTime(tile Tile) : EInt

getTimeSlotSize(tile Tile) : EInt

TaskOnTile

 tile : Tile

 task : Task

TaskTiming

time : EDouble = 0.0

 task : Task

[0..*] schedules

[0..*] tasktimings

[0..*] messagetimings

[0..*] channelmappings

[1..1] mapping

[1..1] mapping

[0..*] taskontile

[1..1] channelonnetwork

[0..*] messageonchannels

Figure 7.5.: UML diagram of Mapping

2. Channel-on-Network specifies the channel and the virtual channel that mes-
sages are mapped onto.

3. Message-on-Channel maps messages to channels in the NoC, which results in
the creation of a dedicated VC, realizing the transfer of messages between two
tasks on two different tiles.

4. Channel-on-Memory maps messages to a private memory of tile for inter-tile
communication.

A Schedule for each task, and each message is defined as a consecutive set of
time slots consisting of start and end time tuples. The schedule is unrolled to a
hyperperiod which is a cyclic schedule.

Let S be the set comprising all starting points of all tasks,M the set of all messages
transferred between all Tasks and SLcomp the set comprising all time slots of all

7.3 Modeling the Mapping 45

Tasks and SLcom the set containing all time-triggered communication time slots in
the considered platform.

A TT-schedule δPE for each processing element is defined as a consecutive set of
time slots {sl0, ..., sln} ∈ SLcomp consisting of start and end time tuples sli =
(slistart , sliend

) with a consecutive order ∀i < n : sliend
≤ sli+1start . Now δPE maps

each task of the specific PE onto a computation time slot of the TT-schedule of this
PE:

δPE : {ki → slj |∀ki ∈ K ↓α(PE)}

where K ↓α(PE) restricts the number of possible tasks to the tasks that have been
mapped on this PE.

A TT-schedule for each communication interface δI is defined as a consecutive
set of time slots {sl0, ..., sln} ∈ SLcom consisting of start/end time tuples sli =
(slistart , sliend

) with a consecutive order ∀i < n : sliend
≤ sli+1start . Now δI maps each

virtual channel that has its output port in the specific interface onto a communication
time slot:

δI : {vci → slj |∀vci ⊆ VC : vci.po ∈ I.O}

In addition, we assume that if a dependency relation between two tasks ki, ko ∈ K
exists, such that ko is sender and ki is receiver, then the receiver never starts before
the sender has finished execution:

∀(ko, ki ∈ K) : δPE(ki).slstart > δPE(ko).slstart + ko.τ

46 Chapter 7 System Model

GALI Simulation 8
Electronic Design Automation (EDA) has evolved during the past years towards more
abstraction at a higher level. Design automation has started from low-level placement
and routing automating in the Inintegrated Circuit (IC) design to numerous high-
level system-level tasks. The EDA community now deals with developing tools and
methods for the design of Cyber-Physical System (CPS).

In the design of CPS, all the system elements such as physical processors, control
algorithms, and the base computation and communication platforms – on which the
rest of the system is implemented – are tightly connected. Unfortunately, available
EDA tools cannot handle such design and modeling. The missing part is the link
between modeling tools like Matlab/Simulink used to model the system and tools
used to configure the hardware/software platforms.

In the embedded system design, unlike general-purpose computing, dividing the
design into layers to deal with individually is not easy. In the general case, each
layer needs a properly designed interface to allow the different partitions to work
together. A specialized application like embedded systems or CPS which involves
hardware/software co-design, which are used in the automotive industry, for in-
stance, poses serious problems when different groups design it with entirely different
sets of expertise.

CPS needs an integrated modeling and design environment. In the current approach,
each layer/partition of the design has an idealistic assumption (free of any errors)
about the rest of the system. It is not realistic, i.e., there is no delay, no conflict in
the design, etc. However, as the implementation platform becomes more complex
and distributed, these assumptions do not hold anymore.

As CPS becomes more complex and distributed, the integration of such a system
becomes more challenging, which often takes more than 50% of the design effort.
Certification for safety-critical systems can also add extra time and challenge to it.
Therefore, to address the incompatibility between different parts of the design, we
need a framework to integrate all levels of abstraction. The assumption in each level
or part of the design is fully compatible with the rest of the system.

47

To address these problems, there is a need for a EDA methods and tools that bridge
the gap between the result of modeling and implementation of the hardware/soft-
ware platforms. In this work, we have developed a framework to integrate the
design and implementation of the time-triggered systems.

The first section of this chapter describes how IA simulation technology works.
Next, our proposed simulation technique is presented, which uses the nature of
time-triggered architecture combined with the IA logic to speed up the simulation.
It also describes how the scheduling procedure of our solution works. Finally, we
conclude this chapter by presenting our framework called GALI-CE.

8.1 IA Simulation Technology

In Section 2.5, we mentioned the instruction accurate (IA) simulator. In this section,
we explain how its internal logic works and how one can tune an IA simulator to
speed up the simulation of a time-triggered system.

In available instruction accurate simulators, a very basic timing model is included.
The processor model counts the number of executed instructions, and based on
the annotated nominal processor speed in MIPS, it derives the simulation time.
To change the time granularity of IA simulators, one can set different simulation
steps, called quantum size or, in other words, the context switch allowance. In a
multiprocessor simulation, a quantum is the number of instructions each processor
executes in each turn before the simulation engine switches to the next processor.
At the end of each round, when all processors have completed their quantum, the
simulator synchronizes the simulation result and the simulation global time. The
order in which the processors are executed in each round is not deterministic.

The quantum value and MIPS rate are set by the user based on the trade-off between
accuracy and simulation speed. Increasing the number of instructions running on
a processor in one quantum will reduce the number of context switching and syn-
chronization, improving simulation speed. However, it will increase the chance that
synchronization causes gross functional errors, and interactions between processes
become inaccurate concerning the timing, primarily if they communicate through a
shared memory [42].

Simulating a safety-critical time-triggered system with available IA simulators might
corrupt the time-triggered event occurrence time if a user chooses an unsuitable
value for the quantum size and/or MIPS rate. To circumvent this, the quantum

48 Chapter 8 GALI Simulation

value must be selected so that the events occur precisely at the beginning of the
simulation steps. Otherwise, the quantum duration will shift the event time (all
events belonging to a quantum have the same occurrence time). Furthermore, since
all the WCET values are pessimistic, tasks usually have slack at the end of execution
before the next task. Therefore, a wait function should delay the simulator and
enforce the time-triggered behavior. This is possible in IA simulators but cannot be
generalized for each event. The scheduler should execute the events concerning the
event’s exact release time.

Besides the problem with setting the correct value for MIPS and quantum, instruction-
accurate simulators abstract hardware implementation details (e.g., cache, pipeline,
etc.) to increase the simulation speed. This abstraction causes inaccuracy in the
simulation’s timing information, i.e., the simulation of a function might take more or
less time than what it takes in the real world. The hardware abstraction and MIPS
and quantum value all affect the simulation and interaction between tasks in the
simulation.

To solve this problem of simulating the safety-critical time-triggered system with IA
simulators, the simulation engine should trigger the tasks in the foreseen scheduled
order and execute the next task after finishing the dependent tasks. In other words,
instead of just running instructions until all instructions are completed, the scheduler
must start functions strictly at the corresponding point in time and switch to the
next task at the right moment.

In the following, we propose GALI scheduler to handle the issues in an Instruction
Accurate virtual platforms for time-triggered system.

8.2 GALI Technique

The technique developed in this work is based on an underlying IA simulator, which
does not need to provide a timing model for fast pure functional testing. Instead,
timing information from the static time-triggered configuration is linked to the
functional model, adding the necessary timing information to the functional and
instruction-accurate simulation. This model runs on the exact timing granularity
as high-level models but executes the same binary code that will be performed on
the actual processor or MPSoC platform, with complete functional observation and
debugging capabilities.

8.2 GALI Technique 49

b) GALI Instruction Accurate Simulator

Comp.

Comp.

Comm.

Comm.

T1 T2 T4

T3 T5 T6

Tile 1

Tile 2

Tile 1

Tile 2

Comp.

Comp.

Comm.

Comm.

T1

a) Instruction Accurate Simulator

Sim. Time

T2 T4

T3 T5 T6

Sim. Time

Busy Slack Message Scheduled Time

Figure 8.1.: Instruction Accurate simulation timing deviation versus GALI simulation

GALI is a simulation scheduling model based on an IA simulator that executes a
predetermined time-triggered system configuration. The simulation model is called
Globally Accurate Locally Inaccurate (GALI) because the order and time of task
execution are accurate concerning the predetermined schedule (Globally Accurate).
However, the timing behavior within a task is not accurately represented (Locally
Inaccurate).

Figure 8.1 depicts an imaginary time-triggered system simulation scenario, first
performed by a standard instruction-accurate (IA) simulator (Figure 8.1-a), and
the second one with an instruction-accurate simulator equipped with the GALI
scheduler. Figure 8.1-b shows precisely how the system should execute and when
the communication points should occur at the scheduled time. However, Figure 8.1-a
illustrates a timing deviation in executing tasks (due to, for instance, the abstraction
of the simulation model) that affects subsequent tasks and communications, violating
the execution behavior. Figure 8.1-a shows that the simulation time is less than the
actual scheduled simulation time (tasks are completed earlier than expected). Even
worse, the simulation is not completed within the timing window.

50 Chapter 8 GALI Simulation

To address the issues illustrated in Figure 8.1-a, we employ the GALI scheduling
algorithm, which is capable of providing accurate execution timing for time-triggered
systems. The GALI algorithm (as described in Algorithm 8.2.1) takes as input a
list of processors, where each processor has a list of tasks and messages. Each task
and message has a start time, a duration (WCET), a processor index, and a period
which is the frequency or how often a task should be executed. These values are
pre-computed based on analytical approaches. The algorithm then calculates the
hyper-period, which is the least common multiple of the periods of all tasks and
messages for all processors. The hyper-period is the main global schedule that is
going to be repeated throughout the system lifetime.

Next, the algorithm populates the hyper-period by adding the tasks and messages as
events into a sorted list. An event is a tuple of execution (aka running) time and
processor index. The execution time is equal to the start time plus the duration
(WCET). The hyper-period list is sorted based on the execution time.

To populate the hyper-period, the algorithm iterates through each processor and,
for each task or message in the processor’s list of tasks and messages, it computes
the number of repetitions of the task or message during the hyper-period. For each
repetition, it computes the start time and execution time of the task or message, and
adds the tuple [execution time, processor index] to the event set.

Finally, the algorithm outputs the event set, which contains all the tuples indicating
the execution time and processor index for all tasks and messages that should be
executed during the hyper-period.

GALI repeats the Hyperperiod until the simulation is finished or interrupted. During
each iteration of a GALI implementation of the time-triggered system, the following
steps occur:

1. Interception: Events are labeled in the application programs. The scheduler
operates as the main state machine, and each state of the central state machine
is a resource with events (Processing Elements or Network Interfaces). Each
state machine of the parent resource keeps track of its events. The interception
library, a debug interface that is sensitive to our defined labels, captures events
during the simulation and signals the GALI scheduler to change the state
accordingly.

2. Event Capturing: When GALI moves to the next state, both the main state
machine and the state machine of the event’s owner change. Transitions
occur at the boundaries of events that are fixed points, similar to cooperative
multitasking. The system is partitioned, and no inter-communication occurs

8.2 GALI Technique 51

Algorithm 8.2.1 GALI TT Scheduling Algorithm
Let:

n be the number of processors
m be the number of Tasks and Messages for each processor
P (i, j) be the Period of the j-th task or message for the i-th processor
S(i, j) be the Start time of the j-th task or message for the i-th processor
D(i, j) be the Duration (WCET) of the j-th task or message for the i-th processor
H be the hyperperiod
E(k) be the k-th event in the hyperperiod, where 1 ≤ k ≤ total number of events

1 procedure SCHEDULER

2 Calculation of hyperperiod
3 H = LCMn,m

i=1,j=1(p(i, j)) . LCM of period of all elements
4 Populate list of events
5 for i← 1 to n do . Processor index
6 for j ← 1 to m do . Task/Message index
7 for k ← 1 to ceil(H/P (i, j)) do . number of repetitions during H
8 ExecutionT ime← (k − 1) ∗ P (i, j) + S(i, j) +D(i, j)
9 E ← E ∪ (ExecutionT ime, i)

10 end for
11 end for
12 end for
13 E ← Sort(e ∈ E) . Sort based on ExecutionT ime
14 end procedure

15 procedure EXECUTION

16 while True do
17 for e in E do
18 e.execute
19 end for
20 end while
21 end procedure

within an event between two processes. If any communication needs to
happen, it is an event and does not corrupt the system. Therefore, processors
can execute independently, as long as the order of event execution is preserved.

3. IA Functional Simulation: The simulator runs the same binary on the hardware
and provides a functional testing environment to give the user the desired
debuggability and observability of the system.

As described above, the simulator is globally accurate concerning the time-triggered
events, and the result of the system simulation complies with the system schedule.
However, it is locally inaccurate because the time within two consecutive events is not
accurately known in the simulation and the application running on top of it. In other
words, we only take care of the executed number of simulated (target) processor
instructions. We do not consider the time the processor has consumed to execute

52 Chapter 8 GALI Simulation

TT Meta Model

System Model

TT C++
Library

TT Non-Functional Implementation
Code

integration

Functional Code

Model

Implementation

Process

generate

Implementation

Virtual Platform

Func.Impl.

GALI Schedule

T1

T2 T3

T5

T6
Start

T4

Host Flavor

GALI Flavor
Target Platform Flavor

Target Platform

PE 2

Peripherals

PE 1

Host Platform

x86

I/O

Figure 8.2.: Overview of the Framework

these instructions. We only maintain and (re-)construct the global and observable
time-triggered system events. The GALI scheduling technique is independent of a
specific simulator platform or vendor, and any instruction or cycle-accurate simulator
that can execute a time-triggered system can be used.

8.3 GALI Configuration Environment

The purpose of the GALI Configuration Environment (GALI-CE) is to facilitate the
generation and testing of the target time-triggered system concerning the predefined
schedule and functionality. A configuration framework is a tool to instantiate a time-
triggered system from the provided meta-model and generate compatible binaries
for verification and validation purposes for different use-cases.

It simplifies the complexity of implementing a time-triggered system by abstracting
all the error-prone configurations from the designer. Figure 8.2 shows the design
flow that is described in the following. First, we represent the system model creation
and generation, then different flavors of the output are explained. We conclude this
chapter with how GALI-CE is used as a verification tool.

8.3.1 System Model Creation

As shown in Figure 8.2, the system model is created based on the GALI-CE meta-
model. The GALI-CE frontend represents the meta-model of the time-triggered
system, which the designer can instantiate. The frontend provides the user interface

8.3 GALI Configuration Environment 53

Figure 8.3.: GALI-CE GUI - Define Task Interface

to make the system and the application definitions to suit the meta-model for a given
use case, e.g., a vehicle control unit or a flight controller.

The GALI-CE frontend is implemented in Java and is based on the Eclipse framework.
It uses the Eclipse Modeling Framework (EMF) as the data backend and Eclipse
EMF Client Platform (ECP) for the data representation of the user interface. The
EMF model is designed using the UML diagram in the Eclipse Papyrus modeling
environment. The UML model is converted to a meta-model (Ecore) for describing
models with auto-generated model code. Figure 8.3, just as an example of the
graphical user interface, gives a glimpse of the interface for defining tasks.

8.3.2 System Model Generation

The GALI-CE time-triggered C++ library provides Application Programming Interface
(API) for the implementation of the meta-model. It defines the platform, tiles, tasks,
and communication channels. The API helps to define the system. Platform API
defines the whole system. All other components are bound to the platform. Tiles
represents the tiles or partitions. Tasks classes inherit from the task_base class and
the instances should implement the do_main() method which is the functionality of
the task. The front end generates a configuration code based on the user’s model.
The main function instantiates all the necessary elements to make the schedule and
map different system elements.

54 Chapter 8 GALI Simulation

GALI-CE frontend generates C++ task template to be extended by the user’s function
code. It is called non-functional implementation because it is a placeholder for the
user code. It consists of C++ files and needed header files to implement the tasks.
The generated C++ files implement the task_base.hpp virtual methods.

8.3.3 Output Flavors

The GALI-CE has three different flavors; host simulation (native), IA simulation
with GALI, and target platform flavor. Different sets of outputs will be generated
depending on the designer’s flavor.

• The native flavor simulates the system natively on the host machine, and no
instruction set simulator is necessary. Native compilation helps run the system
as a generic system by abstracting the low-level drivers.

• The GALI flavor cross compiles the implementation code to the bounded PE. It
also generates a state machine based on the hyperperiod, which acts as the
custom scheduler for the virtual platform (VP). It also generates the scheduler
configuration for the VP. The configuration tells the VP custom scheduler what
should be simulated next and sets the corresponding simulation time. It is
a tuple consisting of tile identifier (ID) or core ID, and WCET. The custom
scheduler performs the simulation concerning this scheduling array of tuples.
This is used in the “harness” file of the virtual platform to orchestrate the order
of the simulation. A harness is a C/program that makes calls into the simulator
API to connect and control the simulation component. This file is linked to the
simulator to provide a binary. The main() function definition includes in this
file and includes a command-line parser to parse all the arguments passed to
the simulator.

• The target platform flavor generates the same cross-compiled binary as for
GALI. The difference between these two flavors is the label codes that are
embedded in GALI flavor, which tells the virtual platform when to switch
to another task. Instead of a virtual platform configuration file, the target
platform flavor generates a Xilinx Vivado system definition. It generates a TCL
script that describes the system block design, which can be used by the Xilinx
Vivado tool along with the necessarily Intellectual Propertys (IPs) to generate
the system and the bitstream.

8.3 GALI Configuration Environment 55

8.3.4 Verification

Besides the items mentioned above, GALI-CE is also a verification tool that checks if
the schedule is feasible and the task definitions and timing features that the designer
provides are consistent, and no conflict exists. To do so, it can use SDF or UPPAAL
verification language for the timed-automaton formalism [49].

To verify the system’s correctness, one should check if the functional code executes
the static schedule the same as the analytical model implementation. This can be
online, meaning it is running on the system, or offline by comparing the execution
trace.

For the online verification or monitoring, GALI-CE can be extended to automatically
generate an “Observer” from the timed-automata specifications of the UPPAAL and
to check during the runtime if, while the system is running, the function execution
matches the generated timed-automata.

For the offline verification, GALI-CE compares the trace generated by the execution
of the code on the system with the golden model generated by the analytical model
of SDF tool. If the recorded trace does not match the specification, the user can fix
the flaw in the design in the early stage. Trace checking complements the verification
performed at the design time (e.g., Correct-by-Construction) before deploying on
the target platform.

56 Chapter 8 GALI Simulation

Target Implementation 9
In this section, we apply the approach from Section 8 to our Multirotor use case
and present how we can define the platform and tasks, configure the target design,
verify and validate the generated system, and perform the test on the implemented
design which is the goal of the Section 10.

Items that are explained in this chapter are products of GALI-CE toolchain. It
provides an API for a time-triggered C++ library to define platform, tiles, tasks, and
communication channels. All the necessary supporting files will be generated based
on the target platform.

Figure 9.1 shows an overview of the GALI-CE toolchain when applied to our multi-
rotor use case. On the one hand, it deals with the actual implementation for both
HIL and VPIL setups, such as a set of files to be completed for the implementation
of the system, a global GALI scheduler for the simulator, and the complete Vivado
project as well as all necessary binaries.

On the other hand, it supports verifying the timing requirement for the configuration
and validating and verifying the generated system. In the following, we describe
different parts of our configuration environment.

9.1 Instantiations & Definitions

As mentioned in Section 8.3, GALI-CE frontend offers a Graphical User Interface
(GUI) based on the Eclipse Modeling Framework (EMF) to define and model the
system. The front end generates all the necessary files and placeholders to be
extended by the user.

The front end asks for the task’s name, start time, associated processor, and pe-
riod. It generates a flattened hyper-period as a list to be executed infinitely by
the processor. Listing 9.1 shows the generated tasks list (tuple of (timestamp,
task_function)) associated with the flight processing unit consisting of the follow-
ing tasks: Task_sensor_processing, Task_remote_processing, Task_controller.

57

TT Meta Model

System Model

TT C++
Library

TT Non-Functional Implementation
Code

integration

Functional Code

Model

Implementation

Process

generate

Implementation

Virtual Platform

Func.Impl.

GALI Schedule

T1

T2 T3

T5

T6
Start

T4

Host Flavor

GALI Flavor
Target Platform Flavor

Target Platform

PE 2

Peripherals

PE 1

Host Platform

x86

I/O

Figure 9.1.: Experimental Flow
Trace of the simulation is compared against the trace of timed automata
representation of timing requirement to validate the output

1 task_execution tasks [] = {
2 // Period 1
3 {601 , & Task_sensor_processing }, {676 , & Task_remote_processing },
4 {695 , & Task_controller },
5 // Period 2
6 {2601 , & Task_sensor_processing }, {2676 , & Task_remote_processing },
7 {2695 , & Task_controller },
8 ...
9 // Period 10

10 {18601 , & Task_sensor_processing } ,{18676 ,& Task_remote_processing },
11 {18695 , & Task_controller }
12 };

Listing 9.1: Flight Processing Task Schedule

The same task schedule (tuple of (timestamp, task_function)) is generated for
the sensor processing unit (Listing 9.2) with the following tasks: Task_read_imu,
Task_start_mag, Task_voting, Task_write_motors, Task_read_bu, Task_read_mag,
Task_read_remote_ctrl (Task_voting is not implemented, we kept it for back-
ward compatibility with the previous implementation with triple-modular redun-
dancy).

For each task mentioned in the task list, there are also a header file .h and imple-
mentation file .cpp generated that the system designer should complete. Listing 9.3
shows one example of a task function (here is Task_sensor_processing) generated
by the tool.

1 task_execution tasks [] = {
2 // Period 1
3 {0, & Task_read_imu }, {601 , & Task_start_mag },

58 Chapter 9 Target Implementation

4 {1180 , & Task_voting }, {1220 , & Task_write_motors },
5 // Period 2
6 {2000 , & Task_read_imu }, {3180 , & Task_voting },
7 {3220 , & Task_write_motors },
8 ...
9 // Period 10

10 {18000 , & Task_read_imu }, {19180 , & Task_voting },
11 {19220 , & Task_write_motors }
12 };

Listing 9.2: Sensor Actuator Unit Task Schedule

Tasks classes inherit from the task_base class and the instances should implement
the do_main() method which is the functionality of the task.

1 /*
2 * task_sensor_processing .cpp
3 * Auto generated by the Frontend
4 */
5 # include " task_sensor_processing .h"
6 platform_error Task_sensor_processing :: do_main ()
7 {
8 receive_sensor_data_message (& sensor_input_data);
9

10 /* TODO Add the functional code */
11

12 return platform_error :: PLATFORM_NO_ERROR ;
13 }

Listing 9.3: Auto-generated template for Sensor Processing Function

Next to tasks, GALI-CE generates a schedule for messages as well. On the hardware
implementation, the primary function uses this list of timestamp and programs the
message timer associated with each processing unit. Listing 9.4 shows the schedule
for sending messages on the sensor-actuator unit.

1 task_message_set taskMessageSets [] = {
2 {541} , // For period 10
3 {2541} , // For period 1
4 {4541} , // For period 2
5 ...
6 {16541} , // For period 8
7 {18541} // For period 9
8 };

Listing 9.4: Message Schedule For Sensor Processing Unit

9.1 Instantiations & Definitions 59

To have a better understanding of how all these tasks, timers, and lists work together,
Listing 9.5 shows the primary function of the processing unit. It is the same for both
flight controller and sensor-actuator units.

1 # include " xparameters .h"
2 # include " network_interface .h"
3 # include " app_def /app.h"
4 # include " xtmrctr .h"
5 # include "xintc.h"
6 # include " drivers / timers / task_timers .h"
7 # include " drivers / timers / message_timers .h"
8

9 int currentTaskIndex = 0;
10 task_execution * currentTask = 0;
11 int currentMessageIndex = 0;
12 task_message_set * currentMessage = 0;
13 int newTask = FALSE;
14 XIntc InterruptController ;
15

16 void task_timer_interrupt () {
17 currentTask = &tasks[currentTaskIndex];
18 currentTaskIndex ++;
19 if (currentTaskIndex >= TASKS_SIZE)
20 currentTaskIndex = 0;
21 newTask = TRUE;
22 }
23 void message_timer_interrupt () {
24 currentMessage = & taskMessageSets [currentMessageIndex];
25 currentMessageIndex ++;
26 if (currentMessageIndex >= MESSAGES_SIZE)
27 currentMessageIndex = 0;
28 programMessageTimer (taskMessageSets [currentMessageIndex]. sendTime);
29 }
30 int main () {
31 initHardware ();
32

33 if (tasks[currentTaskIndex]. startTime > 0) {
34 programTaskTimer (tasks[currentTaskIndex]. startTime);
35 } else {
36 task_timer_interrupt ();
37 }
38

39 if(MESSAGES_SIZE > 0)
40 programMessageTimer (taskMessageSets [currentMessageIndex]. sendTime

);
41

42 for (;;) {
43 if (newTask) {

60 Chapter 9 Target Implementation

44 newTask = FALSE;
45 programTaskTimer (tasks[currentTaskIndex]. startTime);
46 (* currentTask). do_main ();
47 }
48 }
49 return 0;
50 }

Listing 9.5: Main Function of Processing Element

Another important output of the GALI-CE is the global GALI scheduler. Assuming
SP representing Sensor Processing (ID = 0) and FC for Flight Controller (ID = 1)
processing elements, Listing 9.6 depicts the tuple (ProcdID, timestamp). It is a flat
schedule built from the hyper-period. Therefore it has timestamps for ten periods
because the hyper-period, in this case, is made out of 10 basic periods.

1 # define SP 0 // Sensor Processing Processor
2 # define FC 1 // Flight Controller Processor
3

4 struct Schedule {
5 int ProcId ;
6 int TimeStamp ;
7 };
8

9 // Number of events in a schedule
10 const Uns32 NUM_EVENT = 65;
11 const Uns32 HYPER_PERIOD = 20000;
12

13 struct Schedule Schedules [] = {
14 /* ProcessorID TimeStamp */
15 // Period 1
16 { SP , 0 }, // Task_read_imu
17 { SP , 601 }, // Task_start_mag
18 { FC , 601 }, // Task_sensor_processing
19 { FC , 676 }, // Task_remote_processing
20 { FC , 750 }, // Task_controller
21 { SP , 1180 }, // Task_voting
22 { SP , 1220 }, // Task_write_motors

Listing 9.6: GALI Global Task Schedule

9.2 Verification

GALI-CE can check the feasibility of the input schedule and compare traces for
verification and validation of the implemented system. We use Timed Automata (TA)

9.2 Verification 61

to capture the behavior of the time-triggered scheduler and to analyze the actual
timing progress and activation instants of tasks.

Timed automata and model-checkers like UPPAAL[49] are very suitable for cap-
turing and verifying the behavior of time-triggered systems since concurrency and
synchronization are modeled explicitly. The timed automaton directly implements
the timing requirement of the input schedule. We derive a functional trace by the
UPPAAL tool, which gives the activation instants of the tasks within a hyperperiod
and their delay time (annotated WCETs). We then use this trace as a reference trace
to check the validity of activation instants in the instruction accurate simulation
trace (see Figure 9.1-UPPAAL for trace verification tool).

For simplicity of presentations, the notation used for the UPPAAL model combines
T with the task number, e.g., T1, which represents Task_read_imu which is used
in our C++ implementation. Table 9.1 provides a mapping of the timed-automata
locations and different tasks. All the tasks in the multirotor functionality are shown
together with their WCET in Table 9.1. Task, T1 to T8, belong to the sensor actuator
unit, and T9 to T11 are the controller’s duty. The next column in the table shows
the frequency of execution of each task in the hyper-period, and the last column
depicts how long each task would take to finish in the worst case.

Figure 9.2 depicts different tasks of the Table 9.1 from the time-triggered schedules,
including Microblaze0 (MB0), Microblaze1 (MB1), and the communication infras-
tructure of MB0 (consisting of VC1 and VC3) and MB1 (consisting of VC2). In the
Figure 9.2, the activation time of tasks and their maximum duration (WCET) are
expressed by the clock variable t. For instance, T1 is activated at time 0ms and is
finished at time 55ms.

There is also conditional activation of tasks for tasks with less execution frequency. It
means that they are not executed in every period, and therefore they have additional
guard conditions on the hyper-period counter variable i. For example, while T1 is
activated in every period, T2a is activated each 10th period. The tasks that will not
be executed in the current period are so-called idle. They are denoted in Figure 9.2
as Idle_Tx and are expressed with a start and an end time.

All the time slots dedicated to each task are based on the WCET, which is the
maximum needed time to finish the execution of the task. Since most of the tasks do
not use all the time slots, we will have slack time (idle CPU), which is denoted by
Slackx and is expressed with a start and an end time.

62 Chapter 9 Target Implementation

TA Function/Task Period WCET
location [ms] [ms]
T1 Read Gyroscope & Accelerometers 2 0.541
T2a Read Magnetometer (start measurement) 20 0.091
T2b Read Magnetometer (read sensor data) 20 0.273
T3 Read Barometer 10 0.212
T4 Read Remote Control 20 0.049
T5 Read Battery Guards and Temperature 20 0.011
T6 Write Remote Control Display 2 0.100
T7 Voting (not used here) 2 0.100
T8 Set Motor Values 2 0.851
T9 Sensor Processing 2 0.075
T10 Remote Processing 2 0.019
T11 Flight Controller 2 0.035

Table 9.1.: Multirotor’s Tasks

The described output generated from the UPPAAL model-checker in this section and
the virtual platform are compared against each other in Section 11.3 which proves if
the implementation satisfies the definition.

9.2 Verification 63

(a) Microblaze0 (MB0) with start condition t := 0 and i := 1

(b) Microblaze1 (MB1) with start condition t := 0

(c) NoC VC1 (d) NoC VC3 (e) NoC VC2

Figure 9.2.: time-triggered schedules for used HW resources (expressed as timed automata)

64 Chapter 9 Target Implementation

Part III

Evaluation and Results

Overview 10
The evaluation sections are structured along with the contributions of this the-
sis. In this section, the definition of the evaluation goals is presented. Next, the
setup needed to perform the evaluation and measurement infrastructure for both
Hardware-in-the-Loop and Virtual Platform-in-the-Loop is explained. The results
are then used to verify and validate the concept, tooling, and infrastructure. The
evaluation section focuses on the GALI technique.

In Section 11.1, the Hardware-in-the-Loop experiment is performed to gather the
golden result for the comparison of the accuracy of VPIL prototyping. Section 11.2
gives an overview of the accuracy of GALI in comparison to the different virtual
platform scheduling against HIL as a golden result. Section 12 concludes this
thesis by comparing different experimental results and comparing the accuracy and
benefit of this thesis’s contribution, i.e., GALI simulation technique, and GALI-CE
framework.

10.1 Goals of the Evaluation

The evaluation has been done with different setups; Virtual Platform-in-the-Loop
(VPIL) and Hardware-in-the-Loop (HIL). A flight simulation software has created a
deterministic and reproducible simulation environment.

The main goal of the evaluation is to see, first of all, how accurate is the GALI model
in comparison to the actual hardware. Second, we would like to know the accuracy
of other simulation techniques. Furthermore, we are interested in figuring out the
speed-up factor of the GALI when it is used instead of a standard instruction accurate
(IA) simulator with or without timing models.

67

10.2 Evaluation Setup

This section gives an overview of all the elements used in our HIL and VPIL exper-
iments. We explain the setups by introducing different ingredients used in other
evaluation flows.

10.2.1 AeroSim Flight Simulator

AeroSIM RC[50] is a full-function Radio Control (RC) flight simulator system that is
capable of providing a simulated environment to fly RC aircraft. AeroSIM RC offers
a simulation of several types of RC model aircraft, including airplanes, helicopters,
and multirotors such as a quadcopter and hexacopter.

The main feature that sets this simulator apart is the wide variety of configurable
multirotor simulations. It supports research and development through third-party
Dynamic-Link Library (DLL) which runs inside the simulation and allows for control
of the model via software. OFFIS has developed a SimLink client DLL that exchanges
the data between the AeroSIM RC flight simulator and the external remote con-
troller. It converts the values received from the Ethernet to AeroSim-understandable
commands.

AeroSIM RC lets the user record and replay the remote control commands for later
playback. It helps us to be able to reproduce the same flight commands over and over
for different settings. A screenshot of the simulation environment for a multirotor is
shown in Figure 10.1.

10.2.2 Multirotor

A multirotor, in our case a quadcopter (a multirotor with four rotors) shown in
Figure 10.2, is a rotorcraft that moves by the relative speed of each motor to the
thrust and torque of each engine.

The rotors provide six degrees of freedom which refers to the freedom of movement
in a 3D space as shown in Figure 10.3a. The multirotor can freely change position to
forward/backward, up/down, and left/right axes. The orientation can also change
through rotation about the three axes, yaw, pitch, and roll. These directions are
considered in the design of our multirotor as illustrated in Figure 10.3b.

68 Chapter 10 Overview

Figure 10.1.: Screenshot of AeroSIM RC multi-rotor simulation environment

Figure 10.2.: Quadcopter developed in OFFIS [Copyright OFFIS]

In the controller of the multirotor, different variables impact the movement of the
vehicle. Different sets of sensors give the controller the necessary knowledge about
its environment. The pilot tells the controller hot to move the multirotor by changing
the output of the remote controller. The controller is just a Proportional Integral
Derivative (PID) that regulates the motor values based on the remote control signals
and the environmental variables. Figure 10.3b shows all the mentioned inputs and
outputs of the flight controller more specifically.

The system accesses the sensors and the motors through a 400kHz I2C protocol and
receives instructions from the remote through a 50Hz Pulse-Position Modulation
(PPM) signal. From reading the sensors until returning the motor set points, the
control loop is executed in 2ms at a frequency of 500Hz. Our simulation setup is,

10.2 Evaluation Setup 69

(a) Six Degrees of freedom of a multirotor1

Multirotor

ACC_X/Y/Z

GYRO_X/Y/Z

MAG_X/Y/Z

HEIGHT REAR_POINT

FRONT_POINT

LEFT_POINT

RIGHT_POINT

SE
N
SO

R
AR

R
AY

THRUST

YAW

ROLL

NICK

SYSTEM_STATE

HOLD_ALTITUDE

R
EM

O
TE

C
O
N
TR

O
L

M
O
TO

R
S

(b) Input/Output of the Multirotor

Figure 10.3.: Qaudcopter overview of maneuver capabilities

SENSOR
ACTUATOR

FLIGHT
CONTROLLER

MPU_9150

AK8975

MPL3115A2

 I²C
Connection

SENSORS & RC
VALUES

MOTOR POINTS

MULTIROTORPPM

SE
N

SO
R

S

MOTORS

REMOTE
CONTROL

Figure 10.4.: Multirotor’s architecture overview

however, slower. It takes in the worst-case 40ms until the adapter board sends a value
and receives the answer from the PC. Therefore, we implemented a synchronization
mechanism on the multirotor and adapter boards to block the system until we ensure
the values are consistent.

The design decomposition of our multirotor is presented in Figure 10.4. The multi-
rotor system consists of a flight controller and a sensor-actuator unit, each imple-
mented on a separate Microblaze processor. They are communicating with each
other via a communication interconnect that implements time-triggered communica-
tion through unidirectional VCs. The sensor processing is the I/O processing element
and is connected to all external sensor and actuator interfaces. It transfers the
processed flight data to the flight controller. The flight controller executes the main
computation tasks, uses the sensor-actuator unit’s data, and delivers the final motor
set points. Figure 10.5 illustrates the building blocks of a processing unit and gives
an overview of all the safety-critical functions used in the multirotor Figure 10.4.

1https://fr.wikipedia.org/wiki/Fichier:6DOF_en.jpg

70 Chapter 10 Overview

MPU9150
[IMU]

Read
Sensors

Motor Drivers

MPL3115A2
[BU]

Remote Control

Filter
Values

Scale
Values to

Units

Compute
Attitude

Compute
Altitude

Remote
Processing

Attitude
Controller

Altitude
Controller

Mix
Motor
Values

Send
Motor
Values

Sensor Processing Flight Controller

Overall maximum execution time: 2ms 500Hz frequency

Read
Remote

Overall maximum execution time: 20ms 50Hz frequency

Remote processing

Figure 10.5.: Functional Units used in Multirotor [51]

Figure 10.6.: Digilent Zedboard used for multirotor

The board chosen for it is ZedBoard Zynq-7000 ARM/Field-Programmable Gate
Array (FPGA) System-on-a-Chip (SoC) development board as shown in Figure 10.6.
The criterion for choosing this board is the capacity of chips concerning the design.
ZedBoard is a Xilinx Zynq-7000 All Programmable SoC that contains all the nec-
essary interfaces and supporting functions to enable a wide range of applications.
Each of these processing units is mapped to a specific Microblaze processor on
the FPGA. MicroBlaze0 (MB0) is the sensor and actuator I/O processing element,
and MicroBlaze1 (MB1) executes the main computation tasks of the flight control
application. Figure 10.7 depicts the mapping of the multirotor to the hardware
platform.

MB0 is connected to all external sensor and actuator interfaces. Its primary respon-
sibilities are executing the Read Sensors, Read Remote, and Send Motor Values task.
The sensor and remote data are then transferred to MB1 via VC1. MB0 receives the
computed motor set points via VC2 and transfers them to the motor drivers via an
I2C bus.

MB1 consists of Sensor Processing, Remote Processing and Flight Controller. It uses
the sensor and remote data received from MicroBlaze0 via VC3 and delivers the

10.2 Evaluation Setup 71

Sensors (2xI2C)
(MPU9150 [IMU] &
MPL3115A2 [BU])

Read
Sensors
(500Hz)

Sensor
Processing

(500Hz)

Flight
Controller

(500Hz)

Set
Motor

(500Hz)
Motors (I2C)

MB 0

Remote
Processing

(500Hz)

Read
Remote
(50Hz)

VC1

Remote Control
(PPM)

VC2

VC3

MB 1

Figure 10.7.: Multirotor mapped tasks [51]

final motor set points. Virtual Channels (VC) are a TDMA bus that implements
time-triggered communication through unidirectional virtual channels.

The following sections explain processing units further and present their consisting
functions.

Sensor Processing

The sensor processing unit is the controller’s interface to the outside world. It
interfaces on the one hand with the I2C bus to the sensors and actuators and on the
other hand with the PPM interface for receiving remote controller commands.

A decomposition of the sensor actuator component is given in Figure 10.8. The
sensor actuator component is implemented on a Microblaze microprocessor system
like the flight controller. The Microblaze is connected to local memory, two timers for
messages and tasks, an interrupt manager, and a peripheral manager. The peripheral
manager allows it to access memory, General-Purpose Input/Output (GPIO), timer,
I2C bus, and PPM receiver and interpreter.

The sensor actuator partition provides the processed sensor values and PPM messages
to the flight controller and receives the motor set-points values back. The motor
values are then transferred to the multirotor’s actuators (i.e., motors) through I2C
protocol.

As shown in Figure 10.7, There is VCs between flight controller and sensor-actuator
units. The sensor actuator sends all the values as separate specific messages accord-
ing to a message schedule in a time-triggered fashion to the flight controller. The

72 Chapter 10 Overview

SENSOR ACTUATOR

I²C MASTER

PPM DECODER
R.C.

VALUES
REGISTER

PPM

I²C BUS COMMUNICATION
WITH FLIGHT
CONTROLLER

SENSORS
VALUES

MOTORS
SET POINTS

SENSORS &
R.C. VALUES

MOTORS
SET POINTS

R.C. VALUES

Remote Control
Values

Figure 10.8.: Decomposition of sensor actuator component

time-triggered fashion specifies when a task starts when a message will be sent, and
when the received message from the flight controller should be read.

The sensor processing unit has three main tasks, which are mentioned below.

Read Sensors: This component reads data from the Inertial Measurement Unit
(IMU) and the Barometric Unit (BU) sensors every 2 ms and transmits the
values to the local memory for sensor data processing. The sensor data include
ACC_X/Y/Z for current acceleration, GY RO_X/Y/Z for current attitude,
and MAG_X/Y/Z for current magnitude, current height, thrust control, yaw
control, roll control, nick control. They are used to compute the attitude and
the altitude.

Read Remote: This component requests the current value of the remote control
every 20 ms and transmits it to the local memory for the remote control
pre-processing. The remote control receiver has an update rate of 20 ms.

Send Motor Values: This last component transmits the computed motor values
to the motor drivers over the provided hardware interface. Motor set-points are
REAR_POINT , FRONT_POINT , LEFT_POINT , andRIGHT_POINT
(front, left, rear, and right motor points).

10.2 Evaluation Setup 73

COMMUNICATION
WITH SENSOR

ACTUATOR

DECODING OF THE
VALUES

FLIGHT CONTROLLER

COMPUTATION OF MOTOR
SET POINTS

COMPUTATION PART
RAW SENSORS

AND R.C. VALUES

MOTOR SET POINTS

DECODED
SENSORS
AND R.C.
VALUES

COMPUTATION OF
ATTITUDE AND ALTITUDE

ATTITUDE
AND

ALTITUDE
VALUES

SENSORS AND R.C.
VALUES

MOTOR SET POINTS

Figure 10.9.: Decomposition of Flight Controller

Flight Controller

The flight controller is the central part of our multirotor. It is connected to local
memory, two timers for messages and tasks, an interrupt manager, and a peripheral
manager. The peripheral manager allows it to access memory, and GPIO, and
timer.

A decomposition of flight controller is given in Figure 10.9. It is another represen-
tation of the flight controller (MB1) in Figure 10.7 which has substitute function
names with their simple main roles and the order of execution.

When MB1 receives the message (VC1, VC2, VC3), the values are decoded to make
the raw values understandable for the controller. After decoding, the next step is
to compute the attitude and altitude concerning the newly arrived inputs. Then,
the computation of the motor set-points takes place. Once the calculation of the
motor set-points is done, the motor set points are sent back to the sensor actuator
component via the corresponding VC.

Different functions of the controller, as it was shown in Figure 10.5 and explained in
the previous paragraph, can be further formalized as follow:

Sensor Processing: The available sensor values are processed to get the current
attitude and altitude. In sub-components, filters are applied to smoothen the
sensor values over a short time and scale the values to fit their physical units,
e.g., [◦/s], [m/s2].

Remote Processing: Similar to the sensor values, the remote values are processed
to generate the needed set points for the controllers. This component scales
the remote values to fit the physical units for the set points.

74 Chapter 10 Overview

Flight Controller: The Flight Controller component consists of the controller for
the attitude and the altitude. The attitude controller contains three PID
controllers for the nick, roll, and yaw axes. The altitude controller has one
PID controller for the global Z-axis (height), with a modified integral part to
avoid overshooting and undershooting of the system. All four controllers are
also influenced directly by the speed given by the sensor values (for rotation
axes, the values of the gyroscopes, and the height, the first integral of the
acceleration along the global Z-axis). All controllers have combined position
and speed controllers. This gives the system a much more stable behavior. As
inputs, all controllers get their current measured values and the adjusted set
points to compute the error and control the outputs. The last component in
this sub-chain uses the output values of the controllers and mixes these with
the four motor values.

10.2.3 Adapter Board

The board chosen for the adapter board is Zybo Zynq-7000 ARM/FPGA SoC de-
velopment board as shown in Figure 10.10. It has enough capacity for the design.
The Zybo is the smallest member of the Xilinx Zynq-7000 family, the Z-7010. It is
based on the Xilinx All Programmable SoC architecture, which tightly integrates a
dual-core ARM Cortex-A9 processor with Xilinx 7-series FPGA logic.

The adapter board converts the values from the flight simulator via Ethernet to an
I2C protocol and abstracts away the flight simulation to the multirotor set up as if
the flight controller board is in the operational field. Instead of flying the actual
physical quadcopter (Figure 10.2), with the help of the adapter board, we can use
precisely the same as a HIL setup connected to a flight simulator which saves a lot
of time and effort.

Figure 10.10.: Digilent Zybo used for adapter board

10.2 Evaluation Setup 75

ARM SYSTEM
(LINUX)

ADAPTER BOARD

BU
BRAM

IMU BRAM

MOTOR
BRAM

BU
MicroBlaze
SYSTEM

IMU
MicroBlaze
SYSTEM

MOTOR
MicroBlaze
SYSTEM

FLIGHT
CONTROL
SYSTEM

Ethernet

I²C

I²C

I²C

REMOTE
CONTROL

PPM

AXI

AXI

AXI

AXI

AXI

AXI

FLIGHT SIMULATOR
(AeroSim RC)

Figure 10.11.: Schematic representation of the adapter board’s architecture

The Adapter board handles the I2C communication between the control system and
the flight simulator. It is necessary to have the adapter board because there is no
other way to realize the I2C communication between the sensor-actuator system
of the controller and the flight simulator without altering the design and the code.
Either the controller board should connect to the flight simulator via Ethernet, or a
middle device is needed to translate Ethernet to I2C.

A schematic representation of the adapter board is given in Figure 10.11. The
adapter board uses a Microblaze microprocessor to transfers= the values inside the
Block-RAM (BRAM) memory to the flight control system and vice-versa. On the
ARM processor, an embedded Linux exchanges the values from the flight simulator
to the BRAM and performs the necessary data conversion. The system also includes
a PPM manager that sends the PPM signal (which contains the remote controls) to
the flight control system. The Linux is booted from an SD card on the Zybo board.
This SD card also contains the bitstream and elf binary files for the FPGA.

It is essential to note the name of the different parts of the system. The Barometric
Unit (BU) represents the MPL3115A2 sensor (height and temperature), the Inertial
Measurement Unit (IMU) represents all the other sensors, and the Motors represent
the four different motors. All those parts simulate the behavior of the sensors as I2C
slaves of the flight control system’s sensor actuator.

In the Xilinx IP Catalog, there is no I2C IP core which works as a slave. They
are designed so that users would like to use them to access an external sensor, so
some work is needed to use them as a slave that acts as a sensor. The code on
the Microblazes of the adapter board handles the interrupt coming from the I2C
components. It then, depending on the kind of sensor, whether it is output or input,
reads or writes from/to BRAM.

76 Chapter 10 Overview

The software running on the Linux operating system of the adapter board works as
a mediator between the virtual world and the actual hardware. At the heart of the
software, there is SimLink client software that exchanges the data from the AeroSIM
RC flight simulator to the programmable logic of the board and from programmable
logic back to the AeroSIM RC via Ethernet. This software is also responsible for
initiating the ping-pong synchronization protocol by waking up the flight controller
board when sensor values are ready to be sent to the controller board.

10.2.4 Virtual Platform

Software virtual platform provides a prototyping infrastructure for the software
developers. It is an instruction-accurate representation of the target hardware and
implements only the needed functionality. Before we test our implementation in
the field, we use a VP setup to be able to debug the design easier and avoid the
hardware complexity.

In software development, to run the code in an embedded system, an ISS equipped
with a debugger is used. For the systems with multiple processors/cores, though,
only one single ISS is not enough. What is needed is a platform model that includes
models of all the processors or cores, the peripherals, and behavioral components
that the software communicates with. This is what it is called a Virtual Platform. A
Virtual Platform is a software-based system that can fully mirror the functionality
of an SoC or a board. The VP abstracts all the hardware implementation details
with the help of fully functional models of the hardware building blocks to provide
an executable representation of the hardware to software developers and system
architects.

VPs have the following advantages:

1. It enables software development at the early stage of the development of
silicon, RTL simulation, or FPGA prototype availability.

2. It provides high debuggability and control over the design, which is not
available or very difficult in the physical hardware. It is not possible to stop
the platform and un-intrusively inspect the components at the hardware level.
However, at the VP level, it is possible to stop the platform at any time and
take a look at all the different parts of the system.

10.2 Evaluation Setup 77

3. It provides determinism in the form of repeatability of test cases. The behavior
is the same in each run. However, it is difficult to reproduce an intermittent
problem or a timing-related problem in hardware.

4. It can be shared across different teams during development, and there is no
need to wait until production. The discussions also bring an excellent common
ground between software and hardware developers.

We have chosen Imperas OVP as our simulation platform. OVP virtual platform
provides an environment to allow software debugging and analysis and also helps to
test the system configuration independent of the hardware platform. OVP has all
the features that are desired for us, such as a rich set of APIs and custom scheduling
feasibility. OVP provides libraries of processor and behavioral models and APIs for
building your processors, peripherals, and platforms [42].

OVPsim is a critical component of the OVP initiative. OVPsim is a multiprocessor
platform emulator (full-system simulator) used to run exact production binaries of
the target hardware. It uses dynamic binary translation technology to achieve high
simulation speeds [42]. In the following, three essential elements in the VP are
discussed better to understand the underlying VPIL infrastructure.

1. QuantumLeap

In the simulation of the multicore platform, time moves forward in quanta.
During each quantum, processors may run in parallel in independent native
threads, but they are all synchronized at the quantum end before the next
quantum starts.

However, any processor may cause the simulation to revert to synchronous
mode during a quantum if the simulator detects that synchronous operation
is required. All other processors are safely stopped in such a case while the
atomic action is carried out on the processor requiring synchronization. In
other words, quantum is the simulation step.

OVP uses quantum technology called QuantumLeap for virtual platform simu-
lation acceleration. A parallel simulation performance accelerator provides a
fast virtual platform software execution speed. It improves the simulation of
multicore embedded processors System-on-a-Chip hardware platforms by exe-
cuting all in parallel rather than the existing single-threaded virtual platform
simulators.

78 Chapter 10 Overview

QuantumLeap synchronization algorithm minimizes the impact of communica-
tion between the parallel cores, allowing them to scale across available host
PC processors as much as possible.

2. MIPS

Another parameter called MIPS is used to specify the nominal processor speed
in millions of instructions per second. This nominal MIPS rate is used to
apportion run time between processors in a multiprocessor simulation.

3. Interception Library

OVP models are created using C/C++ APIs. One of the main OVP APIs is VMI
which provides the processor modeling. These API functions offer the ability to
describe a processor’s behavior easily. A processor model written in C using the
VMI decodes the target instruction to be simulated and translates this to native
x86 instructions that are then executed on the PC. There is an interception
mechanism enabling emulation of calls to functions in the application runtime
libraries without requiring modification of either the processor model or the
simulated application [42].

In our implementation, we use the VMI API to intercept the code execution
to enforce our code annotated scheduling. The intercept library uses the
debug interface of the model and uses conditions in the code execution as a
breakpoint.

Semihosting is the term used for opaquely intercepting calls to specific functions,
performing the requested work using the host system resources, and returning
data as if the function were performed on the simulated system.

With the help of the interception library, we break the code execution on the
timer interrupts received from the program when tasks should be executed, or
messages arrive or should be sent. Then in the interception function, we set
the time and return the function to the normal execution.

10.2 Evaluation Setup 79

Experiments 11
This section performs a flight simulation with the Hardware-in-the-the-Loop (HIL)
and the Virtual Platform-in-the-Loop (VPIL) setups. The HIL experiment serves
as our reference model. We evaluate our VPIL by comparing it to the reference
model. We examine the accuracy of the GALI approach in comparison with other
instruction-accurate simulation techniques concerning the reference model.

11.1 Hardware-in-the-Loop

The Hardware-in-the-Loop (HIL) setup, as illustrated in Figure 11.1, consists of 1)
ZedBoard that implements the flight controller and sensor acquisition, 2) AeroSim
RC flight simulation software which runs on a PC and provides the simulation
environment and 3) Zybo board as an adapter which is connected from one side
via Pmod connection to the Zedboard and from the other side via Ethernet to the
flight simulation software. All elements are discussed in details in the evaluation
setup (Section 10.2). Figure 11.1 depicts the experimental setup for the evaluation
of the reference simulation model as the golden model for the evaluation of the
GALI simulation accuracy.

The flight controller is working with a 500Hz clock frequency, and therefore, every
2ms new motor set-points will be calculated. This update rate allows the system
to react quickly to environmental or set point changes. Our simulation setup can

AeroSim RC TCP
Socket Server Plugin

(Co-Simulation)
Ethernet

Computer 1: Flight Simulator Host

Pre-Recorded RC
Commands

3D Trajectories and
Raw Sensor Date
with Time Stamps

AeroSim RC

Figure 11.1.: HIL Setup for the Evaluation

81

Flight Simulator
(AeroSimRC)

AdapterBoard
(Zybo)

Flight Controller
(Zedboard)

Send environment data
AeroSim blocked

get sensor data

send motor values

self suspend afterwardsTi
m

e
 f

o
r

fl
ig

h
t

co
n
tr

o
lle

r
to

 c
o
m

p
le

te

Running

Stopped

Figure 11.2.: Hardware-in-the-Loop Co-Simulation Synchronization Schema

not contend with 500Hz, and it is several orders of magnitude slower. It takes more
than 40ms until the adapter board sends data and receives the reply from the PC
(only the Ethernet connection part).

Hence, we implemented a synchronization mechanism on both the multirotor and
adapter boards to block the simulation to ensure consistent values. Without the
synchronization, the motor set-points were sent back to the flight simulator belonging
to the remote commands from more than 40ms ago. This so-called ping-pong
synchronization mechanism in the HIL is illustrated in Figure 11.2.

For implementing the ping-pong mechanism, the controller and the sensor processing
units on the controller board (ZedBoard) are equipped with a clock gating module.
It is used just for the HIL setup and is not part of the multirotor logic. It slows down
the hardware board with the speed of the slowest element in the design. Although
it slows down the simulation speed for synchronization, it produces correct results.
Clock gating IP is a module with a clock buffer from Xilinx BUFG library component.
BUFGCE is a general clock buffer with clock enable. It is a clock buffer with one
clock input, one clock output, and a clock-enable line [52]. With the help of this
component, we can freeze the ZedBoard and halt the system state to synchronize
with flight simulation. At the end of each period, after executing the last task on
each unit, a clock gating function is called on both task’s timer and message’s timer
of each unit. Since the timer is frozen, the time will not proceed for the tasks,

82 Chapter 11 Experiments

although other parts of the design, for instance, I2C modules and the Microblaze
auxiliaries, are still clocked, although they have no task to process. The system is in
a semi-frozen state until a wake-up command is issued from the adapter board to
waken up the controller board to read the new sensor values and calculate the new
motor set-points.

On the adapter board, the flight simulator sends the environmental variables via
Ethernet, while the flight controller is in the frozen mode via clock gating IP and
waits for the motor values. The adapter board translates the received values from the
flight simulator software via Ethernet to I2C protocol. It then activates the clocking
of the ZedBoard by sending a wake-up signal and blocks the flight simulation in a
busy loop until new motor data arrive. As soon as the flight controller computes
the corresponding motor set points, it sends them back to the adapter board via I2C
lines and turns its clock source off. The adapter board transfers the newly computed
motor values to the flight simulator and waits until it gets the new sensor values
from the simulator. It then repeats the same procedure over and over again.

To perform the experiment, pre-recorded remote control commands from a successful
takeoff, hovering, and landing are logged in a .csv file and are fed to the simulator.
As soon as the connection is established, the simulator starts reading the remote
control commands from the CSV log file and turns on the engines. AeroSim RC
exchanges the sensor values and remote controller commands with the motor set-
points from the adapter board.

After replaying the saved log run is finished on Computer1 (Figure 11.1) in AeroSim,
all the raw sensor data with the timestamps of this simulation run are dumped
in another log file. The dump file contains all the necessary data to build a 3D
trajectory visualization of the flight path. We take these 3D trajectories as our golden
model and examine the accuracy of different virtual platform simulation scheduling
techniques concerning this trajectory from the HIL setup. Figure 11.3 shows 10
execution of the HIL experiments. Differences in the flight trajectories are because
of the sensor noise in the flight simulation environment.

11.2 Virtual Platform-in-the-Loop

Virtual Platform-in-the-Loop (VPIL) consists of two computers connected via Eth-
ernet. Figure 11.4 depicts the experimental setup for the evaluation of the GALI
simulation technique. On one system, Computer1, the AeroSim RC flight simulator is

11.2 Virtual Platform-in-the-Loop 83

Figure 11.3.: 3D flight trajectories from HIL experiment

AeroSim RC

AeroSim RC TCP
Socket Server Plugin

(Co-Simulation)

OVP TCP Socket
Client

(Co-Simulation)
Ethernet

OVP

MicroBlaze 0

I2C 0 (IMU)

I2C 1 (BU)

PPM (RC)

I2C 2 (Motor)
MicroBlaze 1

Flight Control

NoC

Sensor Processing

NI NI

Computer 1: Flight Simulator Host Computer 2: Virtual Platform Host
Execution time measurement

Pre-Recorded RC
Commands

3D Trajectories and
Raw Sensor Date
with Time Stamps

GALI Scheduler

Tile 0 Tile 1

Figure 11.4.: VPIL Setup for the Evaluation [51]

running, and on the other one, Computer2, the OVP virtual platform. The experiment
procedure is very similar to the HIL.

The experiment procedures in HIL and VPIL are similar. The adapter board is
implemented as an OVP software module (OVP TCP socket client) and initiates the
connection. The socket client translates all the I2C data from the controller board
and sends it to the flight simulator. Computer1, as shown in VPIL setup (Figure 11.4)
is exactly the same as in HIL setup (Figure 11.1).

On Computer1, the socket service plugin of the AeroSim RC is waiting for the con-
nection to be established. Pre-recorded remote control commands from a successful
takeoff, hovering, and landing are logged in a CSV file and are fed to the simulator.

84 Chapter 11 Experiments

Testbench
for VP

Virtual
Platform

Setting
sensors
values

Flight control
system execution

Computing and setting next
sensors values

Flight control
system execution

Computing and setting next
sensors values

Time

Figure 11.5.: Synchronization mechanism

As soon as the connection is established, the simulator starts reading the control
commands from the CSV log file and turns on the engines. AeroSim RC exchanges
the sensor values and remote controller commands with the motor set-points from
Computer2. The simulation is performed in a blocking fashion, which means that
the simulator halts the simulation until it gets the next motor set-points and then
proceeds to the next timestep. Figure 11.5 visualizes this synchronization process.
Sensor values are set in the flight simulator. The virtual platform receives the
environmental variables, executes the flight control system, and sends the motor
values to the simulator. The flight simulator repeatedly generates the next patch of
the sensor values, and the virtual platform generates the corresponding motor set
points.

On computer2, the OVP TCP socket client initiates the connection. All the I2C data
reads and writes go through the socket client. In this setup, the default scheduler of
the OVP is replaced with the GALI scheduler (explained in Section 8). The binaries
running on OVP are labeled for GALI scheduling, and the execution order is applied
based on the task timestamps. On the virtual platform, GALI scheduler replaces the
task’s and message’s timers with labels in the source code and executes each task
and sends a message based on the schedule, and sets the time corresponding to that
task or message.

After replaying the saved log run is finished on Computer1 in AeroSim, we used the
3D trajectories of each flight to compare the accuracy of a flight in a virtual platform
with different scheduling algorithms with a flight performed in the HIL setup.

We evaluate the viability of our approach by testing it on a fully functional safety-
critical flight control system for multirotor. In the evaluation of GALI, we are
only focusing on the safety-critical flight control function. In the evaluation, we are
interested in the functional behavior of the different simulator configurations and the
required simulation time. The following simulation models are used to compare the

11.2 Virtual Platform-in-the-Loop 85

accuracy of state-of-the-art simulation techniques in instruction accurate simulation
and to highlight the impact of the GALI:

1. ACA model: The Approximate Cycle Accurate (ACA) model use the OVP
default timing model. In this model, each processor has a specific MIPS.
We are using different MIPS rate and quantum size configurations in the
experiments to demonstrate their effect on the system behavior and simulation
time.

2. QCA model: The Quasi Cycle Accurate (QCA) model extends OVP towards a
cycle-accurate model [46]. It includes a model of the processor pipeline and
the memory interface.

The flight simulator records 3D flight trajectories for each simulation model men-
tioned above. Flight trajectory is a vector of recorded remote control data, translated
to a vector of set points for the PID controllers. Furthermore, the flight simulator
gets reference remote control data that defines the reference flight trajectory.

Figure 11.6 shows ten execution of flight simulation by using the GALI scheduling
technique. Differences in the flight trajectories are because of the sensor noise in
the simulation environment. From the look, it is very similar to the trajectories
generated by HIL (shown in Figure 11.3). A detailed comparison is presented in the
following chapter.

11.3 Discussion

In this section, we discuss the results obtained from the Hardware-in-the-Loop and
Virtual Platform-in-the-Loop experiments and explain all the tests and procedures
executed in our GALI-CE framework before and after the experiments.

First, we begin with the GALI scheduler, which shows the trace comparison and
verifying of the functional correctness. Next, we compare different techniques in
instruction accurate simulation concerning simulation time. The last point of the
discussion is the comparison of functional accuracy. We compare the proposed GALI
technique, especially with the results obtained from the HIL setup. In the end, we
summarize our discussion and conclude this chapter.

86 Chapter 11 Experiments

Figure 11.6.: 3D flight trajectories from GALI experiment

11.3.1 GALI Scheduler

The initial evaluation is conducted with the timed-automata for validating the system
behavior by comparing the OVP trace from GALI scheduler against the UPPAAL[49]
timed-automaton model. Table 11.1 shows a comparison of the traces for the sensor
processing unit (MB0). The comparison of the trace for a full hyperperiod verifies
the accuracy of the scheduler generator. For the task names and definitions, refer to
Section 9. Table 11.1 depicts two sets of columns for TA and GALI traces. It shows
iteration number 0 and number 10, just as an example. GALI trace matches precisely
with the system model, and we can make sure that the implementation satisfies the
definition.

11.3.2 Simulation Time
In this section, we discuss the time duration that each simulation technique needs to
perform a complete flight scenario. Table 11.2 shows the comparison of different
simulation times of the conducted experiments under the previously described
simulation setup. Each experiment in Table 11.2 is performed under the same
conditions, such as the same input trajectory and the same weather conditions.

11.3 Discussion 87

TA GALI
Loc. i t [ms] Nr. instr. time [s]

Schedule 0 0 0 0
T1 0 0 445 0.00000
VC1 0 55 83 0.00055
VC3 0 55 91 0.00055
T2a 0 55 58 0.00055
Idle_T2a 0 65 0 0.00065
Idle_T2b 0 65 0 0.00065
T3 0 83 106 0.00083
Idle_T3 0 105 0 0.00105
VC2_Idle 0 105 0 0.00105
T4 0 105 3176 0.00105
Idle_T4 0 110 0 0.00110
T5 0 110 354 0.00110
T6 0 112 504 0.00112
T7 0 122 0 0.00122
T8 0 122 743 0.00122
Slack0 0 200 0 0.00200
Schedule 1 0 0 0.00200
· · · · · · · · · · · · · · ·

TA GALI
Loc. i t [ms] Nr. instr. time [s]

Schedule 10 0 0 0.02000
T1 10 0 445 0.02000
VC1 10 55 83 0.02055
VC3 10 55 91 0.02055
T2a 10 65 58 0.02065
Idle_T2a 10 65 0 0.02065
Idle_T2b 10 83 0 0.02083
T3 10 87 84 0.02087
VC2 10 87 86 0.02087
T3 10 87 106 0.02087
Ilde_T3 10 105 0 0.02105
T4 10 110 3176 0.02110
Idle_T4 10 110 0 0.02110
T5 10 112 354 0.02112
T6 10 122 504 0.02122
T7 10 122 0 0.02122
T8 10 200 743 0.02200
Slack0 10 200 0 0.02200
· · · · · · · · · · · · · · ·

Table 11.1.: Excerpt of the Timed Automata (TA) and GALI trace for MB0
The left side shows the values for the iteration Nr. 0 and the right side for
iteration Nr. 10. The values in between are skipped.
Loc.: Location on the timed-automata, i: number of current iteration on a
period, Nr. instr: Number of instruction executed for the task (because of
semi-hosting this number has been extremely decrease.

The only non-controllable input variable is the sensor noise. For this reason, the
simulator has been repeated ten times on the simulation host. The average duration
of these 10 measurements is shown in the Table 11.2 column “avg. duration”. The
simulation time is the time spent on CPU1 in the virtual platform host (Computer2 in
Figure 11.4) for running the OVP simulator. This time has been measured with perf,
a performance analyzing profiling tool with performance counters in Linux and
capable of statistical profiling of the entire system. The command used to measure
the simulation time:

perf stat -e cpu-clock -r 10 <OVP Simulator>

This experiment has two parameters to adjust: MIPS rate and Quantum size. First
column in Table 11.2 is the MIPS rate. In IA simulators like OVP, there is a concept
of time, but they do not accurately model processor speed – one needs clock-cycle

1Intel i7-4710MQ(2.5GHz) with 16GB RAM running Debian Jessie (Kernel 4.12.08 x86 64).

88 Chapter 11 Experiments

Experiments Simulation Time
MIPS Quantum avg. error speed-up wall clock

No. Model rate size [s] duration [s] [%] w.r.t. QCA rate
1 QCA - - 121.585 0.19 1.0 0.09
2 ACA/IA 1 0.0001 2.374 0.14 51.2 4.38
3 ACA/IA 10 0.0001 2.192 0.17 55.2 4.74
4 ACA/IA 100 0.0000001 35.925 0.30 3.4 0.29
5 ACA/IA 100 0.0001 2.032 0.25 59.8 5.12
6 ACA/IA 100 0.01 1.959 0.27 62.1 5.31
7 ACA/IA 1000 0.0001 11.788 0.27 10.3 0.88
8 ACA/IA 79 0.0001 1.785 0.32 68.1 5.83
9 GALI - - 0.758 0.24 160.4 13.72

Table 11.2.: Experimental results - Comparing different simulation models in virtual
platform-in-the-loop.
QCA: Quasi Cycle Accurate.
ACA/IA: Approximate Cycle Accurate Instruction Accurate.
MIPS: Million Instructions Per Second.
Simulated time is used to compare the simulations, but will not give an accu-
rate indication of speed in the real hardware.

accuracy and MHz clock to do this. The simulation time is advanced at the end of
each simulation quantum (or simulation step). The number of executed instructions
in each quantum is specified by setting the MIPS rating parameter. The specified
MIPS (Million Instructions Per Second) parameter value specifies the number of
instructions to be executed in a measure of elapsed real-time. OVP processor models
have a default speed of 100 MIPS. MIPS is a measure of processor speed which
should not be confused with MIPS Technologies Inc., a processor IP vendor.

All the timing models in instruction accurate simulation rely upon counting the
executed instructions. The nominal processor speed MIPS rate is used to apportion
run time between processors in a multiprocessor simulation. This rate is the average
amount of instructions that the processor can execute in one second and quantum
is the maximum amount of simulated target instructions per processor. Quantum
defines the timing granularity for switching, and thus synchronization, between the
processors under simulation.

The GALI model is not dependent on any parameters of the simulator, including
MIPS. It is therefore faster than other models (looking at row 4 to row 8 in Table 11.2
- about 2.3× up to 47× faster). GALI is also 160 times faster than the QCA model. It
all concludes with a significant advantage for GALI in the simulation speed. This
gain in simulation speed depends mainly on the fewer context switching in the
simulator. In our experiment, we have assigned different MIPS rate and quantum
size values to show their influence on the simulation speed.

11.3 Discussion 89

Experiments Functional Accuracy
MIPS Quantum avg. rel.

No. Model rate size [s] max. σx max. σy max. σz error [%]
1 HIL - - 0.14 0.14 0.02 -
2 QCA - - 0.14 0.27 0.04 0.24
3 ACA/IA 1 0.0001 0.10 0.16 0.05 92.16
4 ACA/IA 10 0.0001 0.18 0.27 0.03 3.56
5 ACA/IA 100 0.0000001 0.16 0.15 0.02 1.09
6 ACA/IA 100 0.0001 0.18 0.19 0.04 1.29
7 ACA/IA 100 0.01 0.15 0.13 0.04 2.87
8 ACA/IA 1000 0.0001 0.22 0.19 0.04 1.31
9 ACA/IA 79 0.0001 0.12 0.25 0.04 2.16
10 GALI - - 0.17 0.14 0.03 0.70

Table 11.3.: Experimental results - Accuracy

The speed-up factor in Table 11.2 compares the simulation time of each experiment
with the simulation time of the QCA model[46] which was the most precise instruc-
tion accurate timing model available to us. A speed-up factor of x indicates that the
simulation of the respective model runs x times faster than the QCA model. The
reference QCA experiment, for the measurement of the simulation time, takes ∼ 10.4
seconds when running freely (i.e., without co-simulation)2. Under this condition,
the GALI model reaches 13.7 times wall clock time, while the ACA model might
fail to run ≤ one wall-clock time, which can be necessary for a real-time capable
co-simulation.

11.3.3 Functional Accuracy

A more critical factor than the speed-up factor is the accuracy of the respective model.
Table 11.3 shows the results of the conducted experiments under the described
simulator set up with the focus on the functional accuracy. In the evaluation, we are
interested in the functional behavior of the different simulator configurations. We
have calculated the maximum standard deviation in each experiment in all three
directions (max. σx, max. σy, and max. σz).

As mentioned before, the MIPS rate is the average amount of instructions that the
processor can execute in one second and quantum is the maximum amount of
simulated target instructions per processor. Quantum defines the timing granularity
for switching, and thus synchronization, between the processors under simulation.

2Applications run ca. 10 Seconds (5000 controller cycles) in real-world plus init phase (overall: ca.
10.4s).

90 Chapter 11 Experiments

Figure 11.7.: Flight crash due to mis-configuration of the virtual platform

The functional accuracy of the different simulation models is measured against the
reference flight trajectory of the HIL. Functional accuracy assessment is always
use-case dependent. Our multirotor use case has a very robust PID control loop,
which is very agnostic to disturbances and environmental noise. Therefore, the
accuracy advantage of GALI compared to the ACA and QCA experiments is not too
significant. Much higher deviations would be observable with another use case with
a less robust control system. The reason for highly achievable functional accuracy
for the ACA models is the robustness of the PID controllers that the controllers still
work well under high under-sampling.

By construction, it should be clear that GALI represents an ideal time-triggered
schedule. For this reason, the obtained functional accuracy compared to a “golden”
functional reference model should be 100%. In our experiments, we have to deal
with non-controllable sensor noise. For this reason, GALI was not able to reach
complete accuracy, even though the PID controllers are very robust to noise.

The average relative error in the Table 11.3 is the difference of the mean QCA,
ACA and GALI trajectories from the mean HIL reference trajectory. Average relative
accuracy is the average of the X, Y, and Z-axis, the average accuracy deviation
divided by the average reference trajectory for each axis. The standard deviations

11.3 Discussion 91

(a) HIL (b) QCA (c) GALI

Figure 11.8.: Selected 3D flight trajectories from functional accuracy experiments

(σx, σy, and σz) represent the reaction of the PID controllers to the non-controllable
sensor noise within the repeated flights within a single experiment. The average
relative error is the deviation between the reference experiment (Nr. 1 HIL) and the
other experiments (2-10).

When comparing the average relative error between the different experiments, it
becomes clear that ACA models with appropriately chosen MIPS rates can lead to a
sufficient functional accuracy. As expected, the GALI model has the lowest average
relative error after QCA (0.70 and 0.24 respectively in Table 11.3). GALI does not
depend on parameters like MIPS or quantum. Therefore there is no way that a
misconfiguration of GALI leads to a crash scenario. Figure 11.7 is a ACA model with
the wrong configuration, which leads to a crash landing of the multirotor.

Figure 11.8 depicts the 3D flight trajectories of all ten experiments in a single figure
(time runs from left to right). It shows 3D flight trajectories for the HIL (reference
trajectories), QCA model as a correct instruction accurate model available to us,
and the GALI model. In all three models, the sensor noise has caused a drift of the
multirotor, which becomes more significant as time proceeds.

11.3.4 Summary

In this chapter, we have evaluated the GALI simulation technique and its implemen-
tation framework (GALI-CE) proposed in this thesis. First, Section 9 verified the
generated GALI schedule. The verification considers the custom scheduler generated
for the virtual platform by the GALI-CE with a UPPAAL representation of the system
schedule. It compares if the trace of execution of the hyperperiod for both repre-
sentations match each other. When the generated GALI succeeds in validation, we
conclude the correctness of the GALI-CE configuration environment (from Front-End

92 Chapter 11 Experiments

to the Back-End as described in Section 9) and proceed to the next step of the
evaluation.

Next, we have performed a Hardware-in-the-Loop (HIL) experiment to generate
a reference model for evaluating and comparing different simulation techniques.
The HIL setup consists of an FPGA board implementing the multirotor logic, a flight
simulator for simulating the multirotor and its flying environment, and an adapter
board to convert data between the controller board and the flight simulator.

After that, we used the same scenario and remote control commands to repeat the
experiment with the Virtual Platform-in-the-Loop (VPIL). In the VPIL experiment,
another PC replaces the controller and the adapter board with a software-based
virtual platform representation. It has been done for different simulation configura-
tions, including ACA, QCA, and GALI. All the flight trajectories and motor values
have been recorded to be compared with one from the HIL setup.

In this chapter, we have compared the accuracy of different simulation techniques
with the HIL experiment and the duration and speed-up factor of other simulations
to understand better the pros and cons of the proposed new approach.

The evaluation of the proposed approach in this thesis has shown us that in the
area of time-triggered systems, GALI outperforms better than typical ACA virtual
platform scheduler in both simulation time as well as functional accuracy. However,
the QCA scheduling shows better accuracy, and the reason is, as we move towards
cycle-accurate simulation, the accuracy improves. Albeit, GALI brings acceptable
accuracy together with 160 times speed-up in comparison with QCA technique.

11.3 Discussion 93

Conclusion & Outlook 12
12.1 Conclusion

For the functional testing of a time-triggered mixed-criticality real-time control
system, the following properties have to be considered: a) Timeliness means that the
occurrence of the contractually defined function/task activation and communication
injection times are fulfilled. b) Functional Behavior means that the behavioral
response of the control systems meets the contractually agreed functional accuracy
concerning the plant model control task.

For the first time, the presented work decouples the time-triggered schedule refine-
ment from the functional behavior refinement. With the GALI simulation model,
we have defined a universal functional simulation scheduler that executed time-
triggered schedules. GALI can be embedded into instruction accurate simulators
to trigger instruction-accurate functional simulation between the time-triggered
function/task activation.

The evaluation of the GALI approach has shown that it has similar functional
accuracy as a cycle-accurate simulation but with a significant speed-up factor of
160. From the functional testing perspective, an instruction accurate and a cycle-
accurate simulator can also be used for verification. The main advantage of the GALI
model is a Correct-by-Construction simulation scheduling configuration and its high
simulation speed. On the downside, GALI only allows functional testing that relies
on a pre-analyzed and confirmed schedule for a specific hardware architecture.

12.2 Future Work

Based on the method developed in this thesis, the most relevant extensions that can
be addressed in the future work are the following:

95

Profiling Information of the System

By having a simulator for a generic time-triggered structural and behavioral modeling
at the early architectural design phase that supports extra-functional analysis and
complies with the time-triggered model of computation (MoC), one can extract the
profiling information for better system design.

The instruction-accurate simulator can access and analyze the executed instructions
(types, operands, etc.). This information can be combined with a power model for
Power Modeling Using Profiling Information to obtain the power consumption
and temperature of the system.

Profiling information can be used for further issues. Counting the instructions
provides performance profiling by analyzing the number of arithmetic operations
(e.g., multiplications, additions, divisions, etc.). For the developed algorithm, it can
be used for Performance Optimization Using Profiling Information.

Also, the developed approach and its design environment provide a platform to
change the design to add custom hardware or instructions to, for instance, test a
hardware acceleration module. It can be done independent of GALI or its configura-
tion environment, but it comes with the GALI-CE for free.

Simulation-based Safety Assessment of the Platform

Our focus in this work was just checking the functionality and timing. GALI-CE can
be extended to generate a safe architecture as well. For example, it can cause a safety-
hardened architecture with the fault-tolerant Triple Modular Redundancy (TMR)
technique.

Considering our multirotor example, a safety-hardened multirotor makes the schedul-
ing more complex by adding more functionalities to the architecture. The function-
alities include modules to observe the added redundancies and voters.

From the GALI perspective, only minor changes are needed. The generated platform
can inject faults into the system in a systematic and reproducible manner to test the
system’s safety both in software and hardware.

Thanks to reliance on low-level instruction-set simulators, faults can be injected as
low-level glitches on processors. It can be combined with safety countermeasures on
the binary level. The system behavior then can be checked in case of failure or fault
containment properties. Furthermore, fault injection in all steps of the development

96 Chapter 12 Conclusion & Outlook

process of the system can be introduced, as recommended by the IEC-61508 safety
standard.

Support Dynamic Scheduling

Fix scheduling in safety-related mixed-critical systems results in a massive waste of
resources. At the same time, it stays on the safe side and reserves plenty of time and
resources for each task. As a result, it uses only a fraction of the computation capac-
ity of the platform. This thesis can be extended to support flexible time-triggered
scheduling. Similar to work in [53] which addresses flexible time-triggered schedul-
ing on mono processors, single-core configuration. The work in [53] considers a
mixed-criticality system with High-critical and Low-critical tasks and tries to use the
slack time from high-critical tasks on the processors and performs low-critical, not
real-time tasks.

Our approach can also be further developed for mixed-computation systems to
have a hybrid GALI part and a regular computation part with a timing model. The
configuration environment should be aware of such systems to get more information
about the actual execution time of functions/tasks. The report can be used for
dynamic slack-time management to fill the computation gap with appropriate low-
critical tasks.

System Mode switching

GALI can be extended, similar to the previously mentioned dynamic scheduling, to
support changing the system schedule on the fly. Based on predetermined scenarios
and situations, systems can reconfigure themselves. One obvious case is the moment
when the system goes to the degraded safe mode caused by a fault.

Mode switching of the system is more complex than dynamic scheduling. In dynamic
scheduling, tasks and their resources are fixed. The challenge is to change the order
of execution to improve system performance. However, in mode switching, the
system would reconfigure itself. Each mode has different resource management,
different task criticality, different execution order, etc. GALI is capable of handling
all these situations.

12.2 Future Work 97

Part IV

Appendix

Bibliography

[1] Hermann Kopetz and Roman Nossal. “Temporal firewalls in large distributed
real-time systems”. In: Proceedings of the Sixth IEEE Computer Society Workshop
on Future Trends of Distributed Computing Systems. IEEE. 1997, pp. 310–315.

[2] Hermann Kopetz. Real-time systems: design principles for distributed embedded
applications. Springer Science & Business Media, 2011.

[3] Hermann Kopetz. “The time-triggered model of computation”. In: Proceedings
19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE. 1998,
pp. 168–177.

[4] Hermann Kopetz. “Elementary versus composite interfaces in distributed
real-time systems”. In: Proceedings. Fourth International Symposium on Au-
tonomous Decentralized Systems.-Integration of Heterogeneous Systems-. IEEE.
1999, pp. 26–33.

[5] Inc. Insights. Transistor Count Trends Continue to Track with Moore’s Law.
2020. URL: https://www.icinsights.com/news/bulletins/Transistor-
Count-Trends-Continue-To-Track-With-Moores-Law/.

[6] Maher Fakih, Alina Lenz, Mikel Azkarate-Askasua, Javier Coronel, Alfons
Crespo, Simon Davidmann, Juan Carlos Diaz Garcia, Nera González Romero,
Kim Grüttner, Sören Schreiner, et al. “SAFEPOWER project: Architecture for
safe and power-efficient mixed-criticality systems”. In: Microprocessors and
Microsystems 52 (2017), pp. 89–105.

[7] D.D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded System Design:
Modeling, Synthesis and Verification. Springer US, 2009. ISBN: 9781441905048.
URL: https://books.google.com/books?id=XYZAAAAAQBAJ.

[8] Prashant Saxena, Noel Menezes, Pasquale Cocchini, and Desmond A Kirk-
patrick. “The scaling challenge: can correct-by-construction design help?” In:
Proceedings of the 2003 international symposium on Physical design. 2003,
pp. 51–58.

[9] Roopak Sinha, Parthasarathi Roop, and Samik Basu. Correct-by-construction
approaches for SoC design. Springer, 2014.

[10] Trevor Meyerowitz. Transaction-Level Modeling Definitions and Approximations.
Tech. rep. Technical Report EE290A, 2005.

101

https://www.icinsights.com/news/bulletins/Transistor-Count-Trends-Continue-To-Track-With-Moores-Law/
https://www.icinsights.com/news/bulletins/Transistor-Count-Trends-Continue-To-Track-With-Moores-Law/
https://books.google.com/books?id=XYZAAAAAQBAJ

[11] Wikipedia. Instruction set simulator. 2020. URL: https://en.wikipedia.
org/wiki/Instruction_set_simulator.

[12] Joshua J Yi, Sreekumar V Kodakara, Resit Sendag, David J Lilja, and Douglas
M Hawkins. “Characterizing and comparing prevailing simulation techniques”.
In: 11th International Symposium on High-Performance Computer Architecture.
IEEE. 2005, pp. 266–277.

[13] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Hermann
Kopetz. “The time-triggered system-on-a-chip architecture”. In: 2008 IEEE
International Symposium on Industrial Electronics. IEEE. 2008, pp. 1941–1947.

[14] Hermann Kopetz and Günther Bauer. “The time-triggered architecture”. In:
Proceedings of the IEEE 91.1 (Jan. 2003), pp. 112–126.

[15] Bernd Hedenetz. “A development framework for ultra-dependable automotive
systems based on a time-triggered architecture”. In: Proceedings 19th IEEE
Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE. 1998, pp. 358–
367.

[16] Hermann Kopetz. “The time-triggered model of computation”. In: Proceedings
19th IEEE Real-Time Systems Symposium. IEEE. 1998, pp. 168–177.

[17] Hermann Kopetz and Günter Grunsteidl. “TTP-A time-triggered protocol for
fault-tolerant real-time systems”. In: FTCS-23 The Twenty-Third International
Symposium on Fault-Tolerant Computing. IEEE. 1993, pp. 524–533.

[18] John Rushby. “An overview of formal verification for the time-triggered
architecture”. In: International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems. Springer. 2002, pp. 83–105.

[19] Mirko Loghi, Tiziana Margaria, Graziano Pravadelli, and Bernhard Steffen.
“Dynamic and formal verification of embedded systems: A comparative sur-
vey”. In: International Journal of Parallel Programming 33.6 (2005), pp. 585–
611.

[20] Vicent Brocal, Miguel Masmano, Ismael Ripoll, Alfons Crespo, Patricia Bal-
bastre, and Jean-Jacques Metge. “Xoncrete: a scheduling tool for partitioned
real-time systems”. In: ERTS2, Embedded Real-Time Software and Systems (May
2010). URL: https://hal.archives-ouvertes.fr/hal-02264388.

[21] Thomas Carle, Dumitru Potop-Butucaru, Yves Sorel, and David Lesens. “From
dataflow specification to multiprocessor partitioned time-triggered real-time
implementation”. In: Leibniz Transactions on Embedded Systems 2.2 (2015),
01–1-01:30.

102 Bibliography

https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://hal.archives-ouvertes.fr/hal-02264388

[22] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. “Cheddar:
a flexible real time scheduling framework”. In: ACM SIGAda Ada Letters.
Vol. 24. 4. ACM. 2004, pp. 1–8.

[23] M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palencia Gutierrez, and
J. M. Drake Moyano. “MAST: Modeling and analysis suite for real time
applications”. In: Proceedings 13th Euromicro Conference on Real-Time Systems.
June 2001, pp. 125–134.

[24] Tri-Pacific. Rapid-RMA: The Art of Modeling Real-Time Systems. 2003. URL:
http://www.tripac.com/htmal/prod-fact-rrm.html.

[25] Raul Adrian Gorcitz, Thomas Carle, David Lesens, David Monchaux, Dumitru
Potop-Butucaru, and Yves Sorel. “Automatic implementation of TTEthernet-
based time-triggered avionics applications”. In: DASIA. Barcelone, Spain, May
2015.

[26] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Philippe Soulard, and Jean-
Philippe Diguet. “A co-design approach for embedded system modeling and
code generation with UML and MARTE”. In: 2009 Design, Automation & Test
in Europe Conference & Exhibition. IEEE. 2009, pp. 226–231.

[27] Fernando Herrera, Héctor Posadas, Pablo Penil, Eugenio Villar, Francisco Fer-
rero, Raúl Valencia, and Gianluca Palermo. “The COMPLEX methodology for
UML/MARTE Modeling and design space exploration of embedded systems”.
In: Journal of Systems Architecture 60.1 (2014), pp. 55–78.

[28] K. D. Nguyen, P. S. Thiagarajan, and W. Wong. “A UML-Based Design Frame-
work for Time-Triggered Applications”. In: 28th IEEE International Real-Time
Systems Symposium (RTSS 2007). Dec. 2007, pp. 39–48. DOI: 10.1109/RTSS.
2007.18.

[29] Iban Ayestaran, Carlos F Nicolas, Jon Perez, Asier Larrucea, and Peter Puschner.
“A novel modeling framework for time-triggered safety-critical embedded sys-
tems”. In: Specification and Design Languages (FDL), 2014 Forum on. Vol. 978.
IEEE. 2014, pp. 1–8.

[30] Gabriel Leen and Donal Heffernan. “Modeling and verification of a time-
triggered networking protocol”. In: International Conference on Networking,
International Conference on Systems and International Conference on Mobile
Communications and Learning Technologies (ICNICONSMCL’06). IEEE. 2006,
pp. 178–178.

Bibliography 103

http://www.tripac.com/htmal/prod-fact-rrm.html
https://doi.org/10.1109/RTSS.2007.18
https://doi.org/10.1109/RTSS.2007.18

[31] Bernd Hedenetz. “A development framework for ultra-dependable automotive
systems based on a time-triggered architecture”. In: Proceedings 19th IEEE
Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE. 1998, pp. 358–
367.

[32] Kyoung-Soo We, Seunggon Kim, Wonseok Lee, and Chang-Gun Lee. “Func-
tionally and Temporally Correct Simulation of Cyber-Systems for Automotive
Systems”. In: Real-Time Systems Symposium (RTSS), 2017 IEEE. IEEE. 2017,
pp. 68–79.

[33] Gunar Schirner and Rainer Domer. “Introducing Preemptive Scheduling in
Abstract RTOS Models using Result Oriented Modeling”. In: 2008 Design,
Automation and Test in Europe. Mar. 2008, pp. 122–127.

[34] Jon Perez, Carlos Fernando Nicolas, Roman Obermaisser, and Christian El
Salloum. “Modeling time-triggered architecture based real-time systems using
SystemC”. In: System Specification and Design Languages. Springer, 2012,
pp. 123–141.

[35] Iban Ayestaran et al. “Modeling logical execution time based safety-critical
embedded systems in SystemC”. In: Embedded Computing (MECO), 2014 3rd
Mediterranean Conference on. IEEE. 2014, pp. 77–80.

[36] Zaher Owda and Roman Obermaisser. “Trace-based simulation framework
combining message-based and shared-memory interactions in a time-triggered
platform”. In: Event-based Control, Communication, and Signal Processing
(EBCCSP), 2015 International Conference on. IEEE. 2015, pp. 1–8.

[37] Moisés Urbina, Zaher Owda, and Roman Obermaisser. “Simulation environ-
ment based on systemc and veos for multi-core processors with virtual autosar
ecus”. In: 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence and Computing. IEEE. 2015,
pp. 1843–1852.

[38] Zhenkai Zhang, Joseph Porter, Emeka Eyisi, Gabor Karsai, Xenofon Kout-
soukos, and Janos Sztipanovits. “Co-simulation framework for design of
time-triggered cyber physical systems”. In: Proceedings of the ACM/IEEE 4th
International Conference on Cyber-Physical Systems. 2013, pp. 119–128.

[39] Wilfried Steiner, Günther Bauer, Brendan Hall, Michael Paulitsch, and Sri-
vatsan Varadarajan. “TTEthernet dataflow concept”. In: 2009 Eighth IEEE
International Symposium on Network Computing and Applications. IEEE. 2009,
pp. 319–322.

104 Bibliography

[40] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. “Simics: A full system simulation platform”. In: Computer 35.2
(2002), pp. 50–58.

[41] F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX Annual
Technical Conference, FREENIX Track. 2005, pp. 41–46.

[42] Imperas Ltd. Open Virtual Platforms (OVP). 2020. URL: http://www.ovpworld.
org/.

[43] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. “The gem5 simulator”. In: ACM SIGARCH Computer
Architecture News 39.2 (2011), pp. 1–7.

[44] Zaher Owda, Mohammed Abuteir, and Roman Obermaisser. “Co-simulation
framework for networked multi-core chips with interleaving discrete event
simulation tools”. In: Emerging Technologies & Factory Automation (ETFA),
2015 IEEE 20th Conference on. IEEE. 2015, pp. 1–8.

[45] Daniel Sanchez and Christos Kozyrakis. “ZSim: fast and accurate microarchi-
tectural simulation of thousand-core systems”. In: ACM SIGARCH Computer
Architecture News. Vol. 41. ACM. 2013, pp. 475–486.

[46] Sören Schreiner, Ralph Görgen, Kim Grüttner, and Wolfgang Nebel. “A quasi-
cycle accurate timing model for binary translation based instruction set sim-
ulators”. In: 2016 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). July 2016, pp. 348–353.

[47] Maher Fakih, Kim Grüttner, Sören Schreiner, Razi Seyyedi, Mikel Azkarate-
Askasua, Peio Onaindia, Tomaso Poggi, Nera González Romero, Elena Que-
sada Gonzalez, Timmy Sundström, et al. “Experimental evaluation of SAFE-
POWER architecture for safe and power-efficient mixed-criticality systems”.
In: Journal of Low Power Electronics and Applications 9.1 (2019), p. 12.

[48] Jan-Henrik Bruhn, Maher Fakih, Kim Grüttner, and Wolfgang Nebel. “Im-
plementation of Time-Triggered MPSoCs with support for tool-based system
generation on FPGAs”. In: 4th International Workshop on Advanced Intercon-
nect Solutions and Technologies for Emerging Computing Systems (AISTECS).
Jan. 2019.

[49] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
“UPPAAL – A tool suite for automatic verification of real-time systems”. In:
(1995), pp. 232–243.

Bibliography 105

http://www.ovpworld.org/
http://www.ovpworld.org/

[50] AeroSIM-RC. Radio Control Training Simulator. 2021. URL: http://www.
aerosimrc.com/en/home.htm.

[51] Consortium SAFEPOWER. D4.6 Final cross-domain public demonstrator. 2017.

[52] Xilinx inc. 7 Series FPGAs Clocking Resources User Guide.

[53] Philipp Ittershagen. “Application modelling and performance estimation of
mixed-critical embedded systems”. PhD thesis. Universität Oldenburg, 2018.

106 Bibliography

http://www.aerosimrc.com/en/home.htm
http://www.aerosimrc.com/en/home.htm

List of Figures

1.1 Transistor count trends . 2

2.1 V Model . 10

2.2 GALI V Model . 11

2.3 SDF Model . 14

2.4 Simulation Technology . 16

3.1 Time-Triggered Architecture . 20

7.1 Overview of the System Model . 40

7.2 UML Diagram of Application . 41

7.3 A Hyperperiod of given tasks . 42

7.4 UML diagram of Platform . 44

7.5 UML diagram of Mapping . 45

8.1 Simulation deviation . 50

8.2 Overview of the Framework . 53

8.3 Define task GUI . 54

9.1 GALI-CE in practice . 58

9.2 UPPAAL Model . 64

10.1 AeroSIM RC multi-rotor simulation . 69

10.2 Quadcopter developed in OFFIS [Copyright OFFIS] 69

10.3 Qaudcopter overview of maneuver capabilities 70

10.4 Multirotor’s architecture overview . 70

10.5 Functional Units used in Multirotor [51] 71

10.6 Digilent Zedboard used for multirotor 71

10.7 Multirotor mapped tasks [51] . 72

10.8 Decomposition of sensor actuator . 73

10.9 Decomposition of Flight Controller . 74

10.10 Digilent Zybo used for adapter board 75

10.11 Schematic of the adapter board . 76

107

11.1 HIL Setup for the Evaluation . 81
11.2 Hardware-in-the-Loop Co-Simulation Synchronization Schema 82
11.3 HIL trajectory . 84
11.4 VPIL Setup for the Evaluation [51] . 84
11.5 Synchronization mechanism . 85
11.6 3D flight trajectories from GALI experiment 87
11.7 virtual platform misconfiguration . 91
11.8 3D flight trajectories . 92

108 List of Figures

List of Tables

9.1 Multirotor’s Tasks . 63

11.1 Comparison of UPPAAL and GALI trace 88
11.2 Experimental results - VPIL comparison 89
11.3 Experimental results - Accuracy . 90

109

Listings

9.1 Flight Processing Task Schedule . 58
9.2 Sensor Actuator Unit Task Schedule 58
9.3 Auto-generated template for Sensor Processing Function 59
9.4 Message Schedule For Sensor Processing Unit 59
9.5 Main Function of Processing Element 60
9.6 GALI Global Task Schedule . 61

111

Acronyms

ACA Approximate Cycle Accurate
API Application Programming Interface
BCET Best-Case Execution Time
BRAM Block-RAM
BU Barometric Unit
CA Cycle Accurate
CPS Cyber-Physical System
DLL Dynamic-Link Library
DUT Design under Test
EDA Electronic Design Automation
EMF Eclipse Modeling Framework
FPGA Field-Programmable Gate Array
GALI Globally Accurate Locally Inaccurate
GALI-CE GALI Configuration Environment
GPIO General-Purpose Input/Output
HDL Hardware Description Language
HW Hardware
HIL Hardware-in-the-Loop
HDL Hardware Description Language
IA Instruction Accurate
IC Inintegrated Circuit
ID identifier
IMU Inertial Measurement Unit
IP Intellectual Property
ISS Instruction-Set Simulator
MoC Model of Computation
MPSoC Multi-Processor System-on-a-Chip
MIPS Million Instructions Per Second
NoC Network-on-Chip
OVP Open Virtual Platform
PC Personal Computer
PE Processing Element
PID Proportional Integral Derivative

113

PPM Pulse-Position Modulation
QCA Quasi Cycle Accurate
RC Radio Control
RTL Register-Transfer Level
SDF Synchronous Data Flow
SoC System-on-a-Chip
SW Software
TA Timed Automata
TDMA Time-Division Multiple Access
TMR Triple Modular Redundancy
TSDF Timed Synchronous Dataflow
TT Time-Triggered
TTA Time-Triggered Architecture
TTP Time-Triggered Protocol
UML Unified Modeling Language
VC Virtual Channel
VP Virtual Platform
VPIL Virtual Platform-in-the-Loop
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

114 Acronyms

Declaration/Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe. Außerdem versichere
ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffent-
lichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis an der Carl von
Ossietzky Universität Oldenburg und den DFG-Richtlinien festgelegt sind, befolgt
habe. Des Weiteren habe ich im Zusammenhang mit dem Promotionsvorhaben keine
kommerziellen Vermittlungs- oder Beratungsdienste in Anspruch genommen.

Oldenburg,

Razi Seyyedi

	Titelseite
	Abstract
	Zusammenfassung
	Publications
	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation & Problem Definition
	1.3 Scope & Research Questions
	1.4 Outline

	I Foundations
	2 System-Level Design
	2.1 Development Process
	2.2 Virtual Platform-Based Design
	2.3 Model of Computation
	2.4 Correct-by-Construction Design
	2.5 System Simulation
	2.5.1 Instruction Accurate Simulation
	2.5.2 Cycle Accurate Simulation

	3 System Architecture
	3.1 Time-Triggered Architecture
	3.2 Time-Triggered Computation
	3.3 Time-Triggered Communication

	4 System Verification and Validation
	4.1 Formal Method
	4.2 Simulation-Based Approach
	4.3 Hardware-in-the-Loop

	5 Thesis Contribution
	5.1 Contributions
	5.2 Assumptions & Constraints

	6 Related Work
	6.1 Generating Configuration
	6.2 Simulation of time-triggered Systems

	II Design Flow & Modeling Approach
	7 System Model
	7.1 Modeling the Application
	7.2 Modeling the Platform
	7.3 Modeling the Mapping

	8 GALI Simulation
	8.1 IA Simulation Technology
	8.2 GALI Technique
	8.3 GALI Configuration Environment
	8.3.1 System Model Creation
	8.3.2 System Model Generation
	8.3.3 Output Flavors
	8.3.4 Verification

	9 Target Implementation
	9.1 Instantiations & Definitions
	9.2 Verification

	III Evaluation and Results
	10 Overview
	10.1 Goals of the Evaluation
	10.2 Evaluation Setup
	10.2.1 AeroSim Flight Simulator
	10.2.2 Multirotor
	10.2.3 Adapter Board
	10.2.4 Virtual Platform

	11 Experiments
	11.1 Hardware-in-the-Loop
	11.2 Virtual Platform-in-the-Loop
	11.3 Discussion
	11.3.1 GALI Scheduler
	11.3.2 Simulation Time
	11.3.3 Functional Accuracy
	11.3.4 Summary

	12 Conclusion & Outlook
	12.1 Conclusion
	12.2 Future Work

	IV Appendix
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Listings
	Acronyms
	Declaration/Erklärung

