
Design of Scenario-based Application-optimized
Data Replication Strategies through Genetic

Programming

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der

Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation von

Herrn Syed Mohtashim Abbas BOKHARI

geboren am 22.08.1990 in Islamabad

Gutachter: Prof. Dr. Oliver Theel

Weiterer Gutachter: Prof. Dr. Oliver Kramer

Tag der Disputation: 18.08.2021

i

Abschließende Erklärung

Hiermit erkläre ich, dass mir die Leitlinien guter wissenschaftlicher Praxis der Carl von
Ossietzky Universität Oldenburg bekannt sind und von mir befolgt wurden. Im Zusam-
menhang mit dem Promotionsvorhaben wurden keine kommerziellen Vermittlungs-
oder Beratungsdienste (Promotionsberatung) in Anspruch genommen.

Syed Mohtashim Abbas Bokhari

Unterschrift:

Ort, Datum: Odenburg, 18.08.2021

ii

“Transience substantiates the Necessary Existence.”

Syed Mohtashim Abbas Bokhari

iii

Kurzzusammenfassung

Ein verteiltes System ist ein Paradigma, welches für die moderne, technologische Welt
unverzichtbar ist, in der jede Sekunde unzählige Anfragen verarbeitet werden. Dafür
braucht es in verteilten Systemen eine hohe Verfügbarkeit. In einer sich verändernden
Umgebung sind durch die Komplexität und Skalierbarkeit der Ressourcen und Kompo-
nenten die Systeme häufig Fehlern ausgesetzt, da Millionen von Geräten miteinander
verbunden sind und kommunizieren. Verteilte Systeme erlauben einer Vielzahl von
Nutzern auf gemeinsame Ressourcen zuzugreifen, wodurch Fehler unausweichlich
werden. Außerdem neigt bereits ein einzelnes Replikat zum Ausfall, was katastrophal
für die Verfügbarkeit einer Zugriffsoperation ist. Da Fehler im verteilten Kontext un-
vermeidbar sind, nimmt dieser großen Einfluss auf die Verfügbarkeit von Diensten.
Fehler verhindern die Verfügbarkeit von Daten, wodurch sie den Ausfall des Systems
verursachen. Replikation spielt eine Rolle bei der Milderung solcher Fehler. Sie mask-
iert diese, um eine fehlertolerante Umgebung zu schaffen, wodurch jede mögliche
Verminderung der Verfügbarkeit der Daten ausgeschlossen wird. Sie maskiert die
Fehler zur Laufzeit gegenüber dem Benutzer und das System funktioniert weiterhin
entsprechend den Erwartungen.

Hohe Verfügbarkeit und niedrige Kosten der Zugriffsoperation bei Einhaltung der
Datenkonsistenz sind die hervorstehenden Herausforderungen bei der Konzeption-
ierung zuverlässiger Dienste. Replikation ist ein passendes Werkzeug, welches hochver-
fügbare Zugriffsoperationen zu relativ niedrigen Operationskosten ermöglicht. Ob-
wohl gegenwärtig verschiedene Datenreplikationsstrategien verwendet werden, um
das Replikationsverhalten der Daten zu steuern, ist die Frage, welche Strategie für ein
gegebenes Szenario oder eine Applikationsklasse die beste ist, unbeantwortet. Dieses
beinhaltet einen bestimmten Datendurchsatz, eine Verteilung über ein Netzwerk, die
Verfügbarkeit der einzelnen Replikate und die Kosten einer Zugriffsoperation. Die
Entscheidung für eine passende Strategie in einer bestimmten Umgebung und in einem
spezifizierten Szenario ist eine Herausforderung, bei der Kompromisse eingegangen
werden müssen.

Es existieren viele Szenarios, welche die verschiedenen Kompromisse zwischen den
Qualitätsmetriken widerspiegeln. Eine relevante Strategie für ein spezifiziertes Szenario
zu finden ist mühselig, da unendliche viele Szenarien existieren können, während die
Anzahl der Lösungen begrenzt ist. Diese Szenarien können nicht vollständig von den
gegenwärtigen Strategien abgedeckt werden. Es ist erforderlich, neue Datenreplika-
tionsstrategien zu entwerfen, welche auf die gegebenen Szenarien spezialisiert sind
und dabei jene Anforderungen erfüllen, die mit bekannten Strategien unerfüllt bleiben.
Eben diese Anforderungen sind in einer Weise konfliktär zueinander, sodass die Er-
füllung eines Ziels die Verwerfung eines anderen bedeutet. Dies impliziert, das keine
optimale Lösung existiert. In dieser Hinsicht fokussiert sich diese Forschung auf ziel-
gerichtete Modellierung, Analyse und Ansätze maschinellen Lernens, um automatisch
solche Datenreplikationsstrategien zu identifizieren und entwerfen, welche für das

iv

gegebene Szenario optimal sind, auf vordefinierten Anforderungen und Eigenschaften
basieren und eine sogenannte „Voting Structure“ nutzen.

Diese Dissertation stellt einen Ansatz zur Abwägung und Optimierung der Ziele vor,
welcher auf genetischer Programmierung basiert und nicht nur geeignete Replikation-
sstrategien identifiziert, sondern neue Strategien entwirft und konfliktäre Ziele gegen
eine Metrik optimiert. Dieser Mechanismus entwirft automatisch bisher unbekan-
nte Datenreplikationsstrategien, welche gegen ein gegebenes Szenario optimiert sind.
Er untersucht unbekannte Strategien und entwickelt eine Population von Strategien,
welche jeweils ein Programm repräsentieren, schrittweise weiter. Über die Genera-
tionen werden die Strategien mit einer evolutionären Methode gegen die Entwurf-
skriterien optimiert, während die Datenkonsistenz und die Korrektheit der Lösun-
gen gewahrt wird. Weiterhin werden die Operatoren „multi-crossover“ und „multi-
mutation“ vorgestellt, welche unser Programmiergerüst des maschinellen Lernens
erweitern, während die Konsistenz der Lösungen garantiert wird, um innovative
hybride Replikationsstrategien zu erzeugen. Dieser Mechanismus nutzt sogenannte
„Voting Structures“ gerichteter, azyklischer Graphen (bekannt aus Literatur) als eine ein-
heitliche Repräsentation von Replikationsstrategien. Diese nutzt die Heterogenität der
Strategien, was die Notation hybrider Strategien vereinfacht. Die Strukturen werden
durch den überliegenden Algorithmus zur Laufzeit interpretiert, um entsprechende
Quoren abzuleiten. Die Quoren werden verwendet, um die replizierten Objekte zu
verwalten.

Diese Forschung bietet einen intelligenten und automatischen Mechanismus, um neue
Datenreplikationsstrategien zu erzeugen und den Entscheidungsprozess zwischen
den relevanten Strategien zu erleichtern. Mehrere Strategien, die unterschiedliche
Kompromisse hinsichtlich der definierten Anforderungen eingehen, werden aus den
erzeugten Strategien präsentiert und zur Auswahl angeboten. Die Forschung demon-
striert den Nutzen des auf genetischer Programmierung basierenden Ansatzes durch
die signifikante Reduktion der Schreib- und Lesekosten, bei nur wenig geringerer
Zugiffsverfügbarkeit. Der Mechanismus erzeugt innovative Replikationsstrategien, die
in ihrer Kombination bisher unbekannt waren. Der gezeigte Ansatz ist sehr effektiv und
extrem flexibel darin Strategien anzubieten, die mit gegenwärtigen Strategien vergle-
ichbar sind. Er erzeugt neue Strategien unter Verwendung der relevanten genetischen
Operatoren.

v

Abstract

A distributed system is a paradigm, which is indispensable to the current world due
to countless requests with every passing second. Therefore, in distributed computing,
high availability is very important. In a dynamic environment due to the scalability
and complexity of the resources and components, systems are fault-prone because
millions of computing devices are connected via communication links. Distributed
systems allow many users to access shared computing resources, which makes faults
inevitable. Also, a single replica is prone to failure, which is, too, devastating for the
availability of the access operations. Since failures are often inevitable in a distributed
paradigm, it greatly affects the availability of services. Faults hinder the availability of
the data, thereby causing systems to fail. Replication plays a role in mitigating such
failures by masking them to achieve a fault-tolerant distributed environment, thereby
eliminating any such possible hindrances in the availability of the data. It masks the
faults at run-time while users are unaware of it and the system continues to work as
expected.

High availability and low cost of the access operations as well as maintaining data con-
sistency are major challenges for reliable services. For this, replication is an appropriate
means to provide highly available data access operations at relatively low operation
costs. It is the concept by which highly available data access operations can be realized
while the cost should be not too high either. Although several contemporary data
replication strategies are being used to control the replicated behavior once the data
is replicated, the question still stands which strategy is the best for a given scenario
or application class, assuming a certain workload, its distribution across a network,
availability of the individual replicas, and cost of the access operations. The decision to
choose an appropriate strategy for a certain environment and a specific scenario is a
challenge and full of compromises.

There exist numerous scenarios reflecting different trade-offs between several quality
metrics, and identifying a relevant strategy for a specific scenario is quite cumbersome.
Since there could exist potentially infinite scenarios and solutions are limited. These
scenarios cannot be covered entirely by contemporary strategies. It requires designing
new data replication strategies optimized for the given scenarios, satisfying the con-
straints of such scenarios, which may be left unaddressed otherwise. The constraints of
such scenarios are often conflicting in the sense that an increase in one objective could
be sacrificial to the others, which implies there is no best solution to the problem, but
what serves the specific purpose. In this regard, this research focuses on sophisticated
modeling, analysis, and machine learning approaches to automatically identify and
design such replication strategies that are optimized for a given application scenario
based on predefined constraints and properties exploiting a so-called voting structure.

This dissertation proposes a genetic programming-based multi-objective optimization
approach that endeavors to not only identify but also design new data replication

vi

strategies and optimize their conflicting objectives as a single-valued metric. This
mechanism automatically designs new replication strategies (up-to-now unknown)
optimized for given scenarios. It explores unknown replication strategies and evolves
the population of replication strategies (representing each a computer program) grad-
ually, but consistently over several generations of evolution in order to make them
optimized to eventually meet the desired criteria while maintaining the consistency
(correctness) of the solutions, too. Furthermore, it introduces strong multi-crossover
and multi-mutation operators to replication, which strengthen our machine learning
framework, at the same time guaranteeing consistency of the solutions, to generate
innovative hybrid replication strategies. This mechanism uses a so-called voting struc-
ture of directed acyclic graphs known from literature as a unified representation of
replication strategies. This unified representation exploits the heterogeneity between
the strategies, thereby making the notion of hybrid strategies easier to accomplish,
which otherwise would have been very cumbersome to achieve, therefore, to optimize.
These voting structures are interpreted by the general algorithm at run-time to derive
respective quorums. These quorums are eventually used to manage replicated objects.

The research provides an intelligent, automatic mechanism to generate new replication
strategies as well as easing up the decision-making so that relevant strategies with
satisfactory trade-offs of constraints can easily be picked and used from the gener-
ated solutions at run-time. The research demonstrates the usefulness of this genetic
programming-based automatic mechanism by reducing the cost significantly while
not comprising too much on the availabilities of the access operations. It generates
replication strategies that are innovative and such combinations have not been explored
yet. The proposed approach is very effective and extremely flexible to offer competitive
results w.r.t. the contemporary strategies as well as generating novel strategies even
with a slight use of relevant genetic operators.

vii

Contents

Abschließende Erklärung i

Kurzzusammenfassung iii

Abstract v

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Problem statement . 4

1.4 Dissertation outline . 6

1.5 Summary . 7

2 Fault tolerance and replication 8

2.1 Basic concept . 8

2.2 Fault, error, and failure . 8

2.3 Fault models in the literature . 9

2.3.1 Functional failure model . 9

2.3.2 Structural failure model . 11

2.4 Replication strategies and related work 13

2.4.1 Voting Structures . 15

2.4.2 Read-One Write-All Protocol . 17

2.4.3 Majority Consensus Strategy . 18

2.4.4 Weighted Voting . 18

2.4.5 Tree Quorum Protocol . 19

2.4.6 Grid Protocol . 19

viii

2.4.7 Triangular Lattice Protocol . 20

2.5 Summary . 21

3 Machine learning and genetic programming 23

3.1 Basic concepts of machine learning . 23

3.2 Genetic programming . 24

3.2.1 Why genetic programming? . 25

3.2.2 GP related work . 25

3.2.3 General object-oriented GP . 34

3.3 Genetic programming in the context of replication 36

3.4 Summary . 39

4 Novel framework to design replication strategies 40

4.1 Adopted fault model . 40

4.2 System architecture . 40

4.3 Specification of a constraints-based scenario 41

4.3.1 Consistency of operations . 42

4.3.2 Number of replicas . 42

4.3.3 Availabilities of the access operations 42

4.3.4 Costs of the access operations . 43

4.3.5 Fitness weightage . 43

4.3.6 Probability of the individual replicas 44

4.4 Manual designs of voting structures by modeling the state-of-the-art
strategies . 44

4.5 Customized genetic programming algorithm 49

4.6 Fitness function for the strategies’ evaluations 50

4.7 Crossover operators for strategies . 52

4.7.1 Type 1 operator . 53

4.7.2 Type 2 operator . 53

4.7.3 Type 3 operator . 54

4.7.4 Type 4 operator . 54

ix

4.8 Mutation operators for the strategies . 59

4.8.1 Type 1 operator . 60

4.8.2 Type 2 operator . 60

4.9 System parameters . 62

4.9.1 µ and λ . 63

4.9.2 Initial population probability . 63

4.9.3 Intra-crossover probability distribution 63

4.9.4 Mutation probability . 63

4.9.5 Intra-mutation probability distribution 63

4.10 Summary . 64

5 Experiments and results 65

5.1 Scenarios . 65

5.1.1 Scenario 1 . 65

5.1.2 Scenario 2 . 66

5.1.3 Scenario 3 . 66

5.1.4 Scenario 4 . 66

5.2 Results and discussions . 67

5.2.1 System parameter settings for scenario 1 70

5.2.2 Results for scenario 1 . 71

5.2.3 System parameter settings for scenario 2 76

5.2.4 Results for scenario 2 . 77

5.2.5 System parameter settings for scenario 3 82

5.2.6 Results for scenario 3 . 83

5.2.7 System parameter settings for scenario 4 88

5.2.8 Results for scenario 4 . 88

5.3 Summary . 98

6 Conclusions and future work 100

6.1 Summarization and contributions . 100

x

6.2 Future work . 101

6.3 Dissertation publications . 102

Bibliography 103

Acronyms 111

Symbols 113

xi

List of Figures

1.1 Single replica dependency . 2

1.2 Single replica failure . 2

1.3 Three functionally identical replicas . 2

1.4 Decision by majority consensus . 3

1.5 Intersection of read and write quorums 3

1.6 Trade-off scenarios . 5

2.1 Dependency among fault, error, and failure 9

2.2 Hierarchical ordering of functional failure classes 9

2.3 Ring topology . 13

2.4 Contemporary replication strategies . 14

2.5 Example of a voting structure . 16

2.6 DRSs being represented as voting structures 17

2.7 Generalized tree quorum protocol . 19

2.8 Optimized Grid protocol of 3×3 . 20

2.9 Triangular lattice protocol 3×3 . 21

3.1 Tree-based GP instance . 26

3.2 Sushil Louis’s evolved 2-bit adder . 31

3.3 An example of subgraph active–active node (SAAN) crossover 32

3.4 Conceptual Basic OOGP representation 34

3.5 Genotype representation of strategies . 35

3.6 Phenotype modeling of a TLP-like strategy as a voting structure 36

3.7 Phenotype - DRSs as JSON documents . 36

3.8 Genetic programming . 38

xii

4.1 Methodology . 41

4.2 Hybrid DRSs of MCS & TLP . 44

4.3 Voting Structure: MCS on top of TLP . 45

4.4 Voting Structure: TLP on the top of MCS 45

4.5 Availability of hybrid DRS . 46

4.6 Cost of Hybrid DRS . 46

4.7 Hybrid DRSs of GP and TLP . 47

4.8 Voting Structure: GP on the top of TLP . 47

4.9 Voting Structure: TLP on the top of GP . 48

4.10 Availability: MCS vs. hybrid DRS . 48

4.11 Cost: MCS vs. hybrid DRS . 49

4.12 General crossover . 52

4.13 Strategy 1 . 54

4.14 Strategy 2 . 54

4.15 Crossover type 1 operator . 55

4.16 Part of strategy 1 . 55

4.17 Part of the strategy 2 . 56

4.18 Crossover type 2 operator . 56

4.19 Crossover type 3 operator . 57

4.20 Strategy 1 . 58

4.21 Strategy 2 . 58

4.22 Crossover Type 4 operator (a) - offspring DRS 1 59

4.23 Crossover Type 4 operator (a) - offspring DRS 2 59

4.24 Crossover Type 4 operator (b) - offspring DRS 60

4.25 Strategy 1 . 60

4.26 Crossover Type 4 operator (d) - offspring DRS 61

4.27 Strategy 2 . 61

4.28 Crossover Type 4 operator (e) - offspring DRS 62

4.29 Chosen points for mutation . 62

xiii

4.30 Mutated DRS . 63

5.1 Hybrid Strategy 1 . 67

5.2 Hybrid DRS 1, availability of the access operations 68

5.3 Hybrid DRS 1, cost of the access operations 68

5.4 Hybrid strategy 2 . 69

5.5 Hybrid DRS 2, availability of the access operations 70

5.6 Hybrid DRS 2, Zoom-in availability graph 70

5.7 Hybrid DRS 2, cost of the access operations 71

5.8 2D representation of the generated DRSs 72

5.9 2D representation of the generated DRSs 73

5.10 Fitness graph . 73

5.11 Populations’ evolution . 74

5.12 Optimized hybrid DRS for the given scenario 74

5.13 Availability graph of the read and write operations 75

5.14 Availability, MCS vs. hybrid DRS (16 replicas) 76

5.15 Cost, MCS vs. hybrid DRS (16 replicas) 76

5.16 DRS generated via genetic programming 78

5.17 Pareto front . 79

5.18 Scenario, fitness availability analysis . 79

5.19 Scenario, populations’ analysis . 80

5.20 Scenario, optimized hybrid DRS . 80

5.21 Availability of the chosen optimized DRS 81

5.22 Availability, MCS vs. hybrid DRS (16 replicas) 81

5.23 Zoom-in view of the respective availabilities 82

5.24 Cost, MCS vs. hybrid DRS (16 replicas) 83

5.25 Pareto front view for scenario 3 . 84

5.26 An optimized DRS for scenario 3 . 84

5.27 Availability of the mentioned DRS . 85

5.28 Cost of the mentioned DRS . 85

xiv

5.29 Another optimized DRS with a slightly different crossover point 86

5.30 Availability comparison of the two Pareto front solutions 87

5.31 Cost comparison of the two Pareto front solutions 87

5.32 Fitness availability analysis of the generated DRSs 89

5.33 Populations’ analysis . 89

5.34 Costs analysis of the generated DRSs . 90

5.35 Discovered optimized hybrid DRS . 91

5.36 Availability, MCS vs. hybrid DRS (16 replicas) 91

5.37 Zoom-in view of the respective availabilities 92

5.38 Cost, MCS vs. hybrid DRS (16 replicas) 92

5.39 Another optimized hybrid DRS . 93

5.40 Availability comparison between MCS and other hybrid DRSs 93

5.41 Availability comparison between MCS and other hybrid DRSs 94

5.42 Availability comparison between MCS and other hybrid DRSs 94

5.43 Cost comparison between MCS and other hybrid DRSs 95

5.44 A mutated hybrid DRS . 95

5.45 Availabilities of MCS, hybrid, and mutated DRSs 96

5.46 Availabilities of MCS, hybrid, and mutated DRSs 97

5.47 Costs of MCS, hybrid, and mutated DRSs 97

5.48 Auto-generated availability graphs via genetic programming 98

xv

List of Tables

3.1 LGP phenotype instance . 27

3.2 Example BNF form . 28

3.3 An example genotype in GE. Here, the eight-bit binary codons have all
been packed as integers for convenience 28

3.4 Decoding the example genotype given in Table 3.3 29

5.1 Results of the GOOGP on repeated runs 77

1

Chapter 1

Introduction

1.1 Background

In the past decades, computer systems such as banking cash machine networks, net-
worked business systems, or internet services have become prevalent and gained
significant importance in our private as well as business lives daily. The flip side of
the coin is that computer systems have not only caused economic damage but also
failures leading to the loss of lives [1]. Thus, a key concern is the trustworthiness of
such systems w.r.t. safety, security, privacy, performance, correctness, and availability.
In particular, availability as the probability that a system is operable at a given time
and provides the intended service, is of utmost importance.

Providing highly available data access operations is a prevalent problem in computer
science. Relying on a single replica significantly confines the availability of the data.
Therefore, the increase in the number of replicas to store the data objects is inevitable,
which, when smartly applied, increases the availability of the data object and makes
it more fault-tolerant. Because now, the data can be accessed by approaching other
replicas too; thus, the system continues to operate despite the failure of certain nodes
hosting replicas. Data replication is, hence, a means by which some failures in a
distributed paradigm can be masked, thereby attaining better availability and fault
tolerance in the system. However, in the case of replicated data, one could easily
succumb to incorrect values when one replica is updated and other replicas do not
reflect the change. Hence, the challenge comes up in managing those replicas and
avoiding inconsistencies so that replicas always yield correct values. Inconsistency
means discrepancy in the data among created replicas. Moreover, conflicting operations,
too, need to be managed to prevent them from affecting correctness. These problems are
known as consistency issues, and falling into these issues is not the intended behavior
of the system.

All this suggests that in anticipation of accomplishing high availability by merely
replicating the copies of the same data over several nodes is not a straightforward
task. The goal of the data access operations is also to behave in a replicated system
the same as they would do in a non-replicated system. This is known as one-copy
serializability (1SR) [2], which is achieved by the strategies that enforce 1SR to maintain
the correctness of the data. It is extremely important to maintain the correctness of the
data, particularly, for mission-critical measurements. The data must also be exclusively
locked for the write operation so that no concurrent access operations (except read-read)
can be performed on the replicas, simultaneously, to again adhere to the correctness

Chapter 1. Introduction 2

notion. The data should always be consistent to meet the 1SR property. For this,
there are strategies known as data replication strategies (DRSs), i.e., [3], to ensure
such property and control the replicated behavior to make distributed systems highly
available, thus, more reliable.

Let us consider a simple example of a replica, i.e., R1, a single replica, given in Figure
1.1 that maintains crucial data.

FIGURE 1.1: single replica dependency

In the case of such crucial data or critical measurements, any failure in the replica, i.e.,
in Figure 1.2, can easily lead to a catastrophic outcome that may cost lives.

FIGURE 1.2: Single replica failure

For this, instead of relying on one replica, a system can rather be comprised of three
functionally identical components, i.e, R1, R2, and R3 as shown in Figure 1.3.

FIGURE 1.3: Three functionally identical replicas

This way, the failure of one component, i.e., R2 as shown in Figure 1.4, can easily be
compensated by the other two components, i.e, R1 and R3, if the decision is supposed
to be made by the majority for it to be conclusive. The presence of this redundancy
among the components along with this majority protocol can easily compensate for
the failure of a single component as shown in Figure 1.4. In Figure 1.4, R2 is down, but
data can be accessed as R1 and R3 are still up and running; hence, we achieve fault
tolerance in the system and, thereby, higher availability.

Many DRSs enforce a quorum mechanism (a threshold of a minimal number of replicas)
comprised of a read quorum (rq) and a write quorum (wq) to perform the preferred
access operations. A quorum is a subset of the set of all the replicas mandatory to
execute an operation. The access operations are either a read or a write operation. A

Chapter 1. Introduction 3

FIGURE 1.4: Decision by majority consensus

read operation reads values from the set of replicas of a read quorum (RQs) and a write
operation (WQs) writes values to the set of replicas of a write quorum as shown in
Figure 1.5. A read operation reads the data of all replicas of a RQ, i.e., R1 and R2, and
spots the up-to-date replica through its latest version number. While a write operation
uses an atomic commit protocol, like the Two-Phase commit Protocol [2] to write the
updated value to all replicas of a WQ, i.e., R2 and R3. Also, through such quorums,
the data is exclusively locked for the write operations since concurrent read-write and
write-write operations may also lead to incorrect values.

FIGURE 1.5: Intersection of read and write quorums

Hence, these strategies work in such a way that the intersection between the read and
write quorums and the locking mechanism happen to meet the 1SR property as shown
in Figure 1.5. The DRSs may enforce certain topologies and patterns to access replicas,
which thereby indicate their diversity. Some strategies, known as structured replication
strategies, i.e., [4], adopt certain patterns and logical structures to access replicas while
others, known as unstructured replication strategies, i.e., [5], adhere to no such logical
structure, hence, offer more freedom in accessing the replicas though at a higher cost of
the access operations. The decision for a suitable DRS to be chosen for an environment
surely is a trade-off between different quality metrics, i.e., load, capacity, availability
[6], scalability, and cost [7].

1.2 Motivation

These metrics are often conflicting with each other in a way that one cannot be opti-
mized without deteriorating the others. The availability of a read operation is point
symmetrical to the availability of write operation [8] in optimized DRSs which means,

Chapter 1. Introduction 4

both cannot be optimized independently. An increase in the read availability often,
therefore, results in sacrificing the write availability and vice versa, so is the case with
the cost of the access operations. This could easily fall into the realm of a multi-objective
optimization problem [9]. This includes mathematical optimization problems involv-
ing more than one objective function to be optimized simultaneously. Multi-objective
optimization has its applicability in many domains of science where optimal decisions
have to be taken between the trade-offs of two or more conflicting objectives. Since the
best solution for one scenario could be the worst for another one, therefore, the goal is
to find optimal solutions and quantify the trade-offs in satisfying the specified scenario.

So, the conflicting goals imply no best solution and compromises must be made de-
pending on the scenario of suitable choices w.r.t. concerned application. Furthermore,
there can be infinitely many such scenarios, but DRSs lack to cover them entirely. The
questions arise as to what are those compromises, to what extent particular values can
be compromised, and at the expense of what? These compromises could be highly
application-specific, thereby resulting in many different scenarios of suitable choices,
which will be discussed briefly in the next section and, in detail, in Chapter 4. This
requires designing of new optimized DRS [10]. As for this, the research intends to
provide application-optimized DRSs to fulfill such specified scenarios. In this regard,
this dissertation is an interesting overlap between the concepts of replication in dis-
tributed systems and machine learning. It aims to automatically application-optimize
DRSs to satisfy such constraints-based scenarios through a strong machine learning
framework. Simplistically, this dissertation solves a multi-objective problem of DRSs
through genetic programming, which results in new replication strategies optimized
for the specified constraints. In this regard, the research questions are explained in
detail here.

1.3 Problem statement

The research problem of constraints is illustrated by a triangle of trade-offs given in
Figure 1.6 where, in our case, the consistency part is static because 1SR is maintained
all the time to keep the data highly consistent. 1SR is a notion that allows a replicated
system to behave as a non-replicated system. The problem predicates upon application-
specific scenarios, which will be discussed in detail later in Chapter 4. However, to
make it rather simplistic at the moment, the quality metrics are availability and cost
of the access operations, which also depend upon the number of replicas and their
individual replica availability given that the 1SR holds. The availability of the access
operations is the probability by which a user can successfully perform an operation
from anywhere within the system. The operation cost is the average minimal number
of replicas required (to be accessed) to get the correct value, which is the average of the
minimum number of replicas mandatory to form a quorum. Choosing such metrics
is for abstraction and also to simplify the problem to carry out the analysis, which
otherwise would be very complicated to perform.

These metrics are important for making the services of the system available as well
as reducing the messaging overheads and delays. Therefore, the aim, in general, is
to increase availability and reduce costs. However, as mentioned, the availabilities
of read and write operations are optimally point-symmetric to each other [8], which
implies both cannot be optimized independently. Also, an increase in the cost of a read

Chapter 1. Introduction 5

FIGURE 1.6: Trade-off scenarios

operation often compromises the write operation’s cost. Moreover, the relationship
between the cost and availability of the access operations is not linear either. In a
distributed paradigm, there exist numerous cases of trade-offs between these quality
metrics represented by white marks shown in Figure 1.6. These white marks represent
potentially infinitely many scenarios between the cost and availabilities of the access
operations (including the total number of replicas and their individual availabilities too)
despite securing the consistency notion to be 1SR. These scenarios cannot be addressed
entirely by contemporary strategies. Considering the fact that not every strategy fulfills
each scenario, leaves many scenarios unaddressed, for which no optimal strategy exists.
Hence, there is no best solution (in terms of a global optimum) but solutions that serve
a particular purpose (i.e., local optima).

It demands the designing of new replication strategies that are optimized [10]. One
way of it is to use existing strategies to design new ones, but the question arises, how
to construct unknown DRSs out of the existing ones, and what are the hindrances in
doing so? For this, this dissertation focuses on the automatic identification and design
of optimized data replication strategies. It endeavors to exploit heterogeneity among
the existing solutions to develop new hybrid replication strategies (i.e., heterogeneous
DRSs combined together). In this regard, the challenges are:

1) resolve the multi-objective problem of conflicting nature by possibly determining
the fitness as a single quality-metric,

2) develop means to identify the application-optimized DRSs,

3) if there are no such replication strategies optimized of the scenario, come up with
new strategies to solve the problem, and

4) finally, but most importantly, develop a machine learning approach to automatically
but intelligently design as well as optimizing DRSs for specified scenarios.

This work not only combines the concepts of data replication in distributed systems
with genetic programming but also introduces new genetic operators (multi-crossover
as well as multi-mutation) to explore more possibilities as well as combinations, by
gaining fine-grained control over the mechanism. It aims to develop and strengthen

Chapter 1. Introduction 6

a machine learning mechanism to automatically identify as well as designing such
optimized data replication strategies, satisfying the scenarios. The strategies are diverse
and use different topologies and patterns to access the replicas. In this regard, this ap-
proach makes use of the heterogeneity of the solutions through a unified representation
(based on directed acyclic graphs) known as voting structures [11], [12], [13] to create
new innovative solutions.

1.4 Dissertation outline

This dissertation has resulted in six scientific publications but has the potential to
produce many more (as mentioned in the future work of this dissertation in Section
6.2), which cannot be fulfilled at the moment due to time restrictions. My dissertation
work is initiated by a basic idea “A Flexible Hybrid Approach to Data Replication in
Distributed Systems", which is published as a Springer Book Chapter in Advances
in Intelligent Systems and Computing (AISC) [10], and presented at the Computing
Conference (SAI), London in 2020. This paper manually combines, models cutting-edge
replication strategies as unified voting structures, evaluates their performances, and
compares the results with contemporary strategies.

Initially, I demonstrated newly designed DRSs using voting structures, particularly fo-
cusing on Majority Consensus Strategy, Grid Protocol, and Triangular Lattice Protocol,
which later, act as building blocks in the automatic designing of such strategies. I subse-
quently implemented the idea using genetic programming and presented preliminary
results in a publication titled “Design of Scenario-based Application-optimized Data
Replication Strategies through Genetic Programming”. This was presented in Valletta,
Malta in 2020, and published in the proceedings of the 12th International Conference on
Agents and Artificial Intelligence (ICAART), 2020 [14], an extended version of which,
titled "Designing New Data Replication Strategies Automatically" is also published as
a Springer Book Chapter in Lecture Notes in Artificial Intelligence (LNAI) in 2021 [15].

Also, in this regard, a paper titled “A Genetic Programming-based Multi-objective Op-
timization Approach to Data Replication Strategies for Distributed Systems” focusing
on multi-objective optimization has been presented and published in the proceedings
of the IEEE Congress on Evolutionary Computation (IEEE CEC, WCCI), Glasgow,
Scotland in 2020 [16]. Moreover, an extension of this work by introducing new genetic
operators (i.e., multi-crossover and multi-mutation) has been presented and published
in the proceedings of the conferences, the 26th IEEE International Conference on Par-
allel and Distributed Systems (ICPADS) [17] held in Hong Kong in 2020 and the 25th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), 2020
[18] held in Australia in 2021.

The dissertation is structured as follows. Chapter 2 explains the basic concept of fault
tolerance and replication, the state-of-the-art DRSs, and other contemporary approaches
to address the problem, as well as their limitations, followed by the concept of voting
structures. Chapter 3 discusses the basic concepts of Machine Learning to Genetic
Programming, and subsequently introduces a concept of General Object-orientated
genetic programming in the context of fault tolerance and replication. Chapter 4
specifies the fault model, describes the proposed methodology and algorithms to
address the research problem. Chapter 5 presents the results and their comparisons,
followed by a conclusion and future work, in Chapter 6.

Chapter 1. Introduction 7

1.5 Summary

Data replication is an important means to provide availability and fault tolerance in
distributed systems since data replication to some extent masks the failures of replicas
and the system continues to work as expected. However, we need protocols, i.e., data
replication strategies to control this replicated behavior of the system, once the data
is replicated. Data replication strategies exhibit different behavior and properties. In
this regard, this work is about designing new replication strategies to manage replicas,
which is comprised of six publications in popular domain conferences, ICPADS, PRDC,
CEC, ICAART, SAI, etc. The problem is predicated upon the quality metrics, i.e.,
availability and cost of the access operations, the total number of replicas, individual
replica availability, consistency of access operation, etc., forming different application-
specific scenarios. Every replication strategy has different properties w.r.t. these
metrics. These quality metrics are conflicting with each other. Simplistically, the aim,
in general, is to increase availability and reduce costs. In this regard, this research is
about designing (automatically) new replication strategies to fulfill such quality metrics
(scenarios) by resolving their multi-objective nature of properties. Furthermore, the
basic outline and the structure of this dissertation are also described in this chapter.

8

Chapter 2

Fault tolerance and replication

2.1 Basic concept

Data replication is a well-known and prevalent concept to enhance the availability
of systems prone to failures. It improves availability and helps to construct depend-
able and trustworthy systems. Fault tolerance is a concept to achieve an increased
availability of the access operations through replication, which is attained by 1) the
redundancy within components, and 2) a protocol to manage this redundant behav-
ior so that correctness is ensured. Data replication in distributed systems is used to
improve the read and the write operation availability on critical data objects as well
as improving the read and write operation efficiency, and balancing the workload in
the system. A distributed system comprises multiple autonomously operating nodes.
Generally, each node maintains a local copy of the data object called a replica. Each
replica is associated with a version number and operation-specific locks. The nodes are
interconnected by a communication network and interact with one another by sending
and receiving messages through the communication network. In spite of the presence
of certain faults in distributed systems caused by node or communication link failures,
the access operations on the replicated data objects remain available because of the
redundancy in replicas. Also, the presence of multiple replicas provides a choice to
execute an operation on certain replicas, i.e., geographically nearby located replicas or
even the local replica.

2.2 Fault, error, and failure

According to [19], a system failure occurs when the system begins to behave incorrectly
in relation to its specification. An error is a part of the system state that subsequently
may result in a system failure. This implies a sequence of state transitions causing a
system to fail eventually, however, the presence of an error does not necessarily cause a
system failure. Errors are potentially observable and detectable since they are part of
the system state as the system’s data while the cause of an error is a fault. The presence
of a fault in the system does not imply the manifestation of error because faults may or
may not cause errors. However, the inverse of it holds; the existence of an error in the
system state implies the existence of a fault.

Figure 2.1 illustrates an example of the dependencies among fault, error, and failure.
It initiates with the failure of one of the distributed system’s components, which

Chapter 2. Fault tolerance and replication 9

FIGURE 2.1: Dependency among fault, error, and failure [20]

causes a fault in the system. This fault may lead to an error in the system, which may
subsequently cause a system failure.

2.3 Fault models in the literature

No reliable system can be constructed from imperfect components to tolerate arbitrary
numbers or severe component failures. In this regard, a decision must be made about
the component failures and the system tolerance level w.r.t. those failures. For this, a
failure model specifies the failures a system is supposed to tolerate. The formalization
of failure assumptions is categorized into functional and structural failure models [21].

2.3.1 Functional failure model

A functional fault model defines the semantics of failures that are supposed to be toler-
ated by the system. This includes the specification of the behavior a failed component
may exhibit. The failure classes of crash, omission, timing, and byzantine failures, iden-
tified by [22] are illustrated in Figure 2.2 as an ordered hierarchical inclusion concerning
their severity. A failure class includes another if the behavior of a failed component
in the latter is also possible in the former failure class. For instance, the timing failure
class is included in the Byzantine failure class, but not in the omission failure class.

FIGURE 2.2: Hierarchical ordering of functional fault classes [23]

Crash failure

Such a failure occurs when a component fails w.r.t. the failure semantics of the crash
failure class, which means either it behaves correctly (adhering to the specification)
or has crashed (halted or stopped to proceed). Furthermore, [24] differentiates the
crash failure class based upon the state of the failed component, having recovered it.
Having recovered the failed component, if it is restarted from its initial state - that is
not dependent on the progress the component has made while being non-failed – an
amnesia-crash of the component has happened. The recovered component is unaware

Chapter 2. Fault tolerance and replication 10

of its failure since it is unable to differentiate between failing and subsequently being
repaired or starting from its initial state. An amnesia-crash failure may render a reliable
channel unreliable because the message buffer of the channel is reset to the initial
(empty) state. Thus, possibly enqueued messages are lost and never delivered, hence,
violating the reliability.

A partial-amnesia-crash failure occurs when after recovery, some parts of the compo-
nent’s state reset to the initial (empty) state whereas others adhere to the state prior to
failure.

A failed component suffers the pause-crash failure if it restarts in the state it was prior to
its failure. Also, pause-crash failures and partial-amnesia-crash failures need the state
of the component to be preserved upon failure in order to restore it for the recovery, for
instance, by utilizing a stable storage [25], [26]. In addition, the recovering component
is aware of the fact of failure in restoring the state from stable storage. A halting-crash
failure occurs when a crash-failed component fails to recover and, hence, remains failed
for an indefinite time.

Henceforward, the term crash failure is identified with pause-crash failure in case not
specified explicitly otherwise. Pause-crash failure manifests a fail-silent behavior as the
system fails silently; therefore, the difference of it with the fail-stop failure is that the
fail-stop can be detected by the alarm.

Omission failure

If a non-failed process or channel fails to execute the instructions of its local program,
and respectively, fails to deliver one or more messages, then this is called an omission
failure. An omission failure renders a reliable channel an unreliable channel as it loses
one or more messages. This deletes them from the message buffer and, hence, violates
the reliable delivery requirement.

If an omission-failed process always fails to execute instructions, which means making
no progress, then this is halting-crash-failed. Also, if a channel does neither receive nor
deliver messages, then this is a halting-crash failure.

Timing failure

A timing failure occurs when a component functions correctly but does not adhere
to the timing restrictions w.r.t. the job, so it does not meet the expected time frame.
Components that fail according to their failure semantics if the timing failure class
provides, a very delayed response, too early, or even no response. However, the latter
resembles an omission failure.

Byzantine failure

The failure falls in the category of the Byzantine failure class, when it may exhibit an
arbitrary behavior while failing. This may include correct, but unusual or malicious
behavior. Thus, Byzantine-failed components are also known as fail-uncontrolled

Chapter 2. Fault tolerance and replication 11

components [27]. A Byzantine failure may cause arbitrary errors in the time, as well
as value domain of data [28], thereby allowing the byzantine-failed component to
intentionally destroy the distributed computation. Most importantly, a Byzantine-
failed component may also emulate the failure behaviors of the crash, omission, and
timing failure classes.

Besides, there are incorrect computation failures, resulting in incorrect values. However,
our problem lies within the realm of crash-failure (fail-silent) or fail-stop behaviors. The
specification of mandatory component failures such as quantitative failures, referring
to the frequency of the replica failures, is defined by a structural failure model as
described next.

2.3.2 Structural failure model

A structural failure model explains which components may fail, the number of possible
failed components in a run of the distributed system, and also their types. If merely
nodes are subject to failure whereas channels are not, the structural failure model is
called a process failure model. On contrary, if nodes are perfect while channels are
subject to failures, the structural failure model is said to be a channel failure model.
If both, the nodes and the interacting channels are subject to failures in a run, the
structural failure model is said to be a combined failure model.

The set of failed components in a run is termed the failure scenario for that particular
run.

Threshold-based structural failure model

A basic example of a structural failure model is the so-called threshold model, which
[29], [30] specify that max. t out of n components such that t ≤ n may fail in a run.
For instance, assume a system comprising three nodes (replicas) p1, p2, p3 that are
connected with each other through perfect channels and a structural failure model
specifying that max. one node may fail in a run. This failure scenario is described by
a threshold model with a threshold of t = 1. Presumably, because of the knowledge
about the concrete application scenario, the actual failure specification is improved to
furthermore incorporate the case that p1 and p2 may fail in a run. This improved failure
specification cannot be accurately described by a threshold model. It is not possible to
define the additional failure scenario for p1 and p2 being failed without increasing the
threshold to t = 2, thereby also defining the failure scenarios of p1, p3 and p2, p3 failing
in a run. Threshold models can easily underspecify or overspecify the failures a system
may face: Either a failure scenario that may happen is not defined or a failure scenario
that may not happen is defined and unnecessarily respected in the structural failure
model. Thus, a threshold model defines the possible failure of arbitrary subsets of the
set of components whose cardinality is less than or equal to t.

Set-based structural failure models

Such failure models are, for instance, adversary structures [31] or DiDep [32], allowing
a more fine-grained and comprehensive structural failure specification through the sets

Chapter 2. Fault tolerance and replication 12

of the subsets of components subject to failure in a run. Such type of failure models
strictly generalizes threshold models because they can be represented by sets of subsets
of components. Reconsidering the above example, the set-based structural failure
model {∅, {p1}, {p2}, {p3}, {p1, p2}} specifying that either no nodes, exactly one node,
or only p1 and 2 are subject to failure in a run, which precisely describe the refined
failure specification.

Furthermore, set-based structural failure models are able to describe dependencies
within component failures that threshold models are unable. For instance, in the set-
based structural failure model, the failure of p1 and p2 avoids the failure of p3 in the
same run. Assuming replica p1 cannot fail on its own, that is, the structural failure
model becomes {∅, {p2}, {p3}, {p1, p2}}, then its failure also prevents the failure of
p3, however, enforces the failure of p2 in the same run. Informally, an independent
component failure does neither prevent nor enforce the failure of other components.
The structural failure model where the three replicas p1, p2, p3 may fail independent of
each other is {∅, {p1}, {p2}, {p3}, {p1, p2}, {p1, p3}, {p2, p3}, {p1, p2, p3}}.

Assumption coverage

Even in a careful structural failure model, the risk of underspecification of the intensity
of failures remains. Such risks are expressed by the notion of assumption coverage [28],
the probability that no more failures will occur than the ones specified in the failure
scenarios. The assumption coverage is a probability; therefore, must be less than 1 as
some failure scenarios may be left unspecified, either deliberately or unintentionally. If
all the prospective failure scenarios were specified in the structural failure model, the
model would perhaps be of no use because it would become too complex, in addition
to describing too severe failure scenarios for a system to tolerate. For instance, the
failure of all components of the system can be specified in the structural failure model,
but such a failure scenario cannot be tolerated by any system comprising imperfect
components – at least not if the components are failed for a longer period of time.

Network Partitioning

The failure of channels alters the topology (which can also be due to the failure of
nodes) of the distributed system, thereby impacting also the communication between
the replicas. This can also be due to the failure of nodes. This as a result affects the
progress of the distributed computation. For instance, if the two channels, i.e., in
the ring topology shown in Figure 2.3, connecting p1 and p2 and p5 and p6 fail, the
network breaks into two partitions. However, when the inter-partition communication
is ruptured, it does not affect the intra-partition communication among replicas. If
the two channels suffer a halting-crash and hence fail permanently, then the system
permanently fails, too, provided that the replicas of both the partitions cooperate for
the distributed computation to progress. If, on the contrary, the failed channels finally
recover, then the progress of the distributed computation is not rendered impossible
but only delayed till at least one of the failed channels gets back – and no intermittent
failures occur – such that the partitions rejoin.

As for the fault model for this research, it falls in the realm of the functional failure
model, the replicas are supposed to manifest a fail-silent behavior. All failures are

Chapter 2. Fault tolerance and replication 13

FIGURE 2.3: Ring topology [20]

assumed to be independent of each other. The network is supposed to be fully con-
nected without communication failures. A network partitioning may occur; however,
channel failures are not part of the chosen fault model in order to keep the analysis less
complicated. As for the network partitioning, it does not harm the proposed mecha-
nism in this research as the mechanism works on the quorum of replicas independent
of the network partitioning. Only nodes (machines) hosting replicas can fail and the
probability that a node has failed at any particular point in time is (1-p). p gives the
probability that a node is available at an arbitrary point in time. So, this fully connected
behavior with no communication failures is not necessary for correctness purposes but
rather for analysis purposes, which means with such assumptions it is easier to carry
out the experiments and analysis.

2.4 Replication strategies and related work

DRSs in general are categorized into two major classes: unstructured and structured
DRSs. Unstructured DRSs, for instance, the Majority Consensus Strategy (MCS) [5]
uses combinatorics and minimum quorum cardinalities to specify a quorum system.
The MCS requires dn/2e replicas for the read quorum and d(n+1)/2e for the write
quorum to execute any operation in a system comprising n replicas. This threshold-
based quorum system allows all the replicas an equal opportunity to be in a read or a
write quorum. However, it succumbs to high operational cost and scalability issues
because of linearly increasing quorum cardinalities. This is not the case in structured
replication strategies, where structural properties and patterns are used to specify a
quorum system. For instance, the Grid Protocol [4] imposes a logical rectangular i * j
grid structure where i indicates columns and j rows for a system comprised of i * j = n
replicas. A read quorum consists of replicas from at least each column while a write
quorum constitutes all the replicas at least from a column along with one replica from
each column to satisfy the quorum system intersection property. There are various

Chapter 2. Fault tolerance and replication 14

other replication strategies known from the literature such as Read-One Write-All
(ROWA) [33], the MCS [5], the Tree Quorum Protocol (TQP) [3], the Weighted Voting
Strategy (WVS) [34], Hierarchical Quorum Consensus (HQC) [35], the Grid Protocol
[4], and the Triangular Lattice Protocol (TLP) [36]. Details and the working logic of
these strategies will be discussed later in this chapter. These structured, as well as
unstructured strategies, are also known as static replication strategies. Besides, there
exist also dynamic replication [37], [38], [20] based upon static replication strategies,
enabling the adaptation of the quorum, thereby allowing switching among quorum
systems at run-time. This dissertation will act as a building block to dynamic replication,
too, as conceptually, a dynamic DRS is a set of static replication strategies where each
represents the quorum system for a particular subset of the set of replicas among which
the system may switch at run-time. These strategies constitute different semantics,
patterns, and properties in terms of accessing replicas, thereby resulting in different
thresholds of objectives, i.e., availabilities, costs, total replicas, etc.

Moreover, static DRSs are not able to tolerate replica failures beyond a strategy-specific
threshold, however, dynamic DRSs can switch among quorum systems to adapt to
failures. In this regard, the proposed mechanism will provide new replication strategies
whenever a replica failure is detected, thereby making a quorum system switching
possible. So there exist these DRSs to control the replication behavior in distributed
systems, but as mentioned before, there are trade-offs, too, of several quality metrics,
thereby making numerous scenarios between them, which leads to the need of design-
ing new DRSs since there is no single best solution, and existing DRSs are insufficient
to fulfill the scenarios entirely. This research uses a so-called hybrid approach where
different strategies are “glued” together to form a new DRS. The state-of-the-art has
not much focused on a hybrid approach to explore new strategies. So, there is not
much work done on such a hybrid approach, yet, there exist only a few attempts in
the literature such as [39] and [40], which merely combine TQPs and GPs, but they do
not impose any unified structure on the nodes that greatly limits the operability of the
approach. Figure 2.4 shows different topologies, semantics, and patterns of replication
strategies for accessing replicas, thereby indicating their diverse nature. This diver-
sity makes the task of developing a hybrid approach very cumbersome to pursue. It
leaves less room for a hybrid approach to work effectively as it cannot incorporate the
varied strategies freely. As a consequence, many scenarios could be left unaddressed.
Whereas, to address this issue, if a hybrid approach is applied to such a diverse nature
of topologies and varied patterns for accessing replicas, the problem easily goes out of
hand.

FIGURE 2.4: Contemporary replication strategies [41]

Chapter 2. Fault tolerance and replication 15

To solve such problems, in the context of this dissertation, lies in the realm of an
optimization problem that uses so-called voting structures to achieve a holistic hybrid
approach in DRSs, thereby ignoring all their logical imposition in anticipation of making
the task easier to accomplish. Though expert-based manual designs of optimized DRSs
using the concept of voting structures have been presented in [42], [12], [13], but
lack automation, which limits the efficiency of the approach since the search space is
huge. The state-of-the-art approaches in optimization and machine learning include
multi-objective evolutionary algorithms, stochastic optimization techniques [43] for
quantification performance measures, etc. As mentioned earlier, this dissertation is
focused on multi-objective optimization and stochastic techniques, particularly, genetic
programming [44], [45] to solve the problem. Besides multi-objective optimization,
there exist other approaches, i.e., constraints optimization, multimodal optimization,
combinatorial optimization, etc. Also, some other recent works on quorum optimization
can be found here [46], [47].

Initially, in Section 4.4, newly designed DRSs are demonstrated using voting structures,
particularly focusing on MCS, GP, and TLP, following the same line of research as in
[42], [12], [13]. And this, later on, acts as a building block in the automatic design
of such strategies so that any quorum-based strategy can freely be merged with any
other quorum-based strategy. It endeavors to automatically design new solutions
and optimize them through machine learning to satisfy the specified scenario, hence,
assisting multi-criteria decision making. It uses a genetic programming-based approach
that enables the system to design holistic hybrid DRSs at run-time and optimize them
as computer programs over several generations of evolution. An optimized strategy
from the generated strategies can be picked at run-time depending upon the scenario
and preferences of certain objectives. This genetic programming-based mechanism is
also endowed with strong multi-crossover as well as multi-mutation operators to easily
and also, flexibly design innovative replication strategies.

2.4.1 Voting Structures

To address the described topological and diversity issues between DRSs, a unified
representation of these strategies by a concept like General Structured Voting [11] is
required for the simulation and machine learning approaches to be applied over it.
Expert-based manual designs of optimized DRSs using the concept of voting structures
have been presented in [42], [12], and [13]. Figure 2.5 represents a quorum system by
a directed acyclic graph (DAG) named a voting structure. Every individual voting
structure, in our case, is a computer program that is interpreted by a general algorithm
given in [11], at run-time to derive read and write quorum sets. These quorum sets
are used to manage replicated objects. A voting structure is traversed recursively
by the algorithm to derive the quorums for respective access operations at run-time
independent of the varied topologies of the strategies. The nodes of a voting structure
are either physical nodes representing actual replicas or virtual nodes that constitute
the groupings of physical and virtual nodes. The virtual nodes are labeled Vi, where i =
1, 2,... while the physical nodes are labeled pj where 1≤ j ≤ n and n represents the total
number of replicas of a system. Irrespective of being a physical or virtual node, every
node is endowed with votes comprised of a natural number on the right) which could
also be comprehended as the weightage of that node in the collection of the quorum.
Furthermore, each node is equipped with a pair of minimal quorums rq (wq) for the
read and write operations to collect from its child nodes. The minimal quorums for

Chapter 2. Fault tolerance and replication 16

each node to gather per operation have to be less than or equal to the sum of the votes
of its children. Some replication strategies, i.e., the Tree Quorum Protocol imposes a
partial order on the quorums by which to use quorums for operation execution. The
specification of such an ordering allows certain quorums to be used prior to others.
In such cases, the directed edges of voting structures can be marked with operation-
specific priorities imposing such orderings with 1 being the highest and ∞ being the
lowest). This ordering is for accessing the replicas accordingly to reduce the cost. This
voting structure is traversed by the recursive algorithm to derive respective quorums.
It starts from the root node and queries as many of its child nodes as specified in the
minimal quorums to orchestrate the quorums of physical replicas for the respective
access operations. On each level, in the case of a tree structure, the quorums have
to abide by the conditions (2.1) and (2.2) for a total number of votes V to meet the
consistency criterion. Here, rq (wq) is a number representing the minimal read (write)
quorum.

rq + wq > V (to avoid read-write conflict) (2.1)

wq > V/2 (to avoid write-write conflict) (2.2)

For example, the voting structure given in Figure 2.5 constructs the following read (RQ)
and write quorum sets (WQ) to perform the data access operations:

RQ = {{p1}, {p2, p3}, {p2, p4}, {p3, p4)}
WQ = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}}

FIGURE 2.5: Example of a voting structure

Chapter 2. Fault tolerance and replication 17

Figure 2.6 demonstrates MCS, TQP, ROWA, GP, and TLP (from left-top to right bottom)
comprising four replicas as a modeled unified representation in the form of voting
structures, respectively. The respective quorums and votes are set in the instances; how-
ever, for simplicity, edge priorities are not represented in the figure and the interpreting
algorithm takes care of the order of replicas inherently. These voting structures form-
ing quorum systems eliminate the diversity between the replication strategies since
the same quorums would be derived recursively here, as it would be in an orthodox
representation; therefore, this representation is immensely powerful and the key to
the proposed automatization approach. Next, the details of some of the common data
replication strategies are explained.

FIGURE 2.6: DRSs being represented as voting structures

2.4.2 Read-One Write-All Protocol

This perhaps is the most intuitive and simplest data replication strategy known as Read-
One Write-All Protocol (ROWA) [2]. ROWA is an unstructured replication strategy
where the write quorum set consists of a single quorum that contains all n replicas in
the system while the read quorum set consists of n quorums, each comprising a distinct
single replica. Such a construction satisfies the quorum system intersection property.
On one hand, the write operation needs all replicas of the system to participate in the
operation execution, thereby not tolerating even a single replica or channel failure. This
may result in some replicas being unavailable or unreachable by other replicas via the
network. On the other hand, with such a read quorum cardinality, read operations can
easily be executed locally without involving any other replicas. Certainly, ROWA is
strictly biased towards the read operation in every aspect. It is better for application
scenarios where the read operations are by far more frequently performed than write
operations, and where the read operation availability is of extreme importance because
of the frequency of the read operations. The Read-One Write All Available Protocol
is proposed to improve the write operation availability [2]. In this strategy, write
operations are executed on all the available replicas of the single write quorum, which

Chapter 2. Fault tolerance and replication 18

means, on all the non-failed replicas contrary to ROWA where all the replicas are
required. As a result, a formerly failed replica may return a stale replica value if a
(local) read operation is executed on it upon its recovery, and a write operation has been
executed while this replica was failed. Thus, upon recovery, the replica must be aware
of the failure and must carry out a scheme-specific recovery protocol to update its
replica before executing regular access operations. [7, 48] consider the Read-One Write
All Available Protocol to be the best option for a range of cluster computing applications
with its specific communication network infrastructure and network topologies.

2.4.3 Majority Consensus Strategy

Majority Consensus Strategy (MCS) [5] uniformly allocates each replica a vote of 1.
The read quorum threshold of votes is dn/2e and the write quorum threshold of votes
is d(n+1)/2e for a total of n votes and replicas in the system. As dn/2e + d(n+1)/2e >
n and 2 ·d(n+1)/2e > n, the quorum system intersection property is met for the read
and the write quorum set. It does not impose any specific order on the quorum sets
to be probed accordingly. Therefore, the computational work induced on the replicas
by the quorum probing strategy can be balanced among them. Due to the quorum
system specification of vote thresholds, any replica is equally appropriate for being in a
particular quorum as not some specific replicas but several replicas make a quorum.
Therefore, MCS is highly resilient to replica failures since as far as the number of
non-failed replicas meets at least the minimal votes necessary for a read or a write
quorum, an arbitrary set of replica failures can be tolerated. As a result, MCS offers
very high operation availability for both, the read and the write operation, provided
that the individual replicas’ availability exceeds 0.5. However, quorum cardinalities
grow linearly in the number of replicas, thereby resulting in only linear scalability, for
instance, in relation to message complexity.

2.4.4 Weighted Voting

Weighted Voting [34] generalizes MCS by allowing the allocation of a specific number
of votes to each replica, thereby rendering MCS with its uniform vote assignment a
special case of Weighted Voting. It is hence dedicated to be used where the replica
availabilities are not uniform but divergent since replicas with higher availabilities can
be prioritized over replicas with lower availabilities by assigning them more votes to
potentially increase their operation availability. Besides, the quorum probing strategy
can access computationally more powerful replicas by assigning them more votes than
less powerful replicas. For instance, in terms of message complexity, it is suitable for
the replication strategy to favor quorums with small cardinalities, resulting in those
replicas with more assigned votes in order to be selected more often than other replicas
(with fewer votes) to participate in the operation execution. However, finding a suitable
vote assignment is not a trivial matter [49], [50], [51]. Depending upon the particular
vote assignment, quorum cardinalities may increase linearly in the number of replicas,
which results in scalability issues the same as in the case of MCS.

Weighted Voting Protocols are optimal for the access operations availability in a fully
connected network topology with perfect channels while assuming a replica availability
of at least 0.5 and replica failures to be independent [52]. Next, structured static

Chapter 2. Fault tolerance and replication 19

replication strategies are discussed with the first being the Tree Quorum Protocol [3],
followed by the Grid Protocol [4], and the Triangular Lattice Protocol [36].

2.4.5 Tree Quorum Protocol

The structured Tree Quorum Protocol (TQP) [3] logically organizes the replicas in a
tree structure as shown in Figure 2.7 by an example with 13 nodes. A read quorum
is derived from the tree structure by probing it in a certain manner. Initially, the read
quorum comprises the root node on level zero of the tree. If this node has failed, then as
a substitute, a preferably non-failed majority of its child node on level one of the tree is
used. For each failed node in the selected majority, this failed node is again substituted
by a (preferably) non-failed majority of its child nodes on level two of the tree, and so
forth. The traversal ceases if 1) a set of non-failed nodes are assembled constituting
the read quorum or 2) a failed node cannot be replaced by a majority of its child node,
either because the failed node is a leaf node or too many of its child nodes have failed
too. In the latter case, the read quorum becomes unavailable.

For instance, in Figure 2.7, if the nodes p1 and p3 fail, the set {p2, p4} is a valid read
quorum. If the node p4 fails too, the set {p2, p11, p12} becomes a valid read quorum.
The TQP imposes an ordering on the read quorums to probe them accordingly. A write
quorum comprises the root node plus a majority of its child nodes plus a majority of
their respective child nodes, and so forth. For instance, the set {p1, p2, p3, p5, p6, p8, p9}
is a valid write quorum of the TQP with 13 nodes as shown in Figure 2.7.

FIGURE 2.7: Tree quorum protocol [20]

Note that quorum systems following the TQP cannot be represented by vote-assignable
quorum sets [3].

2.4.6 Grid Protocol

The Grid Protocol [4] arranges the nodes in a logical rectangular k × j grid with k · j
= n for a system consisting of n nodes where k is the number of columns and j is the
number of rows in the grid. Figure 2.8 illustrates the logical 3×3 grid for a system
comprising nine nodes (replicas). A horizontal crossing of the grid from the leftmost
column to the rightmost column is called a column cover (C-Cover). A vertical crossing

Chapter 2. Fault tolerance and replication 20

of the grid from the topmost row to the bottom-most row exclusively following vertical
edges in such way that it includes all nodes of a single column, which is called a
complete column cover (CC-Cover). For instance, the set of nodes {p3, p6, p9} represent
a CC-Cover and the set of nodes {p1, p5, p6} form a C-Cover in Figure 2.8.

In the original Grid Protocol [4], a read quorum comprises one node from each column
(C-Cover) while a write quorum necessitates both, a C-Cover and an additional CC-
Cover to satisfy the quorum system intersection property. The read and write operation
availability graphs of the Grid Protocol are not symmetric and, therefore, are not
optimal [8]. The optimized version of the Grid Protocol [53], [54], [55] further allows
a CC-Cover to be a read quorum. This seemingly trivial improvement increases the
probability of finding a read quorum, thereby increasing the read operation availability
while not compromising the write operation availability. If a complete column of
nodes fails, the original Grid Protocol cannot form a C-Cover, which consists of a read
quorum, as a consequence, the read operation becomes unavailable.

The optimized version, however, can use another complete column (CC-Cover) com-
prising non-failed nodes as read quorum, which keeps the read operation available. The
optimized Grid Protocol holds point-symmetric read and write operation availabilities
and, therefore, is optimal [8].

FIGURE 2.8: Optimized Grid protocol of 3×3 [55]

2.4.7 Triangular Lattice Protocol

The Triangular Lattice Protocol (TLP) [36] is another structured grid-based protocol as
shown in Figure 2.9 comprising nine replicas, in this case. Following the Grid Protocol
nomenclature, a horizontal crossing of the lattice structure is called an H-Cover and a
vertical crossing is known as a V-Cover. On contrary to the Grid Protocol that imposes
no restriction on which replicas form a horizontal path as long as one replica from each
column is included, the TLP limits the replicas being allowed in a horizontal path. For
each replica and its successive replica in a horizontal path, the successive replica is
either its left-adjacent, right-adjacent, upwards-adjacent, downwards-adjacent, right
downwards diagonal-adjacent, or left upwards diagonal-adjacent replica in the lattice
structure. Besides, contrary to the Grid Protocol, a vertical crossing of the TLP from

Chapter 2. Fault tolerance and replication 21

the topmost row to the bottom-most row must not only follow vertical edges, but the
same rules of horizontal paths also apply to each replica and its successive replicas in a
vertical path.

A read quorum either compromises replicas on a horizontal path from the leftmost
column to the rightmost column of the lattice (H-Cover) or replicas on a vertical path
from the topmost row to the bottom-most row of the lattice (V-Cover). A write quorum
needs both, the replicas of a horizontal as well as a vertical crossing of the lattice. For
instance, in the logical lattice structure in Figure 2.9, the replica set {p4, p5, p9} is an
H-Cover while the replica set {p1, p5, p8} is a V-Cover. If existent, the diagonal path in
a lattice – the replica set {p1, p5, p9} in the figure, is a V-Cover as well as an H-Cover.
Therefore, it can be used to execute read as well as write operations.

It means in this diagonal case, only three replicas instead of five are required to perform
the write operation if this replica set is used as a write quorum. The TLP construction is
complete [55] in the sense that if an edge is added to the structure, the quorum system
does not adhere to the intersection property anymore. For instance, adding an edge
connecting the p2 and p4 in Figure 2.9 results in a possible vertical and horizontal
crossing with not any replicas being common in both, as the vertical path, in this
case consists of the replica set p2, p4, p7 whereas the horizontal path comprises p1,
p5, p6, hence, having no replica in common, consequently impacting the correctness
behaviour.

FIGURE 2.9: Triangular lattice protocol of 3×3 [20]

2.5 Summary

The concept of replication is to increase fault tolerance, in particular operation availabil-
ity, which inheres to two facets, namely redundancy in components and a coordination
protocol managing the multiple redundant components. Applied to distributed com-
puter systems, replication is used to improve the read and write operation availability
on critical data objects at a relatively lower cost. In this regard, different fault models
and state-of-the-art replication strategies are explained in this chapter. Also, the nov-
elty of the proposed approach w.r.t. the existing methods is explained that this work

Chapter 2. Fault tolerance and replication 22

uses so-called voting structures to automatically achieve a holistic hybrid approach
in DRSs, which ignores all their logical imposition in anticipation of making the task
easier to achieve. It endeavors to automatically design new solutions and optimize
them through machine learning to satisfy the specified scenarios, hence, assisting
multi-criteria decision making. Having discussed the replication strategies and related
work, now we move on to discussing the machine learning aspect of the proposed
approach. It uses a genetic programming-based approach that enables the system to
design holistic hybrid DRSs at run-time and optimize them as computer programs over
several generations of evolution.

23

Chapter 3

Machine learning and genetic
programming

The chapter briefly explains the most common machine learning techniques, subse-
quently narrowing it down to genetic programming and its common variants, and
the way genetic programming can be used in the context of data replication and fault
tolerance in distributed systems.

3.1 Basic concepts of machine learning

Machine learning combines statistics and learning paradigms of artificial intelligence.
It is the learning from data and observations, and it has evolved into a very successful
area of research in the last few decades. Depending upon the problem, nature of the
data, and its goals, machine-learning methods are applied. The most commonly known
techniques are supervised learning [56], unsupervised learning [57], semi-supervised
learning [58], reinforcement learning [59], and evolutionary algorithms [60] (also known
as evolutionary computation).

Supervised learning means learning from data with class labels. For this, normally, data
is split into two parts, training and testing data, to train the model (on the training data)
and test it (on the testing data), respectively. Labels are, hence, additional information
available for training the data. Such type of learning is for task-oriented problems, and
the task is generally to predict the unknown class labels. In this regard, if the labels
are binary or discrete, the learning task is a classification problem, i.e., classification
of cancers [61]. On contrary, if labels are continuous, the task is called a regression
problem, i.e., traveling time estimations [62].

Unsupervised learning is the learning solely from the structure of the data itself, without
any labels. Hence, in the case of unsupervised learning, the data is not labeled. Such
type of learning is for data-oriented problems, i.e., customer segmentation. Clustering
and dimensionality reduction are the two variants of unsupervised learning. Hence, in
unsupervised learning, there are no labels present for all the observations in the dataset
unlike supervised learning, whereas a semi-supervised learning [58] falls in between
these two. In many realistic scenarios, the labeling cost is very high since it demands
skilled human experts, i.e., financial fraud detection, etc., where there can be millions
of unlabeled records, too, alongside [63]. So, in the absence of labels in the majority of

Chapter 3. Machine learning and genetic programming 24

the observations, and their presence in a few, semi-supervised algorithms are the best
option.

Reinforcement learning is a type that allows machines and software agents to determine
the ideal behavior automatically in a particular context to optimize performance. It
is based upon simple reward feedback called reinforcement signal, being essential
for the agent to learn its behavior. Reinforcement Learning is defined by a particular
problem, and all its solutions are categorized as Reinforcement Learning algorithms.
In a problem, an agent is supposed to decide and choose the best action based on its
current state, when repeatedly done, it is known as a Markov Decision Process. To
develop intelligent programs known as agents, reinforcement learning follows these
steps: 1) input state is observed by the agent, 2) a decision-making function determines
to execute an action through the agent, 3) having executed, the action, the agent receives
a reward or reinforcement from the environment, 4) the state-action pair information
about the reward is stored.

Evolutionary algorithms (EAs) [60] are used to discover solutions to problems humans
do not know how to solve directly. Free of human preconceptions or biases, the
adaptive nature of EAs can generate solutions that are comparable to, and often better
than the best human efforts. It is the study of non-deterministic search algorithms that
are based on aspects of Darwin’s theory of evolution by natural selection [64]. In this
regard, a detailed account of the history of evolutionary computation can be found in
the work of [65]. However, it is interesting to note that the idea of artificial evolution
was suggested by one of the founders of computer science, Alan Turing, in 1948 [66].

There are many EAs, but most common are Genetic Algorithms (GAs) [67], [68], Ge-
netic Programming (GP) [44], [45], Evolutionary Strategies (ESs) [69], [70], Evolutionary
Programming (EP) [71], etc. In computer science and operations research, a genetic
algorithm (GA) is a metaheuristic inspired by the process of natural selection. Genetic
algorithms are frequently used to generate high-quality solutions to optimization and
search problems by relying on biologically inspired operators, i.e., mutation, crossover,
and selection. The emphasis is on the role of genetic recombination (often called
‘crossover’). In GAs, the solutions are often represented as bit strings. Genetic pro-
gramming is a variant of GAs in which the solutions being manipulated are computer
programs rather than bit strings. So genetic operators, i.e., crossover and mutation are
applied to programs rather than bit strings. Genetic programming is demonstrated
to learn programs for tasks, i.e., simulated robot control, recognizing objects in visual
scenes, etc. Evolutionary Strategies includes a similar mechanism, but using real-
valued numbers and mostly relying on mutation. Evolutionary programming was
originally designed to evolve deterministic finite automata that accept a set of input
strings. Evolutionary programming was later extended for optimization in binary and
continuous solution spaces, too, while being equipped with mutation rate adaptation
techniques. Next, genetic programming and its different variants are discussed, in
detail.

3.2 Genetic programming

Genetic Programming is the automatic evolution of computer programs, the origins
of which (and evolutionary computation) go back to the origins of evolutionary al-
gorithms [65]. In 1958, Friedberg designed an algorithm to evaluate the quality of a

Chapter 3. Machine learning and genetic programming 25

computer program, make some random changes to it and then test it again to check
for improvements, and so on [72], [73]. Smith used a form of GP in his Ph.D. thesis
in 1980 to construct a learning system [74]. In 1981, Forsyth emphasis the utility of
GP in artificial intelligence by evolving Boolean expressions for different prediction
problems, i.e., prediction of the survival of heart patients, prediction of the British
soccer results, and identification of the athletes good at sprinting from those good at
longer distances [75]. In 1985, Cramer evolved sequential programs in the computer
languages JB and TB [76], the latter has the form of symbolic expression trees. He used
a few assembler-like functions, coded as positive integers, with integer arguments. In
the same year, being unaware of Cramer’s work, Schmidhuber also experimented with
GP in LISP, and later reimplemented it in a form of PROLOG [77], [78]. However, GP
became more popular after the publication of John Koza’s book in 1992 [44]. In general,
it is quite challenging to evolve computer programs because of the fact that computer
programs are highly constrained and must adhere to a specific grammar for them to be
compiled.

3.2.1 Why genetic programming?

Genetic programming is mainly used to optimize computer programs. The reason for
choosing it is 1) its ability to evolve and optimize DRSs in the form of DAGs as the
encoding scheme used in this research is DAG-based voting structures, 2) to avoid
brute force since the search space is huge, which would make the task computationally
expensive because there are too many combinations and possibilities by which the
DRSs can be combined. Thus, the proposed mechanism allows replication strategies to
evolve as computer programs over several generations to attain a constant evolutionary
trajectory. Therefore, genetic programming helps in intelligently designing DRSs
without attempting to brute force all the possible combinations.

This research, therefore, uses GP to automatically identify and design application-
optimized DRSs. As mentioned earlier, GP is a type of EA; however, the major differ-
ence between GP and other genetic variants of machine learning is the representation.
Furthermore, specifically the difference with GAs, in GAs, an individual is a candidate
solution, and individuals are generally "raw data" in some encoding scheme (i.e., a
string); however, GP can be considered a special case of GA, in which each individual
represents a computer program (i.e., a nested data structure) rather than merely a
raw data. Hence, GAs search a solution space whereas GP explores a program space
[79]. As GP is used to evolve computer programs, this dissertation as well, therefore,
uses it to evolve the generations of replication strategies as computer programs and
optimize their constraints to meet the criteria. The criteria are manifested in computable
functions known as objective functions (such as explained in the next chapter), which
conflict with each other in the real world. The problem is to find a solution that satisfies
the given constraints and to optimize a vector function (i.e., a fitness function, described
later in the work) whose elements represent objective functions.

3.2.2 GP related work

There are many types of Genetic Programming, i.e, Tree-based GP, Stack-based GP,
Linear GP, Grammatical Evolution, Cartesian GP, etc. In tree-based GP, the computer
programs are represented in tree structures that are evaluated recursively to produce the

Chapter 3. Machine learning and genetic programming 26

resulting multivariate expressions. In stack-based genetic programming, the computer
programs in the evolving population are represented in a stack-based programming
language. Linear GP is a subset of genetic programming in which programs in the
evolving population are expressed as a sequence of instructions from imperative pro-
gramming language or machine language. Grammatical Evolution, a novel approach
to Genetic Programming that adopts principles from molecular biology coupled with
the use of grammars to specify legal structures in a search. Cartesian GP is a very
efficient and flexible type of Genetic Programming that encodes a graph representation
of a computer program, which is also relevant. Over the years, genetic programming
has been shown to handle most (if not all) basic constructs of common programming
languages, including functions, iteration, recursion, variables, and arrays. Recently, it
has even proven possible to evolve programs in actual programming languages such
as Java [80], [81], [82]. Also, GP is nowadays widely applied to image classification
[83]. Existing works also show that GP can extract domain-specific features for texture
image classification, object classification, scene classification, and even facial expression
classification [84], [85], [86], [87]. Next, the common variants of GP are discussed.

Tree-based GP

In tree-based GP, tree structures are used to represent the computer programs, and
such tree structures are then evaluated recursively in order to produce the resulting
multivariate expressions. Conventional nomenclature states that a tree node (or just
node) is an operator [+,-,*,/] while a terminal node (or leaf) is a variable [a,b,c,d]. Figure
3.1 represents a tree-based GP instance comprised of the respective operators and leaf
nodes. Also, LISP was the first programming language applied to tree-based GP, as the
structure of LIPS matches the structure of the trees.

FIGURE 3.1: Tree-based GP instance [88]

LISP was invented by John McCarthy in 1958, and it is one of the oldest high-level
computer languages [89]. Even nowadays, it is used widely by researchers in artificial

Chapter 3. Machine learning and genetic programming 27

intelligence. All LISP computer programs can be written in the form of data structures
known as trees, which consequently simplifies the task of applying genetic operations
to generate valid programs. In 1992, John Koza published a comprehensive work on
the evolution of computer programs in the form of LISP expressions [44]. Tree-based
GP was the first application of Genetic Programming, but nowadays, many other
languages such as C++, Java, Python, etc., are also used in developing tree-based GP
applications. As mentioned earlier, there are several other types of GP, i.e., linear, stack-
based, cartesian, which are usually more efficient in executing the genetic operators.
However, tree-based GP offers a visual means to engage new users of GP and stays
viable when implemented through a fast programming language or underlying suite of
libraries. For instance, Karoo GP is an example of a scalable, tree-based GP application
suite built in Python and the TensorFlow library for multicore and GPU support [66].

EAs typically use recombination (also known as crossover) and mutation operations for
generating new prospective solutions. In tree-based GP, crossover means an exchange
of subtrees between the parent solutions while mutation substitutes a subtree by a
randomly generated one, and details on accomplishing it are well known in literature
[44], [45], [90], [91]. Moreover, in tree-based GP, the size of solutions (chromosomes) is
variable since crossover and mutation can create offspring solutions of different sizes.

Linear or Machine code GP

Linear genetic programming (LGP) is a subset of genetic programming in which the
evolving population is represented as a sequence of instructions from imperative
programming language or machine language. In LGP, programs are a constrained
linear set of operations and terminals (inputs). These programs are quite similar to the
programs written in machine code. In GP, a linear tree is a program that comprises a
variable number of unary functions along with a single terminal. Also, linear tree GP
differs from the bit string genetic algorithms as a population may comprise programs
of variable lengths, and there may also be more than two types of functions or more
than two types of terminals [90].

As LGP programs are typically expressed as a linear sequence of instructions, therefore,
they are simpler to read and to operate on as compared to the tree-based GP. For
instance, Table 3.1 shows a fairly simple program written in the LGP language Slash/A,
which is basically a series of instructions being separated by a slash. By converting
such code in bytecode format, i.e., as an array of bytes each representing a different
instruction, mutation operations can be performed merely by changing an element of
such an array.

TABLE 3.1: LGP phenotype instance [88]

Chapter 3. Machine learning and genetic programming 28

Grammar-based approaches

Grammatical evolution (GE) is an evolutionary algorithm, particularly, a GP approach
pioneered by Conor Ryan, JJ Collins and Michael O’Neill in 1998 [92]. As compilers use
grammar to define the legal expressions of a computer language, therefore, it becomes a
natural approach for the GP to explicitly evolve chromosomes adhering to any specific
grammar. This implies the evolution of all kinds of constrained structures or languages
that can be handled through the same generic approach but with a different grammar.
A review of such approaches can be found in [93]. Here, a well-known grammatical
approach known as grammatical evolution (GE) [94], [95] is discussed.

In GE, binary-string genomes of variable lengths are grouped into codons of eight bits.
The integer value specified by the codon is used through a mapping function in order
to choose a suitable production rule from the grammar defined under Backus–Naur
form (BNF) [66]. BNF grammars comprise terminals, which are items that can appear
in the language (i.e., +, *, x, sin, 3.14, etc.) and non-terminals, which can be further
distributed into one or more terminals/ non-terminals. A grammar can be expressed
in the form of a tuple (N, T, P, S), where N is the set of non-terminals, T is a set of
terminals, P is a set of production rules mapping the elements of N to T, and S is a start
symbol that is a member of N. If there exist many productions that could be applied,
the option is defined with the OR symbol, "|". An example is shown in Table 3.2.

TABLE 3.2: Sample BNF form [66]

TABLE 3.3: An example genotype in GE. Here, the eight-bit binary
codons have all been packed as integers for convenience [66]

The mapping of genotype shown in Table 3.3 is carried out as follows. The leftmost
non-terminal is selected, and the symbol is noted, i.e., <expr>, <op>, <pre-op>. The
codon is denoted by C while the number of production rules for a given expression is
denoted by N. Thus, the rule to apply becomes R = C mod N, subsequently, the symbol

Chapter 3. Machine learning and genetic programming 29

is rewritten accordingly. The decoding process continues until no rules can be applied.
Also, the genotype is supposed to be circular to enable the first codon to follow the last
one. Table 3.4 shows a complete decoding process for the genotype given in Table 3.3.

TABLE 3.4: Decoding the example genotype given in Table 3.3 [66]

Because of the fact that, in GE, genotypes are binary strings, no special mutation or
crossover operators are needed. The genotype-to-phenotype mapping process always
generates syntactically correct individuals. Besides the standard genetic operators
(mutation and crossover), a codon duplication operator is also used. Duplication
includes the random selection of a number of codons in order to duplicate them. The
duplicated codons are positioned at the end of the chromosome, and the genotype
length differs.

PushGP

As for stack-based genetic programming, the evolving population of computer pro-
grams is represented in a stack-based programming language. A stack-based computer
language known as Push was developed by Lee Spector [96]. His GP mechanism using
Push known as PushGP allows several advanced GP features, i.e., multiple data types,
the automatic definition of subroutines, and control structures. In the Push family of
languages, which were specifically designed for GP, a separate stack is allocated for
each data type, and the program code itself can be manipulated on data stacks and
executed thereafter.

The Push was also designed by Spector to provide support for the self-adaptive form
of evolutionary algorithms known as autoconstructive evolution. The autoconstructive
evolution system, as it runs, adapts, and constructs its own mechanisms for reproduc-
tion and diversity, which means the methods of mutation and crossover can as well be
evolved, unlike others where it is imposed from the start. In such stack-based computer
languages, global data stacks are used to pass the arguments to the instructions, which

Chapter 3. Machine learning and genetic programming 30

is different from the argument-passing techniques based on registers. In stack-based
argument passing, initially, the arguments are specified or computed to push onto the
stack and use those arguments to execute an instruction. For instance, consider adding
3 and 5, which is written in postfix notation as 3 5 +, and this code defines that 3 and
then 5 will be pushed onto the stack, and then the + instruction will be executed. The +
instruction removes the top two elements from the stack, adds them together, and then
pushes the result back onto the stack. Any additional arguments are ignored because
every instruction takes only the required arguments from the top of the stack. Also, if a
stack instruction contains very few arguments, this will be signaled as a run-time error,
and the program may be terminated; however, in Push, such a case will be treated as
no operation as instruction with insufficient arguments is simply ignored.

Push handles several data types by offering a stack for every type, i.e., a stack for
Boolean values, a stack for float numbers, a stack for integers, a stack for program
code (CODE), a stack for data types (called TYPE), etc. Every instruction takes the
required inputs from appropriate stacks and pushes outputs onto relevant stacks. The
CODE stack enables Push to handle recursion as well as subprocedures. Besides, the
CODE stack enables evolved programs to push themselves (whole or parts) onto the
CODE stack, it allows programs to specify new genetic operators to generate offspring
solutions. A Push language reference can be found in [96].

Depending on the specific language and genetic operators being used, stack-based GP
can have several advantages over tree-based GP. These may involve improvements/
simplifications for handling multiple data types, bloat-free (bloat is over-adaptation
of chromosomes) crossover and mutation operators, programs equipped with loops
providing valid outputs despite being terminated prematurely, the evolution of arbi-
trary control structures, execution tracing, parallelism, and automatic simplification of
evolved programs.

Cartesian Graph-based GP

Cartesian Genetic Programming (CGP) originates from an idea of evolving digital
circuits developed by Miller et al. in 1997 [97]. However, the term ‘Cartesian genetic
programming’ first appeared in 1999 [98] and was proposed as a general form of genetic
programming in 2000 [99]. It is called ‘Cartesian’ because it represents a program using
a two-dimensional grid of nodes. As mentioned earlier, Genetic Programming works
on the automatic evolution (as in Darwinian evolution) of computational structures, i.e.,
mathematical equations, computer programs, digital circuits, etc. John Koza pioneered
a form of GP that uses a tree representation of computer programs, which was inspired
by the artificial intelligence computer language, LISP. Following the same line of
research, Cartesian Genetic Programming is a highly efficient and flexible form of GP
that encodes a graph representation of a computer program.

CGP was invented by Julian Miller in 1999 [66] and was developed from a represen-
tation of electronic circuits devised by Julian Miller and Peter Thomson developed
a few years earlier. CGP expresses computational structures, i.e., circuits, computer
programs, mathematical equations, etc., as a string of integers. These integers, known
as genes determine the functions of nodes in the graph, the connections to inputs, the
connections between nodes, and the locations output in the graph. As many computa-
tional structures can be represented as graphs, therefore, to use a graph representation

Chapter 3. Machine learning and genetic programming 31

is very flexible and effective. A good example of this can be artificial neural networks
(ANNs), which can be encoded in CGP.

Graph representations are prevalent and widely used in several areas of engineering
and computer science [100], [101], [102]. Indeed, neural networks are also graphs. In
literature, the first person to evolve graph-based encodings through Cartesian grids
appears to be Sushil Louis in 1990 [103], [104]. In the technical report [103], Louis
explained a binary genotype to encode a network of digital logic gates where gates
in every column can be connected to the gates in the previous column. Figure 3.2
shows an image extracted from Louis’s 1993 PhD thesis [105]. Some works on encoding
and evolving ANNs (CGPANNs) using CGP can be found here [106], [107], [108],
[109], [110], [111], which are efficient and competitive with respect to other methods of
evolving ANNs. Unlike trees where there is always a unique path between any node
pairs, a graph allows multiple paths between any node pairs. Assuming that every
node carries out some computation, therefore, to represent such functions as graphs are
more compact than trees since a graph allows to reuse previously computed subgraphs.

FIGURE 3.2: Sushil Louis’s evolved 2-bit adder [105]

Also, Poli proposed a graph-based form of GP (PDGP) inspired by the neural networks
[112], [113]. PDGP basically supports the evolution of standard tree-like programs, logic
networks, neural networks, recurrent transition networks, and finite state automata. In
some of these, it was done by associating labels with the edges in the program graph.
Besides, terminal sets and usual functions, PDGP needs the specification of a set of
links for determining how nodes are connected. The link labels depend upon what is to
be evolved. For instance, in neural networks, labels on the link are numerical constants
for the neural network weights.

When PDGP is implemented, the program is represented as an array with a topology of
the grid. Each node consists of a function label and the horizontal displacement of the
nodes in the previous layer being used as arguments for the function. The horizontal
displacement is an offset from the position of the calling node. Terminals or functions
are associated with each node in the grid even if they are not referenced in the program
path, which are inactive nodes. The basic operator of crossover in PDGP is known as

Chapter 3. Machine learning and genetic programming 32

subgraph active-active node (SAAN) crossover, which is basically a generalization of
the crossover used in tree-based GP. Figure 3.3 shows an example of SAAN crossover,
which is also is defined as follows, 1) the crossover point is selected as a random active
node in each parent, 2) a subgraph in the first parent is extracted, which includes all
the active nodes that are used to calculate the output value of the crossover point, 3)
the subgraph of the parent solution is inserted into the second parent to create the
offspring, and in doing so, if the width of the subgraph exceeds having inserted the
node, the subgraph is wrapped around. As for the mutation, Poli used two types of
mutation in PDGP. 1) A global mutation inserts a randomly generated subgraph into
an existing solution, 2) A link mutation alters a random connection in the graph by
initially choosing function node randomly, subsequently choosing a random input link
of such a node and, finally, modifying the offset associated with the link.

FIGURE 3.3: An example of subgraph active–active node (SAAN)
crossover [113]

CGP also encodes directed graphs; however, the genotype is just a one-dimensional
string of integers. Besides, CGP genetic operators operate on the chromosome directly
while in PDGP they rather operate on the graph directly. Moreover, CGP mostly relies
on mutation, particularly, Poli’s link mutation as its main search operation; however,
there also exist a number of crossover methods for CGP [66]. Instead of offsets, CGP
uses absolute addresses for determining where nodes get their input data from. In
addition, CGP evolutionary algorithms may also use small populations and elitism as in

Chapter 3. Machine learning and genetic programming 33

ESs. Elitism is keeping the elites in the selection to control the genetic drift. Also, when
EAs are applied to different representations of computer programs, a phenomenon
known as bloat occurs. This means that the chromosomes become larger and larger
as the generations progress, but without any increase in their fitness. Such programs
usually have large portions of code comprising inefficient or redundant subexpressions,
which cripples the performance since it is time-consuming to process bloat programs.
Eventually, an evolved program may also exceed the memory capacity of the system,
also, such evolved solutions can be very hard to interpret or understand. Such problems
of blot programs, their possible causes, and proposed solutions are discussed here [90],
[91], [114]. However, Cartesian GP does not suffer from genotype growth since the
genotype is of fixed size. Besides, it does not appear to suffer from phenotypic growth
either [115]. Normally, program sizes remain small even when very large genotype
lengths are allowed.

Object-oriented GP

Object-oriented software design couples the design of data structures (object classes
or types) with methods that operate on those structures, thereby providing better
modularity and reuse as compared to non-OO techniques. Object-oriented nature may
enable GP to scale up to tackle complex problems that would otherwise be infeasible.

Research in this area is very limited. There has been prior research in the area of object-
oriented genetic programming (OOGP) [116], [117], but they are initial-stage research.
One of the earliest works in this area can be found here [118], upon which the former
two papers were built. However, some of these papers still represent the program
(chromosome) as a tree-based data structure in contrast to the linear representation
proposed here [119], called Basic OOGP that uses a uniform genetic operator. However,
the linear representations are not new either, linear GP has a well-developed, if recent,
history [120] within mainstream GP. In the initial implementations of OOGP such
as [116], traditional crossover and mutation operators are applied with variables as
terminals being the principal addition. This OOGP implementation also uses the Java
language reflection feature to automatically find the classes and methods in an existing
library. Figure 1 shows an example of the tree representation and the program that it
represents used in the initial implementation of OOGP.

The Basic OOGP algorithm [116] used for evolution is a standard genetic algorithm;
however, the details of the chromosome used, crossover and mutation operators are
significantly different. Specifically, each chromosome is a linear array of genes. Each
gene in the array has three object pointers: one points to a type A object, called host;
one points to a type B object called action, and the other points to a type A object
called passive. When interpreted by the Basic OOGP engine it means that the object
host will take action on the object passive. As for the genetic operators, the crossover
operator implemented here is a uniform crossover implemented at the gene level,
which randomly picks a percentage of genes from one parent and exchanges them with
the equivalent positions in the second parent. The mutation operator randomly picks
two gene positions and generates new randomly generated genes.

The Basic OOGP evaluation engine can then be specified as Figure 3.4. Furthermore,
the OOGP has the potential to converge to the result faster than normal GP, even
with smaller population sizes and fewer generations, though the results may vary

Chapter 3. Machine learning and genetic programming 34

depending upon the selection, crossover, and mutation mechanisms. The experiments
show that incorporating OO concepts into GP is a promising direction to improve GP
performance [119].

FIGURE 3.4: Conceptual Basic OOGP representation [119]

Hence, this idea of OOGP is quite intriguing, such concepts may also be easier to
grasp, implement, and control complex software engineering problems. However,
these OOGP implementations are preliminary and have not been directly applied to
real-world problems. In this regard, this dissertation introduces a new form of GP that
deals with a real-world problem within the domain of fault tolerance in distributed
systems. This type of GP operates on DAGs rather than tree-structures (or bit-string
formats) and store the chromosomes in the form of a class object, which would be a
genotype format for the execution of new kinds of genetic operators on them.

3.2.3 General object-oriented GP

This type of GP operates on DAGs rather than tree-structures (or bit-string formats) and
store the chromosomes in the form of a class object. Most of the other object-oriented
implementations are Java-based implementations, though this dissertation also uses
Java; however, the implementation, in this case, is independent of the programming
language and therefore, flexible enough to be implemented in any programming
language. Therefore, we call it General object-oriented genetic programming (GOOGP).
In the proposed GOOGP, the replication strategies are converted into their appropriate
genotype and phenotype representations. As for the genotype representations, the
replication strategies as DAGs are stored in the hierarchical form of a class object
for manipulations. Conventionally, an object is a member or an "instance" of a class
being comprised of the state and the related behavior, state is the data (variables in
a programming language) while the behavior is manifested through the methods
(functions in a programming language). Methods operate on an object’s state and serve
as the primary mechanism for object-to-object communication. Hiding the internal
state bounds all the interaction to be carried out through an object’s methods, which is
known as data encapsulation - a fundamental principle of the object-oriented paradigm.

Similarly, in our case, Figure 3.5 depicts the (genotype) class-object representation of a
DRS that comprises variables, properties, and behaviors. Interactions are performed

Chapter 3. Machine learning and genetic programming 35

by the methods that work on the internal state of the object. Each node is comprised
of a unique node name to identify it uniquely, a number of allocated votes, weightage
of each node, priorities w.r.t. the paths, and a list of its children. Each element of the
list (carrying children nodes) itself is a node carrying its children nodes, too. Such
hierarchical storage is very easy to make alterations with as well as traversing it.
Such chromosomes (genotypes) are then traversed recursively to derive the respective
quorums.

FIGURE 3.5: Genotype representation of strategies

Figure 3.6 shows a complex (computer-generated) example of a voting structure (ex-
plained in Section 2.4.1), which is a phenotype that models a TLP-like strategy con-
sisting of six replicas. A manual example of this strategy can be found in [20]. These
strategies as an initial population are stored in a scaleable database repository in the
form of JSON documents as shown in Figure 3.7, which can easily be queried over any
specified criteria. Such a phenotype is easy for visualization purposes, for which differ-
ent graph visualization libraries are used for better visualization. Any quorum-based
replication strategy can be modeled to represent the respective quorums in the form of
such genotype and phenotype representations, which are flexible enough with an aim
to easily combine them with others through GOOGP afterward. As the genotypes are
altered, new strategies are generated as a result, which subsequently are converted into
the phenotypes and stored in the database repository. The algorithm for this modeling
real-world problems will be discussed in the next chapter, and here the next, this GP is
explained in the context of data replication.

Chapter 3. Machine learning and genetic programming 36

FIGURE 3.6: Phenotype modeling of a TLP-like strategy as a voting
structure

FIGURE 3.7: Phenotype - DRSs as JSON documents

3.3 Genetic programming in the context of replication

EAs such as GP are used to solve optimization problems. In the context of our problem,
the term “optimization” means designing such a solution DRSs, which gives the values
of all objective functions acceptable to the decision-maker. The most common optimiza-
tion problems include constrained optimization [121], multi-modal optimization [122],
combinatorial optimization [123], multi-objective optimization [124], etc. Constrained

Chapter 3. Machine learning and genetic programming 37

optimization problems consider the problem of optimizing an objective function subject
to constraints on the variables. Multi-modal optimization deals with optimization tasks
that involve finding all or most of the multiple (at least locally optimal) solutions of
a problem, as opposed to a single best solution. Combinatorial optimization is the
process of searching for the maxima (or minima) of an objective function whose do-
main is a discrete but large configuration space. Typical problems are the traveling
salesman problem, the minimum spanning tree problem, and the knapsack problem.
Multi-objective optimization considers optimization problems involving more than one
objective function to be optimized simultaneously. The problem being addressed in this
dissertation lies within the realm of multi-objective optimization where the solutions
are DAG-based voting structures, as explained earlier.

In the context of this multi-objective problem, there are three possibilities: 1) minimizing
all the objectives 2) maximizing all the objectives 3) minimizing some objectives while
maximizing others. In our case, it lies with the third option where, for instance, the
cost and number of replicas need to be minimized while the availabilities need to be
maximized. The availabilities of read and write operations are point-symmetric (for
optimized strategies) to each other [8], which means that an increase in one results in
a decrease in the other operation’s availability. The cost of read and write operations
is also conflicting. Likewise, the relation between the total availability (sum of access
operations availability) and total cost (sum of access operations cost) is not that straight
either. Furthermore, some objectives, i.e., availabilities are values between [0,1] while
some objectives could be very large in value, i.e., cost of operations. In certain cases,
some objectives are more important than others. Keeping in mind all these aspects, the
goal is to increase the total availability of the access operations and decrease the total
cost simultaneously, while, at the same time, restricting total replicas to a minimum
number.

In this regard, the proposed GOOGP approach works on evolutionary concepts to
combine DRSs intelligently and evolve them to eventually meet the specified criteria.
Conventionally GP constitutes an encoding scheme, random crossover, mutation, a
fitness function, and multiple generations of evolution to solve the specified task on
its termination condition. The encoding scheme consists of a genotype (coding space)
carrying an underlying set of traits and a phenotype (solution space), which is the
behavioral expression of this genotype in a specific environment. Hence, the question
arises, which encoding scheme should be used since poor representations may lead to
poor results. The encoding scheme in our case is DAG-based voting structures. The
crossover [125] is mixing up of genetic material of two existing DRSs to create new
offspring solutions. It splits up the genome of two existing solutions at an arbitrary
point and swaps them to create the offspring solutions inheriting properties from both
of the parent solutions. The mutation operator generally changes the solution randomly
but slightly, i.e., by flipping one or more bits from the previous offspring to generate
a new altered child solution. The fitness function is to evaluate a DRS w.r.t. all the
concerned objectives to meet the desired criteria. The DRSs are designed and optimized
over several generations of evolution and presented at run-time, overtly displaying
their trade-offs to choose the most suitable non-dominated strategies (that are not
dominated by any other solution, which does not necessarily mean they are better in
all the objectives) meeting the demands, with acceptable constraints.

In the pursuit of finding a better replication strategy, the questions of crossover and
mutation types, as well as points (locations to execute mutation/crossovers), are also

Chapter 3. Machine learning and genetic programming 38

important. Moreover, the population size also matters because a very small size implies
few possibilities of executing the crossovers. Therefore, only a fraction of the search
space can be explored. Alternatively, a very large size may slow down the genetic
approach. Although it is highly problem-specific but very large populations do not
solve the problem faster than moderate-sized populations. Figure 3.8 illustrates the
problem in the context of genetic programming. It begins with a specified scenario,
for which an initial population of solution DRSs is generated. The initial population is
analyzed based on its fitness w.r.t. the scenario to check whether the existing solutions
are good enough to solve the defined problem. If the criteria are not met, it selects the
best solutions among others to perform crossover and mutation (with their defined
probabilities) to generate new populations of offspring solutions and evaluate them
again. This goes in cycles in anticipation of a constant evolutionary trajectory until
an appropriate solution satisfying the specified criteria is identified. The next chapter
explains the adopted fault model, the proposed methodology, scenario parameters,
fitness function, crossover, and mutation operators, in detail.

FIGURE 3.8: Genetic programming

Chapter 3. Machine learning and genetic programming 39

3.4 Summary

This chapter briefly discusses machine learning approaches, i.e., supervised, unsuper-
vised, reinforcement, and evolutionary algorithms. Particularly, it focuses on genetic
programming and its types, subsequently, discusses it in the context of replication
strategies. The genetic approach works on the evolutionary concepts to combine DRSs
intelligently and evolve them to eventually meet the specified criteria. It constitutes
an encoding scheme, random crossover, mutation, a fitness function, and multiple
generations of evolution o solve the specified task on its termination condition. The
encoding scheme consists of a genotype (coding space) carrying an underlying set
of traits and a phenotype (solution space), which is the behavioral expression of this
genotype in a specific environment.

In this regard, the chapter introduces a new form of GP that deals with a real-world
problem within the domain of fault tolerance in distributed systems. It proposes
General object-oriented genetic programming as a basic approach to resolve the men-
tioned multi-objective problem. Most of the other object-oriented implementations
are Java-based implementations, though this dissertation also uses Java; however, the
implementation is independent of the programming language and therefore, flexible
enough to be implemented in any programming language. Therefore, we call it General
object-oriented genetic programming (GOOGP). This type of GP operates on DAGs
rather than tree-structures (or bit-string formats) and store the chromosomes in the
form of a class object, which would be a genotype format for the execution of new kinds
of genetic operators on them. The encoding scheme in our case is DAG-based voting
structures. Encoding schemes are also of utmost importance since poor representations
may lead to poor results.

In the proposed GOOGP, the replication strategies are converted into their appropriate
genotype and phenotype representations. As for the genotype representations, the
replication strategies as DAGs are stored in the hierarchical form of a class object
for manipulations. This class-object representation of a DRS comprises variables,
properties, and behaviors. Interactions are performed by the methods that work on the
internal state of the object. Each node is comprised of a unique node name to identify
it uniquely, a number of allocated votes, weightage of each node, priorities w.r.t. the
paths, and a list of its children. Each element of the list carrying children nodes itself
is a node carrying its children nodes, too. Such hierarchical storage is very easy to
make alterations with as well as traversing it. Such chromosomes (genotypes) are then
traversed recursively to derive the respective quorums. This idea of GOOGP is quite
intriguing, such concepts may also be easier to grasp, implement, and control complex
software engineering problems.

40

Chapter 4

Novel framework to design
replication strategies

This chapter combines the concepts of replication with genetic programming. Since
DRSs are computer programs, which need to be optimized w.r.t. the problem; therefore,
the proposed GOOGP is used to evolve the DRSs as computer programs to eventually
control replicated objects. In this regard, the strategies are transformed into the de-
scribed unified genotype and phenotype representations to subsequently apply genetic
programming concepts to them. Through the proposed framework, the concepts of
replication can be easily combined with the GOOGP. The framework includes a fault
model, constraints of a scenario to be met, GP concepts, and relevant genetic operators,
which will be discussed here in this section.

4.1 Adopted fault model

Prior to discussing the basic methodology, the fault model and other assumptions are
stated first. The access operations are either read or write and are performed only
when the proper quorum is acquired. A quorum is a set of replicas chosen to execute
access operations. The replicas are supposed to manifest a fail-silent behavior. All
failures are assumed to be independent of each other. The network is supposed to
be fully connected without communication failures. Only nodes (machines) hosting
replicas can fail and the probability that a node has failed at any particular point in
time is (1-p). p gives the probability that a node is available at an arbitrary point in time.
Also, this fully connected behavior with no communication failures is not necessary
for correctness purposes but rather for analysis purposes, which means with such
assumptions, it is easier to carry out the experiments and analysis. The strategies are
supposed to be version-based to avoid additional time synchronization issues, i.e., a
replica does not only consist of some “payload” data but also a version number. A
replica with the highest version number has an up-to-date payload.

4.2 System architecture

Figure 4.1 shows an abstract representation (for understanding) of the proposed
methodology utilized to identify and design optimized DRSs. Simplistically, it starts
from a scenario to be fulfilled and a set of state-of-the-art replication strategies. The

Chapter 4. Novel framework to design replication strategies 41

scenario will be explained in detail in this chapter. The replication strategies are con-
verted into a unified representation of voting structures (representing each a computer
program) and stored in a scalable database repository. These voting structures (as
unified representations have been explained in the Section 2.4.1) forming quorum
systems eliminate the diversity between the replication strategies since the same quo-
rums would be derived recursively here, as it would be in an orthodox representation,
therefore, this representation is immensely powerful and the key to the proposed hy-
brid approach. The experiments and the analysis (shown later here and in the next
chapter) are performed on the repository until the desired solution is met which then
is inserted back to the repository for future use. As for the selection of appropriate
techniques for the identification and the design of optimized data replication strategies,
machine learning, mainly GOOGP, is then applied to the repository to search or design
appropriate solutions and optimize them accordingly afterwards.

FIGURE 4.1: Methodology

4.3 Specification of a constraints-based scenario

A scenario for DRSs consists of constraints that determine the fitness of a strategy
holistically to judge the appropriateness of a solution. These constraints have different
thresholds for the replication strategies to adhere to. It could be dependent on the
application, its requirements, and resources. Scenarios reflect objectives, which are
supposed to be optimized for the input values. The semantics of a scenario is discussed
next.

Chapter 4. Novel framework to design replication strategies 42

4.3.1 Consistency of operations

DRSs ranging from strict data consistency to relatively weaker notions. In this research,
the consistency is 1SR which provides high consistency being maintained by the
intersection property between every read (write) and write (write) operation of a DRS.
Also, replicas are locked exclusively for the write operations and locked shared for the
read operations. This quorum intersection property is used by the DRSs to meet the
1SR property since a single write operation can write all replicas of its WQ, similarly,
one or more read operations can read their RQs. 1SR property must be maintained
throughout the genetic process, otherwise, the solution becomes invalid and of no use.

4.3.2 Number of replicas

The number of replicas n must be restricted to a threshold of ε depending on the
resources, but in such a way that availability is not compromised much. In general, an
increase in the number of replicas often increases the availability of access operations.
This threshold is because it consumes resources to create new replicas nodes for hosting
replicas, therefore, a strategy must yield results within this threshold.

n, ε ∈N+ ∧ n ≤ ε (4.1)

4.3.3 Availabilities of the access operations

This availability is a probability by which an access operation can be successfully
performed by a DRS. The probability that the data access operations are available for a
DRS depends on the characteristics of the strategy, the probability of individual replicas
p, and the number of replicas n. It is defined by Ar(p, n) and Aw(p, n) respectively,
where Ar(p, n), Aw(p, n) ∈ [0,1]. For some DRSs, there exist closed formulas to calculate
the availability as well as the costs. However, generally, the Eqs. (4.2) and (4.3) are used
to analyze the data access operations’ availability of a DRS. All the RQs and WQs are
derived from a DRS to calculate Ar(p, n) and Aw(p, n) for given p and n values. The
Equations calculate the read and write operation availabilities respectively.

For the given instance (Figure 2.5), the closed read quorum set (RQS) and closed write
quorum set (WQS) are super-sets of all the RQs w.r.t. to the full set of replicas RQs and
WQs, respectively.

For instance, the closed read quorum set RQS of RQ is:
RQS = {{p1}, {p2, p3}, {p2, p4}, {p3, p4}, {p1, p2}, {p1, p3}, {p1, p4}, {p1, p2, p3},
{p1, p2, p4}, {p1, p3, p4}, {p2, p3, p4}, {p1, p2, p3, p4}}

(See [8] for details.) The availability of the access operations for a DRS, generally, is
calculated by summing up the probabilities of all the elements existing in RQS (WQS)
on a given value of p.

Chapter 4. Novel framework to design replication strategies 43

Ar (p, n) = ∑
∀q∈RQS

p|q| (1− p)n−|q| (4.2)

Aw (p, n) = ∑
∀q∈WQS

p|q| (1− p)n−|q| (4.3)

The availabilities of read and write operations must be within a threshold α and β,
respectively.

Ar, Aw, α, β ∈ [0, 1] ∧ Ar ≥ α ∧ Aw ≥ β (4.4)

4.3.4 Costs of the access operations

As a cost notion, the average minimal cost is used for a read or a write operation
being represented by Cr(p, n) andCw(p, n) respectively. It is calculated by summing
up the minimal operation cost minRQ (minWQ) obligatory to form a read (write)
quorum for every replica set present in RQS (WQS), with the probability of the
replica set appearing. Finally, the resulting values are divided by the respective
operation’s availability Ar(p, n) or Aw(p, n). In the context of the given example
(Figure 2.5), i.e., minRQ ({p1,p2,p3}) is |{p1}| = 1, minRQ({p2, p4}) is |{p2, p4}| =
2, and minWQ({p1, p2, p3, p4}) is |{p1, p2, p3}| = 3.

Cr (p, n) =
∑∀q∈RQS p|q| (1− p)n−|q| ∗minRQ(q)

Ar (p, n)
(4.5)

Cw (p, n) =
∑∀q∈WQS p|q| (1− p)n−|q| ∗minWQ(q)

Aw (p, n)
(4.6)

The cost of read and write operations has to be within a threshold γ and δ, respectively.

Cr, Cw, γ, δ ∈ R+ ∧ Cr ≤ γ ∧ Cw ≤ δ (4.7)

4.3.5 Fitness weightage

It is a so-called fitness weightage (fw) given to any of the concerned objectives to set its
importance in the identification, designing, and optimizing the prospective solutions
accordingly. It is a value between [0,1] for tilting the fitness value towards certain
objectives, which by default would remain neutral. This helps in converting a multi-
objective into a single objective problem (through a fitness function), which makes the
optimization problem somewhat easier to solve.

Chapter 4. Novel framework to design replication strategies 44

f w ∈ [0, 1] (4.8)

4.3.6 Probability of the individual replicas

There is a subtle difference between the availability of the access operations and the
availability of individual replicas p. The user performs the operations with access
operations’ probability while the probability p is the availability of a node hosting a
replica and (1-p) indicates the probability by which a replica may fail at any point in
time. In a scenario, p is restricted to be in the interval between pmin ≤ p ≤ pmax.

pmin, p, pmax ∈ [0, 1] ∧ pmin ≤ p ≤ pmax (4.9)

4.4 Manual designs of voting structures by modeling the state-
of-the-art strategies

In this section, the hybrid approach is practically applied to cutting-edge DRSs by
exploiting the concept of voting structures. MCS is the most superior strategy in terms
of its operation availabilities where the protocol freely chooses any of the replicas to
form the quorum by the majority. TLP fairly competes with MCS in terms of availability
of the access operations but gives better cost by slightly compromising its availability.
There are many prospective possibilities of combining these DRSs to inherit the qualities
from both to some extent.

FIGURE 4.2: Hybrid DRSs of MCS & TLP

Simplistically, it could be combined, either way, MCS on top of TLP or vice versa as
shown in Figure 4.2. Figure 4.3 presents a hybrid DRS with MCS on top of TLP. This
MCS imposes a logical structure over TLP and then, TLP is applied to the physical
replicas through MCS. Any two of the child substructures of the root node can be
selected to form a read or write quorum. Hence, respective quorums for the access
operations can easily be derived by traversing this structure recursively.

Chapter 4. Novel framework to design replication strategies 45

FIGURE 4.3: Voting structure: MCS on top of TLP

Figure 4.4 represents the hybrid DRSs in the form of a voting structure with TLP on top
of MCS. MCS with three replicas is attached to every physical node of TLP to obligate
the system to consist of a total of 12 replicas. The leaf nodes, hence, are all physical
replicas while the rest of them are virtual replicas representing groupings of virtual
and actual replicas.

FIGURE 4.4: Voting Structure: TLP on the top of MCS

Figure 4.5 illustrates the availability comparison of the two above-given hybrid strate-
gies in their respective order (Figure 4.3 as Strategy 1 and Figure 4.4 as Strategy 2).
These availabilities are being calculated by the Eqs. 4.2, 4.3. The x-axis represents
the availability of replicas and the y-axis denotes the availability of access operations.
The availability is calculated by adding up probabilities of all the possible cases of the
quorums [46]. It can be seen that they exhibit different properties and availabilities.
The latter strategy, which has MCS at the bottom, has better write availability than
the former one. This improved write availability is at the expense of read availability,
but for the later values of p, the second strategy seems to be better for the operations
holistically as it is comparatively harder to increase the write availability.

Figure 4.6 displays the cost comparison of the two above-mentioned hybrid strategies
in their respective order (Figure 4.3 as Strategy 1 and Figure 4.4 as Strategy 2). The cost
is being calculated by adding up the probabilities of the respective cases multiplied by
their minimal quorums. Additionally, the resulting value is divided by the respective
access operation’s availability [46]. The operations have a quite economical cost, the
values differ in the middle, and later on, converge onto the same values of four replicas
each for the best cases. The formulas for the cost calculations are given in Eqs. 4.5, 4.6.

Similarly, Figure 4.7 is an endeavor to combine TLP and GP (which can also be com-
bined in several ways). The given instance focuses on the possibilities of either GP
being on top of TLP or TLP being on top of GP. GP has a better read availability while

Chapter 4. Novel framework to design replication strategies 46

FIGURE 4.5: Availability of hybrid DRS

FIGURE 4.6: Cost of hybrid DRS

TLP has an edge over write availability and cost values, particularly for the best cases.

Figure 4.8 depicts the above-mentioned hybrid DRSs in the form of a voting structure
with GP on top of TLP. The structure itself is rather complex and, unfortunately, too
large to fit in well but it can be noticed that it comprises 16 actual replicas (leaf nodes)
and other virtual replicas to support the quorum mapping of the protocols.

Figure 4.9 represents the mentioned hybrid DRS (see Figure 4.8, right DRS) in the form
of a voting structure with TLP on top of GP. This type of hybrid approach results in a

Chapter 4. Novel framework to design replication strategies 47

FIGURE 4.7: Hybrid DRSs of GP and TLP

FIGURE 4.8: Voting Structure: GP on the top of TLP

huge increase of read availability and outclasses MCS, both, in read availability and cost
of the access operations (as MCS is costly in general) but, unfortunately, compromises
the write availability.

As for the other example, Figure 4.10 shows the availability comparison between the
hybrid approach (MCS on the bottom of TLP, Figure 4.4) and a flat MCS of 12 replicas.
Strategy 1 represents the MCS while Strategy 2 represents the hybrid one. The red and
pink lines indicate the read and write availabilities of flat MCS, respectively, whereas
the blue and green lines depict the operation availabilities of the hybrid strategy,
respectively. It can be seen that the operation availabilities for both these strategies are
very close and converge to basically the same values for the later values of p, which is
good enough considering quite reliable hardware of today.

As shown in Figure 4.11, in terms of its cost, the hybrid DRS is far cheaper than the
flat MCS while it is overt, too, that availability is not much compromised either. The
blue and green lines represent the read and write availabilities of the hybrid strategy,
respectively. For the best case, it takes merely four replicas to perform a read or a write

Chapter 4. Novel framework to design replication strategies 48

FIGURE 4.9: Voting Structure: TLP on the top of GP

FIGURE 4.10: Availability: MCS vs. hybrid DRS

operation while the flat MCS takes a constant cost of 13 replicas in total to perform both
access operations. The goal here is to achieve low operational costs but at the same time
not sacrificing too much of the availabilities. Here, the costs of the access operations
have been significantly decreased while not much compromising on the availabilities.

As described, the presentation of quorum protocols as voting structures allows repli-
cation strategies to be easily merged with the other strategies in many possible ways.
The resulting new DRSs can then be used to fulfill the requirements of scenarios that
would not have been that easily possible by homogeneous strategies considering the
quality metrics of operation cost, operation availabilities, while still guaranteeing 1SR
and a threshold of a certain number of replicas. Next, the framework to automatically
design such replication strategies is explained with the help of genetic programming.

Chapter 4. Novel framework to design replication strategies 49

FIGURE 4.11: Cost: MCS vs. hybrid DRS

4.5 Customized genetic programming algorithm

Having discussed the methodology, terminologies, and semantics, this section discusses
the implementation aspects of the proposed approach comprising the parameters,
functions, the respective crossover (mutation) operators, and the GOOGP algorithm
itself, in detail. Once the scenario is specified to find a suitable DRS to fulfill it, the
system parameters are set for the algorithm to run. The proposed system in this
dissertation is implemented in JAVA, which is feasible for large applications and has
better cross-platform support. When a scenario is defined to accordingly find an
optimized DRS, the system parameters are set and passed on to the algorithm to
run. The basic mechanism is similar to what standard multi-objective optimization
algorithms like NSGA-II operate. The selection mechanism is based on the trade-off
metric being calculated using fitness values, which is a preference-based multi-objective
optimization approach though weighted sum [43]. Regarding the hyper-parameters
settings, it is done by experimenting with different values and finding better results.
However, usually, a crossover is done with a high probability, and mutation is done
with a small probability as in our case, the crossover is performed all the time while
mutation with a small probability.

The Algorithm 1 implements the proposed GP approach where initially a scenario is
defined based on its objectives. These objectives are evaluated by the fitness function
to calculate the expected single-valued fitness for the DRSs to achieve. So, the defined
scenario is evaluated by the fitness function, and scenarioFitness to be achieved is
calculated as a result. The initial population of voting structures is generated and
stored in a database repository. µ and λ are defined, along with crossover and mutation
probabilities. The list List contains parent DRSs, the list λList comprises offspring
DRSs, whereas the list initPopList consists of an initial population of DRSs. There are,
further, intra-crossover and intra-mutation probabilities that are set to use the genetic
operators, accordingly. Moreover, initPopList is also being used in every generation

Chapter 4. Novel framework to design replication strategies 50

(with a probability of initPopListProb). The Boolean variable isFit determines whether
a strategy has achieved the expected level of fitness.

The genetic program loops through all the passed on DRSs, calculates the fitness of
every individual strategy, and selects the µ best strategies to the List, in case, there is no
satisfactory solution found in the initial population. This µList is then sent to the while
loop, where it randomly mates two DRSs either from µList or from the initPopList
(with defined probabilities) to form offspring DRSs. Such a use of the initial population
is for not letting the existing good solutions vanish away in the next generations. It
creates λ number of new offspring strategies through crossovers and mutations. The
λList constitutes λ number of newly created strategies, which are evaluated again to
check if they satisfy the standard criteria.

As described, different types of crossovers are used, these crossovers are performed
on the replication strategies with certain probabilities and also the intra-operators to
execute them, accordingly, on the DRSs. These intra-crossover and intra-mutation prob-
ability distributions are for using some operators more than the others to accordingly
find a better solution. New offspring strategies are produced as a result of these genetic
operators. If the criteria are met, then the relevant newly generated optimized strategy
is stored in the repository, the while loop terminates and so does the program. If not, it
selects the best DRSs to the List from the elements of the (µList + λList) for the next
generation to repeat the process of crossovers and mutations on the chosen DRSs of
better fitness. This process continues until a suitable strategy is found.

Hence, the DRSs are optimized by every generation and better ones are picked. While
replication strategies are being generated, these solutions can easily be plotted revealing
their trade-offs overtly. The process becomes cyclic until a solution of desired expecta-
tion is found with an acceptable level of trade-offs between the concerned objectives.
The chosen solution DRS is saved back to the database repository for future use.

4.6 Fitness function for the strategies’ evaluations

As described, the objectives in the scenario are 1) conflicting in nature, 2) imbalanced
in a way that values for some objectives are probability ranges while others are very
large, 3) some of them must be maximized and some of them must be minimized. This
section addresses these problems by developing a fitness function to transform this
multi-objective problem into a single-objective problem for determining the quality
of a solution through this single-valued metric. The algorithm takes the availabilities,
costs, number of replicas, and fitness-weightage specified in the scenario as parameters.
These values are calculated by the objective functions (formulas of which are given in
Eqs. 4.2, 4.3, 4.5, and 4.6) and then passed on here. The weightage, as mentioned earlier,
determines the importance of certain objectives over others in the desired solution. This
weightage is multiplied by the respective availability and the cost values, but in the
case of cost, it is multiplied by the number of replicas n of the desired strategy divided
by its expected cost in order to normalize the imbalance between the availability and
cost values as well as resolving the minimization (maximization) problem of these
objectives. The calculation of the fitness function is shown in Algorithm 2. At line 4,
the sum of both the values is returned as a single-valued fitness to examine the DRSs
on this standard criterion. Now, a higher fitness value determines the appropriateness
of a solution to the specified constraints.

Chapter 4. Novel framework to design replication strategies 51

Algorithm 1:
1 Specify a scenario;
2 Specify µ and λ;
3 Specify mutationProb;
4 Specify intraMutationProbList;
5 Specify intraCrossoverProbList;
6 Specify initPopListProb;
7 Define rand;
8 Initialize initPopList;
9 Initialize µList;

10 Initialize λList;
11 Double scenarioFitness = 0.0;
12 Boolean isFit = false;
13 Generate initial population of DRSs to the repository;
14 Retrieve, parse & store the generated DRSs to initPopList;
15 geneticProgrammingFunc () {
16 scenarioFitness = calculateFitness(scenario);
17 Loop through initPopList
18 Calculate fitness;
19 i f (fitness ≥ scenarioFitness) {
20 isFit = true;
21 return;
22 }
23 END
24 Choose µ best DRSs to the µList;
25 Do{
26 Empty λList;
27 Loop to λ
28 Select randomly DRS1 from µList;
29 Select randomly DRS2 from (µList || initPopList);
30 rand = rand (0,1);
31 i f (rand ≤ intraCrossoverProbList.get(0)) {
32 Perform crossover1 of DRS1, DRS2;
33 }
34 i f (rand ≤ intraCrossoverProbList.get(1)) {
35 Perform crossover2 of DRS1, DRS2;
36 }
37 elsei f (rand≤intraCrossoverProbList.get(2)) {
38 Perform crossover3 of DRS1, DRS2;
39 }
40 else {
41 Perform crossover4 of DRS1, DRS2;
42 }
43 Generate offspring DRSs;
44 i f (rand(0,1) ≤mutationProb) {
45 i f (rand(0,1) ≤ intraMutationProbList.get(0)){
46 Perform mutation1 on the offspring;
47 }
48 else {
49 Perform mutation2 on the offspring;
50 }
51 }
52 Calculate fitness;
53 i f (fitness ≥ scenarioFitness){
54 isFit = true;
55 Store offspring DRS into the repository;
56 }
57 Add offspring DRSs to the λList;
58 END
59 Select µ best DRSs to the µList from (µList + λList) for next generation;
60 }
61 While (! isFit);
62 }

Chapter 4. Novel framework to design replication strategies 52

Algorithm 2:

1 f itness (Ar, Aw, Cr, Cr, n, f w){
2 availFitness = (fw) * (Ar + Aw);
3 costFitness = (1.0 - fw) * (n / (Cr + Cw));
4 return (availFitness + costFitness);
5 }

4.7 Crossover operators for strategies

The approach uses multi-type crossovers to explore more possibilities of enhancing
the fitness of DRSs since it equips the algorithm with more power as compared to
single-type crossover. There are many ways in which the DRSs can be combined
and the resulting strategy certainly exhibits different properties than its parents. The
crossover randomly picks two existing DRSs, as well as their crossover points within
the two selected strategies, to subsequently swap their nodes on chosen crossover
points and create hybrid offspring DRSs (as shown in Figure 4.12), thereby inheriting
mixed properties from both the parent solutions. The crossover point, in our case, must
be valid so that it does not affect the 1SR consistency of offspring DRSs. For this, every
node has a Boolean variable indicating valid points for crossovers, enabling crossovers
to be executed only on those locations, thereby maintaining the DRSs’ 1SR property
throughout the genetic process. In addition, during the process, the algorithm limits
the number of replicas not to grow beyond the specified threshold of ε since resources
are limited. It also discards solutions not adhering to these properties.

FIGURE 4.12: General crossover

Algorithm 3 represents the general algorithm of crossovers where initially it finds
“valid” crossover points randomly, and splits the strategies on those points, swaps
them, and returns consistent innovative offspring DRSs. A DeepCopy function makes
the copies of the strategies before splitting them so that it does not affect the nature of
the original strategies in the list. Although the algorithm constitutes and deals with 8-9
types of crossovers, for simplicity, it is categorized into four main categories:

Chapter 4. Novel framework to design replication strategies 53

Algorithm 3:

1 crossover (str1, str2) {
2 pointStr1 = f indCrossoverPoint(str1);
3 pointStr2 = f indCrossoverPoint(str2);
4 part1 = break (deepCopy (str1), pointStr1);
5 part2 = break (deepCopy (str2), pointStr2);
6 newStr1 = replace (str1, pointStr1, part2);
7 newStr2 = replace (str2, pointStr2, part1);
8 return newStr1 & newStr2;
9 }

4.7.1 Type 1 operator

The basic Type 1 crossover takes two complete DRSs and combines them horizontally
by a new root node without breaking or reducing them to sub-strategies. In Algorithm
4, it creates a new node, sets its relevant properties, and adds the selected two complete
strategies as children nodes of the newly created node. For instance, Figure 4.13 and
4.14 show the strategies to be combined by this operator. Having combined these two
complete strategies horizontally through a new node, Figure 4.15 shows the resulted
hybrid strategy.

Algorithm 4:

1 crossoverT1 (str1, str2) {
2 Node rootNodeStr = new Node();
3 rootNodeStr.setNodeName("V1");
4 rootNodeStr.setVotesR(1);
5 rootNodeStr.setVotesW(2);
6 rootNodeStr.setIsSubStrs(true);
7 rootNodeStr.setMutable(true);
8 rootNodeStr.setWeight((int)1);
9 rootNodeStr.setChildNode(str1);

10 rootNodeStr.setChildNode(str2);
11 changeNames(rootNodeStr);
12 return rootNodeStr;
13 }

4.7.2 Type 2 operator

Type 2 crossover takes two DRSs and having broken them into smaller sub-strategies,
either 1) it could combine two sub-strategies horizontally by a new root Node or 2)
go on with combining one sub and one complete strategy horizontally by a new root
node. For instance, Figure 4.13 and 4.14 show the strategies to split, having split the
DRSs, the chosen sub-strategies are shown in the Figure 4.16 and 4.17, respectively. The
chosen sub-strategies being combined horizontally by a new root node are shown in
Figure 4.18.

Chapter 4. Novel framework to design replication strategies 54

FIGURE 4.13: Strategy 1

FIGURE 4.14: Strategy 2

4.7.3 Type 3 operator

As given in Algorithm 5, Type 3 crossover takes two DRSs as it is and combines one
complete strategy with another complete strategy as a child to its root node. It changes
the names of all the nodes to avoid the prospective conflict and returns the resulting
offspring strategy afterward as shown in Figure 4.19 where it combined the strategies
given in Figure 4.13 and 4.14.

4.7.4 Type 4 operator

This type of crossover deals mostly with the vertical combinations rather than hori-
zontal, it takes two DRSs and combines them by replacing: 1) a virtual node of one

Chapter 4. Novel framework to design replication strategies 55

FIGURE 4.15: Crossover type 1 operator

FIGURE 4.16: Part of the strategy 1

strategy with the virtual node of another strategy, 2) a virtual node of one strategy with
the leaf node of another strategy, 3) a leaf node of one strategy with the virtual node of
another strategy, 4) a virtual node of one strategy with a complete other strategy, 5) a

Chapter 4. Novel framework to design replication strategies 56

FIGURE 4.17: Part of the strategy 2

FIGURE 4.18: Crossover type 2 operator

leaf node of one strategy with a complete other strategy.

Chapter 4. Novel framework to design replication strategies 57

Algorithm 5:

1 crossoverT3 (str1, str2) {
2 str1.setChildNode(str2);
3 changeNames(str1);
4 return str1;
5 }

FIGURE 4.19: Crossover type 3 operator

Type 4 operator (a)

For instance, Figure 4.20 and 4.21 represent strategies with their chosen crossover points
highlighted in green. These chosen virtual nodes (highlighted in green) are replaced
with each other to create two offspring strategies shown in Figure 4.22 and 4.23.

Type 4 operator (b)

For instance, the chosen highlighted virtual node of the strategy shown in 4.22 is
replaced with a leaf node as shown in Figure 4.24.

Type 4 operator (c)

For instance, the earlier replaced leaf node (p5) shown in Figure 4.24 can easily be
replaced again with any other virtual node such as in Figure 4.22.

Type 4 operator (d)

For instance, the chosen highlighted virtual node of strategy 1 shown in 4.25 is replaced
with the complete strategy 2. The resulted offspring strategy is shown in Figure 4.26.

Chapter 4. Novel framework to design replication strategies 58

FIGURE 4.20: Strategy 1

FIGURE 4.21: Strategy 2

Type 4 operator (e)

For instance, the chosen highlighted leaf node of strategy 2 shown in 4.27 is replaced
with the complete strategy 1. The resulted offspring strategy is shown in Figure 4.28.

Moreover, while performing these multi-type crossovers, the algorithm skips some
special case crossovers, i.e., two complete strategies swap or two leaf nodes swap to
avoid redundancy, hence, maintains the diversity of the solutions, thereby maintaining
the effectiveness of the proposed approach.

Chapter 4. Novel framework to design replication strategies 59

FIGURE 4.22: Crossover Type 4 operator (a) - offspring DRS 1

FIGURE 4.23: Crossover Type 4 operator (a) - offspring DRS 2

4.8 Mutation operators for the strategies

The algorithm also performs multi-type mutations on the DRSs with specified probabil-
ities in the system parameters. The mutation slightly changes the properties of a DRS

Chapter 4. Novel framework to design replication strategies 60

FIGURE 4.24: Crossover Type 4 operator (b) - offspring DRS

FIGURE 4.25: Strategy 1

so that it becomes different (possibly better) than its primitive form or shape.

4.8.1 Type 1 operator

Crossover is performed every time while mutation is performed only with a certain
probability. This type of mutation is given in Algorithm 6, which slightly changes
the quorum size and the weightage of nodes (votes), but carefully enough to not
destroy the 1SR consistency. The weightage is changed to make certain replicas more
important than others. Once the weightage is changed, the quorums must also be
altered accordingly, under the Conditions (2.1) and (2.2) to adhere to 1SR. Besides
randomness, the mutation points have to be picked carefully by the algorithm in order
not to annihilate, again, the 1SR property of a solution and thus, rendering it invalid.
This is explained by the strategy given in Figure 4.29 where mutation points are chosen
and being highlighted in green. The strategy gets mutated from these chosen points
keeping in mind the consistency issues, and the resulting mutated strategy exhibiting
different properties is shown in Figure 4.30.

4.8.2 Type 2 operator

This type of mutation reduces the structure of the replication strategy by removing a
few replicas from it to confine the structure within the threshold.

Chapter 4. Novel framework to design replication strategies 61

FIGURE 4.26: Crossover Type 4 operator (d) - offspring DRS

FIGURE 4.27: Strategy 2

Chapter 4. Novel framework to design replication strategies 62

FIGURE 4.28: Crossover Type 4 operator (e) - offspring DRS

Algorithm 6:

1 mutation1 (str) {
2 point = f indMutationPoint (str);
3 do{
4 alterVotes (str, point);
5 alterQuorums (str, point);
6 }
7 while (checkConsistency (str));
8 return str;
9 }

FIGURE 4.29: Chosen points for mutation

4.9 System parameters

Once a scenario is specified to find an appropriate DRS to fulfill it, the system parame-
ters are set for the algorithm to run. The system parameters are as follows.

Chapter 4. Novel framework to design replication strategies 63

FIGURE 4.30: Mutated DRS

4.9.1 µ and λ

Having provided the repository to select the respective DRSs, the µ and λ values are
also set as system parameters for the algorithm to start. µ is the restriction on the
number of parents that are used to form the next generation (through genetic operators)
and λ is the restraint on the number of off-spring strategies generated as an outcome
using µ number of parent DRSs. µ and λ restrict the number of parents and offspring
DRSs in the process of GP.

4.9.2 Initial population probability

This is an additional probability to select DRSs from the initial population as well in
order not to let the existing strategies vanish away in the next generations.

4.9.3 Intra-crossover probability distribution

The crossover between the DRSs is performed all the time; however, there are multiple
types of crossover. Therefore, probabilities among these crossovers are distributed to
use some type of operators more frequently than others depending upon the nature of
the problem.

4.9.4 Mutation probability

Unlike crossover operators, mutation operators are seldom used; therefore, prospec-
tively a very low mutation probability, i.e., 0.2, 0.3, is defined to execute mutations
accordingly.

4.9.5 Intra-mutation probability distribution

There are two types of mutations used in this research, among which the mutation
probabilities are distributed in order to determine the frequency of these operators in
the pursuit of a solution accordingly.

Chapter 4. Novel framework to design replication strategies 64

4.10 Summary

This chapter introduces the basic working framework of this research, the fault model,
the scenario parameters, and subsequently, demonstrates some manually combined
examples of voting structures leading to the automatic mechanism using General object-
oriented genetic programming to design DRSs automatically. It explains the proposed
genetic programming approach that includes the algorithm of GP, fitness function,
crossover, mutation operators, and their rules, as well as the working mechanism.
As for the fitness function, the objectives in the scenario are 1) conflicting in nature,
2) imbalanced in a way that values for some objectives are probability ranges while
others are very large, 3) some of them must be maximized and some of them must be
minimized. The fitness function transforms this multi-objective problem into a single-
objective problem for determining the quality of a solution through this single-valued
metric. A higher fitness value determines the appropriateness of a solution to the
specified constraints. In this regard, the proposed approach uses multi-type crossovers
and mutations to explore more possibilities of enhancing the fitness of DRSs since it
equips the algorithm with more power as compared to single-type. These crossovers
and mutations are performed on the replication strategies with certain probabilities
and also the intra-operators to execute them, accordingly, on the DRSs. These intra-
crossover and intra-mutation probability distributions are for using some operators
more than the others to accordingly find a better solution. New offspring strategies are
produced as a result of these genetic operators. The mechanism has the potential to
evolve DRSs as computer programs through crossover and mutation operators, thus,
DRSs can be optimized over several generations, and go through several optimization
phases to eventually stop at the termination criteria.

65

Chapter 5

Experiments and results

In this chapter, the results of the proposed approach are presented. As for the assump-
tions w.r.t. the fault model, it is to simplify the problem, which otherwise easily goes out
of hand and it becomes difficult to carry out the analysis. Moreover, such a fault model
is also necessary to find out the properties as well as the potential of the strategies
that would have been blurred otherwise and could not be detected. For instance, the
point-symmetric property [8] in data replication strategies cannot be detected with
more complex and realistic parameters. The same is the case with dynamic replica-
tion, where it becomes very complex to handle even a few replicas. Also, this fully
connected behavior with no communication failures is not necessary for correctness
purposes, but rather for analysis purposes, which means it becomes easier to carry out
the experiments and analysis. Furthermore, the adopted notions, i.e., average minimal
cost (average of the minimum replicas required to execute an operation), as well as the
overall fault model being used here is widely used. The newly discovered strategies
through our genetic approach are compared on all the discretized values of p to make
a fair and, therefore, a realistic comparison. Next, the constraints and properties are
specified that the system is expected to meet in the replication strategies.

5.1 Scenarios

Each scenario is comprised of a set of threshold values, which the system is supposed
to find in the population of replication strategies. It calculates the values for each
replication strategy to check the meeting criteria. Such values are being calculated
by the respective objective functions, and the proposed mechanism then offers newer
solutions using existing ones and optimizes them (as computer programs) by recom-
bination of those strategies mostly, and comes up with unique solutions adhering to
the specified properties. This stochastic nature of the technique makes it much easier
to create innovative replication strategies w.r.t. the specified problems every time the
genetic process is initiated. Next, the scenarios are stated for which the system is run to
find solutions accordingly.

5.1.1 Scenario 1

This scenario consists of the desired read and write availabilities and their respective
costs, which must be achieved within the threshold of a maximum of 16 replicas and
some availability p of individual replicas. However, the cost is not important in this

Chapter 5. Experiments and results 66

case, therefore, full weightage is given to availability. The desired read availability and
write availability thresholds are 0.80 and 0.70, respectively, on a node availability of
0.6. The expected read and write costs are set to seven each. The strategy is expected
to accomplish these properties inside a threshold of no more than 16 replicas in total.
However, the scenario specifies the availability to be fully important, therefore, full
(fitness) weight is assigned to the availability of the access operations, in this particular
case. Even though p is a scalar value, but the strategy is compared on all the discretized
values of p to make a fair and, therefore, a realistic comparison.

p = 0.6, ε = 16, α = 0.80, β = 0.70, γ = 7.0, δ = 7.0, fw = 1.0

5.1.2 Scenario 2

This scenario is almost the same as the first one, but with a slight increase in the ex-
pected write availability. The write availability of Scenario 1 is slightly changed up
to two decimal places. Even this slight change to some decimal places impacts the
availability greatly in real-time, [20]. So, these slight changes can make a huge differ-
ence, therefore, are hard to achieve. The required read and write availability thresholds
hence are 0.80 and 0.72, respectively. This must be achieved within a threshold of no
more than 16 replicas on a replica availability of 0.6. Cost is given to be less than or
equal to seven for each operation; however, full (fitness) weightage is given to the
availability. This specified scenario boils down to fitness of 1.520 to be achieved.

p = 0.6, ε = 16, α = 0.80, β = 0.72, γ = 7.0, δ = 7.0, fw = 1.0

5.1.3 Scenario 3

In this example, the availability of the replicas is set to 0.7 while read and write avail-
abilities are set to 0.9 for each operation, inside a total cost of eight for the access
operations. The availability is more important than the cost in this scenario, therefore,
a weightage of 70% is given to availability and the rest to the cost. These objectives
have to be achieved by no more than 16 replicas.

p = 0.7, ε = 16, α = 0.90, β = 0.90, γ = 4.0, δ = 4.0, fw = 0.7

5.1.4 Scenario 4

Here, the same scenario parameters are used as given in scenario 2, but with slightly
different system parameters, i.e., different mutation and intra-mutation probabilities.
Hence, the scenario is defined, again, with a replica availability of 0.6 to achieve an
availability of a read 0.80 and a write 0.72 through a total number of replicas no more
than 16. The costs of the read and write operations are set to seven each, but availability
is given full weightage. The fitness to be achieved depending upon this scenario is 1.520.
Even though p is a scalar value, we compare the strategy on all the discretized values

Chapter 5. Experiments and results 67

of p to make a realistic comparison. This example will demonstrate the effectiveness of
the proposed system in generating a variety of powerful solutions by even slight use of
genetic operators.

p = 0.6, ε = 16, α = 0.80, β = 0.72, γ = 7.0, δ = 7.0, fw = 1.0

5.2 Results and discussions

Prior to setting the parameters and running the system on the scenario, here, a few
examples of hybrid replication strategies generated by the proposed system are dis-
cussed. Figure 5.1 gives a relatively simple example of a hybrid DRS generated by the
algorithm, which consists of 11 replicas. It can be seen that although the DRS is not
very complex and maintains a tree-like structure rather than an acyclic one, yet it is
so powerful and optimized in terms of its availability and cost that it is competing the
Majority Consensus Strategy (MCS), which is believed to be the best in terms of its
availability of write access operations. When compared, the hybrid DRS in terms of its
availability is so close to MCS. It is almost the same for higher values of p; however, it
is far better when it comes to the cost comparison.

FIGURE 5.1: Hybrid Strategy 1

The availability and cost graphs on the discretized values of p are shown in Figure
5.2 and Figure 5.3, respectively, where Strategy 1 indicates the MCS while Strategy 2
represents a hybrid DRSs. Both strategies consist of 11 replicas each. It can be seen
that in terms of operational availability the hybrid strategy is converging onto the
same values as MCS for higher values of p. This is a quite good availability but more
importantly, it outclasses the MCS in terms of its cost in all the cases. Hence, it covers a
scenario, which could have been left unaddressed otherwise.

In the best case, out of 11, it only takes four replicas each to perform a read and a write
operation while the total cost for MCS is 12 for all the cases. This is a good example of a
relatively less complicated DRS where the availability is not compromised and yet the
cost is reduced significantly through the hybrid approach via genetic programming.

Figure 5.4 shows a relatively complex but more economical example of an up-to-now
unknown hybrid replication strategy designed via genetic programming, exploiting
the voting structures. It is comprised of both the Grid Protocol and the Triangular
Lattice Protocol (TLP), where it unprecedentedly combines Grid Protocol comprising
four replicas with TLP of six replicas, resulting in a total of ten replicas. It demonstrates

Chapter 5. Experiments and results 68

FIGURE 5.2: Hybrid DRS 1, availability of the access operations

FIGURE 5.3: Hybrid DRS 1, cost of the access operations

an instance of horizontal crossover, which has lowered the cost by a great value while
maintaining a very good availability of the access operations.

Figure 5.5 presents and compares the availability of MCS with the proposed hybrid
approach of the same number of replicas. Red and pink lines represent the availabilities
of the read and write operations, respectively, for the MCS. Whereas blue and green

Chapter 5. Experiments and results 69

FIGURE 5.4: Hybrid strategy 2

lines show availabilities of read and write operations, respectively, for the hybrid
strategy. The latter (hybrid) is competing fairly with the former (MCS), considering
the fact that MCS is known to be the best for its availability, particularly for the critical
write availability. In comparison, it can be noticed that availabilities are almost the
same for the later values of p.

Figure 5.6 enables us a closer view, where it can be observed that for hybrid strategy,
the respective availabilities of the access operations converge onto almost the same
values for later values of p, which is a very good operation availability considering the
strong hardware nowadays.

As for the cost, as shown in Figure 5.7, hybrid DRS is much cheaper as compared to
the MCS. It costs almost half of the MCS, in best cases, it only takes three replicas
to perform an access operation whereas the cost of the access operations for MCS
remains a constant of 11 replicas in total. Here, again, it is evident that the cost has
been significantly reduced while not sacrificing availability too much, covering another
prospective scenario, where a further reduced cost could be required.

As some powerful examples of newly generated previously unknown voting structures
via genetic programming have been demonstrated, now we move on to specifying
scenarios, explained earlier.

Chapter 5. Experiments and results 70

FIGURE 5.5: Hybrid DRS 2, availability of the access operations

FIGURE 5.6: Hybrid DRS 2, Zoom-in availability graph

5.2.1 System parameter settings for scenario 1

As mentioned earlier, this scenario consists of the desired read (0.8) and write (0.7)
availabilities on a replica availability of 0.6, inside the threshold of 16 replicas. The
expected read and write costs are set to seven each, but full weightage is given to

Chapter 5. Experiments and results 71

FIGURE 5.7: Hybrid DRS 2, cost of the access operations

availability in this case. Even though node availability is a scalar value, but the strategy
is compared on all the discretized values of p to make a fair comparison.

p = 0.6, ε = 16, α = 0.80, β = 0.70, γ = 7.0, δ = 7.0, fw = 1.0

Having defined the scenario, now the system parameters are set to run the algorithm
accordingly. Here, the number of parent and offspring strategies are set to six and
15, respectively. The initial population is only used once in the genetic process in the
very first generation. The crossovers are performed all the time while the mutation
is performed with a probability of 0.2. The system is run to find out an appropriate
replication strategy.

µ = 6, λ = 15, mutationProb = 0.2

5.2.2 Results for scenario 1

The algorithm is run, having set µ and λ to six and 15 respectively, along with a mutation
probability of 0.2. Figure 5.8 depicts a 2D representation of generated solutions for the
specified problem. It represents all the genetic strategies (being represented by red
marks) generated in this entire genetic process, all of them are innovative and exhibit
different unique combinations of several strategies combined, thereby contributing
to fulfilling different goals w.r.t. the trade-offs between the quality metrics. Here,
the y-axis represents the total cost while the x-axis the total availability of the access
operations.

Chapter 5. Experiments and results 72

FIGURE 5.8: 2D representation of the generated DRSs

As shown in Figure 5.9, this view can be understood more easily by dividing it into
four equal quadrants; quadrant 1 (top right corner) indicates better availabilities at the
expense of costs, quadrant 2 (top left corner) shows that availabilities and costs are
both worse, quadrant 3 (bottom left corner) represents better costs at the expense of
lower availabilities, and quadrant 4 (bottom right corner) offers solutions which are
better in both, availabilities and costs. It can be seen that we do not have too many
solutions in the fourth quadrant in this case.

An appropriate solution (circled in red) exhibiting 16 replicas, satisfying the criteria,
is picked at run-time. Figure 5.10 depicts the fitness of every individual DRS and
the way it evolves. The x-axis represents the number of DRSs and the y-axis denotes
the fitness value of every individual strategy. The red line indicates the fitness of
the DRSs while the pink and blue lines represent the availabilities of read and write
operations, respectively. It can be noticed that it starts with only a few strategies of low
fitness, which implies that the repository does not have a satisfactory solution to the
problem. Then, the fitness improves and begins to evolve gradually through crossover
and mutation operators of genetic programming until the loop stops over the desired
termination condition.

Figure 5.11 illustrates how the fitness of DRSs grows with every generation. The graph
shows the fitness of the best DRSs among every generation. The x-axis represents
the number of generations while the y-axis indicates the fitness value of the best
replication strategy of a respective generation. It took 10 generations for the system
to find a suitable DRS that satisfies the given scenario. Though it is a soft-check as
in this case, the write availability is extremely close to 0.7, i.e., 0.694, which suggests
that fulfilling the fitness criteria does not necessitate the fulfillment of the scenario
constraints. Therefore, for some of the other scenarios, a hard check is done, which
checks both the fitness and individual constraints to which the fitness subject. However,

Chapter 5. Experiments and results 73

FIGURE 5.9: 2D representation of the generated DRSs

FIGURE 5.10: Fitness graph

in this case, it starts from fitness of 1.365 and gradually but consistently continues
to climb up until the desired fitness of 1.525 (even better than the specified one) is
achieved.

Figure 5.12 presents the identified optimized strategy DRS constituting 16 replicas
in total with certain nodes in the voting structure being more important than others

Chapter 5. Experiments and results 74

FIGURE 5.11: Populations’ evolution

in the collection of quorums. The heterogeneous nature of this structure along with
variable votes and quorums together reflects its hybrid nature, providing an up-to-now
unknown replication strategy, serving to meet the specified constraints of availabilities
and the number of replicas while at the same time being not too expensive w.r.t. the
access operations either. As for availabilities of the access operations, it fairly competes
with the MCS, which as already mentioned is considered to be the best w.r.t. availability,
particularly, for the critical write operation’s availability.

FIGURE 5.12: Optimized hybrid DRS for the given scenario

Figure 5.13 shows the availability graph for the access operations of the identified DRS
on discretized values of p. The newly designed DRS fulfills the specified scenario of
thresholds. The x-axis represents the node availability while the y-axis indicates the
availability of the access operations. The point-symmetry of the graph overtly displays
an extremely high availability for access operations.

Figure 5.14 represents a comparison between MCS and the discovered hybrid DRS. Red

Chapter 5. Experiments and results 75

FIGURE 5.13: Availability graph of the read and write operations

(with squares) and pink (with dots) lines represent the availabilities of read and write
operations, respectively, for MCS. Blue and green lines depict the availabilities of read
and write operations, respectively, for the hybrid strategy. It is evident from the figure
that the proposed approach fairly competes with MCS and operation availabilities are
better on p values being 0.5 or less while extremely close for all the remaining p values.
It can be noticed that operation availabilities converge onto almost the same values for
later values of p, which is a very good operation availability considering the strong
hardware nowadays. However, the discovered hybrid strategy is far more economical.

Figure 5.15 shows the cost comparison between the two mentioned strategies. Blue
and green lines indicate the costs of read and write operations, respectively, for the
hybrid DRS. It can be noticed that despite fairly competing with MCS in availabilities,
the hybrid replication strategy is very cheap in its cost. It could perform an operation
by merely accessing five replicas each; however, MCS of the same size takes 17 replicas
in total to perform both access operations. Hence, the operation costs have been
significantly decreased while not much compromising on availabilities. Despite the
fitness calculation is expensive, considering the stochastic nature, the tests (with the
same experimental settings) are repeated at least five times resulting in consistently
satisfying results by generating new DRSs (each time) that meet the criteria. This, as
a result, is to attain sufficient confidence in the proposed mechanism, which thereby
proves its promising potential in delivering quality solutions. Table 5.1 shows the
results of the repeated runs.

Chapter 5. Experiments and results 76

FIGURE 5.14: Availability, MCS vs. hybrid DRS (16 replicas)

FIGURE 5.15: Cost, MCS vs. hybrid DRS (16 replicas)

5.2.3 System parameter settings for scenario 2

Here, the same scenario is being used, but with a higher expected write availability.
The scenario parameters are, hence, as follows.

Chapter 5. Experiments and results 77

TABLE 5.1: Results of the GOOGP on repeated runs

Run Generations Best fitness Worst fitness Avg. fitness Std. deviation

1 10 1.525 1.366 1.457 0.031
2 8 1.508 1.331 1.456 0.042
3 11 1.504 1.336 1.466 0.044
4 10 1.501 1.365 1.460 0.034
5 5 1.508 1.336 1.436 0.056

Avg. 8.8 1.509 1.347 1.455 0.042

p = 0.6, ε = 16, α = 0.80, β = 0.72, γ = 7.0, δ = 7.0, fw = 1.0

As for the system parameters, the number of parent strategies for each population is
set to six and the number of offspring solutions for every generation is restricted to 15.
(µ + λ) strategy is being used as both parent and offspring strategies are important in
solving such replication problems. The mutation should not be so frequent, therefore,
being set as 20% while the use of initial solutions in every generation is 30%. The
intra-crossover operators are evenly (20% each) distributed for the first three types
and 40% for the type 4 operator since we have more room for recombinations here.
Syntactically, the way it works is that if the value is 0.2 or equal, it executes the first
operator and if the value is greater than 0.2, it moves on to the next operator, for which
the value is 0.4 or equal to execute this operator, and with a value greater than 0.4
comes the next inline operator and so on. The intra-mutation probability is evenly
distributed since restricting the structure to limited nodes is as much needed as changes
in the voting structure attributes.

µ = 6, λ = 15, mutation Prob = 0.2,
initPopListProb = 0.3,
intraMutationProbs = <0.5, 0.5>,
intraCrossoverProbs = <0.2, 0.4, 0.6, 1.0>

5.2.4 Results for scenario 2

The algorithm is run, having set µ and λ to six and 15 respectively, along with a
mutation probability of 0.2. Figure 5.16 depicts a 3D representation of generated
solutions for the specified problem. The x-axis shows the availability while the y-axis
represents the cost of the access operations. In addition, each strategy is assigned a
unique color for uniquely identifying the strategies. This view overtly displays the
trade-offs between the objectives of newly generated replication strategies to cover
the potential scenarios. Segregating the view into four equal quadrants; quadrant 1
(top right corner) indicates better availabilities at the expense of costs, quadrant 2 (top
left corner) shows that availabilities and costs are both worse, quadrant 3 (bottom left
corner) represents better costs at the expense of lower availabilities, and quadrant 4
(bottom right corner) offers solutions which are better in both, availabilities and costs.
The fourth quadrant is more important in general; however, it depends on the scenario.
In this case, an appropriate solution (circled in red) satisfying the criteria, is picked at
run-time.

Chapter 5. Experiments and results 78

FIGURE 5.16: DRS generated via genetic programming

Figure 5.17 illustrates the same view as a Pareto front, being comprised of non-
dominated solutions only, for the given scenario. A solution is considered non-
dominated if none of the objectives can be optimized without degrading some of
the values of other objectives. It can easily be analyzed, and the solutions of the choice
can be picked among their trade-offs between availabilities and costs. The Pareto
front shows some of the solution DRSs getting closer to availability of 1.54 for both
the access operations. Moreover, it can also be noticed that some of the strategies are
quite economical in terms of their cost. For the specified scenario, the system takes
12 generations to come up with an optimized solution. Considering the trade-offs, a
strategy adhering to the specified properties can easily be chosen at run-time.

Figure 5.18 shows the fitness of every individual and their evolution, the x-axis is
the number of DRSs (each by a unique ID) and y-axis represents the fitness value
of every individual DRS. The red line shows the fitness of the replication strategies,
whereas the pink and blue lines denote the availabilities of read and write operations,
respectively. Here, it can be seen, the strategies start with lower fitness, which means
that the database repository does not have adequate solutions to the specified problem.
New solutions are generated using the crossover and mutation operators of genetic
programming. These solutions evolve gradually through the genetic operators until
the loop stops over the intended termination condition.

Figure 5.19 shows the improvements in fitness by every generation and chooses the
strategies of the best fitness among each generation. A constant evolutionary trajectory
of DRSs can be noticed here. It takes 12 generations for the system to find an adequate
DRS satisfying the specified scenario. It starts with the strategies of fitness, i.e., 1.365,
which gradually but regularly continues to evolve until the required fitness 1.526 is
achieved.

Figure 5.20 shows the identified suitable strategy (up-to-now unknown) optimized for
the mentioned scenario. This strategy comprises 16 replicas, which fulfill the threshold

Chapter 5. Experiments and results 79

FIGURE 5.17: Pareto front

FIGURE 5.18: Scenario, fitness availability analysis

criteria. Furthermore, the varied structures and quorums indicate its hybrid nature,
working collectively to serve the purpose and fulfill the given scenario. This new
hybrid replication strategy only takes five replicas each to perform an access operation
in the best cases, which is very economical.

Figure 5.21 presents the availability graph for the access operations of the newly

Chapter 5. Experiments and results 80

FIGURE 5.19: Scenario, populations’ analysis

FIGURE 5.20: Scenario, optimized hybrid DRS

designed DRS on discretized values of p. The discovered DRS is optimized for the given
scenario. The x-axis indicates the replica availability, whereas the y-axis represents the
availability of the access operations. The point-symmetry, as well as the sharp curve of
the graphs, overtly display extremely high availabilities for both the access operations,
particularly, for the write availability, which is more critical.

Figure 5.22 shows a comparison between MCS and the discovered hybrid DRS. As
mentioned before, MCS is considered to be the best in its availability, particularly for
the critical write availability. Red and pink lines depict the availabilities of read and
write operations, respectively, for MCS. Blue and green lines show the availabilities of
read and write operations, respectively, for the hybrid strategy. Again, the sharp curve
of graphs reveals very good operation availabilities. It is evident here that the proposed
approach fairly competes with MCS and operation availabilities are extremely close,
particularly, for the later p values, which are more important.

Chapter 5. Experiments and results 81

FIGURE 5.21: Availability of the chosen optimized DRS

FIGURE 5.22: Availability, MCS vs. hybrid DRS (16 replicas)

Figure 5.23 represents a zoomed-in view of the operation availabilities on higher p
values. It can be noticed here that operation availabilities are very close, intermingling,
and converge onto almost the same values for later values of p, which is a very good
operation availability considering the strong hardware of today.

Figure 5.24 shows the cost comparison between the two mentioned strategies. Blue and

Chapter 5. Experiments and results 82

FIGURE 5.23: Zoom-in view of the respective availabilities

green lines indicate the costs of read and write operations, respectively, for the hybrid
DRS. It can be noticed that despite fairly competing with MCS in operation availabilities,
the hybrid replication strategy is very cheap in its cost, too. It only takes five replicas
each for the best case (and at max. six replicas) to execute an access operation, whereas
MCS takes a constant of eight replicas for the read and nine replicas for the write
operation, respectively. Thus, the proposed approach has significantly reduced the cost
and at the same time not sacrificed too much of the availabilities either. Moreover, when
compared, the hierarchical strategy (of 16 replicas) outclasses this newly discovered
strategy in its read availability, but performs worse in the write availability; however,
write availability is more critical to be achieved. Again, the proposed approach, in this
case, provides a very good write availability at an economical cost.

Next, a more challenging scenario is specified. This example, subsequently, shows the
importance of crossover points, thereby impacting the trade-offs of quality metrics.

5.2.5 System parameter settings for scenario 3

In this example, the availability of the replicas is set to 0.7 while read and write avail-
abilities are set to 0.9 for each operation, inside a total cost of eight for the access
operations. The availability is more important than the cost in this scenario, therefore,
a weightage of 70% is given to availability and the rest to the cost. These objectives
have to be achieved by no more than 16 replicas.

p = 0.7, ε = 16, α = 0.90, β = 0.90, γ = 4.0, δ = 4.0, fw = 0.7

Chapter 5. Experiments and results 83

FIGURE 5.24: Cost, MCS vs. hybrid DRS (16 replicas)

Having defined the scenario, now the system parameters are set to run the algorithm
accordingly. The number of parent and offspring strategies are set to six and 15, re-
spectively. The initial population is only used once in the genetic process in the very
first generation. The crossovers are performed all the time while the mutation is per-
formed with a probability of 0.2. Hence, having kept the system parameters and to
the same values of six and 15, respectively, on a mutation probability of 0.2, the system
is run. Also, to keep the mechanism more flexible, the individual thresholds for this
scenario are not checked, and the stopping criteria, hence, are entirely based on fit-
ness. Additionally, we only used TLP instances for this scenario as an initial population.

µ = 6, λ = 15, mutationProb = 0.2

5.2.6 Results for scenario 3

Figure 5.25 illustrates the Pareto front comprised of non-dominated solutions for the
given scenario. It can easily be analyzed and the solutions of the choice can be picked
among their trade-offs between availabilities and costs. Here, each strategy is assigned
a unique color to further ease up the decision-making. We have some DRSs in the fourth
quadrant (bottom right corner) indicating significantly good solutions concerning both
objectives.

The Pareto front for scenario 3 shows some of the solution DRSs getting closer to the
availability of 1.8 of both the access operations. Moreover, it can also be noticed that
some of the strategies are quite economical in terms of their cost, even better than the
expected values. For the specified scenario, the system takes three generations to come
up with an optimized solution. Considering the trade-offs, Figure 5.26 represents the

Chapter 5. Experiments and results 84

FIGURE 5.25: Pareto front view for scenario 3

chosen hybrid DRS comprising 14 replicas in total, which is better than the specified
threshold of 16 replicas. The chosen strategy (circled red in the Pareto front) constitutes
several atomic substructures of the Triangular Lattice Protocol and has a fitness of 1.934,
which is better than the desired value of 1.86.

FIGURE 5.26: An optimized DRS for scenario 3

Figure 5.27 shows the availability graph of the generated new hybrid DRS on the
discretized values of p. The x-axis represents the availability of replicas while the y-axis
represents the availability of the access operations. The red line (with squares) shows
the availability of the read operation while the pink dotted line indicates the availability
of the write operation. It can be seen that the availabilities are good, too, but most
importantly, the costs of the access operations are noticeably low.

Chapter 5. Experiments and results 85

FIGURE 5.27: Availability of the mentioned DRS

Figure 5.28 represents the cost on the discretized values of p. The access operations for
the chosen DRS are very cheap where, in the best cases, it only takes two replicas each
to perform an operation out of 14 replicas (which is even cheaper than the TLP). Even
in the worst cases, the cost remains closer to three replicas each, which is very cheap
while not sacrificing too much on the availabilities either.

FIGURE 5.28: Cost of the mentioned DRS

Chapter 5. Experiments and results 86

The crossover points for DRSs do matter and affect the values of objectives. Another
possible solution from the Pareto front is shown in Figure 5.29, where the same building
blocks are combined by the GP, but slightly different than in 5.26. However, it has
significantly increased the availability of the access operations by slightly compromising
on the cost, but not being too heavily either.

FIGURE 5.29: Another optimized DRS with a slightly different crossover
point

Figure 5.30 presents a zoom-in view of the operation availabilities on higher values of p.
The comparison graphs indicate that this slight change in the structure of the strategy
has resulted in a significant increase in both availabilities of read and write operations
of the latter DRS (Figure 5.29). It can be noticed that the availability difference is
prominent because of this slight change in the structure of the hybrid strategy. It has
resulted in a different outcome of relatively higher operation availabilities.

Figure 5.31 shows the difference between the costs of the two Pareto solutions on the
given discretized values of p. The latter strategy with higher availabilities of access
operations has compromised on the cost by one (which again indicates that both cannot
be achieved at the same time), where, for the best case, it generates costs of three
replicas for a read as well as for a write operation.

Hence, this proposed machine learning mechanism efficiently combines replication
strategies as a single voting structure to achieve the desired fitness through genetic
programming. Similarly, any realistic scenario depending upon the requirements
or nature of an application can be defined and the system can accordingly generate
formerly unknown solutions through genetic programming by overtly displaying their
trade-offs to analyze them and make decisions dynamically at run-time. This automatic
mechanism is strong enough to discover new replication strategies that cannot be easily
found manually, considering the very huge search space.

Next, the parameters of Scenario 2 are used, which differ from Scenario 1 in the write
availability up to two decimal places. As described earlier, even this slight change to
some decimal places impacts the availability greatly in real-time, [20]. So, these slight

Chapter 5. Experiments and results 87

FIGURE 5.30: Availability comparison of the two Pareto front solutions

FIGURE 5.31: Cost comparison of the two Pareto front solutions

changes can make a huge difference, therefore, are hard to achieve. In this regard,
the next examples demonstrate the flexibility and ease of the proposed approach in
generating replication strategies, even with a slight use of the relevant genetic operators
for the given constraints.

Chapter 5. Experiments and results 88

5.2.7 System parameter settings for scenario 4

As mentioned earlier, here, we would like to use the same scenario parameters as
given scenario 2, but with slightly different system parameters, i.e., different mutation
and intra-mutation probabilities. The scenario parameters are as follows, which boil
down to the fitness of 1.520 to be achieved. Again, the strategy is compared on all the
discretized values of p for the realistic approach.

p = 0.6, ε = 16, α = 0.80, β = 0.72, γ = 7.0, δ = 7.0, fw = 1.0

For the system to run, the number of parent strategies for each population is set to
six and the number of child solutions for every generation is restricted to 15, with a
mutation probability of 0.3 on the offspring strategies. The intra-crossover and intra-
mutation probability distributions are also given. (µ + λ) is used as both parent and
offspring strategies are important in solving such replication problems. The mutation
should not be so frequent, therefore, being set as 20% while the use of initial solutions
in every generation is 30%. The intra-crossover operators are evenly (20% each) dis-
tributed for the first three types and 40% for the type 4 operator since we have more
room for recombinations here. The intra-mutation distribution is 40%, 60%, respec-
tively, to put more focus on changing the voting structure attributes than restricting the
structure to limited nodes.

µ = 6, λ = 15, mutation Prob = 0.2,
initPopListProb = 0.3,
intraMutationProbs = <0.4, 1.0>,
intraCrossoverProbs = <0.2, 0.4, 06, 1.0>

5.2.8 Results for scenario 4

Figure 5.32 represents the fitness of every individual strategy involved in the genetic
process. Here, the x-axis shows the number of replication strategies while the y-
axis shows the fitness, as well as the availability of the access operations. The red
line represents the fitness of every individual strategy while the pink and blue lines
represent the availabilities of the read and write operations, respectively. It starts with
a few strategies and designs around 270 new replication strategies. An evolving trend
can be noticed here that strategies start from a lower fitness and gradually gains a
better fitness level over several generations of evolution to meet the desired criteria
eventually.

Figure 5.33 represents a constant evolutionary trajectory of these generations; it plots
the best replication strategy out of every generation to analyze how fitness grew over
several generations. It starts from fitness of 1.36 and goes through several optimization
phases, then eventually stops at the desired fitness of 1.523 (better than the specified
1.520). The y-axis shows the fitness value, whereas the x-axis represents the number of
generations. Here, the system takes 14 generations of evolution to achieve the defined
criteria.

Chapter 5. Experiments and results 89

FIGURE 5.32: Fitness availability analysis of the generated DRSs

FIGURE 5.33: Populations’ analysis

Figure 5.34 depicts operational costs (sum of the read and write costs) of each replication
strategy. The x-axis represents replication strategies and the y-axis their respective
costs. It starts from lower costs, which increase over time for later generations, but
for higher availability values. This implies a higher cost may often result in higher
availabilities. The graph starts with the strategies, where there is not much difference

Chapter 5. Experiments and results 90

between the total cost and the total number of replicas, which gradually fades away
for the later strategies that prove the system is optimizing the DRSs in terms of their
cost. Because now it takes fewer replicas to execute the access operations out of the
total replicas. The algorithm stops over a desired optimized strategy comprised of 16
replicas with a total cost (sum of read and write costs) of almost 12 replicas on given p
(at best 10 replicas).

FIGURE 5.34: Costs analysis of the generated DRSs

Figure 5.35 shows the chosen hybrid strategy optimized for the scenario. It can be
seen that it is comprised of various substructures of replication strategies including
the modified versions of Grid Protocol and Majority Consensus Strategy (MCS) along
with their varied structures and quorum sizes, thereby indicating its heterogeneous
nature. It blends multiple concepts flexibly to meet the specified criteria, which would
definitely not have been easily possible in their orthodox representations. Not only this
helps to achieve high availability, but at the same time not too expensive either. Here, it
could take merely five replicas to perform an operation, which is very cheap.

Figure 5.36 shows the availability (y-axis) comparison between the famous MCS and the
newly discovered hybrid strategy on the discretized values of p (x-axis). These results
are very close to MCS in availabilities but far cheaper in costs. The point-symmetry, as
well as the sharp curve of the graphs, shows quite good availability values for both the
access operations, which proves the effectiveness of this approach. Blue and green lines
represent the availabilities of read and write operations, respectively, for the hybrid
DRS. It can be noticed that the discovered strategy’s availabilities are very close to MCS,
particularly, for the later p values for both the access operations.

Figure 5.37 gives a closer look at higher node availabilities p. Again, it can be seen
that the availabilities of the hybrid strategy are extremely close and converging onto
almost the same values for later p, which is quite good considering the strong hardware
nowadays.

Chapter 5. Experiments and results 91

FIGURE 5.35: Discovered optimized hybrid DRS

FIGURE 5.36: Availability, MCS vs. hybrid DRS (16 replicas)

Figure 5.38 shows a cost comparison between the two mentioned strategies. It can be
seen the latter (hybrid strategy) is very cheap as compared to the former one, in both the
access operations, where it only takes five replicas each to execute an operation for the
best cases while MCS takes a constant cost of 17 replicas in total. Hence, significantly
high availability has been achieved at a reduced cost, too. Again, when compared
to ours, a hierarchical strategy of 16 replicas performs far worst in the critical write
availability (on a better read availability though).

Hence, the framework proposed in this dissertation is strong and at the same time
flexible enough to discover innovative solutions up-to-now the unknown. If an im-
proved read availability is required at an economical cost too, the next example depicts
another solution generated by the proposed approach with a higher read availability.
Figure 5.39 shows the generated hybrid DRS via genetic programming comprising 16
replicas. This hybrid strategy is also very diverse; however, it includes slightly different

Chapter 5. Experiments and results 92

FIGURE 5.37: Zoom-in view of the respective availabilities

FIGURE 5.38: Cost, MCS vs. hybrid DRS (16 replicas)

substructures and holds uneven votes for some of the nodes (i.e., V2 and V3). Such a
combination results in a significant increase in its read operation’s availability.

Figure 5.40 shows the availability of this newly discovered strategy along with the other
ones. Yellow and pink lines represent the availabilities of read and write operations,
respectively, for the most recent strategy. Here, we can see that the availabilities are

Chapter 5. Experiments and results 93

FIGURE 5.39: Another optimized hybrid DRS

again extremely close to each other.

FIGURE 5.40: Availability comparison between MCS and other hybrid
DRSs

Figure 5.41 represents a zoomed-in view of these availabilities. It can be evidently seen
here that the read availability of this latest strategy has been improved. This latter
strategy (3rd strategy, given in Figure 5.39) is exceeding the former one (2nd strategy,
given in Figure 5.35) in its read availability at the expense of write availability a bit.

Figure 5.42 allows us to take a further closer look at these values (on higher p), which
again shows that there is not too much difference between these availabilities. The
hybrid strategies are competing fairly with the contemporary MCS.

Figure 5.43 shows the cost of these strategies on discretized replica availabilities. Yellow
and pink lines show the operation costs of read and write, respectively, for the 3rd
replication strategy (Figure 5.39). It can be seen that the cost is still being restricted to

Chapter 5. Experiments and results 94

FIGURE 5.41: Availability comparison between MCS and other hybrid
DRSs

FIGURE 5.42: Availability comparison between MCS and other hybrid
DRSs

five replicas for each operation for the best cases (the same as the 2nd strategy, Figure
5.35). However, the read availability has been increased while not being too expensive
in the costs. In the same way, we can easily discover new replication strategies satisfying
the constraints, automatically.

Chapter 5. Experiments and results 95

FIGURE 5.43: Cost comparison between MCS and other hybrid DRSs

Even if a further reduced cost is required, i.e., three replicas rather than five (even
cheaper than the famous TLP) to cover another prospective scenario. A mutation
operation is performed by the proposed genetic operator to alter the votes and quo-
rums, accordingly, to produce the desired outcome. The proposed approach in this
dissertation is so flexible and powerful enough to generate consistent (valid) solutions.
Having performed the mutation, Figure 5.44 shows the hybrid strategy with modified
properties. It can be noticed here that the votes for V2 and V3 (in pink) have been
changed (from two to one) while votes for p13 and p14 (in green) have been altered
(from one to two). This slight use of the mutation operator has significantly reduced
the cost further to a desired lower value.

FIGURE 5.44: A mutated hybrid DRS

First, we take a look at the availabilities, Figure 5.45 shows the availabilities of this
mutated DRS (Figure 5.44) along with the other three strategies (MCS and hybrid
DRSs given in Figure 5.35 and Figure 5.39, respectively). Sky blue and light pink lines

Chapter 5. Experiments and results 96

represent the read and write availabilities of the mutated DRS, respectively. Again,
the availabilities are very close to each other, intermingling as shown in the figure. It
can be noticed here that the mutated replication strategy has slightly comprised on its
availabilities (denoted by sky blue and light pink lines), but not too much.

FIGURE 5.45: Availabilities of MCS, hybrid, and mutated DRSs

Figure 5.46 shows a zoomed-in view of the availabilities of this newly discovered
strategy along with the other ones. Here, it can be seen that both the availabilities
(denoted by Sky blue and light pink lines) of the mutated strategy are compromised a
bit. However, on a replica availability higher than 0.9, the difference starts to contract,
and the graph indicates that there is not too much difference between these availabilities
as they are converging onto almost the same values. Thus, the hybrid strategies are
competing fairly with the contemporary MCS.

Figure 5.47 shows a cost comparison of the mentioned replication strategies. Sky blue
and light pink lines represent the read and write costs of a mutated replication strategy,
respectively. As we see here, this hybrid strategy is very cheap, and only takes three
replicas each for the access operations out of a total of 16 replicas, which is even cheaper
than the famous TLP. Hence, these results are far cheaper than the famous MCS and
TLP while maintaining very good availabilities of the access operations.

Hence, our approach generates new strategies automatically, which otherwise would
not be discovered easily. This automatic mechanism based on genetic programming
has made the construction of new solutions so easy to accomplish. This approach is
so flexible that every strategy can be transformed into this voting structure and all
these different concepts can be easily merged to form new solutions while considering
the trade-offs between different quality metrics. Genetic programming intelligently
designs those replication strategies through multi-crossover and multi-mutation op-
erators, keeping the prospective solutions while discarding the others to constantly
improve them in every generation to eventually meet the desired criteria. This avoids

Chapter 5. Experiments and results 97

FIGURE 5.46: Availabilities of MCS, hybrid, and mutated DRSs

FIGURE 5.47: Costs of MCS, hybrid, and mutated DRSs

brute-forcing the combinations for DRSs, which would be too computation expen-
sive to pursue. Figure 5.48 shows auto-generated wide ranges of access operations´
availability graphs through genetic programming, the strategies of suitable choices
of objectives can be easily chosen. Therefore, this automatic mechanism to flexibly
“glue” replication strategies together, in a certain fashion, on certain locations, to make

Chapter 5. Experiments and results 98

them optimized, opens up new possibilities of designing new replication strategies,
up-to-now unknown.

FIGURE 5.48: Auto-generated availability graphs via genetic program-
ming

5.3 Summary

This research uses a genetic programming-based multi-objective optimization approach
that endeavors to not only identify but also design new data replication strategies and
optimize their conflicting objectives as a single-valued metric. It demonstrates the
designing of replication strategies that are innovative and such combinations have not
been explored yet, which may open whole new doors in replication and fault tolerance.
The introduced multi-crossover and multi-mutation operators to replication, strength-
ens our machine learning framework, at the same time guaranteeing consistency of the
solutions, to generate innovative hybrid replication strategies.

The research demonstrates the usefulness of this genetic programming-based automatic
mechanism by reducing the cost significantly while not comprising too much of the
availabilities of the access operations. In this chapter, different scenarios are defined,
and having defined the system parameters, the system generates new competitive
replication strategies. This proves that our approach is very effective and extremely

Chapter 5. Experiments and results 99

flexible to offer competitive results w.r.t. the contemporary strategies as well as gener-
ating novel strategies even with a slight use of relevant genetic operators. Hence, the
research not only provides an intelligent, automatic mechanism to generate new repli-
cation strategies but also eases up the decision-making so that relevant strategies with
satisfactory trade-offs of constraints can easily be picked and used from the generated
solutions at run-time.

100

Chapter 6

Conclusions and future work

6.1 Summarization and contributions

The work initially demonstrates the usefulness of a hybrid approach based on voting
structures for introducing new hybrid DRSs (heterogeneous strategies combined),
which may potentially fulfill uncovered application-scenarios for replicated data. This
idea utilizes voting structures [11] as a key element to this hybrid approach in data
replication. Such a unified representation of DRSs makes it very convenient to perform
“crossovers” and merge any quorum-based DRS with other quorum-based DRSs in
anticipation of adopting the best properties of the two. It initially combines, models
manually cutting-edge replication strategies as unified voting structures, evaluates
their performances, and compares the results with contemporary strategies.

This idea of manual designs leads to the automatic generation of new application-
optimized DRSs satisfying the needs of given application-specific scenarios. In this
regard, this dissertation combines the concepts of fault tolerance in distributed sys-
tems with genetic programming. It proposes an innovative, automated mechanism for
designing new (up-to-now) unknown hybrid optimized DRSs for specified application-
specific scenarios for which no optimal strategy may exist. It uses voting structures
in the context of genetic programming to generate new optimized hybrid DRSs irre-
spective of their varied topologies and patterns for accessing replicas. The proposed
mechanism allows replication strategies to evolve as computer programs over several
generations and attain a constant evolutionary trajectory. It intelligently designs DRSs
without trying to brute force all the possible combinations since the search space is
huge. The novel approach does not only consider the availability aspect, but also the
cost aspect and successfully models a scenario into a replication strategy.

This GOOGP-based approach, later on, acts as a building block to introduce new multi-
type crossover, as well as mutation operators to gain some more fine-grained control
over the algorithm in anticipation of designing appropriate solutions, accordingly.
These newly introduced genetic operators allow the system to be more effective in
exploring more and more possible ways by which to combine different DRSs. Such use
of multi-crossover and multi-mutation operators in the context of voting structures is
quite unprecedented, which provides more leverage in combining replication strategies
together, in a more flexible manner.

Moreover, the research addresses the non-trivial multi-objective optimization problem
of DRSs, where no single solution exists that simultaneously optimizes each objective.
It explicitly illustrates the trade-offs of newly generated DRSs through a Pareto front

Chapter 6. Conclusions and future work 101

view, hence, makes the decision-making process very simple and convenient. In this
process, new DRS are generated, optimized over several generations, and relevant
optimized strategies exhibiting suitable properties are picked at run-time. The proposed
approach is very effective and extremely flexible to offer competitive results w.r.t. the
contemporary strategies as well as generating novel strategies even with a slight use
of relevant genetic operators. It aims to reduce the cost of the access operations while
not comprising on the availabilities too much, thereby making systems more reliable.
This automatic mechanism based on General object-orientated genetic programming
has the potential to open whole new doors to easily explore the unknown territory of
DRSs, which would not have been easily discovered otherwise.

6.2 Future work

The multifaceted nature of the task urges many possibilities of potential improvements.
Therefore, as a part of the future work, an interesting work could be the use of rule-
based mining to derive some rules of thumb from statistical data of replication strategies
to find some hidden rules out of the operators that which operators to use more in
optimizing a particular problem. Considering the stochastic nature of the technique, a
more detailed statistical analysis will be carried out to attain sufficient confidence in the
results of genetic programming, specifically in the case where it is very computationally
expensive to calculate the fitness. In this regard, the tuning of parameters (adaptive,
self-adaptive; or predetermined) to find the optimal settings for the problems will also
be in our focus. This might include hyper-parameter settings, parameter tuning, as well
as control towards adaptive and non-adaptive genetic algorithms. Selection of optimal
hyper-parameters through neural networks or self-adaptive algorithms based on the
success rate is certainly a possibility, but it may deteriorate the performance in our case.
Examining the impacts of initial populations and operators in resolving a problem
since convergence can be achieved faster with a better population, i.e., single operator
vs multiple operators, each operator on a different population, different operators
on each population, etc. A focus can also be on multi-objective optimization using
Non-dominated Sorting Genetic Algorithms based on crowding distance or Euclidean
distance to yield better results.

The optimization of the algorithm for the scalability to a higher number of replicas,
which may include the possibilities and ways to calculate the fitness efficiently as well
as using high-performance computing to do the job or even parallelizing different
processes. Developing means to generate initial populations effectively, and also, scal-
ability of the project w.r.t. incorporating more and more DRSs as well as converting
the other state-of-the-art strategies (automatically) to voting structures. Incorporation
of other fault models, as well as cost models, and their integration into our genetic
approach to widen the horizon and further gain some fruitful results. Also, the dis-
tributed systems are dynamic in nature, which means, over time, networks and devices
can fail, and new nodes can join or depart the system. Therefore, given that scenarios
can change, the current strategy might not be optimal anymore and a new strategy
needs to be calculated. This will require some form of sensing the network/nodes to
receive this information and to trigger a reevaluation of the strategy. However, with
a dynamic approach, there are other issues to consider such as oscillating behaviors
(i.e., switching back and forth between same/similar strategies). Moreover, the devel-
opment of more complex crossover and mutation operators with some more complex

Chapter 6. Conclusions and future work 102

system parameter settings may also be in our focus, to further strengthen our approach,
gain some more fine-grained control over the algorithm (for designing appropriate
solutions, accordingly), as well as comparing with the state-of-the-art.

6.3 Dissertation publications

S. M. A. Bokhari, O. Theel, Designing New Data Replication Strategies Automatically,
In: Agents and Artificial Intelligence, Lecture Notes in Artificial Intelligence (LNAI), Springer
International Publishing, pp. 308-331 (2021).

S. M. A. Bokhari, O. Theel, Use of Genetic Programming Operators in Data Replication
and Fault Tolerance, In: Proceedings of the 26th IEEE International Conference on Parallel
and Distributed Systems (ICPADS), pp. 290-299, Hong Kong (2020).

S. M. A. Bokhari, O. Theel, Introducing Novel Crossover and Mutation Operators into
Data Replication Strategies for Distributed Systems, In: Proceedings of the 25th IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 21-30, Perth,
Australia (2020).

S. M. A. Bokhari, O. Theel, A Genetic Programming-based Multi-objective Optimiza-
tion Approach to Data Replication Strategies for Distributed Systems, In: Proceedings of
the IEEE Congress on Evolutionary Computation (CEC, WCCI), pp. 1–9, Glasgow, Scotland
(2020).

S. M. A. Bokhari, O. Theel, Design of Scenario-based Application-optimized Data
Replication Strategies through Genetic Programming, In: Proceedings of the 12th Inter-
national Conference on Agents and Artificial Intelligence (ICAART), pp. 120-129, Valletta,
Malta (2020).

S. M. A. Bokhari, O. Theel, A Flexible Hybrid Approach to Data Replication in Dis-
tributed Systems, Computing Conference (SAI), In: Advances in Intelligent Systems and
Computing (AISC), Springer, Volume 1(1228), pp. 196-207, London, UK (2020).

For more details regarding these publications, please see Section 1.4.

103

Bibliography

[1] Peter G. Neumann. “Illustrative risks to the public in the use of computer
systems and related technology”. In: ACM Special Interest Group on Software
Engineering (SIGSOFT) Software Engineering Notes 19.1 (1994), 16–29.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. 1987. ISBN: 978-0-201-10715-9.

[3] D. Agrawal and A. Abbadi. “The Tree Quorum Protocol: An Efficient Approach
for Managing Replicated Data”. In: Proceedings of the 16th International Conference
on Very Large Data Bases (VLDB), Morgan Kaufmann (1990), 243–254.

[4] S. Y. Cheung, M. H. Ammar, and M. Ahamad. “The Grid Protocol: A High
Performance Scheme for Maintaining Replicated Data”. In: IEEE Transactions on
Knowledge and Data Engineering 4.6 (1992), 582–592.

[5] H. Robert. “A Majority Consensus Approach to Concurrency Control for Mul-
tiple Copy Databases”. In: ACM Transactions on Database Systems (TODS) 4.2
(1979), 180–207.

[6] M. Naor and A. Wool. “The Load, Capacity, and Availability of Quorum Sys-
tems”. In: SIAM Journal on Computing 27.2 (1998), 423–447.

[7] J. Ricardo et al. “How to Select a Replication Protocol According to Scalability,
Availability, and Communication Overhead”. In: Proceedings 20th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS) (2001), 24–33.

[8] O. Theel and H. Pagina. “Optimal Replica Control Protocols Exhibit Symmetric
Operation Availabilities”. In: Proceedings of the 28th International Symposium on
Fault-Tolerant Computing (FTCS-28), IEEE Computer Society Press (1998), 252–261.

[9] K. Miettinen. Nonlinear Multi-objective Optimization. Kluwer Academic, Boston,
1999. ISBN: 978-1-461-55563-6.

[10] S. M. A. Bokhari and O. Theel. “A Flexible Hybrid Approach to Data Replication
in Distributed Systems”. In: Computing Conference (SAI), Advances in Intelligent
Systems and Computing (AISC), Springer 1228.1 (2020), 196–207.

[11] O. Theel. “General Structured Voting: A Flexible Framework for Modelling
Cooperations”. In: Proceedings of the 13th International Conference on Distributed
Computing Systems, IEEE Computer Society Press (1993), pp. 227–236.

[12] O. Theel. “Rapid Replication Scheme Design using General Structured Voting”.
In: Proceedings of the 17th Annual Computer Science Conference (1994), 669–677.

[13] H. Pagnia and O. Theel. “Priority-based Quorum Protocols for Replicated Ob-
jects”. In: Proceedings of the 2nd International Conference on Parallel and Distributed
Computing and Networks (PDCN), IASTED (1998), 530–535.

Bibliography 104

[14] S. M. A. Bokhari and O. Theel. “Design of Scenario-based Application-Optimized
Data Replication Strategies through Genetic Programming”. In: Proceedings of
the 12th International Conference on Agents and Artificial Intelligence (ICAART),
Scitepress (2020), 120–129.

[15] S. M. A. Bokhari and O. Theel. Designing New Data Replication Strategies Auto-
matically. 2021, pp. 308–331. ISBN: 978-3-030-71158-0.

[16] S. M. A. Bokhari and O. Theel. “A Genetic Programming-based Multi-objective
Optimization Approach to Data Replication Strategies for Distributed Systems”.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC, WCCI),
IEEE (2020), 1–9.

[17] S. M. A. Bokhari and O. Theel. “Use of Genetic Programming Operators in Data
Replication and Fault Tolerance”. In: Proceedings of the 26th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), IEEE (2020), pp. 290–299.

[18] S. M. A. Bokhari and O. Theel. “Introducing Novel Crossover and Mutation
Operators into Data Replication Strategies for Distributed Systems”. In: Proceed-
ings of the 25th IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), IEEE (2020), pp. 21–30.

[19] A. Avižienis et al. “Basic Concepts and Taxonomy of Dependable and Secure
Computing”. In: IEEE Transactions on Dependable and Secure Computing, IEEE 1.1
(2005), 11–33.

[20] C. Storm. Specification and Analytical Evaluation of Heterogeneous Dynamic Quorum-
based Data Replication Schemes. 2012. ISBN: 978-3-834-82381-6.

[21] K. Echtle. Fehlertoleranzverfahren (in German). 1990. ISBN: 978-3-642-75765-5.

[22] F. Cristian et al. “Atomic Broadcast: from Simple Message Diffusion to Byzantine
Agreement”. In: Information and Computation 118.1 (1995), 158–179.

[23] P. Jalote. Fault Tolerance in Distributed Systems. 1994. ISBN: 978-0-13-301367-2.

[24] F. Cristian. “Understanding Fault-tolerant Distributed Systems”. In: Communica-
tions of the ACM 34.2 (1991), 56–78.

[25] B. W. Lampson. “Atomic transactions. In Distributed Systems – Architecture
and Implementation”. In: Lecture Notes in Computer Science, Springer 105 (1981),
246–265.

[26] B. W. Lampson and H. E. Sturgis. “Crash Recovery in a Distributed Data Storage
System”. In: Unpublished technical report, Xerox Palo Alto Research Center 105
(1979), 246–265.

[27] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. In:
Transactions on Programming Languages and Systems, ACM 4.3 (1982), 382–401.

[28] D. Powell. “Failure Mode Assumptions and Assumption Coverage”. In: Proceed-
ings of the 22nd International Symposium on Fault-tolerant Computing (FTCS-22)
(1992), 386–395.

[29] T. D. Chandra and S. Toueg. “Unreliable Failure Detectors for Reliable Dis-
tributed Systems”. In: Journal of the ACM 2.43 (1996), 225–267.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of Distributed
Consensus with one Faulty Process”. In: Journal of the ACM 32.2 (1985), 374–382.

[31] M. Hirt and U. Maurer. “Complete Characterization of Adversaries Tolerable in
Secure Multiparty Computation”. In: Proceedings of the 16th ACM Symposium on
Principles of Distributed Computing (PODC) (1997), 25–34.

Bibliography 105

[32] T. Warns. “Structural Failure Models for Fault-Tolerant Distributed Computing”.
In: Ph.D. Thesis, Department of Computer Science, University of Oldenburg, Germany
(2009).

[33] P. Bernstein and N. Goodman. “An Algorithm for Concurrency Control and
Recovery in Replicated Distributed Databases”. In: ACM Transactions on Database
Systems (TODS) 9.4 (1984), 596–615.

[34] D. Gifford. “Weighted Voting for Replicated Data”. In: Proceedings of the Seventh
ACM Symposium on Operating Systems Principles (SOSP) (1979), 150–162.

[35] A. Kumar. “Hierarchical Quorum Consensus: A New Algorithm for Managing
Replicate Data”. In: IEEE Transactions on Computers 40.9 (1991), 996–1004.

[36] C. Wu and G. G. Belford. “The Triangular Lattice Protocol: A Highly Fault
Tolerant and Highly Efficient Protocol for Replicated Data”. In: Proceedings of the
11th Symposium on Reliable Distributed Systems (SRDS) (1992), 66–73.

[37] J. Jajodia and D. Mutchler. “Dynamic Voting Algorithms for Maintaining the
Consistency of a Replicated Database”. In: ACM Transactions on Database Systems
(TODS) 15.2 (1990), pp. 230–280.

[38] O. Theel and T. Strauß. “Automatic Generation of Dynamic Coterie-based Repli-
cation Schemes”. In: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA) (1998), 1606–1613.

[39] S. C. Choi and H. Y. Youn. “Dynamic Hybrid Replication Effectively Combining
Tree and Grid Topology”. In: The Journal of Supercomputing 59.3 (2012), 1289–1311.

[40] M. Arai et al. “Analysis of Read and Write Availability for Generalized Hybrid
Data Replication Protocol”. In: Proceedings of the 10th IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC) (2004), 143–150.

[41] Yong-Ju Lee, Hag-Young Kim, and Cheol-Hoon Lee. “Cell Approximation
Method in Quorum Systems for Minimizing Access Time”. In: Cluster Com-
puting 12 (2009), 387–398.

[42] O. Theel. “Meeting the Application’s Needs: A Design Study of a Highly Cus-
tomized Replication Scheme”. In: Proceedings of the Pacific Rim International
Symposium on Fault Tolerant (1993), 111–117.

[43] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, 2001.
ISBN: 978-0-471-87339-6.

[44] J. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992. ISBN: 978-0-262-11170-6.

[45] W. Banzhaf et al. “Genetic Programming: An Introduction: On the Automatic
Evolution of Computer Programs and its Applications”. In: Morgan Kaufmann
Publishers Inc. (1998).

[46] R. Schadek and O. Theel. “Increasing the Accuracy of Cost and Availability
Predictions of Quorum Protocols”. In: Proceedings of the 22nd IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC) (2017), 98–103.

[47] R. Schadek, O. Kramer, and O. Theel. “Predicting Read- and Write-Operation
Availabilities of Quorum Protocols based on Graph Properties”. In: Proceedings
of the 10th International Conference on Agents and Artificial Intelligence (ICAART) 2
(2018), 550–558.

[48] J. Ricardo et al. “Are Quorums an Alternative for Data Replication?” In: ACM
Transactions on Database Systems 28.3 (2003), 257–294.

Bibliography 106

[49] Daniel Barbara and Héctor García-Molina. “The Vulnerability of Vote Assign-
ments”. In: ACM Transactions on Computer Systems 4.3 (1986), 187–213.

[50] Shun Yang Cheung, Mustaque Ahamad, and Mostafa H. Ammar. “Optimizing
Vote and Quorum Assignments for Reading and Writing Replicated Data”. In:
IEEE Transactions on Data and Knowledge Engineering 1.3 (1989), 387–397.

[51] Christos H. Papadimitriou and Martha Sideri. “Optimal Coteries”. In: Proceed-
ings of the 10th Annual ACM Symposium on Principles of Distributed Computing
(PODC) (1991), 75–80.

[52] Mirjana Obradovic and Piotr Berman. “Voting as the Optimal Pessimistic
Scheme for Managing Replicated Data”. In: Proceedings of the 9th Symposium on
Reliable Distributed Systems (SRDS) (1990), 126–135.

[53] Akhil Kumar, Michael Rabinovich, and Rakesh K. Sinha. “A Performance Study
of General Grid Structures for Replicated Data”. In: In Proceedings of the 13th
International Conference on Distributed Computer Systems (ICDCS) (1993), 178–185.

[54] Mitchell L. Neilsen. “Quorum Structures in Distributed Systems”. In: Ph.D.
Thesis, Kansas State University, Kansas, KS, U.S.A (1992).

[55] O. Theel and H. Pagnia. “General Design of Grid-based Data Replication
Schemes using Graphs and a few Rules”. In: Proceedings of the 15th International
Conference on Distributed Computing Systems (ICDCS) (1995), 395–403.

[56] Rich Caruana and Alexandru Niculescu-Mizil. “An Empirical Comparison
of Supervised Learning Algorithms”. In: Proceedings of the 23rd international
conference on Machine learning (2006), pp. 161–168.

[57] Ankur A. Patel. “Hands-On Unsupervised Learning Using Python: How to
Build Applied Machine Learning Solutions from Unlabeled Data”. In: O’Reilly
Media (2019).

[58] O. Chapelle, B. Schölkopf, and A. Zien. “Semi-Supervised Learning (Adaptive
Computation and Machine Learning)”. In: MIT Press (2006).

[59] Richard S. Sutton and Andrew G. Barto. “Reinforcement Learning: An Introduc-
tion”. In: MIT Press (2018).

[60] X. Yu and M. Gen. “Introduction to Evolutionary Algorithms”. In: Springer Book
(2010).

[61] M. Amrane et al. “Breast Cancer Classification using Machine Learning”. In:
Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT)
(2018), pp. 1–4.

[62] Z. Wang, K. Fu, and J. Ye. “Learning to Estimate the Travel Time”. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data
Mining (2018), pp. 858–866.

[63] D. Wang et al. “A Semi-supervised Graph Attentive Network for Financial
Fraud Detection”. In: Proceedings of the IEEE International Conference on Data
Mining (ICDM) (2019), pp. 598–607.

[64] C. Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life. John Murray, 1859.

[65] D. Fogel. “Evolutionary Computation: The Fossil Record”. In: Wiley-IEEE Press
(1998).

[66] J. F. Miller. “Cartesian Genetic Programming”. In: Natural Computing Series,
Springer (2011).

Bibliography 107

[67] J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975. ISBN:
978-0-262-27555-2.

[68] O. Kramer. Genetic Algorithm Essentials. Vol. 679. Springer, 2017. ISBN: 978-3-319-
52156-5.

[69] I. Rechenberg. “Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution”. In: Fromman-Holzboog (1971).

[70] H. Schwefel. “Numerische Optimierung von Computer-Modellen. Birkhäuser”.
In: Fromman-Holzboog (1977).

[71] L. Fogel, A.J. Owens, and M. Walsh. Artificial Intelligence through Simulated
Evolution. Wiley, 1966. ISBN: 978-0-471-26516-0.

[72] R. Friedberg. “A Learning Machine: Part I”. In: IBM Journal of Research and
Development 2 (1958), pp. 2–13.

[73] R. Friedberg and B. Dunham. “A Learning Machine: Part II”. In: IBM Journal of
Research and Development 3 (1959), 282–287.

[74] S. F. Smith. “A Learning System Based on Genetic Adaptive Algorithms”. In:
Ph.D. Thesis, University of Pittsburgh (1980).

[75] R. Forsyth. “BEAGLE A Darwinian Approach to Pattern Recognition”. In: Ky-
bernetes 10.3 (1981), 159–166.

[76] N. L. Cramer. “A Representation for the Adaptive Generation of Simple Sequen-
tial Programs”. In: Proceedings of the International Conference on Genetic Algorithms
and their Applications, ACM (1985).

[77] D. Dickmanns, J. Schmidhuber, and A. Winklhofer. “Der genetische Algorith-
mus: Eine Implementierung in Prolog”. In: Fortgeschrittenenpraktikum , Institut
für Informatik, Technische Universität München (1987).

[78] J. Schmidhuber. “Evolutionary Principles in Self-referential Learning”. In: Diploma
thesis, Institut für Informatik, Technische Universität Mänchen (1987).

[79] R. Raghavjee and N. Pillay. “A Comparison of Genetic Algorithms and Genetic
Programming in Solving the School Timetabling Problem”. In: Proceedings of the
4th World Congress on Nature and Biologically Inspired Computing (NaBIC) (2012),
pp. 98–103.

[80] M. Orlov and M. Sipper. “Genetic Programming in the Wild: Evolving Unre-
stricted Bytecode”. In: Proceedings of the 11th Conference on Genetic and Evolution-
ary Computation (2009), 1043–1050.

[81] M. Orlov and M. Sipper. “FINCH: A System for Evolving Java (Bytecode)”. In:
Genetic Programming Theory and Practice VIII, Springer 8 (2010), 1–16.

[82] M. Orlov and M. Sipper. “Flight of the FINCH Through the Java Wilderness”.
In: IEEE Transactions on Evolutionary Computation 15.2 (2011), 166–182.

[83] H. Al-Sahaf et al. “A Survey on Evolutionary Machine Learning”. In: Journal of
the Royal Society of New Zealand 49 (2019), 205–228.

[84] Y. Bi, B. Xue, and M. Zhang. “An Evolutionary Deep Learning Approach using
Genetic Programming with Convolution Operators for Image Classification”.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2019),
3197–3204.

[85] L. Shao et al. “Feature Learning for Image Classification via Multi-objective
Genetic Programming”. In: IEEE Transactions on Neural Networks and Learning
Systems 25 (2014), 1359–1371.

Bibliography 108

[86] H. Al-Sahaf et al. “Automatically Evolving Rotation-invariant Texture Image
Descriptors by Genetic Programming”. In: IEEE Transactions on Evolutionary
Computation 21 (2017), 83–101.

[87] Y. Bi, B. Xue, and M. Zhang. “An Automatic Feature Extraction Approach to
Image Classification using Genetic Programming”. In: Proceedings of the Interna-
tional Conference on the Applications of Evolutionary Computation (2018), 421–438.

[88] Kai Staats. Last accessed in September 2020. URL: http://geneticprogramming.
com.

[89] J. McCarthy. “Recursive Functions of Symbolic Expressions and their Computa-
tion by Machine, Part I”. In: Communications of the ACM (1960), 184–195.

[90] R. Poli and W. B. Langdon. “Foundations of Genetic Programming”. In: Springer
(2002).

[91] R. Poli, W. B. Langdon, and N. F. McPhee. “A Field Guide to Genetic Program-
ming”. In: Published via http://lulu.com and freely available at http://www.gp-field-
guide.org.uk (2008).

[92] C. Ryan, J. J. Collins, and M. O. Neill. “Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language”. In: Proceedings of the European Conference on
Genetic Programming (1998).

[93] R. McKay et al. “Grammar-based Genetic Programming: A Survey”. In: Genetic
Programming and Evolvable Machines 11.3 (2010).

[94] M. O’Neill and C. Ryan. “Grammatical Evolution”. In: IEEE Transactions on
Evolutionary Computation 5.4 (2001), 349–358.

[95] M. O’Neill and C. Ryan. “Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language”. In: Springer (2003).

[96] L. Spector and A. Robinson. “Genetic Programming and Autoconstructive
Evolution with the Push Programming Language”. In: Genetic Programming and
Evolvable Machines 3 (2002), 7–40.

[97] J. F. Miller, P. Thomson, and T. C. Fogarty. “Designing Electronic Circuits Us-
ing Evolutionary Algorithms: Arithmetic Circuits: A Case Study”. In: Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science: Recent
Advancements and Industrial Applications (1998), 105–131.

[98] J. F. Miller. “An Empirical Study of the Efficiency of Learning Boolean Functions
using a Cartesian Genetic Programming Approach”. In: Proceedings of the Genetic
and Evolutionary Computation Conference (1999), 1135–1142.

[99] J. F. Miller and P. Thomson. “Cartesian Genetic Programming”. In: Proceedings
of the European Conference on Genetic Programming, Springer LNCS 1802 (2000),
121–132.

[100] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. “Data Structures and Algorithms”.
In: Addison–Wesley (1983).

[101] N. Deo. “Graph Theory with Applications to Engineering and Computer Sci-
ence”. In: Prentice-Hall (2004).

[102] G. Chartrand, L. Lesniak, and P. Zhang. Graphs and Digraphs, Fifth Edition. 2010.
ISBN: 978-1-439-82627-0.

[103] S. Louis and G. J. E. Rawlins. “Using Genetic Algorithms to Design Structures”.
In: Technical Report TR326, Department of Computer Science, Indiana University
(1990).

http://geneticprogramming.com
http://geneticprogramming.com

Bibliography 109

[104] S. Louis and G. J. E. Rawlins. “Designer Genetic Algorithms: Genetic Algorithms
in Structure Design”. In: Proceedings of the International Conference on Genetic
Algorithms, Morgan Kauffman (1991), 53–60.

[105] S. Louis. “Genetic Algorithms as a Computational Tool for Design”. In: Ph.D.
thesis, Department of Computer Science, Indiana University (1993).

[106] A. J. Turner and J. F. Miller. “The Importance of Topology Evolution in Neu-
roEvolution: A Case Study using Cartesian Genetic Programming of Artificial
Neural Networks”. In: Proceedings of the Thirty-third SGAI International Conference
on Artificial Intelligence, Springer International Publishing (2013), 213—226.

[107] A. J. Turner and J. F. Miller. “Cartesian Genetic Programming encoded Artificial
Neural Networks: A Comparison using Three Benchmarks”. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO), ACM (2013),
pp. 1005–1012.

[108] A. M. Ahmad et al. “Breast Cancer Detection Using Cartesian Genetic Pro-
gramming evolved Artificial Neural Networks”. In: Proceedings of Genetic and
Evolutionary Computation Conference (GECCO) (2012), 1031—1038.

[109] M. M. Khan, G. M. Khan, and J. F. Miller. “Developmental Plasticity in Cartesian
Genetic Programming Artificial Neural Networks”. In: Special session on Artificial
Neural Networks and Intelligent Information Processing in Proceedings of the Inter-
national Conference on Informatics in Control, Automation and Robotics (ICINCO),
Scitepress (2011), pp. 197–198.

[110] M. M. Khan, G. M. Khan, and J. F. Miller. “Evolution of Neural Networks
using Cartesian Genetic Programming”. In: Proceedings of 12th IEEE Congress on
Evolutionary Computation (CEC) (2010).

[111] G. M. Khan, J. F. Miller, and M. M. Khan. “Evolution of Optimal ANNs for Non-
Linear Control Problems Using Cartesian Genetic Programming”. In: Proceedings
of the International Conference on Artificial Intelligence (ICAI), CSREA Press (2010).

[112] R. Poli. “Parallel Distributed Genetic Programming”. In: Tech. Rep. CSRP-96-15,
School of Computer Science, University of Birmingham (1996).

[113] R. Poli. “Evolution of Graph-Like Programs with Parallel Distributed Genetic
Programming”. In: Proceedings of the International Conference on Genetic Algorithms
(1997), 346–353.

[114] S. Silva and E. Costa. “Dynamic Limits for Bloat Control in Genetic Program-
ming and a Review of Past and Current Bloat Theories”. In: Genetic Programming
and Evolvable Machines 10 (2009), 141–179.

[115] J. F. Miller and S.L. Smith. “Redundancy and Computational Efficiency in Carte-
sian Genetic Programming”. In: IEEE Transactions on Evolutionary Computation
10.2 (2006), 167–174.

[116] R. Abbott. “Object-oriented Genetic Programming, an Initial Implementation”.
In: Proceedings of the International Conference on Machine Learning: Models, Tech-
nologies and Applications (2003).

[117] S. M. Lucas. “Exploiting Reflection in Object Oriented Genetic Programming”.
In: European Conference on Genetic Programming (EuroGP), LNCS 3003 (2004),
pp. 369–378.

[118] W. S. Bruce. “Automatic Generation of Object-oriented Programs using Genetic
Programming”. In: Proceedings of the 1st Annual Conference on Genetic Program-
ming (1996), pp. 267–272.

Bibliography 110

[119] T. White, J. Fan, and F. Oppacher. “Basic Object Oriented Genetic Programming”.
In: Proceedings of the International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (2011), pp. 59–68.

[120] M. F. Brameier and W. Banzhaf. “Linear Genetic Programming”. In: Genetic and
Evolutionary Computation Series, Springer (2007).

[121] Steven H. Lai A. Homaifar Charlene X. Qi. “Constrained Optimization via
Genetic Algorithms”. In: Simulation 4 (1994), pp. 242–253. URL: 62.

[122] G. Singh and K. Deb. “Comparison of Multi-modal Optimization Algorithms
based on Evolutionary Algorithms”. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation (2006), pp. 1305–1312.

[123] B. Korte and J. Vygen. Combinatorial Optimization, Fifth Edition. Springer, 2011.
ISBN: 978-3-642-24487-2.

[124] K. Deb. “Multi-objective Optimization”. In: Search Methodologies, Springer (2014),
pp. 403–449.

[125] G. Syswerda. “Simulated Crossover in Genetic Algorithms”. In: Foundations of
Genetic Algorithms (FOGA), Morgan Kaufmann (1993), 239–255.

62

111

Acronyms

1SR one-copy serializability

DRS data replication strategy

rq read quorum (a threshold of a min. replica number to execute a read operation)

wq write quorum (a threshold of a min. replica number to execute a write operation)

MCS majority consensus strategy

ROWA read-one write-all

TQP tree quorum protocol

WVS weighted voting strategy

HQC hierarchical quorum consensus

C-Cover column cover
CC-Cover complete column cover

TLP triangular lattice protocol

H-Cover horizontal cover

V-Cover vertical cover

DAG directed acyclic graph

EA evolutionary algorithm

GA genetic algorithm

ES evolutionary strategies

GP genetic programming

EP evolutionary programming

LGP linear genetic programming

GE grammatical evolution

CGP cartesian genetic programming

ANN artificial neural network

GOOGP general object-oriented genetic programming

Acronyms 112

RQ read quorum (the set of replicas of a read quorum)

WQ write quorum (the set of replicas of a write quorum)

RQS read quorum set (the super-set of all the RQs)

WQS write quorum set (the super-set of all the WQs)

FW fitness weightage

113

Symbols

n number of replicas

ε a threshold of number of replicas

N+ natural numbers excluding zero

p probability of individual replicas

Ar availability of read operation
Aw availability of write operation

q sum of the replicas forming a quorum

α a threshold of availability of the read operation

β a threshold of availability of the write operation

Cr cost of read operation
Cw cost of write operation

minRQ minimum quorum necessary to execute a read operation
minWQ minimum quorum necessary to execute a write operation

R+ real positive numbers

γ a threshold of cost of the read operation

δ a threshold of cost of the write operation

µ number of parent strategies in a generation

λ number of offspring strategies in a generation

	Abschließende Erklärung
	Kurzzusammenfassung
	Abstract
	Introduction
	Background
	Motivation
	Problem statement
	Dissertation outline
	Summary

	Fault tolerance and replication
	Basic concept
	Fault, error, and failure
	Fault models in the literature
	Functional failure model
	Structural failure model

	Replication strategies and related work
	Voting Structures
	Read-One Write-All Protocol
	Majority Consensus Strategy
	Weighted Voting
	Tree Quorum Protocol
	Grid Protocol
	Triangular Lattice Protocol

	Summary

	Machine learning and genetic programming
	Basic concepts of machine learning
	Genetic programming
	Why genetic programming?
	GP related work
	General object-oriented GP

	Genetic programming in the context of replication
	Summary

	Novel framework to design replication strategies
	Adopted fault model
	System architecture
	Specification of a constraints-based scenario
	Consistency of operations
	Number of replicas
	Availabilities of the access operations
	Costs of the access operations
	Fitness weightage
	Probability of the individual replicas

	Manual designs of voting structures by modeling the state-of-the-art strategies
	Customized genetic programming algorithm
	Fitness function for the strategies’ evaluations
	Crossover operators for strategies
	Type 1 operator
	Type 2 operator
	Type 3 operator
	Type 4 operator

	Mutation operators for the strategies
	Type 1 operator
	Type 2 operator

	System parameters
	 and
	Initial population probability
	Intra-crossover probability distribution
	Mutation probability
	Intra-mutation probability distribution

	Summary

	Experiments and results
	Scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Results and discussions
	System parameter settings for scenario 1
	Results for scenario 1
	System parameter settings for scenario 2
	Results for scenario 2
	System parameter settings for scenario 3
	Results for scenario 3
	System parameter settings for scenario 4
	Results for scenario 4

	Summary

	Conclusions and future work
	Summarization and contributions
	Future work
	Dissertation publications

	Bibliography
	Acronyms
	Symbols

