
Fakultät II
Informatik, Wirtschafts-
und Rechtswissenschaften

Department für Informatik

Advances in Computational Intelligence
with Applications in Finance

and Molecule Design

Von der Fakultät für Informatik,
Wirtschafts- und Rechtswissenschaften

der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels

Doktor der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von Herrn Lars Elend
geboren am 14. Dezember 1992 in Norden

Erstgutachter:

Prof. Dr. Oliver Kramer
Department für Informatik
Carl von Ossietzky Universität Oldenburg

Externer Zweitgutachter:

Prof. Dr. Günter Rudolph
Fakultät für Informatik
Technische Universität Dortmund

Tag der Disputation: 20. Dezember 2023

III

Zusammenfassung

Verfahren aus dem Bereich Computational Intelligence (CI) können sehr vielseitig zur Lösung un-

terschiedlichster Probleme eingesetzt werden. In den letzten 15 Jahren haben insbesondere neue

Entwicklungen im Bereich der Deep Neural Networks und die stark gestiegene Rechenleistung von

Grafikprozessoren zu Fortschritten geführt. So konnten häufig bessere Ergebnisse zu bekannten Pro-

blemen gefunden werden als mit bisherigen Verfahren und bestimmte Probleme konnten überhaupt

erst in akzeptabler Zeit gelöst werden. In dieser Arbeit werden CI-Verfahren für drei unterschiedliche

Bereiche eingesetzt.

Im Finanzbereich ist eine wesentliche Aufgabe den Wert von Unternehmen genau zu beurteilen.

Finanzinstitute basieren ihr Handeln in der Regel auf aufwendige Prognosen, die von Finanzanalysten

erstellt wurden. Eine entscheidende Rolle spielen hierbei die erwarteten zukünftigen Gewinne eines

Unternehmens, welche sich in den Gewinnen pro Aktie widerspiegeln. Für börsengehandelte US-

Unternehmen gibt es regelmäßige Quartalsberichte, deren Informationen auch für eine datenbasierte

Zeitreihenprognose genutzt werden können. Zu diesem Zweck werden in dieser Arbeit verschiedene

Deep Neural Networks für die Prognose der Gewinne pro Aktie verglichen. Bei den Experimenten

werden zudem unterschiedliche Gruppen von Unternehmen betrachtet. Hierbei konnte festgestellt

werden, dass unsere Modelle insbesondere für die Unternehmen, die nicht im Finanzbereich tätig sind,

gute Prognosen erstellen und sogar die Prognosen von Analysten übertreffen können. Ebenso wurde

eine Unterteilung in mehrere Industriegruppen untersucht.

Auch in der Medizin können CI-Verfahren sinnvoll eingesetzt werden. Ein Anwendungsbereich

ist die Entwicklung von Medikamenten gegen Viren. Ein Ansatz zur Vermeidung der Virusausbrei-

tung im menschlichen Körper, ist die Blockade der Virusprotease, die für die Replikation desselben

notwendig ist. Zu diesem Zweck wird ein geeigneter Proteaseinhibitor gesucht, der an die Protease

bindet und zusätzlich bestimmte Eigenschaften erfüllt (u. a. Synthetisierbarkeit). In dieser Arbeit

werden drei evolutionäre Verfahren zum Generieren von Proteaseinhibitoren vorgestellt: Weighted

Sum Evolutionary Molecule Search, Pareto Ranking Evolutionary Molecule Search und Evolutionary

Molecule Generation Algorithm. Letzterer nutzt intern ein Language Model für die Mutation. Für

die Experimente werden zwei unterschiedliche String-Repräsentationen für Moleküle verwendet:

Simplified Molecular-Input Line-Entry System (SMILES) und Self-Referencing Embedded Strings

(SELFIES). Für einige Moleküle wurde eine weitergehende Molecular-Dynamics-Analyse durchge-

führt, bei der einige Kandidaten verworfen und andere als vielversprechend bestätigt werden konnten.

Der CI-Ansatz bietet im Vergleich zur herkömmlichen manuellen Suche nach geeigneten Molekülen,

zwei zusammenhängende Vorteile: Die CI-Verfahren sind um mehrere Größenordnungen schneller und

ermöglichen dadurch eine breitere Erkundung des riesigen Suchraums der möglichen Moleküle. Somit

eignen sich diese Ansätze insbesondere für eine erste Auswahl von Molekülen, die anschließend von

aufwendigeren, aber auch genaueren Verfahren genutzt werden können.

Als Drittes wird die neu entwickelte Convolutional Self-Organizing Map (ConvSOM) Architektur

zur Visualisierung von Daten unter der Berücksichtigung höherwertiger Features vorgestellt. Die

ConvSOM nutzt interne Informationen aus einem Convolutional Neural Network als Eingabe für

eine Self-Organizing Map. Für die Untersuchung der Architektur wurden Experimente mit Bilddaten

IV

durchgeführt. Hierbei ist das Ziel, nicht nur die rohen Pixelinformationen, sondern auch höherwertige

Features zu nutzen, um semantische Zusammenhänge herzustellen. Zur Bewertung dieser die semanti-

schen Zusammenhänge der resultierenden Karten, wurden mehrere Metriken entwickelt. Davon nutzen

einige Metriken die Label der Samples. Es wird allerdings auch eine auf dem Deep Visual-Semantic

Embedding Model aufbauende semantische Metrik beschrieben, die ohne Label auskommt. Für die

gewählten Zielmetriken liefert die ConvSOM bessere Ergebnisse als die normale Self-Organizing Map.

V

Abstract

Computational intelligence (CI) methods can be used in various ways to solve a wide range of problems.

In the last 15 years, the large increase in computing power of graphics processing units and multiple

new developments in deep neural networks have led to advancements in the field. As a result, it has

often been possible to achieve better results on known problems than with previous methods, and

certain problems can now be solved with acceptable effort for the first time. In this thesis, I applied CI

methods to three different areas.

In finance, an essential task is to accurately assess the value of companies. Financial institutions

usually base their actions on elaborate forecasts prepared by financial analysts. A crucial role is played

by the expected future earnings of a company, which are reflected in earnings per share. There are

regular quarterly reports for publicly traded U.S. companies whose information can also be used for

data-based time series prediction. This thesis compares different deep neural networks regarding

their ability to forecast the earnings per share. The experiments also consider different groups of

companies. I found that the proposed models can produce good forecasts, especially for the non-

financial companies, and even outperform the analysts’ forecasts. Likewise, a subdivision into several

industry groups was examined.

CI methods can also be used to support drug development against viruses. One approach to

preventing the spread of viruses in the human body is to block the viral protease, which is necessary

for virus replication. Therefore, a suitable protease inhibitor is sought, which binds to the protease

and additionally fulfills certain properties (e.g., synthesizability). In this thesis, three evolutionary

methods for the generation of protease inhibitors are presented: weighted sum evolutionary molecule

search, Pareto ranking evolutionary molecule search, and evolutionary molecule generation algorithm.

The latter internally uses a language model for mutation. The experiments use two different string

representations for molecules: simplified molecular-input line-entry system (SMILES) and self-

referencing embedded strings (SELFIES). More extensive molecular dynamics analysis was performed

for several selected molecules. The analysis allowed some molecules to be discarded and others to

be confirmed as promising. The CI approaches offer two advantages over the traditional, mostly

manual search for suitable molecules: The CI methods are several orders of magnitude faster and

allow a broader exploration of the large search space of possible molecules. Thus, these approaches

are particularly suitable for initial selection of molecules that can later be used for subsequent more

elaborate, but also more accurate, methods.

Third, I present the newly developed convolutional self-organizing map (ConvSOM) architecture

for visualizing data while taking into account higher-level features. The ConvSOM uses internal

information from a convolutional neural network as input to a self-organizing map. Image data was

used for the experiments. The goal is to use not only the raw pixel information, but also higher-level

information to establish semantic relationships. In order to evaluate the semantic relationships of the

resulting maps, several metrics have been developed. These metrics mostly use labels, whereas one

metric based on the deep visual-semantic embedding model that does not use labels is also described.

For the chosen target metrics, the ConvSOM returns better results than the regular self-organizing

maps.

Contents

I Introduction and Foundations 1

1 Introduction 3
1.1 Thesis Structure . 4
1.2 Contributions . 5

2 Computational Intelligence 7
2.1 Machine Learning . 7

2.1.1 Supervised Learning . 8
2.1.2 Unsupervised Learning . 9
2.1.3 Reinforcement Learning . 10

2.2 Artificial Neural Networks . 11
2.2.1 Artificial Neuron . 11
2.2.2 Activation Functions . 12
2.2.3 Feed Forward Network . 13
2.2.4 Backpropagation . 13

2.3 Conclusion . 14

II Prediction 15

3 Earnings Prediction 17
3.1 Related Work . 17
3.2 Time Series Prediction . 18
3.3 Long Short-Term Memory . 19
3.4 Temporal Convolutional Network . 20
3.5 Data Preprocessing . 21
3.6 Quality Measures . 22
3.7 Experimental Analysis . 22

3.7.1 Architecture and Meta Parameters . 24
3.7.2 Financial Firms . 25
3.7.3 Fama French Industries . 25
3.7.4 Test of Best Model . 26

3.8 Conclusion . 26

III Molecule Design 29

4 Foundations of Molecule Design 31
4.1 Motivation . 31
4.2 Organic Chemistry . 32

4.2.1 Atoms and Elements . 32

VIII Contents

4.2.2 Bonds . 35
4.2.2.1 Intramolecular Bonds . 35
4.2.2.2 Intermolecular Bonds . 35

4.2.3 Molecules . 37
4.2.3.1 1D / String Representations . 37
4.2.3.2 2D Representations . 39
4.2.3.3 3D Representations . 40
4.2.3.4 Molecule characteristics . 42
4.2.3.5 Representation characteristics . 43

4.3 Evolutionary Algorithms . 45
4.3.1 Parameters . 46
4.3.2 Recombination . 46
4.3.3 Mutation . 47
4.3.4 Selection . 47

4.4 Conclusion . 48

5 Evolutionary Multi-Objective Approach 49
5.1 Related Work . 49
5.2 Molecule Design Metrics . 50

5.2.1 Binding Affinity . 51
5.2.2 Synthetic Accessibility . 51
5.2.3 Quantitative Estimate of Drug-Likeness . 52
5.2.4 Natural Product-Likeness . 53
5.2.5 Toxicity Filters . 53

5.3 Evolutionary Molecule Search . 53
5.3.1 Representation . 54
5.3.2 Mutation . 54
5.3.3 Fitness Evaluation . 55
5.3.4 Weighted Sum Evolutionary Molecule Search 56
5.3.5 Pareto Ranking Evolutionary Molecule Search 56

5.4 Experiments . 57
5.4.1 Metric Development . 58
5.4.2 Candidate Comparison . 60

5.5 Conclusion . 62

6 Language Model–based Evolutionary Approach 63
6.1 Evolutionary Molecule Generation Algorithm . 64

6.1.1 Representation . 64
6.1.2 Neural Language Model . 65
6.1.3 Evolutionary Algorithm with Language Model 67

6.2 Molecular Dynamics . 68
6.3 Results and Discussion . 70

6.3.1 Evolutionary Molecule Generation Algorithm 71
6.3.2 Molecular Dynamics . 74

6.4 Conclusion . 78

IV Visualization 79

7 Convolutional Self-Organizing Map 81

Contents IX

7.1 Related Work . 82
7.2 Self-Organizing Map . 82
7.3 Convolutional Neural Network . 84
7.4 Convolutional Self-Organizing Map . 85
7.5 Quality Metrics . 86

7.5.1 Kruskal Shepard Error . 87
7.5.2 Cross Entropy . 88
7.5.3 Minor Class Occurrence . 88
7.5.4 Class Scatter Index . 88

7.6 Visualization . 89
7.7 Experimental Analysis . 90

7.7.1 Experimental Settings . 90
7.7.2 Quality Measure Results . 91
7.7.3 Visualization Results . 92

7.8 DeViSE as Semantic Metric . 93
7.9 Conclusion . 93

V Closing 95

8 Conclusion 97
8.1 Earnings Prediction . 97
8.2 Molecule Design . 98
8.3 Convolutional Self-Organizing Map . 100

VI Appendices 103

A Data Sets 105

B Earnings Prediction 107
B.1 Data Sets . 107
B.2 Workflow . 108

C Molecule Design 111
C.1 Workflow . 111
C.2 Ligands Overview . 111

List of Figures 113

List of Tables 115

Literature 117

Index of Parameters 137

Acronyms 141

Glossary 145

Index 147

Part I

Introduction and Foundations

1 Introduction

Computational intelligence (CI) methods can be applied to many types of problems and applications:

For forecasting wind energy [WOK17] or financial data [Ele+20], for object detection [RF18], for

speech recognition [Cha+16] and speech synthesis [Oor+16], or in medicine for detecting diseases

like cancer [PK20] or for developing new drugs [Ele+22]. Furthermore, the detection of anomalies

[Pan+21] or manipulations [Wor20] is possible. In particular, advances in deep learning have led

to many new and better solutions over the past 15 years. First, the computing power of graphics

processing units (GPUs) has greatly increased, allowing the computation of ever larger deep neural

network (DNN). Second, new architectures, some of them specialized, have been developed, such

as AlexNet [KSH12], ResNet [He+16], or Transformers [Vas+17]. This allows modern methods to

outperform earlier methods. And in some areas they can assist humans [HT17], if not outperform

them altogether [Sil+17b]. In this thesis, I developed and studied CI methods to assist humans in three

different areas.

In the field of finance it is important to assess companies and especially to analyze their future

performance at the stock market. Many factors can be considered to make a prediction, such as the

company’s profit for the next quarter. Financial institutions employ well-paid analysts to make good

predictions. Since publicly listed companies are required by law to publish financial information on a

regular basis (quarterly in the U.S.), a great collection of historical data is already publicly available.

This raises the question whether an CI method can be trained to produce similar or even better forecasts

than analysts. As a result, such a model could either support a human analyst or even compete with

them in some fields.

Another area in which modern CI methods can support humans is the development of drugs in

medicine. In this thesis, the development of drugs against viruses is considered using severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2) as an example. There exist several approaches to

inhibit the spread of a virus in a human body. One of these approaches comprises to stop the virus from

replicating inside a cell by preventing the process of replication. Specifically, the protease enzyme

responsible for cleaving viral proteins can be blocked by a protease inhibitor. Therefore, the search for

a molecule that can act as a protease inhibitor is crucial. Such a molecule must fulfill certain properties.

First, it must be able to permanently bind to the protease in order to block it. In addition, the protease

inhibitor must be non-toxic to the human body. Before a molecule can be used as a drug, it must be

possible to synthesize it. Traditionally, the development of candidate molecules has been done by

trial and error and with assistance of experts. Testing single molecules, especially in vitro but also in

precise physical simulations, is very time-consuming. Therefore, compared to the space of over 1060

possible molecules with masses below 500 g/mol [Rey+10], only very few can be considered in this

way. The use of CI methods can drastically reduce the computational time for individual molecules.

4 1 Introduction

As a result, many more molecules can be considered to find a suitable one. This raises the question of

which CI methods can be used for this application, and whether they yield good candidate molecules

that can be used to pre-select for further steps.

The third area we look at is the visualisation of data. Deep learning typically uses very large data

sets. The data is often highly dimensional and not directly interpretable by humans. To get an overview

of the data, there are several dimensionality reduction methods that provide a visual representation

that can be interpreted by humans. One such method is the self-organizing map (SOM). It represents

the given data on a two-dimensional map. Ideally, the relationships between paired data points are

preserved, i.e., data points that are far apart in high-dimensional space should also be far apart on

the two-dimensional map, and vice versa. For certain data, it may be of interest to not only visualize

the original data, but also to consider higher-level features. In this thesis, this will be investigated

using images as an example. Lines and contours of objects are examples of higher-level features

within images. Such information can be found in the hidden layers of a convolutional neural network

(CNN) trained for object recognition. This combination results in the newly developed convolutional

self-organizing map (ConvSOM). We want to investigate whether the consideration of higher order

features leads to better results.

1.1 Thesis Structure

This document is divided into five parts. After the general introduction in Part I, the following three

parts cover the three major topics of this thesis: Prediction in a financial context in Part II, molecule

design for drug development in Part III and visualization of data using a newly developed method in

Part IV. At the end, Part V concludes this thesis.

The following is a more detailed overview of the individual chapters. After this first introductory

chapter, Chapter 2 gives a general introduction to machine learning (ML) and artificial neural networks

(ANNs). More specific algorithms will be presented later in the respective parts where they are used.

In Chapter 3, we look at earnings prediction for US equity companies using time series data and

various types of ANNs. Then, in Chapter 4, we motivate and introduce the basics for the molecule

design part. This begins with a small introduction to organic chemistry and evolutionary algorithms

(EAs). Chapter 5 describes an evolutionary approach to molecule generation using multi-objective

optimization (MOO). In addition, the metrics used for molecule evaluation are presented. These are

likewise used for the language model based procedure in the following Chapter 6. In this second

approach to molecule generation, essential components of EA are handled by a language model. Next,

a molecular dynamics analysis is performed on the most promising molecules. Chapter 7 introduces

the newly developed ConvSOM, which is a combination of a CNN and a SOM. Dedicated quality

metrics are introduced to evaluate this new approach. Finally, Chapter 8 summarizes this work and

also provides an outlook on potential enhancements and future work.

1.2 Contributions 5

1.2 Contributions

There are four main contributions to this thesis. These have been published as peer-reviewed articles.

A brief overview of these publications:

• The results presented in Chapter 3 are based on a collaboration with the economist Sebastian

Tideman, who was interested in the predictive power of modern deep learning methods for

finance. He provided two large data sets, which are well-known in his field. With his expertise

he helped in selecting the relevant parameters of the data sets I ended up using and advised me

regarding the financial application domain. All the implementation and methodology of the

realization was done by me: The data pre-processing, the implementation of the deep learning

techniques, the quality measures and the experimental analysis.

Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, and Oliver Kramer. “Earnings Predic-

tion with Deep Learning”. In: KI 2020: Advances in Artificial Intelligence - 43rd German

Conference on AI, Bamberg, Germany, September 21-25, 2020, Proceedings. Ed. by Ute

Schmid, Franziska Klügl, and Diedrich Wolter. Vol. 12325. Lecture Notes in Computer

Science. Springer, 2020, pp. 267–274. DOI: 10.1007/978-3-030-58285-2_22

• As of March 2020, my research group was working on the topic of molecule design for drug

discovery. This was motivated by coronavirus disease 2019 (COVID-19), which was beginning

to spread at the time, but our methods are not limited to this and could be used against any virus.

Chapter 5 is based on the results of this first collaboration. The implementation, the behavior of

the specific EA and the execution of the experiments were essentially shared equally between

Tim Cofala and me. However, I would like to highlight the chemist Thomas Teusch, whose

expertise we particularly sought for the chemical evaluation of the resulting molecules.

Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas Teusch, and Oliver

Kramer. “Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Can-

didates”. In: Parallel Problem Solving from Nature – PPSN XVI. ed. by Thomas Bäck,

Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Traut-

mann. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020,

pp. 357–371. ISBN: 978-3-030-58115-2. DOI: 10.1007/978-3-030-58115-2_25

• Building on the previous work, another approach to molecule design is presented in Chapter 6.

It is based on the collaboration with several physicists and was subsequently published in a

journal article. I carried out the realization, implementation and experimental investigation of

the evolutionary molecule generation algorithm (EMGA) together with Tim Cofala, and we

built on preliminary work by Jonas Prellberg to implement the neural language model. The

manual selection of the most promising candidates was again done by Thomas Teusch. The

molecular dynamics analysis of the selected molecules – a more precise physical simulation and

calculation – was essentially carried out by Luise Jacobsen.

Lars Elend, Luise Jacobsen, Tim Cofala, Jonas Prellberg, Thomas Teusch, Oliver Kramer,

and Ilia A. Solov’yov. “Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial

https://doi.org/10.1007/978-3-030-58285-2_22
https://doi.org/10.1007/978-3-030-58115-2_25

6 1 Introduction

Intelligence and Molecular Dynamic Simulations”. In: Molecules 27.13 (13 Jan. 2022),

p. 4020. ISSN: 1420-3049. DOI: 10.3390/molecules27134020

• Chapter 7 introduces the ConvSOM architecture I invented. The implementation and further

development was conducted by me, and published as a conference paper. The chapter introduces

this new architecture as well as the specially developed quality metrics for experimental analysis.

In addition, another metric is presented, which was developed in the course of supervising a

Master’s thesis.

Lars Elend and Oliver Kramer. “Self-Organizing Maps with Convolutional Layers”. In:

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data

Visualization - Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona,

Spain, June 26-28, 2019. Ed. by Alfredo Vellido, Karina Gibert, Cecilio Angulo, and

José David Martín-Guerrero. Vol. 976. Advances in Intelligent Systems and Computing.

Springer, 2019, pp. 23–32. DOI: 10.1007/978-3-030-19642-4_3

The remainder of this thesis will be written in a scientific style with the use of we rather than I. At

this point, we would like to mention the indexes in the appendix, which provide an overview of the

parameters and acronyms used and are also accessible via hyperlinks in the digital version.

https://doi.org/10.3390/molecules27134020
https://doi.org/10.1007/978-3-030-19642-4_3

2 Computational Intelligence

Computational intelligence (CI) is a field of computer science, but it is also applied in many other

areas. It is seen as a central part of artificial intelligence (AI) [And90]. One important subset of CI is

machine learning (ML). The idea of ML is to solve specific problems with algorithms that improve

automatically through experience [Mit97], usually gained from data. In this chapter, we will look

at the different types of learning used to describe and group ML algorithms. Furthermore, we will

introduce ANNs. The specific CI algorithms used in this thesis are presented directly in the respective

parts. Figure 2.1 shows an overview of these algorithms and how they are grouped.

computational intelligence (CI)

evolutionary algorithm (EA) (Section 4.3)

non-dominated sorting genetic algorithm II (NSGA-II) (Section 5.3.5)

machine learning (ML)

artificial neural networks (ANNs)

self-organizing map (SOM) (Section 7.2)

deep neural networks (DNNs)

long short-term memory (LSTM) (Section 3.3)

temporal convolutional network (TCN) (Section 3.4)

language model (LM) (Section 6.1.2)

convolutional neural network (CNN) (Section 7.3)

Figure 2.1: Overview of the CI algorithms that are used in this thesis and explained in the later
parts.

2.1 Machine Learning

There are different types of learning that are used depending on the type of problem and the given

information. Algorithms can be grouped by three main types of learning: supervised, unsupervised,

and reinforcement learning.

8 2 Computational Intelligence

2.1.1 Supervised Learning

Supervised learning uses a number N of samples x (e.g., images) and their corresponding labels y
(e.g., objects on the image). These samples and labels can be defined by tensors1 X = (x1, . . . ,xN) and

Y = (y1, . . . ,yN), where ∀i,1≤ i≤ N : yi ∈ Ȳ is the label of the sample xi ∈ X̄ . A relation2 φ between

the sample space X̄ and the label space Ȳ can be defined as:

(x,y) ∈ φ = {(xi,y) | ∀i ∈ N,1≤ i≤ N} ⊆ X̄ ×Ȳ. (2.1)

The ordered pair (x,y) will be used as representative for an arbitrary pair (xi,yi). The goal of supervised

learning is to find a function f : X̄ → Ȳ , that approximates the relation φ .

Depending on the type of the value y, problems are separated into classification and regression.

With classification problems y is a discrete value. A common problem is classification of images, i.e.,

the prediction of the main visible object on the image, which is than the class of the image. Therefore

we need a function:

f : Rh̄×w̄×c̄→{1, . . . ,C}, (2.2)

with image height h̄, image width w̄, color channels c̄, and number of classes C. For standard color

images with channels red (R), green (G), and blue (B) c̄ = 3, while for gray-scale images c̄ = 1.

Figure 2.2 shows an example of a simple image classification problem with images from the CIFAR-10

data set.

samples labels

airplane
automobile

bird
...

f ?

Figure 2.2: An example of an image classification problem, where the goal is to find a function
f : X̄ → Ȳ (see Eq. (2.2)) that gives the object that is visible on a given image.

In regression problems y is a not discrete value or vector, but a continuous one, often y ∈ Rn.

Examples of regression problems are weather prediction (wind, temperature, barometric pressure etc.)

or the prediction of financial properties like earnings per share of companies, as presented in Chapter 3.

1While a vector is 1-dimensional (e.g., Rn) and a matrix is 2-dimensional (e.g., Rn×m), a tensor is used as a generic term
and can have any dimension. A tensor is especially used for dimensions ≥ 3 (e.g., Rn×m×k). Since we also want to cover
the case where the samples consist of 2-dimensional data structures, such as images, we use a tensor.

2φ is not a function, since it is usually not left total, as not all elements of the sample space are given as samples. Besides,
it is possible that it is not functional (right-unique), e.g., if some real-world measurements are used to form the data set
and two samples with the same measurements have different labels.

2.1 Machine Learning 9

To train a ML model, the data set, containing X and Y, is first split into training and test data. The

training data set is used during the learning of the model, while the test data set is used afterwards as

an independent evaluation of the model, i.e., testing the quality of the model with before unseen data.

It is common to use also a validation data set. This is similar to the test data set also independent of

the training data and can be used for tuning hyperparameters of the model (e.g., number of neurons

or layers) or for early stopping. This subdivision of the data is useful to detect and avoid overfitting.

What is meant by this is overfitting the model to the specific training data and results in the model not

generalizing and performing poorly for unknown data. Sometimes data sets are already published with

a specific division into training and test data (see Table A.1). In this case, the validation set is taken

from the original training set. Figure 2.3 shows an overview of the data sets and the training steps. At

first (Xtrain, Ytrain) is used for training of the model. Then the hyperparameters of the model can be

tuned using (Xval, Yval). Finally, the model is tested using (Xtest, Ytest).

Xtrain

Xtest

Ytrain

Ytest

samples labels

1. train

3. test

(Xval) (Yval)(2. validate)

Figure 2.3: Overview of training, validation, and test sets. The samples X and labels Y are at
first both partitioned into subsets: train and test. The train set can be partitioned
again, to create a validation set.

If the data sets are not dependent on each other, the partial data sets are usually initially selected

once at random. However, it is also possible not to use a fixed allocation by using cross-validation.

In this case, the data set is divided into a certain number of parts, one of which is always used for

validation, while the rest can be used for training (see Fig. 2.4). With cross-validation, a more accurate

assessment of the model quality is possible with respect to the training data compared to the validation

data due to the different iterations.

In case of dependent data, e.g., time series data as it is used in Chapter 3, the dependencies must be

taken into account, when selecting validation and test sets. That means, if the goal is to predict some

future values or trends, these future data points should not be used within the training set. In that case,

the model would have information about the future that it cannot have in reality.

2.1.2 Unsupervised Learning

In unsupervised learning the given samples x are without labels. The goal is to find hidden structures

or patterns. This can be used for example for clustering, i.e., building groups of similar samples,

with respect to some automatically identified pattern. Some well-known algorithms for clustering

are: k-means, mixture model, density-based spatial clustering of applications with noise (DBSCAN)

10 2 Computational Intelligence

iteration 1: (X,Y)1 (X,Y)2 (X,Y)3 (X,Y)4 (X,Y)5

iteration 2: (X,Y)1 (X,Y)2 (X,Y)3 (X,Y)4 (X,Y)5

iteration 3: (X,Y)1 (X,Y)2 (X,Y)3 (X,Y)4 (X,Y)5

iteration 4: (X,Y)1 (X,Y)2 (X,Y)3 (X,Y)4 (X,Y)5

iteration 5: (X,Y)1 (X,Y)2 (X,Y)3 (X,Y)4 (X,Y)5

Figure 2.4: Example partition of a data set using cross-validation. In this example the data set
(X,Y) is split into 5 segments, of which one is used for validation (orange), while
the remaining are used for training (green). Thus, there are different constellations
for 5 iterations.

and hierarchical clustering. In the field of neural networks exist algorithms like: self-organizing map

(SOM) (see Section 7.2), neural gas (NG), deep belief network (DBN), autoencoders (AE), generative

adversarial network (GAN). If only a few samples are labeled but most are unlabeled we speak of

semi-supervised learning.

2.1.3 Reinforcement Learning

In reinforcement learning, a so-called agent is supposed to learn a meaningful behavior or strategy in

a given world or environment. The agent takes actions based on its observation of the world and its

current strategy, which in turn can change the state of the environment. Then the strategy is iteratively

adjusted to maximize the reward. The general structure is shown in Fig. 2.5.

world agentobservation

action

reward

Figure 2.5: General setup of reinforcement learning. An agent observes the world and takes
actions. In addition, the agent receives a reward on the basis of which it can adapt –
i.e., learn – its behavior.

In reinforcement learning, there is no controller to monitor the training process, but only the reward

signal. Thus, the reward function significantly influences the learned behavior. It can be positive or

negative. The presented scheme takes place iteratively within a period of time. It is important to

note that delayed feedback (reward) can complicate the learning process. For example, a move at the

beginning of a game could be decisive for victory or defeat. If a simple reward function is used, the

reward would not be received until the end of the game. In addition, the time course is important, since

we are dealing with sequential and not independent and identically distributed (i.i.d.) data. That means

a certain observation can have a different meaning at different times, depending on what happened

before. This is due to the fact that the agent’s actions affect the world and thus future observations.

2.2 Artificial Neural Networks 11

Because of the good environment description, board or computer games of different complexity

are often used for reinforcement learning, like Chess [Sil+17a] and Go [Sil+16; Sil+17b] or Atari

[CEK20] and Star Craft 2 [Vin+17; Vin+19]. In many games it is now possible to reach a superhuman

playing strength. In fact, RL agents often find entirely new strategies in the process.

2.2 Artificial Neural Networks

An artificial neural network (ANN) is an algorithm inspired by certain aspects of the natural behaviour

of a mammalian brain. The individual neuron forms its basic building block. The neurons can be

linked depending on the topology chosen, and are usually arranged in several successive layers. ANNs

with many layers are called deep neural networks (DNNs). Although there is no general definition for

this classification based on the number of layers, a minimum of 3 layers can be assumed as a guide. A

DNN comes closer to the brain, which can have many layers, especially in the visual system [Ben09].

Due to the greatly increased computing power of GPUs and its good parallelization, the intensive use

of DNNs has been enabled over the last 15 years. In this chapter, however, we first focus on the basic

structure and functioning of ANNs, using a simple feed forward network. The specific ANNs used for

individual applications within this thesis are presented directly in the respective parts, as mentioned at

the beginning of Chapter 2.

2.2.1 Artificial Neuron

An artificial neuron ni produces an output yi which is calculated on the basis of its inputs x1, . . . ,xn.

The sum of the inputs weighted by wi, j is first calculated. The bias bi is added. Then the result is put

into an activation function ϕ . An overview of some commonly used activation functions is given in the

following section. Figure 2.6 visualises the structure of an artificial neuron. The generated output of

the neuron can be described as:

yi = ϕ

(
n

∑
j=1

wi, j · x j +bi

)
. (2.3)

Instead of the bias, a threshold value is sometimes used which is equal to the negative bias.

x1

x2

x3

xn

inputs

...

weights

Σ

wi1

wi2

wi3

win

ϕ

activation
function

bi

bias

y j

output

Figure 2.6: Structure of an artificial neuron ni. The sum of the weighted inputs and the bias is
given to an activation function that calculates the output.

12 2 Computational Intelligence

2.2.2 Activation Functions

A suitable function can be selected for activation depending on the desired behaviour. Some typical

activation functions are shown in Fig. 2.7. With the step or threshold function (s. Fig. 2.7a), a binary

−2 −1 1 2

1

0

x

ϕ(x)

(a) step function

−2 −1 1 2

1

0

x

ϕ(x)

(b) linear saturation

−6 −4 −2 2 4 6

1

0

x

ϕ(x)

(c) logistic function

−6 −4 −2 2 4 6
−1

1
x

ϕ(x)

(d) hyperbolic tangent (tanh)

−6 −4 −2 2 4 6

1
σ = 0,5

σ = 1

0

x

ϕ(x)

(e) Gauss function

−2 −1 1 2

1

0

x

ϕ(x)

(f) ReLU

Figure 2.7: Activation functions

output is generated, which means there is a jump discontinuity at the threshold. This leads to a

behaviour that is the closest to the natural neuron, in which according to the so-called all-or-nothing

law a reaction is triggered if the threshold potential is exceeded [STL00, p. 24]. Continuous output can

be achieved using different functions, one can choose from among a linear (s. Fig. 2.7b), a sigmoid

transition, as in the logistic function (s. Fig. 2.7c) or the hyperbolic tangent (tanh) (s. Fig. 2.7d), a

Gaussian function (s. Fig. 2.7e), and a rectified linear unit (ReLU) (s. Fig. 2.7f). ReLU is particularly

suitable as an activation function for DNNs [GBB11]. The functions shown in Fig. 2.7 are defined in

Eqs. (2.4) to (2.9):

step(x) =

0 if x < 0

1 else
(2.4)

linear_saturation(x) =

0 if x <−0.5

1 if x > 0.5

x+0.5 else

(2.5)

logistic(x) =
1

1+ e−x (2.6)

tanh(x) = tanh(x) (2.7)

gauss(x,σG) =
1

σG
√

2π
e−

1
2

(
x

σG

)2

(2.8)

ReLU(x) = max{0,x} (2.9)

When evaluating the Gaussian function, the standard deviation σG can also be set. The mean value µG

is not needed here, as this can already be expressed via the bias. By composing non-linear functions,

functions of greater complexity can be created [McC00].

2.2 Artificial Neural Networks 13

2.2.3 Feed Forward Network

While individual neurons can only describe very simple functions, their interconnection within an

ANN also enables much more complex functions, depending on its size. This is illustrated by an

example of a two-dimensional classification problem in Fig. 2.8. The individual neurons can initially

only make a linear subdivision. By combining them, a more complex 2-dimensional area can also be

described. Multilayer feedforward networks can be considered universal approximators, provided they

have a sufficient number of hidden neurons [HSW89].

Hidden Layer:

h1

x1

x2

h2

x1

x2

h3

x1

x2

Output Layer: h1

h2 h3

⇐=

0
1 0

1
0

1
o1

x1

x2

Figure 2.8: Combination of several neurons to solve a classification problem with two dimen-
sions. Each individual neuron can describe a hyperplane (red) in the space spanned
by its inputs on the basis of its weights and its bias. In this case, a step function is
considered and therefore this hyperplane forms the boundary between the output
values 0 (white) and 1 (blue). By connecting several neurons in series, it is also
possible to classify more complex problems. The result in relation to the inputs x1
and x2 is shown in the top left for the output neuron.

The structure of a neural network can be represented as a directed graph. Neurons are represented

as nodes and the connections between neurons are represented as directed edges. The nodes can be

divided into three types or layers: input, hidden and output layer. The input layer only consists of the

input data of the ANN. The output layer consists of neurons whose output is the result of the ANN.

The other layers in between are called hidden layers. Typically, such a representation is built so the

input and output layers are opposite each other and the general flow of information is in one direction.

Figure 2.9 shows an example of the structure of two ANNs. Since the edges here all run from left

to right and there are no cycles in the graph, it is also called a feed forward network. Similarly, the

previous Fig. 2.8 is a feed forward network with 2 input neurons, 3 hidden neurons, and one output

neuron. There are also networks that contain feedbacks (i.e., cycles in the graph). These are called

recurrent neural networks (RNNs).

2.2.4 Backpropagation

To get ANNs to behave in a certain way, the internal weights and bias values can be adjusted. This

weight adjustment is done automatically via Backpropagation (of error). The use of backpropagation

14 2 Computational Intelligence

i1

i2

i3

o1

o2

(a) ANN with one layer

i1

i2

i3

h1,1

h1,2

h1,3

h1,4

h2,1

h2,2

h2,3

h2,4

o1

o2

(b) ANN with three layers

Figure 2.9: Feed forwards networks consists of one or multiple layers of neurons, that are only
connected in the direction from input to output. The input layer (green) just contains
the actual input values and is therefore not counted as real layer. After that, any
number of hidden layers (blue) can follow. The last layer is the output layer (red)
and returns the result of the ANN.

for ANNs was first mentioned by Werbos in 1974 [Wer74]. In 1985 it was used to train ANNs with

hidden neurons and different connectivity [RHW85].

In backpropagation, the deviation of the computed result ŷ from the expected result y is calculated

using the loss function or error function for each output neuron j. The squared error can be used for

this:

ê = (y j− ŷ j)
2. (2.10)

Subsequently, the gradient is calculated. The gradient is a vector pointing in the direction of the largest

slope of the function value. The result ŷ j is calculated using the prior neurons and their weights, and

the error is regressed based on these weights in the network. For the regression, it is necessary that the

activation function ϕ is derivable, since for each weight wi, j a partial derivative is calculated using

the chain rule. The weights are adjusted for the next step to the extent that they contributed to the

erroneous result and depending on the learning rate α [Hag+14; Wer90]:

∆wi j =−α
∂ ê

∂wi j
. (2.11)

2.3 Conclusion

This chapter gave an introduction to ML and the different learning categories supervised, unsupervised

and reinforcement learning. Furthermore, the basics of ANNs were discussed, on which some of

the algorithms presented later are based. For example, in the following chapter, the networks long

short-term memory (LSTM) and temporal convolutional network (TCN), which are specialized for

time series data, are presented and used for supervised learning in the context of financial data.

Part II

Prediction

3 Earnings Prediction

Investors rely primarily on earnings predictions when making investment decisions, such as whether to

buy, hold or sell shares of a company. In addition to their own projections, they base their forecasts

to a large extent on the earnings forecasts of financial analysts. As a result, forecasting earnings is

one of the main tasks of financial analysts working at large financial institutions, such as brokerage

firms, and they spend significant time and resources to make accurate forecasts. However, prediction is

a difficult endeavor because numerous factors affect the prediction performance. In this chapter, we

predict the quarterly earnings per share (EPS) of publicly listed U.S. firms using state-of-the-art deep

neural network techniques based on time series data of the companies.

This chapter is structured as follows. In Section 3.1, the related work on prediction of financial data

is presented. The base time series model is introduced in Section 3.2. Two types of ANNs suitable

for handling time series were used: LSTMs (Section 3.3) and TCNs (Section 3.4). We describe the

data preprocessing process in Section 3.5. After that the quality measures are defined in Section 3.6.

Section 3.7 presents the experimental analysis, and Section 3.8 draws a conclusion.

Parts of this chapter are based on the following published paper:

Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, and Oliver Kramer. “Earnings Prediction

with Deep Learning”. In: KI 2020: Advances in Artificial Intelligence - 43rd German Conference

on AI, Bamberg, Germany, September 21-25, 2020, Proceedings. Ed. by Ute Schmid, Franziska

Klügl, and Diedrich Wolter. Vol. 12325. Lecture Notes in Computer Science. Springer, 2020,

pp. 267–274. DOI: 10.1007/978-3-030-58285-2_22

3.1 Related Work

Analyst forecasts are frequently utilized as a benchmark to assess the accuracy of earnings predictions

derived from models. However, the implementation of recent regulations governing the working

conditions of financial analysts, such as restricted private access to management, has resulted in

a decline in analyst coverage [AZ11]. This reduction in coverage can potentially be addressed by

employing automated earnings prediction models supported by artificial intelligence. Although there

has been considerable research on predicting stock market prices and returns using neural networks,

which encompass various factors at the company, industry, and country levels [dSD17], it remains

unclear whether artificial intelligence can effectively generate meaningful earnings forecasts as a direct

measure of business success.

Some studies indicate that machine learning techniques can predict instances of fraud, such as

illegal earnings manipulation [Bao+20]. Bao et al. discovered that ensemble learning, utilizing raw

accounting numbers, possesses predictive power for identifying future cases of fraud. Their approach

https://doi.org/10.1007/978-3-030-58285-2_22

18 3 Earnings Prediction

outperformed logistic regression models based on commonly used financial ratios in previous research

[Dec+11], as well as a support-vector-machine model [Cec+10], in which a financial kernel maps raw

accounting numbers into a set of financial ratios. However, predicting restatements is comparatively

less challenging as it involves a binary decision tree (future restatement vs. no future restatement).

Forecasting future earnings is more complex due to the possibility of various values and the need to

consider information from multiple sources, such as financial statements and stock market data.

To the best of our knowledge, as of early 2020, no study has yet utilized artificial intelligence

to predict future earnings. The study by Ball and Ghysels [BG17] comes closest to this research.

They employed a mixed data sampling regression method (without neural networks) to predict future

earnings and found that their predictions outperformed analysts’ forecasts in specific cases, particularly

when the company size was smaller and there was high forecast dispersion among analysts.

3.2 Time Series Prediction

In real world problems time has often a direct or indirect meaning. This can be a state depending on

the history of events that happened before or on its own historic states. Time series data is gathered by

observing some property over time, e.g., by using any sensor. Some examples are: weather forecast,

physical movement prediction and game move prediction. If we consider a jumping ball and measure

its spacial location over time, we can calculate its speed, acceleration and if we have some basic

knowledge about its environment, we could also calculate some of its properties like weight, density

and air resistance. By calculating this information we can even predict its future behavior and thus its

location. Therefore, the historical positions of the ball are only indirectly relevant to the prediction, as

they can be used to calculate other information that is not directly measured, and perhaps not even

easily measured.

The more complex a system is, the more parameters are important for making a prediction. If we

can not measure all necessary parameters and also can’t calculate them, the historical data can also

be used to learn some behavior in a function approximator, such as a neural network. For example,

the movement of clouds could be analyzed as part of a weather forecast. Relevant geographical

information such as mountains or bodies of water would automatically be taken into account indirectly,

provided that enough training data is available.

Now we define the data series prediction more formally as a foundation for the later application.

Its goal is, to find a function φ that yields a future value y based on the data of the past β time steps

x = (ut−β+1, . . . ,ut). In the simple case the time steps have a fixed size, e.g., 15 minutes, 1 hour or 1

day. In this case, β is also called window size, as it moves a window of fixed size over the time series.

If a large time span and also a near past is relevant, it would be also possible to use time dependent time

resolution, i.e., use a high resolution for the near past and a low one for the distant past, e.g., by using

some exponential function. This was done, for example, with the exponential piecewise approximate

aggregation (exPAA) introduced in [Oeh18]. The time series prediction is illustrated in Fig. 3.1.

An overview on this topic is given by Montgomery, Jennings, and Kulahci [MJK15] and Yaffee

and McGee [YM00]. In the following we will introduce two widely used kinds of artificial neural

networks, which are successfully used for time series prediction [WOK17].

3.3 Long Short-Term Memory 19

. . . ut−3 ut−2 ut−1 ut ut+1 ut+2 ut+3 . . .

t

τ = 1
β = 3

x y
φ

Figure 3.1: Illustration of time series model for prediction of the data of the next time step
ut+1. We seek a mapping φ from sample x of the past to label y for the future
t = t + τ . The window size β describes the time span of considered steps and τ is
the prediction horizon.

3.3 Long Short-Term Memory

The long short-term memory (LSTM) [HS97] is a special kind of recurrent neural network (RNN),

i.e., a network with backward edges that allow a kind of memory. An LSTM cell internally contains

three gates: forget, input and output gate. It has an internal state that is adapted by these three gates.

Some of the old knowledge may be forgotten, some new inputs should be taken into account and be

memorized, and some information should be extracted from the internal state as an output. Figure 3.2

shows the exact internal structure of a LSTM cell.

LSTM

xt

ht−1 ht

forget gate input gate output gate

[·, ·]

σ

×

ct

ft

σ tanh

×

+

it

s̃t

σ

×

tanh

ot

st−1 st

Figure 3.2: The LSTM cell has two internal states h and s, which are saved for the next time
step. At first the input xt is concatenated with ht−1. The result goes into the three
gates: forget, input and output. The orange boxes represent ANN layers with the
given activation function. The red circles represent element wise operations. After
an arbitrary number of time steps ht will be used as output.

The same cell is used iteratively at each time step with the current input xt . Thus, the internal

weights of the ANN layers are the same for all time steps. Therefore, the LSTM needs fewer weights

compared to feedforward networks. Due to the internal memory it is well suited for temporal data,

e.g., time series prediction. Therefore, a LSTM can for example be used for Wind Power Prediction

[WOK17], but also for other tasks, where knowledge about the past is important, like text generation

[Gra13], speech recognition [GJ14], or video to text [Ven+15].

20 3 Earnings Prediction

3.4 Temporal Convolutional Network

The temporal convolutional network (TCN) [BKK18] is a special kind of CNN [LeC+89]. While

CNNs are mainly used for classification tasks in images, text or language, TCNs can be used for time

series data. The architecture of the standard CNNs has been adapted for this purpose by using two

concepts: causal convolutions, dilated convolutions. Casual convolutions means that for any output at

time step t only input elements from a time up to that point (≤ t) are used. With dilated convolutions it

is possible to exponentially increase the receptive field, i.e., the range of data considered. The dilation

d is the distance between two input data elements which are used for a convolution. Both of these

concepts are visualized in Fig. 3.3. The dilated causal convolution is the main element of the TCN, but

it contains also of some other layers (WeightNorm, ReLU, Dropout) and concepts, which can be read

in the original paper [BKK18].

d1 = 1

d2 = 2

d3 = 4

Input

Output

x7x6x5x4x3x2x1x0

y7y6y5y4y3y2y1y0

t

Figure 3.3: A dilated causal convolutional network with v = 3 layers. The kernel size k = 2
indicates how many inputs each neuron has (see blue lines leading into a neuron).
The dilation d gives the (temporal) distance between each 2 inputs a neuron has.
In this example, in the second layer d2 = 2, i.e., the inputs have a distance of 2.
Highlighted in blue here are all neurons and connections that affect the output y7
(purple).

The length L of data considered by the TCN can be calculated by

L = 1+ s · (k−1) ·2 ·
v

∑
i=1

di, (3.1)

with stack size s, kernel size k, number of layers v and dilation factor di in layer i. The stack size

indicates how often the block consisting of dilated causal convolutional layer and the other layers is

repeated. As in the paper by Bai, Kolter, and Koltun [BKK18] we increase d exponentially with depth

of the network, i.e., di = 2i−1. Therefore, we select v in a way that the given data length L′ is covered:

v =
⌈

log2

(
L′−1

s · (k−1) ·2 +1
)⌉

. (3.2)

TCNs can be used in various applications with a time context, e.g., for weather forecasting [Hew+20],

for classification of satellite image time series [PWP19] or for lip-reading [KTF20].

3.5 Data Preprocessing 21

3.5 Data Preprocessing

As input data, we use accounting data from quarterly data (COMPUTSTAT QUARTERLY) as well as

daily stock market returns (DAILY SHARES). Both data sets come from Center for Research in Security

Prices (CRSP) [CRS], whose primary mission is to maintain and expand a database that includes all

securities listed on the U.S. exchanges: New York Stock Exchange (NYSE), American Stock Exchange

(AMEX), and National Association of Securities Dealers Automated Quotation (NASDAQ) [Eis18].

COMPUTSTAT QUARTERLY contains a lot of data based on the quarterly reports of the companies.

DAILY SHARES contains entries with daily information (for stock exchange days).

At first both data sets COMPUTSTAT QUARTERLY and DAILY SHARES are reduced to the most

important parameters per time step and firm. A description of the used parameters can be found in

Tables B.1 and B.2 in Appendix B.1. The outliers and gaps in the data are then handled. Since there are

some very low forecast values from analysts, these are ignored if they are smaller than the minimum

EPS value (−24.57). The data is “normalized”, as it consists of very different number ranges, which

would be difficult as ANN input. All features ẑi that are listed after total assets atq in Table B.1 are

divided by the atq to allow a relative comparison between companies of different sizes:

zi =
ẑi

max{1,atq} . (3.3)

Afterwards atq is scaled logarithmically. Values lower than 1 are ignored again:

atq′ = log(max{1,atq}). (3.4)

Finally, all values zi (including atq) are studentized:

z′i, j =
zi, j− z̄i√

1
n ∑k(zi,k− z̄i)2

,where z̄i =
1
n ∑

k
zi,k. (3.5)

Outliers of the EPS values are removed by using the 1 % percentile as minimum and the 99 % percentile

as maximum, as some of them can be considered false data. Afterwards the company samples for a

given window size, i.e., a number of quarters, are build. Linear interpolation is used as imputation

method to fill in missing values in the sample data. However, the label value EPS must exist for the

prediction time and the time step before it (for the persistent model). It is also checked if whole time

steps (quarter) are missing in between. Typically, two quarterly reports should be approximately 90

days apart. Therefore, the sample is discarded, if there is a gap of more than 100 days between two

time steps. The corresponding daily stock data DAILY SHARES are stored for the selected samples.

The data is also studentized. Missing values are filled with zeros. In addition to the parameters already

specified, the day of the week is one-hot encoded. The samples thus created are used by the ANN

predictor, whose settings will be described later under Section 3.7. An overview of the used workflow

is given in Fig. B.1 in Appendix B.2.

22 3 Earnings Prediction

3.6 Quality Measures

To evaluate the experimental results we use different forecast models. As a simple baseline we use the

persistent model, which assumes that the future value will be the same as the last known value. As

time series tend to strongly correlate between successive data points, this is a good starting point. In

addition, we make a comparison with the analysts’ forecasts.

We use different metrics to make the comparison. At first we calculate the mean squared error

(MSE) by comparing the predicted with the actual values:

MSE =
1
N

N

∑
i=1

(ytrue− ypred)
2. (3.6)

This is done for all forecast models. The MSE punishes larger deviations more than smaller ones.

Errors like mean absolute percentage error (MAPE) can’t be used because they don’t work when the

true values are zero or close to zero, since they will divide by the true value.

The error value alone is not very meaningful, since it always depends on the difficulty of the given

data, which can vary greatly over time and between different companies. Therefore, we use quality

measures which evaluate the results relative to the other prediction methods, persistent model and

analyst forecast.

Therefore, we use the skill score (SS), which is able to compare metrics of two different models

[Roe98]. It is defined as:

SS =
metricx−metricbase

metricopt−metricbase
, (3.7)

where metricx is the metric under consideration, metricbase is the comparison metric (here: persistent

model or analyst forecast), and metricopt would be the optimal metric. Since the optimum of the error

metric MSE is zero, this can be simplified to:

SS = 1− metricx

metricbase
. (3.8)

SS is in the range (−∞,1], where values less than 0 mean that the model under consideration is worse

than the reference model, while values greater than 0 mean that it is better [Roe98]. SS is used to

compare our models m (ANN, LSTM, or TCN) with the persistent model1 pa and the analyst prediction

a.

3.7 Experimental Analysis

During training, the last 10 % of the training set is used for validation only. The test set is in the

time period after the training, so it is independent and has no unfair knowledge (Fig. 3.4). Otherwise

overfitting could occur, i.e., the model performs well for given data, but generally not for new, unknown

data. Similarly, we use two different data sets A and B, where test set of B is in the future of A. While

A is used to find a good neural network architecture, B is used to evaluate the selected best architecture.

1For the comparison with the persistent model only those data points are used for which analyst forecasts exist.

3.7 Experimental Analysis 23

2011 2012 2013 2014 2015 2016 2017

A: training val test

B: training val test
trainstart trainend testend

sample: y (label)

β = 10

Figure 3.4: Data set horizons of training, validation, and test set. The given sample falls into
both training sets as its value to be predicted y lies in their periods. Therefore, the
period of used data starts β quarters before trainstart. A displays the time horizons
that were used for the following experiments to find a good architecture (training
from 2012 to 2016 with last 10 % validation, half a year of test data). B shows the
time horizons for the final experiment with the selected best architecture.

Unless otherwise specified, each model is trained with a batch size of 1024 for 1000 epochs. A

dropout of 0.3 is applied after each intermediate layer and also for the recurrent edges of an LSTM

layer, to prevent overfitting. For dense layers tanh is used as activation function, except for the last

layer, where a linear activation function is used. The window size of COMPUTSTAT QUARTERLY

and DAILY SHARES is set to 20 each, i.e., the last 20 quarters and the last 20 trading days. These

parameters were selected in the context of general recommendations from the literature and own

preliminary experiments. The model is optimized with Adam [KB17] using MSE as loss. After

training, the model of the epoch with the best validation error is selected and used for testing.

The experiments were each carried out 5 times. The metrics are therefore given with mean and

standard deviation. In the following tables, the results of our model are shown in green if they are

clearly better than those of the comparison model, i.e., lower limit of standard deviation is greater

than zero, red if they are clearly worse, and black if they are very similar. For each column and group

separated by lines, the best result is printed in bold whereas the worst is underlined.

For the following experiments different types (feed forward / dense, LSTM and TCN) and architec-

tures of ANNs are used. For the description of the used architecture we introduce a short notation. In a

comma separated list each layer is represented by an optional char and a number. The character gives

the type of the layer: L=LSTM, T=TCN, M=merge, else dense. The merge layer is used to merge the

branch of the shares-layers into the net. The number indicates the number of neurons in relation to the

size of the input dimension, i.e., the number of features. For example, let us consider the meaning of

the short notation L2, M, 1 for the input dimension 20. The input is first given in an LSTM layer with

2 ·20 = 40 neurons. Then there is a merge layer that combines the output of the previous layer with

the output of the shares layers, followed by a dense layer of size 1 ·20 = 20. Finally, there is implicitly

a dense output layer of size 1 with linear activation function, to get a single value as result. For TCNs

the short notation is T<# filters>@<kernel size>.

24 3 Earnings Prediction

3.7.1 Architecture and Meta Parameters

In Table 3.1 different network architectures are compared. Therefore some representative layer

structures were selected for feed forward nets, LSTMs and TCNs. In this experiment we are also

testing if the usage of DAILY SHARES improves the result. If the daily shares values are not taken into

account there is a dash in column sh_lay. In Table 3.1 it can be seen that there is always a shared layer

architecture, which is better than ignoring DAILY SHARES. It can be seen that feed forward nets are

clearly outperformed by LSTMs and TCNs. The LSTM achieves the best result here, but the TCNs are

not far from this. Therefore, the best representatives (marked in bold) of these two network types will

be used in the following. For simplicity, these selected architectures are referred to only as LSTM and

TCN in the following tables.

Table 3.1: Overview of different network architectures with and without daily shares layers
(sh_lay).

SSMSE

type layers sh_lay (m, pa) (m,a)

Dense 3,2,1,M,.5,.2 - 0.132±0.052 -0.433±0.086
3,2,1 0.240±0.040 -0.255±0.066
L2,L1,1 0.220±0.054 -0.288±0.088
L4,L2,1 0.179±0.091 -0.356±0.150
T32@2,2,1 0.213±0.075 -0.300±0.124

4,3,2,1,M,.5,.2 - 0.260±0.083 -0.221±0.138
3,2,1 0.322±0.050 -0.120±0.082
L2,L1,1 0.233±0.044 -0.266±0.072
L4,L2,1 0.245±0.069 -0.247±0.115
T32@2,2,1 0.211±0.067 -0.303±0.110

LSTM L2,L1,M,0.5 - 0.399±0.036 0.007±0.060
3,2,1 0.438±0.066 0.073±0.109
L2,L1,1 0.450±0.015 0.091±0.025
L4,L2,1 0.445±0.023 0.084±0.039
T32@2,2,1 0.431±0.037 0.060±0.062

L4,L2,M,2,1 - 0.401±0.081 0.011±0.134
3,2,1 0.473±0.048 0.130±0.079
L2,L1,1 0.461±0.019 0.111±0.032
L4,L2,1 0.393±0.043 -0.003±0.071
T32@2,2,1 0.374±0.063 -0.033±0.104

TCN T32@2,2,M,1,.4 - 0.414±0.045 0.033±0.075
3,2,1 0.429±0.027 0.056±0.044
L2,L1,1 0.405±0.053 0.017±0.087
L4,L2,1 0.343±0.125 -0.085±0.207
T32@2,2,1 0.348±0.093 -0.076±0.154

T32@3,2,M,1,.4 - 0.390±0.042 -0.007±0.070
3,2,1 0.436±0.021 0.069±0.035
L2,L1,1 0.324±0.135 -0.116±0.223
L4,L2,1 0.368±0.042 -0.043±0.069
T32@2,2,1 0.391±0.054 -0.006±0.089

The two selected architectures are vizualized in Fig. 3.5. The prepared information from COMPUT-

STAT QUARTERLY and DAILY SHARES (see Section 3.5) are used as input (green). The dimensions

3.7 Experimental Analysis 25

are indicated in parentheses. As the shares data are given into a dense layer (D), the temporal data with

dimension 20×11 are flattened to 220. After some layers, the two inputs are joined by a merge layer.

For the TCN, 32 filters and a kernel size of 3 were used. The last dense layer, consisting of a single

neuron, outputs the predicted EPS value.

quarters (20,19) LSTM (20,76) LSTM (38)

D (220)D (440)D (660)shares (220)
merge D (19) D (8) D (1)

(a) LSTM architecture

quarters (20,19) TCN (f=32, k=3) D (38)

D (220)D (440)D (660)shares (220)
merge D (19) D (8) D (1)

(b) TCN architecture

Figure 3.5: Visualization of selected LSTM and TCN architectures.

3.7.2 Financial Firms

Financial companies, such as banks and insurance companies, behave differently in many ways than

companies in other industries. Therefore, we make an experiment with 3 different sets of companies:

all companies (all), no financial companies (nofin), only financial companies (onlyfin), which are given

in the column comp of the following tables.

Table 3.2 compares the data used depending on whether they belong to the financial sector. There

the selected network architectures are used. The data sets without financial firms usually give the best

results. Using only financial companies gives normally the worst result.

Table 3.2: Selected architectures (s. Fig. 3.5) and parameters for the three groups of companies:
financial (onlyfin), non-financial (nofin) and all.

SSMSE

type comp (m, pa) (m,a)

LSTM all 0.466±0.030 0.119±0.050
nofin 0.543±0.013 0.146±0.024
onlyfin 0.378±0.025 0.100±0.036

TCN all 0.355±0.058 -0.065±0.096
nofin 0.547±0.015 0.154±0.028
onlyfin -0.001±0.155 -0.450±0.225

3.7.3 Fama French Industries

The Fama-French industries (FFI) [FF93] uses the standard industrial classification (SIC) to define

larger groups of companies. In the following we use the Fama-French industries with 5 groups (FFI5).

Table 3.3 gives an overview of the FFI5 classes.

26 3 Earnings Prediction

Table 3.3: Overview of the FFI5 classes [Fre22].

FFI5 Name Description

1 Cnsmr Consumer Durables, NonDurables, Wholesale, Retail, and Some
Services (Laundries, Repair Shops)

2 Manuf Manufacturing, Energy, and Utilities
3 HiTec Business Equipment, Telephone and Television Transmission
4 Hlth Healthcare, Medical Equipment, and Drugs
5 Other Other – Mines, Constr, BldMt, Trans, Hotels, Bus Serv,

Entertainment, Finance

Table 3.4 compares the results for the 5 different industry groups. Both architectures have the best

result on FFI5 group 3 (HiTec) compared to the analysts, with skill scores of 0.64 and 0.56, i.e., over

50 % better. The results on group 4 (Hlth) are also quite good, with skill scores around 0.3.

Table 3.4: Results of the selected architectures and parameters for the FFI5 groups.

SSMSE

type ffi5 (m, pa) (m,a)

LSTM 1 0.340±0.049 -0.338±0.100
2 0.628±0.014 -0.282±0.048
3 0.452±0.032 0.603±0.023
4 -0.027±0.021 0.320±0.014
5 0.381±0.030 0.044±0.047
all 0.460±0.051 0.108±0.084

TCN 1 0.235±0.256 -0.550±0.519
2 0.613±0.069 -0.333±0.237
3 0.436±0.018 0.591±0.013
4 0.039±0.022 0.364±0.015
5 0.264±0.086 -0.136±0.133
all 0.384±0.057 -0.018±0.094

3.7.4 Test of Best Model

For the final test the best model is selected and used for data set B, i.e., data with an independent test

set (cf. Fig. 3.4). Table 3.5 shows the results of the bests configurations of Section 3.7.2. The results

for the non-financial companies are similarly to before: We get a MSE that is 12 % to 13 % better than

the analysts. The predictions for all companies are now only slightly better, but worse than on data set

A. In Table 3.6 the same is done for the best configurations of Section 3.7.3. The results are similarly

to before. For FFI5 group 3 we get MSE above 58 % of the analysts.

3.8 Conclusion

The results of our experimental analysis indicate that LSTM networks and TCNs are robust models for

predicting earnings. Our prediction models rely on quarterly accounting data, encompassing variables

3.8 Conclusion 27

Table 3.5: Results on the data set B of selected architectures and parameters for the previous
best settings of non-financial companies.

SSMSE

type comp (m, pa) (m,a)

LSTM nofin 0.300±0.012 0.122±0.015

TCN nofin 0.308±0.014 0.132±0.018

Table 3.6: Results on the data set B of selected architectures and parameters for the previous
best settings of companies of FFI5 group 3 (HiTec).

SSMSE

type ffi5 (m, pa) (m,a)

LSTM 3 0.387±0.014 0.632±0.009

TCN 3 0.426±0.020 0.655±0.012

such as cost of goods sold, total assets, as well as stock market price and return data. Notably, these

widely accessible time series data outperform the persistent model by a significant margin. Among

the evaluated models using the same set of variables, the LSTM networks display slightly superior

performance.

To enhance our financial predictions, we plan to extend our experimental analysis to encompass

additional data sets and incorporate further domain knowledge. These findings hold importance for

both broker firms and investors. Broker firms may consider developing LSTM networks and TCNs to

complement their analysts’ forecasts. Meanwhile, investors can leverage artificial intelligence to build

their own forecast models, particularly when financial analysts’ forecasts are unavailable. This has

become an increasingly urgent concern due to the regulatory-induced drop in analyst coverage.

Part III

Molecule Design

4 Foundations of Molecule Design

This first chapter of the molecule design part starts with the motivation for this topic in Section 4.1.

Then, a general introduction to the relevant parts of organic chemistry, with special emphasis on

different representations of molecules, is given in Section 4.2. Section 4.3 introduces genetic algorithms

in general, which serve as an important component in the following approaches. In the two subsequent

Chapters 5 and 6, specific procedures for molecule generation are presented.

4.1 Motivation

The development of drugs that help the human body defend itself against viral diseases is of great

interest in the medical and pharmaceutical fields. To prevent the spread of the virus in the body, it

is crucial to interrupt the replication of the virus. The normal procedure of a virus is to enter a cell

and reproduce until the cell bursts, and then continue to spread. One approach to prevent the virus

replication is to disrupt the reproductive process within the cell. An important step of this process is

protein cleavage, which is performed by the virus protease enzyme (see Figs. 4.1a and 4.1b). This

protein cleavage can be prevented with a suitable protease inhibitor. The protease inhibitor works by

docking to a specific site on the protease enzyme, preventing it from functioning (see Fig. 4.1c).

virus
protease
enzyme

precursor
polyproteins

(a) Virus protease enzyme and precursor
polyproteins.

virus
protease
enzyme

cut proteins

(b) Virus protease enzyme cuts precur-
sor polyproteins.

virus
protease
enzyme

precursor
polyproteins

protease
inhibitor

(c) Protease inhibitor docks to protease
and prevents protease process.

Figure 4.1: Protease Process and Protease Inhibition. The initial situation is shown in (a): The
viral protease enzyme is in the vicinity of a precursor polyprotein that it intends to
cleave. (b) depicts the result of the protease process: The polyproteins are cut in
certain places. In (c) a protease inhibitor has docked to the protease enzyme and
prevents it from cleaving.

Finding and evaluating molecules that could be suitable protease inhibitors falls into the areas

of organic chemistry and physics. In addition to the binding affinity between the inhibitor and the

protease, other properties are also important (e.g., Can the molecule be synthesized? or Is the molecule

non-toxic?). These and other properties are considered in the form of metrics, which are introduced in

more detail in Section 5.2.

32 4 Foundations of Molecule Design

One challenge in finding suitable molecules is, that the search space for potential drug molecules

is vast: There are at least 1060 molecules with masses below 500 g/mol in the universe [Rey+10].

Consequently, an exhaustive search of the entire space encompassing all potentially potent drug

molecules is simply not feasible. AI methods enable targeted navigation through the vast search space.

For example, EAs presented in Section 4.3 can be used to select molecules based on certain evaluation

criteria. Such criteria can be calculated precisely with physically exact simulations or even in vitro

experiments. However, those approaches take days and weeks for a single molecule. Therefore, we

use functions or simulations, that estimate the considered metrics several orders of magnitude faster,

i.e., in few minutes per molecule.

Although the methods presented in the Chapters 5 and 6 could be applied generally to any arbitrary

ligand-receptor complex, as an example, due to its actuality, we will deal specifically with the

ribonucleic acid (RNA) based severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which

causes the coronavirus disease 2019 (COVID-19). Here, we are trying to find a suitable inhibitor

for the main protease (Mpro), also known as 3C-like protease (3CLpro), of SARS-CoV-2. Mpro is

responsible for cleaving the viral polyprotein and is thus vital for the SARS-CoV-2 life cycle [Pil+16].

At the same time, because Mpro has little similarity to related human homologies, it is a potential

drug target for the treatment of coronaviruses [Jin+20; Pil+16; Pan+20]. Otherwise, a ligand could

bind to a molecule that belongs to the body instead of the viral protease, which could cause problems.

Futhermore, Mpro is particularly promising because it is conserved across different variants within the

Coronaviridae [Ana+03]. This property also makes Mpro an interesting drug target for mutations of the

virus, since any alteration in the function of this protein could be lethal to the virus [Str+20].

4.2 Organic Chemistry

The classification into organic and inorganic compounds was proposed by Jöns Jakob Berzelius in

1807. Historically, the organic chemistry included all compounds that came from living organisms,

with the assumption that these contain an unmeasurable living force vis vitalis. But 1828 Friedrich

Wöhler succeeded to produce urea (a substance in the urine of mammals) in the laboratory. After

this discovery the definition of organic compounds had to be changed, and today they are defined as

compounds that contain carbon. Organic chemistry deals with the properties, structure, reactivity and

synthesis of these organic compounds. [Bru11, p. 4; 15]

4.2.1 Atoms and Elements

In chemistry atoms can be considered as basic building blocks. They consist of positive charged

protons, negative charged electrons and neutrally charged neutrons1. While the protons and neutrons

build the atomic nucleus, the electrons orbit that nucleus. The number of protons in the nucleus of

an atom defines its atomic number. This number is used to classify atoms into different elements and

to arrange them in the periodic table [OR14a, p. 1]. If the atom is not charged, also the number of

electrons are equal to the atomic number. In organic chemistry, only a small subset of elements is of

1Further subdivisions of these particles would be part of particle physics and will not be considered in this thesis.

4.2 Organic Chemistry 33

interest. The most common are hydrogen (H) and carbon (C), less common are nitrogen (N), oxygen

(O), and fluorine (F), and very rare are phosphorus (P) and sulfur (S). Figure 4.3 shows the periodic

table and highlights these organic elements.

To represent a single atom, there are different simplifying models focusing on various aspects. One

part of that simplification is often the representation in 2D instead of 3D. The Bohr model, for example,

shows the distribution of electrons on different shells around the atomic nucleus (see Fig. 4.2). For the

bonding of atoms especially the number of electrons in the outer shells are of interest, as we will see in

Section 4.2.2.

H C N O F

Figure 4.2: Bohr models of elements H, C, N, O, and F. The Bohr model is a simplified atom
model that focuses on the distribution of the electrons on different shells around the
atomic nucleus.

34
4

Fo
un

da
tio

ns
of

M
ol

ec
ul

e
D

es
ig

n

1 1.007

H
Hydrogen

2.2 0.09

2 4.002

He
Helium

– 0.179

3 6.941

Li
Lithium

0.98 0.534

4 9.012

Be
Beryllium

1.57 1.85

5 10.811

B
Boron

2.04 2.34

6 12.011

C
Carbon

2.55 2.27

7 14.007

N
Nitrogen

3.04 1.25

8 15.999

O
Oxygen

3.44 1.43

9 18.998

F
Fluorine

3.98 1.7

10 20.18

Ne
Neon

– 0.9

11 22.99

Na
Sodium

0.93 0.971

12 24.305

Mg
Magnesium

1.31 1.74

13 26.982

Al
Aluminum

1.61 2.7

14 28.086

Si
Silicon

1.9 2.33

15 30.974

P
Phosphorus

2.19 1.82

16 32.065

S
Sulfur

2.58 2.07

17 35.453

Cl
Chlorine

3.16 3.21

18 39.948

Ar
Argon

– 1.78

19 39.098

K
Potassium

0.82 0.862

20 40.078

Ca
Calcium

1.0 1.54

21 44.956

Sc
Scandium

1.36 2.99

22 47.867

Ti
Titanium

1.54 4.54

23 50.942

V
Vanadium

1.63 6.11

24 51.996

Cr
Chromium

1.66 7.15

25 54.938

Mn
Manganese

1.55 7.44

26 55.845

Fe
Iron

1.83 7.87

27 58.933

Co
Cobalt

1.88 8.86

28 58.693

Ni
Nickel

1.91 8.91

29 63.546

Cu
Copper

1.9 8.96

30 65.38

Zn
Zinc

1.65 7.13

31 69.723

Ga
Gallium

1.81 5.91

32 72.64

Ge
Germanium

2.01 5.32

33 74.922

As
Arsenic

2.18 5.78

34 78.96

Se
Selenium

2.55 4.81

35 79.904

Br
Bromine

2.96 3.12

36 83.798

Kr
Krypton

– 3.73

37 85.468

Rb
Rubidium

0.82 1.53

38 87.62

Sr
Strontium

0.95 2.64

39 88.906

Y
Yttrium

1.22 4.47

40 91.224

Zr
Zirconium

1.33 6.51

41 92.906

Nb
Niobium

1.6 8.57

42 95.96

Mo
Molybdenum

2.16 10.2

43 98.0

Tc
Technetium

1.9 11.5

44 101.07

Ru
Ruthenium

2.2 12.4

45 102.906

Rh
Rhodium

2.28 12.4

46 106.42

Pd
Palladium

2.2 12

47 107.868

Ag
Silver

1.93 10.5

48 112.411

Cd
Cadmium

1.69 8.69

49 114.818

In
Indium

1.78 7.31

50 118.71

Sn
Tin

1.96 7.29

51 121.76

Sb
Antimony

2.05 6.69

52 127.6

Te
Tellurium

2.1 6.23

53 126.904

I
Iodine

2.66 4.93

54 131.293

Xe
Xenon

– 5.89

55 132.905

Cs
Cesium

0.79 1.87

56 137.327

Ba
Barium

0.89 3.59

57 138.905

La
Lanthanum

1.1 6.15

58 140.116

Ce
Cerium

1.12 6.77

59 140.908

Pr
Praseodymium

1.13 6.77

60 144.242

Nd
Neodymium

1.14 7.01

61 145.0

Pm
Promethium

1.13 7.26

62 150.36

Sm
Samarium

1.17 7.52

63 151.964

Eu
Europium

1.2 5.24

64 157.25

Gd
Gadolinium

1.2 7.9

65 158.925

Tb
Terbium

1.2 8.23

66 162.5

Dy
Dysprosium

1.22 8.55

67 164.93

Ho
Holmium

1.23 8.8

68 167.259

Er
Erbium

1.24 9.07

69 168.934

Tm
Thulium

1.25 9.32

70 173.054

Yb
Ytterbium

1.1 6.97

71 174.967

Lu
Lutetium

1.27 9.84

72 178.49

Hf
Hafnium

1.3 13.3

73 180.948

Ta
Tantalum

1.5 16.7

74 183.84

W
Wolfram

2.36 19.3

75 186.207

Re
Rhenium

1.9 21

76 190.23

Os
Osmium

2.2 22.6

77 192.217

Ir
Iridium

2.2 22.6

78 195.084

Pt
Platinum

2.28 21.5

79 196.967

Au
Gold

2.54 19.3

80 200.59

Hg
Mercury

2.0 13.5

81 204.383

Tl
Thallium

2.04 11.9

82 207.2

Pb
Lead

2.33 11.3

83 208.98

Bi
Bismuth

2.02 9.81

84 210.0

Po
Polonium

2.0 9.32

85 210.0

At
Astatine

2.2 7

86 222.0

Rn
Radon

– 9.73

87 223.0

Fr
Francium

0.7 1.87

88 226.0

Ra
Radium

0.9 5.5

89 227.0

Ac
Actinium

1.1 10.1

90 232.038

Th
Thorium

1.3 11.7

91 231.036

Pa
Protactinium

1.5 15.4

92 238.029

U
Uranium

1.38 19

93 237.0

Np
Neptunium

1.36 20.5

94 244.0

Pu
Plutonium

1.28 19.8

95 243.0

Am
Americium

1.3 13.7

96 247.0

Cm
Curium

1.3 13.5

97 247.0

Bk
Berkelium

1.3 14.8

98 251.0

Cf
Californium

1.3 15.1

99 252.0

Es
Einsteinium

1.3 13.5

100 257.0

Fm
Fermium

1.3 –

101 258.0

Md
Mendelevium

1.3 –

102 259.0

No
Nobelium

1.3 –

103 262.0

Lr
Lawrencium

– –

104 261.0

Rf
Rutherfordium

– 18.1

105 262.0

Db
Dubnium

– 39

106 266.0

Sg
Seaborgium

– 35

107 264.0

Bh
Bohrium

– 37

108 267.0

Hs
Hassium

– 41

109 268.0

Mt
Meitnerium

– 35

110 271.0

Ds
Darmstadtium

– –

111 272.0

Rg
Roentgenium

– –

112 285.0

Cn
Copernicium

– –

113 284.0

Nh
Nihonium

– –

114 289.0

Fl
Flerovium

– –

115 288.0

Mc
Moscovium

– –

116 292.0

Lv
Livermorium

– –

117 295.0

Ts
Tennessine

– –

118 294.0

Og
Oganesson

– –

Periodic Table
1

2

3

4

5

6

7

P
e
ri
o
d

1

2

3 4 5 6 7 8 9 10 11 12

13 14 15 16 17

18

Group
Legend

46 106.42

Pd
Palladium

2.2 12

atomic number atomic mass

symbol

name

electronegativity density

Symbol:

black= solid
blue= liquid
red= gas
gray= unknown

underlined= radioactive

Density:

red= kg/m3

black= kg/dm3

Series (fill color):

Alkali Metal

Alkaline Earth Metal

Transition Metal

Lanthanid

Actinide

Transactinide

Metal

Metalloid

Nonmetal
Halogen

Noble Gas

Figure 4.3: In this periodic table the important organic elements are highlighted: hydrogen (H),
carbon (C), oxygen (O), fluorine (F), phosphorus (P), and sulfur (S).

4.2 Organic Chemistry 35

4.2.2 Bonds

Atoms are held together by chemical bonds and can form larger complexes – molecules. First, a

distinction must be made between strong or intramolecular bonds and weak or intermolecular bonds.

While the former are important for the cohesion of atoms within a single molecule, the latter are

relevant for the attraction between different molecules.

4.2.2.1 Intramolecular Bonds

The strong bond is based on the electrostatic attraction between protons and electrons. In order to form

a bond, the electrons are shared (covalent bond), moved (ionic bond), or delocalized (metallic bond)

between the atoms.

Covalent bonds are the most common type of bond found in organic chemistry [OR14a, p. 5]. An

example for a molecule that is based on covalent bonds is methane (CH4). It consists of one carbon

and four hydrogen atoms. As mentioned before, the electrons in the outer shell – the valence electrons

– of these atoms are of importance for covalent bonds. While hydrogen has one electron in its outer

shell, carbon has four (see Fig. 4.2). Figure 4.4 shows how these atoms are arranged to get full valence

shells.

C + 4 H → C H

H

H

H

Figure 4.4: Visualization of C and H atoms using the valence shell electron pair repulsion
(VSEPR) model. Only the orbitals of the outer shells are shown. Inside the orbitals
you can see the number electrons. On the right side is the bonding of carbon with 4
hydrogen, i.e., the molecule methane.

In an ionic bond, the electrons are not shared as before, but are transferred from one atom to another,

so that the (new) outer shells are subsequently filled [OR14a, p. 4]. An example of this is the molecule

NaCl. Here, the single electron of the outermost shell of Na is transferred to Cl: Na + Cl

Na+ + Cl– NaCl (Fig. 4.5).

In a metallic bond, the valence electrons are delocalized and are free to move between the positively

charged metal ions (see Fig. 4.6). They are therefore also referred to as an electron cloud. This results

in various properties of metals, such as electrical and thermal conductivity.

4.2.2.2 Intermolecular Bonds

Two or more molecules can be held together by intermolecular bonds. Because the intermolecular

forces (IMFs) are weak relative to the intramolecular forces, they are also called weak bonds.

36 4 Foundations of Molecule Design

Na + Cl → Na+ + Cl−

Figure 4.5: The ionic bond of NaCl represented by Bohr models. The valence electron of Na is
transferred to Cl (as marked by the red arrow). This results in the charged elements
Na+ and Cl–.

+ + + +

+ + + +

+ + + +

Figure 4.6: Schematic of a positively charged metal ion grid (red) with freely movable electrons
(blue).

The electrons in nonpolar molecules are distributed more or less uniformly throughout the molecule.

When several such molecules come close to each other, as happens in a liquid, they can interact with

each other. The electrons of one molecule can temporarily polarize those of an adjacent one, resulting

in an uneven electron distribution. This leads to the temporary formation of dipoles in the molecules.

These dipoles then interact through the van der Waals forces. [OR14c, p. 142]

Another weak bond that has a major influence on the properties of naturally occurring macro-

molecules, such as proteins, is the hydrogen bond [OR14b, p. 995]. It is an attractive interaction

between a hydrogen atom and an electronegative atom Y . The other atom may belong to a different

molecule or to the same molecule (in which case it would be an intramolecular force). The hydrogen

itself is attached to a second, relatively electronegative atom X. This written as X H · · · Y , where the

dots represent the hydrogen bond (see Fig. 4.7a). Typical electronegative atoms for X and Y are N, O,

and F. A simple natural example of such a bond is water (see Fig. 4.7b). [Aru+11; IUP]

X
δ−

H
δ+

Y
δ−

(a) This is a general schematic description of a hydrogen
bond with the local charges (δ+ and δ−). X H repre-
sents the hydrogen donor, while Y is the acceptor.

O
δ−

Hδ+

H
δ+

O
δ−

Hδ+

H
δ+

(b) A hydrogen bond that is formed between two H2O
molecules within water. The locally positively charged
H and the locally negatively charged O attract each other.

Figure 4.7: Hydrogen bonds in general (a) and in water (b).

4.2 Organic Chemistry 37

4.2.3 Molecules

Molecules consist of multiple atoms (see Section 4.2.1) connected by intramolecular bonds (see

Section 4.2.2.1). Standard descriptions of molecules are the chemical formula and the structural

formula. We will look at these and other representations below. Here we start with one-dimensional

representations with few details and end with detailed 3D ones (Sections 4.2.3.1 to 4.2.3.3). For

comparison, we use the molecules propane and α-D-glucopyranose. Then, some properties of

molecules (Section 4.2.3.4) and their representations (Section 4.2.3.5) are presented.

4.2.3.1 1D / String Representations

Propane is a molecule consisting of 3 carbon (C) atoms and 8 hydrogen (H) atoms and therefore has

the chemical formula C3H8. This could be seen as a first simple 1D representation. However, since

only the number of different atoms is given here, but not how they are connected, this representation is

mostly ambiguous.

A more specific textual description is the IUPAC nomenclature of organic chemistry, developed by

the International Union of Pure and Applied Chemistry (IUPAC) [FPoP14]. Here, the parent hydride

in particular is identified. This is usually the longest molecular chain of hydrocarbons. In this way, the

atoms are placed in an unambiguous order. In relation to the parent hydride, branches, bonds, etc. can

then be specified. For example, the IUPAC nomenclature for α-D-glucopyranose is: (3R,4S,5S,6R)-6-

(Hydroxymethyl)oxan-2,3,4,5-tetrol. For a more detailed derivation of this nomenclature, please refer

to the literature [FPoP14].

A description that is also more specific, but shorter and easier to interpret compared to the IUPAC

nomenclature, is the simplified molecular-input line-entry system (SMILES) [Wei88]. Due to its

simplicity and already long use, the SMILES format is also often supported by molecular editors.

However, it must be noted that it is still a simplified and ambiguous representation for a 3D molecule.

In SMILES, the atoms are given in the order in which they are connected. Bonds between two atoms

can be specified with: - for single (optional), = for double, and # for triple. Branches are indicated

by parentheses (); they can also be nested. To close a ring, two identical numbers (e.g., 1) are

written behind each of the atoms to be connected. The specification of hydrogen atoms is optional and

usually omitted, so they are automatically added based on the free valences. The previously mentioned

molecule propane could be described in detail as [CH3]-[CH2]-[CH3], but also briefly as CCC. Since

this is very short and simple, we look at the slightly larger molecule α-D-glucopyranose (C6H12O6) in

Fig. 4.8.

A common structure in organic compounds is aromatic rings. These are cyclic and usually planar

structures with delocalized electrons. This makes them stable compared to simple bonds. A simple

example of this is benzene (C6H6) (see Fig. 4.9). To describe this easily with SMILES, besides

C1=CC=CC=C1, there are other notations: C:1:C:C:C:C1, where : represents an aromatic bond, or

even shorter by using lowercase letters for the atoms: c1ccccc1.

Furthermore, it is possible to describe stereoisomers (using /, \, and @). These are molecules that

are structurally the same but twisted at certain bonds and therefore different (see Section 4.2.3.4).

Isotopes such as deuterium – hydrogen with 2 neutrons in the nucleus – can be described as [2H].

38 4 Foundations of Molecule Design

HO OH

OH

OHOH

O

HO OH

OH

OHOH

O

OCC1C(O)C(O)C(O)C(O)O1

[O][C][C][C][Branch1_3][ε]
[O][C][Branch1_3][ε][O][C]

[Branch1_3][ε][O][C][Branch1_3]
[ε][O][O][Ring1][Branch2_2]

SELFIES:

SMILES: OC1C(O)C(O)C(O)C(CO)O1

[O][C][C][Branch1_3][ε][O][C]
[Branch1_3][ε][O][C][Branch1_3]

[ε][O][C][Branch1_3][Ring1]
[C][O][O][Ring1][Branch2_3]

Figure 4.8: Molecular structure formula, SMILES, and self-referencing embedded strings
(SELFIES) representation of α-D-glucopyranose (C6H12O6). Note that there is
implicitly a C atom at the nodes without a letter. Since there are many ways to
describe the same molecule, two different ones are shown here as examples. The
starting atom is colored green in each case. On the left side, the description starts at
the top left and goes through the molecule in the clockwise direction. On the right
side, the description starts at the bottom left and then goes through the molecule
against the clockwise direction. The branches indicated by brackets are highlighted
blue. For closing a ring with SMILES two corresponding numbers are used, behind
the atoms that should be bonded (marked in red). Hydrogen is implicitly encoded.
In the SELFIES the token behind [Branch1_3] is interpreted as number, that gives
the size of the branch. In this case [ε] is size 1, so only the next token [O] belongs
to the branch. Likewise, the token after [Ring1] is interpreted as a number, but
here it indicates how far back the token to be connected is.

The same molecule can be described in many different ways with SMILES. It can be started with

any atom and also the order of the further atoms can be varied by the different use of branches. Thus,

for example OCC1C(O)C(O)C(O)C(O)O1 and OC1C(O)C(O)C(O)C(CO)O1 would describe the same

molecule as shown in Fig. 4.8. Here, instead of starting with the OH group from the top left, we start

with the one from the bottom left. In addition, the part at the top left is described here as a branch

instead of a main path. In order to resolve this ambiguity and thus make it possible to compare different

molecules with each other canonical SMILES exist. There are several algorithms that can calculate

canonical SMILES strings, e.g., the Python API of RDKit offers a possibility for this.

SMILES can be used to describe any molecules, even those that are impossible in reality, e.g., in

the case of C#C#C the middle C atom would contain 6 bonds when only 4 are possible. An extension

which allows only valid molecules with respect to the valences is described below.

A more recent string-based encoding of molecules is self-referencing embedded strings (SELFIES)

[Kre+20]. The particularity here is that with SELFIES only valid molecules can be described. This is

achieved by interpreting each token based on the tokens read previously. In particular, only valid bonds

are formed based on the valence electrons present. For example, the token [#C], which according to

the SMILES interpretation represents a triple bond to a carbon atom, is interpreted as a single bond

4.2 Organic Chemistry 39

(a) Two theoretical structures of benzene with single and
double bonds.

(b) Modern representation of the aro-
matic ring of benzene.

Figure 4.9: Different representations of an aromatic benzene molecule C6H6. It consists of a
ring of 6 carbon atoms, each of which is bonded to a hydrogen atom. Theoretically,
one could imagine two variants in which there are alternating single and double
bonds between the C atoms (a), but a mixture of the two, in which the electrons can
move freely in the ring, is more realistic (b).

if there is only one free valence electron, or as a double bond if there are two. Only when there are

at least three free valence electrons will it be interpreted as a triple bond. Hydrogen atoms cannot be

specified explicitly here, but they are automatically added at the free valences. To describe branches

and rings, the following token is interpreted as a number. This number indicates how long the branch

is or with which token how far back a ring should be closed. In Fig. 4.8, the SELFIES for the depicted

α-D-glucopyranose is also given. The substring for the branches of the OH groups (marked in blue) is:

[Branch1_3][ε][O]. The token [ε] is interpreted as 1, i.e., the branch has length 1 and thus only

the following token [O] is in the branch.

Another string-based encoding for molecules is International Chemical Identifier (InChI), developed

by the IUPAC. This format contains several layers for different levels of information and abstraction.

Unlike the previously described representations, this ensures that each structure can be assigned a

unique InChI string, which is important for use in databases. However, SMILES strings are often used

because of their simpler structure, which makes them easier for humans to read.

Fingerprints represent another special type of representation, encoding structural and possibly

other application-specific information within a bit vector. Although they usually do not allow a clear

assignment to a chemical formula, they do allow a direct comparison of the stored molecular properties.

Since fingerprints are not used in this thesis, we only mention them here for completeness and refer to

the literature presented by Riniker and Landrum [RL13] for an overview and benchmark comparison

of different fingerprints.

4.2.3.2 2D Representations

Figure 4.10 shows different 2D-representations of propane. In the Lewis structure (see Fig. 4.10a)

all atoms and their bonds are displayed. Shared pairs of electrons are represented by lines between

the atoms. The Lewis structure is planar and does not give any information about the real spatial

arrangement. The natta projection (see Fig. 4.10b) adds some spatial information by visualizing

connections that run forward or backward with filled or dashed triangular connections, respectively.

Different angles between the atoms are also considered. The semi-structual formula contains the same

information as the Lewis structure, but with simpler notation (see Fig. 4.10c). Here, atoms and atom

groups that are connected to carbon are written directly behind it. For example, the 3 hydrogen atoms

connected to one carbon atom on the edge of the molecule are written here as chemical formula CH3.

40 4 Foundations of Molecule Design

A further simplification of the notation is achieved by the skeletal formula (see Fig. 4.10d), in which

carbon atoms are implicitly placed at each vertex of a compound unless another atom is explicitly

specified. In addition, hydrogen atoms bonded to carbon are implied and omitted. Therefore, propane

can be simply visualized as two lines with an 120◦ angle between them.

C

H

H

H

C

H

H

C

H

H

H

(a) Lewis structure / structural formula

C

HH

H C

H H

C

H

H

H

(b) Natta projection

CH3 CH2 CH3

(c) Semi-structural formula (d) Skeletal formula

Figure 4.10: Different 2D-representations of the molecule propane.

For molecules containing a six-membered ring of carbon atoms with single bonds, there are special

visualizations that should show the spatial arrangement. In contrast to the aromatic rings mentioned

above (see Fig. 4.9), the rings with single bonds do not form a planar surface. The simplest molecule

of this type is cyclohexane (C6H12). In Fig. 4.11, the slightly larger molecule α-D-glucose (C6H12O6)

is illustrated. Figure 4.11a shows the chair representation, which is the most common conformation.

This illustrates in particular that it is not a planar hexagon, but that there can be different spatial

conformations (stereochemistry). The Haworth projection (see Fig. 4.11b) is also used for this purpose.

The Fischer projection (see Fig. 4.11c) maps a tetrahedral structure onto a planar surface. Here, the

carbon atoms are arranged vertically on top of each other in a line. To represent a ring, a rounded line

is inserted on the outside. The Fischer projection can differentiate between chiral molecules2.

A molecule can also be described simplified as graph G = (N,E), where N = {a0, . . . ,an−1} is the

set of atoms and E = {ei, j} is the set of bonds between atoms. In a single atom ai would then be

stored which element it is. It would also be conceivable to store further atomic properties. An edge ei, j

indicates how the atoms ai and a j are connected. So a 1 could indicate that it is a simple covalent bond.

For example, a water molecule H2O could be described as a graph as follows: a0 = O,a1 = H,a2 = H

and e0,1 = 1,e0,2 = 1. Graphs offer the advantage of being well established and well researched in

computer science. However, depending on the choice of information to be stored, difficulties may arise

when converting to a 3D model.

4.2.3.3 3D Representations

To create a 3D representation, the 3D coordinates of all the atoms must be given. A protein data bank

(PDB) file can be used for this purpose. Among other things, it contains a list of the exact positions of

each atom. This file format is used to store molecules in the database of the same name.

2Mirrored but different molecules are chiral. This will be explained in more detail in Section 4.2.3.4.

4.2 Organic Chemistry 41

HO
HO

OH
OH

O

OH

(a) Chair representation

HO

OH

OH
OH

O

HO

(b) Haworth projection

CH2OH

H O

H OH

HHO

H OH

H OH

(c) Fischer projection

Figure 4.11: Different representations of the α-D-glucopyranose molecule, which contains a
ring. Note that in (a) and (b), some hydrogen atoms are implicit around the carbon
atoms.

Figure 4.12 shows propane with three commonly used 3D models. In all models the atoms are

colored according to the CPK scheme (named after its inventors Corey, Pauling and Koltun) depending

on their type (see Table 4.1). The sticks model shows the structural composition and the connections

between the atoms, while the atoms themselves form the corners and can only be distinguished by the

coloring (see Fig. 4.12a). In the ball-and-stick model (see Fig. 4.12b), as the name indicates, the atoms

are represented as balls and the compounds as sticks. Here, the atoms are displayed in different sizes

based on the proportions of their actual size differences. Finally, Fig. 4.12c shows the space-filling

model, where the sphere containing the electrons is represented. The covalent bond between the C and

H atoms causes their electron spheres to overlap. This type of representation makes the shape more

clearly visible. Therefore, it is also used for very large molecules, such as proteins, when visualizing

how they interact with smaller molecules. We will see this in the following chapters.

(a) Sticks model (b) Ball-and-stick model (c) Space-filling model

Figure 4.12: 3D models of propane. The meaning of the atoms colors is defined in Table 4.1.
(image source: [Pub])

42 4 Foundations of Molecule Design

Table 4.1: CPK coloring scheme for atoms by Corey, Pauling and Koltun.

Symbol Name Color

H hydrogen white
C carbon black or gray
N nitrogen blue
O oxygen red
F fluorine green
P phosphorus purple
S sulfur yellow

4.2.3.4 Molecule characteristics

In this section, we will focus in particular on some structural properties of molecules that need to be

considered, both for their unique description and for the calculation of the 3D coordinates of atoms.

This is necessary, for example, when a 1D or 2D representation is to be transformed into a 3D model.

The angle between two atoms and also their distance can vary depending on the element and the

type of bond. Figure 4.13 compares the distance between the carbon atoms of ethane and ethene and

the angle between C C H for ethene and C C C for propene. [OR14d, pp. 164–165]

C

H

H

H

C

H

H

H

154pm

(a) ethane

C

H

H

C

H

H

133pm

121.7°

(b) ethene

C

H

H

C

H

CH3
124.8°

(c) propene

Figure 4.13: Here are some similar molecules, but they have different atomic distances and
angles. For example, the spacing of a single bond C C in ethane, 154 pm, is
larger than that of a double bond C C in ethene, 133 pm, cf. (a) and (b). Likewise,
the angle between the atoms varies depending on the structure, cf. (b) and (c).

Molecules with the same chemical formula contain exactly the same atoms, but are often not

unique. Molecules made up of the same parts (Greek: isos meros) that have different 3-dimensional

structures are called isomers. Isomers whose atoms are connected in different ways are called

constitutional or structural isomers. An example is butane C4H10, which exists both in a chain as

n-butane CH3 CH2 CH2 CH3 and with a central C atom as isobutane CH(CH3)3. When molecules

that represent the same structural isomer are different from each other, they are called stereoisomers.

They can be divided into conformers, enantiomers, and diastereomers.

Two atoms with a single bond between them can rotate axially around it. If these two atoms are

each bonded to other atoms within a molecule, the rotation can result in different conformations of this

molecule. Ethane has two special conformations: eclipsed, in which the hydrogen atoms are exactly

opposite each other on both sides (see Fig. 4.13a), and staggered, in which the hydrogen atoms are

rotated 60◦ around the C C axis and are thus maximally distant from each other. Since the energy

difference between these two conformations is relatively small, a rapid switch between these states

occurs at room temperature. [OR14c, pp. 119–121]

4.2 Organic Chemistry 43

Enantiomers are mirror images of each other, which are non-superposable, i.e., they cannot be

formed by a combination of rotations, translations and conformational changes. An analogous example

of such an object is a hand (Greek: chiron). The left and the right hand are mirror images of each other,

but not superposable. Such objects are therefore also called chiral. An example for a chiral molecule

is shown in Fig. 4.14. [OR14e, pp. 242–243]

C H

Br

Cl

F CH

Br

Cl

F

Figure 4.14: Bromochlorofluoromethane has no plane of symmetry and is therefore chiral. The
mirror image along the blue line creates two molecules that cannot be superim-
posed.

One type of diastereomers are cis-trans isomers. Such molecules usually contain double bonds and

are therefore, in contrast to conformational isomers, not arbitrarily rotatable. However, two different

variants of the structure can exist in principle, provided that the atoms on both sides of the double bond

are distinguishable. Figure 4.15 shows the general structure of these isomers. In the cis isomer, the

same groups are on the same side, while in the trans isomer they are on opposite sides. An example of

this is butene CH3 CH CH CH3. A counterexample is propene, where the atoms on one side are

identical (see left side of Fig. 4.13c). [OR14d, pp. 168–169]

C

X

Y

C

X

Y

(a) cis isomer

C

X

Y

C

Y

X

(b) trans isomer

Figure 4.15: This is an example of a molecule with one cis and one trans isomer. Because of
the double bond between the carbon atoms, they cannot rotate freely and all six
atoms are coplanar, meaning they are in the same plane. X and Y can represent
different single atoms or groups of atoms, e.g., for butene X = CH3 and Y = H.
For the cis isomer, the groups are on the same side (a) and for trans on opposite
sides (b).

4.2.3.5 Representation characteristics

As we have seen, there are different ways of representing molecules with varying degrees of detail

and emphasis, e.g., some attempt to show three-dimensionality while others show only a simplified

structure of interconnected atoms. On the one hand, it is possible to investigate which properties of the

molecules are uniquely described and, on the other hand, whether there is a canonical description for

each molecule. Therefore, we can describe different properties of the representations:

Unique Arrangement A molecule can be described simplified as graph G = (N,E), where N is the

set of atoms and E is the set of bonds between atoms. If such a graph can be generated from

44 4 Foundations of Molecule Design

a representation, it is considered to fulfill the unique arrangement property. That means it is

unambiguous which atoms are connected together.

Unique Diastereomers Indicates whether the representation can distinguish between different di-

astereomers (see Section 4.2.3.4).

Unique Enantiomers Indicates whether the representation can distinguish between different enan-

tiomers.

Unique Conformations Indicates whether the representation can distinguish between different

conformations.

Unique Position If a 3-dimensional structure is completely described or can be uniquely derived,

this property is given.

Canonical A representation is canonical, if there is no other representation of the same molecule, i.e.,

the mapping from representation to molecule is injective.

Which of these properties are fulfilled for all presented representations is specified in Table 4.2.

Table 4.2: Overview of molecule representations and their satisfied (✓) or unsatisfied (×)
properties. The o means, it is possible to satisfy the property but not required by the
representation. (Note: In the digital version, the representations and properties are
hyperlinked to the corresponding examples or text descriptions from earlier.)

Uniqueness

Representation Arrangement Diast. Enant. Conf. Position Canonical

chemical formula × × × × × ×
IUPAC nomenclature ✓ ✓ ✓ × × ✓

SMILES ✓ × × × × ×
canonical SMILES ✓ o × × × ✓

SELFIES ✓ o × × × ×
InChI ✓ ✓ ✓ × × ✓

Fingerprints × × × × × ✓

Lewis structure ✓ ✓ × × × ×
Natta projection ✓ ✓ ✓ × × ×

Semi-structural formula ✓ ✓ × × × ×
Skeletal formula ✓ ✓ × × × ×

Chair representation ✓ ✓ ✓ × × ×
Haworth projection ✓ ✓ ✓ × × ×

Fischer projection ✓ ✓ ✓ × × ✓
Graph ✓ × × × × ×

Sticks model ✓ ✓ ✓ ✓ ✓ ×
Ball-and-stick model ✓ ✓ ✓ ✓ ✓ ×

Space-filling model ✓ ✓ ✓ ✓ ✓ ×
PDB file ✓ ✓ ✓ ✓ ✓ ×

4.3 Evolutionary Algorithms 45

4.3 Evolutionary Algorithms

An evolutionary algorithm (EA) is a metaheuristic based on a biological model. It attempts to mimic

the natural evolution of a population, which produces increasingly well-adapted individuals over time

according to the Darwinian principle of survival of the fittest. In evolution, a new individual acquires

certain characteristics (genes) through inheritance and mutation. The better an individual is at certain

traits, which are measured as fitness, the greater the likelihood that it will survive or pass on its genes.

To formulate the natural evolution as an algorithm, it is necessary to encode the problem to be solved

in the form of an individual. For example, binary coding can be used as the encoding, i.e., each bit

represents a certain trait and the binary value indicates whether this trait is available for the specific

individual or not. In order to obtain better results, all the relevant properties can be identified and

stored in a meaningful format so that the operations described below can be carried out. It is also a

prerequisite that each individual can be assigned a fitness with a function that describes the goodness

of the solution found, the so-called fitness function. An EA contains operators with two different

functions: genetic variation operators, which are used to explore the solution space, and selection

operators, which make selections based on fitness and give direction to the optimization procedure.

In this section, we mainly focus on evolution strategies (ES). Other basic forms of EAs are the

genetic algorithm, evolutionary programming and genetic programming [Kra03]. They are briefly

explained below. Today, however, some of these terminologies are used similarly.

In the genetic algorithm (GA), the individuals are encoded as bit strings and varied using n-point

crossover and bit flip mutation. In most cases, genotype-phenotype mapping [Hol75] is used to

transform the binary coded individuals (genotypes) for evaluation. The phenotype describes the actual

appearance, analogous to nature, where there is the distinction between DNA and RNA.

Evolutionary programming (EP) was originally developed to find deterministic finite automata

(DFA) that give the correct outputs for certain input words [FAM66]. It is similar to the ES of

Schwefel and Rechenberg, but was designed for this more specific problem [Fog94]. In this method,

only mutation was used to vary and recombination was omitted. After each parent has produced an

offspring, the better half of the parents and the offspring is selected by competitive selection.

Genetic programming (GP) attempts to automatically generate computer programs that can solve

specific problems. The programs are represented by trees. Their leaves represent variables or constants

and the inner nodes represent functions. As programming language, e.g., Lisp can be used, since it

supports these tree structures. [Koz92]

We now consider all the required steps of the evolution strategies (ES) [BS02] in overview (see

Fig. 4.16) and define some variables. Later, some of the steps will be discussed in more detail.

First, a starting population P is needed, consisting of µ individuals. These individuals are usually

generated randomly. Their quality is calculated with the fitness function and stored. Next, λ children

are created, with the following procedure for each child. First, ρ parents are selected to serve as the

basis. The selection can be done randomly or depending on the fitness. In particular, ρ = 1 is also

possible, in which case the following step of recombination can be omitted. During the recombination

step, the genes of the parents are combined in a specific way to form a new individual. Then a mutation

of the individual takes place. This is usually a minor change that can be made to only a single parameter

46 4 Foundations of Molecule Design

initialize µ individuals
to form population P

evaluate individuals fitness metrics

select ρ parents

recombinate

mutate

calculate fitness

add the individual to the next generation

created λ children?no

select µ best individuals to
form the next generation.

yes

termination criterion met?no

yes

Figure 4.16: Activity diagram of an evolutionary algorithm

if necessary. Now the new individual is ready and is evaluated with a fitness function f . Finally,

it is added to the successor generation P ′. After all λ offspring have been created, µ parents must

be selected for the new generation based on fitness. This repetition takes place until a termination

criterion is met. This is often done by specifying a maximum number of generations or fitness function

calls, or a maximum runtime. It is also possible, depending on the extent of improvement over the last

generations, to terminate the algorithm. These termination criteria can of course also be combined.

4.3.1 Parameters

To specify the ES, exogenous and endogenous parameters are used. The exogenous parameters are

specified from outside the ES and remain unchanged during execution. These include the size of the

parent population µ , the size of the descendant population λ , and the number of parents per individual

ρ . To briefly notate an ES with certain exogenous parameters, the notation (µ/ρ +, λ)-ES is used. The

plus or comma here stands for the type of selection (see Section 4.3.4). The /ρ is often omitted.

Endogenous parameters can be adjusted at runtime based on the circumstances at hand. For example,

the mutation strength σ can be varied to become smaller over time, depending on the generation.

Alternatively, it can be increased or decreased depending on the success rate, which is determined

by counting how many offspring are better than the previous best individual. While an ES with a

larger population only considers the successor generation to calculate the success rate, the (1+1)-ES

considers the next n generations. This is especially used in Rechenberg’s 1/5 success rule [Rec73],

which states that a success rate of 1/5 should be aimed at. To do this, the mutation rate is increased, if

the success rate is greater than 1/5 and otherwise it is decreased.

4.3.2 Recombination

Recombination, along with mutation, is one of the variation operators used to create a new individual.

This is done based on ρ parents. A special case is ρ = 1, i.e., there is only one parent and accordingly

it is only cloned. If ρ = 2, it is called local recombination and if ρ > 2, it is called multirecombination.

Object variables and endogenous strategy parameters are recombined. In intermediate recombination,

4.3 Evolutionary Algorithms 47

the arithmetic mean is calculated for the individual parameters of the individuals, while in discrete

recombination, individual parameters are adopted exactly.

In the evolutionary procedures for molecule generation in the following chapters, recombination is

not used, because it would lead to very strong changes and often to defective molecules in the used 1D

molecule representations (SELFIES and SMILES). Therefore, the reader is referred to other literature

(e.g., [BS02]) for a more detailed description of this operator.

4.3.3 Mutation

The mutation operator has the greatest impact on genetic variation. For mutation there are three

desirable properties [BS02]:

1. Reachability: Each point in the solution space must be reachable within a finite number of

mutations from any starting point. This property is a necessary criterion for the reachability of a

global optimum.

2. Unbiasedness: Mutation is used to explore the search space and therefore should not specify a

particular direction (no bias). Only selection, with the help of fitness information, can guide

evolution in a particular direction. However, in the case of limited search spaces, a bias can be

beneficial [KS06].

3. Scalability: The mutation strength σ must be adaptable. In continuous search spaces, σ is also

called step size. Scalability is particularly necessary for parameter tuning.

For example, if a real number is to be mutated, Gaussian mutation can be applied, which corresponds

to adding a random value using the Gaussian distribution. Here, all three properties are respected: (1)

the value can be changed in R without restrictions, (2) the Gaussian distribution is symmetric and thus

unbiased, and (3) the standard deviation can be used for scaling.

Since the mutation operator must be chosen for the specific problem and in particular according to

the structure of the genotype, an exact implementation for the use case of molecule design is described

later (see Section 5.3.2).

4.3.4 Selection

While the genetic operators described earlier are used to explore the search space, selection gives

direction to evolution based on fitness. Thus, optimization takes place. There are several variants in

the selection of individuals for the next generation. Evolutionary strategies are distinguished between

plus and comma selection. Both selection operators have in common, that they select the µ best

individuals for the next generation. However, they differ in how they select the parents from which the

new individuals are created.

The comma selection selects parents only from the λ individuals of the successor generation P ′,
omitting previous individuals, as it is also common in nature. In this way, good solutions may be lost,

but their retention could also lead to a local optimum that is never left. The comma selection is notated

48 4 Foundations of Molecule Design

as (µ,λ)-ES. In order to have selection, µ < λ must hold. Comma selection is particularly suitable

for unbounded search spaces, such as the RN [Sch87].

In contrast, with plus selection, the parents are selected from the new and the old generation, i.e.,

from P ∪P ′. This way it is possible that excellent individuals remain in the population and can be

used further and further. Plus selection is particularly suitable for discrete finite search spaces, such as

combinatorial optimization problems [BS02; Her90; Bey92].

4.4 Conclusion

Molecule design helps to find protease inhibitors that can be used to prevent virus replications.

Therefore, molecular design is an important step in developing a drug against viral diseases. This

chapter gave an introduction to organic chemistry and EAs. Besides the different types of bonding, we

have also provided an overview of different molecule representations. The approaches presented in the

following two chapters, are both based on an EA and use the string representation for molecules.

5 Evolutionary Multi-Objective Approach

This chapter presents methods for protease inhibitor design. Here, the coronavirus SARS-CoV-2,

which causes the disease COVID-19, is considered as a use case due to its timeliness during the

research period. To stop virus replication, a biomolecule is sought that binds to the virus protease

enzyme, as described in Section 4.1. Such a molecule is also called a ligand or protease inhibitor. In

the case of SARS-CoV-2, the crystal structure of the main protease Mpro is already known [Jin+20].

The search for a suitable protease inhibitor can be regarded as an optimization problem. Here, not only

the binding of the ligand is important, but also other properties, such as synthesizability and toxicity.

Therefore, the molecule search problem is a MOO problem, which is solved in this chapter with the

help of evolutionary algorithms.

This chapter is organized as follows. First, related work is presented in Section 5.1. Then, Section 5.2

introduces the five metrics, which are used to measure the suitability of a molecule. Section 5.3 presents

our two evolutionary search method specialized for molecules and the two strategies we use for MOO:

weighted sum evolutionary molecule search (WSEMS) and Pareto ranking evolutionary molecule

search (PREMS). Section 5.4 gives insight into the experiments performed and is supported by different

visualizations. Finally, a conclusion is drawn in Section 5.5.

Parts of this chapter are based on the following published paper:

Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas Teusch, and Oliver Kramer.

“Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Candidates”. In: Paral-

lel Problem Solving from Nature – PPSN XVI. ed. by Thomas Bäck, Mike Preuss, André Deutz,

Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann. Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2020, pp. 357–371. ISBN: 978-3-030-58115-2.

DOI: 10.1007/978-3-030-58115-2_25

Section 5.2 is additionally also based on:

Lars Elend, Luise Jacobsen, Tim Cofala, Jonas Prellberg, Thomas Teusch, Oliver Kramer, and

Ilia A. Solov’yov. “Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial Intelligence

and Molecular Dynamic Simulations”. In: Molecules 27.13 (13 Jan. 2022), p. 4020. ISSN:

1420-3049. DOI: 10.3390/molecules27134020

5.1 Related Work

The categorization of methods for de novo drug design can vary [DSC15; Bro+19]. Some studies

involve the direct construction of molecules from atoms [DTG00; Nig+19], while others utilize

chemical fragments as the smallest building blocks [PHK01]. The objectives of these publications

also differ. In certain cases, the goal is to identify drugs that specifically bind to a particular protein

https://doi.org/10.1007/978-3-030-58115-2_25
https://doi.org/10.3390/molecules27134020

50 5 Evolutionary Multi-Objective Approach

binding site, as demonstrated in our work or [PHK01; YPL20]. Some other studies focus on generating

drug-like molecules in general, as explored in [DTG00; Pol+20].

ADAPT [PHK01] is a fragment-based approach that uses an EA on an acyclic graph-representation

comprising chemical fragments to optimize molecules’ binding to a specific binding site. The resulting

compounds’ fitness is assessed through docking simulations with the target protein binding site

and common drug-likeness indicators. Single-target EAs have been successfully used to optimize

peptide ligands [RBF12; Kra+18], where the fitness of individuals was determined experimentally

in-vitro. In contrast, Douguet, Thoreau, and Grassy [DTG00] work at the atom level using the SMILES

representation instead of fragments. Their genetic algorithm focuses solely on optimizing drug-likeness

rather than binding to a specific ligand. Moreover, their single-objective algorithm assigns constant

coefficients to different properties within the fitness function. Similarly, Nigam et al. [Nig+19] present

a genetic algorithm based on the SMILES representation for general molecule design. To enhance

diversity, they employ a deep neural network as an adaptive fitness function, penalizing long-surviving

molecules. Unlike approaches such as ours, which tend to focus on the distribution of drug-like

molecules, their genetic algorithm can explore the entire chemical space without restriction.

LigBuilder, as described in the study by Yuan, Pei, and Lai [YPL20], is a software tool designed

for drug design, based on a genetic algorithm. It allows optimization of binding to multiple targets,

offering the advantage of treating complex diseases with a single drug without the risk of drug-drug

interactions associated with therapies with a combination of drugs. In a separate study, Lameijer

et al. [Lam+06] developed Molecule Evoluator, a program that employs an atomic-based evolutionary

approach. In this method the fitness is evaluated by the user. A subset of molecules selected based on

the evaluation is subsequently subjected to experimental investigations.

Brown et al. [Bro+04] employed a graph-based representation of molecules to perform MOO. Their

approach utilized a multi-objective evolutionary algorithm with a Pareto ranking scheme to guide the

optimization process. In contrast, Wager et al. [Wag+16] developed a tool for identifying potential

central nervous system (CNS) drugs through MOO. Their method optimizes molecules based on

six physical properties. Unlike our approach, their tool relies on medical knowledge rather than

evolutionary algorithms. Van der Horst et al. [vdHor+12] developed a multi-objective evolutionary

algorithm for designing adenosine receptor ligands using a pharmacophore model and three support

vector machines. The results of their approach were experimentally validated. Nicolaou and Brown

[NB13] provided a concise review that focuses on the MOO of drugs. They summarize different

problem definitions and various methods for MOO in the context of drug design.

Luukkonen et al. [Luu+23] give a good overview of the latest AI methods in the area of multi-

objective drug design. They provide a comparison table with information about the architecture,

representation, MOO strategy, and objectives of each method.

5.2 Molecule Design Metrics

In computer-aided molecular design, metrics are needed to evaluate the suitability of a molecule.

This chapter provides an overview of the five metrics used to assess how likely a molecule is to be

5.2 Molecule Design Metrics 51

considered as a drug candidate and inhibitor (for example in the case of Mpro). Table 5.1 shows an

overview of value ranges and the optima of these metrics, which are described in detail below.

Table 5.1: Value ranges and optima of the used metrics. The toxicity filters, can either be
fulfilled or not and therefore only has the values 0 or 1.

metric value range optimum

BA Binding Affinity R −∞

SA Synthetic Accessibility [1,10] 1
QED Quantitative Estimate of Drug-likeness [0,1] 1
NP Natural Product-Likeness [−5,5] 5
TF Toxicity Filters {0,1} 1

5.2.1 Binding Affinity

The binding affinity (BA) estimates the binding free energy between the receptor and a potential ligand.

Sometimes it is also referred to as docking score. It is crucial to evaluate whether the ligand binds

to the receptor. The automated docking tool AutoDock [Mor+09] is a widely used tool to calculate

this metric. AutoDock uses grid-based look-up tables to speed up calculations. The binding energy

of all atoms of the ligand are determined for all positions of the grid using semi-empirical force field

methods. A Lamarckian genetic algorithm is then used to find the best position and binding energy for

a ligand. A further development of this is AutoDock Vina (Vina) [TO10], that uses a hybrid scoring

function based on empirical and knowledge-based data [TO10]. QuickVina 2 [Alh+15] improves the

search algorithm by performing the most complex part of the optimization only for very promising

ligand positions. Gaillard [Gai18] showed that Vina outperforms other docking software. We use

QuickVina 2 because it computes faster than Vina while producing comparable results [Alh+15].

The lower the BA, the stronger the potential ligand is expected to bind to the receptor. It should be

noted that because of its extensive use of heuristics, QuickVina 2 provides only an estimate of the true

BA. However, since the evolutionary design of inhibitors requires many BA calculations, a balance

between accuracy and computational time is important. Therefore, one binding affinity calculation per

molecule is made. While it is conceivable to perform multiple runs and average the results to obtain a

more accurate estimate, this would dramatically increase the computational time per molecule and

result in fewer molecules being generated. Promising molecule candidates can be validated with more

accurate methods (see Section 6.2) to obtain a better estimate of their true performance.

5.2.2 Synthetic Accessibility

The synthetic accessibility (SA) introduced by Ertl and Schuffenhauer [ES09] evaluates the synthe-

sizability of molecules. For this purpose, on the one hand a fragment analysis of selected molecules

from the PubChem database [Kim+16; Kim+21] is performed and on the other hand atypical chemical

structures are evaluated with a complexity score. The difference between the fragment score and the

complexity score gives the final SA, which ranges from 1 to 10. The lower the SA, the easier the

52 5 Evolutionary Multi-Objective Approach

molecule is to synthesize. A typical example of two molecules with a high and low SA is shown in

Fig. 5.1A.

Synthesis is the next step in typical drug development procedure, that follows the computer-assisted

determination of the promising molecular candidates. Therefore, the SA is an important parameter to

justify how complex the production of a potent drug molecule is in reality.

A B C
O

NH H
N

O
O

F

NHOO

O

OH

SA = 1.997 QED = 0.935 NP = 2.190

O

O
OH

OH

O

OH

O

O
O

Cl

H2N N
H

O
N

Cl

Cl

Cl

SA = 8.016 QED = 0.302 NP =−1.669

Figure 5.1: Exemplary molecules for high and low values of A: SA, B: quantitative estimate
of drug-likeness (QED), and C: natural product-likeness (NP). The top row shows
molecules with an optimal value compared to molecules in the bottom row. A low
SA indicates that a molecule is easy to access synthetically [ES09]. A high QED
or NP indicates that a molecule has a high similarity with drug-like molecules or
natural products, respectively [Bic+12].

5.2.3 Quantitative Estimate of Drug-Likeness

Since many chemical properties for drug molecules are not randomly distributed, but share certain

similarities, a comparison with already existing drug molecules is useful. A simple rule of thumb that

evaluates oral bioavailability is Lipinski’s rule of five [Lip+97]. Since this is a yes or no decision that is

not always true, a more accurate metric with a continuous range of values would be more appropriate.

Therefore, we use the quantitative estimate of drug-likeness (QED) from Bickerton et al. [Bic+12]

in the following. It estimates the similarity to existing drug molecules by taking into account the

following properties, among others: the molecular weight, octanol-water partition coefficient, number

of hydrogen bonds, and number of aromatic rings. The scores of the individual properties are finally

combined to the QED with the value range from 0 to 1, where high values represent a more drug-like

molecule. Figure 5.1B shows example molecules with a low and a high QED. A molecule with a

high QED and thus a high similarity to existing drugs has a good chance of also possessing important

properties of a drug.

5.3 Evolutionary Molecule Search 53

5.2.4 Natural Product-Likeness

In addition to the previously described similarity to existing drug molecules, similarity to naturally

occurring molecules is an important metric as well. Such molecules have been created and validated by

nature in an evolutionary process. The natural product-likeness (NP) by Ertl, Roggo, and Schuffenhauer

[ERS08] is used as a similarity measure for this purpose. It is based on the structural properties of the

molecule, such as the distribution of nitrogen and oxygen atoms. NP has a range of values from −5 to

5, with high values representing greater similarity to naturally occurring molecules. Figure 5.1 shows

molecules with a high and low NP, respectivly.

5.2.5 Toxicity Filters

Molecules that may be toxic due to their structure, e.g., because they contain icocyanate fragments or

can lead to toxic metabolites, must be excluded or filtered out. Similarly, charged molecules should

be avoided. This is the purpose of the toxicity filters (TF), which combine several filters and output a

value of 0 or 1, where 1 means that a molecule passes the filter and is therefore probably not toxic. TF

combines the pan assay interference compounds (PAINS) filters by Baell and Holloway [BH10] and

the medical chemical filters (MCFs) described by Polykovskiy et al. [Pol+20].

A good candidate molecule should have values close to the optimum for as many metrics as possible.

To make it easier to compare the metrics with each other and to merge them into one overall metric,

they can all be normalized to the same range of values, as described in more detail later in Section 5.3.3.

Apart from BA, for which QuickVina 2 is used as mentioned above, for all other metrics (QED, NP,

SA, and TF), the MOSES framework [Pol+20] is used. A more detailed overview of the workflow for

calculating the metrics is given in the appendix in Appendix C.1.

5.3 Evolutionary Molecule Search

In this section, our evolutionary approach to design suitable protease inhibitor molecules is described.

To explore the search space of biomolecules, an ES oriented (µ + λ) population model is used

(see Section 4.3). Here, the molecules are the individuals of a population and are encoded using

the SELFIES representation (see Section 5.3.1). Based on this representation, specific mutation

operators are defined (see Section 5.3.2). Finally, the molecules are evaluated by a fitness function

(see Section 5.3.3) based on the previously described molecule design metrics (see Section 5.2). An

overview of this process is given in Fig. 5.2.

First, the starting population is generated by concatenating a fixed number of random SELFIES

symbols for each individual to describe a random molecule. This string is converted to a canonical

SELFIES after a simple validity check and added to the set of molecules that have already been

considered. If it already exists in this set, it is discarded to avoid duplication. The same procedure is

used to generate new offspring. This creates a population of unique individuals.

54 5 Evolutionary Multi-Objective Approach

create random
molecules

as SELFIES

Molecules (population, SELFIES)

F
F

O

NH

O

N

FN

FN

F
N

N
H

O

F

F
N

F

O

O

NH

O

F

N

F

mutate moleculesselect best molecules
depending on strategy
(WSEMS or PREMS)

Evolutionary Molecule Search

best molecules

Figure 5.2: Overview of the evolutionary molecule search. After the creation of an initial
population it’s molecules are iteratively mutated and selected for the next generation.
As a result, the best molecules under consideration are finally available in the last
generation.

5.3.1 Representation

The molecules are described by SELFIES (see Section 4.2.3.1). The default symbols of SELFIES are

[epsilon], [Ring1], [Branch1_1], [Branch1_2], [Branch1_3], [F], [O], [=O], [N], [=N],

[#N], [C], [=C], [#C], [S], and [=S]. Benzene is a very common substructure, but as it consists of 8

SELFIES symbols ([C][=C][C][=C][C][=C][Ring1][Branch1_1]), it is laborious to get there by

chance. Therefore, this substructure is also considered as one symbol for the initial generation and the

insertion mutation, that is described in Section 5.3.2. Each symbol has its own probability with which

it is selected to account for the different abundance of atoms. This way, the weighing can be used to

select more common symbols like [C] with a higher probability than e.g., branches or ring structures.

By ensuring that the SELFIES representation can always be transformed into valid molecules, it is

particularly suitable for random string creation and adaptations.

5.3.2 Mutation

The design space of molecules is explored by applying specific mutation operations with some

randomness. An offspring is created by mutating a randomly chosen parent individual. The mutation

consists of three different operations that are appplied sequentially. Figure 5.3 shows an example

molecule that is mutated by all three operations.

Deletion is applied with probability pd and deletes a randomly chosen SELFIES symbol.

Replacement is applied independently for every symbol with a probability of pr. The symbol is

replaced by a random SELFIES symbol from the extended list descriped before weighted by a

probability (see Section 5.3.1).

Insertion is applied with probability pi. A random symbol is inserted at a random position in the

individual’s representation.

5.3 Evolutionary Molecule Search 55

Input

[O][C][=C][C][=C][C][=C][Ring1][Branch1_1][F]

HO

F

delete randomly chosen symbol with probability pdDeletion

[O][C]���[=C][C][=C][C][=C][Ring1][Branch1_1][F]
F

O

replace every symbol independently with probability prReplacement

[O][C][S][=C][C][=C][Ring1][Branch1_1][N]
H2N

SHO

insert random symbol with probability pi at random
position

Insertion

[O][C][S][=C][C][=C][Ring1][Branch1_1][C][N]
H2N

SHO

Figure 5.3: Example of the application of all three mutation operations in the specified order:
first deletion, than replacement, and at last insertion. The changes in each step are
highlighted. Note, that this is just an example to demonstrate all mutation operations
at once and usualy not all of them are executed, as their execution depends on the
probabilities pd , pr, pi.

5.3.3 Fitness Evaluation

The fitness value needed for the selection operator is determined by the fitness function f (x), which

takes into account the molecule’s metrics (see Section 5.2). To allow easy comparison between the

metrics, they are all scaled to the range [0,1], where 0 is the best value and 1 is the worst value. As the

BA value is in R it needs a special treatment. The BA is scaled to the experimentally chosen minimum

of −15 kcal/mol and maximum of 1 kcal/mol and clipped to the range [0,1] using the soft clipping

function [KP20] with p = 30 (see Eq. (5.1)). The soft clipping function and its application to the BA

is visualized in Fig. 5.4.

SCp(x) =
1
p

log
(

1+ epx

1+ ep(x−1)

)
(5.1)

−0.5 0 0.5 1 1.5
0

0.5

1

x

SC
30
(x
)

(a) soft clipping function with p = 30

−20 −15 −10 −5 0 5
0

0.5

1

x

SC
30
(s

ca
le
(x
))

(b) soft clipping and scale for BA

Figure 5.4: The soft clipping function (a) and its application to BA in combination with scale
(b).

56 5 Evolutionary Multi-Objective Approach

All individuals of one generation are evaluated concurrently, to speed up the run time of the GA.

For the calculation of the metrics SA, QED, NP, and TF we use the framework MOSES [Pol+20].

For this purpose, the representation of SELFIES is converted to SMILES. The BA for each molecule

is determined by QuickVina 2. Therefore, the SMILES representation is translated by RDKit1 and

MGLTools2 to PDB and PDBQT files. As a specific case study we examine Mpro (PDB ID: 6LU7

[Jin+20])3 of SARS-CoV-2. For the calculation of BA, we use a search space of size4 22Å×24Å×
22Å centered around the expected binding site (−12Å,15.6Å,69Å). The exhaustiveness parameter

of QuickVina 2 was kept at the default value of 8, resulting in several minutes of execution time per

molecule.

5.3.4 Weighted Sum Evolutionary Molecule Search

Our first approach – weighted sum evolutionary molecule search (WSEMS) – uses a weighted sum to

compose all n = 5 metrics into one value:

f (x) =
n

∑
i=1

wi fi(x) (5.2)

with weights w = (0.4,0.15,0.15,0.15,0.15) with i corresponding to 1: BA, 2: SA, 3: QED, 4: NP,

and 5: TF. The weights were chosen based on a preliminary experiment with the aim of paying the

most attention to the BA while considering the other properties as well.

5.3.5 Pareto Ranking Evolutionary Molecule Search

The previously described metrics (see Section 5.2) can behave in opposite ways. For example, a

molecule may show good binding – i.e., have a good BA – but at the same time be dissimilar to other

drug molecules – i.e., have a poor QED. Since it is difficult to choose pre-defined weights for the

objectives, a Pareto ranking approach may be preferable in practice. Therefore, we introduce Pareto

ranking evolutionary molecule search (PREMS) as our second approach.

A multi-objective evolutionary algorithm (MOEA) is a special kind of EAs that can be used to

solve MOO problems [Smo13]. The non-dominated sorting genetic algorithm II (NSGA-II) [Deb+02]

is a frequently used algorithm of this class in research and applications [Zho+11]. Our goal is to

find the best molecules in the molecule spaceM that minimize the fitness functions f1, . . . , fn. The

NSGA-II is used to approximate the Pareto set {x∗ | ∄x ∈M : x≺ x∗} of non-dominated solutions,

where x≺ x∗ means x dominates x∗. To dominate in this context means to be at least as good in all

properties (fitness functions) and to be better in at least one property: ∀i ∈ {1, . . . ,n} : fi(x)≤ fi(x∗),
while ∃i ∈ {1, . . . ,n} : fi(x) < fi(x∗). Figure 5.5 visualizes the solution areas that dominate x, are

dominated by x, and are incomparable to x for a two-dimensional minimization problem.

1https://www.rdkit.org
2http://mgltools.scripps.edu
3PDB: protein data base, https://www.rcsb.org
4The angstrom (or ångström) (Å) is a metric unit of length, which is defined as 1Å = 0.1nm = 10−10 m. It is often used to

express sizes of atoms and molecules.

https://www.rdkit.org
http://mgltools.scripps.edu
https://www.rcsb.org

5.4 Experiments 57

f1

f2

x

dominated
by x

dominates x

incomparable

incomparable

Figure 5.5: NSGA-II domination exemplified by a two-dimensional minimization problem.
Given a solution x, it dominates the red area and is dominated by the green area.
The orange areas are incomparable to x.

NSGA-II approximates the Pareto set with a broad distribution of solutions in objective space, i.e.,

of the Pareto front. After the non-dominated sorting, the µ non-dominated solutions maximizing the

crowding distance are selected. This metric encourages individuals to spread out across the Pareto

front, ensuring a diverse set of high-quality solutions. To compare various NSGA-II runs, we utilize the

hypervolume indicator (S-metric) as a means to measure the dominated hypervolume in the objective

space relative to a dominated reference point [ZT98].

The objective space consists of the five metrics outlined in Section 5.2. Although the fulfillment of

TF is a binary criterion, it is treated as an objective. Since all objectives are determined computationally,

they serve as approximations of the actual molecule properties. Molecules that perform poorly in one

of the objectives may still exhibit potential as potent drug candidates or guide the algorithm towards

unexplored regions of the search space.

5.4 Experiments

In this section, we conduct experimental analyses to evaluate the effectiveness of WSEMS and PREMS

for the search of protease inhibitor candidates. We use the following settings for our experimental

analyses. For WSEMS, we employ a (10+ 100)-EA, where in each generation, from 10 parents

100 offspring candidate molecules are generated by mutation. The mutation operators introduced in

Section 5.3.2 are applied, with mutation probabilities set to pr = 0.05, pi = 0.1, and pd = 0.1. Plus

selection is used to get the best candidates from the parents and offspring. In the PREMS approach,

we increase the number of parents to 20 in order to obtain a broader distribution of solutions in the

objective space5. Crossover is not applied in this approach. To ensure consistency and comparability,

individuals in both approaches are limited to a maximum length of 80 SELFIES tokens. This constraint

is oriented to the approach proposed by Krenn et al. [Kre+20]. In terms of termination criteria, all runs

are conducted for a fixed number of 200 generations, and the experiments are repeated a total of 20

times to obtain reliable statistical results.
5The total number of fitness function calls is almost unaffected by this. Only for the generation of the initial population, 10

more molecules are evaluated.

58 5 Evolutionary Multi-Objective Approach

5.4.1 Metric Development

The development of the normalized metrics, as explained earlier, is depicted in Fig. 5.6. Both WSEMS

and PREMS runs are analyzed in this figure.

0 50 100 150 200

0

0.2

0.4

0.6

generation

no
rm

.m
et

ri
c

WSEMS

0 50 100 150 200

generation

PREMS

BA NP QED SA TF

Figure 5.6: Development of all Metrics. On the left side the normalized values of the five
metrics is shown for WSEMS and on the right side for PREMS. The results are
averaged over 20 runs.

In the WSEMS runs, the best individuals based on fitness are selected in each generation, and their

corresponding metrics are averaged across all runs. The optimization process primarily focuses on

enhancing BA, QED, and NP. It is worth noting that the improvement of one metric may lead to a

deterioration of another metric. For instance, starting from generation 140, there is a trade-off observed

as QED, NP, and SA deteriorate in favor of BA.

In the case of PREMS runs, the best individuals for each metric are chosen in each generation, and

their metrics are subsequently averaged across all runs. A consistent improvement is observed for all

objectives in these runs. However, it is important to acknowledge that achieving this improvement

in certain objectives may come at the expense of deteriorations in other objectives, which are not

explicitly shown in the figure.

Figure 5.7 exhibits three distinct two-dimensional sections of the Pareto front, where the BA is

compared to QED, NP, and SA. For each tenth generation, a Pareto front is displayed, with colors

ranging from low contrast for the initial generation to high contrast for the final generation. The

plots effectively demonstrate how PREMS generates solutions that vary in their balance between the

BA and the metric being plotted. Throughout the optimization process, the front of non-dominated

solutions consistently tends to shift towards the lower left, as expected. This tendency is also reflected

in the hypervolume indicator, which, on average across all runs, improves from 0.10±0.03 in the first

generation to 0.20±0.05 in the last generation. In the slice plots, it is possible to observe deteriorations

due to advancements made in the remaining three objectives.

Table 5.2 presents a comparison between the final experimental results of the WSEMS optimization

runs and the PREMS runs. In the case of the PREMS, the table showcases the best values achieved for

each objective (in the original value range), which correspond to the corner points of the Pareto front

approximation. To provide a reference, metric values are also displayed for N3, a ligand proposed

5.4 Experiments 59

0.4 0.6

0.2

0.4

BA

N
P

(a) BA vs. NP

0.4 0.6

0.2

0.4

0.6

0.8

BA
Q

E
D

(b) BA vs. QED

0.4 0.6

0

0.2

0.4

0.6

0.8

BA

SA

(c) BA vs. SA

Figure 5.7: Visualization of Pareto fronts over the generations a single PREMS run. For every
10th generation, a Pareto front is displayed, with the colors starting from low
contrast for the first generation and gradually transitioning to high contrast for the
final generation.

in the PDB, and Lopinavir, an inhibitor of the human immunodeficiency virus (HIV) main protease

[KH05]. The BA attained through the WSEMS optimization process demonstrate that the best values

even surpass those of N3 and Lopinavir. Both Lopinavir and N3 exhibit similar strong binding to Mpro.

PREMS achieves promising values for all metrics, offering a broad coverage of objective function

values and presenting practitioners with a wide range of intriguing candidates. However, it is important

to note that some of the extreme metric values may occasionally be impractical. For instance, the

exceptional BA of the top PREMS molecule (−13.3 kcal/mol) has been attained by a chemically

unrealistic candidate.

Table 5.2: The experimental results include the outcomes of WSEMS, as well as the best values
per objective achieved by PREMS. Additionally, the N3 ligand (from PDB 6LU7)
and Lopinavir, a prominent drug candidate, are included in the analysis. For the
PREMS method, statistical evaluation is conducted based on the best 20 individuals
per objective. In the results, a ▼ symbol represents a minimization objective, while a
▲ symbol indicates a maximization objective.

WSEMS PREMS N3 Lopinavir
objective best avg±std best avg±std value value

fitness ▼ 0.30 0.32± 0.01 0.31 0.39± 0.06 0.43 0.41
BA ▼ −9.30 −7.68± 0.90 −13.30 −10.63± 1.18 −8.40 −8.40
SA ▼ 3.04 2.63± 0.59 1.00 1.00± 0.00 4.29 3.90

QED ▲ 0.66 0.76± 0.10 0.94 0.92± 0.01 0.12 0.20
NP ▲ 0.33 0.20± 0.54 4.27 3.82± 0.24 −0.18 −0.04
TF ▲ 1.00 1.00± 0.00 1.00 1.00± 0.00 1.00 1.00

Based on our observations, we can conclude that utilizing the SELFIES representation along with our

mutation operators enables the generation of molecules with a consistent level of quality. Nevertheless,

we anticipate that incorporating mechanisms that facilitate the creation of larger molecules would lead

to further improvements in the quality of the results by overcoming fitness plateaus and local optima.

60 5 Evolutionary Multi-Objective Approach

In Fig. 5.8, we present a comparison of the populations from the last generation of a typical WSEMS

run and a PREMS run. It is evident that the solutions in the WSEMS population exhibit a high degree

of similarity to each other. However, the solutions in the final population of the PREMS run maintain a

higher diversity in terms of molecule properties.

SA

QED

NP

TF

BA

(a) WSEMS

SA

QED

NP

TF

BA

(b) PREMS

Figure 5.8: Comparison of the population in the final generation between exemplary WSEMS
runs (10 molecules) and PREMS runs (20 molecules). Each line represents a
molecule candidate. Note that good values are at the edge of the spider chart.

5.4.2 Candidate Comparison

In the following, we present a selection of interesting protein inhibitor candidates that were evolved

using both WSEMS and PREMS approaches. We made three notable observations through our

experiments:

1. The generated molecules tend to incorporate aromatic ring structures prominently.

2. Candidates with favorable drug-likeness properties are typically shorter in size.

3. Molecules with high BA often exhibit unrealistic geometries.

Figure 5.9 showcases a compilation of six promising protease inhibitor (PI) candidates, displaying

radar plots, structural formulas, and chemical names. PI-I (a) to PI-III (c) are the results obtained from

WSEMS runs, while PI-IV (c) to PI-VI (f) represent candidates generated by PREMS. In the radar

plots, points positioned closer to the plot’s border indicate superior values, with zero values located on

the edge.

All candidates fulfill the filter condition, indicating their viability. PI-1 achieves a high SA value

alongside a reasonable BA. PI-II attains an excellent BA of −9.7 kcal/mol. PI-III, PI-IV, and PI-VI

demonstrate excellent drug-likeness as measured by QED, accompanied by solid docking results

around −7.0 kcal/mol. An intriguing candidate that strikes a balance across all objectives is PI-V,

which achieves a BA of −7.7 kcal/mol and a QED value of 0.75.

Lastly, we provide a visualization depicting how the ligand candidates are situated within the

optimized Mpro protein pocket, performed using QuickVina 2. Figure 5.10 illustrates the placement of

candidates (a) PI-I and (b) PI-V within their respective Mpro pockets.

5.4 Experiments 61

SA

QED

NP

TF

BA

F

N

6-(2-fluorophenyl)-7H-dibenzo[b,d]azepine

(a) PI-I, WSEMS

SA

QED

NP

TF

BA

N

OH

N
N

O

8-hydroxy-5-(2-((2’-nitroso-[1,1’-biphenyl]-
2-yl)imino)vinyl)bicyclo[4.2.0]octa-

1,3,5,7-tetraene-7-carbonitrile

(b) PI-II, WSEMS

SA

QED

NP

TF

BA

F
O

N
H

O
NH

2-(2-(3,4-dihydro-1H-benzo[c][1,2,6]oxadiazin-
4-yl)vinyl)phenyl hypofluorite

(c) PI-III, WSEMS

SA

QED

NP

TF

BA

N
N

S

OH

2-((2-(2-ethyl-2,5-dihydropyridazin-
3-yl)phenyl)thio)phenol

(d) PI-IV, PREMS

SA

QED

NP

TF

BA

H2N

F

N O

(2-(5-(2-fluorophenyl)-6-phenyl-5,6-dihydro-
2H-1,3-oxazin-5-yl)phenyl)methanamine

(e) PI-V, PREMS

SA

QED

NP

TF

BA

OH

NH N

2-(2-(quinazolin-4(3H)-ylidene)ethyl)phenol

(f) PI-VI, PREMS

Figure 5.9: Spider charts of exemplary protease inhibitors, along with their structural formula,
and chemical name. The results are from runs of WSEMS (a–c) and PREMS (d–f).

(a) PI-I in Mpro pocket (b) PI-V in Mpro pocket

Figure 5.10: The docking of PI-I and PI-V to the pocket of SARS-CoV-2’s Mpro [Cof+20].

62 5 Evolutionary Multi-Objective Approach

5.5 Conclusion

In this chapter, an evolutionary multi-objective approach was introduced to evolve protein inhibitor

candidates for the Mpro of SARS-CoV-2. We applied two strategies for the fitness evaluation and

selection process (WSEMS and PREMS). Our approach serves as a starting point for drug design

efforts, with the goal of optimizing the QuickVina 2-based protein-ligand binding score (BA), as well

as other significant objectives like QED and TF properties. The experimental results demonstrated the

capability of the evolutionary processes to generate intriguing inhibitor candidates. While many of

these candidates achieved promising metrics using conventional structures, unconventional candidates

also emerged that require deeper analysis. Due to potential limitations in the practical utility of

QuickVina 2 BA and other metrics, the approach is understood as an AI-assisted virtual screening

technique for exploring the chemical biomolecule space. The comparatively fast evaluation of the

molecules results in a significant time saving compared to traditional methods and, moreover, allows

far more molecules to be considered in the first place.

Future research will be directed towards enhancing the protein-ligand models to enable more

detailed and efficient binding affinity predictions. Additionally, there is potential for improvement

in the SELFIES representation, particularly addressing bloated strings that represent relatively small

molecules, and developing mechanisms to ensure their validity. Furthermore, the utilization of

additional multi-objective evolutionary algorithms is desired.

6 Language Model–based Evolutionary
Approach

Expanding on the previous Chapter 5, a further and extended procedure for protease inhibitor design –

as motivated in Section 4.1 – is presented here. An evolutionary algorithm is used here that employs a

neural language model for initialization and mutation. This is referred to as evolutionary molecule

generation algorithm (EMGA). The process is complemented by subsequent manual selection and

molecular dynamics (MD) simulation, which can more precisely evaluate the binding between the

ligand and the protease enzyme to determine whether the ligand remains in the desired position or

moves away over time. An overview of this method is provided in Fig. 6.1. In summary, our workflow

consists of EMGA – a combination of EA and language model (LM) – as well as MD simulation and

analysis of the resulting molecular candidates.

Molecules (population, SMILES)

F
F

O

NH

O

N

FN

FN

F
N

N
H

O

F

F
N

F

O

O

NH

O

F

N

F

Mutation:
Neural Language Model

changes molecules

select best
molecules by fitness

Evolutionary Molecule Generation Algorithm (EMGA) Manual Selection

N

F

N
H O

F

NH2 F N F
H
N

O

F

N

Molecular Dynamics

Figure 6.1: Overview of the language model–based evolutionary approach. The EMGA (green)
iterativly mutates a population of molecules with a neural language model (blue).
After each generation the best molecules are selected based on a fitness metric.
By a manual selection (orange) the best overall molecules are selected for further
analysis with molecular dynamics simulations (red).

The proposed setup is intended to combine the advantages of the two sub-methods: Large-scale

exploration through fast AI methods and high simulation accuracy through expensive MD simulations.

Depending on which molecules are considered, computer-aided drug design (CADD) approaches

generally fall into the following two categories:

64 6 Language Model–based Evolutionary Approach

1. Only existing molecules from large databases, such as ZINC database [SI15] or the DrugBank

database [Wis+18], are used.

2. New molecules are generated based on existing molecular data sets.

A comprehensive overview of CADD for the discovery of protein inhibitors against SARS-CoV-2

is provided by Liu, Wan, and Wang [LWW22], which provides numerous examples of both of the

aforementioned approaches. Numerous research papers adopt known molecules to evaluate their

viability as inhibitors of SARS-CoV-2 using techniques such as docking and MD simulations [Bha+21;

Sha+21; Sin+21]. Arshia et al. [Ars+21] explored an approach that combines AI with subsequent MD

simulations to design candidate protease inhibitors against SARS-CoV-2. Their study involved the

use of an LSTM neural network to generate novel potential drug molecules, with a primary focus

on optimizing binding affinity as a key metric. The approach in this chapter, just like the one in the

previous one, falls into category 2. Note that further related work on drug design using AI methods

has already been discussed in Section 5.1.

This chapter is structured as follows. First, EMGA is introduced in Section 6.1, with particular

reference to the Molecular Representation, the Neural Language Model, and its integration into an

Evolutionary Algorithm described. Then, the foundations for the MD calculations are defined. In

Section 6.3, the results of EMGA and the MD analysis are discussed. Finally, a summary is given in

Section 6.4.

Parts of this chapter are based on the following published paper:

Lars Elend, Luise Jacobsen, Tim Cofala, Jonas Prellberg, Thomas Teusch, Oliver Kramer, and

Ilia A. Solov’yov. “Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial Intelligence

and Molecular Dynamic Simulations”. In: Molecules 27.13 (13 Jan. 2022), p. 4020. ISSN:

1420-3049. DOI: 10.3390/molecules27134020

Note that the MD analysis results in Section 6.3.2 are mainly based on the work of Luise Jacobsen

in the context of the publication mentioned above.

6.1 Evolutionary Molecule Generation Algorithm

The core component of EMGA is again an ES oriented (µ +λ) population model as introduced in

Section 4.3. Here the individuals – the molecules – are encoded as SMILES strings (see Section 6.1.1).

A LM is trained to fill gaps in the SMILES string in a meaningful way (see Section 6.1.2). The LM

is then combined into the ES as a mutation operation (see Section 6.1.3). For the selection the same

fitness function Eq. (5.2) is used as before (see Section 5.3.3). It is based on the five molecule design

metrics that were introduced in Section 5.2.

6.1.1 Representation

In contrast to previous approach (see Chapter 5) EMGA is based on the SMILES string representation

(see Section 4.2.3.1). This decision is based on two related reasons:

https://doi.org/10.3390/molecules27134020

6.1 Evolutionary Molecule Generation Algorithm 65

1. While the SELFIES representation ensures that only valid molecules are ever described, this

often involves ignoring the trailing part of the string, from the point that would lead to a faulty

molecule. Thus, in such cases, mutations of the posterior substring no longer affect the molecule,

which is not ideal.

2. The SMILES representation has no such limitation – but also offers no guarantee of valid

molecules. In the previous approach within the EA, random mutations were made to the

molecule, which could easily result in defective molecules. In the EMGA, on the other hand,

a LM is used to make context-based changes to the string. Thus, with an LM trained on valid

molecules, lower error rates are expected.

Figure 6.2 shows as an example the structural formula of the α-D-glucopyranose and the corre-

sponding SMILES string. Each letter of this string can be considered as a token by the neural language

model that will be introduced later.

A HO OH

OH

OHOH

O SMILES: OCC1C(O)C(O)C(O)C(O)O1

B
O

x1

C

x2

C

x3

1

x4

C

x5

(

x6

O

x7

)

x8

C

x9

(

x10

O

x11

)

x12

C

x13

(

x14

O

x15

)

x16

C

x17

(

x18

O

x19

)

x20

O

x21

1

x22

Figure 6.2: A: Structural formula and SMILES string of α-D-glucopyranose. B: SMILES
string of α-D-glucopyranose split into a sequence of tokens x = (x1, . . . ,xt).

6.1.2 Neural Language Model

The process of generating new and realistic drug molecules can be facilitated by AI-based molecular

generation models [Sch18]. Consequently, in order to discover more drug-like molecules as anticipated,

a molecular generation model was incorporated into EMGA. The molecular generation model utilized

in this implementation was built upon the Transformer architecture [Vas+17]. The network architecture

was specifically crafted to handle sequential data and incorporates a distinctive and inherent attention

mechanism. The model underwent training using a set of known molecules, aiming to generate

molecules with comparable properties using this data set.

Given that the molecules in this study are initially represented in a textual representation, the

implementation of a molecular structure generation model draws inspiration from concepts in language

processing. A language model (LM) processes a sequence of tokens x = (x1, . . . ,xt). For each token

position t, the model can predict a probability distribution over the possible tokens in the sequence,

considering the other positions in the sequence.

An example of such an approach is provided by Segler et al. [Seg+18], who demonstrated the use of

a recurrent neural network to generate molecules in the SMILES representation. In our study, a token

refers to the smallest constituent of a SMILES string, such as a letter, bracket, number, or equal sign.

66 6 Language Model–based Evolutionary Approach

C

x28

(

x29

=

x30

O

x31

)

x32

C

x33

=

x34

N

x35

C

x36

C

x37

3

x38

=

x39

C

x40

O

x41

C

x42

.
A

C

x28

(

x29

=

x30

O

x31

)

x32

C

x33

=

x34

N

x35

C

x36

C

x37

3

x38

=

x39

C

x40

O

x41

C

x42

.

B

x≤a x≥by

a = 33 b = 39

r = 5

N

N

N

N

N

N

N
H

O

N

O

N

C

x28

(

x29

=

x30

O

x31

)

x32

C

x33

=

x39

C

x40

O

x41

C

x42

.
C

?

z1

?

z2

?

z3

?

z4

?

z5

?

z6

x≤a x≥bz
r′ = 6

C

z1

?

z2

?

z3

?

z4

?

z5

?

z6

C

x28

(

x29

=

x30

O

x31

)

x32

C

x33

=

x39

C

x40

O

x41

C

x42

.
D

C

x′28

(

x′29

=

x′30

O

x′31

)

x′32

C

x′33

=

x′40

C

x′41

O

x′42

C

x′43

.
E

C

x′34

C

x′35

3

x′36

=

x′37

C

x′38

C

x′39

N

N

N

N

N

N

N
H

O

O

N

Figure 6.3: The language model as a mutation operator does the following steps: A: A SMILES
string to be mutated. B: A random range y (highlighted in red) of size r is selected
for replacement. The molecular structure on the top right corresponds to the
SMILES string with y highlighted. C: The language model generates a new
sequence z (highlighted in blue) of length r′. It is important to note that r′ does not
necessarily have to be equal to r. D: The language model iteratively calculates the
values zi. For each zi, the input includes all x≤a, z<i, and x≥b values. E: After the
language model processing, the resulting SMILES string becomes x′= (x≤a)z(x≥b).
The molecular structure on the bottom right corresponds to the mutated SMILES
string, with the mutated part highlighted in blue.

The SMILES string itself represents the sequence, as shown in Fig. 6.2B. The language model was

trained to predict new molecules by considering the tokens. The training process involved iterative

observation of a molecule set, updating the model parameters to predict corresponding probability

distributions. To enable iterative sampling of new molecules, the generation model was trained with an

autoregressive objective, meaning that the probability of the next token (e.g., letter, bracket) depends on

the previous tokens. More formally, given a sequence of tokens describing a molecule, the likelihood

function for the molecule can be factorized into conditional probabilities as

p(x) =
t

∏
i=1

p(xi | x<i). (6.1)

6.1 Evolutionary Molecule Generation Algorithm 67

In this context, x represents a sequence of tokens, where t denotes the maximum number of tokens in

x. The notation x<i refers to all tokens in the sequence that appear before the index i.

In EMGA, the neural language model served as a mutation operator, allowing the modification of

existing molecules. To achieve this, the training objective of the language model was adjusted to enable

the completion of contiguous parts at any position within a SMILES string. Given a sequence of tokens

x with a prefix x≤a and a suffix x≥b, where a < b, a new sequence z = (z1, . . . ,zd) of length d could be

sampled. This sampling aimed to ensure that (x≤a)z(x≥b) formed a valid SMILES string according

to the modeled distribution. This process is illustrated in Fig. 6.3. To maximize the likelihood of

generating realistic molecules, the special Transformer architecture called XLNet [Yan+19] was used.

This architecture allows the model to consider all permutations of the factorization order, unlike

training solely on a left-to-right factorization order.

The neural language model was trained on a subset of the ZINC database [SI15], which contains

a collection of purchasable molecules. The molecules in the subset adhered to the definition of a

drug-like molecule outlined by Polykovskiy et al. in their molecular generation benchmark paper

MOSES [Pol+20]. This resulted in a data set comprising 1.9 million molecules.

6.1.3 Evolutionary Algorithm with Language Model

Figure 6.4 provides an activity diagram illustrating the workflow of EMGA. The process begins with

the neural language model generating a population of molecules by sampling new SMILES strings.

These strings are generated character by character, ensuring a diverse set of starting molecules. It

is also possible to start with parts of already known structures to guide the evolution in a specific

direction. The language model is trained on the ZINC database, so the generated molecules should

resemble ZINC molecules and be chemically reasonable. After the generation phase, each individual

in the population is evaluated using the fitness function to assess its quality. Next, λ individuals are

initialize individuals µ

evaluate individuals fitness metrics

copy random individual

select random r∈ [1,rmax]

select random string y of
length r in the individual

select random r′∈ [max{1,r−
δmax},r + δmax]

LM generates a string z
of length r′ to replace y

m
ut

at
io

n

add the individual to the next generation

Created λ children?no

calculate fitness of all new individuals
yes

select µ best individuals to
form the next generation.

Created x
generations?no

yes

Figure 6.4: The flow of EMGA as an activity diagram. As in the overview in Fig. 6.1, the
actions of EMGA are generally shown in green and those of the Language Model
in blue.

68 6 Language Model–based Evolutionary Approach

created by mutating random individuals from the initial population (parents). The mutation process

involves replacing a random part of the SMILES string of a molecule with a new string generated using

the neural language model (see Fig. 6.3). The maximum length of the replaced string is determined by

the parameter rmax. The length of the new string may vary compared to the original length r, but it

cannot exceed r+δmax, where δmax is an offset parameter. The balance between exploring the search

space and exploiting well-performing molecules is controlled by the values of rmax and δmax. Higher

values of rmax and δmax can lead to more diverse molecules, but may also result in individuals that

are significantly different from their parents. Conversely, smaller values of rmax and δmax allow for

fine adjustments of well-performing individuals but increase the risk of getting stuck in local minima.

In the presented study, rmax and δmax were set to 8 and 5, respectively, to strike a balance between

exploration and exploitation. Algorithm 1 shows a pseudocode for EMGA.

Algorithm 1 EMGA pseudocode
1: Pop← LM.sample_autoregressive()
2: repeat
3: for all I ∈ Pop do
4: FitI ← calculate_metrics(I)
5: end for
6: select µ parents from Pop based on Fit
7: Popnew = /0
8: repeat ▷ Mutation
9: select random parent P

10: r← random [1,rmax]
11: r′← random [max{1,r−δmax},r+δmax]
12: Inew← LM.replace(P,r,r′)
13: add Inew to Popnew
14: until size(Popnew) = λ

15: Pop← parents∪Popnew
16: until termination condition

6.2 Molecular Dynamics

After EMGA first evaluates the protease inhibitor candidates based on the relatively quickly calculated

metrics (see Section 5.2), a much more detailed simulation of the binding between the ligand and

the protease is performed as part of the molecular dynamics (MD) analysis. The various physical

forces that affect the positioning of the ligand are calculated. The physical simulation is then run for a

small time period of 50 ns. In this way it can be investigated whether the ligand maintains the desired

position within the ligand or moves away from it and thus does not bind. The physical energies and

formulas relevant to this simulation are presented in the following.

After generating potential drug molecules using EMGA, it is possible to further assess them by

evaluating the inhibitor binding free energy, which can be determined using the molecular mechan-

ics / generalized Born surface area (MM/GBSA) method. In this approach, the binding free energies

G0 were computed as:

∆G0 = ⟨GC⟩C−⟨GR⟩R−⟨GL⟩L, (6.2)

6.2 Molecular Dynamics 69

where GL, GR, and GC represent the free energies of the ligand (L), receptor (R), and ligand-receptor

complex (C), respectively. The symbol ⟨.⟩ denotes an average over a corresponding MD simulation

trajectory carried out specifically for the L, R, or C, as described in [Kol+00]. These MD simulations

should be performed at the atomistic level after identifying suitable drug candidates from the EMGA

calculations. The individual free energies in Eq. (6.2) can be calculated as:

Gi =
(
EMM +Gp +Gnp−T S

)
i , (6.3)

where for a selected subsystem i ∈ {L, R, C}, EMM represents the non-bonding molecular mechan-

ics energies, Gp and Gnp are the polar and non-polar solvation free energies of the ith subsystem,

respectively, and T S accounts for the free energy associated with the entropy S of the subsystem at

temperature T . The dependency of Gnp on the solvent-accessible surface area, A, of the subsystem and

the surface tension parameter γ = 6×10−4 kcal/(molÅ
2
) can be described as [Bri+17; GC04]:

Gnp = γA. (6.4)

In the calculation of Gp contributions in Eq. (6.3), the generalized Born (GB) model, based on a

modified version of Still et al.’s method [Sti+90], was employed to account for the ionization of the

solvent [Sri+99; OC19; Ber+20]:

Gp =−ke

N

∑
i=1

N

∑
j=i

F i jqiq j

gi j
, (6.5)

where ke is the Coulomb constant and the summations are performed over the N atoms in the corre-

sponding subsystem (L, R, or C). The dielectric term is defined as F i j =
(

1− exp(−κgi j)
εs

)
, where the

dielectric constant of the solvent is εs = 74. The Debye screening length is κ−1 =
√

ε0kBT
2NAec2I , with

Boltzmann constant kB, Avogadro number NA, elementary charge ec, ion concentration I = 0.15M,

and vacuum permittivity ε0 [Ber+20; OBC00]. The function gi j appearing in Eq. (6.5) was suggested

by Still et al. [Sti+90] and describes the effective distance between the atoms i and j:

gi j =

√√√√r2
i j +α iα j exp

(
−r2

i j

4α iα j

)
, (6.6)

where ri j is the distance between two particles i and j. The effective Born radius α i indicates how deep

an atom is buried inside a molecule or a protein [OBC04; OBC00], and can be computed following

Onufriev, Bashford, and Case [OBC00; OBC04; Ber+20]. The GB method treats the solvent as

a continuum, which can result in lower accuracy compared to simulation models that incorporate

explicit solvent molecules. Additionally, the GB method’s performance may vary depending on the

system being studied, such as underestimating α i for atoms deeply embedded within macro-molecules

[OBC04]. However, since the free energies of binding are calculated for the same receptor in the

present problem, a qualitatively accurate relative comparison can be expected.

70 6 Language Model–based Evolutionary Approach

The entropy term in Eq. (6.3) was estimated using Schlitter’s quasi-harmonic approach [Sch93],

which provides an upper bound to the entropy as

S ≲
1
2

kB lndet

[
I+

kBT ec
2

h̄2 Mσσσ

]
, (6.7)

where I is the identity matrix and h̄ represents the reduced Planck’s constant. The matrix M contains

the atomic masses of the subsystem on its diagonal and is zero elsewhere. The covariance matrix σσσ is

obtained from the MD trajectory, encompassing the 3N Cartesian coordinates describing the atoms in

the given subsystem:

σσσ i j = ⟨(ξi−⟨ξi⟩)(ξ j−⟨ξ j⟩)⟩, (6.8)

where ξi represents the x-, y-, or z-coordinate of an atom. For practical entropy calculations of the

receptor, it is convenient to consider approximately 100 non-hydrogen atoms surrounding the ligand,

as the inclusion of further atoms makes the calculation computationally too expensive.

The AI-MD approach, although applicable to various systems, was demonstrated using Mpro from

SARS-CoV-2 as a case study. The specific details of the conducted MD simulations are as follows. The

MD simulations were initiated using the ligands with the highest fitness scores designed from EMGA.

Hydrogen atoms were incorporated into the ligands using the Open Babel package [OBo+11] at a pH

value of 7.4. The addition was applied to the poses generated by QuickVina 2. Subsequently, the ligand

structures underwent minimization using the conjugate gradient algorithm until a convergence criterion

of 10−6 was met. For the simulations involving the protein-ligand complex, the minimized ligand

structure was reintegrated into the receptor in the pose obtained through docking. The Mpro protein

was modeled using the Amber ff14SB force field [Tia+20], while the ligands were modeled using

the general Amber force field [Wan+04]. The force fields were prepared using AmberTools [Cas+].

NAMD 2.14 [Phi+05; Phi+20], along with its generalized Born implicit solvent (GBIS) functionality,

which provides solvation free energy and electrostatic energy output, was employed to conduct the

simulations. The simulation analysis was carried out using the MDAnalysis python library [Mic+11].

In each simulation for L, R, and C, a total of 10000 minimization steps were performed, followed by

a 50 ns simulation in implicit solvent. The time step used was 1 fs. For the calculation of van der Waals

(vdW) and short-range electrostatic interactions in the presence of GBIS, a cutoff distance of 16 Å with

a switching distance of 15 Å was employed, as recommended in the NAMD user guide [Ber+20]. To

maintain a constant temperature of 310 K throughout the simulations, the Langevin thermostat [Brü92]

was utilized. A damping coefficient of 5/ps was applied in the Langevin thermostat scheme.

6.3 Results and Discussion

The AI-MD algorithm described above, was used to generate and select potent drug molecules. The

method was applied as an illustrative case study to Mpro of SARS-CoV-2. In the following the results

of EMGA are presented. The 21 most promising molecules were selected and further analyzed with a

MD simulation.

6.3 Results and Discussion 71

6.3.1 Evolutionary Molecule Generation Algorithm

Figure 6.5 shows fitness score of the best performing individual in each generation. It is calculated

over 15 runs of EMGA and therefore shows the mean value and the standard deviation. A low fitness

score indicates for a more suitable inhibitor of Mpro. The plot demonstrates the optimization process of

EMGA, which led to the improvement of the initial individuals. However, this optimization progress

reached a point of stagnation after approximately 70 generations, with the best performing molecule

achieving a fitness score of 0.225. In the later generations, notable advancements were observed

in terms of metrics, specifically for BA (−11.8 kcal/mol), QED (0.954), NP (0.372), and SA (1.0).

Throughout the course of the 15 independent runs of EMGA, a total of 120300 molecules were

generated and analyzed.

0 20 40 60 80

0.25

0.3

0.35

0.4

0.45

generation

fit
ne

ss

Figure 6.5: Mean values and standard deviations of the fitness scores for the best performing
individual in each generation were calculated over 15 runs of EMGA. Note that
lower fitness scores are indicative of more suitable inhibitors of Mpro.

To increase the number of available molecules for subsequent MD simulations, a final run of

EMGA was executed with an increase in both µ and λ values to 50 and 300, respectively. For a

comprehensive record of all 144350 generated molecules and their corresponding metrics, please refer

to the supporting information of [Ele+22].

Among the 144350 generated molecules, a subset of the top 200 molecules was selected based on

their fitness scores. From this subset, 21 molecules were hand-picked based on the validity of their

molecular structures. Figure 6.6 showcases these molecules selection along with their respective spider

charts, which visualize the five metrics. Additionally, Table C.1 in the appendix provides the associated

SMILES strings and metric values of these molecules.

The best performing molecules generated by EMGA exhibit notable structural patterns. These

patterns include ring-based structures, particularly nitrogen-based heterocycles like the six-membered

pyridine and pyridazine, as well as the seven-membered azepine and diazepine rings. These ring

structures seem to contribute to ligand stabilization and are advantageous for protease inhibition.

Furthermore, the generated ligands feature functional groups such as fluoride and cyanide, as well as

oxygen-based groups including carbonyl, carbonamide, and hydroxyl groups. However, carboxylate

ester groups were found infrequently. These groups are known to act as electron donors, facilitating the

72 6 Language Model–based Evolutionary Approach

formation of hydrogen bonds that enhance the BA between the ligand and the Mpro. Similar structural

patterns have been observed and discussed in previous studies [MDJ21; Sha+20].

SA

QED

NP

TF

BA

N

O O
N

N

OH

(a) Lig1, fitness = 0.270

SA

QED

NP

TF

BA

N
N

N
N

N
N

N
H

O

NH

O

N

(b) Lig2, fitness = 0.275

SA

QED

NP

TF

BA

F

F

H
N

O

H
N

N
O

(c) Lig3, fitness = 0.257

SA

QED

NP

TF

BA

N

F

O

N
H O

F

N
F

(d) Lig4, fitness = 0.246

SA

QED

NP

TF

BA

N

F

N
H O

F

NH2 F

(e) Lig5, fitness = 0.246

SA

QED

NP

TF

BA

N F
H
N

O

F

N

(f) Lig6, fitness = 0.264

SA

QED

NP

TF

BA

N
N

N
N

N
N

N
H

O

O

N

(g) Lig7, fitness = 0.296

SA

QED

NP

TF

BA

N
N

N
N

N N

N
H

O

NH

O

N

(h) Lig8, fitness = 0.460

SA

QED

NP

TF

BA

NF

F

O
N
N

OH

O

(i) Lig9, fitness = 0.266

SA

QED

NP

TF

BA

F

N

N

OH

ON

N

(j) Lig10, fitness = 0.263

Figure 6.6: Selection of ligands created by EMGA. The spider charts show how well the
molecules perform with respect to the five metrics. The best values are on the edge
of the spider chart and the worst values are in the center. (to be continued)

6.3 Results and Discussion 73

SA

QED

NP

TF

BA

F

O
O

H
N O

N

FN

F

(k) Lig11, fitness = 0.263

SA

QED

NP

TF

BA

N

F
N

N
H

O

F

F

(l) Lig12, fitness = 0.251

SA

QED

NP

TF

BA

F

F

O

N
H

O

F

N

F

(m) Lig13, fitness = 0.250

SA

QED

NP

TF

BA

F
F

O

NH O

FN

F

(n) Lig14, fitness = 0.439

SA

QED

NP

TF

BA O

O

N
H O

OH

F

N
F

(o) Lig15, fitness = 0.270

SA

QED

NP

TF

BA

O O

H
N O

FN

F

(p) Lig16, fitness = 0.260

SA

QED

NP

TF

BA O

O

N
H O

F

N
F

(q) Lig17, fitness = 0.254

SA

QED

NP

TF

BA

F
F

O

NH

O

N

FN

F

(r) Lig18, fitness = 0.459

SA

QED

NP

TF

BA

F F

O

H
N

H
N O

FN

F

(s) Lig19, fitness = 0.317

SA

QED

NP

TF

BA

N

F

O

O

NH

O

F

N

F

(t) Lig20, fitness = 0.266

SA

QED

NP

TF

BA

O

O

O

N H

O

F

N

F

(u) Lig21, fitness = 0.269

Figure 6.6: Selection of ligands created by EMGA. The spider charts show how well the
molecules perform with respect to the five metrics. The best values are on the edge
of the spider chart and the worst values are in the center. (cont.)

74 6 Language Model–based Evolutionary Approach

6.3.2 Molecular Dynamics

The 21 ligands previously selected (see Table C.1) on the basis of EMGA are now evaluated in more

detail with respect to their binding to the protease enzyme. To do this, a series of simulations are

carried out. Finally, the formulae described in Section 6.2 to calculate the binding free energies. In this

way, it can be determined whether the ligand would hold the desired position or move away from it

over time.

First, a simulation is performed for the empty receptor without a ligand. In addition, one simulation

is run for each ligand and each ligand-receptor complex. This results in 43 simulation runs. Although

multiple replicates of the simulation would be useful for more specific biophysical applications based

on the proposed methodology, only the methodology will be presented here, and therefore replicates

were not performed. In addition, it should be noted that the MD simulation is very computationally

time-consuming. It takes 2 to 3 weeks on the high performance cluster (HPC) of the university to run a

simulation.

To check if a ligand stays at the desired position – the Mpro binding site – the center of mass (COM)

distance between the ligand and the binding site is calculated during the complex simulation. The Mpro

binding site is shown in Fig. 6.7.

Figure 6.7: Binding site of Mpro defined by
the labeled residues [Dai+20]
with Lig19 in its initial bound
pose illustrated in gray.
[Ele+22]

Figure 6.8: Position of Lig19 in Mpro after 0 ns (green), 20 ns (yel-
low), 25 ns (orange), and 50 ns (red) of simulation.
[Ele+22]

The average COM distances during the last 10 ns of the 50 ns simulations are listed, along with other

values that will be described later, in Table 6.1. The ligands with an average COM distance above 7 Å

are discarded, as it indicates that these ligands leave the initial binding site. The COM distances of the

affected ligands (Lig3, Lig4, Lig16, Lig19, Lig20, and Lig21) that drift away during the simulation are

shown in Fig. 6.9 along the time course. To illustrate the analysis of the MD simulations, the position

of one of these ligands, Lig19, is shown at different time instances in Fig. 6.8. The remaining ligands

have a COM distance value in the range 2.5 Å to 7 Å and are therefore candidates for the time being,

but will need to be investigated below using further criteria.

6.3 Results and Discussion 75

Table 6.1: The averaged values of center of mass (COM), root mean square displacement
(RMSD), and root means square fluctuations (RMSF) for the 21 ligands are calculated
for different time intervals within the complex simulations. During the last 10 ns
of the simulations the COM distances are measured. The average RMSD values
of the ligands are calculated based the last 30 ns the simulations with the protein
backbone aligned with itself. The avg50 RMSF is averaged for all atoms in the
ligands throughout the 50 ns simulations. Ligands that exhibit high COM and RMSD
values are identified and marked in red, indicating that these ligands are discarded
from further analysis. [Ele+22]

Ligand avg10 COM (Å) avg30 RMSD (Å) avg50 RMSF (Å)

Lig1 4.82 7.66 1.37
Lig2 3.83 7.80 1.05
Lig3 12.43 14.05 0.99
Lig4 9.08 6.40 1.03
Lig5 6.15 6.90 1.15
Lig6 4.70 6.46 0.64
Lig7 4.75 4.85 0.51
Lig8 5.00 9.13 1.07
Lig9 5.87 7.17 0.39
Lig10 6.20 8.59 0.63
Lig11 4.23 5.76 1.32
Lig12 6.82 10.44 1.34
Lig13 5.04 3.68 0.85
Lig14 2.62 7.67 1.18
Lig15 4.85 6.57 1.10
Lig16 7.33 9.95 0.83
Lig17 5.24 7.56 0.45
Lig18 5.55 7.19 1.11
Lig19 13.28 13.42 1.15
Lig20 7.27 9.50 1.54
Lig21 7.93 7.15 0.71

simulation time (ns)

C
O

M
di

st
an

ce
(Å

)

Figure 6.9: Time evolution of the center of mass (COM) distance between the Mpro binding site
and the ligands that drifted away from the binding site during the ligand-receptor
complex simulations. Each data point was averaged over a time window of 2.5 ps.
[Ele+22]

76 6 Language Model–based Evolutionary Approach

So far, only the distance between the center of mass of the ligand and the binding site was taken into

account. However, for a stable bond it is also important to consider whether the ligand itself is moving,

e.g., by rotation. To measure the stability of the molecule within the binding pocket, the RMSD is

calculated. This considers the positional changes of all atoms of the molecule and is defined as:

RMSD(t) =

√
1

Na

Na

∑
i=1
∥ai,0−ai,t∥2, (6.9)

where Na is the number of atoms in a ligand and ai,t is the position of the ith atom at time t. For

this purpose, the positions of the backbone atoms in the course of time are each compared with their

initial position at time t = 0 on the basis of their Euclidean distance. The RMSD aggregates this for a

given time point t to a single value. Figure 6.10 shows the RMSD of the 21 analyzed ligands over the

simulation time.

simulation time (ns)

R
M

SD
(Å

)

Figure 6.10: Root mean square displacement (RMSD) of the simulated ligands. The RMSD is
calculated based on a trajectory in which the protein backbone was aligned with
itself. [Ele+22]

Table 6.1 shows the averaged RMSD over the last 30 ns of simulation Y. Ligands with a value greater

than 7 Å have not bound to a specific site in the binding pocket and are therefore marked in red in

the table (Lig1, Lig2, Lig8, Lig9, Lig10, Lig12, Lig14, Lig17, and Lig18). Exemplary of these ligands

with a high RMSD value, the motion of Lig8 is shown in Fig. 6.11B. Here it can be seen that although

Lig8 moves only slightly away from the pocket overall, resulting in acceptable COM value, it makes

a rotational movement, resulting in the increased RMSD value. Due to the stronger motion, it can

be assumed that this ligand will not bind well to the pocket and thus is not a good drug candidate.

Therefore, for such ligands, the Eqs. (6.2) and (6.3) cannot be used as an estimate of the binding free

energy. Therefore, the ligands with high RMSD value that have already been listed will not be further

considered in the following analysis. Lig13 with a RMSD value below 4 Å serves as an example of a

good ligand that is likely to bind stable to the pocket (see Fig. 6.11A).

While the RMSD calculates the relative position change to the reference point at t = 0, it is also of

interest to see how much the individual atoms of the ligand fluctuate over the course of the simulation.

6.3 Results and Discussion 77

Figure 6.11: Position and orientation of Lig13 (A) and Lig8 (B) in Mpro after 0 ns (green), 15 ns
(yellow), 30 ns (orange), and 45 ns (red) of simulation. Based on the stronger
motion of Lig8, which is also reflected in its large averaged RMSD value of 9.13,
it can be assumed that this ligand does not reach a proper binding state. [Ele+22]

For this, the position of an atom averaged over time ⟨ai⟩ is used as the reference point. Then the

squared distance of the atom to its reference position, also averaged over time, is determined. The root

of this then gives the root means square fluctuations (RMSF) for atom i:

RMSF(i) =
√〈
∥ai−⟨ai⟩∥2

〉
. (6.10)

In Table 6.1, RMSF averaged over the atoms of each ligand is given. To average over time, the total

simulation time of 50 ns is used. Of the ligands not already excluded, Lig5, Lig11, and Lig15 have in

the overall comparison relatively high values ranging fom 1.10 Å to 1.32 Å, while the remaining Lig6,

Lig7, and Lig13 have a low mean RMSD in the range 0.51 Å to 0.85 Å.

Binding free enery estimates were calculated for the remaining ligands Lig5, Lig6, Lig7, Lig11, Lig13,

and Lig15 that have COM distances and RMSD values below 7 Å. The calculation uses Eqs. (6.2)

and (6.3) based on the last 30 ns of the simulation. From this period 800 frames were extracted and

used for the entropy calculation with Eq. (6.7). Pre-experiments with different numbers of frames have

shown that 800 frames are sufficient to obtain a converged entropy contribution. The resulting binding

free enery estimates are listed in Table 6.2.

Ligands Lig15 and Lig5 exhibit notably higher binding free energy estimates of −23.0 kcal/mol and

−20.8 kcal/mol, respectively, which surpass the third-best ligand, Lig6, by more than twice the energy.

The superior binding free energy values of Lig15 and Lig5 primarily stem from a significant disparity

in the van der Waals (vdW) interactions (a component of EMM in Eq. (6.3)) between the systems with

bound and unbound ligands, amounting to approximately −45 kcal/mol. Since almost no hydrogen

bonds were observed between ligands and receptor, it is clear that the ligand-receptor interactions are

primarily caused by vdW interactions. On the contrary, ligands Lig7 and Lig11 have positive binding

free energy values, indicating that these ligands are unlikely to spontaneously bind to Mpro and would

likely move away from the binding site should the simulations be extended.

The MD simulations have enabled a twofold refinement of the ligand list generated by EMGA,

achieved through dynamic and energetic assessments. As a result of this refined selection process,

two highly promising drug candidates, Lig15 and Lig5, emerged. The logical progression would

78 6 Language Model–based Evolutionary Approach

Table 6.2: Binding free energy estimates, ∆G0, calculated using Eqs. (6.2) and (6.3) and based
on the last 30 ns of the simulations. [Ele+22]

Ligand ∆G0 (kcal/mol)

Lig15 −23.0
Lig5 −20.8
Lig6 −9.5
Lig13 −4.0
Lig7 5.1
Lig11 11.4

involve validating the potential of the identified drugs through wet lab experiments. Nevertheless, it is

important to point out that conducting such experiments is not within the scope of this work.

6.4 Conclusion

In this chapter, a novel drug design workflow was presented. The workflow consists of EMGA –

a combination of EA and LM – as well as MD simulation and analysis of the resulting molecular

candidates. EMGA generates drug candidates similar to the ZINC database and optimizes them

using the five relatively fast to compute metrics BA, SA, QED, NP, and TF. Thus, the much more

time-consuming MD analysis only needs to be performed on a few preselected candidates to evaluate

them with higher accuracy. After EMGA considered several hundred thousand molecules during the

course of the calculations, 21 chemically promising molecules were finally hand-selected from the

top 200 and used for MD analysis. These were further investigated using COM, RMSD, and binding

free energies between the ligands and the binding site, and narrowed down to a few good candidates.

Lig5 and Lig15 are the most promising drug candidates. With the help of the presented method, it is

possible to consider a very large search space and to gradually reduce the set of considered molecules

in order to perform the time-consuming more exact calculations only for a small preselection. The

method has been used here to find a suitable ligand for the Mpro of SARS-CoV-2. However, it could

also be applied to other proteases and viruses. As in the previous chapter, the next logical step would

be an in vitro analysis of the best candidates found.

Although the workflow was demonstrated to generate inhibitors of Mpro, it can be extended to address

various drug discovery challenges. On a methodological level, it may be interesting to dynamically

adjust the rmax and δmax parameters during the evolutionary process. Larger values could provide

the evolutionary algorithm with an additional mechanism for exploring the molecular search space,

while smaller values could help refine molecules that already exhibit promising properties. While

our approach is primarily focused on the early stages of drug discovery, in the future, the promising

candidates discovered could be subjected to in vitro analysis.

Part IV

Visualization

7 Convolutional Self-Organizing Map

Data Science often comprises work with very large data sets, which in turn often consist of high-

dimensional samples. Looking back to Chapter 3, for example, a sample of 19 parameters was taken for

the quarterly company data. A sample that considers the last 10 quarters thus consists of 19 ·10 = 190

features. If someone would like to view and compare a multitude of these 190-dimensional samples,

this should be in a human-interpretable 2- or 3-dimensional representation. With a good dimensionality

reduction, the similarities of individual samples to each other should be preserved, i.e., samples that

are similar in high dimensional space should also be similar in low dimensional space and vice versa.

Another simpler example of high-dimensional data, is image data. An RGB color image has three

color values for each pixel. Even at low resolutions, a single image already consists of thousands of

features.

The SOMs introduced by Teuvo Kohonen [Koh82] offer an option for visualization. They represent

high-dimensional data as a 2- or 3-dimensional map. However, the results depend strongly on the

features of the input data. High-dimensional data from raw images given into a SOM does not

necessarily lead to good results for certain use cases. Two images of different objects that happen to

both have the same color would have high similarity when looking at the raw data, while same objects

of different color would be dissimilar. Therefore, in this chapter a method will be developed that takes

into account semantic information in addition to raw color information.

In the field of image recognition, CNNs have been successfully used for quite some time [LeC+89;

KSH17]. The convolutional layer, which is the main component, is able to recognize patterns in the

data and output higher-order features. This fact is exploited by the ConvSOM introduced in this chapter

by using the output of convolutional layers of pre-trained CNNs to serve as higher-order features for

the SOM training process. This is expected to yield semantically better SOM results.

This chapter is organized as follows. Section 7.1 provides an overview of related work. Afterwards,

the basic SOM (Section 7.2) and the CNN (Section 7.3) are presented. Section 7.4 introduces the

ConvSOM while Section 7.5 presents relevant quality metrics for dimensionality reduction. The

experimental analysis of the ConvSOM is conducted in Section 7.7. Finally, the outcomes are

discussed in Section 7.9.

Parts of this chapter are based on the following published paper:

Lars Elend and Oliver Kramer. “Self-Organizing Maps with Convolutional Layers”. In: Advances

in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization -

Proceedings of the 13th International Workshop, WSOM+ 2019, Barcelona, Spain, June 26-28,

2019. Ed. by Alfredo Vellido, Karina Gibert, Cecilio Angulo, and José David Martín-Guerrero.

Vol. 976. Advances in Intelligent Systems and Computing. Springer, 2019, pp. 23–32. DOI:

10.1007/978-3-030-19642-4_3

https://doi.org/10.1007/978-3-030-19642-4_3

82 7 Convolutional Self-Organizing Map

7.1 Related Work

The concept of SOMs was developed by Kohonen [Koh82] in the 1980s and is presented in detail

in the following Section 7.2. Normally, the input samples of the SOM are normalized. Feature

transformations can be utilized, such as the kernel SOM’s feature transformation, which employs

kernel functions to map patterns into a feature space [MF00; And02]. A demonstration of the

effectiveness of kernel SOMs is in its application in the detection of interturn short-circuit faults in a

three-phase converter-fed induction motor [CBM17].

Kutics, O’Connell, and Nakagawa [KON13] present the layered SOM for segment-based image

classification. They choose a pertinent segment, feed it through diverse image descriptors, and integrate

outcomes within interconnected layers. Schleif [Sch17] blends transformed Fourier features with

kernelized matrix learning vector quantization. Miikkulainen [Mii90] employs hierarchical feature

maps for script recognition.

Villmann et al. [Vil+17] explore the combination of multilayer feedforward networks and learning

vector quantizers, utilizing the networks as adaptive filters. This approach does not use convolutional

layers and SOMs. Dozono, Niina, and Araki [DNA16] examine the mix of convolutional layers and

SOMs, though with vague description and limited experimental backing. In contrast to our approach,

they route the SOM’s output to a convolutional layer. A related method by Platon, Zehraoui, and

Tahi uses a SOM as preprocessing for supervised learning, facilitating the discovery of new classes

[PZT17]. Wang et al. [Wan+17] use a combination of CNN and SOM for monitored quantization to

solve the approximate nearest neighbor search issue. Incorporation with a denoising autoencoder is

proposed by Ferles, Papanikolaou, and Naidoo [FPN18].

Recent work also presents architectural combinations of CNNs and SOMs, although these also differ

from the one presented here. Aly and Almotairi [AA20] describe deep convolutional self-organizing

maps (DCSOM). Here, 3-dimensional SOMs are integrated as layers into a larger architecture. Sakkari

and Zaied [SZ20] presents the unsupervised deep self-organizing map (UDSOM) algorithm for feature

extraction.

7.2 Self-Organizing Map

The self-organizing map (SOM) is a biologically inspired neural model using unsupervised learning.

It is suitable for visualization of high-dimensional data sets on a 2- or 3-dimensinal map. This map

is formed by neurons ni, each occupying a fixed position pi ∈ Rk on it. Usually a 2-dimensional

lattice arrangement is chosen, i.e., k = 2. As input, the SOM receives data from a training set X =

{x1, . . . ,xN}, consisting of N samples xi ∈ Rm. Each neuron has an associated weight vector wi ∈ Rm

with the same dimensionality m as the input data. Initially, all these weights wi are set to random

values of a uniform distribution.

During the learning process, all samples are presented to the SOM several times in succession. The

SOM is then supposed to recognize patterns that the samples have in common and use this for their

subsequent arrangement. To accomplish this, for each given x, initially the best matching unit (BMU)

or winner neuron must be found. This is the neuron whose weight is most similar to x in terms of

7.2 Self-Organizing Map 83

Euclidean distance. The weight and position of BMU for a given sample x are each marked with an

asterisk and are defined as follows:

w∗(x) := wη , (7.1)

p∗(x) := pη , (7.2)

where

η = argmin
j
∥x−w j∥2. (7.3)

In the update step, the weight of the winning neuron and, in a weakened form, the weights of

the neighboring neurons are pulled in the direction of the sample. The strength of the adjustment is

determined by the neighborhood function h(pi,p j,σ) ∈ [0,1] which measures the connection between

two neurons ni and n j. For low distances it should give high values and values close to zero for

distances outside the radius σ , i.e., ∥pi−p j∥2 > σ . Therefore, define the neighborhood function as:

h(pi,p j,σ) := e−
∥pi−p j∥2

σ . (7.4)

On this basis, each weight w j is adjusted to the SOM:

w′j := w j +α ·h(p∗(x),p j,σ) · (x−w j), (7.5)

with learning rate α ∈ R+. The BMU selection and the update step are iteratively repeated for each

sample shown. The two endogenous parameters α and σ , which influence the strength and the

adjustments, are usually reduced during the learning process.

In Fig. 7.1 this update step is illustrated by an example. Here, the winning neuron n8 was determined.

The strength of the adaptation depending on the neighborhood is shown in color (from red to blue).

n1 n2 n3 n4 n5

n6 n7 n8 n9 n10

n11 n12 n13 n14 n15

n16 n17 n18 n19 n20

5

4

Figure 7.1: Update step of an example SOM of size 4×5. The BMU, i.e., the neuron whose
weight w j is closest to the input vector x (7.1), is selected – n8 in this case. The
BMU and it’s neighborhood is pulled into the direction of the input, depending on
the neighborhood function h (7.4) and the learning rate α (7.5).

84 7 Convolutional Self-Organizing Map

Usually the SOM receives only single samples for learning one by one. In order to accelerate this

process, it is possible to consider batch-wise samples. The runtime is accelerated by the parallel

calculations. This is done by adapting the Eq. (7.5) so that a subset of samples X ′ ⊆X is considered:

w′j := w j +α · ∑x∈X ′ h(p∗(x),p j,σ) · (x−w j)

∑x∈X ′ h(p∗(x),p j,σ)
. (7.6)

The sum of the differences weighted by the neighborhood function, is divided by the total influence of

the neighborhood function for the respective neuron n j. This product is then scaled by the learning

rate α and added to the previous weight w j.

The divisor of Eq. (7.6) must contain the sum of the neighborhood influences and not |X ′|, so that the

result resembles an iterative execution and so that samples with a distant BMU have a correspondingly

small influence on the weight adjustment. Note that this variant is slightly different from already

existing batch SOM variants, because instead of subsets, the whole set of samples X is considered at

the same time [Koh95; Wit+17].

7.3 Convolutional Neural Network

The convolutional neural network (CNN) is nature inspired by the receptive fields in the visual cortex

and especially used in the field of image recognition. It works with 2-dimensional input data. In

contrast to the simple fully connected ANN, only partial areas of the data are considered with so-called

filters. However, these filters are applied in parallel to the entire data by shifting. Thus here the same

weights are used several times. This is particularly advantageous for large images in order to reduce the

number of weights required. These filters are part of a convolutional layer, which is the name-giving

main component of the CNN. Based on the filters beeing shifted over the data, the Frobenius scalar

product is calculated, i.e., the sum of the element-wise products:

ỹi, j =
m−1

∑
k=0

m−1

∑
ℓ=0

w̃k,ℓ · x̃i+k, j+ℓ, (7.7)

where m is the size of the filter matrix W̃ = (w̃i, j), which is usually quadratic, X̃ = (x̃i, j) is the input,

and Ỹ = (ỹi, j) is the result of the convolution.

Figure 7.2 shows a minimal example of a CNN and shows the result of the operation described

above. There, e.g., the 1 at the top right of Res. Filter 1 is obtained by applying the formula to the four

elements at the top right of the input and filter 1: 0 ·0+0 ·1+1 ·1+0 ·0 = 1.

In this example, the dimensionality of the matrix changes. The resulting matrix size is influenced

by filter size, stride and padding. The filter size is usually chosen as i× i where i is odd. The stride

specifies the step size with which the filters are moved over the input. In the example, stride = 1 was

chosen. Padding allows keeping an unchanged dimensionality by adding zeros around the input (zero

padding). The padding size is usually filter size−1
2 . Thus, for a 5×5 filter, zero padding of 2 could be

used. This way, the edges and corners of the input are equally considered by the filter as the middle

elements.

7.4 Convolutional Self-Organizing Map 85

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

Input

convolution

0 1
1 0

Filter 1 0 2 0 1
2 0 1 0
0 1 0 2
1 0 2 0

Res. Filter 1

1 0
0 1

Filter 2

1 0 2 0
0 1 0 2
2 0 1 0
0 2 0 1

Res. Filter 2

max pooling

2 1
1 2

Pool 1

1 2
2 1

Pool 2

fully connected

fc

0.03
0.91
0.05

...

Figure 7.2: CNN example. This minimal example illustrates the main components of a CNN.
The input data is first examined in the context of the convolutional layer with
different filters by performing an element-wise matrix multiplication. The result
can be seen under Res. filter. Afterwards a max pooling is performed. Usually a
CNN contains a multiple repetition of these two layers. Finally the values are put
into a fully connected layer to get a result vector.

A convolutional layer is usually followed by a pooling layer to reduce the amount of data. In pooling,

a certain subrange is considered and then the pooling operation is applied to it, e.g., determine the

maximum or the average. In Fig. 7.2, max pooling is applied with size 2×2, i.e., the maximum of

those four values is selected. By connecting convolutional and pooling layers in series multiple times,

higher-level features can be detected. Here usually ReLU is used as an activation function and dropout

to avoid overfitting. Dropout means that random neurons are ignored during each training step. At

the end, a fully connected layer is usually used, where its output with a softmax function leads to a

one-hot coding of the different classes. The softmax function fs is a normalized exponential function

that ensures that the sum of the output values equals 1, and is defined as follows:

fs : RC→{z ∈ RC | zi ≥ 0,
C

∑
i=1

zi = 1}, (7.8)

fs(z) j =
ez j

∑
C
i=1 ezi

. (7.9)

Numerous CNN variants have been proposed in the last decade, e.g., ResNet [He+16] or the

Squeeze-and-excitation network [HSS18].

7.4 Convolutional Self-Organizing Map

The convolutional self-organizing map (ConvSOM) is a combination of the two previously presented

methods: CNN and SOM. Since the C in the abbreviation CSOM already has many different mean-

ings: concurrent [NR02; Nea+14], continuous [HD05], complex-valued [OAH14], cognition-based

86 7 Convolutional Self-Organizing Map

[Sun+11], contextual [Voe00], and community [CBA15], the approach presented here is more uniquely

labeled as ConvSOM.

The approach requires a CNN pre-trained on the same or similar data with (semi-)supervised

learning, whose weights are not further adjusted in the following. Figure 7.3 shows the structure of the

ConvSOM architecture.

save

CNN

Layer 1

Layer 2

. . .

Layer n

Image Data

MUX

select

SOM

Original Errors

Kruskal Shepard Error (EKSN)

Feature Errors

Kruskal Shepard Error (ÊKSN)

Label Errors

Cross Entropy (HSOM)

normalized minor class
occurrence (NMCO)

class scatter index (CSI)

Image Label

Figure 7.3: Structure of the ConvSOM and the associated quality measures. The intermediate
output of a particular layer of the CNN can serve as input of the SOM. For com-
parison purposes, the original image data can also be used as input. The arrows
indicate the information flow and show in particular which data are considered
for the different error metrics (original, feature and label). Note that the image
labels are only used for the label errors, but the ConvSOM procedure itself works
unsupervised.

The ConvSOM is only trained with an independent data set that was not used for training the CNN.

After training the CNN and freezing its weights, the raw input samples x ∈ Rh̄×w̄×c̄, images of size

h̄× w̄ and c̄ color channels, are given into the CNN. For the SOM, however, the input data is flattened

to x ∈Rm. Patterns x̂i ∈Rm̂ resulting from the intermediate layers of the CNN can serve as input to the

SOM. The multiplexer (MUX) allows the selection of any input for the SOM and thus different training

modes for the ConvSOM. The MUX and quality measures are not used for the training process itself.

The error metrics seen on the right side of Fig. 7.3, are used to evaluate the results and are presented in

more detail in the following section.

In order to perform the calculations quickly and efficiently, the ConvSOM including metrics was

fully developed with TensorFlow for the GPU. The metrics presented here were also later implemented

in a survey paper by Forest et al. on SOM metrics [For+20].

7.5 Quality Metrics

To measure the quality of the SOM output, we use the Kruskal Shepard error in two functions on

the one hand and three newly developed quality metrics on the other hand: cross entropy, minor

class occurrence, and class scatter index. Traditional SOM error metrics such as topographic and

7.5 Quality Metrics 87

quantization errors are not suitable for assessing feature-transformation-based SOMs because they rely

on comparing neighborhoods using standard metrics like Euclidean distances. However, the assertion

that preserving distances and neighborhoods from the original data space is universally desirable is not

valid. In contrast, meaningful maps should position samples with similar labels close to each other and

keep samples with distinct semantic content at a distance from each other on the map.

In previous Fig. 7.3, it can be seen that these quality metrics are divided into three categories and

which information is considered for them. The original errors compare the output to the original

input data, which is the raw image data. The feature errors evaluate the SOM on its own, using the

SOM input as a reference. The label errors use the label information of the samples to evaluate the

result. Although this label information is not available for the unsupervised training process of the

SOM, it can be used in the context of labeled benchmark problems to evaluate the outcome of the

ConvSOM. Thus, the ConvSOM would only train with the samples x1, . . . ,xN , but for the evaluation,

the associated labels y1, . . . ,yN are also used at the end.

7.5.1 Kruskal Shepard Error

The Kruskal Shepard error EKS is used in multidimensional scaling as an error measure [Kru64]. It

measures how well the distance information of the data is preserved in the low-dimensional space and

is defined as:

EKS := ∥Ddata−DSOM∥2
F , (7.10)

where ∥ · ∥2
F is the squared Frobenius norm, Ddata is the normalized distance matrix in data space,

and DSOM is the normalized distance matrix on the map. The distance matrices contain the pairwise

distances between the data points or the positions on the SOM. The normalized matrices are scaled to

the range [0,1] by dividing by the largest value [MK17].

The EKS does not consider semantic information, but it allows evaluating how well the SOM is able

to generate the low dimensional representation based on the convolutional layer features x̂. Since the

size of the distance matrices depends on the number of samples D ∈ RN×N and thus the EKS would

tend to become larger as the number of samples increases, it makes sense to normalize this to the

range [0,1] as well. To do this, we determine the theoretical maximum of EKS, which occurs when all

pairwise distance values are maximum (i.e., 1). The result is max(EKS) = N2−N, since there must be

zeros on the diagonal. Therefore, we define the normalized version EKSN as a function of samples as:

EKSN :=
EKS

N2−N
. (7.11)

Now EKSN = 0 would mean that all distances were perfectly transferred into the low-dimensional

space. As mentioned before, the Kruskal Shepard error is used twice for different inputs (see Fig. 7.3).

Besides the output of the SOM, the original samples x are considered for ÊKSN and the transformed

features x̂ of the convolutional layer are considered for ÊKSN.

88 7 Convolutional Self-Organizing Map

7.5.2 Cross Entropy

Cross entropy, which is otherwise also used to evaluate a classification, is utilized as the first label-

based metric for evaluating the ConvSOM results. However, the cross entropy calculation needs to

be somewhat adapted for ConvSOM, since there are no fixed target values for the individual neurons.

The reason for this is the random starting distribution and the random order of the images considered.

Therefore the maps are very different, but may nevertheless be equivalent. Thus, no fixed expected

distribution can be given. Instead, we use the most frequent assigned class of a neuron as the target

class. For this purpose, we count for each label the samples for which the considered neuron ni is

determined as BMU: To do so, we count the samples of each label for which the neuron ni is determined

to be BMU:

ci = (ci,1, . . . ,ci,C), (7.12)

ci, j = |{xk | ∀k ∈ N,1≤ k ≤ N : yk = j∧η = i}| ∀i, j ∈ N,1≤ j ≤C, (7.13)

where C is the number of classes and η as defined in Eq. (7.3).

The cross entropy of the SOM is calculated by summing the relative frequencies the expected most

common classes calculated as follows:

HSOM := ∑
i
− log

max j∈C(ci, j)

∑ j∈C(ci, j)
, (7.14)

where C = {1, . . . ,C} is the set of classes. If there are two classes, both of which occur most often, any

one of them can be chosen without affecting the result. Ideally, if only samples of the same class are

assigned for a neuron at a time, HSOM = 0. As for all quality metrics presented here, low is better than

high. This metric would tend to benefit when there are many neurons and few samples.

7.5.3 Minor Class Occurrence

We assume that ideally there should be as little overlap as possible of different classes in individual

neurons. We therefore introduce minor class occurence (MCO) as another new metric to evaluate this.

For each neuron, we count the number of patterns whose labels do not belong to the main class:

MCO := ∑
i

(
∑
j∈C

(ci, j)−max
k∈C

(ci,k)
)
. (7.15)

This metric closely resembles cross-entropy but does not differentiate based on error distribution. To

facilitate comparisons across varying numbers of samples N, normalization results in the normalized

minor class occurrence (NMCO):

NMCO :=
MCO

N
. (7.16)

7.5.4 Class Scatter Index

The last metric we introduce is class scatter index (CSI). It is intended to evaluate the goal that labels

occur in as few clusters as possible and are not scattered across the map. This is done by determining

7.6 Visualization 89

the number of clusters for each class. Here, a cluster is defined as follows: If a class k ∈ C is considered,

two directly adjacent neurons ni and n j belong to the same cluster if and only if they have been assigned

samples with the same class k, i.e., ∥pi−p j∥2 ≤ 1∧ci,k > 0∧c j,k > 0. For each class k, the number of

clusters sk is now calculated. The CSI is then the mean number of clusters on the map for all classes:

CSI :=
1
C ∑

k∈C
sk. (7.17)

7.6 Visualization

Three different visualization types of SOM results were used for the experiments. They provide a more

direct and simple view of the map and can also be used to compare the progression of training across

epochs to see if positive evolution is occurring.

It is often easiest to directly output the weight vectors of the neurons as images in a weightage plot.

In Fig. 7.4a this was done for a 20×20 SOM which was trained with MNIST. The digits visible there

are usually not to be found in the same way in the data set. Here, for example, the transition from the

upright 1 to the oblique 1 and to the 7 is clearly visible from the bottom left to the middle right.

(a) Weightage plot (b) Sample class plot

Figure 7.4: Visualization plots for SOM results. Both plots show the same 20×20 SOM trained
on a subset of MNIST. A legend for the sample class plot can be found in Fig. 7.5.

However, if the input data and thus the weight vectors are not directly interpretable as a meaningful

image, as is the case with ConvSOM, the weight plot is not as suitable. Instead, the closest sample

from the data set is then shown as the representative for each neuron. This representation method is

used in the following section in Fig. 7.7.

To provide an overview of the distribution of all used samples and their classes on the map, we

developed the sample class plot. Within each neuron, each class is assigned a color and position, as

shown in Fig. 7.5. In this way, it is possible to show which classes of samples have been assigned to

that neuron. The number of assigned samples is indicated by the color intensity. If the position for

90 7 Convolutional Self-Organizing Map

Figure 7.5: Legend of the sample class plot. Each class has it’s own color and position. The
color intensity indicates, how many samples of the class are assigned to a neuron.

class 0 is white, no sample of this class has been assigned to the neuron; for light red, few, and for

red, many. The color scaling is adjusted relative to the number of samples. The result can be seen in

Fig. 7.4b. Especially at the transition points between the classes, several points per neuron can often

be seen. A completely white field here means that the corresponding neuron was not the BMU for any

sample.

7.7 Experimental Analysis

In this section, ConvSOM is studied experimentally using the two well-known image data sets MNIST

and CIFAR-10. In the following, we first describe the experimental settings (Section 7.7.1). Then, the

results of the quality measures (Section 7.7.2) and visualization (Section 7.7.3) are presented.

7.7.1 Experimental Settings

The MNIST experiments use a CNN with two layers of 16 and 32 kernels, each with a size of 3×3, a

stride of 1, ReLU activation, and non-overlapping 2×2 max pooling. The second layer incorporates

dropout with a rate of 0.25. Subsequently, a dense layer with 128 neurons and ReLU activation is

followed by an output layer utilizing SoftMax with 10 neurons. This network is trained for 100 epochs

using AdaDelta as the optimizer, specifically on the first 10000 samples, and achieves an accuracy rate

of 98.5 % on an independent test set.

In the case of CIFAR-10, a CNN with four convolutional layers is employed, with the first two

layers having 32 filters and the subsequent two layers having 64 filters, all with a 3×3 shape, ReLU

activation, non-overlapping 2× 2 max pooling, and dropout rates of 0.25 for the second and third

layers and 0.5 for the fourth layer. Following the convolutional layers, a dense layer with 512 neurons

and ReLU activation is used, and the output layer employs SoftMax with 10 neurons. This network

achieves an accuracy of 80.5 % when trained for 1000 epochs using RMSProp on the complete data

set.

The 10×10-SOM is trained in batch mode with 100 epochs, a batch size of 100, a learning rate

of α = 0.5 linearly reduced to 0.05, and a neighborhood radius σ gradually reduced from 5.0 to 0.5

during the training process. The ConvSOM is implemented in TensorFlow, while the CNNs are based

on Keras.

7.7 Experimental Analysis 91

7.7.2 Quality Measure Results

We will now compare the ConvSOM with the normal SOM based on the quality metrics introduced in

Section 7.5. Table 7.1 shows the experimental results for the ConvSOM variants (layer 1 to 3) and the

original SOM (orig) for the MNIST data set. Here, different sizes N for the training set were examined,

and 20 replicates were performed for each. It can be observed that the values of ÊKSN and EKSN are

especially for N ∈ {1000,2000} very similar to each other and indicate that the ConvSOM achieves

reasonable results in terms of distance preservation. In the three label metrics: HSOM, NMCO, and

CSI, the ConvSOM achieves much better results. For comparability, note that HSOM increases with N

because, unlike NMCO, this metric is not related to N. N is normalized. The best – i.e., the smallest –

values are bold in the table for each different N.

Table 7.1: ConvSOM on MNIST with 20 repetitions and different training set sizes N. The
mean value is given for each metric. If the standard deviation (SD) is not smaller
than 10−2, it is given in the form mean±SD.

N input ÊKSN EKSN HSOM NMCO CSI

500

orig 0.094 0.094 26.002±1.935 0.180 4.435±0.365
layer 1 0.090 0.093 22.659±1.658 0.154 4.175±0.340
layer 2 0.085 0.095 12.137±1.653 0.077 3.110±0.377
layer 3 0.031 0.097 4.645±1.116 0.023 1.620±0.194

1000

orig 0.230 0.230 27.862±1.650 0.180 4.535±0.292
layer 1 0.229 0.229 25.808±2.023 0.158 4.660±0.244
layer 2 0.234 0.234 15.715±1.383 0.089 3.760±0.235
layer 3 0.237 0.238 7.484±1.198 0.029 1.705±0.190

2000

orig 0.225 0.225 31.106±2.359 0.204 5.380±0.424
layer 1 0.222 0.222 26.240±1.717 0.166 6.045±0.606
layer 2 0.226 0.226 16.534±1.555 0.089 4.885±0.318
layer 3 0.232 0.232 8.735±0.996 0.034 2.360±0.223

The observations described also apply to the CIFAR-10 data set, whose associated experimental

results are presented in Table 7.2. In comparison to MNIST, it can be noted here that all quality

measures perform worse, which is likely due to the higher complexity of the data. However, unlike

MNIST, the values for HSOM, NMCO, and CSI are similar for layer 2 than for orig, while they are

better for layers 1 and 3.

To analyze the CSI a bit more closely, we consider the number of individual classes sk. Figure 7.6

shows box plots for the original SOM and for ConvSOM layer 3 for the two data sets with 500 samples.

The data are also based on the 20 times repetitions of the experiments. The comparison shows that the

CSIs of the ConvSOM, significantly reduces the number of all clusters. This confirms the assumption

that the ConvSOM can produce better maps concerning high-level information. One can also see that

especially in the original SOM some classes are more distributed than others, e.g., in MNIST the digit

8. This indicates that this class in the original representation has many similarities with other classes.

92 7 Convolutional Self-Organizing Map

Table 7.2: ConvSOM on CIFAR-10 with 20 repetitions and different training set sizes N. The
mean value is given for each metric. If the SD is not smaller than 10−2, it is given in
the form mean±SD.

N input ÊKSN EKSN HSOM NMCO CSI

500

orig 0.025 0.025 88.079±2.922 0.571 11.250±0.477
layer 1 0.063 0.039 75.229±2.699 0.514 8.530±0.682
layer 2 0.030 0.050 88.285±2.524 0.578 11.505±0.672
layer 3 0.035 0.046 52.571±3.040 0.381 4.865±0.545

1000

orig 0.216 0.216 102.758±2.059 0.625 6.450±0.556
layer 1 0.214 0.213 84.712±2.798 0.549 7.085±0.488
layer 2 0.213 0.213 106.634±2.280 0.645 6.735±0.621
layer 3 0.201 0.201 56.452±1.578 0.401 3.655±0.488

2000

orig 0.206 0.206 111.509±2.503 0.658 3.540±0.393
layer 1 0.207 0.207 88.246±1.705 0.563 5.500±0.521
layer 2 0.209 0.209 118.471±1.960 0.679 3.315±0.575
layer 3 0.192 0.1925 57.969±1.353 0.413 3.280±0.284

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

(a) Original SOM on MNIST

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

(b) ConvSOM on MNIST (layer 3)

0 1 2 3 4 5 6 7 8 9
0

4

8

12

16

20

(c) Original SOM on CIFAR-10

0 1 2 3 4 5 6 7 8 9
0

4

8

12

16

20

(d) ConvSOM on CIFAR-10 (layer 3)

Figure 7.6: Box-plots of class-wise CSI (sk) of original SOM and ConvSOM on MNIST and
CIFAR-10 with N = 500. Outliers are displayed as circles.

7.7.3 Visualization Results

A visualization of the results for the original SOM and the ConvSOM is shown in Fig. 7.7. After

training was completed, for each neuron ni, the image from the previously unused test data set closest to

the neurons weight was shown: argminx∈X test ∥x−wi∥2. The weights of the SOM cannot be visualized

directly in the ConvSOM because these data are in a different format, which depends on the layers

of the CNN. Figure 7.7 shows that the ConvSOM maps are a broader representation of the different

classes. The ConvSOM tends to have large clusters for each class, instead of several smaller clusters.

This is also consistent with the smaller CSI values that we observed in the previous section.

7.8 DeViSE as Semantic Metric 93

(a) Original SOM (b) ConvSOM (c) Original SOM (d) ConvSOM

Figure 7.7: Comparison of exemplary original SOM and ConvSOM training results on MNIST
(left) and CIFAR-10 (right) with 500 samples. At each neuron location correspond-
ing to a weight w, the closest sample x (image) from the test set is shown.

7.8 DeViSE as Semantic Metric

In some of the metrics presented so far, the image label was used to evaluate the results. Since the

ConvSOM is otherwise an unsupervised method, the question arose whether a suitable metric could

be found that evaluates the semantic coherence of the map without requiring the label. Thus, the

idea was born to develop a semantic metric based on the deep visual-semantic embedding model

(DeViSE) [Fro+13]. DeViSE is able to transform images into a semantically meaningful word vector

representation. To create the word vectors, a LM was trained on a corpus of 5.7 million Wikipedia

articles.

The idea was further explored during the supervision of the master thesis “DeViSE as Semantic

Measure for Convolutional Self-Organizing Maps” by Rina Ferdinand. To use the word vectors for a

metric, we used a formula similar to EKS (Eq. (7.10)):

EDeViSE := ∥Dword_vector−DSOM∥2
F , (7.18)

where Dword_vector is the distance matrix of the word vectors.

Figure 7.8 shows how the ConvSOM architecture was extended with DeViSE and the resulting

semantic error. For the experiments, the two additional larger data sets CIFAR-100 and ImageNet were

used. In the experiments performed, EDeViSE often returned similar values to ÊKSN and EKSN. It is

possible that adjustments to the EDeViSE formula or the other parameters could lead to more meaningful

results.

7.9 Conclusion

In this chapter, the combination of convolutional layers with a SOM – ConvSOM – was presented.

New specialized metrics were developed to evaluate the quality of the results. Experimental analysis

has shown that the high-level features used in ConvSOM lead to better dimension reduction results,

especially with respect to the label-oriented metrics. For example, the reduced CSI shows that the

training process benefits from high-level features. Thus, it is also visible in the visualization that there

94 7 Convolutional Self-Organizing Map

save

CNN

Layer 1

Layer 2

. . .

Layer n

Image Data

MUX

select

SOM

Original Errors

Kruskal Shepard Error (EKSN)

Feature Errors

Kruskal Shepard Error (ÊKSN)

Label Errors

Cross Entropy (HSOM)

normalized minor class
occurrence (NMCO)

class scatter index (CSI)

Image Label

Semantic Errors

DeViSE Error (EDeViSE)Word Vectors

CNN

DeViSE

Figure 7.8: Structure of the ConvSOM (see Fig. 7.3) extended by DeViSE (purple) and semantic
DeViSE error EDeViSE (lower right).

are fewer distributed clusters of the same class in the ConvSOM. The semantic metric EDeViSE allows to

evaluate the results without the label information. Therefore, unsupervised evaluation is also possible.

More data sets could be investigated in the future. In particular, it would be interesting to see how

the ConvSOM can handle larger images with multiple objects per image. Instead of image data, it

would also be possible to visualize the time series data of the financial forecast (see Chapter 3) with

ConvSOM or a slightly adapted variant of it. This could be used, for example, to group similarly

behaving companies.

Part V

Closing

8 Conclusion

Computational intelligence (CI) methods are very versatile and can be applied in almost any field. They

can be used for automation or as a supporting tool. In this thesis, methods for more application-oriented

problems have been developed, as well as new, more fundamental concepts. In the following, we will

summarize the individual parts and present their respective results. Furthermore, for each part, we

propose on possible extensions and interesting questions for the future.

8.1 Earnings Prediction

In Part II, we looked at predicting the earnings per share (EPS) of U.S. companies. We based the model

on detailed information based from quarterly reports, as well as some daily indicators such as stock

price and trading volume. In particular, we performed normalization to better compare companies of

different sizes, as part of the data preprocessing. We trained and compared different types and settings

of deep neural networks (DNNs) for forecasting. Training uses historical data by trying to predict an

already known data point using data from a specific period before. This allows the model to learn in a

supervised manner. We set this period to the last 20 quarters and the last 20 trading days according

to previous experiments. Besides dense layers, we also used long short-term memorys (LSTMs) and

temporal convolutional networks (TCNs), which are specialized for time series. We compared our

results to the simple persistent model and to the average analyst forecast. As an error metric, we used

mean squared error (MSE), which compares the predicted value to the actual value and penalizes larger

deviations more severely. Then we used skill score (SS) to compare the different forecasts.

Our results show that the forecast based on the quarterly data can be further improved by including

the daily data. Therefore, we have chosen network architectures that first process the quarterly data

and the daily data separately for a few layers before combining them with a merge layer and providing

the output value after a few dense layers. Regarding the quarterly data, the LSTMs and TCN clearly

outperformed the dense layers, while for the daily data the dense layers performed slightly better. This

could be due to the fact that the DAILY SHARES consist of fewer features. We used the best LSTM

and TCN architectures for the rest of the experiments. We have found that the models work very well,

especially for the group of non-financial companies. Such a subdivision is useful because financial

companies behave very differently in many aspects (e.g., leverage ratio). We also used the selected

architectures for different industries. In the Fama-French industries with 5 groups (FFI5) classification,

the high-tech group performed best compared to the analysts. The quality of the solution was also

confirmed in the independent test data set.

As a result, we can conclude that CI procedures are quite capable of outperforming analysts in

certain fields. Moreover, in other fields they could be used as an additional indicator by analysts.

98 8 Conclusion

Future Work

Financial forecasting using deep learning techniques could be explored further in several ways. The

method could be applied to other data sets to further investigate the robustness of the approach. It is

also conceivable that other relevant data sets could complement the previous input data and thus further

improve the result. For example, comparative indices, seasonal influences, or sentiment data could be

taken into account. A recent paper by Hajek and Munk [HM23] also uses LSTMs to process quarterly

financial data, but extends the inputs to include sentiment and emotion indicators. In particular, they

use speech emotion recognition to take into account the emotional state of managers.

Other DNN architectures such as transformers could be investigated. Futhermore, the exact pro-

cedure could also be optimized. So far the networks were trained on the whole data set. When

the companies were divided into different groups, either according to whether they were financial

companies or according to Fama-French industries (FFI) industry groups, differences in the prediction

performance became apparent. The next step might be to train industry-specific networks. This would

result in a hierarchical structure that first determines to which category or industry the company in

question belongs before passing it to the appropriate network. This classification could be done either

using the existing FFI classifications or again using CI procedures. In this case, a separate model

would in the first step classify the companies based on their data. Another option would be to subdivide

by company size, as small and large companies may differ more in their behavior. Therefore, it is

foreseeable that CI procedures can be further improved in this area and thus serve as a helpful support

or even as a substitute in case of missing analyst forecasts.

8.2 Molecule Design

In Part III, we looked at molecule design in a medical context. The goal was to inhibit viral replication

inside a cell. To do this, we needed to find suitable molecules that could act as protease inhibitors for the

viral protease. Specifically, we considered main protease (Mpro) from severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2). After an introduction to organic chemistry and evolutionary algorithms

(EAs), we presented two evolutionary methods to generate molecules. To evaluate the molecules,

we used the same five metrics for both methods: binding affinity (BA), synthetic accessibility (SA),

quantitative estimate of drug-likeness (QED), natural product-likeness (NP), and toxicity filters (TF).

The metrics were calculated using MOSES and QuickVina 2. However, the two methods differ in the

exact procedure and the molecule representation used.

The evolutionary molecule search in Chapter 5 uses the self-referencing embedded strings (SELFIES)

representation. In the EA, three mutation operations are objected to: deletion, replacement, and

insertion. In the weighted sum evolutionary molecule search (WSEMS), the fitness value is the

weighted sum of the five metrics. For our second approach (Pareto ranking evolutionary molecule

search (PREMS)) we use non-dominated sorting genetic algorithm II (NSGA-II) that tries to optimize

each of the five metrics.

In Chapter 6 we introduced evolutionary molecule generation algorithm (EMGA). Here, the simpli-

fied molecular-input line-entry system (SMILES) string was used as the molecule representation. The

EA was complemented by a language model (LM) which handles the initialization and mutation of

8.2 Molecule Design 99

individuals. The LM was trained on a subset of the ZINC database to generate valid SMILES strings

and to fill gaps within a SMILES string. A molecular dynamics (MD) analysis was then performed on

the 21 most promising molecules to allow more accurate simulation and evaluation of ligand-protease

binding.

Let us first look at the results of the evolutionary molecule search with SELFIES. For each of the

experiments, we performed 20 runs for 200 generations. As expected, the PREMS approach is able to

find molecules with better results for individual metrics. This does not mean that it will find molecules

that are better in all metrics. For example, a molecule may have an excellent BA, but due to a poor

SA value, it probably cannot be synthesized. Nevertheless, it can be advantageous to cover a more

diverse distribution of the individual metrics through PREMS. This way, a desired weighting can still

be applied during the manual selection. The results of WSEMS runs, on the other hand, are more

similar with respect to the metrics. However, both methods can outperform each other in terms of

metrics for known ligands such as N3 and Lopanivir. Regarding the generated molecules, we made

three general observations: aromatic rings are often included, molecules with a good QED value tend

to have a smaller size, and molecules with an extremely high BA often have an unrealistic structure in

return. In summary, the molecules generated by our method are a promising basis for further studies.

Next, we look at the results of the EMGA and corresponding MD analysis. First, we found that the

continuous improvement that takes place during the evolutionary process stagnates at a fitness value of

0.225 around the 70th generation. Therefore, we ran the genetic algorithm (GA) for 80 generations.

EMGA generated 144350 molecules during the 16 runs and calculated their metrics. From the best

200 molecules, 21 were manually selected for further study. We studied these 21 ligands using MD

simulations. A ligand was placed in the Mpro pocket and then the motions of the individual atoms

and the whole ligand were calculated for a period of 50 ns. As part of the simulation, we determined

the values of center of mass (COM), root mean square displacement (RMSD), and root means square

fluctuations (RMSF), which allowed us to discard some molecules because they were unlikely to

bond. For the remaining 6 ligands, we calculated the binding free energy estimates and identified two

particularly good drug candidates. By estimating the docking more accurately with the MD analysis,

we were not just able to discard some molecules, but also to find some promising candidates. It can

be concluded that the very fast BA calculation (a few minutes) with QuickVina 2 sometimes leads to

imprecise results, but can be used for a quick pre-selection before the tedious MD analysis (which

would take 2 to 3 weeks on the high performance cluster (HPC)).

A direct comparison of the two approaches is only partially possible, since we used different

molecule representations as well as different EAs. However, we can compare the fitness values of the

best molecules since we used the same metrics for this purpose. While the fitness values of WSEMS

and PREMS are both around 0.3, better values around 0.25 are achieved with EMGA. We can also

compare the two string representations used. SELFIES seems to be well suited for a GA, since only

valid molecules can be described. But this is often done by simply stopping the string interpretation at

the position where an invalid token is located. This often results in short molecules, and changes at

the end of the string have no effect. The SMILES representation does not have this problem, but can

lead to invalid molecules instead. However, we were able to show that this problem can be well solved

using a LM.

100 8 Conclusion

In conclusion, we have developed two methods that are able to improve molecules step by step and

to study numerous molecules relatively quickly. In Chapter 6 we have found that our method serves

well as a basis for the subsequent MD analysis and allows a rapid pre-selection for this purpose.

Future Work

In the field of molecule design, many extensions and variants are conceivable. EMGA could be

extended with other multi-objective variants. For this purpose either a NSGA-II or another method

like a S metric selection evolutionary multiobjective optimisation algorithm (SMS-EMOA) [BNR08]

could be used. The internal parameters of EAs and LM could also be explored further. The LM

parameters rmax and δmax, which affect the length of the substring to be changed and thus the strength

of the change, could be adaptively adjusted. This could improve both exploration and exploitation. We

used molecular design to find a protease inhibitor for Mpro from SARS-CoV-2. However, the same

procedure could be used for other viruses. All that would be needed is to know the virus protease and

the pocket – i.e., the area where the protease inhibitor should dock – then fit both of them into our

model. By adapting the metrics, the method could be used to search for molecules in other fields, such

as biology or materials research. We have covered the first steps of drug development. The further

steps, which could be carried out by chemists, would be the synthesis of the selected molecules and an

in vitro analysis. This is the only way to experimentally determine how the molecules actually behave

in reality. The use of artificial intelligence (AI) methods can also be useful for these further steps, e.g.,

to find a synthesis pathway.

8.3 Convolutional Self-Organizing Map

In Part IV, we introduced the convolutional self-organizing map (ConvSOM) – a combination of

convolutional neural network (CNN) and self-organizing map (SOM). The ConvSOM is used to create

a two-dimensional visualization of data, taking into account higher-level features. The ConvSOM uses

the internal intermediate results of a pre-trained CNN, which are kept unchanged for further processing.

We used image data as input, but the ConvSOM could be applied to other data as well. To evaluate the

results, we used the existing Kruskal Shepard Error (ÊKSN) and developed new metrics that incorporate

label information: Cross Entropy (HSOM), normalized minor class occurrence (NMCO), and class

scatter index (CSI). These new metrics examine in different ways how samples of the same class are

arranged on the map. For example, CSI examines how many clusters samples of the same class form

on average. Furthermore, a semantic metric based on deep visual-semantic embedding model (DeViSE)

has been developed. It is able to evaluate the semantic distribution of the images without needing the

label information. As an additional visualization of the distribution of the classes associated with the

samples on the resulting map, we developed the sample class plot. Here, for each neuron of the SOM,

we count how many samples of a given class were assigned to it as best matching unit (BMU). The

distribution is then plotted using different colors and color intensities.

In the experimental analysis, we used small subsets of each of the well-known MNIST and CIFAR-

10 data sets as inputs. Regarding the new metrics that take the label into account, the inputs from

higher CNN layers lead to better results. This is especially true for the class-wise CSI. This is to be

8.3 Convolutional Self-Organizing Map 101

expected, since the CNN is trained to classify images and ultimately tries to determine a label. Overall,

we can state that the use of higher-order features leads to an improvement of the results in terms of

labeling errors.

Future Work

In the future, the ConvSOM could be applied to more data sets. For image data, those with multiple

objects per image could be examined. In the previous experiments, a CNN was pre-trained on a part of

the same data set with data that was not used later. In order to be able to apply the procedure as a whole

to unsupervised data, the CNN could be pre-trained on an extraneous, more general data set. However,

the approach could also be extended to non-image data. For example, the time series of company data

from Part II could be used as input to provide an overview of companies and their similarity.

Another application comes from the molecule design part. A selection of molecules could be ordered

based on their higher order features. Higher-order features could be the number of certain structures

contained, combined with the results of the molecule metrics. For this case, instead of a CNN a graph

neural network (GNN), like the message passing neural network (MPNN) [Gil+17] could be used. The

MPNN can be used to create fix sized fingerprints of molecules [Duv+15]. These fingerprints contain

information on the structure of the molecules. The fingerprints information could be enriched by the

molecule metric results and given to a SOM. Additional application-specific metrics may be defined to

evaluate the molecular map result. In this way, the selection of candidate molecules could be further

simplified.

Part VI

Appendices

A Data Sets

Table A.1: Image recognition data sets

Name Size Color Train Test Classes Notes

MNIST1 28×28 grayscale 60.000 10.000 10
Fashion MNIST2 28×28 grayscale 60.000 10.000 10
notMNIST3 28×28 grayscale 60.000 10.000 10 not hand-cleaned, 6.5 %

label error
CIFAR-104 32×32 RGB 50.000 10.000 10
CIFAR-1005 32×32 RGB 50.000 10.000 100
STL-106 96×96 RGB 5.000 8.000 10 100000 unlabeled images

for unsupervised learning
SVHN7 32×32 RGB 73.257 26.032 10
Dogs vs. Cats8 varies RGB 25.000 – 2 size: (300x401),

(500x377), (239x360), ...

1website: http://yann.lecun.com/exdb/mnist/
2github https://github.com/zalandoresearch/fashion-mnist, kaggle: https://www.kaggle.com/

zalando-research/fashionmnist
3kaggle: https://www.kaggle.com/jwjohnson314/notmnist/data
4website: https://www.cs.toronto.edu/~kriz/cifar.html
5website: https://www.cs.toronto.edu/~kriz/cifar.html
6website: https://cs.stanford.edu/~acoates/stl10/
7website: http://ufldl.stanford.edu/housenumbers/
8kaggle: https://www.kaggle.com/c/dogs-vs-cats/data, microsoft: https://www.microsoft.com/en-us/

download/details.aspx?id=54765

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/jwjohnson314/notmnist/data
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/
http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.microsoft.com/en-us/download/details.aspx?id=54765
https://www.microsoft.com/en-us/download/details.aspx?id=54765

B Earnings Prediction

B.1 Data Sets

Table B.1: Used parameters of data set COMPUTSTAT QUARTERLY. The parameters (in blue)
above the dividing line are only used for the assignment and selection of the sam-
ples. Below are the 19 features, that are given for each quarter of a COMPUTSTAT
QUARTERLY sample.

Parameter Description

cusip unique identifier of the company
fpedats date of quarter
ffi5 group number in FFI with 5 subdivisions
ffi10 group number in FFI with 10 subdivisions
ffi12 group number in FFI with 12 subdivisions
ffi48 group number in FFI with 48 subdivisions
financialfirm Boolean, is financial firm
EPS_Mean_Analyst mean of all available analyst estimates
rdq Report Date of Quarterly Earnings

epsfig Earning per Share
atq Total Assets
revtq Revenue
nopiq Nonoperating Income
xoprq Operating Expenses – Total
apq Accounts Payable – Trade
gdwlq Goodwill Net
rectq Receivables – Total
xrdq Research and Development Expense
cogsq Cost of Goods Sold
rcpq Restructuring Costs Pretax
ceqq Common Equity Total
niq Net Income (Loss)
oiadpq Operating Income After Depreciation
oibdpq Operating Income Before Depreciation
dpq Depreciation and Amortization Total
ppentq Property Plant and Equipment
piq Pretax Income
txtq Income Taxes Total

108 B Earnings Prediction

Table B.2: Used parameters of data set DAILY SHARES. The parameters (in blue) above the
dividing line are only used for the assignment and selection of the samples. The
parameters marked in orange are derived from the above ones and are also used for
the sample. Thus, one sample of DAILY SHARES consists of 11 features per day.

Parameter Description

cusip unique identifier of the company
date date to which the following variables refer

ret daily return (change in share price) in percent
prc scaled share price
vol number of shares traded on that day
shrout number of tradable shares (in thousands)
vwretd market return of all major companies (S&P 500) (as macro variable)

rel_vol relative trade volume: rel_vol = vol
1000·shrout

Monday
 current day one hot encoded

Tuesday
Wednesday
Thursday
Friday

B.2 Workflow

Figure B.1 shows the workflow of the finance experiments. Given are the data sets COMPUTSTAT

YEARLY, COMPUTSTAT QUARTERLY and DAILY SHARES. The data_preprocessor.py reduces

these data sets to the most important parameters and handles outliers and gaps as described in

Section 3.5, resulting in a small version of the data sets. The shares_separator.py sorts and

separates the data to one file per month, so the needed data can be accessed more efficiently.

The company_sample_builder.py creates samples for the companies, depending on a number of

parameters (e.g., quarterly or yearly, time horizon, imputation method) in a python readable pickle

format (samples/*_YYYY.pkl). The shares_sample_builder.py creates samples of daily shares

analogous to the company_sample_builder.py. The created shares samples contain exactly the

data for the samples from the associated sample quarter or year (samples/*_YYYY.pkl). Thus, the

numpy array contained in the pkl file contains exactly the same number of rows. Missing data is filled

with zeros.

Now that the data has been preprocessed and samples have been created, they can be given to the

ann_predictor.py for forecasting. Besides the main result (predictions.tsv), there is also saved

some information about the course of training of the artificial neural network (ANN) (e.g., loss and

validation loss per epoch) in history.tsv and history_rv.tsv (rounded values). In addition, the

structure of the ANN is saved as an image in model.png.

B.2 Workflow 109

Aktienkurse.csv

Compustat.tsv

Compustat-quarterly.tsv

data_preprocessor.py

small_Compustat-quarterly_with_nan.tsv

small_Compustat_with_nan.tsv

small_aktienkurse_with_nan.tsv

shares_separator.py

small_aktienkurse_with_nan/YYYY-MM.tsv

company_sample_builder.py

samples/*_YYYY.pkl

shares_sample_builder.py

aktiensamples/*_YYYY_w*.pkl

ann_predictor.py

history.tsv history_rv.tsv predictions.tsv model.png

Legend

table file

code file

pkl file

image file

Figure B.1: Workflow of the finance experiments. The legend in the upper right defines the
color coding of the nodes.

C Molecule Design

C.1 Workflow

Figure C.1 shows the workflow used to calculate the molecule metrics. This workflow is used by

Chapter 5 and Chapter 6, with the latter omitting the conversion of SELFIES to SMILES, since the

individuals of the EA are already present there as SMILES. Various existing packages and tools are

used to convert the file formats. The processing steps for the ligand generated by the GA are shown on

the left. The protein to which it will be docked is shown on the right. Both are passed to QuickVina2

in PDBQT format to determine the BA. The other 4 metrics are calculated using MOSES.

EA SELFIES

selfies

SMILES

MOSES

SA
QED
NP
TF

RDKit PDB

MGLTools

PDBQT

protease inhibitor (ligand)

CIF

protease enzyme (protein)

pymol

PDB

MGLTools

PDBQT

QuickVina2

BA

Legend

EA

tool

format

metric

Figure C.1: Workflow that is used to calculate the molecule metrics, described in Section 5.2.
The legend in the upper right defines the color coding of the nodes.

C.2 Ligands Overview

Table C.1 shows an overview of the selected ligands. The SMILES representation and the results for

the five metrics are listed.

11
2

C
M

ol
ec

ul
e

D
es

ig
n

Table C.1: Overview of the SMILES representation and molecule design metrics of the 21
ligands, that were selected by EMGA in Section 6.3.1. The metrics are described in
Section 5.2.

Ligand BA SA QED NP TF SMILES

Lig1 −8.1 1.019 0.918 −0.089 1 Cc1ccn(CC(=O)N2CC=CC(c3cnc(O)cc3C)=CC2)c(=O)c1
Lig2 −10.4 3.119 0.699 −0.272 1 CC1C(c2cc(C#N)cnc2NC=C2C(=O)NCC3=COCN32)=NN=C2C=CC=NN21
Lig3 −10.2 2.543 0.783 −0.133 1 C#Cc1c(F)c(F)cc(C)c1NC(=O)NC1=CC=C2C=CCN=C2OC1C
Lig4 −9.4 1.000 0.850 −0.212 1 CC1N=CC(F)C(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig5 −9.5 1.254 0.848 −0.094 1 CC1=CC=C(CC=c2[nH]c(=O)cc3c2=C(F)C(N)=CC(F)=C3)C(F)C=N1
Lig6 −8.7 1.000 0.861 −0.256 1 CC1=CC=C(C2NC(=O)CCc3ccc(F)c(C#N)c32)C(F)C=N1
Lig7 −11.8 6.664 0.676 −0.174 1 CC1(C)CC(c2cc(C#N)cnc2NC=C2C(=O)CCC3=CC=COCN32)=NN=C2C=CC=NN21
Lig8 −11.4 6.745 0.615 −0.238 0 CC1C(C2=CC(C#N)=CC=CN=C2NC=C2C(=O)NCC3=COCN32)=NN=C2C=CC=NN21
Lig9 −8.4 1.000 0.898 −0.248 1 C=C(C)C1=C(C(=O)N(C)c2ccc(F)c(F)c2)N2N=C(O)OC2CC=C1

Lig10 −8.5 1.000 0.890 −0.149 1 CC1=CC=C(C=CN2C(=NCO)CCOc3ccc(C#N)c(C#N)c32)C1F
Lig11 −9.5 1.695 0.783 −0.183 1 CC1(C)CC(F)C(C)(OC2=CNC(=O)C=C3N=C(F)C=C(C#N)C(F)=C32)C1=O
Lig12 −9.6 1.342 0.799 −0.082 1 CC1=CC=C(N=CC=c2[nH]c(=O)cc3c2=C(C)C(F)=CC(F)=C3)C(F)C=N1
Lig13 −10.3 2.252 0.787 −0.183 1 CC1CC(F)(F)CC(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig14 −11.8 6.567 0.662 −0.174 0 CC1CC(F)(F)CC(CC=C2NC=CC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig15 −9.0 1.477 0.796 −0.083 1 CC1(C)COCC(CC=c2[nH]c(=O)c(O)c3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig16 −10.0 2.586 0.803 −0.118 1 CC1(C)CCCC(OC2=CNC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig17 −10.0 2.692 0.858 −0.097 1 CC1(C)COC(C)(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig18 −11.5 5.985 0.523 −0.235 0 CC1C=CC(F)(F)CC(CC=C2NC(=O)C=NC=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig19 −11.5 6.102 0.527 −0.209 1 CC1C=CC(F)(F)CC(CC=C2NNC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig20 −10.9 4.036 0.756 −0.149 1 CC1N=CC(F)C(C=CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)OC1=O
Lig21 −9.0 1.813 0.844 −0.103 1 CCOC(=c1[nH]c(=O)cc2c1=C(F)C(C#N)=CC(F)=C2)C1OCC(C)(C)C1=O

List of Figures

2.1 Overview of the CI algorithms that are used in this thesis 7

2.2 An example of an image classification problem . 8

2.3 Overview of training, validation, and test sets . 9

2.4 Example partition of a data set using cross-validation 10

2.5 General setup of reinforcement learning . 10

2.6 Structure of an artificial neuron ni . 11

2.7 Activation functions . 12

2.8 Combination of several neurons to solve a classification problem with two dimensions 13

2.9 Feed forwards networks . 14

3.1 Time series model for prediction of the data of the next time step 19

3.2 LSTM cell . 19

3.3 A dilated causal convolutional network with 3 layers 20

3.4 Data set horizons of training, validation, and test set 23

3.5 Visualization of selected LSTM and TCN architectures 25

4.1 Protease Process and Protease Inhibition . 31

4.2 Bohr models of elements H, C, N, O, and F . 33

4.3 Periodic table with the important organic elements 34

4.4 Visualization of C and H atoms using the VSEPR model 35

4.5 The ionic bond of NaCl represented by Bohr models 36

4.6 Schematic of a positively charged metal ion grid with freely movable electrons . . . 36

4.7 Hydrogen bonds in general and in water . 36

4.8 Visualizations of SMILES and SELFIES representations 38

4.9 Benzene molecule . 39

4.10 Different 2D-representations of the molecule propane 40

4.11 Different representations of the α-D-glucopyranose molecule, which contains a ring . 41

4.12 3D models of propane . 41

4.13 Similar molecules with different atomic distances and angles 42

4.14 A chiral molecule . 43

4.15 A chiral molecule with one cis and one trans isomer 43

4.16 Activity diagram of an evolutionary algorithm . 46

5.1 Exemplary molecules for high and low values of SA, QED, and NP 52

5.2 Overview of the evolutionary molecule search . 54

114 List of Figures

5.3 Application example of the mutation operations . 55

5.4 The soft clipping function and its application to BA 55

5.5 NSGA-II domination . 57

5.6 Development of all Metrics . 58

5.7 Visualization of Pareto fronts over the generations a single PREMS run 59

5.8 Comparison of final generation molecules from WSEMS and PREMS runs 60

5.9 Spider charts, structural formula, and chemical names of exemplary protease inhibitors 61

5.10 The docking of PI-I and PI-V to the pocket of SARS-CoV-2’s Mpro 61

6.1 Overview of the language model–based evolutionary approach 63

6.2 Structural formula, SMILES string, and token representation of α-D-glucopyranose 65

6.3 Language model as mutation operator . 66

6.4 Activity diagram of EMGA . 67

6.5 Evolutionary Process of EMGA . 71

6.6 Selection of ligands created by EMGA . 72

6.6 Selection of ligands created by EMGA . 73

6.7 Binding site of Mpro defined by the labeled residues with Lig19 in its initial bound pose 74

6.8 Position of Lig19 in Mpro at different simulation times 74

6.9 COM distance over time between Mpro binding site and drifting ligands 75

6.10 RMSD of the simulated ligands . 76

6.11 Position and orientation of Lig13 and Lig8 in Mpro at different simulation times . . . 77

7.1 Update step of an example SOM . 83

7.2 CNN example . 85

7.3 Structure of the ConvSOM and the associated quality measures 86

7.4 Visualization plots for SOM results . 89

7.5 Sample class plot legend . 90

7.6 Box-plots of class-wise CSI of SOM and ConvSOM on MNIST and CIFAR-10 . . . 92

7.7 SOM and ConvSOM training results on MNIST and CIFAR-10 with 500 samples . . 93

7.8 Structure of the ConvSOM extended by the DeViSE error 94

B.1 Workflow of the finance experiments . 109

C.1 Workflow of the molecule metrics calculation . 111

List of Tables

3.1 Overview of different network architectures with and without daily shares layers . . 24

3.2 Selected architectures and parameters for financial, non-financial and all companies . 25

3.3 Overview of the FFI5 classes . 26

3.4 Results of the selected architectures and parameters for the FFI5 groups 26

3.5 Results data set B for non-financials with preselected architectures and parameters . 27

3.6 Results data set B for FFI5 group 3 with preselected architectures and parameters . . 27

4.1 CPK coloring scheme for atoms by Corey, Pauling and Koltun 42

4.2 Overview of molecule representations and their properties 44

5.1 Value ranges and optima of the used metrics . 51

5.2 Experimental results of WSEMS and PREMS runs 59

6.1 Averaged values of COM, RMSD, and RMSF . 75

6.2 Binding free energy estimates, ∆G0 . 78

7.1 Experimental results of ConvSOM on MNIST . 91

7.2 Experimental results of ConvSOM on CIFAR-10 92

A.1 Image recognition data sets . 105

B.1 Used parameters of data set COMPUTSTAT QUARTERLY 107

B.2 Used parameters of data set DAILY SHARES . 108

C.1 SMILES representation and molecule metrics of the 21 ligands 112

Bibliography

[15] Organic Chemistry. Chemistry LibreTexts. Feb. 1, 2015. URL: https : / / chem .

libretexts.org/Bookshelves/Organic_Chemistry (visited on 01/21/2022).

[AA20] Saleh Aly and Sultan Almotairi. “Deep Convolutional Self-Organizing Map Network for

Robust Handwritten Digit Recognition”. In: IEEE Access 8 (2020), pp. 107035–107045.

ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.3000829.

[Alh+15] Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh.

“Fast, Accurate, and Reliable Molecular Docking with QuickVina 2”. In: Bioinformatics

31.13 (July 1, 2015), pp. 2214–2216. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/

btv082.

[Ana+03] Kanchan Anand, John Ziebuhr, Parvesh Wadhwani, Jeroen R. Mesters, and Rolf Hilgen-

feld. “Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS

Drugs”. In: Science 300.5626 (June 13, 2003), pp. 1763–1767. DOI: 10.1126/science.

1085658.

[And02] Péter András. “Kernel-Kohonen Networks”. In: International Journal of Neural Systems

12.02 (Apr. 1, 2002), pp. 117–135. ISSN: 0129-0657. DOI: 10.1142/S0129065702001084.

[And90] John Robert Anderson. Machine Learning: An Artificial Intelligence Approach. Vol. 3.

Morgan Kaufmann, 1990.

[Ars+21] Amir Hossein Arshia, Shayan Shadravan, Aida Solhjoo, Amirhossein Sakhteman, and

Ashkan Sami. “De Novo Design of Novel Protease Inhibitor Candidates in the Treatment

of SARS-CoV-2 Using Deep Learning, Docking, and Molecular Dynamic Simulations”.

In: Computers in Biology and Medicine 139 (Dec. 1, 2021), p. 104967. ISSN: 0010-4825.

DOI: 10.1016/j.compbiomed.2021.104967.

[Aru+11] Elangannan Arunan, Gautam R. Desiraju, Roger A. Klein, Joanna Sadlej, Steve Scheiner,

Ibon Alkorta, David C. Clary, Robert H. Crabtree, Joseph J. Dannenberg, Pavel Hobza,

Henrik G. Kjaergaard, Anthony C. Legon, Benedetta Mennucci, and David J. Nesbitt.

“Definition of the hydrogen bond (IUPAC Recommendations 2011)”. In: Pure and

Applied Chemistry 83.8 (July 8, 2011), pp. 1637–1641. ISSN: 1365-3075. DOI: 10.

1351/PAC-REC-10-01-02.

[AZ11] Divya Anantharaman and Yuan Zhang. “Cover Me: Managers’ Responses to Changes

in Analyst Coverage in the Post-Regulation FD Period”. In: The Accounting Review

86.6 (Nov. 1, 2011), pp. 1851–1885. ISSN: 0001-4826. DOI: 10.2308/accr-10126.

https://chem.libretexts.org/Bookshelves/Organic_Chemistry
https://chem.libretexts.org/Bookshelves/Organic_Chemistry
https://doi.org/10.1109/ACCESS.2020.3000829
https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1126/science.1085658
https://doi.org/10.1126/science.1085658
https://doi.org/10.1142/S0129065702001084
https://doi.org/10.1016/j.compbiomed.2021.104967
https://doi.org/10.1351/PAC-REC-10-01-02
https://doi.org/10.1351/PAC-REC-10-01-02
https://doi.org/10.2308/accr-10126

118 Bibliography

[Bao+20] Yang Bao, Bin Ke, Bin Li, Y. Julia Yu, and Jie Zhang. “Detecting Accounting Fraud

in Publicly Traded U.S. Firms Using a Machine Learning Approach”. In: Journal of

Accounting Research 58.1 (2020), pp. 199–235. ISSN: 1475-679X. DOI: 10.1111/1475-

679X.12292.

[Ben09] Yoshua Bengio. “Learning Deep Architectures for AI”. In: Foundations and Trends® in

Machine Learning 2.1 (Nov. 14, 2009), pp. 1–127. ISSN: 1935-8237, 1935-8245. DOI:

10.1561/2200000006.

[Ber+20] R. Bernardi, M. Bhandarkar, A. Bhatele, E. Bohm, R. Brunner, R. Buch, F. Buelens,

H. Chen, C. Chipot, A. Dalke, S. Dixit, G. Fiorin, P. Freddolino, H. Fu, P. Grayson,

J. Gullingsrud, A. Gursoy, D. Hardy, C. Harrison, J. Hénin, W. Humphrey, D. Hurwitz,

A. Hynninen, N. Jain, W. Jiang, N. Krawetz, S. Kumar, D. Kunzman, J. Lai, C. Lee,

J. Maia, R. McGreevy, C. Mei, M. Melo, M. Nelson, J. Phillips, B. Radak, J. Ribeiro,

T. Rudack, O. Sarood, A. Shinozaki, D. Tanner, P. Wang, D. Wells, G. Zheng, and

F. Zhu. NAMD 2.14 User’s Guide. Aug. 5, 2020. URL: https://www.ks.uiuc.edu/

Research/namd/2.14/ug/ (visited on 03/26/2022).

[Bey92] Hans-Georg Beyer. “Some Aspects of the ‘Evolution Strategy’ for Solving TSP-like

Optimization Problems”. In: Parallel problem solving from nature 2 (1992), pp. 361–

370.

[BG17] Ryan T. Ball and Eric Ghysels. “Automated Earnings Forecasts: Beat Analysts or

Combine and Conquer?” In: Management Science 64.10 (Oct. 27, 2017), pp. 4936–

4952. ISSN: 0025-1909. DOI: 10.1287/mnsc.2017.2864.

[BH10] Jonathan B. Baell and Georgina A. Holloway. “New Substructure Filters for Removal

of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for

Their Exclusion in Bioassays”. In: Journal of Medicinal Chemistry 53.7 (Apr. 8, 2010),

pp. 2719–2740. ISSN: 0022-2623. DOI: 10.1021/jm901137j.

[Bha+21] Vijay Kumar Bhardwaj, Rahul Singh, Pralay Das, and Rituraj Purohit. “Evaluation

of Acridinedione Analogs as Potential SARS-CoV-2 Main Protease Inhibitors and

Their Comparison with Repurposed Anti-Viral Drugs”. In: Computers in Biology

and Medicine 128 (Jan. 1, 2021), p. 104117. ISSN: 0010-4825. DOI: 10.1016/j.

compbiomed.2020.104117.

[Bic+12] G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L.

Hopkins. “Quantifying the Chemical Beauty of Drugs”. In: Nature Chemistry 4.2 (2

Feb. 2012), pp. 90–98. ISSN: 1755-4349. DOI: 10.1038/nchem.1243.

[BKK18] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “An Empirical Evaluation of Generic

Convolutional and Recurrent Networks for Sequence Modeling”. In: CoRR abs/1803.01271

(2018). arXiv: 1803.01271. URL: http://arxiv.org/abs/1803.01271.

https://doi.org/10.1111/1475-679X.12292
https://doi.org/10.1111/1475-679X.12292
https://doi.org/10.1561/2200000006
https://www.ks.uiuc.edu/Research/namd/2.14/ug/
https://www.ks.uiuc.edu/Research/namd/2.14/ug/
https://doi.org/10.1287/mnsc.2017.2864
https://doi.org/10.1021/jm901137j
https://doi.org/10.1016/j.compbiomed.2020.104117
https://doi.org/10.1016/j.compbiomed.2020.104117
https://doi.org/10.1038/nchem.1243
https://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271

Bibliography 119

[BNR08] Nicola Beume, Boris Naujoks, and Günter Rudolph. “SMS-EMOA – Effektive evo-

lutionäre Mehrzieloptimierung (SMS-EMOA – Effective Evolutionary Multiobjec-

tive Optimization)”. In: 56.7 (July 1, 2008), pp. 357–364. ISSN: 2196-677X. DOI:

10.1524/auto.2008.0715.

[Bri+17] Martin Brieg, Julia Setzler, Steffen Albert, and Wolfgang Wenzel. “Generalized Born

Implicit Solvent Models for Small Molecule Hydration Free Energies”. In: Physical

Chemistry Chemical Physics 19.2 (Jan. 4, 2017), pp. 1677–1685. ISSN: 1463-9084. DOI:

10.1039/C6CP07347F.

[Bro+04] Nathan Brown, Ben McKay, François Gilardoni, and Johann Gasteiger. “A Graph-

Based Genetic Algorithm and Its Application to the Multiobjective Evolution of Median

Molecules”. In: Journal of Chemical Information and Computer Sciences 44.3 (May 1,

2004), pp. 1079–1087. ISSN: 0095-2338. DOI: 10.1021/ci034290p.

[Bro+19] Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. “GuacaMol:

Benchmarking Models for de Novo Molecular Design”. In: Journal of Chemical In-

formation and Modeling 59.3 (Mar. 25, 2019), pp. 1096–1108. ISSN: 1549-9596. DOI:

10.1021/acs.jcim.8b00839.

[Bru11] Paula Yurkanis Bruice. Organische Chemie : Studieren kompakt. 5., aktualisierte Auflage.

Always learning. 2011. ISBN: 978-3-86326-607-3.

[Brü92] Axel T. Brünger. X-PLOR: Version 3.1 : A System for X-ray Crystallography and NMR.

Yale University Press, Jan. 1, 1992. 404 pp. ISBN: 978-0-300-05402-6. Google Books:

nFK5_F5hhJ0C.

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution Strategies – A Comprehensive

Introduction”. In: Natural Computing 1.1 (Mar. 1, 2002), pp. 3–52. ISSN: 1572-9796.

DOI: 10.1023/A:1015059928466.

[Cas+] D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E.

Cheatham, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K.

Gilson, H. Gohlke, A.W. Goetz, R. Harris, S. Izadi, S.A. Izmailov, C. Jin, K. Kasavajhala,

M.C. Kaymak, E. King, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C.

Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man, M. Manathunga, K.M. Merz,

Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan,

S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo,

J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, H.

Wei, R.M. Wolf, X. Wu, Y. Xue, D.M. York, S. Zhao, and P.A. Kollman. AmberTools21.

URL: https://ambermd.org/AmberTools.php (visited on 03/26/2022).

[CBA15] Vikas Chaudhary, R. S. Bhatia, and Anil K. Ahlawat. “Community SOM (CSOM): An

Improved Self-Organizing Map Learning Technique”. In: International Journal of Fuzzy

Systems 17.2 (June 1, 2015), pp. 129–132. ISSN: 2199-3211. DOI: 10.1007/s40815-

015-0022-7.

https://doi.org/10.1524/auto.2008.0715
https://doi.org/10.1039/C6CP07347F
https://doi.org/10.1021/ci034290p
https://doi.org/10.1021/acs.jcim.8b00839
http://books.google.com/books?id=nFK5_F5hhJ0C
https://doi.org/10.1023/A:1015059928466
https://ambermd.org/AmberTools.php
https://doi.org/10.1007/s40815-015-0022-7
https://doi.org/10.1007/s40815-015-0022-7

120 Bibliography

[CBM17] D. N. Coelho, G. A. Barreto, and C. M. S. Medeiros. “Detection of Short Circuit Faults

in 3-Phase Converter-Fed Induction Motors Using Kernel SOMs”. In: WSOM. 2017 12th

International Workshop on Self-Organizing Maps and Learning Vector Quantization,

Clustering and Data Visualization (WSOM). June 2017, pp. 1–7. DOI: 10.1109/WSOM.

2017.8020016.

[Cec+10] Mark Cecchini, Haldun Aytug, Gary J. Koehler, and Praveen Pathak. “Detecting Man-

agement Fraud in Public Companies”. In: Management Science 56.7 (May 17, 2010),

pp. 1146–1160. ISSN: 0025-1909. DOI: 10.1287/mnsc.1100.1174.

[CEK20] Tim Cofala, Lars Elend, and Oliver Kramer. “Tournament Selection Improves Cartesian

Genetic Programming for Atari Games”. In: 28th European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning, ESANN 2020,

Bruges, Belgium, October 2-4, 2020. 2020, pp. 345–350. URL: https://www.esann.

org/sites/default/files/proceedings/2020/ES2020-204.pdf (visited on

10/25/2021).

[Cha+16] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. “Listen, Attend and Spell:

A Neural Network for Large Vocabulary Conversational Speech Recognition”. In: 2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2016 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). Mar. 2016, pp. 4960–4964. DOI: 10.1109/ICASSP.2016.7472621.

[Cof+20] Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas Teusch, and Oliver

Kramer. “Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor

Candidates”. In: Parallel Problem Solving from Nature – PPSN XVI. Ed. by Thomas

Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and

Heike Trautmann. Lecture Notes in Computer Science. Cham: Springer International

Publishing, 2020, pp. 357–371. ISBN: 978-3-030-58115-2. DOI: 10.1007/978-3-030-

58115-2_25.

[CRS] CRSP. Research Data | CRSP - The Center for Research in Security Prices. URL:

https://www.crsp.org/products/research-products (visited on 08/28/2023).

[Dai+20] Wenhao Dai, Bing Zhang, Haixia Su, Jian Li, Yao Zhao, Xiong Xie, Zhenming Jin,

Fengjiang Liu, Chunpu Li, You Li, Fang Bai, Haofeng Wang, Xi Cheng, Xiaobo Cen,

Shulei Hu, Xiuna Yang, Jiang Wang, Xiang Liu, Gengfu Xiao, Hualiang Jiang, Zihe

Rao, Lei-Ke Zhang, Yechun Xu, Haitao Yang, and Hong Liu. “Structure-Based Design

of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease”. In: Science

(Apr. 22, 2020). ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.abb4489.

pmid: 32321856.

[Deb+02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation

6.2 (Apr. 2002), pp. 182–197. ISSN: 1941-0026. DOI: 10.1109/4235.996017.

https://doi.org/10.1109/WSOM.2017.8020016
https://doi.org/10.1109/WSOM.2017.8020016
https://doi.org/10.1287/mnsc.1100.1174
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-204.pdf
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-204.pdf
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1007/978-3-030-58115-2_25
https://doi.org/10.1007/978-3-030-58115-2_25
https://www.crsp.org/products/research-products
https://doi.org/10.1126/science.abb4489
32321856
https://doi.org/10.1109/4235.996017

Bibliography 121

[Dec+11] Patricia M. Dechow, Weili Ge, Chad R. Larson, and Richard G. Sloan. “Predicting

Material Accounting Misstatements”. In: Contemporary Accounting Research 28.1

(2011), pp. 17–82. ISSN: 1911-3846. DOI: 10.1111/j.1911-3846.2010.01041.x.

[DNA16] H. Dozono, G. Niina, and S. Araki. “Convolutional Self Organizing Map”. In: 2016

International Conference on Computational Science and Computational Intelligence

(CSCI). Dec. 2016, pp. 767–771. DOI: 10.1109/CSCI.2016.0149.

[DSC15] R. Vasundhara Devi, S. Siva Sathya, and Mohane Selvaraj Coumar. “Evolutionary

Algorithms for de Novo Drug Design – A Survey”. In: Applied Soft Computing 27

(Feb. 1, 2015), pp. 543–552. ISSN: 1568-4946. DOI: 10.1016/j.asoc.2014.09.042.

[dSD17] Leonardo dos Santos Pinheiro and Mark Dras. “Stock Market Prediction with Deep

Learning: A Character-Based Neural Language Model for Event-Based Trading”. In:

Proceedings of the Australasian Language Technology Association Workshop 2017.

2017, pp. 6–15.

[DTG00] Dominique Douguet, Etienne Thoreau, and Gérard Grassy. “A Genetic Algorithm for the

Automated Generation of Small Organic Molecules: Drug Design Using an Evolutionary

Algorithm”. In: Journal of Computer-Aided Molecular Design 14.5 (July 1, 2000),

pp. 449–466. ISSN: 1573-4951. DOI: 10.1023/A:1008108423895.

[Duv+15] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Tim-

othy Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams. “Convolutional Networks on

Graphs for Learning Molecular Fingerprints”. In: Advances in Neural Information Pro-

cessing Systems 28 (2015), pp. 2224–2232. URL: https://proceedings.neurips.

cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html

(visited on 11/16/2020).

[Eis18] Dr Alexis Eisenhofer. Definition: Center for Research in Security Prices (CRSP).

https://www.gabler-banklexikon.de/definition/center-research-security-prices-crsp-56614.

Oct. 30, 2018. URL: https : / / www . gabler - banklexikon . de / definition /

center-research-security-prices-crsp-56614/version-341290 (visited

on 08/28/2023).

[EK19] Lars Elend and Oliver Kramer. “Self-Organizing Maps with Convolutional Layers”.

In: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and

Data Visualization - Proceedings of the 13th International Workshop, WSOM+ 2019,

Barcelona, Spain, June 26-28, 2019. Ed. by Alfredo Vellido, Karina Gibert, Cecilio

Angulo, and José David Martín-Guerrero. Vol. 976. Advances in Intelligent Systems

and Computing. Springer, 2019, pp. 23–32. DOI: 10.1007/978-3-030-19642-4_3.

[Ele+20] Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, and Oliver Kramer. “Earnings

Prediction with Deep Learning”. In: KI 2020: Advances in Artificial Intelligence - 43rd

German Conference on AI, Bamberg, Germany, September 21-25, 2020, Proceedings.

Ed. by Ute Schmid, Franziska Klügl, and Diedrich Wolter. Vol. 12325. Lecture Notes in

https://doi.org/10.1111/j.1911-3846.2010.01041.x
https://doi.org/10.1109/CSCI.2016.0149
https://doi.org/10.1016/j.asoc.2014.09.042
https://doi.org/10.1023/A:1008108423895
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://www.gabler-banklexikon.de/definition/center-research-security-prices-crsp-56614/version-341290
https://www.gabler-banklexikon.de/definition/center-research-security-prices-crsp-56614/version-341290
https://doi.org/10.1007/978-3-030-19642-4_3

122 Bibliography

Computer Science. Springer, 2020, pp. 267–274. DOI: 10.1007/978-3-030-58285-

2_22.

[Ele+22] Lars Elend, Luise Jacobsen, Tim Cofala, Jonas Prellberg, Thomas Teusch, Oliver

Kramer, and Ilia A. Solov’yov. “Design of SARS-CoV-2 Main Protease Inhibitors

Using Artificial Intelligence and Molecular Dynamic Simulations”. In: Molecules 27.13

(13 Jan. 2022), p. 4020. ISSN: 1420-3049. DOI: 10.3390/molecules27134020.

[ERS08] Peter Ertl, Silvio Roggo, and Ansgar Schuffenhauer. “Natural Product-likeness Score

and Its Application for Prioritization of Compound Libraries”. In: Journal of Chemical

Information and Modeling 48.1 (Jan. 1, 2008), pp. 68–74. ISSN: 1549-9596. DOI:

10.1021/ci700286x.

[ES09] Peter Ertl and Ansgar Schuffenhauer. “Estimation of Synthetic Accessibility Score of

Drug-like Molecules Based on Molecular Complexity and Fragment Contributions”.

In: Journal of Cheminformatics 1.1 (June 10, 2009), p. 8. ISSN: 1758-2946. DOI:

10.1186/1758-2946-1-8.

[FAM66] Lawrence J Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial Intelligence through

Simulated Evolution. John Wiley & Sons, 1966.

[FF93] Eugene F. Fama and Kenneth R. French. “Common Risk Factors in the Returns on

Stocks and Bonds”. In: Journal of Financial Economics 33.1 (Feb. 1, 1993), pp. 3–56.

ISSN: 0304-405X. DOI: 10.1016/0304-405X(93)90023-5.

[Fog94] David B. Fogel. “An Introduction to Simulated Evolutionary Optimization”. In: IEEE

transactions on neural networks 5.1 (1994), pp. 3–14.

[For+20] Florent Forest, Mustapha Lebbah, Hanane Azzag, and Jérôme Lacaille. A Survey and

Implementation of Performance Metrics for Self-Organized Maps. Nov. 11, 2020.

arXiv: 2011.05847 [cs]. URL: http://arxiv.org/abs/2011.05847 (visited

on 09/18/2023). preprint.

[FPN18] Christos Ferles, Yannis Papanikolaou, and Kevin J. Naidoo. “Denoising Autoencoder

Self-Organizing Map (DASOM)”. In: Neural Networks 105 (Sept. 2018), pp. 112–131.

ISSN: 08936080. DOI: 10.1016/j.neunet.2018.04.016.

[FPoP14] Henri A. Favre, Warren H. Powell, and International Union of Pure and Applied Chem-

istry, eds. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred

Names 2013. Cambridge: Royal Soc. of Chemistry [u.a.], 2014. 1568 pp. ISBN: 978-0-

85404-182-4.

[Fre22] Kenneth R. French. Detail for 5 Industry Portfolios. 2022. URL: https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_

port.html (visited on 08/23/2022).

[Fro+13] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio

Ranzato, and Tomas Mikolov. “DeViSE: A Deep Visual-Semantic Embedding Model”.

In: (2013), p. 9.

https://doi.org/10.1007/978-3-030-58285-2_22
https://doi.org/10.1007/978-3-030-58285-2_22
https://doi.org/10.3390/molecules27134020
https://doi.org/10.1021/ci700286x
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1016/0304-405X(93)90023-5
https://arxiv.org/abs/2011.05847
http://arxiv.org/abs/2011.05847
https://doi.org/10.1016/j.neunet.2018.04.016
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html

Bibliography 123

[Gai18] Thomas Gaillard. “Evaluation of AutoDock and AutoDock Vina on the CASF-2013

Benchmark”. In: Journal of Chemical Information and Modeling 58.8 (Aug. 27, 2018),

pp. 1697–1706. ISSN: 1549-9596. DOI: 10.1021/acs.jcim.8b00312.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural

Networks”. In: Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics. Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings,

June 14, 2011, pp. 315–323. URL: https : / / proceedings . mlr . press / v15 /

glorot11a.html (visited on 10/11/2023).

[GC04] Holger Gohlke and David A. Case. “Converging free energy estimates: MM-PB(GB)SA

studies on the protein–protein complex Ras–Raf”. In: Journal of Computational Chem-

istry 25.2 (2004), pp. 238–250. ISSN: 1096-987X. DOI: 10.1002/jcc.10379.

[Gil+17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. “Neural Message Passing for Quantum Chemistry”. June 12, 2017. arXiv: 1704.

01212 [cs]. URL: http://arxiv.org/abs/1704.01212 (visited on 11/16/2020).

[GJ14] Alex Graves and Navdeep Jaitly. “Towards End-to-End Speech Recognition with Re-

current Neural Networks”. In: Proceedings of the 31st International Conference on

International Conference on Machine Learning - Volume 32. ICML’14. Beijing, China:

JMLR.org, 2014, pp. II-1764-II–1772.

[Gra13] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. Aug. 4, 2013.

arXiv: 1308.0850 [cs]. URL: http://arxiv.org/abs/1308.0850 (visited on

07/30/2019).

[Hag+14] Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, and Orlando De Jesus.

Neural Network Design. Wrocław Amazon, 2014.

[HD05] F. Hadzic and T.S. Dillon. “CSOM: Self-Organizing Map for Continuous Data”. In:

INDIN ’05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005.

INDIN ’05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005.

Aug. 2005, pp. 740–745. DOI: 10.1109/INDIN.2005.1560466.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning

for Image Recognition”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2016, pp. 770–778. URL: https://www.cv-foundation.

org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_

CVPR_2016_paper.html (visited on 02/13/2019).

[Her90] Michael Herdy. “Application of the Evolutionsstrategie to Discrete Optimization Prob-

lems”. In: Parallel Problem Solving from Nature. Ed. by Hans-Paul Schwefel and

Reinhard Männer. Vol. 496. Berlin/Heidelberg: Springer-Verlag, 1990, pp. 187–192.

ISBN: 978-3-540-54148-6. DOI: 10.1007/BFb0029751.

https://doi.org/10.1021/acs.jcim.8b00312
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1002/jcc.10379
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://doi.org/10.1109/INDIN.2005.1560466
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1007/BFb0029751

124 Bibliography

[Hew+20] Pradeep Hewage, Ardhendu Behera, Marcello Trovati, Ella Pereira, Morteza Ghahre-

mani, Francesco Palmieri, and Yonghuai Liu. “Temporal Convolutional Neural (TCN)

Network for an Effective Weather Forecasting Using Time-Series Data from the Local

Weather Station”. In: Soft Computing 24.21 (Nov. 1, 2020), pp. 16453–16482. ISSN:

1433-7479. DOI: 10.1007/s00500-020-04954-0.

[HM23] Petr Hajek and Michal Munk. “Speech Emotion Recognition and Text Sentiment Anal-

ysis for Financial Distress Prediction”. In: Neural Computing and Applications 35.29

(Oct. 1, 2023), pp. 21463–21477. ISSN: 1433-3058. DOI: 10.1007/s00521-023-

08470-8.

[Hol75] John H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press,

1975.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Computation 9.8 (Nov. 1, 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/

neco.1997.9.8.1735.

[HSS18] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 7132–

7141. URL: http://openaccess.thecvf.com/content_cvpr_2018/html/

Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html (visited on

02/13/2019).

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer Feedforward

Networks Are Universal Approximators”. In: Neural Networks 2.5 (Jan. 1, 1989),

pp. 359–366. ISSN: 0893-6080. DOI: 10.1016/0893-6080(89)90020-8.

[HT17] Pavel Hamet and Johanne Tremblay. “Artificial Intelligence in Medicine”. In: Metabolism.

Insights Into the Future of Medicine: Technologies, Concepts, and Integration 69 (Apr. 1,

2017), S36–S40. ISSN: 0026-0495. DOI: 10.1016/j.metabol.2017.01.011.

[IUP] IUPAC (The International Union of Pure and Applied Chemistry). IUPAC - Hydrogen

Bond (H02899). DOI: 10.1351/goldbook.H02899.

[Jin+20] Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing

Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin

Yang, Fengjiang Liu, Rendi Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang,

Fang Bai, Hong Liu, Xiang Liu, Luke W. Guddat, Wenqing Xu, Gengfu Xiao, Chengfeng

Qin, Zhengli Shi, Hualiang Jiang, Zihe Rao, and Haitao Yang. “Structure of M pro from

COVID-19 Virus and Discovery of Its Inhibitors”. In: Nature (Apr. 9, 2020), pp. 1–9.

ISSN: 1476-4687. DOI: 10.1038/s41586-020-2223-y.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

Jan. 29, 2017. DOI: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs]. preprint.

https://doi.org/10.1007/s00500-020-04954-0
https://doi.org/10.1007/s00521-023-08470-8
https://doi.org/10.1007/s00521-023-08470-8
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1351/goldbook.H02899
https://doi.org/10.1038/s41586-020-2223-y
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980

Bibliography 125

[KH05] Susan S. Kaplan and Charles B. Hicks. “Safety and Antiviral Activity of Lopinavir/Ritonavir-

Based Therapy in Human Immunodeficiency Virus Type 1 (HIV-1) Infection”. In: Jour-

nal of Antimicrobial Chemotherapy 56.2 (Aug. 1, 2005), pp. 273–276. ISSN: 0305-7453.

DOI: 10.1093/jac/dki209.

[Kim+16] Sunghwan Kim, Paul A. Thiessen, Evan E. Bolton, Jie Chen, Gang Fu, Asta Gindulyte,

Lianyi Han, Jane He, Siqian He, Benjamin A. Shoemaker, Jiyao Wang, Bo Yu, Jian

Zhang, and Stephen H. Bryant. “PubChem Substance and Compound Databases”. In:

Nucleic Acids Research 44.D1 (Jan. 4, 2016), pp. D1202–D1213. ISSN: 0305-1048. DOI:

10.1093/nar/gkv951.

[Kim+21] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang

Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and

Evan E Bolton. “PubChem in 2021: New Data Content and Improved Web Interfaces”.

In: Nucleic Acids Research 49.D1 (Jan. 8, 2021), pp. D1388–D1395. ISSN: 0305-1048.

DOI: 10.1093/nar/gkaa971.

[Koh82] Teuvo Kohonen. “Self-Organized Formation of Topologically Correct Feature Maps”.

In: Biological Cybernetics 43.1 (Jan. 1, 1982), pp. 59–69. ISSN: 1432-0770. DOI:

10.1007/BF00337288.

[Koh95] Teuvo Kohonen. “The Basic SOM”. In: Self-Organizing Maps. Ed. by Teuvo Kohonen.

Springer Series in Information Sciences. Berlin, Heidelberg: Springer, 1995, pp. 77–130.

ISBN: 978-3-642-97610-0. DOI: 10.1007/978-3-642-97610-0_3.

[Kol+00] Peter A. Kollman, Irina Massova, Carolina Reyes, Bernd Kuhn, Shuanghong Huo,

Lillian Chong, Matthew Lee, Taisung Lee, Yong Duan, Wei Wang, Oreola Donini, Piotr

Cieplak, Jaysharee Srinivasan, David A. Case, and Thomas E. Cheatham. “Calculating

Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics

and Continuum Models”. In: Accounts of Chemical Research 33.12 (Dec. 1, 2000),

pp. 889–897. ISSN: 0001-4842. DOI: 10.1021/ar000033j.

[KON13] A. Kutics, C. O’Connell, and A. Nakagawa. “Segment-Based Image Classifcaton Using

Layered-SOM”. In: 2013 IEEE International Conference on Image Processing. Sept.

2013, pp. 2430–2434. DOI: 10.1109/ICIP.2013.6738501.

[Koz92] John R Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Vol. 1. MIT press, 1992.

[KP20] Matthew Klimek and Maxim Perelstein. “Neural Network-Based Approach to Phase

Space Integration”. In: SciPost Physics 9.4 (Oct. 19, 2020), p. 053. ISSN: 2542-4653.

DOI: 10.21468/SciPostPhys.9.4.053.

[Kra+18] Thorsten Krause, Niels Röckendorf, Nail El-Sourani, Katrin Ramaker, Maik Henkel,

Sascha Hauke, Markus Borschbach, and Andreas Frey. “Breeding Cell Penetrating

Peptides: Optimization of Cellular Uptake by a Function-Driven Evolutionary Process”.

In: Bioconjugate Chemistry 29.12 (Dec. 19, 2018), pp. 4020–4029. ISSN: 1043-1802.

DOI: 10.1021/acs.bioconjchem.8b00583.

https://doi.org/10.1093/jac/dki209
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/978-3-642-97610-0_3
https://doi.org/10.1021/ar000033j
https://doi.org/10.1109/ICIP.2013.6738501
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.1021/acs.bioconjchem.8b00583

126 Bibliography

[Kra03] Kramer, Oliver. “Restriktionsbehandlung bei Evolutionsstrategien mit Geschlechtern”.

Diplomarbeit. Dortmund: Universität Dortmund, 2003.

[Kre+20] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-

Guzik. “Self-Referencing Embedded Strings (SELFIES): A 100% Robust Molecular

String Representation”. In: Machine Learning: Science and Technology 1.4 (Oct. 2020),

p. 045024. ISSN: 2632-2153. DOI: 10.1088/2632-2153/aba947.

[Kru64] J. B. Kruskal. “Nonmetric Multidimensional Scaling: A Numerical Method”. In: Psy-

chometrika 29.2 (June 1964), pp. 115–129. ISSN: 1860-0980. DOI: 10.1007/BF02289694.

[KS06] O. Kramer and H.-P. Schwefel. “On Three New Approaches to Handle Constraints

within Evolution Strategies”. In: Natural Computing 5.4 (Nov. 1, 2006), pp. 363–385.

ISSN: 1572-9796. DOI: 10.1007/s11047-006-0001-x.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: Advances in Neural Information Process-

ing Systems. Vol. 25. Curran Associates, Inc., 2012. URL: https://proceedings.

neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.

html (visited on 10/17/2023).

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: Communications of the ACM 60.6 (May 24,

2017), pp. 84–90. ISSN: 00010782. DOI: 10.1145/3065386.

[KTF20] Dimitris Kastaniotis, Dimitrios Tsourounis, and Spiros Fotopoulos. “Lip Reading Mod-

eling with Temporal Convolutional Networks for Medical Support Applications”. In:

2020 13th International Congress on Image and Signal Processing, BioMedical Engi-

neering and Informatics (CISP-BMEI). 2020 13th International Congress on Image and

Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Oct. 2020,

pp. 366–371. DOI: 10.1109/CISP-BMEI51763.2020.9263634.

[Lam+06] Eric-Wubbo Lameijer, Joost N. Kok, Thomas Bäck, and Ad P. IJzerman. “The Molecule

Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules”.

In: Journal of Chemical Information and Modeling 46.2 (Mar. 1, 2006), pp. 545–552.

ISSN: 1549-9596. DOI: 10.1021/ci050369d.

[LeC+89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural

Computation 1.4 (Dec. 1, 1989), pp. 541–551. ISSN: 0899-7667. DOI: 10.1162/neco.

1989.1.4.541.

[Lip+97] Christopher A. Lipinski, Franco Lombardo, Beryl W. Dominy, and Paul J. Feeney.

“Experimental and Computational Approaches to Estimate Solubility and Permeability

in Drug Discovery and Development Settings”. In: Advanced Drug Delivery Reviews. In

Vitro Models for Selection of Development Candidates 23.1 (Jan. 15, 1997), pp. 3–25.

ISSN: 0169-409X. DOI: 10.1016/S0169-409X(96)00423-1.

https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1007/BF02289694
https://doi.org/10.1007/s11047-006-0001-x
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CISP-BMEI51763.2020.9263634
https://doi.org/10.1021/ci050369d
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1016/S0169-409X(96)00423-1

Bibliography 127

[Luu+23] Sohvi Luukkonen, Helle W. van den Maagdenberg, Michael T. M. Emmerich, and

Gerard J. P. van Westen. “Artificial Intelligence in Multi-Objective Drug Design”. In:

Current Opinion in Structural Biology 79 (Apr. 1, 2023), p. 102537. ISSN: 0959-440X.

DOI: 10.1016/j.sbi.2023.102537.

[LWW22] Qiaoming Liu, Jun Wan, and Guohua Wang. “A Survey on Computational Methods in

Discovering Protein Inhibitors of SARS-CoV-2”. In: Briefings in Bioinformatics 23.1

(Jan. 1, 2022), bbab416. ISSN: 1477-4054. DOI: 10.1093/bib/bbab416.

[McC00] Charles E. McCulloch. “Generalized Linear Models”. In: Journal of the American

Statistical Association 95.452 (Dec. 1, 2000), pp. 1320–1324. ISSN: 0162-1459. DOI:

10.1080/01621459.2000.10474340.

[MDJ21] Hylemariam Mihiretie Mengist, Tebelay Dilnessa, and Tengchuan Jin. “Structural

Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease”. In: Frontiers

in Chemistry 9 (2021). ISSN: 2296-2646. URL: https://www.frontiersin.org/

article/10.3389/fchem.2021.622898 (visited on 03/26/2022).

[MF00] D. MacDonald and C. Fyfe. “The Kernel Self-Organising Map”. In: KES’2000. Fourth

International Conference on Knowledge-Based Intelligent Engineering Systems and

Allied Technologies. Proceedings (Cat. No.00TH8516). KES’2000. Fourth International

Conference on Knowledge-Based Intelligent Engineering Systems and Allied Tech-

nologies. Proceedings (Cat. No.00TH8516). Vol. 1. Aug. 2000, 317–320 vol.1. DOI:

10.1109/KES.2000.885820.

[Mic+11] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beck-

stein. “MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations”. In:

Journal of Computational Chemistry 32.10 (2011), pp. 2319–2327. ISSN: 1096-987X.

DOI: 10.1002/jcc.21787.

[Mii90] Risto Miikkulainen. “Script Recognition with Hierarchical Feature Maps”. In: Con-

nection Science 2.1-2 (Jan. 1, 1990), pp. 83–101. ISSN: 0954-0091. DOI: 10.1080/

09540099008915664.

[Mit97] Tom M. Mitchell. “Machine Learning”. In: (1997).

[MJK15] Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci. Introduction to Time

Series Analysis and Forecasting. John Wiley & Sons, 2015.

[MK17] Almuth Meier and Oliver Kramer. “An Experimental Study of Dimensionality Reduction

Methods”. In: KI 2017: Advances in Artificial Intelligence (Cham). Ed. by Gabriele Kern-

Isberner, Johannes Fürnkranz, and Matthias Thimm. Springer International Publishing,

2017, pp. 178–192. ISBN: 978-3-319-67190-1. DOI: 10.1007/978-3-319-67190-

1_14.

[Mor+09] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K. Belew,

David S. Goodsell, and Arthur J. Olson. “AutoDock4 and AutoDockTools4: Automated

Docking with Selective Receptor Flexibility”. In: Journal of Computational Chemistry

30.16 (2009), pp. 2785–2791. ISSN: 1096-987X. DOI: 10.1002/jcc.21256.

https://doi.org/10.1016/j.sbi.2023.102537
https://doi.org/10.1093/bib/bbab416
https://doi.org/10.1080/01621459.2000.10474340
https://www.frontiersin.org/article/10.3389/fchem.2021.622898
https://www.frontiersin.org/article/10.3389/fchem.2021.622898
https://doi.org/10.1109/KES.2000.885820
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1080/09540099008915664
https://doi.org/10.1080/09540099008915664
https://doi.org/10.1007/978-3-319-67190-1_14
https://doi.org/10.1007/978-3-319-67190-1_14
https://doi.org/10.1002/jcc.21256

128 Bibliography

[NB13] Christos A. Nicolaou and Nathan Brown. “Multi-Objective Optimization Methods in

Drug Design”. In: Drug Discovery Today: Technologies 10.3 (Sept. 1, 2013), e427–e435.

ISSN: 1740-6749. DOI: 10.1016/j.ddtec.2013.02.001.

[Nea+14] Victor-Emil Neagoe, Radu-Mihai Stoica, Alexandru-Ioan Ciurea, Lorenzo Bruzzone,

and Francesca Bovolo. “Concurrent Self-Organizing Maps for Supervised/Unsupervised

Change Detection in Remote Sensing Images”. In: IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing 7.8 (Aug. 2014), pp. 3525–3533. ISSN:

2151-1535. DOI: 10.1109/JSTARS.2014.2330808.

[Nig+19] AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik. “Aug-

menting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical

Space”. In: International Conference on Learning Representations. Sept. 25, 2019. URL:

https://openreview.net/forum?id=H1lmyRNFvr (visited on 12/21/2021).

[NR02] V.-E. Neagoe and A.-D. Ropot. “Concurrent Self-Organizing Maps for Pattern Classifi-

cation”. In: Proceedings First IEEE International Conference on Cognitive Informatics.

Proceedings First IEEE International Conference on Cognitive Informatics. Aug. 2002,

pp. 304–312. DOI: 10.1109/COGINF.2002.1039311.

[OAH14] Shogo Onojima, Yuya Arima, and Akira Hirose. “Millimeter-Wave Security Imaging

Using Complex-Valued Self-Organizing Map for Visualization of Moving Targets”.

In: Neurocomputing. Special Issue on the 2011 Sino-foreign-interchange Workshop

on Intelligence Science and Intelligent Data Engineering (IScIDE 2011) 134 (June 25,

2014), pp. 247–253. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2013.06.048.

[OBC00] Alexey Onufriev, Donald Bashford, and David A. Case. “Modification of the General-

ized Born Model Suitable for Macromolecules”. In: The Journal of Physical Chemistry

B 104.15 (Apr. 1, 2000), pp. 3712–3720. ISSN: 1520-6106. DOI: 10.1021/jp994072s.

[OBC04] Alexey Onufriev, Donald Bashford, and David A. Case. “Exploring Protein Native

States and Large-Scale Conformational Changes with a Modified Generalized Born

Model”. In: Proteins: Structure, Function, and Bioinformatics 55.2 (2004), pp. 383–394.

ISSN: 1097-0134. DOI: 10.1002/prot.20033.

[OBo+11] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch,

and Geoffrey R. Hutchison. “Open Babel: An Open Chemical Toolbox”. In: Journal

of Cheminformatics 3.1 (Oct. 7, 2011), p. 33. ISSN: 1758-2946. DOI: 10.1186/1758-

2946-3-33.

[OC19] Alexey V. Onufriev and David A. Case. “Generalized Born Implicit Solvent Models for

Biomolecules”. In: Annual review of biophysics 48 (2019), pp. 275–296.

[Oeh18] Stefan Oehmcke. “Deep Learning of Virtual Marine Sensors”. PhD thesis. University of

Oldenburg, Germany, 2018. URL: http://oops.uni-oldenburg.de/3613.

https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1109/JSTARS.2014.2330808
https://openreview.net/forum?id=H1lmyRNFvr
https://doi.org/10.1109/COGINF.2002.1039311
https://doi.org/10.1016/j.neucom.2013.06.048
https://doi.org/10.1021/jp994072s
https://doi.org/10.1002/prot.20033
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
http://oops.uni-oldenburg.de/3613

Bibliography 129

[Oor+16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “WaveNet:

A Generative Model for Raw Audio”. Sept. 19, 2016. arXiv: 1609.03499 [cs]. URL:

http://arxiv.org/abs/1609.03499 (visited on 01/07/2020).

[OR14a] Robert J. Ouellette and J. David Rawn. “1 - Structure and Bonding in Organic Com-

pounds”. In: Organic Chemistry. Ed. by Robert J. Ouellette and J. David Rawn. Boston:

Elsevier, Jan. 1, 2014, pp. 1–39. ISBN: 978-0-12-800780-8. DOI: 10.1016/B978-0-

12-800780-8.00001-2.

[OR14b] Robert J. Ouellette and J. David Rawn. “28 - Synthetic Polymers”. In: Organic Chem-

istry. Ed. by Robert J. Ouellette and J. David Rawn. Boston: Elsevier, Jan. 1, 2014,

pp. 993–1020. ISBN: 978-0-12-800780-8. DOI: 10.1016/B978- 0- 12- 800780-

8.00028-0.

[OR14c] Robert J. Ouellette and J. David Rawn. “4 - Alkanes and Cycloalkanes: Structures

and Reactions”. In: Organic Chemistry. Ed. by Robert J. Ouellette and J. David Rawn.

Boston: Elsevier, Jan. 1, 2014, pp. 111–161. ISBN: 978-0-12-800780-8. DOI: 10.1016/

B978-0-12-800780-8.00004-8.

[OR14d] Robert J. Ouellette and J. David Rawn. “5 - Alkenes Structures and Properties”. In:

Organic Chemistry. Ed. by Robert J. Ouellette and J. David Rawn. Boston: Elsevier,

Jan. 1, 2014, pp. 163–193. ISBN: 978-0-12-800780-8. DOI: 10.1016/B978-0-12-

800780-8.00005-X.

[OR14e] Robert J. Ouellette and J. David Rawn. “8 - Stereochemistry”. In: Organic Chemistry.

Ed. by Robert J. Ouellette and J. David Rawn. Boston: Elsevier, Jan. 1, 2014, pp. 241–

286. ISBN: 978-0-12-800780-8. DOI: 10.1016/B978-0-12-800780-8.00008-5.

[Pan+20] Pritam Kumar Panda, Murugan Natarajan Arul, Paritosh Patel, Suresh K. Verma, Wei

Luo, Horst-Günter Rubahn, Yogendra Kumar Mishra, Mrutyunjay Suar, and Rajeev

Ahuja. “Structure-Based Drug Designing and Immunoinformatics Approach for SARS-

CoV-2”. In: Science Advances 6.28 (July 10, 2020), eabb8097. DOI: 10.1126/sciadv.

abb8097.

[Pan+21] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. “Deep

Learning for Anomaly Detection: A Review”. In: ACM Computing Surveys 54.2 (Mar. 5,

2021), 38:1–38:38. ISSN: 0360-0300. DOI: 10.1145/3439950.

[Phi+05] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Eliz-

abeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kalé, and Klaus Schulten.

“Scalable Molecular Dynamics with NAMD”. In: Journal of Computational Chemistry

26.16 (2005), pp. 1781–1802. ISSN: 1096-987X. DOI: 10.1002/jcc.20289.

[Phi+20] James C. Phillips, David J. Hardy, Julio D. C. Maia, John E. Stone, João V. Ribeiro,

Rafael C. Bernardi, Ronak Buch, Giacomo Fiorin, Jérôme Hénin, Wei Jiang, Ryan

McGreevy, Marcelo C. R. Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy,

Yi Wang, Benoît Roux, Aleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V.

https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://doi.org/10.1016/B978-0-12-800780-8.00001-2
https://doi.org/10.1016/B978-0-12-800780-8.00001-2
https://doi.org/10.1016/B978-0-12-800780-8.00028-0
https://doi.org/10.1016/B978-0-12-800780-8.00028-0
https://doi.org/10.1016/B978-0-12-800780-8.00004-8
https://doi.org/10.1016/B978-0-12-800780-8.00004-8
https://doi.org/10.1016/B978-0-12-800780-8.00005-X
https://doi.org/10.1016/B978-0-12-800780-8.00005-X
https://doi.org/10.1016/B978-0-12-800780-8.00008-5
https://doi.org/10.1126/sciadv.abb8097
https://doi.org/10.1126/sciadv.abb8097
https://doi.org/10.1145/3439950
https://doi.org/10.1002/jcc.20289

130 Bibliography

Kalé, Klaus Schulten, Christophe Chipot, and Emad Tajkhorshid. “Scalable Molecular

Dynamics on CPU and GPU Architectures with NAMD”. In: The Journal of Chemical

Physics 153.4 (July 28, 2020), p. 044130. ISSN: 0021-9606. DOI: 10.1063/5.0014475.

[PHK01] Scott C.-H. Pegg, Jose J. Haresco, and Irwin D. Kuntz. “A Genetic Algorithm for

Structure-Based de Novo Design”. In: Journal of Computer-Aided Molecular Design

15.10 (Oct. 1, 2001), pp. 911–933. ISSN: 1573-4951. DOI: 10.1023/A:1014389729000.

[Pil+16] Thanigaimalai Pillaiyar, Manoj Manickam, Vigneshwaran Namasivayam, Yoshio Hayashi,

and Sang-Hun Jung. “An Overview of Severe Acute Respiratory Syndrome–Coronavirus

(SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemother-

apy”. In: Journal of Medicinal Chemistry 59.14 (July 28, 2016), pp. 6595–6628. ISSN:

0022-2623. DOI: 10.1021/acs.jmedchem.5b01461.

[PK20] Jonas Prellberg and Oliver Kramer. Acute Lymphoblastic Leukemia Classification from

Microscopic Images Using Convolutional Neural Networks. Apr. 1, 2020. arXiv: 1906.

09020 [cs]. URL: http://arxiv.org/abs/1906.09020 (visited on 10/17/2023).

preprint.

[Pol+20] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golo-

vanov, Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir

Aladinskiy, Mark Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey

Nikolenko, Alán Aspuru-Guzik, and Alex Zhavoronkov. “Molecular Sets (MOSES): A

Benchmarking Platform for Molecular Generation Models”. In: Frontiers in Pharmacol-

ogy 11 (2020), p. 1931. ISSN: 1663-9812. DOI: 10.3389/fphar.2020.565644.

[Pub] PubChem. Propane (3D Conformer). URL: https://pubchem.ncbi.nlm.nih.gov/

compound/6334 (visited on 11/23/2021).

[PWP19] Charlotte Pelletier, Geoffrey I. Webb, and François Petitjean. “Temporal Convolutional

Neural Network for the Classification of Satellite Image Time Series”. In: Remote

Sensing 11.5 (5 Jan. 2019), p. 523. DOI: 10.3390/rs11050523.

[PZT17] L. Platon, F. Zehraoui, and F. Tahi. “Self-Organizing Maps with Supervised Layer”.

In: WSOM. 2017 12th International Workshop on Self-Organizing Maps and Learning

Vector Quantization, Clustering and Data Visualization (WSOM). June 2017, pp. 1–8.

DOI: 10.1109/WSOM.2017.8020022.

[RBF12] Niels Röckendorf, Markus Borschbach, and Andreas Frey. “Molecular Evolution of

Peptide Ligands with Custom-Tailored Characteristics for Targeting of Glycostructures”.

In: PLOS Computational Biology 8.12 (Dec. 13, 2012), e1002800. ISSN: 1553-7358.

DOI: 10.1371/journal.pcbi.1002800.

[Rec73] Ingo Rechenberg. “Evolutionsstrategie”. In: Optimierung technischer Systeme nach

Prinzipien derbiologischen Evolution (1973).

[Rey+10] Jean-Louis Reymond, Ruud van Deursen, Lorenz C. Blum, and Lars Ruddigkeit. “Chem-

ical Space as a Source for New Drugs”. In: MedChemComm 1.1 (July 1, 2010), pp. 30–

38. ISSN: 2040-2511. DOI: 10.1039/C0MD00020E.

https://doi.org/10.1063/5.0014475
https://doi.org/10.1023/A:1014389729000
https://doi.org/10.1021/acs.jmedchem.5b01461
https://arxiv.org/abs/1906.09020
https://arxiv.org/abs/1906.09020
http://arxiv.org/abs/1906.09020
https://doi.org/10.3389/fphar.2020.565644
https://pubchem.ncbi.nlm.nih.gov/compound/6334
https://pubchem.ncbi.nlm.nih.gov/compound/6334
https://doi.org/10.3390/rs11050523
https://doi.org/10.1109/WSOM.2017.8020022
https://doi.org/10.1371/journal.pcbi.1002800
https://doi.org/10.1039/C0MD00020E

Bibliography 131

[RF18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. Apr. 8,

2018. arXiv: 1804.02767 [cs]. URL: http://arxiv.org/abs/1804.02767

(visited on 02/25/2020).

[RHW85] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal

Representations by Error Propagation. Institute for Cognitive Science, University of Cal-

ifornia, San Diego La . . ., 1985. URL: https://apps.dtic.mil/sti/citations/

ADA164453 (visited on 10/12/2023).

[RL13] Sereina Riniker and Gregory A. Landrum. “Open-Source Platform to Benchmark Fin-

gerprints for Ligand-Based Virtual Screening”. In: Journal of Cheminformatics 5.1 (1

Dec. 2013), pp. 1–17. ISSN: 1758-2946. DOI: 10.1186/1758-2946-5-26.

[Roe98] Paul J. Roebber. “The Regime Dependence of Degree Day Forecast Technique, Skill,

and Value”. In: Weather and Forecasting 13.3 (Sept. 1, 1998), pp. 783–794. ISSN:

0882-8156. DOI: 10.1175/1520-0434(1998)013<0783:TRDODD>2.0.CO;2.

[Sch17] F. Schleif. “Small Sets of Random Fourier Features by Kernelized Matrix LVQ”. In:

WSOM. 2017 12th International Workshop on Self-Organizing Maps and Learning

Vector Quantization, Clustering and Data Visualization (WSOM). June 2017, pp. 1–5.

DOI: 10.1109/WSOM.2017.8020026.

[Sch18] Gisbert Schneider. “Automating Drug Discovery”. In: Nature Reviews Drug Discovery

17.2 (2 Feb. 2018), pp. 97–113. ISSN: 1474-1784. DOI: 10.1038/nrd.2017.232.

[Sch87] Hans-Paul Schwefel. “Collective Phenomena in Evolutionary Systems”. In: (1987).

[Sch93] Jürgen Schlitter. “Estimation of Absolute and Relative Entropies of Macromolecules

Using the Covariance Matrix”. In: Chemical Physics Letters 215.6 (Dec. 17, 1993),

pp. 617–621. ISSN: 0009-2614. DOI: 10.1016/0009-2614(93)89366-P.

[Seg+18] Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. “Generating

Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks”.

In: ACS Central Science 4.1 (Jan. 24, 2018), pp. 120–131. ISSN: 2374-7943. DOI:

10.1021/acscentsci.7b00512.

[Sha+20] Mousmee Sharma, Parteek Prasher, Meenu Mehta, Flavia C. Zacconi, Yogendra Singh,

Deepak N. Kapoor, Harish Dureja, Dinesh M. Pardhi, Murtaza M. Tambuwala, Gaurav

Gupta, Dinesh K. Chellappan, Kamal Dua, and Saurabh Satija. “Probing 3CL Pro-

tease: Rationally Designed Chemical Moieties for COVID-19”. In: Drug Development

Research 81.8 (2020), pp. 911–918. ISSN: 1098-2299. DOI: 10.1002/ddr.21724.

[Sha+21] Jatin Sharma, Vijay Kumar Bhardwaj, Rahul Singh, Vidya Rajendran, Rituraj Purohit,

and Sanjay Kumar. “An In-Silico Evaluation of Different Bioactive Molecules of Tea

for Their Inhibition Potency against Non Structural Protein-15 of SARS-CoV-2”. In:

Food Chemistry 346 (June 1, 2021), p. 128933. ISSN: 1873-7072. DOI: 10.1016/j.

foodchem.2020.128933. pmid: 33418408.

https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://apps.dtic.mil/sti/citations/ADA164453
https://apps.dtic.mil/sti/citations/ADA164453
https://doi.org/10.1186/1758-2946-5-26
https://doi.org/10.1175/1520-0434(1998)013<0783:TRDODD>2.0.CO;2
https://doi.org/10.1109/WSOM.2017.8020026
https://doi.org/10.1038/nrd.2017.232
https://doi.org/10.1016/0009-2614(93)89366-P
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1002/ddr.21724
https://doi.org/10.1016/j.foodchem.2020.128933
https://doi.org/10.1016/j.foodchem.2020.128933
33418408

132 Bibliography

[SI15] Teague Sterling and John J. Irwin. “ZINC 15 – Ligand Discovery for Everyone”. In:

Journal of Chemical Information and Modeling 55.11 (Nov. 23, 2015), pp. 2324–2337.

ISSN: 1549-9596. DOI: 10.1021/acs.jcim.5b00559.

[Sil+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,

and Demis Hassabis. “Mastering the Game of Go with Deep Neural Networks and Tree

Search”. In: Nature 529.7587 (7587 Jan. 2016), pp. 484–489. ISSN: 1476-4687. DOI:

10.1038/nature16961.

[Sil+17a] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering Chess and Shogi

by Self-Play with a General Reinforcement Learning Algorithm. Dec. 5, 2017. DOI:

10.48550/arXiv.1712.01815. arXiv: 1712.01815 [cs]. preprint.

[Sil+17b] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. “Master-

ing the Game of Go without Human Knowledge”. In: Nature 550.7676 (2017), pp. 354–

359.

[Sin+21] Rahul Singh, Vijay Kumar Bhardwaj, Pralay Das, and Rituraj Purohit. “A Computational

Approach for Rational Discovery of Inhibitors for Non-Structural Protein 1 of SARS-

CoV-2”. In: Computers in Biology and Medicine 135 (Aug. 2021), p. 104555. ISSN:

1879-0534. DOI: 10.1016/j.compbiomed.2021.104555. pmid: 34144270.

[Smo13] Tomasz G. Smolinski. “Multi-Objective Evolutionary Algorithms”. In: Encyclopedia

of Computational Neuroscience. Ed. by Dieter Jaeger and Ranu Jung. New York, NY:

Springer, 2013, pp. 1–4. ISBN: 978-1-4614-7320-6. DOI: 10.1007/978-1-4614-

7320-6_16-2.

[Sri+99] Jayashree Srinivasan, Megan W. Trevathan, Paul Beroza, and David A. Case. “Applica-

tion of a Pairwise Generalized Born Model to Proteins and Nucleic Acids: Inclusion of

Salt Effects”. In: Theoretical Chemistry Accounts 101.6 (May 1, 1999), pp. 426–434.

ISSN: 1432-2234. DOI: 10.1007/s002140050460.

[Sti+90] W. Clark Still, Anna Tempczyk, Ronald C. Hawley, and Thomas Hendrickson. “Semian-

alytical Treatment of Solvation for Molecular Mechanics and Dynamics”. In: Journal of

the American Chemical Society 112.16 (Aug. 1, 1990), pp. 6127–6129. ISSN: 0002-7863.

DOI: 10.1021/ja00172a038.

[STL00] Robert F. Schmidt, Gerhard Thews, and Florian Lang, eds. Physiologie Des Menschen.

Springer-Lehrbuch. Berlin, Heidelberg: Springer, 2000. ISBN: 978-3-662-09346-7. DOI:

10.1007/978-3-662-09346-7.

https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1016/j.compbiomed.2021.104555
34144270
https://doi.org/10.1007/978-1-4614-7320-6_16-2
https://doi.org/10.1007/978-1-4614-7320-6_16-2
https://doi.org/10.1007/s002140050460
https://doi.org/10.1021/ja00172a038
https://doi.org/10.1007/978-3-662-09346-7

Bibliography 133

[Str+20] Birgit Strodel, Olujide Olubiyi, Maryam Olagunju, Monika Keutmann, and Jennifer

Loschwitz. “High Throughput Virtual Screening to Discover Inhibitors of the Main

Protease of the Coronavirus SARS-CoV-2”. In: (Apr. 9, 2020). DOI: 10 . 20944 /

preprints202004.0161.v1.

[Sun+11] G. Sunilkumar, J. Thriveni, K. R. Venugopal, and L. M. Patnaik. “Cognition Based

Self-Organizing Maps (CSOM) for Intrusion Detection in Wireless Networks”. In: 2011

Annual IEEE India Conference. 2011 Annual IEEE India Conference. Dec. 2011, pp. 1–

6. DOI: 10.1109/INDCON.2011.6139377.

[SZ20] Mohamed Sakkari and Mourad Zaied. “A Convolutional Deep Self-Organizing Map

Feature Extraction for Machine Learning”. In: Multimedia Tools and Applications 79.27

(July 1, 2020), pp. 19451–19470. ISSN: 1573-7721. DOI: 10.1007/s11042-020-

08822-9.

[Tia+20] Chuan Tian, Koushik Kasavajhala, Kellon A. A. Belfon, Lauren Raguette, He Huang,

Angela N. Migues, John Bickel, Yuzhang Wang, Jorge Pincay, Qin Wu, and Carlos

Simmerling. “ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained

against Quantum Mechanics Energy Surfaces in Solution”. In: Journal of Chemical

Theory and Computation 16.1 (Jan. 14, 2020), pp. 528–552. ISSN: 1549-9618. DOI:

10.1021/acs.jctc.9b00591.

[TO10] Oleg Trott and Arthur J. Olson. “AutoDock Vina: Improving the Speed and Accuracy

of Docking with a New Scoring Function, Efficient Optimization, and Multithreading”.

In: Journal of Computational Chemistry 31.2 (2010), pp. 455–461. ISSN: 1096-987X.

DOI: 10.1002/jcc.21334.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: Advances

in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc., 2017.

URL: https://proceedings.neurips.cc/paper_files/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (visited on 10/17/2023).

[vdHor+12] Eelke van der Horst, Patricia Marqués-Gallego, Thea Mulder-Krieger, Jacobus van Veld-

hoven, Johannes Kruisselbrink, Alexander Aleman, Michael T. M. Emmerich, Johannes

Brussee, Andreas Bender, and Adriaan P. IJzerman. “Multi-Objective Evolutionary De-

sign of Adenosine Receptor Ligands”. In: Journal of Chemical Information and Model-

ing 52.7 (July 23, 2012), pp. 1713–1721. ISSN: 1549-9596. DOI: 10.1021/ci2005115.

[Ven+15] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,

Trevor Darrell, and Kate Saenko. “Sequence to Sequence - Video to Text”. In: Pro-

ceedings of the IEEE International Conference on Computer Vision. 2015, pp. 4534–

4542. URL: http://openaccess.thecvf.com/content_iccv_2015/html/

Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.html (visited on

07/30/2019).

https://doi.org/10.20944/preprints202004.0161.v1
https://doi.org/10.20944/preprints202004.0161.v1
https://doi.org/10.1109/INDCON.2011.6139377
https://doi.org/10.1007/s11042-020-08822-9
https://doi.org/10.1007/s11042-020-08822-9
https://doi.org/10.1021/acs.jctc.9b00591
https://doi.org/10.1002/jcc.21334
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1021/ci2005115
http://openaccess.thecvf.com/content_iccv_2015/html/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.html

134 Bibliography

[Vil+17] T. Villmann, M. Biehl, A. Villmann, and S. Saralajew. “Fusion of Deep Learning Archi-

tectures, Multilayer Feedforward Networks and Learning Vector Quantizers for Deep

Classification Learning”. In: 2017 12th International Workshop on Self-Organizing

Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

2017 12th International Workshop on Self-Organizing Maps and Learning Vector

Quantization, Clustering and Data Visualization (WSOM). June 2017, pp. 1–8. DOI:

10.1109/WSOM.2017.8020009.

[Vin+17] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhn-

evets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrit-

twieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul,

Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony

Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, and Rodney Tsing. “StarCraft

II: A New Challenge for Reinforcement Learning”. Aug. 16, 2017. arXiv: 1708.04782

[cs]. URL: http://arxiv.org/abs/1708.04782 (visited on 02/06/2019).

[Vin+19] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev,

Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre,

Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond,

Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom

L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani

Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lilli-

crap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. “Grandmaster

Level in StarCraft II Using Multi-Agent Reinforcement Learning”. In: Nature 575.7782

(7782 Nov. 2019), pp. 350–354. ISSN: 1476-4687. DOI: 10.1038/s41586-019-1724-

z.

[Voe00] T. Voegtlin. “Context Quantization and Contextual Self-Organizing Maps”. In: Pro-

ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.

IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millen-

nium. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the

New Millennium. Vol. 6. July 2000, 20–25 vol.6. DOI: 10.1109/IJCNN.2000.859367.

[Wag+16] Travis T. Wager, Xinjun Hou, Patrick R. Verhoest, and Anabella Villalobos. “Cen-

tral Nervous System Multiparameter Optimization Desirability: Application in Drug

Discovery”. In: ACS Chemical Neuroscience 7.6 (Mar. 18, 2016), pp. 767–775. DOI:

10.1021/acschemneuro.6b00029.

[Wan+04] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David

A. Case. “Development and Testing of a General Amber Force Field”. In: Journal

of Computational Chemistry 25.9 (2004), pp. 1157–1174. ISSN: 1096-987X. DOI:

10.1002/jcc.20035.

https://doi.org/10.1109/WSOM.2017.8020009
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
http://arxiv.org/abs/1708.04782
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1109/IJCNN.2000.859367
https://doi.org/10.1021/acschemneuro.6b00029
https://doi.org/10.1002/jcc.20035

Bibliography 135

[Wan+17] Min Wang, Wengang Zhou, Qi Tian, Junfu Pu, and Houqiang Li. “Deep Supervised

Quantization by Self-Organizing Map”. In: Proceedings of the 25th ACM International

Conference on Multimedia (Mountain View, California, USA). MM ’17. New York,

NY, USA: ACM, 2017, pp. 1707–1715. ISBN: 978-1-4503-4906-2. DOI: 10.1145/

3123266.3123415.

[Wei88] David Weininger. “SMILES, a Chemical Language and Information System. 1. In-

troduction to Methodology and Encoding Rules”. In: Journal of Chemical Informa-

tion and Computer Sciences 28.1 (Feb. 1, 1988), pp. 31–36. ISSN: 0095-2338. DOI:

10.1021/ci00057a005.

[Wer74] Paul J. Werbos. “Beyond Regression: New Tools for Prediction and Analysis in the

Be Havioral Sciences/’PhD Diss., Harvard Uni Versity. Werbos, Paul J. 1988”. In:

Generalization of back propagation with application to a recurrent gas market method,"

Neural Networks 1.4 (1974), pp. 339–356.

[Wer90] Paul J. Werbos. “Backpropagation through Time: What It Does and How to Do It”. In:

Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. DOI: 10.1109/5.58337.

[Wis+18] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant,

Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour, Ithayavani

Iynkkaran, Yifeng Liu, Adam Maciejewski, Nicola Gale, Alex Wilson, Lucy Chin, Ryan

Cummings, Diana Le, Allison Pon, Craig Knox, and Michael Wilson. “DrugBank 5.0:

A Major Update to the DrugBank Database for 2018”. In: Nucleic Acids Research 46.D1

(Jan. 4, 2018), pp. D1074–D1082. ISSN: 0305-1048. DOI: 10.1093/nar/gkx1037.

[Wit+17] Peter Wittek, Shi Chao Gao, Ik Soo Lim, and Li Zhao. “Somoclu: An Efficient Parallel

Library for Self-Organizing Maps”. In: Journal of Statistical Software 78.9 (2017). ISSN:

1548-7660. DOI: 10.18637/jss.v078.i09. arXiv: 1305.1422 [cs].

[WOK17] Wei Lee Woon, Stefan Oehmcke, and Oliver Kramer. “Spatio-Temporal Wind Power

Prediction Using Recurrent Neural Networks”. In: Neural Information Processing. Ed.

by Derong Liu, Shengli Xie, Yuanqing Li, Dongbin Zhao, and El-Sayed M. El-Alfy.

Lecture Notes in Computer Science. Springer International Publishing, 2017, pp. 556–

563. ISBN: 978-3-319-70139-4. DOI: 10.1007/978-3-319-70139-4_56.

[Wor20] Nils Steffen Worzyk. “Adversarials–1: Detecting Adversarial Inputs with Internal At-

tacks”. PhD thesis. Universität Oldenburg, May 13, 2020. URL: https://oops.uni-

oldenburg.de/4616 (visited on 10/17/2023).

[Yan+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. “XLNet: Generalized Autoregressive Pretraining for Language Understand-

ing”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Asso-

ciates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/

dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html (visited on 12/21/2021).

[YM00] Robert Yaffee and Monnie McGee. Time Series Analysis and Forecasting with Applica-

tions of SAS and SPSS. San Diego: Academic Press, Inc, 2000.

https://doi.org/10.1145/3123266.3123415
https://doi.org/10.1145/3123266.3123415
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1109/5.58337
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.18637/jss.v078.i09
https://arxiv.org/abs/1305.1422
https://doi.org/10.1007/978-3-319-70139-4_56
https://oops.uni-oldenburg.de/4616
https://oops.uni-oldenburg.de/4616
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

136 Bibliography

[YPL20] Yaxia Yuan, Jianfeng Pei, and Luhua Lai. “LigBuilder V3: A Multi-Target de Novo

Drug Design Approach”. In: Frontiers in Chemistry 8 (2020). ISSN: 2296-2646. DOI:

10.3389/fchem.2020.00142.

[Zho+11] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan,

and Qingfu Zhang. “Multiobjective Evolutionary Algorithms: A Survey of the State of

the Art”. In: Swarm and Evolutionary Computation 1.1 (Mar. 1, 2011), pp. 32–49. ISSN:

2210-6502. DOI: 10.1016/j.swevo.2011.03.001.

[ZT98] Eckart Zitzler and Lothar Thiele. “Multiobjective Optimization Using Evolutionary

Algorithms — A Comparative Case Study”. In: Parallel Problem Solving from Nature

— PPSN V. Ed. by Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul

Schwefel. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1998,

pp. 292–301. ISBN: 978-3-540-49672-4. DOI: 10.1007/BFb0056872.

https://doi.org/10.3389/fchem.2020.00142
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1007/BFb0056872

Index of Parameters

Vectors are printed in bold type. Matrices and tensors are written as capital roman letters in bold type.

Sets are written as capital letters in calligraphic font. The parameters are sorted alphabetically, first

Greek and then Roman. All pages are referenced on which a variable is used.

Greek letters
δmax The value δmax specifies the maximum difference between the length of the new string r′

and the length of the old string r. 67, 68, 78, 100, 137, 138

α learning rate of a ANN or a SOM 14, 83, 84, 90,

αi effective Born radius of atom i 69,

β window size 18, 19, 23,

γ surface tension 69,

ε0 vacuum permittivity 69,

εs dielectric constant of a solvent 69,

η index of the BMU of a SOM 83, 88,

κ Debye parameter 69,

κ−1 Debye length 69,

λ Number of individuals in the child generation of an evolution strategies (ES) 45–48, 64,

67, 68,

µ Number of individuals in the parent generation of an ES 45–48, 64, 67, 68,

µG mean of a Gaussian distribution 12,

π the number π ≈ 3.14159 12,

ρ Number of parents per child in an ES 45, 46,

σσσ covariance matrix 70,

σ Mutation strength in an ES 46, 47,

σ range / radius of SOM 83, 84, 90,

σG standard deviation of a Gaussian distribution 12,

τ prediction horizon 19,

φ a binary relation between X and Y . φ ⊆X ×Y . It contains ordered pairs of samples and

labels (x,y). 8, 18, 19, 137

ϕ activation function of an ANN 11, 12, 14,

Roman letters
A solvent-accessible surface area 69,

a atom position 76, 77,

a atom 40,

138 Index of Parameters

b bias of an artificial neuron) 11,

C number of classes (of a classification problem) 8, 85, 88, 89, 138

C set of classes (of a classification problem), C = {1, . . . ,C} 88, 89, 138

ci, j class counter of neuron i for class j 88, 89,

c̄ image color channels (e.g., c̄ = 3 for RGB images) 8, 86, 138

D distance matrix) 87, 93,

d dilation factor of a TCN 20,

r′ Specifies the length of the new string generated by LM to replace the old string of length

r. The value r′ is randomly drawn from the interval [max{1,r−δmax},r+δmax]. 66–68,

137, 138

e Euler’s number e≈ 2.71828 12, 83,

ec elementary charge 69, 70,

ê result of the error function of an ANN 14,

EDeViSE semantic error based on DeViSE 93, 94,

EKS error Kruskal Shepard 87, 93,

HSOM cross entropy of the SOM 88, 91, 92, 100

EKSN original normalized error Kruskal Shepard 87, 91–93,

ÊKSN normalized error Kruskal Shepard 87, 91–93, 100

EMM non-bonding molecular mechanics energies 69,

Fi j dielectric term 69,

f multi purpose function 8, 46,

G multi purpose graph

G0 binding free energies 68,

GC binding free energies of the ligand-receptor complex 68, 69,

GL binding free energies of the ligand 68, 69,

Gnp non-polar solvation free energies 69,

Gp polar solvation free energies 69,

GR binding free energies of the receptor 68, 69,

h neighborhood function of SOM 83, 84,

h̄ image height in pixel 8, 86,

h̄ reduced Planck’s constant 70,

I identity matrix: a square matrix with ones on the main diagonal and zeros elsewhere 70,

I ion concentration 69,

i multi purpose variable (counter, index etc.)

j multi purpose variable (counter, index etc.)

k multi purpose variable (counter, index etc.)

ℓ multi purpose variable (counter, index etc.)

k kernel size of a TCN 20,

kB Boltzmann constant 69, 70,

ke Coulomb constant, ke = 8.988×109 Nm2/C2 69, 138

L length of data considered by a TCN 20,

Index of Parameters 139

L′ given data length that should be covered by a TCN 20,

M molecule space / set of all molecules 56,

m dimension of a SOM sample x and weight vector w 82, 86,

m̂ dimension of a ConvSOM sample x 86,

N number of samples (and labels) 8, 82, 87, 88, 91, 92,

ni neuron i (of ANN or SOM) 11, 82–84, 88, 89, 92, 139

NA Avogadro number 69,

Na number of atoms in a ligand 76,

P ′ the next generation of individuals in an ES 46–48,

P a population of individuals in an ES 45, 46, 48,

pi position of neuron ni on the SOM 82–84, 89,

pd propability to delete a symbol during the mutation (see Section 5.3.2 54, 55, 57,

pi propability to insert a symbol during the mutation (see Section 5.3.2 54, 55, 57,

pr propability to replace a symbol during the mutation (see Section 5.3.2 54, 55, 57,

qi electrostatic charge of particle i 69,

r The length r ∈ [1,rmax] of a substring which should be replaced by the LM model. 66–68,

137–139

ri j distance between particles i and j 69,

rmax The maximum value of r. 67, 68, 78, 100, 139

S entropy 69, 70,

si number of clusters of class i 89, 91, 92,

s stack size of a TCN 20,

T temperature 69, 70,

t time or time step 18–20, 76,

u prediction data 18, 19,

v number of layers of a TCN 20,

wi, j a single weight j of neuron ni 11, 14,

wi weight vector of neuron ni 82–84, 92, 93, 139

w̄ image width in pixel 8, 86,

X ′ a batch of samples, X ′ ⊆X 84, 139

X placeholder for an electronegative atom 36,

X̄ sample space 8,

X tensor of samples 8–10, 139

X set of samples x 82, 84, 92, 137, 139

x̂ sample from a convolutional layer of the ConvSOM 86, 87,

x multi purpose input (e.g., input of an artificial neuron) 11,

x sample 8, 9, 18, 19, 82–84, 86–88, 92, 93, 137, 139, 145

Xtest A tensor of samples that are used for testing. It contains a part of the tensor of samples:

∀i ∈ N ∃ j ∈ N : Xtesti = X j. 9, 139

Xtrain A tensor of samples that are used for training. It contains a part of the tensor of samples:

∀i ∈ N ∃ j ∈ N : Xtraini = X j. 9, 139

140 Index of Parameters

Xval A tensor of samples that are used for validation. It contains a part of the tensor of samples:

∀i ∈ N ∃ j ∈ N : Xvali = X j. 9, 139

Y placeholder for an electronegative atom 36,

Ȳ label space 8,

Y tensor of labels 8–10, 140

Y set of labels y 137

y label 8, 14, 18, 19, 87, 88, 137, 140, 145

y multi purpose output (e.g., output of an artificial neuron) 11,

ŷ Result of an ANN that tries to approaximate the real label y 14,

Ytest A tensor of labels that are used for testing. It contains a part of the tensor of labels:

∀i ∈ N ∃ j ∈ N : Ytesti = Y j. 9, 140

Ytrain A tensor of labels that are used for training. It contains a part of the tensor of labels:

∀i ∈ N ∃ j ∈ N : Ytraini = Y j. 9, 140

Yval A tensor of labels that are used for validation. It contains a part of the tensor of labels:

∀i ∈ N ∃ j ∈ N : Yvali = Y j. 9, 140

ẑi ẑi is the ith feature of COMPUTSTAT QUARTERLY (see Table B.1) 21, 140

z̄i mean of zi 21,

zi zi is ẑi (the ith feature of COMPUTSTAT QUARTERLY) divided by the total assets atq 21,

140

z′i z′i is zi studendized 21, 140

Acronyms

If there is a page with the definition or description of the acronym, it is in bold type.

3CLpro 3C-like protease 32,

AE autoencoders 10,

AI artificial intelligence 7, 32, 50, 62–65, 70, 100

AMEX American Stock Exchange 21,

ANN artificial neural network 4, 7, 11, 13, 14, 17, 19, 21–23, 84,

108, 137–140

API application programming interface 38, 145,

BA binding affinity 51, 53, 55, 56, 58–60, 62, 71, 72, 78, 98, 99,

111, 112, 145

BMU best matching unit 82, 83, 84, 88, 90, 100, 137

C ligand-receptor complex 68–70,

CADD computer-aided drug design 63, 64,

CGP cartesian genetic programming

CI computational intelligence III, V, 3, 4, 7, 97, 98

CIFAR-10 Canadian Institute For Advanced Research 90–93, 100, Glos-

sary: CIFAR-10

CNN convolutional neural network 4, 20, 81, 82, 84, 85, 86, 90, 92,

94, 100, 101

COM center of mass 74, 75, 77, 78, 99

ConvSOM convolutional self-organizing map III–V, 4, 6, 81, 85, 86–94,

100, 101, 139

COVID-19 coronavirus disease 2019 5, 32, 49,

CRSP Center for Research in Security Prices 21,

CSI class scatter index 88, 89, 91–93, 100

DBN deep belief network 10,

DBSCAN density-based spatial clustering of applications with noise 9,

DeViSE deep visual-semantic embedding model 93, 94, 100, 138

DNA deoxyribonucleic acid 45,

DNN deep neural network 3, 11, 12, 97, 98

142 Acronyms

EA evolutionary algorithm 4, 5, 32, 45, 48, 50, 56, 57, 63, 65, 78,

98–100, 111

EMGA evolutionary molecule generation algorithm 5, 63, 64, 65,

67–74, 77, 78, 98–100, 112

EP evolutionary programming 45,

EPS earnings per share 17, 21, 25, 97

ES evolution strategies 45, 46, 53, 64, 137, 139

FFI Fama-French industries 25, 98, 107

FFI5 Fama-French industries with 5 groups 25, 26, 27, 97

GA genetic algorithm 45, 56, 99, 111

GAN generative adversarial network 10,

GB generalized Born 69,

GBIS generalized Born implicit solvent 70,

GNN graph neural network 101

GP genetic programming 45,

GPU graphics processing unit 3, 11, 86,

HIV human immunodeficiency virus 59,

HPC high performance cluster 74, 99

i.i.d. independent and identically distributed 10,

InChI International Chemical Identifier 39,

IUPAC International Union of Pure and Applied Chemistry 37, 39,

L ligand 68–70,

LM language model 63, 64, 65, 78, 93, 98–100, 138, 139

LSTM long short-term memory 14, 17, 19, 22–27, 64, 97, 98

Mpro main protease 32, 49, 51, 56, 59–62, 70–72, 74, 75, 77, 78,

98–100

MAPE mean absolute percentage error 22,

MCF medical chemical filter 53,

MCO minor class occurence 88,

MD molecular dynamics 63, 64, 68, 69–71, 74, 77, 78, 99, 100

ML machine learning 4, 7, 9, 14,

MM/GBSA molecular mechanics / generalized Born surface area 68,

MNIST Modified National Institute of Standards and Technology 89–

93, 100, Glossary: MNIST

Acronyms 143

MOEA multi-objective evolutionary algorithm 56,

MOO multi-objective optimization 4, 49, 50, 56,

MOSES Molecular Sets 56, 67, 98, 111, Glossary: MOSES

MPNN message passing neural network 101

MSE mean squared error 22, 23, 26, 97

MUX multiplexer 86, 94,

NASDAQ National Association of Securities Dealers Automated Quota-

tion 21,

NG neural gas 10,

NMCO normalized minor class occurrence 88, 91, 92, 100

NP natural product-likeness 52, 53, 56, 58, 59, 71, 78, 98, 112

NSGA-II non-dominated sorting genetic algorithm II 56, 57, 98, 100

NYSE New York Stock Exchange 21,

PAINS pan assay interference compounds 53,

PDB protein data bank 40, 59,

PI protease inhibitor 60,

PREMS Pareto ranking evolutionary molecule search 49, 54, 56, 57–

62, 98, 99

QED quantitative estimate of drug-likeness 52, 53, 56, 58–60, 62,

71, 78, 98, 99, 112

R receptor 68–70,

ReLU rectified linear unit 12, 20, 85, 90,

RMSD root mean square displacement 75–78, 99

RMSF root means square fluctuations 75, 77, 99

RNA ribonucleic acid 32, 45,

RNN recurrent neural network 13, 19,

SA synthetic accessibility 51, 52, 53, 56, 58–60, 71, 78, 98, 99,

112

SARS-CoV-2 severe acute respiratory syndrome coronavirus-2 3, 32, 49,

56, 61, 62, 64, 70, 78, 98, 100

SD standard deviation 91, 92,

SELFIES self-referencing embedded strings 38, 39, 47, 53, 54, 56, 57,

59, 62, 65, 98, 99, 111

SIC standard industrial classification 25,

SMILES simplified molecular-input line-entry system 37, 38, 39, 47,

50, 56, 63–68, 71, 98, 99, 111, 112

144 Acronyms

SMS-EMOA S metric selection evolutionary multiobjective optimisation

algorithm 100

SOM self-organizing map 4, 10, 81, 82, 83–87, 89–94, 100, 101,

137–139

SS skill score 22, 97

tanh hyperbolic tangent 12, 23,

TCN temporal convolutional network 14, 17, 20, 22–27, 97, 138,

139

TF toxicity filters 51, 53, 56, 57, 59, 62, 78, 98, 112

vdW van der Waals 70, 77,

VSEPR valence shell electron pair repulsion 35,

WSEMS weighted sum evolutionary molecule search 49, 54, 56, 57–62,

98, 99

ZINC is not commercial 64, 67, 78, 99, 144, Glossary: ZINC

Glossary

CIFAR-10 The CIFAR-10 database contains 32×32 color images of 10 different classes. The data set

consists of 50000 samples for training and 10000 for testing. 90, 100

feature A sample can have multiple features, e.g., features of a car would be: color, brand, maximum

speed etc. 81, 107, 145

Keras Keras is an open-source high-level deep learning library for Python. It can especially be used

as interface for TensorFlow. 90,

label A label y corresponding to a sample, e.g., in object recognition the image is the sample while

the object on the image is the label. 140

MNIST The MNIST database contains 28× 28 grayscale images of handwritten digits. The data

set consists of 60000 samples for training and 10000 for testing, which are divided into 10

classes. 89, 100

MOSES Molecular Sets (MOSES) is a benchmarking platform for molecular generation models (see

[Pol+20]). 56, 98

pattern 1. A pattern can exist between different samples, that have similar features, e.g., multiple cars

with the same color. 2. A pattern can exist from different features within a single sample,

e.g., sub-elements of an object in object recognition, such as eyes in face recognition. 9, 82,

QuickVina 2 QuickVina 2 [Alh+15] is an improved version of AutoDock Vina and is used to estimate

the BA between two molecules. 51, 53, 56, 60, 62, 98, 99

RDKit RDKit is a open-source software for cheminformatics and machine learning with a python

API (https://www.rdkit.org). 38, 56,

sample A sample x is a single input element, e.g., a specific car out of a set of all cars. 81, 82, 107,

139, 145

TensorFlow TensorFlow is an open-source deep learning library for Python, JavaScript, C++, and

Java. 86, 90, 145

ZINC ZINC is a large public access molecule database and tool set (see [SI15]). 64, 99

https://www.rdkit.org

INDEX 147

Index

Symbols

(µ +λ) . 48

(µ,λ) . 47

3CLpro . 32

A

ANN . 11

aromatic rings . 37

atom . 32

atomic number . 32

AutoDock . 51

AutoDock Vina . 51

B

BA . 51

ball-and-stick model . 41

BMU . 82

Bohr model .33

bond . 35

covalent . 35

intermolecular . 35

intramolecular . 35

ionic . 35

metallic . 35

strong. .35

weak . 35

C

canonical SMILES . 38

chair representation . 40

chiral . 43

CI . 7

cis . 43

cis-trans isomers . 43

classification . 8

CNN. .84

comma selection . 47

constitutional isomers 42

ConvSOM. 85

covalent bond . 35

COVID-19 . 32

cross entropy . 88

CRSP . 21

CSI . 88

D

DeViSE . 93

DNN. 11

docking score . 51

dropout . 85

E

EA . 45

electron . 32

element . 32

EMGA . 63

enantiomers . 43

endogenous parameters 46

EP . 45

EPS. .17

ES . 45

exogenous parameters 46

148 Index

F

feed forward network . 13

FFI . 25

FFI5 . 25

fingerprints . 39

Fischer projection . 40

G

GA . 45

GP . 45

graph . 40

H

Haworth projection . 40

hydrogen bond . 36

I

InChI . 39

intermolecular bond . 35

intramolecular bond . 35

ionic bond . 35

isomer . 42

IUPAC . 37

IUPAC nomenclature of organic chemistry . 37

K

Kruskal Shepard error 87

L

learning

reinforcement . 10

supervised . 8

unsupervised . 9

Lewis structure . 39

ligand . 49

LM . 65

LSTM . 19

M

MAPE . 22

MCO . 88

MD . 68

metallic bond . 35

ML . 7

MOEA . 56

molecule . 37

1D / String representation 37

2D representation 39

3D representation 40

Mpro . 32

MSE . 22

MUX . 86

N

natta projection . 39

neutron . 32

NMCO. .88

NP . 53

NSGA-II . 56

O

organic chemistry . 32

overfitting . 9

P

padding . 84

PDB . 40

plus selection . 48

pooling layer . 85

PREMS . 56

protease enzyme . 31

protease inhibitor . 31, 49

protein cleavage . 31

proton . 32

Q

QED . 52

QuickVina 2 . 51

R

reachability . 47

Index 149

regression . 8

reinforcement learning 10

ReLU . 12

RMSF . 77

RNN. .19

S

SA. 51

sample class plot . 89

SARS-CoV-2 . 32

scalability . 47

SELFIES . 38

SIC . 25

skeletal formula . 40

SMILES

canonical .38

SMILES . 37

softmax function . 85

SOM . 82

space-filling model . 41

SS . 22

stereoisomers . 42

sticks model . 41

stride . 84

strong bond. .35

structural isomer . 42

supervised learning . 8

T

tanh . 12

TCN . 20

TF . 53

time series prediction . 18

trans . 43

U

unbiasedness . 47

unsupervised learning . 9

V

valence electron . 35

van der Waals forces .35

W

weak bond. .35

weightage plot . 89

winner neuron . 82

WSEMS . 56

Z

zero padding. .84

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich diese Arbeit selbständig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die

allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien guter

wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe.

Oldenburg, den 7. Februar 2024

Lars Elend

	Titelseite
	Zusammenfassung
	Abstract
	Contents
	Introduction and Foundations
	Introduction
	Thesis Structure
	Contributions

	Computational Intelligence
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Artificial Neural Networks
	Artificial Neuron
	Activation Functions
	Feed Forward Network
	Backpropagation

	Conclusion

	Prediction
	Earnings Prediction
	Related Work
	Time Series Prediction
	Long Short-Term Memory
	Temporal Convolutional Network
	Data Preprocessing
	Quality Measures
	Experimental Analysis
	Architecture and Meta Parameters
	Financial Firms
	Fama French Industries
	Test of Best Model

	Conclusion

	Molecule Design
	Foundations of Molecule Design
	Motivation
	Organic Chemistry
	Atoms and Elements
	Bonds
	Intramolecular Bonds
	Intermolecular Bonds

	Molecules
	1D / String Representations
	2D Representations
	3D Representations
	Molecule characteristics
	Representation characteristics

	Evolutionary Algorithms
	Parameters
	Recombination
	Mutation
	Selection

	Conclusion

	Evolutionary Multi-Objective Approach
	Related Work
	Molecule Design Metrics
	Binding Affinity
	Synthetic Accessibility
	Quantitative Estimate of Drug-Likeness
	Natural Product-Likeness
	Toxicity Filters

	Evolutionary Molecule Search
	Representation
	Mutation
	Fitness Evaluation
	Weighted Sum Evolutionary Molecule Search
	Pareto Ranking Evolutionary Molecule Search

	Experiments
	Metric Development
	Candidate Comparison

	Conclusion

	Language Model–based Evolutionary Approach
	Evolutionary Molecule Generation Algorithm
	Representation
	Neural Language Model
	Evolutionary Algorithm with Language Model

	Molecular Dynamics
	Results and Discussion
	Evolutionary Molecule Generation Algorithm
	Molecular Dynamics

	Conclusion

	Visualization
	Convolutional Self-Organizing Map
	Related Work
	Self-Organizing Map
	Convolutional Neural Network
	Convolutional Self-Organizing Map
	Quality Metrics
	Kruskal Shepard Error
	Cross Entropy
	Minor Class Occurrence
	Class Scatter Index

	Visualization
	Experimental Analysis
	Experimental Settings
	Quality Measure Results
	Visualization Results

	DeViSE as Semantic Metric
	Conclusion

	Closing
	Conclusion
	Earnings Prediction
	Molecule Design
	Convolutional Self-Organizing Map

	Appendices
	Data Sets
	Earnings Prediction
	Data Sets
	Workflow

	Molecule Design
	Workflow
	Ligands Overview

	List of Figures
	List of Tables
	Literature
	Index of Parameters
	Acronyms
	Glossary
	Index

