
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

A Compositional Framework for Designing
Self-Stabilizing Distributed Algorithms

Dissertation zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

von

Abhishek Dhama, M.Sc.

Gutachter:

Prof. Dr. Oliver Theel

Prof. Dr. Ernst-Rüdiger Olderog

Tag der Disputation: 3. Mai 2013

Acknowledgements

Perseverance in (seeking to gain) the knowledge of the Supreme Spirit, and perception of the

gain that comes from knowledge of the truth: This is called knowledge : all that is contrary

to this is ignorance.

Šrimadbhagavadgītā 13:11

As I put finishing touches to my dissertation, I realize that this endeavour would not have been success-
ful without support and encouragement I received all along. I owe my deepest gratitude to Prof. Oliver
Theel for taking me under his tutelage. His insights, comments and patience helped me immensely to see
through the period when the research was not particularly productive. Without guidance and constant
support of Prof. Theel this dissertation would not have been possible. I would like to thank Prof. Ernst-
Rüdiger Olderog for being kind enough to be second refree of the dissertation. His feedback helped
to improve the readability and the clarity of presentation. I would also like to express my gratitude to
Prof. Michael Sonnenschein and Dr. Marco Grawunder for agreeing to serve on dissertation committee.
Financial support provided by Deutsche Forschungsgemeinschaft via Graduiertenkolleg Trustsoft and
SFB AVACS is also gratefully acknowledged.

A huge thanks to colleageus at Chair of System Software and Distributed Systems, Graduiertenkol-
leg Trustsoft and AVACS sub-project S3 –especially Jens Oehlerking, Nils Müllner, Timo Warns, and
Kinga Lipskoch, with whom I had the pleasure of co-authoring papers and sharing office– for good-
spirited discussions and friendly atmosphere which made my stay at University of Oldenburg worth-
while. I would like to thank my friends Satya Srinivas, Kunal Sachdeva and Mani Swaminathan for
maintaining the sanity levels.

I would also like to take this opportunity to thank my parents and my sister for their unwavering
support and faith in my abilities. My thanks go to my wife for practically infinite patience and love.

Abstract

The proliferation of numerous computing devices in the various facets of life has remarkably elevated
the premium placed on fault tolerance of the algorithms running on such devices. Ideally a fault-tolerant
distributed algorithm should recover from a fault without any degradation in the service. A fault-tolerant
distributed algorithm whose recovery is completely transparent to the user is said to be masking fault-
tolerant. The design of masking fault-tolerant distributed algorithms –notwithstanding the desirability
of masking fault tolerance– is hardly trivial, because algorithm designers must take all possible faults
into account. Should the requirement provide an allowance for the phases where a distributed algorithm
may deviate from its specification for a finite time period, non-masking fault tolerance becomes a viable
design alternative. Although a user might experience outage of service for short finite periods, a non-
masking fault-tolerant distributed algorithm will fulfill its specifications once recovery is complete.

Self-stabilization is a novel method to provide non-masking fault tolerance. A distributed system is
said to be self-stabilizing if and only if 1) it –when perturbed– reaches a closed set of legal states in
finite time, and 2) does not leave this set voluntarily. The first condition is referred to as convergence,
and the second condition is called closure. However, designing and subsequently proving convergence
of a self-stabilizing system is not easy. Convergence is proven by showing existence of a so-called
ranking function that decreases for any execution step of the system and attains its minimum value in
the set of legal states. Although various automated methods have been proposed to determine ranking
function for proving convergence, such methods do not scale well. Unfortunately the compositional
methods found in the literature are also rather restrictive with the respect to the conditions imposed on
component algorithms.

We investigate whether the conditions under which component algorithms are self-stabilizing can
be transcended while composing them. To that end, this dissertation presents a suite of compositional
methods which can be used to compose self-stabilizing algorithms, though component algorithms them-
selves might be self-stabilizing under mutually incompatible conditions. The compositional framework
exploits the knowledge of the ranking function used to prove the convergence of a component algo-
rithm under its original scheduler. We show that embedding of ranking functions in the guards of the
composed algorithm preserve the self-stabilization properties of component algorithms under much
stronger schedulers. Since evaluation of ranking function requires global system state, a transformer is
provided to perform on-the-fly evaluation of ranking function in any state. The transformer per se can
also be used to transfer self-stabilization property of a self-stabilizing algorithm under a much stronger
scheduler. Furthermore, the compositional framework contains operators to compose self-stabilizing
algorithms with bidirectional variable dependencies.

Zusammenfassung

Die zunehmende Verwendung verteilter Systeme im alltäglichen Leben für sicherheitskritische An-
wendungen stellt besondere Anforderungen an deren Zuverlässigkeit. Ein hoher Grad an Zuverläss-
gkeit solcher kritischer verteilter Systeme kann zum Beispiel gewährleistet werden, indem man sie
fehlertolerant entwirft. Stabilisierungstechniken werden in diesem Zusammenhang dazu genutzt, nicht-

maskierende Fehlertoleranz einzuführen. Ein System ist selbststabilisierend genau dann, wenn, unab-
hängig vom initialen Zustand gewährleistet ist, dass das System mit endlich vielen Schritten den legalen

Zustandsraum erreicht und diesen ohne Fremdeinwirkung nicht mehr verlässt. Der legale Zustandsraum
ist durch ein Prädikat definiert. Ein selbststabilisierendes System ist fähig sich von vorübergehenden
Fehlern zu erholen, unabhängig von der Anzahl der Fehler.

Obwohl Selbststabilisierung eine wünschenswerte Eigenschaft für verteilte Algorithmen (welche
von verteilten Systemen ausgeführt werden) ist, ist die Beweisbarkeit dieser Eigenschaft nicht trivial.
Die Relevanz der Selbststabilisierung bedingt sowohl in der Entwurfs- wie auch in der Verifikation-
sphase selbststabilisierender Algorithmen ein ganzheitliches und systematisches Vorgehen.

Diese Dissertation befasst sich mit der Entwicklung eines kompositorischen Rahmens für den En-
twurf selbststabilisierender verteilter Algorithmen. Die kompositorische Rahmen ausnutzt das Wissen
der Ranking-Funktion, die verwendet werden, um die Konvergenz einer Komponente Algorithmus unter
seiner ursprünglichen Scheduler zu beweisen. Da Auswertung von Ranking-Funktion erfordert globale
Systemzustand, ein Transformator ist so konzipiert, on- the-fly Auswertung von Ranking-Funktion in
jedem Systemzustand durchzuführen. Der Transformator kann auch verwendet werden, um die Selbst-
Stabilisierung Eigenschaft einer selbst-stabilisierenden Algorithmus unter einer viel stärkeren Sched-
uler zu übertragen.

Contents

Acknowledgements . VI

Abstract . VIII

Zussamenfassung . X

List of Figures . XIV

List of Symbols . XV

1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Thesis Outline . 3

2 Self-Stabilizing Distributed Algorithms . 5
2.1 Process Model . 5

2.1.1 Communication Model . 6
2.1.2 Guarded Commands . 8

2.2 Distributed Algorithm . 9
2.3 Non-Determinism and Schedulers . 10

2.3.1 Execution Semantics . 10
2.3.2 Schedulers, Properties and Fairness . 12

2.4 Self-Stabilization . 17
2.5 Self-Stabilization and Fault Tolerance . 19
2.6 Weaker Forms of Convergence . 20
2.7 Summary . 21

3 Design and Verification of Self-Stabilizing Algorithms . 23
3.1 Verification Techiques for Self-Stabilizing Algorithms. 23

3.1.1 Algorithmic Verification Techniques . 23
3.1.2 Deductive Verification Techniques . 24
3.1.3 Term Rewrite Systems based Technique . 25
3.1.4 Control-Theoretic Verification Techniques . 25

3.2 Compositional Methods for Self-Stabilizing Systems . 27
3.2.1 Asymmetric Compositional Methods . 27

XII Contents

3.2.2 Symmetric Composition . 28
3.3 Summary . 28

4 Lifting Composition of Self-Stabilizing Algorithms . 29
4.1 Introduction . 29
4.2 System Model . 29
4.3 Lifting Composition . 30

4.3.1 Definitions . 30
4.3.2 Preservation of Self-Stabilization . 32

4.4 The Role of Schedulers in Lifting Composition . 37
4.5 Examples . 41
4.6 Summary . 49

5 Scheduler Transformation of Self-Stabilizing Algorithms . 53
5.1 Introduction . 53
5.2 Related Work . 54
5.3 Transformation of Self-Stabilizing Algorithms . 54

5.3.1 Definition . 58
5.3.2 Preservation of Self-Stabilization . 65
5.3.3 Concurrency Optimization . 75
5.3.4 Efficiency of the Transformation . 86
5.3.5 Simulation Results . 87

5.4 Discussion . 89
5.4.1 Knowledge-Theoretic Interpretation of the Transformation 89
5.4.2 A Scheduler-based Perspective of the Transformation . 91

5.5 Summary . 92

6 Generalized Compositional Operators . 93
6.1 Introduction . 93
6.2 Extensions of the Scheduler-Oblivious Transformation . 94

6.2.1 Read/Write Atomicity and Scheduler Transformation . 94
6.2.2 Scheduler Transformation and Distributed Scheduler . 95
6.2.3 An Extension for the Message Passing Communication Model 96

6.3 Extensions of Lifting Composition . 96
6.3.1 Lifting Composition for General Communication Graphs 96
6.3.2 Symmetric Lifting Composition . 99

6.4 Lifting Composition with Variable Dependencies . 103
6.4.1 Lifting Composition and Unidirectional Dependency . 104
6.4.2 Lifting Composition and Bidirectional Dependency . 108

6.5 Summary . 111

7 Conclusion . 113
7.1 Summary . 113
7.2 Outlook . 114

References . 115

List of Publications . 122

List of Figures

2.1 Message-Passing Model . 6
2.2 Shared-Memory Model . 6
2.3 Shared-Memory Emulator Execution [23] . 8
2.4 Serialized Execution Semantics . 11
2.5 Parallel Execution Semantics . 11
2.6 Distributed Scheduler Semantics . 12
2.7 Comparison of Various Execution Semantics . 12
2.8 Race Condition in Dining Philosophers Problem . 15
2.9 Various Canonical Schedulers . 16
2.10 Closure Property of a Self-Stabilizing Algorithm . 17
2.11 Convergence Property of a Self-Stabilizing Algorithm . 18
2.12 Self-Stabilizing Token Ring Algorithm . 18
2.13 Sample Execution of the Self-Stabilizing Token Ring Algorithm . 19

4.1 Projection of AlgorithmA

△
B over AlgorithmA . 34

4.2 Filtering of Execution Steps of AlgorithmB in A△B . 36
4.3 Projection of AlgorithmA

△
B over AlgorithmB . 38

4.4 Sub-Algorithm SSMax i . 42
4.5 Sub-Algorithm SSBiSt io . 43
4.6 Sub-Algorithm SSBiSt ie . 43
4.7 Sub-algorithm SSMax io

△SSBiSt io . 45
4.8 Sub-algorithm SSMax ie

△SSBiSt ie . 46
4.9 Filtering of Execution Steps of SSBiSt in SSMax△SSBiSt . 46
4.10 Sub-Algorithm SSEqual

i
. 47

4.11 Trace of a Diverging Execution of SSEqual . 48
4.12 Sub-algorithm SSBiSt io

△SSEqual
io

. 50
4.13 Sub-algorithm SSBiSt ie

△SSEqual
ie

. 51

5.1 Layered View of the Transformation. 57
5.2 Self-Stabilizing Spanning Tree Algorithm of [94] . 60
5.3 Removal of Cycles by the Spanning Tree Algorithm . 62
5.4 Self-Stabilizing Mutual Exclusion Algorithm of [109] (Root Process) 63
5.5 Self-Stabilizing Mutual Exclusion Algorithm of [109] (Non-root Process) 63
5.6 Structure of Communication Register ri j Used by the Token . 63
5.7 Token Circulation in a Graph . 64

XIV List of Figures

5.8 Modified Use Algorithm À . 64
5.9 Snapshot Sequence: Process P0 Updates Snapshot Token . 68
5.10 Snapshot Sequence: Processes P1 and P4 Update Snapshot . 69
5.11 Snapshot Sequence: The Token Circulates in the Subtree of Process P5 69
5.12 Snapshot Sequence: Token Circulation Among Children of Process P0 70
5.13 Snapshot Sequence: Token Circulation in the Subtree of Process P3 70
5.14 Consistent Snapshot Sequence: P0 Gets Outdated . 72
5.15 Snapshot Sequence: Processes P4 and P5 Get Correct Snapshots . 72
5.16 Snapshot Sequence: The Subtree of Process P5 Gets Correct Snapshots 73
5.17 Snapshot Sequence: Children of Process P0 Get Correct Snapshot 73
5.18 Snapshot Sequence: The System Reaches 1-Step Consistent State 74
5.19 Sub-algorithm SSWMAC i . 76
5.20 A divergent execution of SSWMAC . 78
5.21 Layered View of the k-Local Scheduler Transformer . 80
5.22 κ-Local transformed subalgorithm T (Ai) . 81
5.23 A Segment of an Execution of κ-Local Mutual Exclusion Algorithm 82
5.24 Average Convergence Time of Algorithm SSWMAC . 88
5.25 Effect of the Increase in Synchronization Distance κ . 89

6.1 Sub-algorithm Ai
△κBi . 102

6.2 Lifting Composition with Bidirectional Dependency . 109
6.3 Concise Summary of the Compositional Framework . 112

List of Symbols

△ Lifting Composition
△G Generic Lifting Composition
△S Symmetric Lifting Composition
△κ Lifting Composition with κ-Local Mutual Exclusion
△B Lifting Composition with Bidirectional Dependency
A Distributed Algorithm
Ai Sub-Algorithm run by Process i

GAi j
jth Guarded Command of the Sub-Algorithm run by Process i

si Local State of Process i

σ Global State of a Distributed Algorithm
Ξ Execution of a Distributed Algorithm
D Scheduler
̺ Scheduling Strategy
P Predicate
Pi Process i

∆ Ranking Function
∆Aix

Function obtained by replacing the variables modified by GAix
by

their respective assignment expressions in ∆A

δAix Difference between the values of ∆Aix
and ∆A

Ξ̆
A|B Projection of an Execution of AlgorithmA on AlgorithmB

Ξ̂ Maximal Execution of a Distributed Algorithm
σ |A Projection of a Global State on AlgorithmA

1

Introduction

1.1 Motivation

There has been a remarkable increase in the usage of distributed systems in the past decade due to the
ever decreasing price of hardware components. The spectrum of such systems is wide and ranges from
home appliances to battlefield control systems. However, the pervasiveness of distributed systems also
necessitates a high degree of trustworthiness and resilience. For instance, consider a intruder detection
system deployed on a border consisting of multiple sensor nodes spread over the area of interest [1]. The
nodes collaborate to track any foreign object and report its location and trajectory to the control system.
However, due to the inherent nature of the terrain, some of the sensor nodes may not be accessible
after the deployment or they may get damaged during the course of the operation. In order to fulfill its
mission, it is important that the system has allowance for such scenarios. Thus, endowing distributed
systems with fault tolerance is imperative for the system designers.

Fault tolerance can be divided into two categories: masking and non-masking [2]. Masking fault tol-
erance implies that, in the event of a system being effected by faults, the system recovery is transparent
to an external observer. A masking fault-tolerant system fulfills its specification even when faults are
occurring. A fault tolerant system is said to be non-masking fault-tolerant if during the recovery period
the system deviates from its specified behavior.

Masking fault tolerance is an extremely appealing property however, designing a masking fault-
tolerant system is equally challenging. The designer needs to know all the possible failure scenarios a

priori which is not trivial. A failure scenario not foreseen during the design phase can render the system
useless or may prove hazardous for mission-critical applications. However, if the deployment scenario
permits periods of non-conformance with the system specification then, a stabilization technique can
be used to design non-masking fault-tolerant systems.

Self-stabilization [3] is an elegant technique for imbibing distributed systems with non-masking
fault tolerance in the presence of transient faults. Self-stabilizing systems are guaranteed to converge to
their specified behavior within finite time irrespective of their initial state.

Although the definition of self-stabilization appears trivial, its implication in the context of de-
signing a fault-tolerant distributed system is immense. As long as the faults inflicting the system are
transient in nature, the designer does not need to account for each one of them while designing a self-
stabilizing system. Indeed, the paradigm shift caused by the wide-spread usage of distributed systems
has given rise to the scenarios where distributed systems span multiple administrative domains. There
is, therefore, a need to equip such systems with “autonomy” so that the system can adapt and calibrate
its behavior based on the changes in the system or the deployment environment [4]. Additionally, the
advent of wireless sensor networks [5] and the associated dynamism has made it imperative to design
distributed systems whose correct behavior does not depend on a pre-defined initial state. Indeed, self-

2 1 Introduction

stabilizing algorithms have been used as the kernels of the self-organizing [6] and self-healing wireless
sensor networks [7]. Similarly, the formalization frameworks [8, 9, 10] of the various self-* properties
of autonomic computing systems essentially mirror that of self-stabilization.

The increased relevance of self-stabilization in the design of large scale distributed systems has led
to a heightened emphasis on devising the design techniques for self-stabilizing systems as well. The
challenge is compounded by the intricacy of the correctness proofs of self-stabilizing systems since,
it needs to be shown that, the system converges to the correct behavior for every possible initial state.
Model checking [11] based automated verification techniques appear to be ideal for designing self-
stabilizing system because they require minimal assistance from the system designer. However, these
techniques do not scale well because the number of possible executions – in addition to the number
of system states– grows exponentially if the system size or complexity is increased. Compositional
design of self-stabilizing algorithms has been, consequently, proposed as an alternative to overcome the
scalability issues.

Typically, the compositional methods for self-stabilizing algorithms guarantee that a composed al-
gorithm is self-stabilizing if the component algorithms are self-stabilizing as well. Moreover, compo-
nent algorithms must be “compatible” with each other for the composition methods to work. The notion
of compatibility encapsulates the similarity of the assumptions under which the component algorithms
are shown to be self-stabilizing and the dependency between the component algorithms. Dependency
between component algorithms is induced by the communication between components. The other as-
pect of the compatibility, –namely, the assumptions made while proving that a distributed algorithm is
self-stabilizing– abstract away the implementation details of the distributed algorithm. The assumptions
primarily correspond to the following aspects of the implementation scenario: 1) relative speeds of the
processors implementing the distributed algorithm, 2) synchrony between processor clocks or the lack
thereof and, 3) the mode of communication between the processors. The proofs of self-stabilization are
extremely sensitive to these assumptions [12]; that is, a distributed algorithm shown to be self- stabiliz-
ing under a set of assumptions may not remain self-stabilizing if the implementation scenario is altered.
The sensitivity of self-stabilization to the proof assumptions also renders the composition methods for
self-stabilizing algorithms fragile. Therefore, the compositional methods for self-stabilizing algorithms
implicitly require that component algorithms must be self-stabilizing under similar assumptions. De-
pendency between component algorithms also leads to additional constraints that must be fulfilled by
the component algorithms to ensure that the composed algorithm is self-stabilizing. Consequently, the
scope of the compositional methods for self- stabilizing algorithms reported so far in the literature
is limited to algorithms which either have no dependency, that is, components do not have common
variables or have only unidirectional dependency –wherein the variables modified by a component al-
gorithm are read by its counterpart, thereby inducing a dependency between the component algorithms.

The literature is, however, replete with numerous self-stabilizing algorithms under varying assump-
tions owing to past two decades of research on stabilization. The constraints imposed by the hitherto
proposed compositional methods restrict the set of self-stabilizing algorithms that can be designed us-
ing these methods. More specifically, a system designer may be confronted with a situation where,
although component algorithms solve the subproblems in self-stabilizing manner, the algorithms can-
not be composed owing to the mutually incompatible proof assumptions of the component algorithms.
The lack of suitable composition methods in such scenarios may lead to designing a self- stabilizing
solution to a problem for which a solution –albeit under different assumptions– already exists. Thus,
notwithstanding the increased usage of self-stabilizing algorithms, present design techniques lack the
capability to construct provably correct large scale self-stabilizing systems.

A compositional framework that provides techniques to compose self-stabilizing algorithms re-
gardless of respective proof assumptions is required in the light of the relevance of self-stabilization in
fault-tolerant system design and the deficiencies of the prevalent design techniques. The desired frame-
work should be able to transcend the constraints imposed by the incompatible assumptions made while

1.3 Thesis Outline 3

proving correctness of the component algorithms. In addition, the desired framework should provide
compositional methods for the components which have bidirectional dependency wherein each com-
ponent algorithm read variables modified by its counterpart. It is also desirable that the compositional
framework should require minimum possible input from the designer so that non-experts can use the
framework to design self-stabilizing algorithms. The compositional methods of the framework should
also have potential to be automated so that tool support can be provided for designing self-stabilizing
algorithms.

1.2 Contributions

The primary result of this dissertation is a suite of compositional methods for self-stabilizing algorithms.
A system designer can select a compositional method based on the respective proof assumptions of the
component algorithms. The specific contributions of this dissertation are listed below.
Scheduler-Oblivious Transformation. We present a method to transform a distributed algorithm,
shown to be self-stabilizing under a restrictive scheduler, to a distributed algorithm that is self-
stabilizing any weakly fair scheduler [13]. Informally, a scheduler is an abstract entity that resolves
any inherent non-determinism in a distributed algorithm. The transformation exploits the proof arti-
facts which are generated while proving self-stabilization of a distributed algorithm under a restrictive
scheduler. We also provide a method to increase the concurrency of the transformed algorithm without
affecting the self-stabilization property of the transformed algorithm.
Lifting Composition. We define a compositional method –referred to as lifting composition– that pre-
serves the self-stabilization property of a component algorithm under the scheduler of its counterpart.
Lifting composition also utilizes the proof artifacts to preserve the self-stabilization property of a dis-
tributed algorithm under unfavorable schedulers. Additionally, we define the variants of lifting com-
position which preserves the self-stabilization property of both components under a much stronger
scheduler. We also show how to exploit the structure of proof artifacts to increase the concurrency in
the composed algorithm.
Composition with Variable Dependencies. We address the challenge of incorporating variable de-
pendencies –induced by components reading the variables modified their counterparts– by defining the
composition methods that preserves self-stabilization of the components algorithm even if –in addition
to incompatible schedulers– components read each other’s variables. To that end we define the variants
of lifting composition for algorithms with unidirectional and bidirectional variable dependencies.
The above-mentioned contributions result in a rich set of compositional methods which can be used to
design large correct-by-construction self-stabilizing algorithms. These methods transcend the respective
proof assumptions of the component algorithms, thereby allow a system designer to select a component
algorithm solely based on the subproblem to be solved.

1.3 Thesis Outline

The dissertation consists of seven chapters and is organized as follows.
Chapter 2. We introduce the system model and provide the associated definitions. In addition to
self-stabilization, we recall the concepts related to non-determinism and the weaker forms of self-
stabilization.
Chapter 3. We provide a brief survey of the verification techniques used for self-stabilizing algorithms.
The techniques discussed include both, the formal verification techniques and the control theoretic tech-
niques. Chapter 3 also provides an overview of the compositional methods proposed for self-stabilizing
algorithms.

4 1 Introduction

Chapter 4. The approach of using proof artifacts to facilitate the composition of self- stabilizing algo-
rithms with incompatible schedulers is introduced. The interplay between the respective schedulers of
component algorithms and the self-stabilization of the composed algorithm is also studied in detail. We
further show the usage of lifting composition with the help of illustrative examples.
Chapter 5. We present a transformation method that preserves the self-stabilization property of a self-
stabilizing algorithm under a much more powerful scheduler than the one for which the algorithm has
been designed for. The transformation method forms the bedrock of lifting composition. We also show
how the structure of proof artifacts can be exploited to increase the concurrency in the transformed
algorithm.
Chapter 6. The transformation method and lifting composition are mated with each other in Chapter 6
to define a generic composition method for self-stabilizing algorithms. Compositional methods suited
to specific conditions are defined by using the structure of proof artifacts to instantiate the generic
lifting composition. Furthermore, we provide extensions of lifting composition that preserve the self-
stabilization even if the communication paradigm is changed. The scope of lifting composition is ex-
tended even further by defining variants which work in spite of variable dependencies.
Chapter 7. We provided a summary of the contributions of this work. Potential extensions of our results
are also proposed prior to concluding the dissertation.

2

Self-Stabilizing Distributed Algorithms

We dwell on the fundamental concepts used to construct the compositional infrastructure in this chapter.
We begin with the underlying system model and briefly explain the various constituents of a distributed
system. The focus then shifts on self-stabilization and the significance of self-stabilization in designing
non-masking fault tolerant distributed systems. The chapter ends with a survey of weaker forms of
convergence.

2.1 Process Model

A distributed system consists of multiple computers interacting with each other using some form of
communication infrastructure. Such a constituent set of mutually interacting computers may consist of
computers which are located at different facilities.

Definition 2.1 (Process [14]). A process refers to an instance of the implementation of an algorithm

running on a constituent computer of a distributed system.

A process, thus, encompasses the program counter, the source code and the memory registers used by
an implementation of an algorithm. Note that, unless explicitly stated otherwise, throughout this text a
process synonymously refers to the computer running an algorithm.

Definition 2.2 (Neighbor). Two processes are termed as neighbors if they can interact with each other

directly.

The neighbor relation over the set of constituent processes of a distributed system, as defined above,
is symmetric, i.e., process Pi is neighbor of process P j implies that process P j is neighbor of process
Pi. There are instances of distributed systems, e.g. wireless sensor networks with directional antennas,
where neighbor relation is not symmetric [15]. In such networks, a process might have in-neighbors and
out-neighbors [16]. A process can only receive data from an in-neighbor and it can only send data to a
out-neighbor. However, in scope of this work we consider distributed systems with a symmetric neigh-
bor relation. Communication infrastructure is typically abstracted away with help of a communicaton

graph while reasoning about the properties of a distributed system.

Definition 2.3 (Communication Graph). A communication graph representing a distributed system is

an undirected graph G = (V, E) such that set of nodes V is equal to the set of constituent processes and

each edge in the set E connects the pair of nodes representing neighboring processes.

The term node is often used interchangeably with the term process in the literature. The communication
graph of a distributed system with an asymmetric neighbor relation is a directed graph with the directed
edges denoting flow of data between the neighboring processes.

6 2 Self-Stabilizing Distributed Algorithms

2.1.1 Communication Model

Given the vastness of communication media supporting distributed systems, it becomes imperative to
use abstract models while analyzing distributed systems. There are two prevalent communication mod-
els assumed while designing distributed systems, namely, the message passing model and the shared

memory model.

Message Passing Model

In the message passing model two neighboring processes interact by exchanging messages over directed
point-to-point communication channels. Each process maintains a message queue to buffer incoming
messages. It is usually assumed that each communication channel has finite message capacity and that
messages are delivered in FIFO fashion to the message buffer. Messages are sent using a send(m)
primitive and received using a receive(m) primitive. As shown in Figure 2.1, the message queue is
part of the process that uses it to receive messages from its neighbor.

send(m)

Process Pi Process P j

message queue mq ji

communication channel ch ji

communication channel chi j message queue mqi j

send(m)
receive(m)

receive(m)

Fig. 2.1: Message-Passing Model

Shared Memory Model

In shared memory model, neighboring processes interact by reading and writing to shared memory
registers. The shared memory registers used for interaction are termed as communication registers.
Communication registers are not used for any purpose other than the exchange of data. Figure 2.2
shows how communication takes place between two neighboring processes Pi and P j in the shared
memory model. The set of communication registers of each process is divided into two classes: read

Process P j

ri j

r ji

read(ri j)

Process Pi

read(r ji)

write(ri j, value)

write(r ji, value)

Fig. 2.2: Shared-Memory Model

reigsters and write registers.

2.1 Process Model 7

Definition 2.4 (Read Register). A read register is a shared-memory register which is used to receive

the information sent by a neighbor process. A process P j accesses a read register using a read(ri j)
primitive.

Definition 2.5 (Write Register). A write register is a shared memory register which is used by a process

Pi to send information to its neighbor via write(ri j, value) primitive.

A write register is said to be “owned” by the process which has exclusive right to write in it and, there-
fore, a write register –as depicted in Figure 2.2– is a part of the memory space of the process that owns
it. Similarly a read register is read by a single process which uses it to gauge the current state of the
process which owns it. A write register of a process is the read register of its neighbor. Although due
to syntactical correctness the read register of a process has to appear in its code space, the read regis-
ter does not belong to process that reads it. There are variants of shared memory models that assume
communication primitives other than read and write primitives such as read-modify-write [17],
fetch&add and test&set [18]. However, Herlihy [19] showed that these primitives are computation-

ally weaker than read and write primitives.
We now take a slight detour in order to emphasize that the seemingly incompatibility of the two

communication models can be bridged with the help of the emulator methods presented in the literature.

Relative Merits of Shared Memory and Message Passing Models

Message passing models are closer to implementation scenarios because more often than not processes
in a distributed system communicate by transmitting messages. However, designing distributed sys-
tems assuming the message passing model is non-trivial, because the designer has to consider various
parameters such as the size of message queues and delay induced by the channel. The channel might
also change the order of the messages. The design task becomes even more intricate if the solution is re-
quired to be immune to failures of both, processes and communication channels. Designing distributed
systems assuming the shared memory model is relatively easier. The solution can be designed without
considering message delays and failures can be projected on individual processes. Nonetheless, one has
to ensure that the access to the communication registers is atomic.

Definition 2.6 (Atomicity [20]). Atomicity of a communication register guarantees that read or write

operations on it are carried out sequentially in some order –thereby prohibiting concurrent operations–

in presence of multiple read or write requests,

However, there exist algorithms which can emulate the behavior of an algorithm designed assuming
shared memory model over a communication infrastructure that provides only send and receive prim-
itives. The availability of such transformers often motivates designers to build a distributed system as-
suming the shared memory model though implementation might not offer the assumed communication
primitives.

Emulation of the Shared Memory Model

Various emulators, e.g. [21, 22], exist that can emulate shared memory systems However, many of these
emulators can not function correctly if constituent processes fail. As this work concerns itself with fault
tolerant systems in general, we briefly describe an algorithm by Attiya et al. [23] that can emulate
shared memory system as long as majority of processes do not fail.

The primary idea behind the algorithm of Attiya et al. is to maintain the copies of every shared
memory register at all of the n processes and guarantees that this implementation is atomic. The algo-
rithm also ensures that a read operation on a shared memory registers fetches the result of the latest
preceding write operation. The algorithm uses an integer variable counter to carry out read and write

8 2 Self-Stabilizing Distributed Algorithms

operations. When a process wants to carry out a write operation over a shared memory register, it
selects the smallest value of counter not assigned yet and sends the value to be written and the value
of counter to all the other processes in the system. Every process, on the receipt of the message, (1)
updates the local copy of the shared memory register (2) updates the value of its local counter, and (3)
sends back acknowledgement. A write operation is deemed complete by the initiating process when
it receives acknowledgement that a majority of the processes have a counter value equal to its own. A
process initiating a read operation over a shared memory register sends request to all other processes
with its latest local value of the shared memory register and counter. All other process, in turn, reply
back with latest value of the shared-memory register and counter. The initiating process selects the
value with the largest counter when it receives replies from a majority of the processes. In the next
step, the initiating process sends the value with largest counter and the value of counter to all other
processes. The read operation is complete when the initiating processes receives acknowledgement to
the effect that the majority of the processes have counter value equal to at least that of its own. The
algorithm works correctly as long as at the most f < ⌈n/2⌉ processes fail. Figure 2.3 illustrates a read
and a write operation in a system with five processes. The writer process sends a writemessage with
new value and current counter to all the processes. Two of the processes (P1 and P4) fail to respond to
the message, nevertheless, write operation succeeds as majority of processes send back the acknowl-
edgement. Similarly, a majority of processes respond to the read message and, consequently, reader
process copies the value with highest counter. The algorithm bounds the value of counter –and, hence,
referred to as bounded emulator– by keeping track of counter values used in the system. The following
theorem summarizes the seminal property of the emulator algorithm.

Theorem 2.1 ([23]). There exists a bounded emulator of an atomic, single-write multi-reader register

in an arbitrary network in the presence of link failures that do not disconnect a majority of processes.

We now describe process structure used in this work and give the associated definitions.

Writer (Pi)
Reader (Pi)

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

Fig. 2.3: Shared-Memory Emulator Execution [23]

2.1.2 Guarded Commands

Actions of every process Pi in a distributed system are specified as a set of guarded commands.

Definition 2.7 (Guarded Command [24]). A guarded command is a program statement that consists

of a label, a guard and an assignment expression specified as follows:

2.2 Distributed Algorithm 9

〈label〉 :: 〈guard〉 → 〈expression〉 ;

where (1) 〈label〉 is a process-wide unique identifier of a guarded command, (2) 〈guard〉 is a boolean

expression over the variables belonging to the process and communication registers of its neighbors and

(3) 〈expression〉 is a set of assignment functions over the variables of the process and its communication

registers.

The behavior of every process are governed by the sub-algorithm it implements.

Definition 2.8 (Sub-Algorithm [24]). A sub-algorithm Ai implemented by a process Pi is specified as

a finite set of guarded commands specified as follows

do

〈label1〉 :: 〈guard1〉 → 〈assignment1〉;
...

8 〈labeln〉 :: 〈guardn〉 → 〈assignmentn〉;
od while (true)

where ‘8’ represents non-deterministic choice between various guarded commands.

Definition 2.9 (Enabled Guarded Command). A guarded command is said to be enabled if the

boolean expression in its guard is true.

Definition 2.10 (Execution of a Guarded Command). A guarded command is said to be executed by

a process if it is enabled and local variables of the process are modified according to the assignment

functions specified in the guarded command.

Definition 2.11 (Enabled Process). A process is said to be enabled if it has at least one enabled guarded

command

Definition 2.12 (Local State of a Process). Local state si of a process Pi at any time instant is the

Cartesian product of the current values of its local variables and the contents stored in the communi-

cation registers it owns.

si = 〈x1, x2, · · · , xn〉

In the following section we provide definitions pertaining to distributed algorithms and their properties.

2.2 Distributed Algorithm

Definition 2.13 (Distributed Algorithm). Let Π = {P1, P2, · · · , Pn} be a set of processes such that

each process runs a sub-algorithm Ai|i=1,··· ,n. A distributed algorithm � run by set Π is the union of

sub-algorithms run by all the processes in Π .

A =
⋃n

i=1 Ai

Remark 2.1. A distributed algorithm A can alternatively be defined as a set of guarded commands
where the set consists of all the guarded commands which can be potentially executed by the constituent
processes. More specifically,

10 2 Self-Stabilizing Distributed Algorithms

A = {GAi j
| GAi j

∈ Ai ∧ i ∈ {1, · · · , n} ∧ j ∈ {1, · · · , li}},

where n is the total number of processes and li is the total number of guarded commands in sub-
algorithm Ai.

The set of sub-algorithms constituting a distributed algorithm can be heterogeneous in the sense that
each of the constituent sub-algorithm may be unique. On the other end of the spectrum there are dis-
tributed algorithms where every sub-algorithm is similar modulo the communication registers. That is
to say, apart from change in the communication registers representing the neighborhood of a process,
guarded commands of all the sub-algorithms are identical. Such distributed algorithms are sometimes
referred to as uniform distributed algorithms [25].

A critical attribute of distributed algorithms is the assumption about the process identifiers. For ex-
ample, uniform distributed algorithms do not assume that constituent processes have a unique identifier.
In scope of this work, we assume that every process has a system-wide unique identifier represented as
an integer unless otherwise stated.

We have hitherto used the term distributed system informally describing a set of mutually interacting
processes. We are now ready to give a more structured definition.

Definition 2.14 (Distributed System). A distributed system is specified by (1) a finite set of process

Π = {P1, P2, · · · , Pn}, (2) an underlying communication infrastructure used by the processes to interact

with each other, and (3) a distributed algorithm implemented by the set Π .

We use the terms distributed system and distributed algorithm interchangeably in this work where
the underlying communication model and the set of process is obvious from the context.

Definition 2.15 (Global System State). Global state σ of a distributed system is a vector comprised of

local states of its constituent processes.

σ = 〈s1, s2, · · · , sn〉

2.3 Non-Determinism and Schedulers

The complexity of designing and analyzing a distributed algorithm is compounded by the fact that at
any time instant more than one process may have enabled guarded commands. The presence of multiple
enabled guarded commands makes distributed algorithms inherently non-deterministic because at first
sight it is not obvious which of the enabled guarded commands are executed. Alternatively, a global
state of a distributed system may have multiple enabled guarded commands. Thus, non-determinism
in the context of distributed algorithms implies the presence of more than one enabled process in any
global system state.

2.3.1 Execution Semantics

In order to reduce the inherent complexity of the analysis of a distributed algorithm it is imperative
to reasonably limit the “amount of non-deterministic behavior” that the algorithm can exhibit. There-
fore, various notions of execution semantics have been defined to precisely bound the amount of non-
determinism while analyzing distributed algorithms.

Definition 2.16 (Serialized Execution Semantics [26, 3]). In serialized execution semantics, in each

global state exactly one of the enabled processes executes its enabled guarded command.

2.3 Non-Determinism and Schedulers 11

P5

P∗4

P∗2

P∗3 P3

P1

σk
︷ ︸︸ ︷

P3
P3 executes

P∗1

σi
︷ ︸︸ ︷

P∗2

P∗4

P5

P∗2

P∗5

P∗4

P∗1

σ j
︷ ︸︸ ︷

P1 executes

Fig. 2.4: Serialized Execution Semantics

Figure 2.4 shows three execution steps (cf. Defintion 2.10) of an example distributed system under se-
rialized execution semantics. In state σi processes P1, P2, P3 and P4 (marked with ‘∗’) are enabled.
However only process P3 executes (marked by the ‘N’) its guarded commands. Similarly, in state σ j

out of processes P1, P2 and P4 only process P1 executes a guarded command. The serialized execu-
tion semantics is understandably the simplest execution model. It is primarily used during the design
phase to prove that a distributed algorithm fulfills its specifications. Serialized execution semantics is
often further strengthened by increasing the granularity of process’ actions. It is assumed that a pro-
cess, under serialized execution semantics, 1) reads the contents of communication registers, 2) does
some local computation and, 3) writes the communication registers in one go and these operations are
indistinguishable to an external observer. Such an execution model is referred to as composite atomicity

serialized execution model [27].

Definition 2.17 (Parallel Execution Semantics [28, 29]). In parallel execution semantics, every en-

abled process executes its enabled guarded command in every global state.

Figure 2.5 shows execution of an example distributed system under parallel execution semantics. In
states σi and σ j all the enabled processes execute their guarded command. The parallel execution

P5

P∗4

P∗2

P∗3

σi
︷ ︸︸ ︷

P3

P1

σk
︷ ︸︸ ︷

P3

P∗1 P∗2

P∗4

P5

P∗2

P∗5

P∗4

P∗1

σ j
︷ ︸︸ ︷

all enabled
Pi execute

all enabled
Pi execute

Fig. 2.5: Parallel Execution Semantics

semantics may also be strengthened with composite atomicity of the processes’ actions. Synchronous

execution semantics [29] is a variant of parallel execution semantics and ensures that all the processes
in the system execute their guarded command in every state.

Definition 2.18 (Distributed Execution Semantics [30]). In distributed execution semantics, in every

global state, a subset of enabled processes execute their guarded command. A process can either read

the contents of communication register or write to a communication register after doing local compu-

tation during the execution of a guarded command.

Figure 2.6 shows the execution of a distributed system under distributed execution semantics. In state
σi, only three enabled processes (P1, P2 and P4) perform read operations on their respective communi-
cation registers. Similarly, in state σ j processes P2 and P4 complete write operations on communication
registers. The distributed execution semantics explicitly precludes composite atomicity. However, syn-

chronous distributed semantics [28] –a variant of distributed execution semantics– allows composite
atomicity as long as a strict subset of enabled processes execute their guarded commands in every state.

12 2 Self-Stabilizing Distributed Algorithms

R R

R

W

W
P∗4

P∗2

P∗3 P3

P1

P3

P∗1 P∗2

P∗4

P5

P∗2

P∗5

P∗4

P∗1

P5

P1, P2, P4

execute execute
P2, P4

σk
︷ ︸︸ ︷

σi
︷ ︸︸ ︷

σ j
︷ ︸︸ ︷

Fig. 2.6: Distributed Scheduler Semantics

The distributed execution semantics is closest to the actual implementation scenarios, however ver-
ifying properties of distributed algorithms under this model is not trivial. The relation between the
serialized execution semantics and the distributed semantics can be intuitively seen as refinement map-
ping [26]. The serialized semantics is used in the design phase whereas the distributed execution se-
mantics is used to reason about the behavior of a distributed algorithm in an implementation scenario.
Nevertheless, properties proven under the serialized semantics do not transfer trivially to the system
under the distributed semantics. Rigorous proofs and transformation methods are required to guarantee
transfer of properties between these execution semantics. Figure 2.7 summarizes the relationship be-
tween various execution semantics. The rows correspond to the number of enabled processes –denoted
by c– performing an execution in any global system state with n enabled processes, while the columns
correspond to the atomicity of each execution step.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

#(Processes)

Atomicity
Read/Write Atomicity Composite Atomicity

c = 1 Serialized Semantics [26] Composite Atomicity serialized Semantics [27].
c ≤ n Distributed Semantics [30] Synchronous Distributed Semantics [28]
c = n − Parallel Semantics [29]

Fig. 2.7: Comparison of Various Execution Semantics

2.3.2 Schedulers, Properties and Fairness

The motivation behind characterizing execution semantics, communication infrastructure and structure
of a process is to analyze and predict the behavior of a distributed algorithm. However, precise definition
of a behavior or property of a distributed algorithm is needed to utilize the concepts defined so far.

Definition 2.19 (Execution). An execution Ξ of a distributed algorithm is a, possibly infinite, sequence

of global system states:

Ξ = 〈 σ0, σ1, · · · , σi, · · · 〉

such that σ0 is the inital state; thereafter every subsequent state σi results from the execution of a subset

of enabled guarded commands in the previous state σi−1.

Note that above definition holds for any of the execution semantics defined in Section 2.3.1 as the subset
of guarded commands executed in each state can be specified accordingly.

Definition 2.20 (Maximal Execution). A maximal execution Ξ̂ is either 1) a finite execution such that

no guarded command is enabled in the last state or 2) an infinite execution.

2.3 Non-Determinism and Schedulers 13

A finite execution can be converted into an infinite one by repeating the final state if need arises. An
execution is also synonymously referred to as “trace” or “path” in the literature.

Definition 2.21 (Property). A property Pr of a distributed algorithm is a set of infinite sequences of

the global system states.

Definition 2.22 (Property Satisfaction |=). An execution Ξ of a distributed algorithm satisfies a prop-

erty Pr, i. e. Ξ |= Pr, if

Ξ ∈ Pr

Ξ belongs to the set of infinite global system state sequences defining property Pr.

A distributed algorithm, more often than not, produces multiple executions from a single initial state
due to inherent non-determinism. Hence, it is important to characterize the satisfaction of a property by
a distributed algorithm as such.

Definition 2.23 (Property Satisfaction |= for a Distributed Algorithm). Let exec(�) be the set of all

possible executions of a distributed algorithm�. A distributed algorithm� satisfies a property Pr, i. e.

� |= Pr, if all of its possible executions belong to the property Pr.

� |= Pr ≡ (∀ Ξ : Ξ ∈ exec(�)) : Ξ |= Pr

Properties of distributed algorithms are typically specified using predicates in various flavors of tempo-
ral logic [31] rather than specifying them explicitly as a set of state sequences.

The properties of distributed algorithms are divided broadly into two categories, namely safety

properties and liveness properties, to ease their analysis and verification.

Definition 2.24 (Safety Property [32]). Let Σ be the set of all possible global system states and Σω be

the set of all possible infinite sequences of global system states. Let ǫi denote the prefix of length i of an

element ǫ of Σω. A property Pr is said to be a safety property if and only if the following condition holds:

∀ǫ ∈ Σω : ǫ 6|= Pr ⇒ (∃i : 0 ≤ i : (∀β : β ∈ Σω : ǫiβ 6|= Pr))

where ǫiβ denotes the concatenation of the two sequences.

Informally, if an infinite sequence of global states ǫ does not satisfy a property Pr then, there exists
a prefix ǫi of ǫ, such that no extension of ǫi –obtained by concatenating any infinite global system
sequence– satisfies the property Pr. A safety property characterizes the executions ensuring “no bad
thing happens.” Thus, if an execution does not belong to a safety property then, after a certain point
(or a particular system state) the “bad thing” must manifest itself in the execution. As the intuitive
definition says that “bad thing” must never happen, therefore, once an execution contains an instance
of a “bad thing” it can never satisfy a safety property. For example, consider a junction with traffic
lights and the sequence in which the lights turn green. A system state of the traffic junction could be the
Cartesian product of state of the traffic lights . The safety property of the traffic junction would be set
of all sequences where not more than one traffic light is green at same instant. In this case, “bad thing”
would be the state where more than one traffic light is green, since once that happens, no matter how
traffic lights operate afterwards, the sequence of traffic lights states will not satisfy the property.

Definition 2.25 (Liveness Property [32]). Let Σ be the set of all possible global system states and Σ∗

be the set of all possible finite sequences of global system states. Let Σω be the set of all possible infinite

sequences of system states. A property Pr is said to be a liveness property if and only if the following

condition holds:

14 2 Self-Stabilizing Distributed Algorithms

∀α : α ∈ Σ∗ : (∃β : β ∈ Σω : αβ |= Pr)

Informally, a property Pr is a liveness property if for every finite sequence of global system states α
there exists an infinite sequence of global system states β such that concatenation of α with β satisfies
property Pr. A liveness property specify executions which ensure that “eventually something good
happens.” This implies that every execution per se is “remediable,” that is, any finite sequence of states
that has no “good thing” can be extended such that the resulting (infinite) sequence has at least one
instance of “good thing.” Consider an elevator servicing requests to move to various floors in a building.
Let requesti represent the state in which a button is pushed at floor i and serve_floori denote the state in
which the elevator door opens at floor i. The sequences of the states of the elevator represent a liveness
property because eventually door opens at the floor where a button is pressed. More precisely, any
sequence of the elevator states with an unserviced request requesti has a corresponding serve_floori.
Thus, any finite sequence of the elevator states can be extended by adding missing serve_floori states.

Two different notions of liveness exist in literature, namely uniform liveness [33] and absolute live-

ness [34]; uniform liveness requires that a single (infinite) execution can be concatenated with any
finite sequence such that the resultant sequence satisfies a liveness property. The definition of abso-
lute liveness stipulates that any (infinite) execution can be appended to all finite sequences. However,
Alpern and Schneider [35] showed that these definitions are restrictive in the sense that these two no-
tions of liveness exclude some properties that are intuitively liveness properties.

Safety and liveness properties do not characterize all the properties that a distributed algorithm can
exhibit. There are properties which are neither safety properties nor liveness properties; for instance,
properties which state “eventually a distributed system will do a good thing and thereafter will keep
doing it” are neither safety nor liveness properties. However, as theorem below states, it is possible to
express every property as conjunction of a safety and a liveness property.

Theorem 2.2 (Decomposition of a property [35, 32]). Every property Pr is the intersection of a safety

property and a liveness property.

Fairness

It is typically shown that the set of all possible executions of a distributed algorithm forms a subset of
the executions specified by a property while verifying that the algorithm satisfies the property. How-
ever, a distributed algorithm might exhibit some executions which are not realistic. Such “pathological”
executions might incorrectly show that a distributed algorithm does not satisfy a property during the ver-
ification phase. The notion of fairness is used at the semantic level to avoid such pitfalls while verifying
a distributed algorithm.

Fairness itself is a liveness property [36]. It entails that if a process or guarded command has re-
mained enabled for sufficiently long, then the process or the guarded command is executed frequently

enough. Various notions of fairness are defined depending on how often a process or a guarded com-
mand has been enabled.

Definition 2.26 (Unconditional Fairness [37]). An execution is unconditionally fair iff every process

executes its guarded commands infinitely often.

Unconditional fairness is the weakest notion of fairness because, it doesn’t put any restrictions on how
often a process or a guarded command must be enabled to be executed. However, this notion of fair-
ness is only feasible for the distributed systems where constituent processes don’t terminate, since,
the executions where a terminated process never executes after a certain point violate unconditional
fairness [38].

Definition 2.27 (Weak Fairness [39]). An execution is weakly fair iff a continuously enabled process

executes its guarded commands infinitely often.

2.3 Non-Determinism and Schedulers 15

Note that, a process is enabled if it has at least one enabed guarded command (cf. 2.11). Weak fairness
is also referred to as justice [31].

Definition 2.28 (Strong Fairness [39]). An execution is strongly fair iff a infinitely often enabled pro-

cess executes its guarded commands infinitely often.

A strongly fair execution is also weakly fair however vice versa is not true. Thus, the set consisting of
the set of all strongly fair executions and the set of all weakly fair executions are totally ordered by
inclusion.

The notions of fairness described so far require that a guarded command or a process must be en-
abled long enough (or at all) before it can be executed. This requirement however fails in scenarios
where a guarded command in a process may not be enabled due to “race conditions.” These conditions
can arise in systems where a processes requires the availability of multiple resources in a single global
system state to execute. Such processes can be denied enabling of a guarded command by making sub-
sets of necessary resources available in infinitely many states but never all the resources in a single state.
Consider, for example, the famous dining philosophers problem [40]. Two philosophers (Philosphers Pi

and P j in Figure 2.8) can use forks alternatively to ensure that their common neighbor (Philospher Pk in
Figure 2.8) never gets the two forks in a single system state. Thus, no fairness notion would help as the
action is not enabled at all. In order to circumvent scenarios where an action is not enabled purely due
to race conditions, the notion of hyperfairness is used. The notion of hyperfairness, unlike other notions
of fairness, is defined over the set of all possible execution of a distributed system. We say a global

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Pi P j
fx

Pk

fw

fy fz

Fig. 2.8: Race Condition in Dining Philosophers Problem

system state σi is reachable from global system state σ j, if there exist a sequence of execution steps
which starts in state σ j and ends in σi and all the intermediate execution steps are due to the execution
of guarded commands by constituent processes.

Definition 2.29 (Hyperfairness [41]). The set of executions of a distributed system is not hyperfair with

respect to a guarded command G iff G is executed at most finitely often and for each system state σi

there exists a state σ j that is reachable from σi and G is enabled in σ j.

The notion of hyperfairness was introduced by Attie et al. [26] and later generalized in [42]. However,
hyperfairness in [26] was defined for a multi-party interaction [43, cf. Chapter 14] –a communication
primitive that abstracts away from communication between two processes.

The notion of hyperfairness is similar to the notion of 0-transition fairness [44] in the sense that
both notions of fairness rule out race conditions. A notion of fairness, that is strictly stronger than hy-
perfairness [41], called∞-fairness, is defined in [45].∞-fairness requires that an action that is reachable

infinitely often in an execution is executed infinitely often. A hyperfair execution is also strongly fair,
however, vice versa does not hold [41].

16 2 Self-Stabilizing Distributed Algorithms

Scheduler

An abstract entity referred to as scheduler is used during the design phase of a distributed algorithm to
combine the execution semantics and fairness characteristics of the target implementation scenario. A
scheduler, essentially, “selects” a subset of enabled process in every state without violating the assumed
fairness constraints.

Definition 2.30 (Scheduler). Let ρi be an element of 2Π , where Π is the set of the constituent processes.

Let ̺i be a sequence such that ̺i = 〈ρi, ρ j, ρk, · · · 〉. A scheduler D is defined as a countable infinite set

D = {̺1, ̺2, · · · , ̺i, · · · }.

Each element ̺i of D is also termed as a strategy of scheduler D. In case a scheduler D applies a
strategy ̺i on a distributed algorithm, the strategy ̺i manifests itself “indirectly” as an execution Ξ of
the algorithm.

An enabled process may have more than one guarded command. In such cases, intra-process fairness
constraints are used to select the guarded command to be executed. However, such intra-process non-
determinism is transparent to a scheduler.

Fairness constraints are embedded in the scheduler in the sense that, a scheduler D does not have a
strategy that manifests into an execution that violates the desired fairness criterion. A suitable execution
semantics is ensured by putting a restriction on the size of subset ρ that a scheduler can choose in a state.
For instance, a scheduler can be constrained to select only one process in each step thereby ensuring
serialized execution semantics. A scheduler DA is said to be stronger than another scheduler DB if the
constraints imposed onDA for selecting a strategy are weaker than the constraints imposed on scheduler
DB.

A suitable scheduler can be "devised" by combining the target execution semantics and a feasible
fairness constraint. Figure 2.9 shows some often-used schedulers as combinations of their respective
execution semantics and fairness notion in the “scheduler space.” For example, a serialized weakly fair
schedulerDsw f chooses a single process in each global system state while ensuring that no continuously
enabled process is ignored forever.

Weak fairnessHyperfairness∞-fairness
Fairness

Strong fairness

Scheduler Space

Maximum Parallelism

Dsh f Dss f Dsw f

Serialized Semantics

Distributed Semantics

Ddh f Dds f Ddw f

E
xe

cu
ti

on
S

em
an

ti
cs

Fig. 2.9: Various Canonical Schedulers

2.4 Self-Stabilization 17

2.4 Self-Stabilization

We have thus far focused on the definitions pertaining to basic model and the general abstract concepts
used while designing and verifying distributed algorithms. We now focus on a very specific property
of distributed algorithms, namely, self-stabilization. Typically, properties of distributed algorithms are
expressed with the help of predicates, wherein a distributed algorithm satisfies a property if variables
belonging to the constituent process satisfy the corresponding predicate after a certain point in all pos-
sible executions. Likewise, we formally define self-stabilization with respect to a predicate P in the
following.

Definition 2.31 (Self-Stabilizing System [46]). A system S is self-stabilizing with respect to a predi-

cate P if and only if it satisfies the following two properties:

Closure: An execution starting in a system state satisfying predicate P never reaches a state that does

not satisfy P.

Convergence: Any execution starting in an arbitrary system state is guaranteed to reach a state satis-

fying the predicate P in finite number of execution steps.

Closure is a safety property because it ordains that a self-stabilizing system should never falsify the
predicate P –once it holds– thus, ensuring in a certain sense that "nothing bad" ever happens during the
execution after system reaches a state satisfying P . Figure 2.10 depicts state space of a self-stabilizing
system such that gray states satisfy a certain predicate P (thus representing “good states”) and black
states do not (i.e. representing “bad states”). Transitions between individual states are represented by
arrowed lines. Thus, if any execution starting in a good state is traced in Figure 2.10, it never reaches a
bad state owing to the closure property of the self-stabilizing system. Convergence is a liveness property

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

bad state

good state

state space of a self-stabilizing system

Fig. 2.10: Closure Property of a Self-Stabilizing Algorithm

because it stipulates that eventually a self-stabilizing system always reaches the set of states satisfying
predicate P. Thus, any execution of a self-stabilizing system has a suffix with states satisfying P. For
example, consider Figure 2.11 which shows state space and transitions of a self-stabilizing system.
In case the system starts in a bad state (e.g., σb1), it always reaches a good state (e.g., σg) irrespec-
tive of intermediate transitions. Self-stabilization has been defined for a distributed system instead of a
distributed algorithm, because it is clear from the context that self-stabilization is a property of a dis-
tributed algorithm that manifests itself under a certain execution environment. However, it also implies,
as discussed later, that self-stabilization often depends on the underlying execution environment.

Predicate P is typically a state predicate. The system states satisfying P are usually referred to as
legal (or legitimate) states and all other states are termed as illegal (or illegitimate) states. Predicate P
is sometimes also called safety predicate of a self-stabilizing system.

18 2 Self-Stabilizing Distributed Algorithms

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

bad state

good state

state space of a self-stabilizing system

σg

σb1

Fig. 2.11: Convergence Property of a Self-Stabilizing Algorithm

Example 2.1 (Self-stabilizing token ring algorithm [3]). Consider the self-stabilizing token ring algo-
rithm (see Figure 2.12) devised by Dijkstra [3]. The algorithm is defined over a ring of n processes. The
ring has one “distinguished process” (P0) and all other processes (Pi, 1 ≤ i ≤ n − 1) execute identical
sub-algorithms modulo variable names. The task of the algorithm is to ensure that in any system state
only a single process has an enabled guarded command and, thus, can change its local state (also re-
ferred to as “privilege”). Hence, the safety predicate PLE of Dijkstra’s algorithm holds true for all the
states where only a single process has an enabled guarded command. It is assumed that the algorithm
is executed using the shared memory communication model under a weakly-fair serialized scheduler.
The distinguished process continuously compares its local state (an integer x0) with that of its left
neighbor and if they are equal, then P0 increments x0 modulo the number of processes in the ring. A
non-distinguished process Pi also continuously compares its local state with that of its left neighbor and
if they are not equal, then it copies the local state of its left neighbor. The algorithm is self-stabilizing

Process P0

local var integer x0;
do

x0 = xn−1 → x0 := (x0 + 1)mod n;
while (true)

Process Pi (1 ≤ i ≤ n − 1)
local var integer xi;
do

xi , xi−1 → xi := xi−1;
while (true)

Fig. 2.12: Self-Stabilizing Token Ring Algorithm of [3]

with respect to the predicatePLE under any weakly-fair serialized scheduler. That is, irrespective of the
starting state, the algorithm reaches a state such that only a single process has its guarded command
enabled and thereafter never reaches a state where more than one process have an enabled guarded com-
mand. Figure 2.13 shows an example execution of the token ring algorithm. The algorithm is run on a
ring with five processes. The initial state σ1 = 〈1, 2, 3, 4, 1〉 is an illegal state because all the processes
have a privilege. Process P1 is selected by the scheduler to take a step resulting in state σ2 with multiple
privileges. The system reaches state σ5 after processes P3, P2, and P4 are selected by the scheduler in
the states σ2, σ3, and σ4, respectively. Note that σ5 = 〈1, 1, 1, 3, 3〉 is a legal state because only P3

has an enabled guarded command. The system remains in legal state thereafter, as only one process
has an enabled guarded command in subsequent states –for instance, only P0 has an enabled guarded
command in state σ7.

2.5 Self-Stabilization and Fault Tolerance 19

x0 = 1

x1 = 2

x2 = 3

P1x3 = 4

x4 = 1

x0 = 1

x2 = 3

x1 = 1

P3x3 = 4

x4 = 1

x0 = 1

x4 = 1

x1 = 1

x2 = 3

x3 = 3 P2

x0 = 1

x1 = 1

x2 = 1

x3 = 1

x4 = 1

x3 = 1

x2 = 1

x1 = 2

σ1 : σ2 : σ3 : σ4 :
x4 = 1

x3 = 3
x2 = 1

x1 = 1

x0 = 1

x1 = 1

x2 = 1

σ5 :σ6 :σ7 :· · · · · ·

P4

x4 = 3

x3 = 3P3

x4 = 3

x0 = 1

P4

x0 = 1

P0

Fig. 2.13: Sample Execution of the Self-Stabilizing Token Ring Algorithm

We have defined self-stabilization as a property of distributed algorithms. However, we have not
discussed the practical significance of self-stabilization. In the next section, we discuss how self-
stabilization helps in designing fault-tolerant distributed systems.

2.5 Self-Stabilization and Fault Tolerance

During the design phase of a distributed system, it is precisely specified what properties it must exhibit
in order to function correctly. System designers also strive to ensure that a distributed system functions
correctly even if some of the constituent processes do not function properly. A distributed system must,
therefore, fulfill certain properties in order to function correctly when constituent processes function
incorrectly. Self-stabilization is one of such desirable properties, however, few definitions are in order
before we delve on the importance of self-stabilizing systems.

Definition 2.32 (Failure [47]). A failure is an event which occurs when a distributed system deviates

from its specified functionality.

A failure of a distributed system signifies its incorrect behavior and scenarios where it does not deliver
the intended service.

Definition 2.33 (Error [47]). An error is a part of the system state that can potentially cause a failure.

Definition 2.34 (Fault [47, 48]). A fault is the cause of an error at the lowest level of abstraction.

A fault can potentially cause an error if it becomes active. An execution step or a change in system
environment may activate a fault. A fault that has not been activated is termed as a dormant fault [47].
An error manifests itself as a failure if it can be detected by an external observer of the system [48]. An
error that remains undetected is called a latent error [47]. We are now ready to define a fault-tolerant
distributed system.

Definition 2.35 (Fault-Tolerant Distributed System [2]). A distributed system is fault tolerant to a

certain class of faults F if it continues to function correctly according to its specification despite the

occurrence of the faults from the fault class F.

A fault tolerant distributed system delivers correct service as long as faults from a specified class of
faults occur. Faults are divided into various classes. A fault class typically specifies a set of fault ac-
tions. Faults can also be divided into two broad classes based on their duration, namely, transient and
permanent faults.

20 2 Self-Stabilizing Distributed Algorithms

Definition 2.36 (Transient Fault [48, 47]). A transient fault is a fault whose duration is bounded in

time.

Definition 2.37 (Permanent Fault [48, 47]). A permanent fault is a fault whose duration –once it

appears– is continuous and unbounded in time.

A distributed system that is tolerant to a certain class of faults satisfies its safety and liveness properties
as long as faults from the fault class occur, because every property of a distributed system can be
expressed as conjunction of a safety and a liveness property. However, this condition might be violated
if faults which do not belong to the fault class occur. The response of a distributed systems to faults
divide them into three classes: masking, fail-safe and non-masking fault tolerant systems.

Definition 2.38 (Masking Fault-Tolerant System [2]). A masking fault-tolerant system preserves both

safety and liveness properties under a given class of faults.

Definition 2.39 (Non-masking Fault-Tolerant System [2]). A non-masking fault-tolerant system pre-

serves only liveness properties under a given class of faults.

Masking fault tolerant distributed systems are more attractive from operational perspective because,
they provide tight guarantees of desired service and, a user does not experience any service outage.
However, more often than not designing such systems is expensive and difficult and, under some con-
ditions, even impossible [49, 50]. Non-masking fault tolerant systems present a viable alternative for
such scenarios as long as specification allows for incorrect behavior for bounded time periods.

Self-stabilization for Non-masking Fault Tolerance

Let� be a self-stabilizing distributed system such that program code of each process is immutable [51].
Suppose that � runs in an environment which is prone to bursts of transient faults. Thus, each burst of
transient faults may leave memory contents and communication registers of the constituent processes
in an arbitrary state. Recall that a self-stabilizing system satisfies its safety predicate within finite time
irrespective of the initial state. Thus,� will satisfy its safety predicate provided two bursts of transient
faults are sufficiently separated in time. Alternatively, a self-stabilizing is an “eventually safe” system.
This implies that a self-stabilizing system preserves its liveness (convergence) property under the class
of transient faults. Hence self-stabilization can be used to construct non-masking fault-tolerant systems
under transient faults.

2.6 Weaker Forms of Convergence

The attractiveness of self-stabilizing systems lies in the fact that they do not depend on an initial state
for correct behavior. However, this characteristics renders them some of the most difficult systems to
design because a designer must consider all possible states and all possible transitions emanating from
them. In order to circumvent this difficulty, various weaker forms of convergence have been proposed.
Indeed, for many problems, distributed systems with weaker convergence properties provide sufficient
fault-tolerance [52, 53]. Additionally, it is easier to prove that a distributed system satisfies a weaker
form of convergence.

Definition 2.40 (Weak Convergence [53]). A distributed system � weakly converges to a predicate P

iff, for every state σ, there exists an execution Ξ of � such that Ξ starts in σ and has a state which

satisfies P.

Definition 2.41 (Weakly-Stabilizing System [53]). A system W is weakly-stabilizing with respect to a

predicate P iff it satisfies 1) closure and 2) weak convergence with respect to P.

2.7 Summary 21

Definition 2.42 (Pseudo Convergence [52]). A distributed system � pseudo-converges to a predicate

P iff for every execution Ξ of�, there exists an integer i such that Ξi satisfies the predicate P, where Ξi

is a suffix of Ξ starting in ith state.

A self-stabilizing system satisfies its specification when it eventually reaches the states satisfying
safety predicate. A pseudo-stabilizing system eventually reaches a state after which it does not violate its
specification unlike a self-stabilizing system which cannot violate its specification. Pseudo-stabilization
does not bound the number of steps to reach a state after which system does not violate its specification.
Pseudo-stabilization is weaker than self-stabilization implying a self-stabilizing system is also a pseudo-
stabilizing system, however the reverse does not hold.

Definition 2.43 (Probabilistic Convergence [54]). A distributed system � probabilistically converges

to a predicate P iff, for every system state σ, every execution of � reaches a state that satisfies the

predicate P with probability 1.

Probabilistic stabilization is used to provide self-stabilizing solutions to the problems which have no
deterministic solutions such as token circulation in anonymous rings [55]. Randomization –as used by
probabilistic self-stabilizing systems– breaks the symmetry without using auxiliary variables or com-
munication registers.

2.7 Summary

We introduced the system model and the relevant definition to prepare groundwork for the introduction
of self-stabilization. Furthermore, we discussed the importance of self-stabilization in the context of
fault-tolerant distributed systems. We also provided an overview of weaker forms of convergence which
are used for the systems where a self-stabilizing solution is unwieldy to design.

3

Design and Verification of Self-Stabilizing Algorithms

Self-stabilizing systems constitute a large class of non-masking fault tolerant systems. However, de-
signing a self-stabilizing system is not trivial because, it involves constructing a system which is live
and eventually safe. This chapter surveys the techniques used for verification of self-stabilizing systems,
that is, designing provably correct self-stabilizing systems. Furthermore, we examine the compositional
mechanisms provided in the literature for designing self-stabilizing systems. The chapter concludes by
making a case for a richer compositional framework.

3.1 Verification Techiques for Self-Stabilizing Algorithms

The very property of self-stabilizing systems, that is critical for realizing non-masking fault tolerance,
makes their verification rather difficult. In particular, proving that a self-stabilizing system converges to
the set of legal states is not trivial. This has led to various methods being proposed to (automatically)
verify self-stabilization ever since the property was first defined. The verification methods found in
the literature can be divided into three major categories: deductive verification methods, algorithmic

verification methods, control-theoretic verification methods and, term-rewriting based methods. We
now briefly describe methods belonging to each of the three categories.

3.1.1 Algorithmic Verification Techniques

Symbolic Model Checking

Algorithmic verification techniques, also referred to as model checking, are used to verify systems with
finite state spaces. Symbolic model checking [56] is used in [57] to verify self-stabilizing systems. A
self-stabilizing system is formally specified as a SMV [56] program. Closure and convergence proper-
ties to be verified are specified in branching time temporal logic CTL [58]. The model checker SMV
represents the state space of a given self-stabilizing system as ordered binary decision diagrams, thereby
reducing the memory required to complete the verification. In case a given system does not satisfy de-
sired closure and convergence properties, SMV presents a “counterexample” showing an execution
where the properties do not hold.

Model Checking with Parametrization

A method to verify parametrized self-stabilizing systems, i. e. systems with arbitrary number of pro-
cesses, is presented in [59]. The method abstracts away an arbitrary number of processes with help of a

24 3 Design and Verification of Self-Stabilizing Algorithms

network invariant. A network invariant is used to represent all the processes that are similar upto their
identifiers. Convergence and closure properties and the system to be verified are specified in TLA+ [60],
and the explicit state model checker TLC [60] is used to verify the abstracted system.

Discussion

Algorithmic verification techniques provide a completely automatic method for verifying self-stabilizing
systems. They also provide a counterexample in case the given system is not self-stabilizing. However,
such methods are intended for finite state systems. Unfortunately, self-stabilizing systems can have infi-
nite state space. For example, a self-stabilizing algorithm designed for message-passing communication
model with unbounded channels has infinite number of states [61, 62]. Another challenge is state space

explosion; the state space grows exponentially as systems grow larger. For instance, in [57], SMV could
not verify systems with more than seven processes. Although abstraction can be used to reduce the state
space, generally the abstraction step cannot be automated.

3.1.2 Deductive Verification Techniques

Theorem proving methods form the core of deductive verification techniques. As these methods are
amenable to systems with infinite state space, they have been used to verify self-stabilizing systems.

Temporal logic based verification

A proof system based on temporal logic is proposed in [63]. The method uses fair transition systems

[31] to formally describe a given self-stabilizing system. Closure and convergence properties of a self-
stabilizing system are specified via LTL− [64], which is a future fragment of linear temporal logic. The
proof system is completed by providing proof rules in linear temporal logic. The proof rules exploit
certain semantic peculiarities of self-stabilizing systems. More specifically, generic temporal logic proof
rules for proving closure are simplified by the property that self-stabilizing systems do not have a
specific initial state, and generic proof rules for convergence are simplified for systems that are closed
under a certain predicate. The proof system uses the theorem prover PVS [65] to check whether a given
system satisfies closure and convergence properties.

UNITY based verification

A deductive verification built on UNITY programming logic [43] is presented in [66]. A self-stabilizing
system is formally specified as a UNITY program. The standard theorems of UNITY are extended to
verify self-stabilizing systems. A new progress operator is defined for proving theorems related to the
convergence property of self-stabilizing systems. This new operator also permits “encoding” a well-
founded relation used to exhibit progress towards a “stable” predicate. The progress operator is further
strengthened to allow compositional reasoning of the convergence property of a self-stabilizing system.
The extended UNITY theorems also allow to prove convergence properties by partitioning executions
of a self-stabilizing system into rounds. Convergence is subsequently proven by showing that only a
finite number of such rounds exist. This proof system requires support of the theorem prover HOL [67]
to draw complete formal proofs.

Discussion

Deductive verification techniques, in general, require considerable support from an algorithm designer
during the verification phase. The algorithm designer is required to supply auxiliary intermediate con-
structs to guide a theorem prover along with the proof rules. More specifically, auxiliary invariants are
required while proving a closure property and a well-founded relation is needed to prove a conver-
gence property. Thus, the deductive techniques for self-stabilizing systems need expert external input,
although they can handle infinite state systems.

3.1 Verification Techiques for Self-Stabilizing Algorithms 25

3.1.3 Term Rewrite Systems based Technique

Beauquier et al. [68] showed that convergence of self-stabilizing systems can be verified using term
rewrite methods [69]. The method represents global system states as words of a formal language. State
transitions are represented by rewrite rules in the resultant length-preserving term rewrite system. A
convergence property of a given self-stabilizing system is proven by showing the nonexistence of a
cyclic derivation in the resultant rewrite system for words corresponding to illegal states. The non-cycle
property is shown to equivalent to the inexistence of infinite derivations starting with illegal states in
the reverse rewrite system. The non-cycle property can be shown by showing the existence of a well-
founded relation defined over the words.

The method cannot be automated completely as it requires heuristics to define the well-founded
relation to show the inexistence of cycles. This requirement also implies that the method can only be
employed by expert users.

3.1.4 Control-Theoretic Verification Techniques

The methods described so far are, in essence, the modified forms of the methods that are found in the
body of work on formal verification. An interesting alternative has been presented in [70] by showing
that non-linear feedback control systems [71] are analogous to self-stabilizing systems. More specifi-
cally, it is shown that the convergence property of self-stabilizing systems is analogous to the asymptotic

global stability of non-linear feedback systems. Informally, a non-linear feedback system is asymptoti-
cally globally stable if it converges from any point in state space to a unique equilibrium point and the
system does not deviate from the equilibrium point once it is reached. A asymptotically stable feedback
system, thus, also exhibits, in a certain sense, convergence as well as closure property. This similarity
allows the usage of the control-theoretic methods meant for analyzing non-linear feedback systems to
verify self-stabilizing systems. Such methods have been modified for verifying self-stabilizing systems
in [72, 73]. These contol-theory based methods were further generalized in [74, 75] by modeling self-
stabilizing systems as hybrid systems [76] and using Lyapunov functions [77] for verifying them. The
control-theoretic verification method is of particular interest in the scope of this discussion, because
this method is derived from the techniques originally meant for proving the convergence property –i.e.

asymptotic stability– of the systems with infinite state space. Furthermore, it also becomes apparent,
that proving correctness of self-stabilizing systems is rather non- trivial despite the availability of such
strong verification techniques. In the following, we provide a brief description of the verification method
based on control theory.

The method models self-stabilizing algorithms as discrete hybrid systems. Hybrid systems are feed-
back control systems which have both continuous and discrete dynamics, and have different modes of
control. A hybrid system evolves according to the differential equation governing a mode as long as the
invariant corresponding to that model holds. A change in mode occurs if the invariant is falsified and
the system “jumps” to the mode that satisfies the control mode jump condition. A trajectory of a hybrid
system, thus, consists of flows interspersed by discrete jumps. Mode dynamics in discrete hybrid sys-
tems are governed by difference equations instead of differential equations. Thus, difference equations
determine the behavior of a hybrid system as long as a mode invariant is satisfied.

Global asymptotic stability of hybrid systems is verified via an extension of the “Second Method”
of Lyapunov [78]. The stability of hybrid systems is shown by showing the existence of a corresponding
Lyapunov function. Intuitively, if every step of a system leads to a decrease in the “energy level” of the
system, then the system must be able to come to rest irrespective of the initial starting point. A Lyapunov
function captures this notion of decrease in energy level of a hybrid system. More specifically, if there
exists a function V(x) such that (1) V(xe) = 0 at the equilibrium point xe in the state space, (2) V(x) > 0
for all non-equilibrium points, and (3) V(x) is decreasing along the all trajectories, i. e. ∀x : ∀1≤i≤mi :

26 3 Design and Verification of Self-Stabilizing Algorithms

V(fi(x)) − V(x) < 0, such that x[k + 1] = fi(x[k]) defines the dynamics of the discrete-time system in
mode i, then the given discrete-time hybrid system is globally asymptotically stable. Such a function
V(x) is referred to as Lyapunov function. The problem of searching a suitable Lyapunov function can
be formulated as a convex optimization problem with help of linear matrix inequalities (LMI) [79],
and thereby computed automatically, if the given hybrid system exhibits affine dynamics in each mode.
Such hybrid systems are called piecewise affine hybrid systems.

A given system is modeled as a hybrid system in order to verify whether the system is self-
stabilizing or not via a Lyapunov function. As distributed algorithms perform discrete operations in
assignment parts, discrete hybrid systems are used to model distributed algorithms. The notion of time
in the resultant hybrid system is represented by the selection of guarded command in the original algo-
rithm. Thus, the “time ticks” whenever a guarded command is selected by the underlying scheduler.
Every guarded command of every process in the system is represented in the discrete-time hybrid
system via (1) a difference equation and (2) a control mode. A control mode of the hybrid system –
modeling a distributed algorithm– corresponds to an enabled guarded command of the original system
and the assignment statement of that guarded command is reflected in the difference equation of the
control mode. A mode switch occurs when an enabled guarded command is executed and the next con-
trol mode is selected non-deterministically amongst control modes that represent the resulting system
state. An extra mode per process is defined to capture states where none of the guarded commands of
a process are enabled in order to ensure that the resultant discrete-time hybrid system has infinite time
line. Thus, if a system has n processes and a process Pi has mi guarded commands, then the resultant
system has Σn

1 mi + n control modes. A Lyapunov function for a hybrid system constructed as explained
above can be computed automatically provided that the hybrid system is piecewise affine. The exis-
tence of a Lyapunov function for such a hybrid system shows that the original distributed algorithm is
self-stabilizing. Note that convergence within finite number of steps follows if there exists a constant
k ∈ R, such that for all possible points x and x′, ‖x − x′‖ > k holds. For example, this constraint follows
automatically for the systems with integers as variables.

In order to verify self-stabilizing systems which converge to a closed set of legal states and tran-
sit between these states in a cyclic manner –also referred to as orbitally self-stabilizing systems– an
additional technique from control theory has been used. Poincaré maps [80] are used to prove that non-
linear feedback control systems converge to stable limit cycles. The primary idea behind the method is
to identify a hyperplane in the state space and to consider only those points of trajectory where it inter-
sects with the chosen hyperplane. In case there exists an infinite number of intersection points between
the hyperplane and trajectories, then stability analysis can be confined to the hyperplane instead of the
whole state space, as follows. A non-linear system has a stable limit cycle if, for all trajectories, the
infinite sequence of intersection points converges to a unique point on the hyperplane. This limit cycle
forms a closed trajectory. The convergence of the sequence of intersection points can be shown via the
existence of a Lypanunov function. Thus, if a hybrid system derived from a distributed algorithm has a
stable limit cycle then, the original distributed algorithm is orbitally self-stabilizing.

Discussion

The control-theoretic techniques exploit the analogy and a much larger body of results to verify self-
stabilizing systems. However, it can be employed to automatically verify only those self-stabilizing
systems which can be represented as piecewise affine hybrid systems. Although there exist control-
theoretic methods that can handle hybrid systems which are not piecewise affine hybrid systems, but
given the inherent non-determinism in distributed systems, the gain brought in by these methods is not
much. This owes to the fact that a stronger scheduler leads to an increase in the number of control
modes in the resulting hybrid system.

3.2 Compositional Methods for Self-Stabilizing Systems 27

3.2 Compositional Methods for Self-Stabilizing Systems

Verification of self-stabilizing algorithms is not trivial despite the support provided by formal methods.
As the size of systems grow larger, it becomes progressively difficult to provide intermediate auxil-
iary constructs required by the formal methods. Various compositional techniques have been adopted
in order to overcome scalability-related challenges encountered while designing large self-stabilizing
systems. These compositional methods are discussed in the following.

3.2.1 Asymmetric Compositional Methods

Two asymmetric compositions schemes for self-stabilizing algorithms are presented in [81], namely,
selection composition and hierarchical composition. These methods are asymmetric because some re-
strictions are put on the execution semantics of one of the two component algorithms.

Selection Composition

Selection composition is defined on two self-stabilizing algorithms which are compatible with each
other. Compatibility of two component algorithms ensures that no two process write to a common
variables. The composition uses a boolean vector of size n where n is the number of processes in the
system. Each of the component is self-stabilizing with respect to their respective predicates. Let PA

and PB denote the respective safety predicates of the component algorithms and e denotes the boolean
vector. Each guarded command GAi j

→ aA
i j

of component algorithm A in a process Pi is modified to

GAi j
∧ ei → aA

i j
, where ei is the ith element of the boolean vector and j is the index of the guarded

command in Pi. Similarly, each guarded command of the other component algorithm B is modified to
GBi j
∧ ¬ei → aB

ii
. The composed algorithm consists of the union of the modified guarded commands of

both components and the boolean vector e. The composed algorithm is self-stabilizing with respect to
predicate PA if all elements of e have truth value True. The composed algorithm is self-stabilizing with
respect to predicate PB if the truth value of all elements of vector e is False. Thus, a Boolean vector e

can be used to modulate the self-stabilization of a composed algorithm.

Hierarchical Composition

Hierarchical composition is defined over two self-stabilizing algorithms as well. However, this com-
position method requires that one of the components “controls” the other component. A component
algorithm A controls component algorithm B iff B uses a variable of A as input variable to execute
its guarded commands, however, it does not modify it. Guarded commands of component B in each
process Pi are modified toGBi j

∧idle(Ai)→ aA
i j

where idle(Ai) denote the conjunction of negated guards

of componentB in process Pi. The composed algorithm consists of the union of guarded commands of
A and the modified guarded commands of A. Let algorithm A be self-stabilizing to predicate PA and
� converges to PB provided PA holds true for its input variables and all guards of � become disabled
once it converges to PA. Then, the composed algorithm converges to predicate PB if component B is
fair in the sense that actions ofB in process Pi can block execution of actions ofA in any other process.

Detector-Corrector based Composition

A compositional method to design self-stabilizing algorithms from algorithms that may not be self-
stabilizing via the use of coordinators is presented in [82]. This technique builds upon the method
for designing fault tolerant programs using correctors and detectors [83]. A detector is an algorithm
that “detects” whether a given state falsifies a certain predicate. A corrector, in addition to detecting a
predicate, sets the system to state to a pre-defined “correct” state if the predicate is not satisfied. The

28 3 Design and Verification of Self-Stabilizing Algorithms

primary idea is to isolate and potentially “block” a component so that it cannot corrupt variables of
other component algorithms. The task of isolating and blocking is performed by a coordinator which
is the linchpin of this composition technique. The composition technique exploits the dependency be-
tween the components. It defines a coordinator for each component which continuously monitors the
respective component with the help of a relevant detector and in case an anomaly is noticed by the
detector, it uses the corrector to correct itself and other components. The structure of graph represent-
ing dependencies between various components determines the structure of coordinator employed. Two
types of dependencies are used: a correction dependency and a corruption dependency. A component
A depends on componentB for correction if an action of A can correct A if B is already in a correct
state. A componentA can corruptB if an action ofA in a state in whichA is incorrect andB is correct
leads to a state where both components are in an incorrect state. Each component consists of its own
guarded commands and coordinator guarded commands. A component communicates with its neigh-
boring components via method calls, wherein the component communicating with its neighbor invokes
a method on the callee.

3.2.2 Symmetric Composition

Unlike the composition schemes discussed before, symmetric composition [84] does not restrict the
execution semantics of the component algorithms in the sense that, one of the two component algo-
rithms execution steps are restricted or regulated by its counterpart. Symmetric composition is defined
over two compatible and suffix-closed self-stabilizing algorithms. Two self-stabilizing algorithms are
said to be compatible in this compositional framework if none of the algorithms uses variables belong-
ing to the other algorithm. A distributed algorithm is said to be suffix-closed if, for every execution of
the algorithm, any suffix of the execution is also an execution of the algorithm. Let A and B be two
suffix-closed compatible algorithms self-stabilizing with respect to predicates PA and PB respectively.
Symmetric composition of algorithms A and B, defined as the union of guarded commands of A and
B, is self-stabilizing with respect to the predicate PA ∧ PB.

3.3 Summary

Composition has been presented as an alternative design methodology to overcome scalability issues
encountered while verifying self-stabilizing algorithms. However, techniques found in the literature
assume that the component algorithms are self-stabilizing under the same class of schedulers and, hence,
leave a large class of self-stabilizing algorithms outside their gamut. More specifically, such techniques
cannot be used to compose self-stabilizing algorithms, which are self-stabilizing under different class
of schedulers. Additionally, these compositional methods cannot handle algorithms that exhibit weaker
forms of convergence. Furthermore, some of the compositional methods cannot be used to compose
self-stabilizing algorithms which are not silent. Thus, the compositional techniques available in the
literature –in addition to being rather limited in number– cannot be used to compose a considerable
number of self-stabilizing algorithms. This raises the question, whether it is possible to overcome these
limitations while leaving resultant algorithm with optimal non-determinism. We analyze these aspects
of compositional design of self-stabilizing algorithms in the following chapters.

4

Lifting Composition of Self-Stabilizing Algorithms

4.1 Introduction

While designing a self-stabilizing algorithm, the problem specification typically states the safety predi-
cate and the underlying scheduler. Should the algorithm designer decide to take the compositional route
– which is true more often than not due to the complexity of proofs – compatibility of schedulers of
potential component algorithms become a critical design challenge. The problem can be rather acute
given the fact that some algorithms are self-stabilizing under very specific schedulers. This problem can
be alternatively formulated to devise a composition scheme that is oblivious to respective schedulers.
This is, indeed, a rather strong condition to be forced on a compositional operator. However, the prior
knowledge in form of proofs of the self-stabilization properties of component algorithms can be used to
define such an operator. This exploitation of self-stabilization proofs in order to effect the compositional
transformation of self-stabilizing algorithms forms the kernel of our endeavor in this chapter.

Outline

In this chapter, we investigate whether usual compatibility requirements of schedulers can be tran-
scended during the composition. To that end, we define lifting composition of self- stabilizing algo-
rithms. Lifting composition transfers the self-stabilization property of a component algorithm B such
that B exhibits self-stabilizing behavior in the composed algorithm A

△
B under the scheduler of the

other component algorithmA. We further analyze the effect of the relationship between the respective
schedulers on the result of lifting composition.

This chapter is structured as follows. In Section 4.2, we briefly recall relevant definitions. Section
4.3 contains the definition of lifting composition and shows that it preserves the self-stabilization prop-
erty of the component algorithms. Section 4.4 delves on the implication of the relationship between
schedulers on the result of lifting composition. Two self-stabilizing algorithms are constructed in Sec-
tion 4.5 with the help of the new compositional technique. The chapter ends with a summary in Section
4.6.

4.2 System Model

A distributed system consists of a set Π := {P1, · · · ,Pn} of n processes communicating with each other
via shared memory registers. A process consists of write registers, read registers, local variables and the
sub-algorithm it executes. The local variables are the memory registers used by a process for internal
computation. Each process Pi has a system wide unique identifier i.

30 4 Lifting Composition of Self-Stabilizing Algorithms

A process Pi executes a sub-algorithm Ai, which is defined as a set of guarded commands. Dis-
tributed algorithm A executed by a distributed system is the union of the sub-algorithms executed by
all the processes in Π . The local state si of a process Pi consists of the valuation of its local variables
and write registers.

The global system state of a distributed system is a vector σ= 〈s1, · · · ,sn〉 whose elements are the
local states of all the processes in the system (see Definition 2.15). The set of all possible global system
states σi of a distributed algorithm is termed as global system state space Σ.

Inherent non-determinism of a distributed algorithm is resolved with the help of a scheduler which
generates (interleaved) executions of the distributed algorithm. A scheduler is defined as a set of strate-
gies and each strategy corresponds to the sequence in which enabled processes are activated (see Defini-
tion 2.30). Additional constraints are imposed on a scheduler in form of fairness restrictions. A weakly
fair scheduler ensures that a continuously enabled guarded command is activated infinitely often.

4.3 Lifting Composition

We present a new composition operation, called lifting composition, for self-stabilizing algorithms,
which preserves the self-stabilization property of the components.

4.3.1 Definitions

Component Algorithms

Lifting composition takes two self-stabilizing algorithms,A andB, as operands. Component algorithm
A is self-stabilizing with respect to predicate PA under scheduler DA. DA is a weakly-fair scheduler
implying that in a maximal execution (see Definition 2.20) a continuously enabled process is invoked
infinitely often. Furthermore, in every system state of algorithm A, each process Pi has exactly one
enabled guarded command.

Remark 4.1. The assumption that algorithm A has an enabled guarded command in each process in
every system state is not restrictive. An algorithm which has none or more than one enabled guarded
command in a process can be transformed to an algorithm which has exactly one enabled guarded
command per process without modifying its specification [85]. For example, consider a process Pi

which has two guarded commands GAix
and GAiy

enabled in some state. If sub-algorithm Ai is modified
by adding ¬GAix

∧GAiy
in place of GAiy

then, Pi will never have both guards enabled in same state.
Instead, if a process Pi has no guarded command enabled in process then, a guarded command of the
form

∧li
x=1 ¬GAix

→skip; can be added to Pi to ensure that a guarded command is enabled in every state.

Component algorithmB is self-stabilizing with respect to the predicate PB under scheduler DB. Sched-
uler DB is a serialized scheduler DB activates exactly one of the enabled processes in every execution
step. Scheduler DA is assumed to preserve the closure property of algorithm B: it implies that, under
scheduler DA, any execution of algorithm B starting in a state satisfying predicate PB never reaches a
state where predicatePB does not hold true. Component algorithmsA andB have disjoint state spaces,
that is, they do not have any shared variables or communication registers.

A prerequisite of the inference that algorithmB is self-stabilizing with respect to predicatePB under
scheduler DB is the fact that algorithmB always converges to the states which satisfy PB. Convergence
of a distributed algorithm is proven with the help of a well-foundedness argument. It is shown that,
irrespective of the initial state, any execution of the algorithm can be projected on to a monotonous
sequence of the elements of a well-founded set. More precisely, convergence is proven by showing
existence of a suitable ranking function.

4.3 Lifting Composition 31

Definition 4.1 (Ranking Function [86]). A ranking function ∆: Σ → Θ maps state space Σ of a dis-

tributed algorithm to a well-founded set Θ such that ∆(σi) > ∆(σ j) for any two states σi and σ j if state

σ j is reachable from σi via a single execution step.

The existence of such a function ∆, such that

1) ∆(σi) > ∆(σ j) for any execution step σi→σ j in a state σi with σi 6|= P and
2) ∆(σi)= inf(Θ) if σi |= P, where inf(Θ) is the minimum element of Θ,

is used to prove convergence of a distributed algorithm with respect to a predicate P.
Let ∆B be a ranking function used to prove the convergence of algorithmB with respect to predicate

PB under scheduler DB. Thus, the value of function ∆B decreases under scheduler DB no matter which
process executes.

Remark 4.2. Note that it is possible to design an algorithm whose convergence as well as closure is
provable only under a specific scheduler. However, for such an algorithm proof obligations of self-
stabilization are usually stronger than otherwise. While the convergence proof obligation would still
be existence of a ranking function, the closure proof would require that a distributed algorithm shows
well-defined behavior even after it reaches a legal state. The proof artifact used to verify closure in such
cases would be stronger than mere state invariants, and therefore, such algorithms are not considered in
the scope of this work.

Composition

Algorithm A consists of n sub-algorithms {Ai | 0 ≤ i ≤ n}. Sub-algorithm Ai is a set of li guarded
commands {GAix

| 1 ≤ x ≤ li}. A set of n sub-algorithms {Bi | 1 ≤ i ≤ n} constitutes algorithm B.
Sub-algorithm Bi is a set of mi guarded commands {GBix

| 1 ≤ x ≤ mi}. AlgorithmsA andB consists of
Σn

i=1li and Σn
i=1mi guarded commands respectively.

AlgorithmB, by virtue of being self-stabilizing under DB, has a known ranking function ∆B.

Definition 4.2 (Lookahead Value δBix). Consider a guarded command GBix
→ actBix

of sub-algorithm

Bi. Let νBix
be the subset of the variables of the algorithmBwhose values are changed by the assignment

part actBix
of the guard GBix

. Let ∆Bix
be the function obtained from ∆B by replacing variables in νBix

by

their respective assignment expressions in actBix
. δBix is defined as

δBix = ∆B − ∆Bix
.

For example, consider a guarded command X :: (x1 ≤ 1) → x2 := f1(x1, x2) and a ranking function
∆= x2

1 + x2
2; ∆X corresponding to the guardeded command X is equal to x2

1 + (f1(x1, x2))2.
We are now ready to formally define lifting composition. The lifting composition A△B of algo-

rithmsA andB is defined as follows.

Definition 4.3 (Lifting Composition). Sub-Algorithm Ai
△Bi run by a process Pi consists of 3 · li ·mi+ li

guarded commands of the following structure:

GAix
∧ GBiy ∧ (δBix < 0) ∧ ¬PB→ actAix

; actBiy; (1)
GAix
∧ GBiy ∧ PB → actAix

; actBiy; (2)
GAix
∧ GBiy ∧ (δBix ≥ 0) ∧ ¬PB→ actAix

; (3)
GAix
∧(¬GBi1 ∧ · · · ∧ ¬GBimi

) → actAix
; (4)

for all x ∈ {1, · · · , li} and all y ∈ {1, · · · ,mi}. AlgorithmA

△
B is the union of all sub-algorithms Ai

△Bi

A

△
B =

⋃n
i=1 Ai

△Bi

run by the processes in Π .

32 4 Lifting Composition of Self-Stabilizing Algorithms

Description

Every process Pi in the composed algorithmA

△
B has four types of guarded commands.

Guarded Commands of Type 1 Process Pi has li · mi guarded commands of type 1. A guard of Type 1
is true in a system state if (1) constituent guards GAix

and GBiy are true, (2) δBix
corresponding

to guard GBiy is negative, and (3) safety predicate PB of algorithm B does not hold in the state.
If a guard of Type 1 is true and it is activated then, assignment statements belonging to parent
guarded commands, actAix

and actBiy are executed. A Type 1 guard allows component algorithm B

to converge towards the states satisfying predicate PB without hindering the actions of algorithm
A.

Guarded Commands of Type 2 Every process has li ·mi guarded commands of Type 2. A Type 2 guard
is true in a system state if (1) guards GAix

and GBiy hold true and (2) predicate PB holds true in
the state. If an enabled guarded command of Type 2 is selected then, assignment statements of
parent guarded commands are executed. A Type 2 guarded command facilitates the joint execution
of actions of both component algorithms once algorithm B reaches the states satisfying predicate
PB.

Guarded Commands of Type 3 There are li · mi guarded commands of Type 3 in each process Pi. A
Type 3 guard is true in a state if (1) it does not satisfy predicate PB (2) parent guards are true,
and (3) δBix

is positive. If an enabled guarded command of Type 3 is selected then, assignment
statement of guarded command GAix

is executed. A Type 3 guarded command ensures that guards
of algorithm A are not blocked in a process in case actions of algorithm B lead to an increase in
the value of ∆B.

Guarded Commands of Type 4 There are li guarded commands of Type 4 in each process Pi. A Type 4
guarded command is enabled if (1) corresponding parent guard is true and (2) none of the guards
of sub-algorithm Bi are true. If an enabled guarded command of Type 4 is selected then, only
the assignment statement of the parent guard actAix

is executed. By virtue of a Type 4 guarded
command, guards of algorithmA are enabled even if none of the guards of algorithmB are enabled.

Remark 4.3. Global information in every process Pi is generally required in order to reason about the
sign of δAix

in any state and this information should be available in every execution step. In some cases
the topology of the communication graph allows inspection of variables required for the calculation of
∆B. Alternatively, extra algorithmic support can be added to acquire the global information. In the scope
of this chapter we assume that global information is available in each execution.

4.3.2 Preservation of Self-Stabilization

We now show that self-stabilization properties of algorithmsA andB are preserved in the lifting com-
positionA△B. The proof maps the executions of the composed algorithmA

△
B to the set of executions

of each component. The proof consists of two parts. In the first part, it is shown that algorithm A

△
B

can produce all possible executions of algorithm A. In the latter part of the proof, we show that, in all
executions of A△B, the convergence property of B with respect to predicate PB is preserved.

We provide a few definitions prior to the proof.

Definition 4.4 (Projection of a State). Let σ be a global system state of a composed algorithm A

△
B.

Projectionσ |A of state σ over component algorithmA is obtained from σ by removing all the variables

belonging to algorithm B

Definition 4.5 (Projection of an Execution). Let Ξ̂
A

△
B

= 〈· · · , σi, σ j, · · · 〉 be a maximal execution of a

composed algorithm A

△
B. Projection Ξ̆

A

△
B|A of maximal execution Ξ̂

A

△
B

over component algorithm

A is obtained by replacing each global state of A△B by its projection over algorithmA, i. e.,

4.3 Lifting Composition 33

Ξ̆
A

△
B|A:= 〈· · · , σi|A, σ j|A, · · · 〉.

The guards of the algorithm A are unaffected in the composed algorithm and therefore, the set of
enabled guarded commands of A in the composed algorithm each state is unchanged.

Lemma 4.1. The projection of any maximal execution of A△B under DA on A is a maximal execution

of A under DA.

Proof. Consider a maximal execution Ξ̂
A

△
B

of A△B under DA and let σi→σ j be a execution step
in Ξ̂

A

△
B

. Let Px be a process such that guard GAxt
is enabled in Px in global state σi. If σi satisfies

predicate PB and a guard GBxw
of algorithmB is enabled, then a Type 2 guard is enabled in process Px.

If σi does not satisfy predicate PB, then, depending on the value of δBxw
, a Type 1 or Type 3 guard is

enabled. Should there be no guards of algorithmB enabled in σi, a Type 4 guard is enabled in process
Px. Moreover, the guards ofA are not modified in any process Px. Thus, the set of enabled guards ofA
in any process Px in state σi and, therefore, the set of enabled processes in state σi is same as it would
be in state σi|A if A was running alone. Thus, there exists a execution step σi|A→σ j|A of A under DA

corresponding to σi→σ j, because assignment statements ofA are unchanged inA△B andA andB do
not have shared variables. The lemma follows. �

Lemma 4.1 shows that, under scheduler DA, there exists a maximal execution of A corresponding to a
maximal execution of the composed algorithmA

△
B. Figure 4.1 is an informal depiction of the relation-

ship between the state spaces of algorithmsA andA△B. Each state σi of composed algorithmA

△
B can

be represented as a tuple σi = 〈σi|A, σi|B〉. Thus, as a result of the composition, the state space of algo-
rithmA

△
B is a product of state spaces of algorithmsA andB. Note that the projection relation between

states of algorithmA

△
B and algorithmA is a surjective relation. Consequently, multiple executions of

algorithm A

△
B have a single projection in the state space of algorithm A. For example, consider the

execution starting in states σi,1, σi,2 and σi,3 of algorithm A

△
B in Figure 4.1. The projection of these

states is state σi of algorithmA. The projection of 〈σi,2 → σ j,2 → σn,2 → σu,2 → · · · 〉 is the execution
〈σi → σ j → σn → σu → · · · 〉 of algorithm A. The projections of executions starting in states σi,1

and σi,3 are also 〈σi → σ j → σn → σu → · · · 〉. The maximality of the algorithm A in the composed
algorithm also implies preservation of predicates over the executions of A.

Lemma 4.2. If all maximal executions of algorithm A under scheduler DA satisfy a predicate P, then

the projection of every execution of A△B under scheduler DA on A also satisfies predicate P.

Proof. The projection of every maximal execution of A△B under scheduler DA over algorithm A is
a maximal execution of A under DA as well (from Lemma 4.1). Let Ξ̆

A

△
B|A be the projection of a

maximal execution of A△B over A such that Ξ̆
A

△
B|A does not satisfy predicate P. Thus, Ξ̆

A

△
B|A is a

maximal execution of A under DA and Ξ̆
A

△
B|A does not satisfy predicate P. However, it is contrary to

the assumption in the if-clause. This completes the lemma. �

Lifting composition preserves all the properties of algorithmA, and if executions of A are closed with
respect to some predicate, then the projection of any execution of A△B is closed with respect to that
predicate as well. Corollary 4.1 follows from Lemma 4.2 by substituting predicate P with the safety
predicate PA of algorithmA.

Corollary 4.1. If all maximal executions ofA which start in a state satisfying predicatePA do not enter

a state that does not satisfy predicate PA, then the projection of all maximal executions of A△B which

start in a state whose projection onA satisfies predicate PA does not enter a state whose projection on

A does not satisfy PA.

With the help of Lemmata 4.1 and 4.2, we next show the convergence of algorithmA towards predicate
PA is preserved by lifting composition.

34 4 Lifting Composition of Self-Stabilizing Algorithms

Σ
A

△
B

...
...

...

...
...

...

· · ·

σi,1 σi,3σi,2

σj,2

σu,2

σn,2

· · ·

Σ
A

...

· · ·
· · ·

...

σi

σrσqσn

σ j σk
σl

σpσm σo

σs σt σu σw σx σy σz

Fig. 4.1: Projection of AlgorithmA

△
B over AlgorithmA

Theorem 4.1. If all maximal executions of algorithm A converge to states where predicate PA holds

under scheduler DA, then all maximal executions of algorithm A

△
B under DA also converge to the

states whose projection on algorithm A satisfies predicate PA.

Proof. Lifting composition does not change the result of any execution of algorithmA (from Lemma 4.1).
Thus, if a maximal execution ofA reaches a state satisfying PA then projection of a maximal execution
of A△B on A reaches a state satisfying PA as well(Corollary 4.1).

Because the set of enabled guarded commands in every state in A△B remains the same (from
Lemma 4.1), scheduler DA cannot increase the number of execution steps required to reach a state
whose projection on A satisfies predicate PA. Thus, the number of execution steps required by A△B
to reach a state whose projection on A satisfies PA under DA is equal to the number required by A to
reach a state which satisfies PA. �

As shown above, lifting composition simply “pastes” the executions of algorithm A in the state space
of the composed algorithm A

△
B. Consequently, lifting composition allows algorithm A to exhibit all

the properties that it exhibits executing alone under scheduler DA.
We now focus on the behavior of algorithmB in the composed algorithmA

△
B. It is shown that the

embedding of ranking function ∆B of algorithmB in algorithmA

△
B ensures that the self-stabilization

4.3 Lifting Composition 35

property of B is preserved provided that scheduler DA is weakly-fair.We first show that lifting compo-
sition preserves the maximality of algorithmB.

Lemma 4.3. The projection of every maximal execution of the composed algorithm A

△
B under a

weakly-fair scheduler DA on algorithmB is a maximal execution of B under scheduler DB.

Proof. AlgorithmB has a convergence property with respect to predicatePB under schedulerDB which
is proven with help of ranking function ∆B. The proof is organized in three parts: 1) we first show that
the actions of algorithmB are not disabled due to composition in the composed algorithm, 2) the actions
of B are unaltered and, 3) progress of B is unhindered.
Non-existence of a deadlock. The convergence property implies that in every state ofB which does not
satisfyPB there is least one process with an enabled guard such that the execution of an enabled guarded
command leads to a decrease in the value of ∆B. Thus, in every state σi of the maximal execution
Ξ̂
A

△
B

which does not satisfy PB, there exists at least one process Px such that the Boolean expression
GBxκ∧ (δBix < 0) evaluates to true.
Exclusivity of actions of B. Consider an execution step σi→σ j in Ξ̂

A

△
B

such that σi|B is not equal to
σ j|B. Then, σi→σ j involves an execution of a guarded command ofB, because assignment statements
of A andB are unchanged during composition.
Maximality of projection. Let ε = 〈· · · , σι, σκ〉 be a prefix of a weakly fair maximal execution Ξ̂

A

△
B

of A△B under DA such that PB does not hold true and no guarded command of B is executed in the
states following σκ. There is at least one process Px with an active guarded command GBxi

such that
δB < 0 in every state of ε. Let ρκ = {Pκ1 , · · · , Pκθ } be the set of processes which have an enabled
guarded command GBκt such that δB < 0 in global state σκ. Ξ̂

A

△
B

is maximal and algorithm A has
an enabled guarded command in every state therefore ε has an infinite suffix in Ξ̂

A

△
B

. The suffix of
ε is infinite and does not contain any execution step belonging to the processes in ρκ. Execution of
guarded commands of algorithm A in processes belonging to Π\ρκ may change the truth values of
individual guards of A in processes in ρκ. Because algorithm A has an enabled guarded command in
every process and in every state, the execution of the guarded commands in processes belonging toΠ\ρκ
cannot change the enabledness of the processes in ρκ. The maximal execution Ξ̂

A

△
B

does not contain
any execution steps belonging to processes in ρκ after state σκ although each process in ρκ is enabled
in all the subsequent states. However, scheduler DA is a weakly-fair scheduler and ensures that in any
execution, a continuously enabled process is activated infinitely often. Therefore, such a sequence of
states cannot be a maximal execution of algorithmA

△
B under schedulerDA. We now consider maximal

states where states satisfy predicate PB.
Let Ξ̂

A

△
B

be a maximal execution of a composed algorithmA

△
B. Let εPB

be the prefix of Ξ̂
A

△
B

such
that all the states in εPB

satisfy predicate PB and no guarded command of algorithm B is executed in
all subsequent states. AlgorithmB can exhibit two kinds of behavior in the states belonging to εPB

:

Case 1: If algorithmB has none of its guarded command enabled in states satisfying predicatePB, then
the projection of Ξ̂

A

△
B

on algorithmB is maximal as none of the guarded commands is enabled in
the states belonging to εPB

.
Case 2: If algorithm B has enabled guarded commands in the states satisfying predicate PB then, as

described above, the suffix of εPB
is constituted of states where at least one process Px has an

enabled guardGBxι of algorithmB. Process Px is never activated in the suffix of εPB
. However, this

is not possible because scheduler DA is weakly-fair thereby invoking every continuously enabled
process infinitely often.

The exclusivity of actions of algorithm B ensures that if a process is activated in a state, then the tran-
sition would be between the same pair of states as that of algorithm B prior to composition. Recall the
premise that, in all maximal executions of algorithm B under scheduler DB, the value of ∆B decreases
as long as predicate PB does not hold; the lemma follows. �

36 4 Lifting Composition of Self-Stabilizing Algorithms

··

σi|A σ j|A σk|A σt|A σu|A

σi|B

σi σ j

σ j|B

σk

σk|B

σt

σt|B

σu

σu|B

Pι Pη Pκ Pτ

· · · GAιx GAηy
GAκw

GBκz

GAτv

Fig. 4.2: Filtering of Execution Steps of AlgorithmB in A△B

Lemma 4.3 shows that the guards of A△B do not hinder algorithm B from taking an action. Indeed,
a guarded command of algorithm B is executed only if it ensures that ranking function ∆B decreases.
Thus, lifting composition “shields” guards of algorithm B from scheduler DA. Although scheduler DA

can postpone the execution of actions of algorithm B, weak fairness and the conjunction of guards in
algorithm A

△
B guarantees that actions of algorithm B cannot be delayed indefinitely. An equivalent

maximal execution of algorithm B can be, thus, constructed by “filtering” the projection of maximal
execution of A△B on B. For example, consider the fragment of maximal execution of A△B shown in
Figure 4.2. Process Pι is selected by scheduler DA in state σi and guard GAιx pertaining to algorithmA

is executed resulting in new state σ j. Similarly, process Pη is selected in σ j and as a result of execution
of guard GAηy

the system reaches state σk. Note that projections of states σi, σ j and σk on algorithmB

are equal as no guarded command ofB is executed between the three states. Eventually process Pκ is se-
lected by schedulerDA in state σk and guarded commands belonging to both component algorithms are
executed. The projection of the fragment of execution on algorithmB is 〈σi|B, σ j|B, σk|B, σt|B, σu|B〉.
The fragment of equivalent maximal execution ofB underDB is 〈σi|B, σt|B〉; it is obtained by removing
those projected states which are equal.

We give the definitions of an execution fragment and a round before showing that algorithm A

△
B

preserves the convergence of algorithmB under scheduler DB as well.

Definition 4.6 (Execution Fragment). Let Ξ= 〈σ1, σ2, · · · , σi, · · · , σ j, · · · 〉 be an execution of a dis-

tributed algorithm. A fragment of execution Ξ εi j is a subsequence of Ξ that starts in state σi and ends

in state σ j.

Definition 4.7 (Execution Round). A round in an execution is the shortest fragment ε such that each

process executes an execution step in ε.

For example, consider an execution Ξ = 〈σ1 −−→
P1

σ2 −−→
P2

σ3 −−→
P1

σ4 −−→
P3

σ5 −−→
P2

σ6 −−→
P3

· · · 〉 of

a distributed system with three constituent processes. The first execution round of this execution is
ε = 〈σ1 −−→

P1

σ2 −−→
P2

σ3 −−→
P1

σ4 −−→
P3

σ5〉.

Theorem 4.2. If all maximal executions of algorithm B under scheduler DB converge to the predicate

PB, then the projection of any maximal execution of the composed algorithm A

△
B on algorithm B

under a weakly-fair scheduler DA converges to predicate PB.

Proof. The projection of a maximal execution of the composed algorithm A

△
B on algorithm B is a

maximal execution of B under DB (from Lemma 4.3). Thus, algorithm B takes a step in a state that
does not satisfy predicate PB only if a decrease in the value of ranking function ∆B is guaranteed. The
progress of algorithmB towards a state satisfying predicate PB can only be hindered by not enabling a
process which has a guard active such that δB < 0. However, this goes contrary to the assumption that
scheduler DA is weakly-fair.

AlgorithmB gets a chance to execute at least one of its enabled guarded command in every round
else the weak fairness constraint would be violated. The projection of algorithm A

△
B over algorithm

4.4 The Role of Schedulers in Lifting Composition 37

B reaches a state satisfying predicate PB in finite number of steps, because ∆B is monotonous and is
defined over a well-founded domain. Well-foundedness of the domain of ranking function ∆B implies
that an infinite sequence consisting of the elements of the domain does not exist, and any non-empty
subset of elements has a minimal element. Hence, algorithm B reaches a state satisfying predicate PB

in not more than O(n) · C(n) rounds where n is the number of processes in the system and C(n) is the
number of rounds required byB to converge to PB under scheduler DB. �

Theorem 4.2 shows that the presence of ranking function ∆B of algorithm B in guards of algorithm
A

△
B prevents scheduler DA from destroying progress of algorithmB towards predicate PB. The effect

of lifting composition on the state spaces of algorithms A△B and B is depicted informally in Figure
4.3. Multiple states of the composed algorithm A

△
B have projection on a state of algorithm B. Note

that although the projection relation between states ofA△B andB is surjective but not bijective, and the
projection relation between executions of the two algorithms under scheduler DA is neither surjective

nor injective. There can be multiple executions of the composed algorithm A

△
B corresponding to a

single execution of algorithmB. Consider executions of algorithmA

△
B starting in states σi,1, σi,2 and

σi,3. The projection of all the three states is σi in the state space of algorithm B. Consequently, the
projection of the execution 〈 σi,2 → σ j,2 → σn,2 · · · 〉 is 〈 σi → σ j → σn · · · 〉. However,
not all executions of algorithmB under scheduler DA have corresponding executions in the state space
of the composed algorithm A

△
B. As convergence of algorithm B as such is guaranteed only under

scheduler DB, a different scheduler may lead to an execution which never reaches a state satisfying
predicate PB. For example, consider the state space of algorithm B as shown in Figure 4.3. Scheduler
DA can produce an execution 〈 σi → σ j → σn → σu → σ j · · · 〉 and prevent algorithm B from
reaching a state that satisfies predicatePB without violating the fairness constraint. However, such loops
are not possible in the state space of composed algorithm, because the embedding of ranking function
of algorithm B disables such counterproductive transitions; therefore, some of the executions have no
corresponding execution in the state space of A△B. Consider an execution 〈 · · · σi → σ j · · · 〉 of
B under scheduler DB. Let process Px execute an enabled guarded command in σi to reach state σ j,
and let processes Pv and Pw be enabled in σ j. Assume that in all strategies of scheduler DA process Pv

is selected immediately after process Px. In such a case, algorithm A

△
B will never have an execution

where process Pw executes its guarded command in σ j. Therefore, although every projected execution
of algorithm B in A△B under scheduler DA has an equivalent execution under scheduler DB, not all
executions ofB under scheduler DB may have corresponding executions in the state space of algorithm
A

△
B.

Theorem 4.3. AlgorithmA△B is self-stabilizing with respect to predicate PA ∧PB under a weakly-fair

scheduler DA.

Proof. Convergence of A△B follows from Theorems 4.1 and 4.2. Closure follows from Lemmata 4.2
and 4.3 and the assumption that predicate PB is closed under scheduler DA. �

4.4 The Role of Schedulers in Lifting Composition

We have shown that the result of lifting composition is a self-stabilizing algorithm as well. We now
discuss the impact of the relationship between the schedulers of component algorithmsA andB on the
schedulers which preserve the self-stabilization properties in the composed algorithmA

△
B.

Corollary 4.2. Lifting composition preserves the self-stabilization property of algorithm B under

schedulers for which algorithm A is self-stabilizing with respect to PA provided PB is closed under

the scheduler of algorithmA.

38 4 Lifting Composition of Self-Stabilizing Algorithms

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

Σ
A △

B

· · ·

σq

σl

σp

σx σy

...

· · ·

...

σn

σ j

σm σo

σt σu σw

Σ
B

...

...

· · ·
· · ·

σi, 1 σi, 3σi, 2

σ j, 2

σn, 2

σu, 2

σi

σk

σr

σz

Fig. 4.3: Projection of AlgorithmA

△
B over AlgorithmB

The critical aspect of lifting composition is exploiting the knowledge of the ranking function of algo-
rithm B. Ranking function of algorithm B encodes the information about the progress that B makes
towards the set of states represented by predicatePB. Essentially, a transition of algorithmB in the com-
posed algorithm A

△
B is enabled only when it is guaranteed that it will lead to progress. A scheduler

not admitted by algorithmB can invoke a process such that execution of its enabled guarded command
is counterproductive to the convergence of B, and thereby, might result in an execution which does not
have states satisfying predicate PB. However, the guards of algorithm B are “protected” by the rank-
ing function ∆B. Thus, the ranking function ∆B of algorithm B act as a “filter” of actions of B in the
composed A△B. In any state an assignment statement of algorithm B is executed in algorithm A

△
B

only if a favorable process is selected by scheduler DA of algorithm A. Thus, for an external observer
algorithm B is self-stabilizing despite the fact that the underlying scheduler is DA instead of DB. The
transfer of the self-stabilizing property of under scheduler DB, however, may come at the cost of in-
creased convergence time. For instance, assume execution of an action actBi of algorithmB in process
Px after invocation of process Py is necessary to ensure progress towards predicate PB. Let scheduler
DA be the scheduler of algorithm A which does not ensure this requirement. Therefore, algorithm B

is not guaranteed to make progress under scheduler DA. However, the presence of ranking function ∆B

“shields” algorithm B from counter-productive process invocation. As explained above the execution
of the assignment statements of algorithmB has to be postponed at times and thus, takes longer than it
would have under scheduler DB.

Compositional laws for self-stabilizing algorithms usually require that both components C
1

and
C

2

show self-stabilizing behavior under schedulers admitted by each of the components. In essence,

4.4 The Role of Schedulers in Lifting Composition 39

schedulers admitted by such compositional schemes are those strategies ̺i which are members of both
schedulers DC1 and DC2. An important consequence of this property is that it is necessary that there
exists a set of strategies ℵ := {̺i | ̺i ∈ DC1∧̺i ∈ DC2} common to DC1 andDC2, that is, DC1∩DC2 , ∅.
However, lifting composition does not have any such restriction. Lifting compositon “lifts” the self-
stabilization property of algorithm B under scheduler DB to scheduler DA without interfering with the
properties of algorithmA.

Theorem 4.4. AlgorithmA△B is self-stabilizing with respect to predicate PA∧PB under scheduler DA

even if DA∩ DB= ∅.

Proof. Closure and convergence of algorithmA in A△B follows from Theorem 4.1.
Scheduler DA has no strategy under which algorithmB converges to its safety predicate PB. Neverthe-
less, each strategy of scheduler DA must select each process infinitely often in any maximal execution
because schedulerDA is weakly fair. The theorem follows from the observation that guards of algorithm
B in the composed algorithmA

△
B are enabled only if it leads to decrease in ranking function ∆B, and

the assumption that algorithmA has exactly one enabled guarded command per process in every state.
�

The transfer of the self-stabilizing property of B via lifting composition leads to an interesting result
in case scheduler DA contains scheduler DB. This means that all the strategies of DB are members of
DA and vice versa is not true, that is DA ∩ DB = DB. In such a scenario, lifting composition elevates
the self-stabilizing property of scheduler B to a class of schedulers larger than its own. The algorithm
DB exhibits the self-stabilizing behavior – in addition to strategies of scheduler DB – also under process
invocation sequences of DA.

Theorem 4.5. Lifting composition A△B enlarges the set of strategies under which B self-stabilizes to

predicate PB.

Proof. If a strategy belongs to both schedulers DA and DB, then the convergence of algorithm B in
composed algorithmA

△
B follows directly.

If a strategy belongs exclusively to scheduler DA, then the convergence of algorithm B follows from
Theorem 4.4, since in all such strategies, DA must activate each continuously enabled process infinitely
often. Thus, if all strategies of scheduler DB also belong to DA and vice versa is not true, then lifting
composition enlarges the set of strategies under which B is self-stabilizing. �

The above property can also be used for iterative design of self-stabilizing algorithms. Large self-
stabilizing algorithms can constructed if (1) there is an order defined over the schedulers of the compo-
nents, that is Di ⊂ D j ⊂ Dk, and (2) the each components has a ranking function under its respective
scheduler.

Calibrating Lifting Composition

The property of transcending schedulers distinguishes lifting composition from other compositional
techniques proposed for self-stabilizing algorithms. As discussed in Chapter 3 most of the compo-
sitional techniques inherently assume that component algorithms are self-stabilizing under the same

scheduler. Beauquier et al. [87] first addressed the problem of transferring self-stabilization across the
schedulers of the components and presented, what the authors termed as, “cross-over composition” as a
solution. However, cross-over composition heavily relies on the “strong” component algorithm to tran-
scend the schedulers. We recall two critical properties of cross-over composition (as stated in [87]) in
order to calibrate the result of lifting composition.

40 4 Lifting Composition of Self-Stabilizing Algorithms

Theorem 4.6 (Self-Stabilization Preservation in Cross-Over Composition [87]). Let A⋄B be the

cross-over composition between algorithm A and a fair algorithm B. If algorithm A is self-stabilizing

with respect to PS P under scheduler D and algorithm B is self-stabilizing with respect to PS R and fair
under D then A⋄B is self-stabilizing with respect to PS P∧PS R under D.

Guards in cross-over composition are formed by simple conjunction of guards belonging to the com-
ponent algorithms and do not contain any extra condition; guards of “strong” algorithm B are allowed
to execute if none of the guards of algorithm A are true in a process. Thus, cross-over composition
requires algorithm B to be fair lest some actions of algorithm A may never be executed. Additionally,
both component algorithms must be self-stabilizing under same scheduler otherwise scheduler D can
hinder the convergence of algorithm A. For instance, if algorithm A is self-stabilizing only under a
round-robin scheduler –which selects every processor once in every execution round– and algorithmB

is self-stabilizing under any weakly fair scheduler, then self-stabilization of algorithm B in the com-
posed algorithm A⋄B cannot be guaranteed. In such cases, cross-over composition requires algorithm
B to have stronger properties such as exemplified by the following theorem.

Theorem 4.7 (Self-stabilization from k-fairness to k-boundedness [87]). If algorithm A is self-

stabilizing with respect to predicatePS P under a k- bounded scheduler and algorithmB is a k-fair self-

stabilizing algorithm with respect to predicatePS R, then cross-over compositionA⋄B is self-stabilizing

with respect to predicate PS P∧PS R under any unfair scheduler.

A process can execute at most k steps between any two execution steps of another process in any ex-
ecution of a k-fair algorithm; a k-bounded scheduler ensures that till an enabled process is selected to
execute a step, any other process can execute at most k execution steps. Essentially, the transfer of the
self-stabilization property of algorithmA hinges on the ability of algorithm B to produce k-fair execu-
tions under an unfair scheduler and the assertion that a k-fair execution is k-bounded as well. Thus, the
task of filtering the execution is passed on to the component algorithm. In contrast to cross-over compo-
sition, lifting composition uses the ranking function of a component algorithm to produce conforming
executions. Thus, in case the self-stabilizing property of an algorithm needs to be transferred to another
scheduler via composition, other component algorithm is not required to have strong properties thereby
making the proof obligations for showing correctness of the composed algorithm simpler.

Lifting Composition and Weak Convergence

The ability of lifting composition to enlarge the set of strategies (Theorem 4.5) can be used to compose
weakly stabilizing algorithms with self-stabilizing algorithms. Recall that, unlike a self-stabilizing al-
gorithm, a weakly-stabilizing algorithm exhibits weak convergence; every state in weakly-stabilizing
system has an execution that reaches a state satisfying the safety predicate. Because self-stabilization
is strictly stronger than weak-stabilization, proof obligations for showing correctness of weakly-
stabilizing systems are relatively less strict. Weak convergence is proven by showing the existence
of a weaker form of ranking function as defined below.

Definition 4.8 (Weak Ranking Function ∆weak [53]). A weak ranking function ∆w maps the state space

Σ of a distributed algorithm to a well-founded set Θ such that for every state σi ∈ Σ there exists an

execution step σi→σ j where ∆w(σi) > ∆w(σ j) holds.

A weak ranking function, unlike a ranking function, is required to decrease for at least one execution
step emanating in any state. Alternatively, in every state of a weakly-stabilizing algorithm, the execution
of at least one enabled guarded command is “beneficial for the progress towards the safety predicate”.
Thus, if one can define a scheduler that is constrained to select only such beneficial transition, then
weakly-stabilizing algorithm can be transformed into a self-stabilizing algorithm. A “favorable” notion
of strong fairness is defined by Gouda [53]; subsequently it is been shown that, under such a “strong
scheduler,” a weakly-stabilizing algorithm turns into a self-stabilizing algorithm.

4.5 Examples 41

Definition 4.9 (Gouda Strong Fairness [53]). An execution Ξ is strongly fair iff for every state transi-

tion σi→σ j, if state σi appears infinitely often in Ξ, then transition σi→σ j appears infinitely often in

Ξ.

Gouda’s notion of strong fairness stipulates that if a transition is possible infinitely often then it is

taken infinitely often as well. A weakly-stabilizing algorithm exhibits convergence under Gouda strong
fairness as stated by following theorem.

Theorem 4.8 (From Weak Stabilization to Self-Stabilization [53]). If algorithmW has a finite num-

ber of states and W is weakly stabilizing with respect to predicate PW , then W is self-stabilizing with

respect to PW under Gouda Strong fairness.

A Gouda scheduler is constrained to take every transition emanating from a state that appears infinitely
often in any execution; the theorem follows from the premise that every state has at least one execution
that has states satisfying predicate PW in its suffix. Essentially, a Gouda scheduler encapsulates best-
case behavior of a weakly-stabilizing algorithm.

While it is known that two weakly-stabilizing algorithms can be composed to produce another
weakly-stabilizing algorithm [53], composition of a weakly-stabilizing algorithm with a self-stabilizing
algorithm does not lead to transfer of weak convergence under the scheduler of the self-stabilizing
component. However, lifting composition can be used to transform a weakly-stabilizing algorithm into
a self-stabilizing algorithm.

The proof of weak-stabilization includes a weak ranking function which decreases for at least one
transition in each state [53]. Recall that a scheduler is said to be stronger than another scheduler if it is
subjected to weaker constraints while selecting a strategy. Moreover –as described earlier– a weakly-
stabilizing algorithm is a self-stabilizing algorithm under a Gouda strongly fair scheduler. However,
a Gouda strongly fair scheduler DW is strictly weaker than the classical strongly-fair scheduler [88].
This implies that all the strategies of the scheduler DW also belong to a strongly-fair scheduler DS and
vice versa is not true, that is, DW ⊂ DS . It is also known that a classical strongly-fair scheduler is
weaker than a weakly-fair scheduler DWF [41]. Thus, a Gouda strongly fair scheduler is strictly weaker
than a weakly fair-scheduler as well, that is, DW ⊂ DWF . The fact that there is a ranking function
which encapsulates the notion of progress for a weakly-stabilizing algorithm can be exploited by lifting
composition. Corollaries 4.4 and 4.3 follow from Theorem 4.5 by instantiatingDB withDW , andDA with
DS and DWF respectively. In the resultant composed algorithm S

△
W, the weakly-stabilizing algorithm

W is self-stabilizing under the scheduler DS or DWF , respectively, of the self-stabilizing algorithm S.

Corollary 4.3. The lifting compositionS△W of a weakly-stabilizing algorithmW with a self-stabilizing

algorithm S which is self-stabilizing under a strongly-fair scheduler leads to self-stabilization of

weakly-stabilizing algorithmW under the strongly-fair scheduler of self-stabilizing algorithm S.

Corollary 4.4. The lifting composition S△W of a weakly-stabilizing algorithmW with an algorithm S

which is self-stabilizing under a weakly-fair scheduler leads to self- stabilization of weakly-stabilizing

algorithmW under the weakly-fair scheduler of self- stabilizing algorithm S.

4.5 Examples

We now apply lifting composition on two pairs of self-stabilizing algorithms although the component
algorithms have different schedulers. Additionally, it is shown that the resultant algorithms are self-
stabilizing despite the “incompatibility” of component schedulers. Before we illustrate the use of lifting
composition, the component algorithms are briefly analyzed to aid comprehension.

42 4 Lifting Composition of Self-Stabilizing Algorithms

Self-Stabilizing Maximum Algorithm

The self-stabilizing maximum algorithmSSMax computes the maximum value among the local states
of the processes which run the algorithm. The local state of each process Pi in SSMax is represented
by an integer xi. Processes communicate via shared memory registers. Each process can communicate
with every other process in the system, therefore, the communication topology is represented by a fully
connected graph. Figure 4.4 shows the sub-algorithm run by each process Pi. The macro max calculates
the maximum value amongst the local states of the neighbors of process Pi.

process Pi

{

var int xi; \ ∗ local state ∗ \
GA1 :: 8max(x j|∀x j ∈ Π\{Pi}) > xi → xi := max(x j|∀x j ∈ Π\{Pi});
GA2 :: 8max(x j|∀x j ∈ Π\{Pi}) ≤ xi → xi := xi;

}

Fig. 4.4: Sub-Algorithm SSMax i

Each process Pi continuously compares its local state with the result of the macro max; if xi is
smaller than result of max, then Pi assigns it to xi (Guarded Command GA1). Let σ f= 〈x

f

1 , x
f

2 , · · · , x
f
n〉

be some global state of the system and PS Max be a predicate defined over the global states of algorithm
SSMax; any global state σe belonging to an execution of SSMax starting in state σ f satisfies pred-
icate PS Max if the local states of all processes in σe are equal to the maximum value of the local states
in σ f , that is, ∀i∈{1,··· ,n} : xe

i
= max(x

f

1 , · · · , x
f
n).

The following theorem encapsulates the correctness of algorithm SSMax.

Theorem 4.9. AlgorithmSSMax is self-stabilizing with respect to predicatePS Max under any weakly-

fair scheduler DW .

Proof Sketch. Note that each process has exactly one enabled guarded command in every global state.
Whenever a process executes a guarded command, it updates its local state to the maximum value in the
system and if it has the maximum value, then it does not modify its local state. Consider a subset πarbit

of Π such that none of the processes in πarbit has maximum value. Further assume that the processes
in Π\πarbit have the maximum value. A scheduler can delay the convergence of SSMax towards the
states satisfying PS Max only by not selecting a process belonging to πarbit. However, such a scheduler
would violate weak fairness as all the processes are continuously enabled. The theorem follows from
the inference that a weakly fair scheduler must select each process infinitely often.

Self-Stabilizing Bi-Stabilizer Algorithm

The self-stabilizing bi-stabilizer algorithm SSBiSt is defined over a set of processes Π which has
two classes of processes, ODD and EVEN. Process Pi belongs to class ODD if its identifier i is an odd
integer; Pi belongs to class EVEN if i is an even integer. The local state of each process is represented
by a Boolean variable yi. Processes communicate with each other using shared memory registers and
communication graph of the system is a fully connected graph.
Figure 4.5 shows the sub-algorithm SSBiST io run by the processes in class ODD while the processes
belonging to class EVEN implement the sub-algorithm SSBiST ie is shown in Figure 4.6. Every ODD

process Pio repeatedly reads the local states of its neighbors, and if the local states of all of its neighbors
as well as its own local state are true, then it assigns true (represented by 1) to xio , else yio is assigned
false (represented by 0). An EVEN process Pie assigns its local state false if its local states and the local

4.5 Examples 43

process Pi \ ∗ODD ∗ \
{

var bool yi;
GB1 :: 8

∧

j∈{1,··· ,n} y j → yi := 1;
GB2 :: 8¬

∧

j∈{1,··· ,n} y j → yi := 0;
}

Fig. 4.5: Sub-Algorithm SSBiSt io

process Pi \ ∗ EVEN ∗ \
{

var bool yi;
GB1 :: 8

∧

j∈{1,··· ,n} y j → yi := 0;
GB2 :: 8¬

∧

j∈{1,··· ,n} y j → yi := 1;
}

Fig. 4.6: Sub-Algorithm SSBiSt ie

states of all of its neighbors are true, else it assigns true to yie . Algorithm SSBiSt leads the system to
a “bivalent configuration,” that is, the local states of all the ODD processes are false and the local states
of all the EVEN processes are true.

Let PBiSt≡ (
∧i≤⌊n−1/2⌋

i=0 (y2·i+1 = false)) ∧ (
∧ j≤⌊n/2⌋

j=1 (y2· j = true)) be predicate which is true in a state
where all ODD processes have local states equal to false and all EVEN processes have local states equal
to true. Reachability of states satisfying predicate PBiSt is established by the following theorem.

Theorem 4.10. Algorithm SSBiSt has at least one execution that reaches a state satisfying predicate

PBiSt

Proof Sketch. Consider a binary string s of size n representing the global state of a system implementing
algorithm SSBiSt. An ODD process sets its local state to false in a state where s has at least one
element with value false. Likewise, an EVEN process Pie assigns yie the truth value true if s has at least
one element with value false. Note that if s has at least one odd element with value false then the value
of this element does not change in any following state. If s has an odd element with value true and there
exists at least one element with value false then the action of the ODD element with local state true will
switch it to false. An action of an EVEN process in a state where all the elements of s are true leads to
an assignment of false to the local state of the EVEN process. The theorem follows from the observation
that a local state of an ODD process remains unmodified once it has truth value false.

Theorem 4.10 implies that algorithm SSBiSt can converge towards the states satisfying predicate
PBiSt. However, the convergence property of SSBiSt is contingent on the constraints imposed on
the underlying scheduler. More specifically, if the assumed scheduler is allowed to utilize “enough
strategies”, algorithm SSBiSt may never reach states satisfying predicate PBiSt.

Theorem 4.11. Algorithm SSBiSt does not converge to states satisfying predicate PBiSt under a

weakly fair scheduler DW .

Proof. Let ξ (ξ ⊂ Σ) be a subset of system states ofSSBiSt such that each global state σ (σ ∈ ξ) has at
least one EVEN process with local state false and all ODD processes with local states true. We construct
an execution Ξ (and the respective strategy ̺ of scheduler DW) –starting in a state σi belonging to set
ξ– that does not reach a state satisfying predicate PBiSt. Let ι = {i1, i2, · · · , ik} be the set of identifiers
of EVEN processes whose local states are false in σi. Scheduler DW selects one of the processes with
identifiers in ι and, as a result, the local state of the selected process changes to true. In the resultant

44 4 Lifting Composition of Self-Stabilizing Algorithms

state scheduler DW again selects one of the processes of set ι; DW selects processes from ι till all of
them have their local states equal to true. Let σ2n−1 be the state where local states of all the processes
in the system are true. DW sequentially selects all the ODD process in state σ2n−1 without selecting any
ODD process twice. As all the processes in the system have local states equal to true, system remains in
state σ2n−1. DW next selects one of the EVEN processes and system reaches a state σ2n−2 where exactly
one (EVEN) process has false as local state. Let Piol

be the EVEN process with local state false in σ2n−2.
Scheduler DW selects all EVEN processes except Piol

in state σ2n−2; system state remains unchanged
because Piol

has false as local state. After all other EVEN processes are selected, DW selects process
Piol

and, consequentially, the system again reaches state σ2n−1. Scheduler DW now selects processes in
the same order in which they were selected when system was previously in state σ2n−1. This cycle is
repeated ad infinitum and as a result, the system oscillates between states σ2n−1 and σ2n−2. Note that
each process has exactly one enabled guarded command in every global state and, hence, Ξ is an
infinite execution where every process remains enabled continuously. Scheduler DW does not violate
weak fairness because every process is selected infinitely often. The theorem then follows. �

While Theorem 4.11 shows that self-stabilization of algorithm SSBiSt is impossible under a weakly
fair scheduler, Theorem 4.10 indicates that the impossibility can be circumvented by selecting a favor-
able scheduler. The proof of Theorem 4.11 provides an instance of additional constraint which can be
put on a favorable scheduler while outlining a strategy which prevents SSBiSt from converging to
the set of legal states. More specifically, an underlying scheduler can be restrained by precluding the
selection of an EVEN process in any execution step if the scheduler has exclusively selected EVEN

processes in the preceding ⌊n/2⌋ − 1 execution steps. We now define an instance of such a restricted
scheduler and then show that algorithm SSBiSt is self-stabilizing under this scheduler.

Definition 4.10 (Scheduler DBiS t). Scheduler DBiSt selects an enabled process in each step while ful-

filling the following conditions:

1) an infinitely often enabled process is selected infinitely often,

2) two EVEN or two ODD processes are never selected in consecutive execution steps,

3) an EVEN process is never selected in a state if it is the only process with local state false,

4) an ODD process is never selected in a state where all processes have local states equal to true.

Theorem 4.12. Algorithm SSBiSt is self-stabilizing with respect to predicate PBiSt under scheduler

DBiSt.

Proof. We define function

∆BiS t= K1 · (⌈n/2⌉ −
∑

j∈ODD(1 − y j)) + K2 · (⌊n/2⌋ −
∑

k∈EVEN yk)) + K3 ·
∏

∀i∈Π yi

such that ∆BiS t maps the global states of the system to the set of integers. K1,K2 and K3 are positive
integers such that K3 > K2. The minimum value of ∆BiS t is 0 and it attains this value in the state where
all ODD processes have false as local states and all EVEN processes have true as local states. Note that
such a global state satisfies the safety predicate PBiSt. Consider a state σu such that it does not satisfy
PBiSt and at least one process has local state false. If an ODD process is selected in σu, then (1) the
selected process sets its local state to false and, (2) the value of ∆BiS t is decreased because the term
∑

∀ j∈ODD(1 − y j) increases by 1. The value of ∆BiS t decreases even if the scheduler selects an EVEN

process in σu because, in such a case the selected process sets its local state to true and –as a result–
the term

∑

∀:k∈EVEN yk increases by 1. Consider a state σv where all processes except a EVEN process
have local states equal to true. In such a state schedulerDBiSt cannot select the EVEN process with local
state false (due to condition 3 in Definition 4.10). The execution of any guarded command in state σv

leads to a decrease in ∆BiS t as an ODD process would set its local state to false if it is selected. No ODD

process can be selected by DBiSt in state where all local states are true (due to condition 4 in Definition
4.10). Nonetheless, an action of EVEN process leads to a decreases in the value of ∆BiS t because an
EVEN process assigns false to its local state and K2 < K3. The theorem follows. �

4.5 Examples 45

Lifting Composition of Algorithms SSMax and SSBiSt

Algorithm SSBiSt requires much stronger constraints on the scheduler to converge to the states satis-
fying PBiSt than weak fairness. Thus, any compositional operation on SSBiSt must guarantee that the
scheduling requirements are met. A trivial solution would be to compose SSBiSt with an algorithm
that stabilizes under DBiS t or a scheduler which is strictly weaker than DBiS t. However, if the aim is to
compose SSBiSt with SSMax, –an algorithm that stabilizes under a stronger scheduler DW– then
the application of lifting composition becomes a viable solution.

Figures 4.8 and 4.7 show the composed sub-algorithms. All ODD processes run sub-algorithm
SSMax io

△SSBiSt io ; sub-algorithm SSMax ie
△SSBiSt ie is run by EVEN processes. Every guard of the com-

posed algorithm SSMax

△
SSBiSt is obtained by the conjunction of the respective guards of algo-

rithms SSBiSt and SSMax along with two other terms which evaluate the current state of SSBiSt.
A function ∆Bi j is derived from ranking function ∆BiSt by replacing the variable modified by a guarded
command GBi

in process P j with the value assigned to the variable in the assignment part of GBi
. For

example, ∆B1i is defined as follows

∆B1i = K1 · (⌈n/2⌉ −
∑

k∈ODD−{P j}
(1 − yk)) + K2 · (⌊n/2⌋ −

∑

l∈EVEN yl)) + K3 ·
∏

u∈Π\{P j}
yu

for an ODD process and it is obtained by replacing y j with 1 in ∆BiSt; similarly, ∆B1i for an EVEN

process is

∆B1i = K1 · (⌈n/2⌉ −
∑

k∈ODD(1 − yk)) + K2 · (⌊n/2⌋ −
∑

l∈EVEN\{P j}
yl)).

process Pi

{

var bool yi;
var int xi;
macro PBiSt ≡ (

∧i≤⌊n−1/2⌋
i=0 (y2·i+1 = 0)) ∧ (

∧ j≤⌊n/2⌋
j=1 (y2· j = 1))

macro ∆PBiSt
≡ K1 · (⌈n/2⌉ −

∑

∀k∈ODD(1 − yk)) + K2 · (⌊n/2⌋ −
∑

∀l∈EVEN yl))
+K3 ·

∏

∀u∈Π yu

GA△B1 :: 8GA1 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i < ∆BiS t) → yi := 1;
xi := max(x j|∀x j ∈ Π \ {Pi});

GA△B2 :: 8GA1 ∧ GB2 ∧ ¬PBiSt ∧ (∆B2i < ∆BiS t) → yi := 0;
xi := max(x j|∀x j ∈ Π \ {Pi});

GA△B3 :: 8GA2 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i < ∆BiS t) → yi := 1; xi := xi;
GA△B4 :: 8GA2 ∧ GB2 ∧ ¬PBiSt ∧ (∆B1i < ∆BiS t) → yi := 0; xi := xi;
GA△B5 :: 8GA1 ∧ GB1 ∧ PBiSt → yi := 1;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B6 :: 8GA1 ∧ GB2 ∧ PBiSt → yi := 0;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B7 :: 8GA2 ∧ GB1 ∧ PBiSt → yi := 1; xi := xi;
GA△B8 :: 8GA2 ∧ GB2 ∧ PBiSt → yi := 0; xi := xi;
GA△B9 :: 8GA1 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i > ∆BiS t) → xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B10 :: 8GA1 ∧ GB2 ∧ ¬PBiSt ∧ (∆B2i > ∆BiS t) → xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B11 :: 8GA2 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i > ∆BiS t) → xi := xi;
GA△B12 :: 8GA2 ∧ GB2 ∧ ¬PBiSt ∧ (∆B1i > ∆BiS t) → xi := xi;
}

Fig. 4.7: Sub-algorithm SSMax io
△SSBiSt io

46 4 Lifting Composition of Self-Stabilizing Algorithms

process Pi

{

var bool yi;
var int xi;
macro PBiSt ≡ (

∧i≤⌊n−1/2⌋
i=0 (y2·i+1 = 0)) ∧ (

∧ j≤⌊n/2⌋
j=1 (y2· j = 1))

macro ∆BiS t ≡ K1 · (⌈n/2⌉ −
∑

∀k∈ODD(1 − yk)) + K2 · (⌊n/2⌋ −
∑

∀l∈EVEN yl))
+K3 ·

∏

∀u∈Π yu;
GA△B1 :: 8GA1 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i < ∆BiS t) → yi := 0;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B2 :: 8GA1 ∧ GB2 ∧ ¬PBiSt ∧ (∆B2i < ∆BiSt) → yi := 1;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B3 :: 8GA2 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i < ∆BiSt) → yi := 0; xi := xi;
GA△B4 :: 8GA2 ∧ GB2 ∧ ¬PBiSt ∧ (∆B1i < ∆BiSt) → yi := 1; xi := xi;
GA△B5 :: 8GA1 ∧ GB1 ∧ PBiSt → yi := 0;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B6 :: 8GA1 ∧ GB2 ∧ PBiSt → yi := 1;

xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B7 :: 8GA2 ∧ GB1 ∧ PBiSt → yi := 0; xi := xi;
GA△B8 :: 8GA2 ∧ GB2 ∧ PBiSt → yi := 1; xi := xi;
GA△B9 :: 8GA1 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i > ∆BiSt) → xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B10 :: 8GA1 ∧ GB2 ∧ ¬PBiSt ∧ (∆B2i > ∆BiSt) → xi := max(x j|∀x j ∈ Π \ {Pi});
GA△B11 :: 8GA2 ∧ GB1 ∧ ¬PBiSt ∧ (∆B1i > ∆BiSt) → xi := xi;
GA△B12 :: 8GA2 ∧ GB2 ∧ ¬PBiSt ∧ (∆B1i > ∆BiSt) → xi := xi;
}

Fig. 4.8: Sub-algorithm SSMax ie
△SSBiSt ie

Theorem 4.13. Algorithm SSMax△SSBiSt is self-stabilizing with respect to predicate PS Max∧PBiS t

under any weakly-fair scheduler DW .

The presence of ranking function ∆BiSt in the guards ofSSMax△SSBiSt preventsDW from generating
an execution whose projection on SSBiSt never converges to PBiSt. Figure 4.9 shows how actions of

··

σi σ j σk σt σu
Pι Pη Pκ Pτ

· · · GAιx GAηy
GAκw

GBκz

GAτv

σi|2n−1 σ j|2n−1 σk|2n−1 σt|2n−2 σu|2n−2

σu|SSMaxσt|SSMaxσk|SSMaxσ j|SSMaxσi|SSMax

Fig. 4.9: Filtering of Execution Steps of SSBiSt in SSMax△SSBiSt

SSBiSt are shielded in a trace of an execution of the composed algorithm. Let processes Pι and Pη be
ODD processes and processes Pκ and Pτ be EVEN processes. Assume that the projection of global state
σi on SSBiSt is σ2n−1 where the local states of all processes are true. Algorithm SSBiSt does not
execute its guarded command until scheduler DW selects an EVEN process Pκ; no guarded command
of SSBiSt is executed in state σt as scheduler DW again selects an EVEN process Pτ.

4.5 Examples 47

The composed algorithm SSMax

△
SSBiSt does not have the guarded commands of Type 4 be-

cause algorithmSSBiSt has exactly one enabled guarded command in every state and in every process.
Hence ¬GB1∧¬GB2 is always false.

Remark 4.4. Note that, although the composed algorithm looks complicated compared to the compo-
nent algorithms, the increase in size is due to the conjunction of the guarded commands. However, due
to the relative simplicity of the rules of combining guards of the component algorithms, it is not difficult
to automatize the process of generating composed algorithms.

Self-Stabilizing Equalizer Algorithm

Algorithm SSEqual is defined over a completely connected graph of processes. We assume that the
process identifiers are totally ordered. Figure 4.10 shows the sub-algorithm implemented by each pro-
cess in the system. The local state of each process in SSEqual is represented by a positive integer
xi. Every process compares its local state with the local states of its neighbors and, if there exists a
neighbor with different local state, then the process copies the local state of the neighbor. In case there
are multiple neighbors with different local states, then a process copies the local state of the neighbor
whose identifier is greater than its own and smallest among the processes with different local states.

process Pi

{

var int xi;
GC1 :: 8xi , x(i+1)mod n → xi := x(i+1)mod n;
GC2 :: 8(xi = x(i+1)mod n) ∧ (xi , x(i+2)mod n)→ xi := x(i+2)mod n;
...

GCk :: 8(xi = x(i+1)mod n) ∧ (xi = x(i+2)mod n) · · · ∧ (xi , x(i+k)mod n)→ xi := x(i+k)mod n;
...

GCn−1 :: 8(xi = x(i+1)mod n) ∧ (xi = x(i+2)mod n) ∧ · · · ∧ (xi , x(i+n−1)mod n)→
xi := x(i+n−1)mod n;

}

Fig. 4.10: Sub-Algorithm SSEqual
i

Let Peq be a predicate defined over the states of algorithm SSEqual that holds true if local states
of all the processes are equal, that is, Peq=

∧

∀i, j∈Π (xi = x j). Predicate Peq is closed under the execution
of algorithmSSEqual. However, convergence of algorithmSSEqual towards predicatePeq requires
rather constrained scheduling strategies. For example, consider an execution of SSEqual –shown in
Figure 4.11– under a schedulerDRR that selects one of the enabled processes in the round-robin fashion.
The system consists of four processes and starts in state σα= 〈b, b, c, d〉, where b, c and, d are arbitrary
positive integers. The bold letter next to a node in Figure 4.11 denotes the local state of the process
represented by the node. All processes have enabled guarded commands in σα. Scheduler DRR begins
with process P2 in state σα. Scheduler DRR selects the constituent processes in the subsequent states
repeatedly in the following order: 〈P3, P4, P1, P2〉. Consequently SSEqual again reaches σα after
three execution rounds. As a result of this strategy SSEqual never reaches a state where predicatePeq

holds. Note that this strategy is weakly fair because each process is selected infinitely often. An edge
in the communication graph of system is said to be “balanced” if processes connected by the edge have
the same local state. We now define a scheduler which helps algorithm SSEqual to stabilize.

48 4 Lifting Composition of Self-Stabilizing Algorithms

P3

P4

P3

P4

P2 P1 P2 P2P1

P1

P4

P1

P4

P1

P4

P1

P4

P2P2P2

· · ·

P3 P3

P3

P3

P3 executes

P4 executes

P1 executes P4 executes

b

b

d

b

c

P2 executes b

d c

cb

d c

b c

d d

b

b

c

dd

d

c

b

Fig. 4.11: Trace of a Diverging Execution of SSEqual

Definition 4.11. Scheduler DSEq selects an enabled process in every execution step while fulfilling the

following constraints:

1) an infinitely often enabled process is selected infinitely often.

2) in any state select a process whose execution leads to an increase in the number of balanced edges

in the communication graph.

Indeed, as the proof of the following theorem shows, scheduler DSEq is a very benign scheduler.

Theorem 4.14. Algorithm SSEqual is self-stabilizing with respect to predicate Peq under scheduler

DSEq.

Proof. Consider a function ∆Eq=
n·(n−1)

2 −
∑

∀i, j∈Π δ(xi − x j) defined over states of SSEqual; δ(x) is 1
if x = 0 and 0 otherwise. In a state where all processes have different local states, then the action of any
process leads to a decrease in the value of ranking function ∆Eq because term

∑

∀i, j∈Π δ(xi− x j) increases
from 0 to 1. Let σe be a global state where the local state of every process belongs to a set of n

2 different
integers and each integer is assigned to exactly two processes. Any action in state σe decreases the
value of ∆Eq by 1 because any action increases the number of “balanced” edges by 2 and increases the
number of “unbalanced” edges by 1. Similarly, in any state where integer values are equally distributed
over the processes, the execution of any enabled guarded command decreases the value of ∆eq by 1.
Let global σa be a state of algorithm SSEqual such that c processes have same local state li and the
number of processes having local state different from li is smaller than c. If any process having local
state li executes its action in global stateσa then the number of processes having same local states would
decrease and the value of ∆Eq would increase. However, such an execution step is not possible under
scheduler DSEq because the step leads to a decrease in the number of balanced edges in the graph (by
definition). Therefore, in state σa, scheduler DS Eq selects only those processes which copy li as their
local state; such an execution step leads to a decrease in ∆Eq. It can be proven in an analogous manner
that, in any state, DSEq allows a process, with local state ly to copy an integer lx only if the number of
processes having lx as local state is larger than the number of processes having ly as local state. The
theorem follows from the observation that the minimum value of ranking function ∆Eq is 0 and, it is
attained in the global state where all the processes have same local state. �

4.6 Summary 49

Lifting Composition of Algorithms SSBiSt and SSEqual

The composition of algorithms SSBiSt and SSEqual is not trivial because both algorithms have
very stringent scheduling requirements for convergence. Furthermore, due to rather specific constraints
on schedulers, a strategy applicable to one algorithm can hamper convergence of the other. For example,
consider a strategy ̺BiSt ofDBiSt which selects processes in a round-robin manner starting with an EVEN

process. While algorithm SSBiSt converges to predicatePBiSt under ̺BiSt, algorithm SSEqual never
reaches the states satisying Peq if ̺BiS t is used. Hence, lifting composition is a viable alternative as it
disables divergence-inducing guards of algorithm SSEqual. Figures 4.12 and 4.13 show the resultant
sub-algorithms.

Theorem 4.15. Algorithm SSBiSt

△
SSEqual is self-stabilizing with respect to predicate PBiSt ∧Peq

under scheduler DBiSt.

Any process in SSBiSt△SSEqual –provided it is selected by scheduler DBiSt– does not execute an
action of SSEqual if it leads to a decrease in the number of balanced edges.

Scheduler DBiS t does not violate weak fairness because it is constrained to select an infinitely often
enabled process infinitely often. Additionally, SSBiSt ensures that all processes are enabled in every
state.

4.6 Summary

We defined a new compositional operator, namely lifting composition, for self-stabilizing algorithms.
Lifting composition exploits the existence of a known ranking function of a self-stabilizing algorithm
(and the implicit knowledge “coded into it”) to transform its property via composition. We showed how
lifting composition preserves the self-stabilization property of a self-stabilizing algorithm under the
scheduler of its counterpart. The effect of the relationship between respective schedulers of component
algorithms on the scheduler of the composed algorithm was also analyzed. In particular, we showed
how a weak-stabilizing algorithm can be transformed to into a self-stabilizing algorithm via lifting
composition. Application of the composition method was illustrated by composing the self-stabilizing
algorithms with incompatible scheduling constraints.

It was, however, assumed that the topology of the system permits such an online evaluation of the
ranking function in each process. This assumption constricts the usage of lifting composition to the
systems with a fully connected topology. Additional algorithmic machinery is, therefore, required to
support the continuous evaluation of the ranking function in a system with arbitrary communication
graphs. Since our ultimate goal is to have the complete system to be self-stabilizing, a lower layer sup-
porting evaluation of a ranking function must also be self-stabilizing. We describe a modular approach
to construct such a self-stabilizing lower layer in the next chapter.

50 4 Lifting Composition of Self-Stabilizing Algorithms

process Pi

{

var bool yi;
var int xi;
macro Peq ≡

∧

∀k,l∈Π (xk = xl)
macro ∆Eq ≡

n·(n−1)
2 −

∑

∀:k,l∈Π δ(xk − xl)
GB△C1 :: 8GB1 ∧ GC1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 1; xi := x(i+1)mod n;
...

GB△Cn−1 :: 8GB1 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 1; xi := x(i+n−1)mod n;
GB△Cn :: 8GB2 ∧ GC1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 0; xi := x(i+1)mod n;
...

GB△C2n−2 :: 8GB2 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 0; xi := x(i+n−1)mod n;
GB△C2n−1 :: 8GB1 ∧ GC1 ∧ Peq → yi := 1; xi := x(i+1)mod n;
...

GB△C3n−3 :: 8GB1 ∧ GCn−1 ∧ Peq → yi := 1; xi := x(i+n−1)mod n;
GB△C3n−2 :: 8GB2 ∧ GC1 ∧ Peq → yi := 0; xi := x(i+1)mod n;
...

GB△C4n−4 :: 8GB2 ∧ GCn−1 ∧ Peq → yi := 0; xi := x(i+n−1)mod n;
GB△C4n−3 :: 8GB1 ∧ GC1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 1;
...

GB△C5n−5 :: 8GB1 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 1;
GB△C5n−4 :: 8GB2 ∧ GC1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 0;
...

GB△C6n−6 :: 8GB2 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 0;
GB△C6n−5 :: 8GB1 ∧ ¬GC1 ∧ ¬GC2 ∧ · · · ∧ ¬GCn−1;→ yi := 1;
GB△C6n−4 :: 8GB2 ∧ ¬GC1 ∧ ¬GC2 ∧ · · · ∧ ¬GCn−1;→ yi := 0;
}

Fig. 4.12: Sub-algorithm SSBiSt io
△SSEqual

io

4.6 Summary 51

process Pi

{

var bool yi;
var int xi;
macro Peq ≡

∧

∀k,l∈Π (xk = xl)
macro ∆Eq ≡

n·(n−1)
2 −

∑

∀:k,l∈Π δ(xk − xl)
GB△C1 :: 8GB1 ∧ GC1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 0; xi := x(i+1)mod n;
...

GB△Cn−1 :: 8GB1 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 0; xi := x(i+n−1)mod n;
GB△Cn :: 8GB2 ∧ GC1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 1; xi := x(i+1)mod n;
...

GB△C2n−2 :: 8GB2 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i < ∆Eq) → yi := 1; xi := x(i+n−1)mod n;
GB△C2n−1 :: 8GB1 ∧ GC1 ∧ Peq → yi := 0; xi := x(i+1)mod n;
...

GB△C3n−3 :: 8GB1 ∧ GCn−1 ∧ Peq → yi := 0; xi := x(i+n−1)mod n;
GB△C3n−2 :: 8GB2 ∧ GC1 ∧ Peq → yi := 1; xi := x(i+1)mod n;
...

GB△C4n−4 :: 8GB2 ∧ GCn−1 ∧ Peq → yi := 1; xi := x(i+n−1)mod n;
GB△C4n−3 :: 8GB1 ∧ GC1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 0;
...

GB△C5n−5 :: 8GB1 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 0;
GB△C5n−4 :: 8GB2 ∧ GC1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 1;
...

GB△C6n−6 :: 8GB2 ∧ GCn−1 ∧ ¬Peq ∧ (∆C1i > ∆Eq) → yi := 1;
GB△C6n−5 :: 8GB1 ∧ ¬GC1 ∧ ¬GC2 ∧ · · · ∧ ¬GCn−1;→ yi := 0;
GB△C6n−4 :: 8GB2 ∧ ¬GC1 ∧ ¬GC2 ∧ · · · ∧ ¬GCn−1;→ yi := 1;
}

Fig. 4.13: Sub-algorithm SSBiSt ie
△SSEqual

ie

5

Scheduler Transformation of Self-Stabilizing Algorithms

5.1 Introduction

A critical part of designing a self-stabilizing algorithm is the proof that the algorithm converges to
the behavior outlined in its specification. As discussed earlier, such proofs are not easy to draw and
the automatic methods to do so do not scale well enough. The proofs of self-stabilization also depend
on the underlying scheduler and the fairness assumption [28]; the increased generality of a scheduler
–embodying scheduling strategies and fairness assumptions– makes convergence proofs progressively
complicated. Scheduler assumptions remain a crucial part of the proof even if a compositional method
is used to design a self-stabilizing algorithm. Indeed, an incompatible scheduler can render one of the
component algorithms divergent.

In order to get around the complexity of proofs due to the underlying schedulers, Gouda and Haddix
[85] suggested the use of a so-called “alternator” to preserve the self-stabilization property under a
distributed scheduler and, in turn, spurred investigation into such transformers. These transformers,
however, require that the original algorithm must be self-stabilizing under all weakly-fair schedulers.
While the transformation of the self-stabilization property from weakly-fair sequential schedulers to
distributed schedulers is well-studied, methods required for self-stabilizing algorithms which exhibit
convergence under very restrictive schedulers, such as weakly-stabilizing algorithms [53], have not
been investigated extensively. As Devismes et al. [88] showed, a weakly-stabilizing algorithm can at
best exhibit probabilistic convergence under a distributed randomized scheduler. Nonetheless, there is
a need for a method to transform probable convergence to guaranteed convergence.

The crux of the challenge is to identify and enable –in every state of a system executing the
algorithm– processes whose actions are “beneficial” to the overall convergence of the algorithm. It has
been recently shown that during the design phase of a distributed algorithm, the results of verification
can be used to transform the algorithm such that, the amount of knowledge a process has, determines
whether its actions are enabled or not [89]. This raises the question whether a similar approach can be
used to design a transformer for self-stabilizing algorithms under very restrictive schedulers.
Outline. We suggest the usage of a ranking function, returned as a by-product of a convergence proof
of a distributed algorithm under a specific (and restrictive) scheduler, to transform a self-stabilizing
algorithm. We present a method to transfer the self-stabilization property of a distributed algorithm
proven under a very restrictive scheduler to any weakly-fair scheduler. The transformation embodies
a progress monitor [90] which tracks the progress of a self-stabilizing algorithm towards its correct
behavior under any generic scheduler. We also provide a method to increase inherent concurrency in
the transformed system by exploiting the very structure of the ranking function.

The chapter is structured as follows. Section 5.2 provides an overview of the related work. The
transformation is explained in Section 5.3 together with the proofs. An optimization method to increase

54 5 Scheduler Transformation of Self-Stabilizing Algorithms

concurrency in the transformed system is presented in Section 5.3.3. We analyze the transformation
technique from a rather abstract perspective in Section 5.4. The chapter concludes with a summary in
Section 5.5.

5.2 Related Work

The difficulty of designing a self-stabilizing algorithm from scratch has led to the development of var-
ious methods to transform algorithms that are not self-stabilizing in the first place into respective self-
stabilizing algorithms. A transformer that employs a supervisor process to reset a global system state
has been proposed in [91]. The supervisor process periodically requests a global snapshot and resets the
system to a pre-defined initial state in case the snapshot violates some (safety) predicate. This methods
assumes the existence of a distinguished process in the system. Awerbuch and Varghese [92] presented
a transformer that converts a synchronous distributed algorithm into an asynchronous self-stabilizing
algorithm via a resynchronizer. A resynchronizer simulates a synchronous algorithm under an asyn-
chronous environment in a self-stabilizing manner. The underlying principle of the resynchronizer-
based transformer is to check the output of each process after T rounds, where T is the time complexity
of the algorithm, and restart the algorithm if any inconsistency is detected during the checking phase. It
has been shown in [93, 94] that for some problems, it is sufficient to check the inconsistency locally. A
local stabilizer that transforms online synchronous distributed algorithms into respective self-stabilizing
algorithms is presented in [95]. Each process implementing a local stabilizer maintains a data structure
termed as pyramid; a pyramid contains d values, where d is the diameter of the system, such that ith entry
represents the local states of the processes within i hops in T − i rounds. An inconsistent system state is
detected if pyramids of two neighboring processes do not match or if a process is not able to reconstruct
its current local state using relevant entries of the pyramids of its neighbors. In case an inconsistency is
detected, then the system is repaired via pyramids of non-faulty processes. Beauquier et al. presented
a set of transient fault detectors for various families of tasks [96]; a transient fault detector ensures that
eventually, a transient fault is detected by at least one process in the system. Such a transient fault de-
tector can be composed with a self-stabilizing reset algorithm [97] to transform a distributed algorithm
into a self-stabilizing algorithm.

A lock-based transformer is presented in [98, 99] to transfer the self-stabilization property of an
algorithm from a sequential scheduler to a distributed scheduler. The transformer ensures that a pro-
cess can execute its guarded command only if it gets the lock. The conflict among multiple processes
competing for the lock is resolved on the basis of timestamps sent along with the request for the lock.
This transformer, however, may not preserve the self-stabilization property if convergence requires a
fair scheduler. Self-stabilizing solutions to the classical problem of Dining Philosphers [100] have been
proposed to transfer the self-stabilization property of an algorithm proven under a weakly fair scheduler
to a distributed scheduler [101, 102, 103]. A self-stabilizing algorithm to implement strong fairness un-
der a weakly-fair scheduler is presented in [104]. This algorithm emulates the behavior under a strongly
fair scheduler by ensuring that whenever a process executes its guarded command, it does so exclusively
in its 2-neighborhood. A maximal algorithm to emulate strong fairness is presented [105] where max-
imality implies that the algorithm is able to produce all possible strongly-fair scheduling strategies.
However, this algorithm is not self-stabilizing.

5.3 Transformation of Self-Stabilizing Algorithms

We now present a method to transform an algorithm that is self-stabilizing under a given scheduler to
an algorithm that is self-stabilizing under any weakly-fair scheduler. The underlying idea is presented

5.3 Transformation of Self-Stabilizing Algorithms 55

before the constituents of the transformer are explained. We then show the correctness of the transfor-
mation method.

Overall Idea

The convergence property of a self-stabilizing algorithm is particularly prone to the scheduling as-
sumptions. It has been discussed earlier that an algorithm –that has been shown to be self-stabilizing
otherwise– does not converge to the set of legal states if the constraints on the scheduler are relaxed.
In particular, a malevolent scheduler can regularly select an enabled process which sends outdated or
wrong information to its neighbors and, thus, prevent an algorithm from reaching the set of states satis-
fying the safety predicate. The non-determinism inherent in the algorithm allows the scheduler to mold
such diverging executions.

In order to produce the specified behavior even in presence of an adversarial scheduler, intrinsic non-
determinism of an algorithm must be reduced. A way to reduce unnecessary non-determinism could be
to limit the set of enabled processes to those processes whose guarded commands help the algorithm
to converge to the safety predicate. The set of enabled process in each execution step can be limited by
ensuring that no guards in the processes which “harm” convergence are enabled. However, it implies
that such processes should “know” when their actions are counterproductive for overall correctness of
the system. Assume that each process Pi is equipped with a variable goi such that goi is true whenever
an enabled guarded command of Pi is helpful for convergence and false if it is not. As the algorithm is
supposed to be self-stabilizing and can have an arbitrary initial state, the value of goi in all processes
with detrimental guarded commands can be true and the value of goi in the processes with favorable
guarded commands can be false. It is, thus, in general impossible for a process to know by itself whether
its actions are favorable or not.

An alternative would be to “instrument” each process with extra information so that it can correctly
decide when to disable guarded commands. Convergence is a global property and, therefore, the en-
hancement of a process’ knowledge must carry some form of global information. A global snapshot
at any instant is the maximum information that a process can get and it is sufficient in this scenario.
However, a process must also have some extra knowledge to act upon the information in the form of a
global snapshot.

Since the algorithm –which we aim to transform– is self-stabilizing under a specific scheduler,
we have a safety predicate as part of the specification. Recall that safety predicate holds true only
for the legal states; a process can decide whether it is in a legal state or not provided that the guards
are strengthened with the safety predicate. Nonetheless, safety predicate can only distinguish between
a legal and an erroneous system state. Hence, a process with enhanced guarded commands cannot
differentiate two erroneous states –an ability which is critical while the system is converging towards
the set of legal states. The knowledge of a global system state and the safety predicate is not enough
to decide whether a process should execute its guarded command or not. Every process in the system
must be able to gauge the severity of every erroneous state. The requirement can also be interpreted as
the ability to measure the progress of the system towards the set of legal states.

A well-foundedness argument is used to show the convergence property of a self-stabilizing algo-
rithm. As the algorithm under consideration is also self-stabilizing –though under a specific scheduler–
we are provided with a ranking function which encapsulates the well-foundedness argument. A ranking
function assigns each global system state a value in a well-founded domain. Such a mapping has an
interesting property: for every execution Ξ emanating from a state σi such that Ξ has a suffix in the set
of legal states, the values assigned by the ranking function to the states that appear in Ξ after global
state σi are lower than the value assigned to global state σi. A ranking function can, therefore, be used
to distinguish between states while a system is converging to the set of legal states. Alternatively, a
ranking function –supplied as part of the convergence proof– can be used to track the progress of the
system towards the safety predicate.

56 5 Scheduler Transformation of Self-Stabilizing Algorithms

The transformation essentially implements a “progress monitor” of self-stabilizing algorithm A

which tracks the progress of algorithm A with respect to its convergence towards the states satisfying
a safety predicate PA. The progress monitor uses knowledge of both predicate PA and the ranking
function ∆A. Since every process must vet its action before executing them, the progress monitor is
implemented in a distributive fashion. The transformation ensures that the actions of algorithm A are
enabled only if they guarantee progress towards the set of safe states.

Continuous evaluation of the ranking function is the core of the transformation and, as discussed
above, it requires the latest global snapshot to function correctly. Since we do not assume a fully con-
nected communication infrastructure, functioning of such a ranking function-based progress monitor
necessitates a global coordination mechanism to support it. The supporting coordination mechanism
should also be self-stabilizing by itself because the variables belonging to the coordination algorithm
can have arbitrary values in the initial state.

There are two alternative methods to implement the coordination mechanism in a self-stabilizing
manner: 1) wave based algorithms [106] or 2) mutual exclusion algorithms. A wave-based algorithm –
synonymously referred to as Propagation of Information with Feedback (PIF) algorithm– works in three
phases: 1) broadcast, 2) feedback, and 3) cleaning. The initiator process starting the wave sends some
information in the network by changing its state to broadcast. A node changes its state to broadcast if
one of its neighbor is in broadcast phase; if a node cannot broadcast because all of its neighbor already
have received the information being sent, it sets its state to feedback. The feedback wave reaches the
initiator process once all of its neighbors are in feedback phase. A process in feedback phase sets its
state to cleaning phase if all of its neighbors are in feedback phase or in cleaning phase. The initiator
process can start a new broadcast once it reaches the cleaning phase. Should we use a wave-based al-
gorithm for global coordination, algorithm A would use waves to gather and distribute information in
the following manner. Each process, first, broadcasts its local state to all the processes in the system
and waits for feedback. After this first phase of information gathering is over, the process evaluates
the enhanced guards, (possibly) executes them and, sends its updated local state. However, this method
of implementation mandates that each process should run its own wave algorithm. Thus, at any time
instant, the system might have multiple waves traveling in different directions. Coordinating multiple
waves would require extra resources at each process because each process must maintain its position in
multiple spanning trees. Additionally, due to the presence of multiple waves at any time instant, it would
be difficult to guarantee that a process has the latest global state when it executes a guarded command
of algorithm A. The issues remain even if only one instance of wave algorithm is run by the system.
A distinguished process is required if a single instance of the wave algorithm is used for the global
coordination. Note that, with a single instance of the wave algorithm, the coordination mechanism re-
sembles a self-stabilizing synchronizer [107]. Although memory requirements decrease considerably as
a result of a single wave in the system, ensuring a latest global snapshot remains difficult. In this case,
the special process floods the system with the latest global snapshot and sends the directive to execute
enabled guarded commands to other processes after it receives confirmation of the receipt of the snap-
shot. However, the distinguished process cannot control the order of execution of guarded commands
in the system once it floods the system with the permission to execute guarded commands. Assume that
two non-neighbor processes Pi and P j have enabled guarded commands after the permission to execute
is sent by the special process. One of the two processes would evaluate the ranking function based
on an outdated global snapshot –irrespective of the order in which they execute the enabled guarded
commands– because the changes made by the process executing first would be visible to the other
process only when the special process starts the next wave.

A mutual exclusion algorithm guarantees that, in any execution step, exactly one process accesses
its critical section. Typically, the critical section of a process refers to the actions which access a re-
source shared across the distributed system. In contrast to a wave algorithm-based progress monitor,
a progress monitor implemented with the help of a mutual exclusion algorithm can ensure that only

5.3 Transformation of Self-Stabilizing Algorithms 57

one process executes the guarded command of the algorithm to be transformed at any time instant.
However, a mutual exclusion-based progress monitor has to overcome the following limitations: 1)
self-stabilizing mutual exclusion algorithms require a spanning tree with a distinguished process to
work correctly [94, 27] and 2) mutual exclusion algorithms provide no support for snapshot collection.
As we neither assume the presence of such a distinguished processor serving as a root nor a spanning
tree, a self-stabilizing spanning tree algorithm is required for correct execution of the self-stabilizing
mutual exclusion algorithm. Token-based mutual exclusion algorithms [108] use a system-wide unique
token to rotate permission to execute a critical section among the processes. A self-stabilizing token
based mutual exclusion algorithm can be adapted to support snapshot collection. We now describe the
various constituents of the transformer.

Architecture of Transformer

Figure 5.1 shows the components and the layered architecture of the transformation along with the
flow of information between the constituent algorithms. The constituent algorithms communicate with
each other by reading and writing the variables shown in Figure 5.1. More specifically, variable tokeni

is modified by the mutual exclusion layer and read by the modified algorithm. Variable snapshoti is
modified by both mutual exclusion layer and the modified algorithm. A self-stabilizing spanning tree
algorithm forms the lowest layer of the transformer. The spanning tree algorithm is composed with
a self-stabilizing mutual exclusion algorithm via fair composition. Fair composition of algorithms F

i

and F
j

is the union of the set of guarded commands of F
i

and F
j

; guarded commands of each compo-
nent algorithm are executed in a fair fashion in the composed algorithm, that is, each process executes
guarded commands of each algorithm infinitely often [27]. Fair composition uses the notion of a “mas-
ter” and a “slave” algorithm; the slave algorithm reads the variables modified by the master algorithm
assuming that its counterpart has stabilized. The slave algorithm stabilizes after the variables modified
by the master algorithm satisfy the safety predicate of the master algorithm.

Mutual Exclusion Layer

Spanning Tree Layer

parenti

snapshoti

Use Algorithm
Modified

tokeni À

Fig. 5.1: Layered View of the Transformation

The self-stabilizing spanning tree algorithm functions as the master algorithm and, the mutual ex-
clusion algorithm acts as the slave algorithm in the transformer. The self-stabilizing mutual exclusion
algorithm and the spanning tree algorithm communicate via parenti variables; parenti variable points
to the parent of a process Pi in the spanning tree and it is modified by the spanning tree algorithm
during the course of algorithm’s execution. The mutual exclusion algorithm uses variable parenti to

58 5 Scheduler Transformation of Self-Stabilizing Algorithms

circulate a token around the system. The modified algorithm forms the critical section of the mutual
exclusion algorithm and the permission to execute is granted via the tokeni variable. The mutual ex-
clusion algorithm is modified to collect a global snapshot as well and this information is passed on to
the modified algorithm with the help of a so-called snapshoti variable. We are now ready to give the
complete definition of the scheduler-oblivious transformation of a self- stabilizing algorithm.

5.3.1 Definition

Let algorithm A be self-stabilizing with respect to a predicate PA under a specific scheduler DA. The
convergence property of algorithm A under scheduler DA has been proven with the help of a ranking
function ∆A. Algorithm A consists of mi guarded commands GAix

, 1 ≤ x ≤ mi in each process Pi ∈

Π . Recall that transforming an algorithm so that it has exactly one enabled guarded command per
process and per state is not difficult. Under these assumptions, the scheduler-oblivious transformation
of algorithmA –synonymously referred to as use algorithm– is defined as follows.

The transformation is carried out in three steps. In the first step, use algorithm A is modified by
strengthening its guards. The modified algorithm A is then composed with the self-stabilizing mutual
exclusion algorithm of [109, pp. 24–27] so that it forms the critical section of the mutual exclusion
algorithm. The self-stabilizing mutex algorithm of [109] is also modified in order to be able to collect the
global snapshot. In the last step, the modified self-stabilizing mutual exclusion algorithm is composed
with the self-stabilizing spanning tree algorithm of [94]. We describe the algorithms implementing each
layer in the following.

Spanning Tree Layer

Figure 5.2 shows the self-stabilizing spanning tree algorithm due to [94]. Each sub-algorithm of the
self-stabilizing spanning tree algorithm uses three variables: disi, parenti and rooti to construct a rooted
spanning tree. The rooti variable of process Pi contains the identifier of the root node of the spanning
tree to which Pi belongs. The shortest distance between the root node and a process Pi is stored in
variable disi. The variable parenti points to the parent of process Pi in the spanning tree. Every process
Pi repeatedly reads the state of its neighbors and updates its local state if its neighborhood does not
satisfy certain predicates. The system is said to be in the correct global state if the local state of each

process Pi satisfies predicate Pspani
, that is:

[(i = rooti) OR (Pi is a node in a tree)] AND (rooti ≤ min j∈neighbor(i)(root j)

where neighbor(i) returns the set of the neighbors of process Pi. Process Pi considers itself root if 1)
the values of the variables rooti and parenti are equal to its own identifier and 2) the value of disi is
equal to 0. Process Pi is said to be a node in a tree if 1) the value of rooti is less than its own ID, 2)
the value of variable parenti belongs to the set returned by neighbor(i), 3) the value of rooti is equal to
that of rootparenti

, and 4) the difference between the values of the variables disi and disparenti
is exactly

1. Predicate Pforest holds if 1) no cycle exists and 2) the graph defined by the parenti pointers of the
processes in the system is a forest. Predicate Pforest is true if predicate Pforesti :

(Pi = rooti) OR [(Pi is node in a tree) AND (rooti ≤ min j∈neighbor(i)(root j)]

holds true at each process Pi. Note that predicate Pspani
implies predicate Pforesti , vice versa, however,

is not true. If predicate Pforesti
does not hold at a process Pi, then it marks itself as the root by assigning

the variables parenti and rooti its own ID and setting variable disi to 0. Process Pi requests permission
to join the spanning tree of a neighbor if 1)Pforsti

holds true, 2)Pspani
does not hold, and 3) the identifier

of the root of the spanning tree of the neighbor is lower than that of its own. A process sends a request
only if it is not waiting for the reply of any previously sent request. Such a request to join a spanning

5.3 Transformation of Self-Stabilizing Algorithms 59

tree is routed through the members of the spanning tree to the root. The requesting node joins the tree
only when it receives a “grant” to do so from the neighbor through which it initiated the request.

Each process has four variables –requesti, sourcei, nexti and directioni– to handle the requests and
the grants to join a spanning tree. The variable requesti contains the identifier of the node that has sent
request to join the tree to which Pi belongs. Variable sourcei contains the identifier of the neighbor-
ing process from which process Pi copied the value of requesti. Process Pi assigns its own ID to the
variables requesti and sourcei if it tries to join a spanning tree. The variable nexti is the ID of the node
through which process Pi tries to forward a request. The variable directioni has two potential values –
grant and ask– if variable directioni is equal to ask then it implies that the process with ID equal to
requesti wishes to join the tree to which process Pi belongs; if the request to do so is granted, then vari-
able directioni contains the value grant. Process Pi participates in forwarding requests and permissions
to join to the tree to which it belongs only if predicate Pspani

holds. If predicate Pspani
holds and there

exists a neighbor process P j with the variables direction j and next j being equal to ask and i respec-
tively, then Pi forwards the request of P j by assigning j, j, parenti, and ask to the variables requesti,
sourcei, nexti, and directioni respectively. A request from a child in the spanning tree is also handled
in the similar way. Process Pi does not propagate any request until a previously forwarded request is
granted. Process Pi allows another process to join its tree by setting directioni to grant if process Pi is
root and predicate Pspani

holds true. A non-root process Pi forwards a grant from its parent in a similar
fashion if 1) variable nexti is equal to parenti, 2) variable requestparenti

is equal to variable requesti, 3)
variable sourceparenti

is i, and 4) predicate Pspani
holds. Process Pi joins a spanning tree if 1) predicate

Pforesti
holds, 2) predicate Pspani

does not hold, 3) variable directioni is ask, 4) variable nexti is j, and
5) variable direction j and request j are grant and i respectively. While joining a tree process Pi sets 1)
variable parenti to j, 2) variable rooti to root j, 3) variable distancei to distance j + 1, and 4) variable
directioni to null.

The algorithm ensures that multiple spanning trees in a forest merge because processes continuously
compare the ID of their root with those of their neighbors, and once a process Pi discovers that one of
its neighbors has a root with lower ID, then it sends a request to join the tree to which its neighbor
belongs; in this fashion, eventually, all the processes in the previous tree of process Pi join the tree with
lower root ID.

The algorithm also eliminates any false roots; an identifier f is said to be a false root if there exist
a process Pi such that rooti is equal to f and there exists no process with identifier equal to f . Consider
a false root fm such that fm is smaller than ID of all the processes in the system. Since there exists no
node with ID fm, no request to join tree of fm will be replied back with grant. Also, as no process Pi

has variable parenti equal to fm, one of the process P j along the branch of fm tree will set itself as root.
A false root fm is purged out of the system as all the processes along the branches of fm reset their
root variables. Any cycles in the graph are also removed when a process in the cycle checks the truth
values of the predicates Pspani

and Pforesti . For example, consider the graph shown in Figure 5.3. The
system contains six processes and the values of rooti and disi are shown next to the ID of each process;
dashed arrows point to the parent of each process. The system is not in a correct state –a spanning tree
consisting of all nodes does not exist – as there exist a tree and a cycle of four processes. Predicate
Pforesti does not hold in processes P3 and P4. Therefore, process P3 sets itself as root; in the next step,
process P3 realizes that process P1 has an ID smaller than its own, and thus, joins the tree of process P1.
Since predicate Pforest4 does not hold, process P4 sets itself as root. As a result of the action of process
P4, predicate Pforest6 does not hold at process P6 anymore and it also sets itself as root. Process P4 joins
the tree of process P1 by sending request through process P2. Process P5 sets itself as root because
predicatePforest5 is not true after the actions of processes P3 and P6. Consequently, processes P5 and P6

join the tree rooted at process P1 and the system, subsequently, reaches a correct global state.

Remark 5.1. Although there are other instances of spanning tree algorithms in the literature, however
most of these self-stabilizing algorithms require a distinct node to build a spanning tree. Should one of

60 5 Scheduler Transformation of Self-Stabilizing Algorithms

process Pi

{

localvar rooti, requesti, sourcei, parenti, distancei, nexti, directioni;
macro requestsenti ≡ (∃l ∈ neighbor(i) | rootl = maxm∈neighbor(i)(rootm) > rooti)

∧ (requesti = sourcei = i)
∧ (nexti = l) ∧ (directioni = ask)

macro reqi ≡ ((∃ j ∈ neighbor(i)) ∧ (parent j = j , i)
∧ (request j = source j = requesti = sourcei = j = root j)
∧ (next j = i) ∧ (direction j = ask) ∧ (nexti = parenti))
∨ ((∃ j ∈ neighbor(i)) ∧ (parent j = i)
∧ (null , request j = requesti , j)
∧ (sourcei = j)) ∧ (nexti = parenti)
∧ (next j = i) ∧ (direction j = ask))

macro reqi
′ ≡ reqi ∨ (requesti = nexti = sourcei = directioni = null)

8¬Pforsti → rooti := i,

parenti := i,

distancei := 0;
8Pforsti ∧

(∃ j ∈ neighbor(i) | root j = maxk∈neighbor(i)(rootk))
∧¬requestsenti → requesti := resourcei := i,

nexti := j, directioni := ask;
8Pspani

∧ ¬reqi
′ →requesti := sourcei := nexti := direction := null;

8Pspani
∧ reqi

′ ∧ ¬reqi

∧ (∃ j ∈ neighbor(i) | (direction j = ask) ∧ (next j = i)
∧ (request j = j = root j = source j)
∧ (sourceparenti

, i)) → requesti := sourcei := j,

nexti := parent j, directioni := ask;
8Pspani

∧ reqi
′ ∧ ¬reqi

∧ (∃ j ∈ neighbor(i) | (parent j = i) ∧ (next j = i)
∧ (direction j = ask) ∧ (request j , null)
∧ (request j , j) ∧ (sourceparenti

, i)) → requesti := request j, sourcei := j,

nexti := parenti, directioni := null;
8Pspani

∧ reqi ∧ (Pi is a root) ∧ (directioni = ask)→ directioni := grant;
8Pspani

∧ reqi ∧ (nexti = parenti = j) ∧ (direction j = grant)
∧ (directioni = ask) ∧ (requesti = request j)
∧ (source j = i) → directioni := grant;

Fig. 5.2: Self-Stabilizing Spanning Tree Algorithm of [94]

these spanning tree algorithm be used in the transformer, a self-stabilizing leader election algorithm be-
comes mandatory for the transformer. The algorithm due to [94] –unlike other self-stabilizing spanning
tree algorithms– selects a distinguished process while constructing a spanning tree, and is, therefore,
used in the transformer.

Mutual Exclusion Layer

The mutual exclusion layer is implemented with the help of the self-stabilizing mutual exclusion
algorithm due to Dolev [109, pp. 24]. Figures 5.4 and 5.5 show the self-stabilizing mutual exclusion
algorithm of [109]. Process P0 is the root process. The self- stabilizing mutual exclusion algorithm

5.3 Transformation of Self-Stabilizing Algorithms 61

8Pforsti ∧ ¬Pspani
∧ (directioni = ask) ∧ (j ∈ neighbor(i))

∧ (requesti = request j = sourcei = rooti = i)
∧ (source j = i) ∧ (direction j = grant)
∧ (nexti = j) ∧ (root j > rooti) → parenti := j,

distancei := distance j + 1,
rooti := root j,

requesti := sourcei :=
nexti :=
directioni := null;

}

Fig. 5.2: Self-Stabilizing Spanning Tree Algorithm of [94] (Continued)

ensures that in any global state only one process can access its critical section. The access to critical
section is regulated with the help of a “token” and a process can enter its critical section if and only if it
has the token. In order to ensure that no process waits indefinitely for access to the critical section, the
token is circulated among all the processes. The self-stabilizing algorithm circulates the token over the
spanning tree constructed by the spanning tree layer. Since we require snapshots for the correct func-
tioning of the transformation, the structure of the communication register used by the token circulation
algorithm is modified. The communication register –shown in Figure 5.6– comprises of three parts: the
variables used by the spanning tree (left compartment), the token part (middle compartment) and the
global snapshot (right compartment). The leftmost part of a communication register ri j is used by the
spanning tree algorithm to construct and maintain a spanning tree; apart from the copies of the variables
pertaining to the position of a process in a spanning tree, it contains the copies of the variables used
for forwarding and granting the requests to join a spanning tree. The middle part of ri j is used by the
mutual exclusion algorithm for token circulation; the token part of communication register is an integer
which indicates whether a process can enter the critical section or not. The communication register ri j

is extended by appending a compartment containing the process Pi’s copy of a global snapshot. The
global snapshot part is a vector of all those variables of the use algorithm A which are required to
compute the value of ranking function ∆A in any global system state. For instance, if a local variable of
a process Pi, xi (∀Pi ∈ Π), is used to compute the value of ∆A, then each process Pi writes a copy of xi

in the vector representing the global snapshot.
The mutual exclusion algorithm is, essentially, composed of the two types of sub-algorithms. Ac-

tions of a process are dictated by its position in the spanning tree built by the lower layer; the root
process implements a distinct sub-algorithm, all the other process, modulo their neighborhood, imple-
ment the second sub-algorithm. Each process uses an integer tokeni to control the access to its critical
section. Additionally, each process Pi defines a total order on the write registers read by its children.
Let λi = {riu, riv · · · , riz} be a total ordering on the write registers of a non-root process Pi which, in
turn, induces a total ordering on the set of its children processes. A non-root process Pi compares the
value of tokeni with that of its parent process: if it is not equal to the token value of its parents, then Pi

accesses its critical section. Pi assigns the token value of its parent to the variable tokeni after leaving
the critical section. In order to pass the token to its descendants, process Pi writes its new token value
to the communication register (riu) meant for its first child in the spanning tree. A process returns the
token by writing the new token value in the write communication register meant for its parent. Process
Pi passes the token to the next child only after it gets the token back from its first child; that is, Pi copies
the content of rui to the register riv and, Pv gets the token when rui, riu and, riv are equal to tokeni. Pi

repeatedly passes the token amongst its children by copying the value of token written by a child Px to
the write register riy meant for the next process Pv in λi. A non-leaf process passes the token back to its
parent after it gets back the token from its last child. The ordering λi of the write registers of a process

62 5 Scheduler Transformation of Self-Stabilizing Algorithms

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����������

����
����
����
����
����
����

����
����
����
����
����
���� ����������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����������
����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
���� ����������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

�������������������
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������

��
��
��

��
��
��

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
��� ����������

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������������

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
��� ����������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����������������
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

����������

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������������

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������������

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

������������

���
���
���

���
���
���

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

6 〈3, 2〉

4 〈3, 1〉
2 〈1, 1〉

1 〈1, 0〉

2 〈1, 1〉

1 〈1, 0〉

5 〈3, 3〉 3 〈3, 4〉 3 〈3, 0〉

P3

1 〈1, 0〉

P3

1 〈1, 0〉

P6

2 〈1, 1〉

6 〈3, 2〉

5 〈3, 3〉 3 〈1, 1〉

4 〈4, 0〉

P4

1 〈1, 0〉

P4

2 〈1, 1〉

5 〈3, 3〉 3 〈1, 1〉

4 〈4, 0〉

6 〈6, 0〉

P5

1 〈1, 0〉

2 〈1, 1〉

3 〈1, 1〉

4 〈1, 2〉

6 〈1, 3〉

P5

5 〈1, 2〉

1 〈1, 0〉

6 〈3, 2〉

4 〈3, 1〉

5 〈3, 3〉

2 〈1, 1〉

6 〈3, 2〉

4 〈3, 1〉

5 〈3, 3〉 3 〈1, 1〉

2 〈1, 1〉

3 〈1, 1〉

1 〈1, 0〉

4 〈1, 2〉

6 〈6, 0〉

5 〈3, 3〉

2 〈1, 1〉

3 〈1, 1〉

1 〈1, 0〉

4 〈1, 2〉

6 〈6, 0〉

5 〈5, 0〉

2 〈1, 1〉

3 〈1, 1〉

4 〈1, 2〉

5 〈5, 0〉

P6

6 〈1, 3〉

Fig. 5.3: Removal of Cycles by the Spanning Tree Algorithm of [94]

dictates the sequence in which its children get the token. Let λ0 = 〈r0i, · · · , r0m〉 be the ordering of the
write communication registers of a process P0 designated as the root. Process P0 accesses its critical
section if the value of token0 is equal to the content of rm0, the write register of its last child Pm. The
root process P0 updates its token by incrementing it modulo 4n − 5, where n is the total number of
processes in the system, after it leaves its critical section. It passes on the token to other processes in
the tree in the fashion similar to non-root processes.

5.3 Transformation of Self-Stabilizing Algorithms 63

process P0

{

while(true) do

if(token0 = rm0) do

〈*critical section*〉
r0i := token0 := (token0 + 1 mod (4 · n − 5))

od

for(x := i to m) do

r0(x+1) := rx0

od

od

}

Fig. 5.4: Self-Stabilizing Mutual Exclusion Algorithm of [109] (Root Process)

process Pi (i , 0)
{

while(true) do

if(tokeni , rparentii) do

〈*critical section*〉
riu := tokeni := rparentii

od

for(x := u to z) do

ri(x+1) := rxi

od

od

}

Fig. 5.5: Self-Stabilizing Mutual Exclusion Algorithm of [109] (Non-root Process)

x1, x2, · · · , xn · · ·

︸ ︷︷ ︸

snapshoti

tokeni
rooti parenti disi · · ·

︸ ︷︷ ︸

tree variables

Fig. 5.6: Structure of Communication Register ri j Used by the Token

Figure 5.7 shows the traversal path of the token in an example graph with seven processes. In
addition to showing the parent-child relationship between adjacent processes, the dashed arrows mark
the edges of the spanning tree; P0 is designated as the root process. The traversal path of the token is
drawn with the help of the gray arrowed curve. Note that the token traversal in the spanning tree follows
Euler tour [110]. The token visits each tree edge twice in its traversal path. A leaf node is visited once
whereas a non-leaf node is visited c + 1 times, where c denotes the number of children of the non-leaf
node. Process P0 passes the token first to process P1, which, after accessing its critical section, passes
the token further to its first child P3. The token is returned back to P1 by P3 and is subsequently passed
on to P5. Process P1 routes the token back to the root after it gets the token back from P5. The token is
then passed on to P2 which, after accessing its critical section, passes onto its first child P6. Process P0

gets back the token after it is circulated in the subtree of P2. Note that although each non-leaf process
gets token multiple times, it accesses critical section only when its get the token from its parent.

64 5 Scheduler Transformation of Self-Stabilizing Algorithms

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

P0

P1 P2

P4P3

P5 P6

Fig. 5.7: Token Circulation in a Graph

Modification of Use Algorithm A

The actions of use algorithm are “embedded” in the mutual exclusion algorithm. The guarded com-
mands of the use algorithm A in a process Pi can be executed only if process Pi possesses the to-
ken. Thus, in essence, the algorithm A constitutes the “critical section” of the self-stabilizing mutual

process Pi

{

localvar xi;
macro paint_token ≡ snapshoti.x

i
i

:= xi;
macro have_token ≡ ((tokeni , tokenparenti) ∧ (parenti , i) ∧ (rooti , i))

∨((tokeni == tokenrightchild) ∧ (parenti == i) ∧ (rooti == i));
if(have_token)
8G̀i j

:: ¬Gi1 ∧ · · · ∧ Gi j
∧ · · · ∧ ¬Gin ∧ decrease(∆A) ∧ ¬PA → acti j; paint_token; (1)

...

8G̀ip
:: ¬Gi1 ∧ · · · ∧ Gi j

∧ · · · ∧ ¬Gin ∧ PA → acti j; paint_token; (2)
...

8G̀iq :: ¬Gi1 ∧ · · · ∧ Gi j
∧ · · · ∧ ¬Gin ∧ ¬decrease(∆A) ∧ ¬PA → skip; paint_token; (3)

...

8G̀ir :: ¬Gi1 ∧ · · · ∧ ¬Gin → skip; paint_token; (4)
endif

}

Fig. 5.8: Modified Use Algorithm À

exclusion algorithm. The set of guarded commands of the use algorithm is also modified during the
transformation. Figure 5.8 shows the transformed use algorithm (hereafter synonymously referred to as
À).

5.3 Transformation of Self-Stabilizing Algorithms 65

Although no new variables are added to the transformed algorithm, it accesses the variables be-
longing to the lower layers algorithms. In particular, À includes variables parenti, rooti and, tokeni in
macro have_token. Algorithm À evaluates its modified guards only when have_token is true. As is evi-
dent from the name of the macro, have_token holds true when Pi possesses the token. The paint_token

macro is used to update the global snapshot by appending its current local state. Note that we have
used the method of [85] to ensure that each process has exactly one enabled guarded command in every
global state. Algorithm À consists of four classes of guarded commands. The guards of the transformed
use algorithm are derived from the guards of use algorithmA in the following manner.

Guards of Type 1. A Type 1 guard G̀i j
is true only if 1) process Pi has the token, 2) the original guard

Gi j
is enabled, 3) safety predicate PA does not hold, and 4) the execution of guard Gi j

leads to a
decrease in the value of ranking function ∆A. The term decrease(∆A) functions as a “look-ahead”
operator of algorithmA. It is obtained by computing the sign of difference between ∆A and ∆Ai j

. The
value of ∆Ai j

is obtained from ranking function ∆A by replacing variables in ∆A by their respective
assignment expressions in acti j. If guard G̀i j

is true, then process Pi executes the action of the
original guard Gi j

and copies the new value of its local variable xi to the global snapshot via the
paint_token macro. The transformed algorithm has a guarded command of Type 1 corresponding
to each guard of use algorithm A, and therefore, every process Pi has mi guarded commands of
type 1.

Guards of Type 2. Each process Pi has mi guarded commands of Type 2. A type 2 guards is true if 1) Pi

holds the token, 2) safety predicate PA holds, and 3) the corresponding guard Gi j
of use algorithm

A is true. The assignment part of the original guarded command acti j is executed and snapshot is
updated if guard G̀i j

is true.
Guards of Type 3. A guarded command of Type 3 is evaluated if Pi has the token. It is true if 1) the

corresponding guard of A is true, 2) the safety predicate PA does not hold and, 3) the assignment
part of Gi j

does not lead to a decrease in the value of ranking function ∆A. Process Pi takes a void
step and writes its current local state to the global snapshot.

Guards of Type 4. Each process has one guarded command of Type 4 and it is enabled if none of the
original guards are true. Process Pi copies its local variable to the global snapshot in case the Type
4 guard is true.

Each sub-algorithm Ài of the transformed algorithm consists of 3·mi+1 guarded commands. Actions
on the assignment side of the guarded commands of A are unchanged in the transformed algorithm.
Irrespective of the truth value of the modified guards, a process Pi writes the new value of its local
variable in the snapshot before passing on the token.

5.3.2 Preservation of Self-Stabilization

We now show that the transformation of the use algorithm A preserves its self-stabilization property
with respect to a predicate PA under any weakly fair scheduler. Some definitions are in order before we
proceed with the proof. In the following, the phrase “modified use algorithm À” refers to use algorithm
with strengthened guards, and the phrase “transformed algorithm T (A)” refers to the modified use
algorithm along with the lower layer algorithms. The proof essentially consists of two parts: 1) in the
first part it is shown that –within finite number of execution rounds– algorithm T (A) reaches a global
state where the process possessing token has the correct global snapshot, 2) subsequently we prove that,
following the global state where possession of the token implies the correct global snapshot, projection
of an execution of algorithm T (A) over algorithmA is an execution of algorithmA.

Definition 5.1 (Projection over Algorithm A). Let Ξ̂ = 〈· · · , σi, · · · , σ j, · · · 〉 be a maximal execu-

tion of a transformed algorithm T (A). The projection Ξ̃
A

of a maximal execution of T (A) over

66 5 Scheduler Transformation of Self-Stabilizing Algorithms

use algorithm A is obtained by removing the variables belonging to algorithm A from every global

state σi appearing in Ξ̂ in which algorithm A executed an enabled guarded command, that is,

Ξ̃
A

:= 〈· · · , σi|var(A), σ j|var(A), · · · 〉 such that an enabled guarded command of A is executed in σi

and σ j.

Definition 5.2 (Projection over Process Pi). The projection Ξ̃Pi
of a maximal execution Ξ̂ of a trans-

formed algorithm T (A) over a process Pi is obtained by removing all the variables except the variables

belonging to process Pi from every state σi appearing in Ξ̂.

Definition 5.3 (Correct Global Snapshot). Let σix|var(A) be the projection of the local state of process

Px on the use algorithm A obtained by removing variables not belonging to the use algorithm A from

σix. The local copy of the global snapshot at process Py, obtained by inspecting the token, is termed as

correct local global snapshot if it contains the current values of σix|var(A) for all Px ∈ Π \ {Py}.

Definition 5.4 (1-Step Consistent Global Snapshot). Let Ξ̃
A

= 〈σ1|var(A), σ2|var(A), · · · 〉 be the projec-

tion of maximal execution of a transformed algorithm T (A) over the use algorithmA. The local copy

of global snapshot at a process Py is said to be 1-step consistent if for every process Px ∈ Π \ {Py} the

local copy of the local state of Px is σkx|var(A) such that σk is the global system state in which the process

Px executed an action of the use algorithm A and σi is the global system state where Py executed an

action of A most recently and k is the largest index satisfying the condition i > k.

The notion of 1-step consistent global snapshot captures the scenarios where a process’ copy of the
global snapshot might be “outdated” because of an execution step of some other process in the system.
We have argued earlier that the correctness of a global snapshot is critical for the correctness of the
transformation. 1-Step consistency of a global snapshot, prima facie, appears to be counter-productive
in the light of this argument. Nonetheless, a 1-step consistent snapshot forms part of the legal global
system state of the transformed algorithm T (A). This is due to the application of the mutual exclusion
algorithm to coordinate the execution of the guarded commands of the modified use algorithm À.
Since correct global information is sent around with the token, a process’ copy of snapshot can become
outdated after it passes on the token. However –as we prove later– in any legal state of the transformed
algorithm T (A), the difference between a process’ copy of snapshot and the current global state is
restricted to a single execution step of the modified use algorithm by any other process. In this sense the
notion of 1-step consistency of global snapshot as defined above is weaker than the notion of snapshot
correctness.

Let global state σspan be the global system state where predicatePspani
holds at every process Pi∈ Π .

Theorem 5.1 (based on [94]). Irrespective of the initial state, the transformed algorithm T (A) reaches

the state σspan within a bounded number of execution steps.

Although the mutual exclusion algorithm and modified use algorithm À read the variables written by the
spanning tree algorithm, the upper layer algorithms do not interfere with the execution of the spanning
tree algorithm. Intra-process fairness guarantees that the actions of the spanning tree algorithm are
executed infinitely often. As explained earlier, each process checks the consistency of its immediate
neighborhood and, eventually, false identifiers are purged out of the system. A tree spans the system
when each process satisfies Pspani

. The process selected as the root after the spanning tree algorithm has
stabilized is denoted as Proot in the sequel.

Let Pmutex be a predicate which holds true if only one process in the system can access its critical
section and let σmutex be a global state satisfying predicate Pmutex.

Theorem 5.2 (based on [109]). Every execution of the transformed algorithm T (A) reaches the state

σmutex within O(n2) rounds of reaching state σspan.

5.3 Transformation of Self-Stabilizing Algorithms 67

Note that token traversal in a spanning tree of n processes is similar to token traversal in a ring of
2 · n− 2 processes. Also, recall that Pmutex holds in a system if all the token variables in the system have
equal value or exactly one pair of non-root neighboring processes have different token values. There is
always at least one process with a token in any state of the mutual exclusion algorithm. Assume that a
system starts in a state where multiple processes can access their respective critical section. Any action
of the mutual exclusion algorithm in this scenario does not increase the number of process which can
access their critical sections because, the process that uses privilege to access its critical section loses
the token in the following state. Eventually, the token value of every process changes and, thus, the
token value of the process Proot gets incremented. Since the system has only n process, there exists a
number ñ, ñ < 4 · n − 4, such that no token is equal to ñ. Process Proot eventually assigns ñ to its token
variable because Proot gets incremented at least once in 4 · n− 4 rounds. The convergence of the mutual
exclusion algorithm follows from the observation that Proot does not get token until all other processes
assign ñ to their tokens.

As a result of stabilization of spanning tree and mutual exclusion layers (Theorem 5.2) one of the
processes in the system assumes role of the root process and coordinates the token circulation following
the state σmutex. Let σmutroot be the global state in which the process Proot gets the token for the first time
following the state σmutex.

Lemma 5.1. In any execution of the transformed algorithm T (A), the root process Proot has the correct

local global snapshot within O(n) rounds of reaching the state σmutroot.

Proof. The mutual exclusion algorithm let the token circulate on the spanning tree and the token tra-
verses the tree in depth-first manner. It defines a Euler tour, thus a virtual ring, over the spanning tree
and the virtual ring has 2n − 2 virtual nodes.

The root process Proot gets the token and thereby chance to access its critical section at least once
every 4n − 4 rounds irrespective of the fact whether the mutual exclusion algorithm has stabilized or
not.

The global snapshot that Proot gets along with token in σmutroot might be incorrect and thus Proot

may execute a guarded command that is enabled with the help of incorrect global snapshot. However,
the assignment part of each of the guarded commands writes the current values of the local variables
belonging to use algorithm A to the global snapshot part of the token. Let σ j be the global state after
Proot executes its guarded command. Thus, when Proot passes on the token to its first child (defined by
the ordering of outgoing edges in Proot) the global snapshot has the current local state σ jroot |var(A) of Proot.

Let σk be a global state after σ j such that a non-root process Pz gets the token from its parent
process. It can be observed that – irrespective of the correctness of the global snapshot which is passed
on to process Pz along with the token – the token has correct local state σlz|var(A) of Pz, where σl is the
resultant state after the execution of guarded commands of use algorithm A in which token is passed
on to the descendants of Pz. A process accesses its critical section (and thus executes algorithmA) only
when it gets the token from its parent process although it gets token more than once while routing it
through its sub-tree and back to its parent. This implies that once any process passes on the token to its
descendants, projection of its local state on use algorithm does not change. Let Proot → Px → Py → Pz

be the path traversed by the token in the spanning tree before it reaches process Pz. The argument above
can be used to infer that process Pz gets the current values of local variables of processes Proot, Px and
Pz (belonging to algorithmA) when it receives the token from its parent. This argument can be further
extended to infer that every process gets the current values of variables belonging to algorithm A of
processes that possessed the token before and appends its local state prior to passing the token to its
successors.

Every process gets a chance to access its critical section once in 4n − 4 rounds after the mutual
exclusion algorithm has stabilized. Let σm be the global state in which process Proot gets the token
for the first time after σmutroot. All the other processes append their current local states to the global

68 5 Scheduler Transformation of Self-Stabilizing Algorithms

snapshot between σmutroot and σm and do not change them thereafter. Thus, when Proot gets the token in
σm, it has the current value of every σmx|var(A) (∀x ∈ {1, · · · , n} \ {root}). �

Figures 5.9 through 5.13 illustrate the state sequence of an example system while the root process
gathers the correct global snapshot. The series of figures show a partial view of a system. The thick
edges represent the edges which form the spanning tree. Process P0 acts as the root of the spanning tree.
Processes P3 and P5 have subtrees which are omitted in the state sequence. The dashed arrows depicts
the direction of token traversal. An asterisk symbol next to a process ID indicates that the process has
the token and thereby the privilege to execute its critical section. The status of the local copy of a
process’ snapshot is shown with help of a label at each node in the graph. The label “BAD” indicates
that the local copy of the snapshot contains incorrect values; a process is labelled with “UPDATE” if it
writes it current local state to the snapshot. The sequence starts in a state where P0 (the root) gets the
token exclusively for the first time. It writes the current value of its local state to the snapshot part of
the token and sends the token to its first child P1 (Figure 5.9).

P1

P∗0

P2 P3

P4 P5

BADBAD BAD

BADBAD

BAD

P2 P3

P4 P5

BADBAD BAD

BADBAD

P0UPDATE

P1∗

Fig. 5.9: Snapshot Sequence: Process P0 Updates Snapshot Token

Process P1 updates the snapshot compartment by writing its current local state before passing on
the token to its child P4 (Figure 5.10). The token is next routed to process P5 and, the snapshot part
of the token contains the latest local states of process P0, P1 and, P4. Process P5 use the privilege to
update the snapshot.

5.3 Transformation of Self-Stabilizing Algorithms 69

P2 P3

P5

BAD
BAD

BAD

P2 P3

P4

BAD
BAD

BAD

P0UPDATE
UPDATE

UPDATE UPDATE

UPDATE
P5∗

P1

P0

P1

BAD
P4∗

Fig. 5.10: Snapshot Sequence: Processes P1 and P4 Update Snapshot

Process P5 passes the token to its descendants in its subtree (see Figure 5.11). A process in the
subtree of P5 writes to the snapshot when it gets the token and passes it to its children. In this process,
the snapshot part collects the current state of all the processes in the subtree of P5. P5 –after circulating
the token in its subtree– gets it back and passes on to its parent; during these execution steps processes
in the subtree get the latest local states of all the processes which possessed the token before them.

P1

P∗0

P2 P3

P5

BAD
BAD P2 P3

P4

BAD
BAD

P0UPDATE
UPDATE

UPDATE UPDATE

UPDATEUPDATE
P4 P5

UPDATE UPDATE

P1

SBTR-UPDATE

Fig. 5.11: Snapshot Sequence: The Token Circulates in the Subtree of Process P5

Process P1 returns the token with updated snapshot to the root process P0 (Figure 5.12). Since all
the processes in the subtree of P1 have their token value equal to that of P0, the root process passes on
the token to P2. Process P2 returns the token back to the root process after updating its state and the
snapshot because it does not have any children in the spanning tree. Process P0 next sends the token to
P3; Process P3 executes the modified use algorithm and updates snapshot with the latest value of local
variables of À. Despite possessing the token multiple times, the variables belonging to À are changed
only once by the processes which possessed token prior to process P3. Although the snapshot has the
current local states of the processes P0 through P2, the snapshot received might not be correct. This is
because the snapshot may not contain the current local states of the descendants of process P3.

70 5 Scheduler Transformation of Self-Stabilizing Algorithms

Process P3 sends the token to its descendants and the token is circulated in the subtree (Figure 5.13).
Each process executes guarded commands of modified use algorithm and writes the new local state to
the snapshot before passing token to its successor. The token is returned by process P3 after it gets
it back from its last child. The root process P0 gets the token along with the snapshot that contains
the current values of the local variables of use algorithm. The root process has the correct snapshot in
last configuration of Figure 5.13 because no process executes an action of À after it has received and
updated the token obtained from its token.

Let σcorsnp be the global state in which process Proot gets the token with the current global snapshot
for first time in an execution. Although the root process has the correct snapshot in state σcorsnp, local
copies of the snapshot in the other processes in the system might be – and generally are– inconsistent.

P1

P∗0

P3

P5

BAD
BAD P2

P4

P0UPDATE
UPDATE

UPDATE UPDATE

UPDATEUPDATE
P4 P5

UPDATE UPDATE

UPDATE BAD

P1

SBTR-UPDATE SBTR-UPDATE

P2∗ P3∗

Fig. 5.12: Snapshot Sequence: Token Circulation Among Children of Process P0

P1 P3

P5

P2

P4

UPDATE
UPDATE

UPDATE UPDATE

UPDATEUPDATE
P4 P5

UPDATE UPDATE

UPDATE

P1

UPDATE
UPDATE UPDATE

P2

P0 P0∗

P3

SBTR-UPDATE SBTR-UPDATE

SBTR-UPDATE

Fig. 5.13: Snapshot Sequence: Token Circulation in the Subtree of Process P3

The difference between the local copy of the snapshot of a non-root process and the current global
state cannot be quantified in σcorsnp because a non-root process gets only a partially updated snapshot

5.3 Transformation of Self-Stabilizing Algorithms 71

in any state between σmutex and σcorsnp. Lemma below shows that the difference, however, remains
bounded following the state σcorsnp.

Lemma 5.2. In any execution of the transformed algorithm T (A), every process Pi in the system has

at least a 1-step consistent global snapshot within O(n) rounds of reaching the global state σcorsnp.

Proof. Every process gets a chance to execute its critical section once in 4n− 4 rounds after the mutual
exclusion algorithm stabilizes. Also the root process Proot gets the correct global snapshot when it gets
the token exclusively for second time in state σcorsnp (Lemma 5.1). Let σi be the global state in which
process Proot has the correct global snapshot. Irrespective of the truth value of the guards of the modified
use algorithm À, Proot, appends its current local state σ jroot|var(A) to the token before passing it on. Let
process Pα be the first child of process Proot in the spanning tree. Process Pα gets the token right after
Proot. As a result of token possession, process Pα might change its local state. Let σα be the resultant
global state. This makes the Proot copy of local state of Pα outdated.

Let Ξ|σmutex
be a suffix of a maximal execution Ξ̂ of the transformed algorithm T (A) starting in

the state σmutex. The maximal execution Ξ|σmutex
cannot have two global states σκ and σ j such that Pα

accesses its critical section in σκ and σ j and, the root process Proot does not get token in any state
between σκ and σ j. This is because process Pα can access its critical only when tokenα is not equal to
tokenroot and Pα sets tokenα equal to tokenroot when it accesses its critical section. Thus, in the global
state σα, Proot’s copy of the local state of Pα has the value which corresponds to the global state σι
–where σι is the state which resulted from the execution of Àα at Pα– and ι is the largest index such that
ι < i.

Let Proot → Pα · · · → Pς → Pβ be the sequence in which the token traverses the spanning tree after
state σi. Let σβ be the global state resulting from execution of a critical section of process Pβ. As a
result of accessing its critical section (thereby possibly executing a guarded command of the modified
algorithm À), process Pβ might change its local state. This action will make the copies of local state
of Pβ outdated in process that possessed token before Pβ. However, as we argued above there cannot
be a suffix of maximal execution of algorithm T (A) with two states σ̟ and σβ where Pβ accessed
its critical section and none of the processes in the set {Proot, · · · , Pς} accesses its respective critical
section. Thus, each process in {Proot, · · · , Pς} would have σ̟β|var(A) as local state of Pβ where ̟ is the
largest index such that ̟ < ι for each ι ∈ {i, α, · · · , ς}. This argument can be extended inductively for
all the non-root processes. Hence, it can be inferred that once process Proot gets the token again after
the state σi , all the processes in the system have a 1-step consistent global snapshot. �

The state sequence in Figures 5.14 through 5.18 shows how the local copies of the global snapshot be-
come 1-step consistent after the example system reaches state σcorsnp. A process with correct snapshot
is labeled as “C-GSNAP” and “1S -GSNAP” indicates that the process has a 1-step consistent snap-
shot. The root process P0 has the correct global snapshot and the token in the first configuration of
Figure 5.14. Process P0 executes a guarded command of the modified use algorithm; this is a “correct”
transition since P0 has the correct global snapshot. The root process sends the token to its first child P1

after writing its current local state to the snapshot compartment. Process P1 gets the token with the latest
local states of all the non-root processes and the current state of process P0 –subsequent to potential ex-
ecution of the guarded commands of À– appended to it. Process P1 executes algorithm À based on the
global snapshot it received with the token. The local copy of snapshot at P0 becomes 1-step consistent
snapshot as a result of this. Process P1 adds the latest value of the local variables of use algorithmA to
the global snapshot compartment and passes the token to its child P4 (see Figure 5.15). Process P4 exe-
cutes À4 and returns the token to process P1 after updating the snapshot. Process P5 gets token from P1

with current local states of all the processes appended to it. Process P5 executes its critical section based
on global snapshot it received and passes on the token to the first child in the subtree. Note that local
states (of the use algorithm A) of all other processes in the system have not changed in the meantime;

72 5 Scheduler Transformation of Self-Stabilizing Algorithms

P1 P3

P5

P2

P4

UPDATE

UPDATEUPDATE
P4 P5

UPDATE UPDATE

UPDATEUPDATE
UPDATE UPDATE

P2

1S-GSNAP

C-GSNAP

C-GSNAP
P0∗ P0

P3P1∗

SBTR-UPDATE

SBTR-UPDATESBTR-UPDATE

SBTR-UPDATE

Fig. 5.14: Consistent Snapshot Sequence: P0 Gets Outdated

the local copies of the snapshot of the processes which possessed the token prior to process P5 become
1-step consistent due to the actions of P5. The processes in the subtree of process P5 return the token

P1 P3

P5

P2

P4

UPDATE

UPDATEUPDATE
UPDATE UPDATE

P2

1S-GSNAP P0

P3

SBTR-UPDATE

SBTR-UPDATESBTR-UPDATE

1S-GSNAP P0

P1

1S-GSNAP 1S-GSNAP

C-GSNAP

SBTR-UPDATE

P5∗
1S-GSNAP

P4∗

C-GSNAP

Fig. 5.15: Snapshot Sequence: Processes P4 and P5 Get Correct Snapshots

back to P5 after appending their latest local states to it (Figure 5.16). The token is passed on to P1 with
the updated local states of P5 and the processes in the subtree. Except the local copy of the rightmost
descendant of P5, all copies of the snapshots in the left subtree of the root process are 1-step consistent
in the second configuration of Figure 5.16. The root process routes the token to its second child P2

(see Figure 5.17). Process P2 returns the token to P0 after executing À2. The token is further passed on
to process P3. It executes any enabled guarded command of the modified use algorithm, updates the
snapshot and, passes the token to its first child. It should be observed that in this suffix of execution
all the actions of À are executed with the help of the correct snapshot. Additionally, the local copy of
the snapshots in the left subtree of P0 remain 1-step consistent despite the actions of P2 because, P2

executed À only once between the states σmutroot and σcorsnp. Each process in the subtree of P3 executes
the modified used algorithm using correct global snapshot (Figure 5.18). The change in the local state
of any process in the subtree renders the snapshot copies of its predecessors 1-step consistent. Process
P3 sends the token back to the root process P0 after every process in the subtree executes its critical

5.3 Transformation of Self-Stabilizing Algorithms 73

P1 P3

P5

P2

P4

UPDATEUPDATE
UPDATE UPDATE

P2

1S-GSNAP P0

P3

SBTR-UPDATESBTR-UPDATE

1S-GSNAP P0

P1

1S-GSNAP 1S-GSNAP

1S-GSNAP
1S-GSNAP

P4 P5

1S-GSNAP 1S-GSNAP

SBTR-CGSNAP
SBTR-1SGSNAP

Fig. 5.16: Snapshot Sequence: The Subtree of Process P5 Gets Correct Snapshots

P1 P3

P5

P2

P4

UPDATE

1S-GSNAP P0

SBTR-UPDATESBTR-UPDATE

1S-GSNAP P0

P1

1S-GSNAP 1S-GSNAP

1S-GSNAP
1S-GSNAP

P4 P5

1S-GSNAP 1S-GSNAP

SBTR-1SGSNAPSBTR-1SGSNAP

C-GSNAP

1S-GSNAP

C-GSNAPP2∗ P3∗

Fig. 5.17: Snapshot Sequence: Children of Process P0 Get Correct Snapshot

section. Consequently, the root process’ copy of snapshot becomes the correct global snapshot. Note
that arrival of token at every process renders its snapshot globally correct.

Lemma 5.3. A process executes an action of the modified use algorithm À in any global state following

σcorsnp if the process has a correct global snapshot.

Proof. Process Proot also has the token in the state σcorsnp (from Lemma 5.1) which allows Proot to
execute an enabled guarded command of the modified use algorithm À (by construction). Thus, process
Proot execute an action of À only if it has a correct global snapshot. Let Pβ be a process that gets the
token in some state after state σi. Process Pβ gets the correct snapshot when it gets the token (from
Lemmata 5.1 and 5.2). Possession of the token also enables Pβ to execute an enabled guarded command
of À (by construction). Thus, any non-root process executes an action of À only if it has correct global
snapshot. �

Lemma 5.4. If an action of the modified use algorithm À is executed by any process in a global state

following σcorsnp, then the projection of this execution step of the transformed algorithm T (A) over

algorithmA leads to a decrease in the value of ranking function ∆A provided ¬PA holds.

Proof. A process Pi executes a guarded command of the modified use algorithm À only if it has the
token (by construction). Also, an action of À is executed only if process Pi has a correct global snapshot

74 5 Scheduler Transformation of Self-Stabilizing Algorithms

P1 P3

P5

P2

P4

C-GSNAP1S-GSNAP P0

P1

1S-GSNAP 1S-GSNAP

1S-GSNAP
1S-GSNAP

P4 P5

1S-GSNAP 1S-GSNAP

SBTR-1SGSNAPSBTR-1SGSNAP

1S-GSNAP1S-GSNAP

P2

SBTR-CGSNAP

P0∗

P3

1S-GSNAP1S-GSNAP

SBTR-1SGSNAP

Fig. 5.18: Snapshot Sequence: The System Reaches 1-Step Consistent State

(from Lemma 5.1). The guards in every process are strengthened such that an assignment statement is
executed only if its execution leads to a decrease in the value of ∆A. This in conjunction with Lemma
5.3 completes the proof. �

Let Ξ|σcorsnp be the suffix of a maximal execution of the transformed algorithm T (A) under a weakly-
fair scheduler such that σcorsnp is the first state of Ξ|σcorsnp.

Lemma 5.5. The projection of the execution suffix Ξ|σcorsnp over use algorithm A is an execution of

algorithmA under the scheduler DA.

Proof. AlgorithmA has the liveness property under the scheduler DA which is proven by showing the
existence of the ranking function ∆A. This implies that 1) in every state σiA of A there exists at least
one process with an enabled guarded command Gi j and 2) in every state at least one of the processes
with enabled guarded commands has a guarded commandGi j enabled such that decreaes(∆A) holds true
until predicatePA is satisfied. Thus, in every state ofA there exists at least one process with a modified
guarded command G̀i j until PA holds.

Let Ξ̃A|corsnp1
be the projection of the suffix Ξ|σcorsnp over use algorithm A. Let ε be a slice of the

projection Ξ̃A|corsnp1
of the suffix of a maximal execution Ξ of T (A) under a weakly fair scheduler such

that 1) its first state is the state where the root process gets the correct global snapshot for the first time
(σcorsnp) and, 2) PA does not hold in any state. As argued above, at least one process in the system has
an enabled guarded command of the modified use algorithm À in the first state of ε.

Let σi|var(A) → σ j|var(A) be an execution step of À in ε. There can be no execution –and therefore no
transition of variables– of À in a process unless it has the token (by construction). Only one process can
execute a guarded command of À after the mutual exclusion algorithm has stabilized (Theorem 5.2).
Thus, σi|var(A) → σ j|var(A) can only be brought about by execution of a guarded command of algorithm
A by a single process in the system.

Let Px be the process which executes the guarded command to bring about σi|var(A) → σ j|var(A).
Process Px has the token in state σi. Process Px executes an enabled modified guarded command of
the modified used algorithm À in σi|var(A) based on latest global information (Lemma 5.3) and this step
leads to a decrease in the value of ranking function∆A (Lemma 5.4). We argued above that use algorithm
A has an enabled guarded command that leads to a decrease in the value of ∆A in state σiA under
scheduler DA if σiA does not satisfy PA. It should also be observed that the assignment statements of
A are unchanged during the transformation to T (A). Thus, there exists an execution step of algorithm
A under scheduler DA which corresponds to σi|var(A) → σ j|var(A). An execution step of algorithm A

5.3 Transformation of Self-Stabilizing Algorithms 75

in state σi|var(A) is possible only in process Px. Note that, Px cannot be denied the token indefinitely
because the mutual exclusion layer algorithm ensures that each process gets the token infinitely often
in any execution under any weakly-fair scheduler. Additionally, the execution of an enabled guarded
command of algorithm À in process Px in state σi|var(A) can be delayed by a scheduler if it does not
select process Px once it possesses the token. This implies that a continuously enabled process is not
activated at all, since the guards pertaining to algorithm À are enabled in Px once it has the token.
However, this implies that a continuously enabled process is never activated. Hence, an execution step
of algorithm À in process Px cannot be delayed indefinitely. This argument can be extended to build an
equivalent execution of algorithm A under state DA which corresponds to Ξ̃A|corsnp1

until predicate PA

holds.
Let Ξ̃A|corsnp2

be projection of the suffix of a maximal execution of T (A) such that Ξ̃A|corsnp2
is not

maximal. Let εPA
be a suffix of Ξ̃A|corsnp2

such that all states satisfy predicate PA. Thus, εPA
consists

of states where a guarded command in a process is enabled but is never executed. This is, however,
not possible because the mutual exclusion algorithm ensures that each process gets the token infinitely
often in any execution. A process executes an enabled guarded command of algorithm A based on
latest global state (Lemma 5.3) when it gets token. The result of such an execution is same as that of
algorithmA under scheduler DA as the assignment parts of guarded commands are unchanged. �

Lemma 5.6. If use algorithmA converges to a predicate PA under scheduler DA then the transformed

algorithm T (A) converges to the predicate PA under any weakly-fair scheduler.

Proof. Let Ξ̃A be the projection of a maximal execution Ξ̂T (A) of the transformed algorithm T (A)
over use algorithm A. Let ε be a suffix of Ξ̃A such that σcorsnp is the first state of ε (Lemma 5.1). ε
is a maximal execution of A under scheduler DA (Lemma 5.5). Let ε have no suffix that converges
to a state satisfying predicate PA. This implies that there exists a maximal execution of use algorithm
A under scheduler DA which does not converge to a state satisfying the predicate PA. This, however,
contradicts the precondition of the lemma statement. Also, since ∆A is a monotonous function defined
over a well-founded domain, T (A) reaches a state satisfying PA in a finite number of execution steps.
This completes the proof. �

Remark 5.2. The ranking function ∆A embedded in the guards of modified use algorithm À must be
valid for all the executions under scheduler DA. A “mismatch” between a ranking function and a sched-
uler may lead to the transformed algorithm that generates executions extraneous to the executions under
the original scheduler. More specifically, should ranking function ∆A correspond to a scheduler less re-
strictive than scheduler DA, transformed algorithm T (A) may produce executions which cannot be
produced under DA.

Theorem 5.3. The transformed algorithm T (A) is self-stabilizing with respect to predicate PA under

any weakly-fair scheduler.

Proof. Convergence of the transformed algorithm T (A) follows from Lemma 5.6. Closure follows
from Lemma 5.5 and the assumption that the safety predicate PA is closed under a weakly-fair sched-
uler. �

Corollary 5.1. The transformed algorithm T (A) is self-stabilizing with respect to the predicatePspan∧

Pmutex ∧ PA under any weakly fair scheduler.

5.3.3 Concurrency Optimization

As a result of using the global mutual exclusion algorithm for the coordination among constituent
processes, only one process is able to execute an action of the (modified) use algorithm in any system

76 5 Scheduler Transformation of Self-Stabilizing Algorithms

state. Although this restriction plays a pivotal role in preserving the self-stabilization property of use
algorithm, it leads to an avoidable decrease of concurrency in certain scenarios. The loss of concurrency
is particularly evident when a use algorithm, whose ranking function can be evaluated at any process
using local states of processes belonging to k-neighborhood, is transformed.

For example, consider the algorithm shown in Figure 5.19. Algorithm SSWMAC loosely imitates
Medium Access Control (MAC) algorithms meant for wireless sensor networks. Each process in the

process Pi

{

localvar turni ∈ Z
+;

localvar sloti ∈ Z+ ∪ {⊥};
const Nκ

i
= { j| dismin(Pi, P j) ≤ κ};

const Nκ⊥
i
= { j| (j ∈ Nκ

i
) ∧ (slot j =⊥)};

const ñ = max j∈Π (|Nκ
i
|);

macro minNκ⊥
i

(x) ≡ ∀ j∈Nκ⊥
i

: (x , turn j) ∧ (x < (turn j)
macro unique(x) ≡ ∀ j∈Nκ

i
: (x , turn j)

macro valid(x) ≡ minNκ⊥
i

(x) ∧ unique(x)
/∗ a valid slot is found ∗/

〈G1〉 :: (sloti =⊥) ∧ (turni ≤ ñ) ∧ valid(turni)→ sloti := turni;
/∗ current slot is in conflict with other process ∗/

〈G2〉 :: 8(sloti ,⊥) ∧ (turni ≤ ñ) ∧ (∃ j∈Nκ
i

: turni = turn j)→ sloti :=⊥;
/∗ slot number is larger than frame size ∗/

〈G3〉 :: 8(sloti > ñ) ∨ (turni > ñ)→ turni := (turni + 1) mod [ñ − 1]; sloti :=⊥;
/∗ turn variable is not valid, increment it ∗/

〈G4〉 :: 8(sloti =⊥) ∧ (turni ≤ ñ) ∧ ¬(valid(turni))→ turni := (turni + 1) mod [ñ − 1];
}

Fig. 5.19: Sub-algorithm SSWMAC i

system tries to find a unique transmitting slot in a communication frame. A process also tries to ensure
that the slot is positioned as close as possible to the beginning of a communication frame. Algorithm
SSWMAC uses variables turni and sloti to determine a slot for each process in a communication
frame. Variable turni can be assigned any positive integer value; sloti can be assigned a special symbol
“⊥” in addition to any positive integer. The set of processes within κ hops of Pi is referred to as κ-
neighborhood of Pi. We use ñ to denote the number of processes in the largest κ-neighborhood of the
system. Sub-algorithm SSWMAC i has four guarded commands. Process Pi assigns sloti the value of turni

if 1) sloti is⊥, 2) turni is less than or equal to ñ and, 3) turni is a “valid” slot number (Guarded command
G1). A slot number is said to be valid if 1) it is not equal to the the turn variables in κ-neighborhood
and, 2) it is less than those turn variables –within κ-hops– whose respective slot variables are equal to
⊥. Guarded command G2 sets variable sloti to ⊥ if turni is equal to the turn variable of any process in
the κ-neighborhood of process Pi. Variable sloti is assigned ⊥ and turni is incremented modulo ñ − 1 if
either sloti or turni is greater than ñ (Guard command G3). Variable turni is incremented modulo ñ − 1
by Guarded command G4 if 1) sloti is ⊥ and 2) turni is not unique in the κ-neighborhood or turni is not
minimum amongst the turn variables whose respective slot variables are ⊥. Guarded command G4 is
used by process Pi to traverse across the frame size to find a vacant slot in case the slot corresponding
to the curent variable of variable turni is not valid.

The correctness condition of SSWMAC –mirroring the correctness requirements of the MAC
algorithms of wireless sensor networks– stipulates that a process must have slot number different from

5.3 Transformation of Self-Stabilizing Algorithms 77

any other process within κ hops. Let Nκ
i

denote the set of processes which are utmost κ hops away
from process Pi. We use predicate PWMAC to characterize the legal states of algorithm SSWMAC;
predicatePWMAC holds true in a global system state if the value of turni is unique in the κ-neighborhood
of process Pi and turni is equal to sloti, that is,

PWMAC ≡ ∀i ∈ Π : ∀ j ∈ Nκ
i

: (sloti , slot j) ∧ (sloti = turni).

Algorithm SSWMAC reaches the states satisfying PWMAC under rather stringent scheduling con-
straints because actions of each process must be coordinated with those of the processes belonging to
the setNκ

i
; every process must have the correct local states of processes belonging toNκ

i
to execute any

enabled guarded command. Since a process cannot directly read the communication registers of a pro-
cess κ hops away, a malevolent scheduler can ensure that Pi has outdated κ-neighborhood information
whenever it is activated.

The scheduling requirements are not met even if every process is able to get a correct snapshot of
its κ-neighborhood and coordinates its actions with the processes in its κ-neighborhood with the help of
κ-local mutual exclusion algorithms. Consider a system of 6 processes shown in Figure 5.20. We would
like to ensure that eventually no two process within two hops of each other have same slot number; κ
is, therefore, instantiated to 2. Each node in the graph is labeled with the ID of the process, the value
of sloti, and the value of turni. The identifier of a process is represented by a bold numeral. Figure 5.20
shows an execution of SSWMAC under a scheduler that never selects two processes within two
hops consecutively. We assume that each process gets the correct snapshot of the processes in its 2-
neighborhood whenever it is selected by the scheduler and, the underlying scheduler never selects two
processes within two hops of each other simultaneously. The system starts in the state where each sloti
variable is ⊥. The turn variables of processes P1 and P5 are equal to 0 in the initial state; turn2 and
turn6 are equal to 3, while turn3 and turn4 are equal to 2. Process P3 is selected to execute an enabled
guarded command in the initial state and, since turn3 is neither unique nor minimum in the system, P3

increments it to 3. Process P4 is selected in the next state; although turn4 is not equal to any other turn
variable in the system, it is not the least among them and, therefore, turn4 is incremented to 3 as well.
The underlying scheduler selects processes P2 and P6 in the following state as these two processes are
three hops away from each other. Variables turn2 and turn6 are incremented as they are neither unique
nor minimum in the respective 2-neighborhoods. Note that the 2-neighborhoods of the processes P3

and P4 span the whole system.

78 5 Scheduler Transformation of Self-Stabilizing Algorithms

����

����

��
��
��
��

����

���� ��

��

�
�
�
�

���� ��

���� ����

����

��
��
��
��

���� ����

�� ����

��

�
�
�
�

�� ����

���� ��

����

��
��
��
��

���� ��

���� ����

����

��
��
��
��

��
��
��
��

��

��

�
�
�
�

�
�
�
�

���� ����

����

��
��
��
��

��
��
��
��

�� ����

��

�
�
�
�

�
�
�
�

��
��
��
��

���� ��

����

��
��
��
��

��
��
��
��

�
�
�
�

����

����

��
��
��
��

����

��
��
��
��

����

��
��
��
��

����

����

���� ��

�
�
�
�

��

����

���� ����

��
��
��
��

����

���� ����

�� ����

�
�
�
�

��

�� ����

���� ��

��
��
��
��

����

���� ��

��
��
��
��

����

���� ��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

〈3,⊥, 2〉

〈5,⊥, 0〉

〈2,⊥, 3〉 〈1,⊥, 0〉

〈4,⊥, 2〉〈4,⊥, 2〉

〈3,⊥, 3〉

P3

〈2,⊥, 3〉

〈3,⊥, 3〉

〈4,⊥, 3〉
P4

〈2,⊥, 0〉

〈3,⊥, 3〉

〈4,⊥, 3〉
P2, P6 P1, P5

〈1,⊥, 0〉 〈2,⊥, 0〉

〈5,⊥, 0〉

〈3,⊥, 3〉

〈4,⊥, 3〉

〈6,⊥, 0〉 〈6,⊥, 0〉

〈1,⊥, 0〉 〈2,⊥, 3〉 〈1,⊥, 0〉

〈6,⊥, 3〉

〈1,⊥, 1〉

〈6,⊥, 3〉 〈5,⊥, 0〉 〈6,⊥, 3〉 〈5,⊥, 0〉 〈5,⊥, 1〉

P3

〈2,⊥, 0〉

〈5,⊥, 1〉

〈4,⊥, 3〉

〈3,⊥, 0〉

〈1,⊥, 1〉〈1,⊥, 1〉 〈2,⊥, 0〉

〈3,⊥, 0〉

〈4,⊥, 0〉

〈3,⊥, 0〉

〈4,⊥, 0〉

〈1,⊥, 1〉 〈2,⊥, 1〉

P4P2, P6

〈6,⊥, 0〉〈5,⊥, 1〉 〈5,⊥, 1〉〈6,⊥, 0〉〈6,⊥, 1〉

〈3,⊥, 0〉

〈4,⊥, 0〉

〈2,⊥, 1〉〈1,⊥, 2〉

P2, P6 P1, P5

〈2,⊥, 2〉

〈3,⊥, 0〉

〈4,⊥, 0〉

〈1,⊥, 2〉

P1, P5

〈3,⊥, 0〉

〈4,⊥, 0〉

〈3,⊥, 0〉

〈4,⊥, 0〉
P2, P6

〈3,⊥, 0〉

〈4,⊥, 0〉
P1, P5

〈1,⊥, 3〉

〈6,⊥, 3〉 〈5,⊥, 0〉

〈5,⊥, 2〉 〈6,⊥, 1〉 〈5,⊥, 2〉〈6,⊥, 2〉

〈6,⊥, 2〉 〈5,⊥, 3〉 〈6,⊥, 3〉 〈5,⊥, 3〉

〈4,⊥, 0〉

〈3,⊥, 1〉

〈5,⊥, 0〉〈6,⊥, 3〉

〈2,⊥, 3〉 〈1,⊥, 0〉

P4P3

〈2,⊥, 2〉 〈2,⊥, 3〉〈1,⊥, 3〉 〈1,⊥, 0〉

〈3,⊥, 1〉

〈4,⊥, 1〉

〈2,⊥, 3〉 〈2,⊥, 3〉

〈5,⊥, 0〉

〈1,⊥, 0〉

〈6,⊥, 3〉

P2, P6

〈2,⊥, 0〉〈1,⊥, 0〉

〈3,⊥, 1〉

〈4,⊥, 1〉

〈5,⊥, 0〉〈6,⊥, 0〉

〈2,⊥, 0〉

〈5,⊥, 1〉

〈3,⊥, 1〉

〈4,⊥, 1〉

〈1,⊥, 1〉

〈6,⊥, 0〉

P1, P5P3

〈2,⊥, 0〉

〈4,⊥, 1〉

〈3,⊥, 2〉

〈5,⊥, 1〉〈6,⊥, 0〉

P4

〈1,⊥, 1〉〈2,⊥, 0〉

〈3,⊥, 2〉

〈4,⊥, 2〉

〈1,⊥, 1〉

〈5,⊥, 1〉〈6,⊥, 0〉

P1, P5

〈3,⊥, 2〉

〈4,⊥, 2〉

〈2,⊥, 0〉

〈5,⊥, 2〉

〈1,⊥, 2〉

〈6,⊥, 0〉

P3

〈3,⊥, 3〉

〈6,⊥, 0〉

〈1,⊥, 2〉 〈2,⊥, 0〉

〈4,⊥, 2〉 P4, P1, P5, P3, · · · , P2, P6, P3

〈2,⊥, 3〉

〈5,⊥, 2〉 〈5,⊥, 0〉

〈4,⊥, 2〉

〈3,⊥, 2〉

〈1,⊥, 0〉

〈6,⊥, 3〉

P2, P6

〈2,⊥, 2〉

〈3,⊥, 2〉

〈4,⊥, 2〉

〈5,⊥, 0〉

〈1,⊥, 0〉

〈6,⊥, 2〉

P4

〈3,⊥, 2〉

〈4,⊥, 1〉

〈2,⊥, 2〉

〈5,⊥, 0〉

〈1,⊥, 0〉

〈6,⊥, 2〉

Fig. 5.20: A divergent execution of SSWMAC

5.3 Transformation of Self-Stabilizing Algorithms 79

Since the the largest 2-neighborhood of the system contains five processes, the turn variables are incre-
mented modulo 4. Therefore, the variables turn2 and turn4 are reset to 0. The scheduler next activates
processes P1 and P5; although turn1 and turn5 are equal to 0, both variables are nevertheless incremented
as turn2 and turn6 are equal to 0 as well. The execution is extended by selecting a process with the min-
imum turn variable in its 2-neighborhood only when some other process in the 2-neighborhood has its
turn variable equal to the minimum value as well. As a result of this strategy, the system eventually gets
back to the state in which the execution started. Also, none of the states in the execution satisfies pred-
icate PWMAC . The execution can be extended by repetitive application of the strategy. Note that every
process has an enabled guarded command in each state of the execution and, since, each process is se-
lected infinitely often in the infinite execution, the strategy is strongly fair. Thus, despite a strongly fair
scheduler that does not violate 2-local mutual exclusion and the availability of correct 2-neighborhood
snapshot, the execution shown in Figure 5.20 does not have suffix that satisfies predicate PWMAC . The
following definition characterizes the scheduler that fulfills the scheduling requirements ofSSWMAC

under the assumption that a lower layer provides a correct snapshot of every κ-neighborhood.

Definition 5.5 (Scheduler DWMAC). Scheduler DWMAC selects an enabled process in every execution

step while fulfilling the following constraints:

1) an infinitely often enabled process is selected infinitely often.

2) a process is selected in an execution step if it has a unique and the minimum turn variable in Nκ⊥
i

.

3) an enabled process is ignored if execution of its guarded command leads to an increase in the

number of processes whose turn variables are either not unique or not minimum.

Note that, notwithstanding the seeming difficulty of implementing the scheduler specified by Defini-
tion 5.5, scheduler DWMAC is used to show that the convergence of algorithm SSWMAC towards the
states satisfying PWMAC is guaranteed only under a rather weak scheduler. Moreover, scheduler DWMAC

is also used to underscore the utility of scheduler transformation to preserve the self-stabilization
property of such distributed algorithms under much stronger schedulers. We now show that algorithm
SSWMAC is stabilizing under scheduler DWMAC .

We define five counting functions over the state space of algorithmSSWMAC. Function alloted(σi)
returns the number of processes whose slot and turn variables are unique in their respective κ−neighborhoods.
The number of processes whose slot variables are ⊥ and whose turn variables are unique and minimum
in the κ-neighborhood is counted by the function valid(σi). Function seek(σi) counts the number of
processes whose slot variables are ⊥ and turn variables are either not unique or not the minimum in
the κ-neighborhoods. Function conflict(σi) returns the number of processes whose turn and slot vari-
ables are equal to that of at least one process in the κ- neighborhoods. Let dis j denote the difference
between the current turn j variable of process P j and the smallest integer value which is unique in the
κ-neighborhood of process P j. Function dis(σi) is defined as the sum of dis j values corresponding to
all the process in the system. The minimum value is 0 and the maximum value of all functions except
dis(σi) is n. Let ∆WMAC = 〈conflict(σi), n − alloted(σi), n − valid(σi), seek(σi), disi〉 be a lexicographic
order on N5. The minimum value of ∆WMAC is 〈0, 0, n, 0, 0〉 and it is attained in the state which satisfies
PWMAC . The value of function ∆WMAC decreases for any execution step of WMAC under DWMAC .
Guarded commands G2 and G3 decreases the value of the function conflict as they reset the value of
slot variables. The execution of guarded command G4 in a process leads to, either, an increase in the
value of function valid and decrease in the value of function seek or, a decrease in dis. This is due to the
constraint on DWMAC which bars DWMAC from selecting a process whose action increases the number
of turn variables which are either not unique or not minimum. Since scheduler DWMAC selects only one
process in any execution step and a process executes Guarded command G1 only if it has a valid turn
variable, the execution of G1 in any process leads to a decrease in the value of valid without effecting
the functions conflict and seek. The following theorem formally states the correctness of SSWMAC

under the rather constrained scheduler.

80 5 Scheduler Transformation of Self-Stabilizing Algorithms

Theorem 5.4. Algorithm SSWMAC is self-stabilizing with respect to predicate PWMAC under the

scheduler DWMAC .

Algorithm SSWMAC can be transformed so that T (SSWMAC) is self-stabilizing under any
weakly fair scheduler. However, transformation using a global mutual exclusion algorithm would al-
low only one process to execute an action of SSWMAC. Since each process only requires local states
of processes within κ hops to correctly evaluate ∆WMAC –and thereby decide whether its action is ben-
eficial for convergence or not– transformation using the global mutual exclusion algorithm, evidently,
leads to an unnecessary decrease in concurrency.

The transformation can be optimized with respect to the latent concurrency of a transformed algo-
rithm by using a modified κ-local mutual exclusion algorithm to evaluate a ranking function. As shown
in the example above, the parameter κ can be extracted from the convergence proof via inspection of the
ranking function. We now show how to optimize the transformation using a κ-local mutual exclusion
algorithm. We use the κ-local mutual exclusion algorithm due to Boulinier and Petit [111] because it
does not assume any underlying graph structure to function correctly. The κ-local mutual exclusion of
[111] is modified to also gather κ-neighborhood snapshots.

Architecture of the κ-Local Optimized Transformer

Figure 5.21 shows the architecture of the optimized transformer. Unlike the transformer using a global
mutual exclusion algorithm, this transformer has only two components. The κ-local mutual exclusion
forms the lower layer of the transformer. Since the κ-local mutual exclusion of [111] does not require
any specific topology to function correctly, this version of transformer does not uses any spanning
tree algorithm for tree construction. The modified use algorithm is embedded in the κ-local mutual
exclusion algorithm. We briefly describe the local mutual exclusion algorithm before proceeding with

Use Algorithm
Modified

κ-local mutual Exclusion Layer

snapshoti〈clocki2, resi2〉

Fig. 5.21: Layered View of the k-Local Scheduler Transformer

the transformation and the associated proofs.

κ-Local Mutual Exclusion Layer

The κ-local mutual exclusion algorithm essentially maintains “wavelets” which travel κ hops in each
cycle. Each process synchronizes the actions of the modified used algorithm with arrival of wavelet
wherein the arrival of wavelet allows a process to access its critical section. The algorithm ensures
that if a process has the privilege to execute its critical section, then no process in its κ-neighborhood
has the privilege simultaneously. Since the transformation requires the local states of the processes in
each κ-neighborhood, the communication register is extended to gather the snapshot. As explained in
Section 5.3.1, a compartment to hold the κ-local snapshot is appended to every communication register
in the system.

The sub-algorithm implemented by each process is shown in Figure 5.22. The κ-local mutual ex-
clusion algorithm consists of five guarded commands per process. The algorithm uses two variables
per process –clocki1 and clocki2– to control the wavelets. A process Pi uses two auxiliary variables –

5.3 Transformation of Self-Stabilizing Algorithms 81

process Pi

{

localvar clocki1, clocki2 ∈ Z;
localvar resi1, resi2 ∈ Z × Π ;
const Ni ≡ {P j|P j is neighbor of Pi}

macro normalstepix ≡ (clockix ≥ 0) ∧ (∀ j∈Ni
(clockix = clock jx)

∨(clock jx = clockix + 1 mod [Kx]));
macro locallycorrectix ≡ (clockix ≥ 0) ∧ (∀ j∈Ni

(clockix = clock jx)
∨(clock jx = clockix + 1 mod [Kx])
∨(clockix = clock jx + 1 mod [Kx]));

macro resetix ≡ ¬locallycorrectix ∧ clockix ≥ 0;
macro nextstepi ≡ normalstepi1 ∧ locallycorrecti2;
macro convergestepix ≡ (clockix < 0) ∧ (∀ j∈Ni

(clockix ≤ 0) ∧ (clockix ≤ clock jx));
nextstepi → if clocki1 = (κ) mod [κ + 1] {

if normalstepi2 ∧ (〈i, clocki2〉 = resi2) {
Ài 〈〈 modified use algorithm〉〉;
clocki2 := (clocki2 + 1) mod [K2] } ;

resi1 := 〈clocki2, i〉; resi2 := 〈clocki2, i〉; }
elseif {

resi1 := resi2; resi2 := 〈clocki2, i〉 ⊕ res jy, j ∈ Ni; }
writestate() 〈〈write latest local state of modified use algorithm〉〉;
clocki1 := (clocki1 + 1) mod [K1];

∀x∈{1,2} 8 convergestepix → clockix := (clockix + 1) mod [Kx];
∀x∈{1,2} 8 resetix → clockix := −αx;
}

Fig. 5.22: κ-Local transformed subalgorithm T (Ai)

resi1, resi2– to select a process which can execute critical section in the κ-neighborhood of Pi. Predicate
normalstepi1 (normalstepi1) holds at process Pi if 1) variable clocki1 (clocki1) is positive, and 2) clock j1

(clock j2) variables of all the neighbors of Pi are either equal to clocki1 (clock j1) or one step ahead of
clocki1 (clock j1). Predicate locallycorrecti1 (locallycorrecti2) holds at Pi if 1) clocki1 (clocki1) is posi-
tive, and 2) clock j1 (clock j2) variables of all the neighbors of Pi are equal to clocki1 (clock j1) or 3) one
step ahead or one step behind clocki1 (clock j1). A process is in an inconsistent state if either one or both
of its clock variables are positive and the respective locallycorrectix predicate does not hold; an incon-
sistent process resets its clockix to −αx. αx must be instantiated to an integer greater than the largest
cycle in the system to guarantee the convergence of the algorithm. Predicate convergestepix holds true
if variable clockix is negative and at least one step behind the respective clock variables of its neighbors.
Variable clockix is incremented modulo Kx if predicate convergestepix is true. The value of Kx should
be greater than the product of the parameter κ and the longest cycle of the system. In a legal global
system state, the value of clock variables at a process are synchronized to those of the neighboring pro-
cesses. A process has to fulfill two sets of preconditions to enter its critical section. The first condition
is fulfilled if 1) the value of clocki1 is either equal to those if its neighbors or one step behind, 2) clocki2

is locally consistent and, 3) clocki1 is equal to (κ) mod [κ + 1]. The second condition is satisfied if 1)
clocki2 is equal to or one step behind the neighboring clock variables and 2) process Pi has the lowest
identifier among the neighbors whose clock j2 is equal to clocki2. If both conditions are fulfilled, then
process Pi 1) accesses its critical section, 2) increments clocki2 modulo K2 and, 3) assigns resi1 and
resi2 the tuple consisting of new value of clocki2 and ID of Pi. Variableresi1 is assigned the value of resi2

and resi2 is assigned the the tuple consisting of clock j2 and ID of neighbor P j with least clock value.

82 5 Scheduler Transformation of Self-Stabilizing Algorithms

Essentially variable resi1 contains the ID of the process which gets the access to its critical section next
in the κ-neighborhood of process Pi. Variable clocki1 is incremented by 1 if the first clock is not equal to
(κ)mod[κ+1]. Every process, essentially, builds an ordering of res j2 in its κ-neighborhood and does not
access the critical section if it is not the least element of the ordering. Note that a process P j marked as
the least element of ordering in the κ-neighborhood of another process Pi may not be the least element
in its own κ-neighborhood.

Figure 5.23 shows a segment of an execution of the κ-local mutual exclusion with the parameter κ
instantiated to 2. The system consists of six processes and the identifier of every process is marked in
bold. It is assumed that the underlying scheduler selects every enabled process in every execution step.
A process with privilege is marked with an asterisk; each process is labeled with the value of its clock
variables. We assume that in the initial state of the execution, the resix variables are equal to a tuple
consisting of the process’ identifier and the value of clocki2, that is, resix = 〈i, 2〉. As a result of this, the
initial state is not a legal state, since every process has the privilege to access the critical section. Thus,
each process increments both clock variables and again resets resix variables to the tuple of its identifier
and the new value of clocki2. Note that since all the clocki1 variables are equal to each other, predicate
nextstepi holds true in all the processes. Every process increments clocki1 and recomputes the value

��
��
��
��

����

����

��
��
��
��

��
��
��
��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��

��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��

�
�
�
�

��
��
��
��

�
�
�
�

���� ����

����

��
��
��
��

��
��
��
��

��
��
��
��

�� ����

��

�
�
�
�

�
�
�
�

��
��
��
��

���� ��

����

��
��
��
��

��
��
��
��

�
�
�
�

���� ����

����

��
��
��
��

��
��
��
��

��
��
��
��

���� ��

��

�
�
�
�

�
�
�
�

����

����

��
��
��
��

��
��
��
��

�� ����

��

�
�
�
�

�
�
�
�

��
��
��
��

���� ��

����

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

������

��
��
��
��

����

��
��
��
��

〈0, 5, 2〉∗ 〈1, 5, 2〉∗

〈2, 5, 2〉∗

σ1 :

〈3, 5, 2〉∗

〈4, 5, 2〉∗〈5, 5, 2〉∗

〈0, 6, 3〉 〈1, 6, 3〉

〈2, 6, 3〉

σ2 :

〈3, 6, 3〉

〈4, 6, 3〉〈5, 6, 3〉

〈0, 7, 3〉 〈1, 7, 3〉

〈2, 7, 3〉

σ3 :

〈3, 7, 3〉

〈4, 7, 3〉〈5, 7, 3

〈0, 8, 3〉∗ 〈1, 8, 3〉

〈2, 8, 3〉

σ4 :

〈3, 8, 3〉

〈4, 8, 3〉〈5, 8, 3〉

〈0, 9, 4〉 〈1, 9, 3〉

〈2, 9, 3〉

σ5 :

〈3, 9, 3〉

〈4, 9, 3〉〈5, 9, 3〉

〈1, 10, 3〉

〈2, 10, 3〉

σ6 :

〈3, 10, 3〉

〈4, 10, 3〉〈5, 10, 3〉

〈1, 11, 3〉∗

〈2, 11, 3〉

σ7 :

〈3, 11, 3〉

〈4, 11, 3〉〈5, 11, 3〉

〈0, 10, 4〉〈0, 11, 4〉〈0, 12, 4〉 〈1, 12, 4〉

〈2, 12, 3〉

σ8 :

〈3, 12, 3〉

〈4, 12, 3〉〈5, 12, 3〉

〈0, 13, 4〉 〈1, 13, 4〉

〈2, 13, 3〉

σ9 :

〈3, 13, 3〉

〈4, 13, 3〉〈5, 13, 3〉

〈0, 14, 4〉

〈2, 14, 3〉∗

σ10 :

〈3, 14, 3〉

〈5, 14, 3〉

〈1, 14, 4〉

〈4, 14, 3〉

〈0, 15, 4〉 〈1, 15, 4〉

〈2, 15, 4〉

σ11 :

〈3, 15, 3〉

〈4, 15, 3〉〈5, 15, 3〉 〈4, 16, 3〉

〈0, 16, 4〉

〈2, 16, 4〉

σ12 :

〈3, 16, 3〉

〈5, 16, 3〉

〈1, 16, 4〉 〈0, 17, 4〉 〈1, 17, 4〉

〈2, 17, 4〉

σ13 :

〈3, 17, 3〉∗

〈4, 17, 3〉〈5, 17, 3〉

〈0, 2, 4〉∗ 〈1, 2, 4〉

〈2, 2, 4〉
σ14 :

〈3, 2, 4〉

〈4, 2, 3〉∗〈5, 2, 3〉

〈0, 5, 5〉 〈1, 5, 4〉∗

〈2, 5, 4〉
σ15 :

〈3, 5, 4〉

〈4, 5, 4〉〈5, 5, 3〉∗

Fig. 5.23: A Segment of an Execution of κ-Local Mutual Exclusion Algorithm

of resi2 in states σ2 and σ3 because the difference between first clock variable and κ is not divisible
by 3. The first condition to enter critical section is true when the system reaches states σ4. However,
only process P0 can enter its critical section because, all clocki2 variables in the 2- neighborhood of

5.3 Transformation of Self-Stabilizing Algorithms 83

P0 are equal to each other and process P0 has the lowest identifier in its 2- neighborhood. Process P0

is the only process which enters the critical section in state σ4 because, the process with the lowest
identifier (i. e. P2) in the 2-neighborhood of processes P4 and P5 selects another process (i. e. P0) it is
2-neighborhood. Consequently, while process P0 increments both clock variables, all other processes
increment only their clocki1 variable. No process has the privilege to access its critical section in states
σ5 andσ6; nonetheless, each process computes variables resi1 and resi2 to determine the process that has
either lowest clocki2 or the lowest ID in their respective 2-neighborhood. Process P1 has the privilege
to access its critical section in state σ7 as it has the lowest ID and the lowest clocki2 value; process P0

cannot access its critical section since normalstep02 does not hold. In a similar manner, process P2 gets
the privilege in σ10. As 2-neighborhood of process P2 covers the whole graph, no other process has the
privilege in state σ10. Process P3 accesses its critical after three execution rounds because the second
clock variables of the processes with lower identifier are one step ahead of clock22. Two processes get
privilege simultaneously in σ14 and it is a legal state because processes P0 and P4 are three hops away.
Process P4 gets the privilege because it has the lowest clocki2 in its 2-neighborhood; all the processes in
the 2-neighborhood of P0 have their second clock variable equal to four, nevertheless, process P0 gets
the privilege as it has the lowest identifier. In a similar fashion, the privilege to access critical section is
passed on to processes P1 and P4 in state σ15.

Modification of the Use Algorithm

The use algorithm is embedded in the κ-mutual exclusion algorithm as shown in the Figure 5.22. The
guards of the use algorithm are modified as explained in Section 5.3.1. Note that the coordination
mechanism used for gathering a correct snapshot remains transparent to transformed algorithm. An
action of a transformed algorithm is executed when the mutual exclusion layer has the privilege to
access its critical section. The latest values of the local variables of a use algorithm are written to the
snapshot compartment of the communication register whenever a process increments either of its clock
variables.

Correctness of κ-Local Scheduler Transformation

We now show that the κ-local transformer preserves the stabilization property of a use algorithm pro-
vided the evaluation of its ranking function requires only a κ-local snapshot. We use Tκ(A) to represent
the transformed algorithm based on the κ-local mutual exclusion algorithm. Let predicate Pκmutex hold
true in state σi if the possession of privilege by process P j in state σi implies that no process in the
κ-neighborhood of process P j has the privilege simultaneously.

Theorem 5.5 (based on [111]). Irrespective of the initial state, algorithm Tκ(A) reaches a state satis-

fying predicate Pκmutex within O(n) execution rounds under any weakly-fair scheduler.

Note that there exists at least one process where either convergestepix or resetix holds until both clock
variables stabilize to a state where they are synchronized with the clock variables of the neighboring
processes.
Let Ξ̂Tκ(A) = 〈· · ·σκmutexi, · · ·σκmutex j, · · ·σκmutexl, · · · 〉 be a maximal execution of a transformed algo-
rithm Tκ(A) such that σκmutexi is the state where predicatePκmutex holds and process Pi has the privilege
in its κ-neighborhood for the first time in Ξ̂Tκ(A). The set of processes in the κ-neighborhood of a pro-
cess Pi is referred to as Nκ

i
in the following, that is, Nκ

i
= {P j | dis(Pi, P j) ≤ κ}. The set of immediate

neighbors of Pi –that is, dis(Pi, P j) is equal to 1– is referred to as Ni.

Lemma 5.7. In any execution of the transformed algorithm Tκ(A), process Pi gets correct snapshot of

its κ-neighborhood within O(κ · |N i
κ|) execution rounds of reaching state σκmutexi.

84 5 Scheduler Transformation of Self-Stabilizing Algorithms

Proof. The κ-neighborhood snapshot that process Pi possesses in σκmutexi might be inconsistent since
Pi obtains it by reading the communication registers of its neighbors. Nevertheless, process Pi writes
the latest value of local variables of the modified use algorithm À before it increments the value of
the first clock variable. Observe that after the κ-local mutual exclusion algorithm converges to a correct
state, only the guarded command corresponding to the predicate nextstepl is enabled in any process
Pl. Process Pi does not bid to enter its critical section in the next κ execution steps as it –along with
the processes in its κ-neighborhood– determines the process which will get privilege in the next phase.
While doing so process Pi increments variable clocki1 and computes resi1 and resi2. Also, every process
writes its local state to its communication registers whenever it increments the value of variable clocki1.

We show that a process selected to receive privilege also collects the latest local states of the pro-
cesses in its κ-neighborhood. We prove it in two parts: first correctness of the snapshot is shown for the
processes whose distance from the process with the privilege is less than κ, followed by the correctness
of the snapshot of the process located exactly κ hops away from the process with the privilege.
Let ς1 be the value of variable clocki1 when process Pi gets the privilege exclusively for the first time in
state σκmutexi. The value of variable clock j1 of any process P j belonging to κ-neighborhood of process
Pi lies between ς1 − κ and ς1 + κ in σκmutexi. Note that since Pi has the privilege in state σκmutexi,
ς1 ≡ (κ) mod [κ+1] and, for all integers ς1−κ ≤ ϑ ≤ ς1+κ, ϑ . (κ) mod [κ+1] if ϑ , ς1. Additionally,
the value of clock j1 of process P j (P j ∈ Ni) can either be equal to ς1 or ς1 + 1. Since predicate Pκmutex

holds in state σκmutexi, variable res j2 of process P j (P j∈ N
κ
i
) is equal to 〈i, clocki2〉 in the state where

clock j1 is equal to ς1. A process in the κ-neighborhood of Pi is not able to change the local variables
corresponding to algorithmA till variable clock j1 (P j ∈ N

κ
i
) is equal to ς1 + κ+ 1 because, in the phase

corresponding to clock value ς1, Process Pi has the privilege and all other values are not equivalent to
(κ) mod [κ + 1]. Process Pi is the minimal element of the ordering induced by the tuples composed of
the second clocks and the identifiers of the processes belonging to Nκ

i
in the phase corresponding to ς1.

Before leaving its critical section, Pi increments variable clocki2. Thereby, process Pi ceases to be the
minimal element in Nk

i
because, in the next phase variable clocki2 has either the greatest second clock

value in Nk
i

or there exists at least one process P j (P j ∈ N
k
i
) such that clock j2 is equal to clocki2 and

the identifier of process P j is smaller than that of Pi. In each phase, at most one process P j (P j ∈ N
k
i
)

increments clock j2. Since the system contains a finite number of processes, process Pi becomes the
minimal element in Nk

i
after all the processes in Nk

i
increment their second clock.

Let ς̀i be the value of clocki1 in the state σκmutexi2 in which Pi is the minimal element in Nk
i
. Since

it takes κ steps for any process to decide whether it is the minimal element, ς̀1 is equal to ς1 + λ(κ + 1)
where λ is a positive integer. It also implies that process Pi has the privilege in σκmutexi2. If the distance
between process Pi and any process P j (P j ∈ N

k
i
) is ϑ, then |clocki1 − clock j1| ≤ ϑ. Consider a process

P j∈ Ni. Variable clock j1 ∈ {ς̀1, ς̀1 + 1} otherwise predicate normalstepi1 would not hold. If clock j1 is
equal to ς̀1 + 1 then process P j is in next phase and, did not change the local variables of algorithm
A while incrementing variable clock j1 because variable res j2 points to process Pi. Process Pi copy of
local variables of sub-algorithm A j are correct because process P j did not change them after process
Pi read the communication registers of P j. Similarly, if variable clock j1 is equal to ς̀1 then, variable
clock j1 must have been equal to ς̀1 or ς̀1 −1 when process Pi read local state of sub-algorithm A j before
incrementing variable clocki1 to ς̀1. In the both cases, process P j does not change the variables of sub-
algorithm A j after process Pi read the communication registers of process P j. Thus, process Pi has the
correct snapshot ofNi when it has privilege in state σκmutexi2.

We now consider the processes at the extremities of κ-neighborhood of process Pi. Consider a
process P j such that dis(Pi, P j) is equal to κ. Assume that variable clock j1 is equal to ς̀1 + κ. Process P j

is in the phase corresponding to ς̀1+κ+1. Process P j is, thus, “one phase ahead” of process Pi. However,
in the state where clock j1 was equal to ς̀1, res j2 pointed to process Pi as process Pi is the minimal process
in the phase corresponding to ς̀1. Hence, process P j did not change the local variables of sub-algorithm
A j when it incremented variable clock j1 from ς̀1 to ς̀1 + 1. process Pi did not change the local variables

5.3 Transformation of Self-Stabilizing Algorithms 85

of sub-algorithm A j in any intermediate state till it reached ς̀1 + κ because none of the intermediate
clock j1 clock values was equivalent to (κ) mod [κ + 1]. Similarly, process P j could not have changed
the local variables of sub-algorithm A j after it incremented variable clock j1 from ς̀1 − κ − 1 to ς̀1 − κ.
Assume that process P j indeed modified the local variables of sub-algorithm A j while incrementing
variable clock j1 from ς̀1 − κ − 1 to ς̀1 − κ. Process P j must have incremented variable clock j1 2 · κ times
after it executed sub-algorithm A j to reach state σκmutexi2. Let process Pl be the immediate neighbor
of P j on the path between Pi and P j. Process P j can increment variable clock j1 at most twice before
process Pl increments variable clockl1 because, the first clock of all the immediate neighbors of process
P j must be at least equal to clock j1 for predicate nextstep j1 would not hold. Because each change in
first clock value involves reading communication registers of neighbors and writing latest values of the
variables of algorithmA, the local state of sub-algorithm A j is pushed towards process Pl with the first
increment of clockl1 after process P j executes A j. Similarly process Pl can increment variable clockl1 at
most twice before its immediate neighbor on the path to process Pi increments the first clock. Hence,
the current local state of sub-algorithm A j is copied by the immediate neighbor of process Pl when
it increments the first clock after process Pl updates its copy of the variables of sub-algorithm A j. It
can be, thus, inductively argued that process Pi must increment variable clocki1 at least once so that
process P j is able to increment variable clock j1 2 · κ times. A further implication of this argument is that
process Pi receives the current values of the variables of sub-algorithm A j when it increments variables
clocki1 from ς̀1 − 1 to ς̀1 at the latest. Therefore, process Pi has the current values of the variables of
sub-algorithm A j in state σκmutexi2 even if variable clock j1 is ς̀1 + κ.

The minimum value of variable clock j1 in state σκmutexi2 is ς̀1 − κ+1 if the distance between process
P j and process Pi is equal to κ. Process P j could have accessed its critical section when variable clock j1

was equal to ς̀1 − κ−1. Variable clocki1 could not have been larger than ς̀1 −1 in the state where clock j1

was ς̀1 − κ− 1. Consider the path from process P j to Pi. Process Pi can increment clocki1 from ς̀1 − 1 to
ς̀1 only if first clocks of all its neighbors are at least equal to ς̀1 − 1. Note that in the state where clocki1

is ς̀1 − 1 and clock j1 is ς̀1 − κ − 1, only process P j has an enabled guarded command along path from
process Pi to process P j. Process P j can increment variable clock j1 at most twice before its neighbor
on the path to process Pi increments the first clock and when the neighbor does so it copies the latest
value of the variables of sub-algorithm A j. In this manner the latest state of sub-algorithm A j is pushed
towards process Pi. Process Pi gets the latest state of sub-algorithm A j when it reads the communication
registers of neighbor on the path to process P j before incrementing clocki1 to ς̀1. Thus, process Pi gets
the correct state of sub-algorithm A j in state σκmutexi2 even if clock j1 is ς̀1 − κ + 1 because process P j

does not change state of A j in any intermediate state. The correctness of the process Pi’s copy of state of
sub-algorithm Aν (dis(Pi, Pν) = ϑ, ϑ < κ) in global state σκmutexi2 can be inferred in the similar manner.
The lemma follows. �

Let εκmutexall be the prefix of Ξ̂Tκ(A) such that every process in the system gets the correct snapshot of
its κ-neighborhood for the first time in εκmutexsnp. Let σκcorsnp be the first state of the suffix obtained by
removing εκmutexsnp from Ξ̂Tκ(A).

Lemma 5.8. A process executes an action of the modified use algorithm À following the state εκmutexsnp

if it has a correct snapshot of its κ-neighborhood.

Proof. A process gets the correct snapshot of its κ-neighborhood whenever the condition to enter the
critical section is fulfilled (Lemma 5.7). A process cannot execute any action of the modified use algo-
rithm if it does not have privilege to enter its critical section (by construction). �

In the sequel, we assume that the convergence proof of use algorithm A provides a ranking function
∆A which can be evaluated at any process with the help of the local states of the processes in its κ-
neighborhood.

86 5 Scheduler Transformation of Self-Stabilizing Algorithms

Lemma 5.9. If an action of the modified use algorithm À is executed in a maximal execution of a

transformed use algorithm Tκ(A) following the state σκcorsnp, then the projection of the execution step

on the use algorithm leads to a decrease in the value of ranking function ∆A.

Proof. An action of the modified algorithm À is executed by a process if it has the correct snapshot of
Nk

i
(Lemmata 5.7 and 5.8). Additionally, the guards of À are enabled only if the respective assignment

part leads to a decrease in the ranking function (by construction). The lemma follows. �

We use Ξ|κcorsnp to denote the suffix of a maximal execution Ξ̂Tκ(A) under any weakly-fair scheduler
such that the first state of Ξ|κcorsnp is σκcorsnp.

Lemma 5.10. The projection of the suffix Ξ|κcorsnp of a maximal execution of Tκ(A) on use algorithm

A is a maximal execution of A under the scheduler DA.

Proof. AlgorithmA has at least one enabled process in any global state by virtue being self- stabilizing
with respect to predicate PA under scheduler DA. Let Ξ

A|κorsnp be the projection of Ξ|κcorsnp on use
algorithm A. Consider a prefix ε¬PA

of Ξ|κcorsnp such that no state in ε¬PA
satisfies predicate PA. If a

process executes the modified use algorithm À in any execution step in Ξ|κcorsnp, then it is the only
process to do so in Nk

i
(Theorem 5.5). Whenever a process executes an enabled guarded command of

algorithmA, then it does so with the correct snapshot ofNk
i

(Lemma 5.8) and each such execution step
leads to a decrease in the value of ranking function ∆A (Lemma 5.9). Let σq|A → σr|A be an execution
step in ε¬PA

such that Pi executes an enabled guarded command of algorithm A. Since there exists at
least one process in each state of algorithm A whose actions lead to a decrease in the value of ranking
function ∆A, there exists an execution step corresponding to σq|A → σr|A in a maximal execution of
algorithmA under scheduler DA. Assume that Ξ|κcorsnp is maximal but the projection on algorithmA is
not. It implies that a process with an enabled guard of the modified use algorithm À is not enabled any
more in an infinite execution or the final state of a finite execution has an enabled process. However,
this is impossible as it would violate weak-fairness constraints. Similarly, in a suffix of Ξ|κcorsnp where
all the states satisfy predicate PA, non-maximal projection on use algorithm can be constructed only by
violating weak-fairness. This completes the proof. �

Lemma 5.11. If a use algorithm A converges to predicate PA under scheduler DA, then the projection

of the transformed algorithm Tκ(A) over the use algorithm A converges to PA under any weakly-fair

scheduler.

Proof. Consider the suffix Ξ|κcorsnp of any maximal execution of Tκ(A) under a weakly-fair scheduler.
The projection of Ξ|κcorsnp on algorithm A is a maximal execution of algorithm A under scheduler DA

(Lemma 5.10). A projection that does not converge to the states satisfying predicate PA is not possible
since it falsifies the premise of the lemma. The lemma follows. �

Theorem 5.6. The κ-local transformed algorithm Tκ(A) is self-stabilizing with respect to predicate PA

under any weakly-fair scheduler.

Proof. The convergence of Tκ(A) follows from Lemma 5.11 and the closure follows from Lemma 5.10
and the closure of PA under any weakly fair scheduler. �

Corollary 5.2. The κ-local transformed algorithm Tκ(A) is self-stabilizing with respect to predicate

Pκmutex ∧ PA under any weakly-fair scheduler.

5.3.4 Efficiency of the Transformation

The scheduler oblivious transformation induces overhead in terms of extra memory requirement and
delayed convergence. Assume that use algorithm A requires M(n) bits per process and T (n) execution
rounds to stabilize under scheduler DA, where n is the number of processes in the system implementing
distributed algorithmA.

5.3 Transformation of Self-Stabilizing Algorithms 87

Memory Requirements

Proposition 5.1. The transformed algorithm T (A) requires at most O(log n)+n ·M(n) bits per process.

The spanning tree layer algorithm uses five variables which store the process identifiers and, a process
identifier can be stored using a register of log n bits if there are n processes in the system. The token
variable of the mutual exclusion algorithm also requires log n bits. Since we need a global snapshot to
evaluate ranking function∆A, in the worst case, a process may need to store all the local variables of
every process.

Proposition 5.2. The κ-local transformed algorithm Tκ(A) requires at most O(log D) + n · M(n) bits

per process where D is the diameter of the system.

The κ-local mutual exclusion algorithm requires O(log D) bits per process to store the clock variables.

Convergence Delay

Proposition 5.3. The transformed algorithm T (A) stabilizes in O(n2) + O(T (n) · n) execution rounds.

The spanning tree algorithm requires O(n2) rounds to build a spanning tree. After a spanning tree is
built, the general mutual exclusion algorithm also requires O(n2) rounds to reach a state where exactly
one process has the privilege to access its critical section. A process gets privilege at least once in O(n)
execution rounds, therefore, an enabled guarded command of algorithm À is executed at least once in
O(n) rounds.

Proposition 5.4. The κ-local transformed algorithm Tκ(A) stabilizes in O(n)+O(T (n)· n·(n−1)
κ

) execution

rounds.

The κ-local mutual exclusion stabilizes to a state that satisfies predicate Pκmutex in O(n) execution
rounds. A process gets privilege to its critical section exclusively in Nk

i
at least once in O(n·(n−1)

κ
)

execution rounds.

5.3.5 Simulation Results

We now present the results of simulation carried out to study the efficiency of the transformation. The
algorithm SSWMAC was transformed using both the general mutual exclusion algorithm and the κ-
local mutual exclusion algorithm. We gauged the effect of the underlying synchronization layer and the
size of the system on the convergence time of the use algorithm. Additionally, we measured the result
of increasing the value of the parameter κ on the convergence time of algorithm Tκ(SSWMAC). The
transformed algorithms were simulated on an Intel® Celeron® 2 GHz machine with 3 GB RAM. Algo-
rithms were implemented in the Java programming language [112] with the help of the DAJ simulation
toolkit [113]. The initial state of the algorithms in each simulation run was set randomly.

The parameter κ was instantiated to 2 while comparing the convergence time of algorithms
T (SSWMAC) and Tκ(SSWMAC). The size of network was increased –in steps of 3– from 6 to 24.
Convergence time was measured in the number of execution rounds. Figure 5.24 shows the variation
of convergence time of the algorithms T (SSWMAC) and Tκ(SSWMAC) as the size of the net-
work is increased. The plot shows the average convergence time –along with the confidence interval– at
the confidence level of 0.95. Algorithm T (SSWMAC) outperforms Tκ(SSWMAC) for small sized
systems. Although the κ-local mutual exclusion algorithm allows higher concurrency compared to the
general mutual exclusion algorithm, no process is able to access its critical section until the κ-local
mutual exclusion algorithm converges to its correct behavior. Unlike Tκ(SSWMAC), a process may

88 5 Scheduler Transformation of Self-Stabilizing Algorithms

 50

 100

 150

 200

 250

 300

 350

 400

 6 9 12 15 18 21 24

 n
u
m

be
r

o
f

ro
u
n
d
s

number of processes

 Comparison of average convergence time of the transformation methods

κ-local mutex transformation
global mutex transformation

Fig. 5.24: Average Convergence Time of Algorithm SSWMACWith a Confidence Level of 0.95

execute its critical section in T (SSWMAC), despite the fact that neither the mutual exclusion algo-
rithm nor the spanning tree algorithm might have stabilized. Therefore, contingent on the initial state
and the scheduling strategy, T (SSWMAC) may reach a state satisfying predicatePWMAC even before
the lower layer stabilizes. The advantage of using the κ-mutual exclusion algorithm becomes clearer as
system size is increased. The convergence time of algorithm Tκ(SSWMAC) is smaller than that of
algorithm T (SSWMAC) for system sizes of 21 and 24 even if we take the confidence interval into
account. Thus, κ-local scheduler transformation can be used to decrease the convergence time of the
transformed algorithm in large systems if the corresponding ranking function can be computed using
κ-local information.

Figure 5.25 shows the variation of the average convergence time of algorithm Tκ(SSWMAC)
as κ is increased from 2 to 5 on a system with 21 processes. The average convergence time of the
transformed algorithm increased substantially as κ was increased from two to six. Observe that an in-
crease in the value of κ increases the number of processes with which each process must synchronize
the actions of the transformed algorithm. Therefore, the waiting time of a process with an enabled
guarded command of the transformed algorithm increases as well. The effect of κ on the convergence
time of the transformed algorithm also underlines the importance of having a ranking function which
requires smallest possible synchronization distance for its evaluation. Recall that the value of func-
tion ∆WMAC = 〈conflict(σi), n − alloted(σi), n − valid(σi), seek(σi), disi〉 decreases for any action of
SSWMAC under scheduler DWMAC . Every process requires the values of the functions which consti-
tute ∆WMAC in order to decide whether its enabled guarded command is beneficial for the convergence
of SSWMAC. Since each of the constituting functions essentially encodes the relative state of ev-
ery process in its κ-neighborhood (thus, a ranking function with “scope” of 2 · κ), Tκ(SSWMAC)
can be implemented with the help of a 2 · κ-local mutual exclusion algorithm. Such an implementation
provides process Pi the state of the κ-neighborhood of every process in Nκ

i
. Notwithstanding the cor-

5.4 Discussion 89

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 3 4 5 6

 n
u
m

be
r

o
f

ro
u
n
d
s

Synchronization distance κ

 Effect of synchronization distance κ on convergence time

Fig. 5.25: Effect of the Increase in Synchronization Distance κ on the Average Convergence Time of
κ-Local Transformed SSWMAC With a Confidence Level of 0.95

rectness of the resultant algorithm, it leads to an avoidable increase in the convergence time because,
∆WMAC can be correctly evaluated at each process with the help of just the local states of the pro-
cesses in its κ-neighborhood. As can be seen in Figure 5.25, the average convergence time of algorithm
Tκ(SSWMAC) increases almost by a factor of 5 if synchronization distance is doubled from 2 to 4.
Note that the correctness of the transformed use algorithm remains unaffected by the increase in syn-
chronization distance. Thus, using a ranking function that requires smallest possible synchronization
distance during the scheduler transformation can lead to minimum possible transformation-associated
overhead. A simulation framework based on the transformation method is described in [114] and can
be referred to for further simulation results.

5.4 Discussion

So far the perspective on the scheduler-oblivious transformation has been predominantly algorithmic.
We now analyze the transformation on a more abstract level.

5.4.1 Knowledge-Theoretic Interpretation of the Transformation

The “cognizance” of the progress towards the set of legal states is the leitmotif of our approach towards
scheduler-oblivious transformation. It is, therefore, pertinent to relate our approach to the general frame-
work of knowledge in distributed systems. We briefly recall relevant definitions before we analyze the
transformer from a knowledge-theoretic point of view.

Let φ denote a fact represented by a formula of a logical language.

90 5 Scheduler Transformation of Self-Stabilizing Algorithms

Definition 5.6 (Distributed Knowledge [115]). The knowledge of φ is said to be distributed in Π if an

entity who knew everything that the members of Π know would know φ.

Let Kiφ denote that Pi knows fact φ. EΠφ holds true if all members of Π know φ.

Definition 5.7 (Common Knowledge [115]). A formula φ is said to be common knowledge in Π if φ is

Ek
Π
φ-knowledge for all k ≥ 1 where

E1
Π
φ = EΠφ

Ek+1
Π
φ = EΠEk

Π
φ, k ≥ 1

Informally, EΠ represents the phrase “everyone in Pi knows that.” Thus, a fact φ becomes common
knowledge in Π if the phrase "everyone knows that everyone knows φ" holds true for any positive
integer k. The attainability of common knowledge during an execution is critical for various fundamen-
tal problems in distributed computing. Indeed, many impossibility results –for instance, coordinated
attack [116]– can be derived by showing that common knowledge of some system property cannot be
gathered by a group of processes. Since common knowledge refers to the ability of a group of processes
to perform an action in absolute synchrony, attaining common knowledge of nontrivial facts–even if
communication between the processes is guaranteed– is impossible [115]. Yet, in practice, distributed
systems perform tasks which require coordination of actions of the constituent process; prima facie this
is in conflict with the impossibility result stated above. However, closer inspection of the problems and
the respective solutions reveal that for most of the problems in distributed computing weaker notions
of common knowledge are sufficient [115, 117]. The notion of “timestamped” common knowledge is
particularly useful in the context of asynchronous distributed systems.

Definition 5.8 (Timestamped Common Knowledge [115, 117]). Let KT
i
φ denote that at time T on

its clock, process Pi knows the fact φ and let ET
Π
φ be defined as

∧

∀Pi
KT

i
φ. A formula φ is said to be

timestamped common knowledge if φ is ETk
Π
φ-knowledge for all positive integers k.

In addition to the amount of common knowledge attained during an execution, the amount of common
knowledge available in the initial state also effects the outcome of the execution. Halpern and Petride [118]
argued that the amount of initial common knowledge a system has determines the complexity of the
problem it can solve. Alternatively, relatively complex problems can be solved by a group of processes
if each processes knows more about the system.

Consider the problem of identifying a “good” transition among the enabled transitions in a system.
A transition can be ascribed a “goodness” attribute based on the problem under consideration. More
specifically, a transition in our scheme of things is considered good if it leads to a decrease in the value
of ranking function ∆A. Intuitively, an entity that has access to the local states of all the processes in
the system and the ranking function can identify a good transition. Hence, if we use φ to denote the
fact that the enabled guarded command of process Pi is a good transition, then the above described
global observer would know φ in every system state. Thus, the fact that the enabled guarded command
of process Pi is a good transition in global state σx is distributed knowledge.

Common knowledge of the fact that process Pi has the good transition in a system state cannot be
attained in any execution of an untransformed use algorithm. Common knowledge of the fact would re-
quire that all the processes have access to a global clock and the local states of all the other constituent
processes. Note that it takes η execution rounds for a process to know the current local state of a neigh-
bor which is η hops away. It can be, thus, inferred that even timestamped common knowledge of a good
transition in any state cannot be attained in an untransformed use algorithm. Common knowledge of
good transitions is important because it decreases the inherent superfluous non-determinism. The initial
common knowledge that every process has is limited to the identifiers of the neighboring processes.

Consider now a transformed use algorithm T (A). Every process has the ranking function em-
bedded in the guarded commands. This is additional knowledge compared to an untransformed use

5.4 Discussion 91

algorithm. Thus, initial common knowledge of a transformed use algorithm consists of the identifiers
of the neighboring processes and the ranking function.

A process executing a transformed use algorithm T (A) gets the local states of all the constituent
processes whenever it gets the privilege. We use “phase” to refer to a segment of an execution where
each process gets privilege to access its critical section at least once. In every phase, a process chooses
to execute an action of distributed algorithmA only if it infers that the action will lead to a decrease in
the value of ranking function ∆A. Alternatively, in each phase every process knows whether to execute
an action of algorithm A or not. Hence, the fact that each process knows whether to execute an action
of A in phase ι or not becomes timestamped common knowledge in phase ι.

The scheduler-oblivious transformation, thus, does away with the lack of common knowledge in a
use algorithm. It increases initial common knowledge in the system. Additionally, it provides an under-
lying mechanism to attain timestamped common knowledge which is necessary for the convergence of
the algorithm under an unfavorable scheduler.

5.4.2 A Scheduler-based Perspective of the Transformation

Recall that hyperfairness ensures that each transition emanating from a state is taken if the state appears
infinitely often in an execution. A distributed algorithm that is weakly-stabilizing can be transformed
into a self-stabilizing algorithm if the actions of the algorithm are synchronized with that of a hyper-
fair scheduler. Such a hyperfair scheduler should also be self-stabilizing so that an inconsistent initial
state of the scheduler does not destroy the convergence property of the weakly-stabilizing algorithm.
Attie et al. [26] proposed an implementation of a hyperfair scheduler. The hyperfair scheduler of [26]
is realized as a separate process that has access to the local states of all the constituent processes. More-
over, the scheduler works only for the algorithms which use multi-party interaction as the communica-
tion primitive. Völzer [41] proposed another implementation of a hyperfair scheduler that uses timers
and randomization to select a process among the enabled processes in any system state. A hyperfair
scheduler for transformation of a self-stabilizing algorithm must be able to prioritize the enabled pro-
cesses –in addition to the respective waiting times– on the basis of the overall progress of the algorithm
towards the set of legal states.

An alternative of implementing a hyperfair scheduler is to synchronize the actions of the algorithm
with the scheduler under which the algorithm indeed converges. A transformed algorithm T (A) can
be viewed as a composition of a use algorithm and a scheduler that is derived from the scheduler under
which the use algorithm is shown to be self-stabilizing. The scheduler is implemented in a distributive
manner implying that instead of employing a separate process running the scheduler, each process runs
an instance of the scheduler. The scheduler allows a process to execute its enabled guarded command
only if it fulfills certain conditions. Our method of embedding the scheduler in a use algorithm is similar
to the scheme proposed in [119] in the sense that, each conditional statement of the use sub-algorithm
is strengthened to wait for the signal from the scheduler. However, if there exist multiple processes
whose enabled guarded commands are conducive for overall progress, then the sequence in which the
privilege is passed around determines the process which is selected by the scheduler. This owes to the
fact that the scheduler uses a mutual exclusion algorithm for synchronization. Thus, the scheduler is
not maximal where maximality [120] of a scheduler refers to the ability of the implemented scheduler
to produce all executions that are possible under the original scheduler. Nevertheless, our approach of
transformation preserves the self-stabilization property of a distributed algorithm under a much more
powerful scheduler.

92 5 Scheduler Transformation of Self-Stabilizing Algorithms

5.5 Summary

We presented a transformation technique that preserves the self-stabilization property of a distributed
algorithm under a scheduler which is less constrained than then original scheduler. The transformation
uses the proof artifacts to monitor the progress of the algorithm towards the set of legal states. The
scheduler-oblivious transformer uses self-stabilizing mutual exclusion algorithms for achieving syn-
chronization among the constituent processes. We also showed how to optimize the concurrency in the
transformed algorithm by using κ-local mutual exclusion algorithms for synchronization.

The target semantics was restricted to a sequential weakly-fair scheduler. It would be, nevertheless,
worthwhile to extend the scheme for distributed schedulers. We would also like to investigate the effect
of relaxing atomicity assumptions on the scheduler-oblivious transformation. Primary motivation for
developing this transformation technique was to provide required algorithmic machinery for the lift-
ing composition. It is, therefore, in order to investigate the role of the transformer if the component
algorithms do not have orthogonal state space. We address the above mentioned issues in the following
chapter.

6

Generalized Compositional Operators

6.1 Introduction

The recurrent theme in this work has been the exploitation of the liveness proofs of self-stabilizing
algorithms to counter adversarial schedulers. We used the knowledge of ranking function to devise a
compositional operator to transcend the incompatibility of the schedulers of the components. Conver-
gence proofs have also been used to preserve the self-stabilization property of a distributed algorithm
under a stronger scheduler. Despite the common kernel, the lifting composition and the transformation
are, seemingly, oblique to each other. We need to bridge the two methods to meet our aim of coming
up with a compositional framework for the design of self-stabilizing algorithms. Although the lifting
composition offers the potential skeleton of a compositional framework, it needs to be integrated with
the scheduler-oblivious transformation in order to be practically applicable. However, the scheduler
oblivious transformation itself is defined for a rather restricted execution semantics. The transformation
method, should, therefore, be extended to preserve the correctness properties of self-stabilizing algo-
rithms under much stronger schedulers and reduced atomicity. Another deficiency of the lifting compo-
sition is the lack of support for the algorithms which are “conditionally” self-stabilizing. The presence
of variable dependency between component algorithms introduces additional constraints, since incon-
sistent states of variables of one component may interfere with the convergence of the other component.
The lifting composition, therefore, needs to be enhanced so that self-stabilization is preserved even if
the component algorithms read variables belonging to their counterparts.
Outline. The aim of this chapter is to develop a compositional operator that can preserve the self-
stabilization property despite variable dependency and incompatible schedulers. To that end, we show
that the scheduler-oblivious transformation preserves the self-stabilization property of self-stabilizing
algorithms even under less coarse atomicity and stronger schedulers. We integrate the scheduler-
oblivious transformation with the lifting composition to define the generic compositional operator
which can compose self-stabilizing algorithms that are designed under different schedulers, commu-
nication model, and atomicity assumptions. The generic lifting compositional operator is then further
extended to define a truly symmetric compositional operator that works even under variable depen-
dency.

The chapter is organized as follows. The scheduler-oblivious extension of Chapter 5 is extended for
stronger execution models in Section 6.2. The extended scheduler-oblivious transformation is integrated
with the lifting composition in Section 6.3. The resultant compositional operator is further generalized
in Section 6.4. The chapter ends with a summary in Section 6.5.

94 6 Generalized Compositional Operators

6.2 Extensions of the Scheduler-Oblivious Transformation

We now analyze the effectiveness of the scheduler-oblivious transformation under a relaxed model
and execution semantics. We first consider models which do not offer composite atomicity and, subse-
quently, preservation of self-stabilization property under a distributed scheduler is proven.

6.2.1 Read/Write Atomicity and Scheduler Transformation

The underlying execution model so far assumed composite atomicity; each process executed its enabled
guarded command as an atomic operation. This implies that a process reads the communication registers
of its neighbors, does internal computation and, writes the new values of its local variables to its com-
munication registers in one indistinguishable operation. As we discussed earlier in this work, although
composite atomicity eases the task of providing correctness proofs, it restricts the size of the state space
of the algorithm under consideration. Thus, the result of the scheduler-oblivious transformation must
preserve the self-stabilization property of a use algorithm even under read/write atomicity.

Altered Execution Model

We assume that the target system offers read/write atomicity only. More specifically, if a process is
enabled by the scheduler, it either reads the write communication registers of its neighbors or, it does
internal computation and writes back the updated local variables to its write communication registers.
Note that such a result of relaxation model increases the size of state space and the number of possible
executions. This is because, under the read/write atomicity model, each process requires extra local
variables to store the values read from the write communication registers of its neighbors, and these
new variables are also susceptible to transient faults.

Correctness of the Transformation under Read/Write Atomicity

Assume that a use algorithm A is transformed to T (A) in the manner described in Chapter 5. Since
the transformed algorithm requires the lower layer algorithms to converge, we recall the correctness of
the spanning tree algorithm and the mutual exclusion algorithm under read/write atomicity.

Corollary 6.1 (based on [94]). Irrespective of the initial state, in a bounded number of execution steps

a correct tree spans the system under the read/write atomicity model.

Corollary 6.2 (based on [109]). Every execution of the mutual exclusion algorithm reaches a state

where exactly one process has the token under the read/wrtie atomicity model.

Corollary 6.2 follows from the fact the process designated as root increments tokenroot modulo 4 · n− 5.
We now show that the projection of a maximal execution of T (A) is an execution of A under DA even
if T (A) is executed under read/write atomicity. Let Ξ|σcorsnpRW

be the suffix of a maximal execution of
T (A) under a weakly-fair scheduler and read/write atomicity such that only one process gets the token
in any state of Ξ|σcorsnpRW

.

Lemma 6.1. The projection of Ξ|σcorsnpRW
over use algorithm A is a maximal execution of A under

scheduler DA.

Proof. Assume that use algorithmA is designed for read/write atomicity. The lemma can be proven in a
manner analogous to the proof of Lemma 5.5. We now consider the case where algorithmA is designed
only for composite atomicity. All the guarded commands of process Pi are grouped inside the critical
section of the mutual exclusion algorithm. Therefore, read and write operations corresponding to the
guarded commands of algorithmA are executed only when process Pi has the token (by construction).

6.2 Extensions of the Scheduler-Oblivious Transformation 95

It implies that when process Pi executes an action of algorithmA in the transformed algorithm T (A),
it completes read operation, internal computation and, write operation in one uninterrupted step. Recall
that, under scheduler DA each process Pi completes read, internal computation and write operation as
one indistinguishable step as it is executed under the composite atomicity model. Thus, each step of
the modified use algorithm À under a weakly-fair scheduler is executed in a manner analogous to an
execution step of A under DA. Rest of the proof can be drawn in a fashion similar to Lemma 5.5. �

Theorem 6.1. The transformed algorithm T (A) is self-stabilizing with respect to predicate PA under

any weakly fair scheduler and read/write atomicity model.

Proof. Convergence of algorithm T (A) towards predicate PA follows from the fact that, the projec-
tion of any maximal execution of algorithm T (A) over algorthm A is an execution of A under DA

even if read/write atomicity model is assumed (Lemma 6.1). Closure follows from the assumption that
predicate PA is closed under a weakly fair scheduler. �

The scheduler-oblivious transformation, therefore, preserves the self-stabilization property of a use al-
gorithm even if the atomicity assumption are violated during the execution of the transformed algorithm.

6.2.2 Scheduler Transformation and Distributed Scheduler

We have so far assumed that the target scheduler is a sequential scheduler; in each execution step it
selects exactly one enabled process while fulfilling weak fairness constraints. However, as we argued
earlier, compared to a sequential scheduler, a distributed scheduler mirrors the implementation scenario
more closely. We now analyze the behavior of the transformed algorithm under a distributed scheduler.

Altered Execution Model

We now assume that the target scheduler is a distributed scheduler; in each step, the scheduler can select
any subset of enabled processes as long as the selection does not violate the weak fairness constraint.
Relaxation of this assumption also leads to increased state space size and number of possible executions,
since the number of strategies a scheduler can employ increases.

Correctness of the Transformer under a Distributed Scheduler

Any execution of an algorithm produced under a distributed scheduler can be reproduced if the al-
gorithm is executed under the read/write atomicity model and a sequential scheduler. For example,
consider an execution where a distributed scheduler selects processes Pi and P j. An equivalent execu-
tion step assuming read/write atomicity can be generated by following the selection of read operations
of Pi and P j with the respective write operations. The corollaries stated below follow immediately.

Corollary 6.3 (based on [94]). Irrespective of the initial state, in a bounded number of execution steps

a correct tree spans the system under a distributed scheduler.

Corollary 6.4 (based on [109]). Every execution of the mutual exclusion algorithm reaches a state

where exactly one process has the token under a distributed scheduler.

It remains to be proven that, under a distributed scheduler, the transformed algorithm T (A) preserves
the properties of algorithm A under scheduler DA. Let Ξ|σcorsnpDS

be the counterpart of Ξ|σcorsnpRW
under

any weakly-fair distributed scheduler.

Lemma 6.2. The projection of Ξ|σcorsnpDS
over use algorithm A is a maximal execution of A under

scheduler DA.

96 6 Generalized Compositional Operators

Proof. Consider an execution step of algorithm T (A) in which the values of local variables of algo-
rithm À change. Since the actions of algorithm À are embedded in the critical section of the mutual
exclusion algorithm, execution of the enabled guarded command of À in a single process led to the
aforementioned state change (by construction). There exists an equivalent execution step of A under
scheduler DA since assignment parts are unchanged. The lemma follows. �

The theorem below follows immediately.

Theorem 6.2. The transformed algorithm T (A) is self-stabilizing with respect to predicate PA under

any weakly-fair distributed scheduler.

Note that the theorem holds even if the target system only offers read/write atomicity. Thus, the trans-
formed algorithm preserves the self-stabilization property of the use algorithm even if assumptions
about sequential scheduler and composite atomicity are removed.

6.2.3 An Extension for the Message Passing Communication Model

The properties of the transformed algorithm T (A) have been proven so far assuming the shared mem-
ory communication model. However, more often than not, distributed algorithms are implemented on
platforms that offer communication via messages over unreliable communication links. It is, therefore,
desirable to make the scheduler-oblivious transformation work under the message passing communi-
cation model. However, unlike the extensions discussed above, scheduler-oblivious transformer needs
extra algorithmic components to work under the message passing communication model. The self-
stabilizing extensions [121, 122] of the alternating bit algorithm can be used to adapt the transformed
algorithm to the relaxed communication model. The self-stabilizing data link algorithm essentially im-
plements a token passing algorithm over a pair of processes. One of the processes acts as the receiver
and the other dons the role of the sender. Each process maintains a counter variable that tracks the
label of the last message sent or received. The sender process has the token if the label of the message
received is greater than its counter variable. The receiver process gets the token if the message label is
not equal to its counter variable. The sender process increments the value of counter if it gets the token;
the receiver process updates its counter variable when it gets the token. In a legal state, the message
labels and the counter variables of both processes are equal implying that a send operation of a message
is followed by the read operation of the message with the same label. An execution of the transformed
algorithm under the shared memory model can be simulated by implementing the two instances of the
self-stabilizing data link algorithm –one for each direction of communication– on each communication
link in the system.

6.3 Extensions of Lifting Composition

We now bring the focus back on the lifting composition. We first modify the composition for general
communication topologies. Subsequently, we provide an extension of the lifting composition such that,
the composed algorithm is self-stabilizing under any weakly-fair scheduler irrespective of the sched-
ulers of the component algorithms.

6.3.1 Lifting Composition for General Communication Graphs

While proving the correctness of the lifting composition in Chapter 4, it was assumed that communi-
cation topology or a lower layer allows every process to read the local states of all the processes in the
system. We relax this assumption and show that, after slight modification, lifting composition preserves
the self-stabilization property of the component algorithms even in general graphs.

6.3 Extensions of Lifting Composition 97

Definition

We briefly recall the properties of the component algorithms. Algorithm A is self- stabilizing with re-
spect to predicate PA under scheduler DA; algorithm B is self-stabilizing with respect to predicate PB

under scheduler DB. AlgorithmA has exactly one enabled guarded command in every state and sched-
uler DA never violates weak fairness. Let mi denote the number of guarded commands in the mutual
exclusion sub-algorithm run by a process Pi. Variable xi refers to the vector of the local variables of
sub-algorithm Ai; yi represents the vector of the local variables of sub-algorithm Bi. Note that lifting
composition requires the evaluation of ranking function ∆B of componentB to function correctly. Lift-
ing composition for general graphs, therefore, uses the global snapshot collection framework of the
scheduler transformation to evaluate ranking function ∆B in any global state. Under these assumptions
lifting composition for general graphs is defined as follows.

Definition 6.1 (Lifting Composition for General Graphs). Sub-algorithm Ai
△GBi consists of li · mi

guarded commands of the following structure:

GAip
∧ have_tokeni →

`GBi1 → actAip
; actBi1 ; paint_token;

...
`GBiη → actAip

; actBiη ; paint_token;

(1)

GAip
∧ ¬have_tokeni → actAip

; token_op; (2)

for all q ∈ {1, · · · , li}. AlgorithmA

△G
B is the union of all sub-algorithms Ai

△GBi

A

△G
B =
⋃

∀i Ai
△GBi

run by the processes in Π .

Description

The composed algorithm has two types of guarded commands. There are li guarded commands of Type
1. A Type 1 guard is conjunction of the guard of algorithmA and the predicate have_tokeni. Predicate
have_tokeni holds true when the mutual exclusion sub-algorithm run by process Pi gets the privilege
to access the critical section. If a Type 1 guard is true, then process Pi executes an action of algorithm
A followed by an action of algorithm B only if it leads to a decrease in the value of ranking function
∆B; Process Pi updates the snapshot part of communication register independent of whether a guarded
command of algorithmB is executed or not. Sub-algorithmA

△G
B consists of li ·mi − 1 type 2 guarded

commands. A Type 2 guard is enabled in process Pi if a guard of algorithm A holds true but process
Pi does not possess the privilege. The respective action of algorithm A is executed if Type 2 guard is
enabled. Additionally, process Pi performs the assignment statement of the enabled guard of the mutual
exclusion sub-algorithm. Note that we assume that guarded commands of the mutual exclusion are
structured such that a single guard corresponds to the state where a process has the privilege and all the
other guarded commands manage the token circulation.

Essentially, the composition operation wraps the actions of algorithm B̀ inside the guards of the
mutual exclusion algorithm so that the adversarial selections of scheduler DA do not hamper the con-
vergence of algorithmB. The guards of algorithmA

△
B differ fromA

△G
B with respect to the presence

of unaltered guards of B. The shielding of guards of B is required for the correctness of the composed
algorithm. The structure of the guards of A△B could have been reused in A△G

B without affecting the
correctness of the resultant algorithm. However, it would slow down the convergence of the algorithm
A because, actions of A would also be synchronized with those of the mutual exclusion algorithm.
Since algorithm A exhibits convergence under scheduler DA directly, such synchronization is not re-
quired. Note that the mutual exclusion algorithm can be selected based on the structure of the ranking

98 6 Generalized Compositional Operators

function ∆B of algorithmB. The actions of the spanning tree layer algorithm do not affect the outcome
of the composition in case the global mutual exclusion algorithm is selected for synchronization, since
the intra-process fairness ensures that actions of composed algorithm and the spanning tree algorithm
are executed infinitely often in any maximal execution of A△G

B. The overhead of using lower layers
for synchronization and global (κ-local) snapshot is solely born by algorithmB.

Correctness of the Composition

We now show that A△G
B preserves the self-stabilization property of both the components.

Lemma 6.3. The projection of any maximal execution of algorithm A

△G
B under scheduler DA on al-

gorithm A is a maximal execution of algorithmA under scheduler DA.

Proof. Assignments statements of algorithm A are unchanged in A△G
B. Lemma follows immediately

if a κ-local mutual exclusion algorithm is used because guards of algorithmA remain enabled indepen-
dent of whether a process has privilege or not. If the general mutual exclusion algorithm is used, then
the actions of the composed algorithm cannot be delayed indefinitely by any process as each process
activates the guards of the spanning tree algorithm and A△G

B equally often. �

The following lemma can be directly inferred from Lemma 6.3.

Lemma 6.4. If all maximal executions of algorithm A under scheduler DA satisfy predicate PA then,

the projection of any execution of A△G
B under scheduler DA on algorithm A also satisfies predicate

PA.

Lemma 6.5. The projection of any maximal execution of the composed algorithmA△G
B under weakly-

fair scheduler DA on algorithmB is a maximal execution of algorithmB under scheduler DB.

Proof. Recall that, in each state of algorithm B, there exists at least one process whose guarded com-
mand leads to a decrease in the value of ranking function∆B because algorithmB converges to predicate
PB under scheduler DB. Let Pi be the process in which an enabled guarded command of algorithm B

leads to a decrease in the value of ranking function ∆B in state σx of a maximal execution ofA△G
B. As-

sume that process Pi does not possess the token in state σx. The execution can be extended by scheduler
DA by selecting process which has token in state σx. Eventually, the system will reach a state where
process Pi gets the privilege to access the critical section. Thereon, scheduler DA can delay a step of
algorithm B only by not selecting process Pi despite the fact that it has the privilege. Process Pi has
an enabled guarded command of algorithm A as well, therefore, the execution cannot be extended by
ignoring process Pi as it violates weak fairness constraint. The lemma follows from the fact that the
assignment statements of algorithmB are unchanged. �

Theorem 6.3. Algorithm A

△G
B is self-stabilizing with respect to predicate PA ∧ PB under scheduler

DA.

Proof. Preservation of self-stabilization of algorithm A in A△G
B follows from Lemma 6.4. Conver-

gence and closure of algorithmB follows from Lemma 6.5. �

Note that, since the underlying mutual exclusion algorithms retain their respective correctness even
under read/write atomicity and distributed scheduler, the following corollaries can be directly inferred
from Theorem 6.3.

Corollary 6.5. Algorithm A

△G
B is self-stabilizing with respect to predicate PA ∧ PB under scheduler

DA even if DA is a distributed scheduler.

6.3 Extensions of Lifting Composition 99

Corollary 6.6. If algorithm A is self-stabilizing with respect to predicate PA under scheduler DA and

read/write atomicity, then algorithm A

△G
B is self-stabilizing with respect to predicate PA ∧ PB under

scheduler DA and read/write atomicity model.

The overhead induced by the composition is due to the usage of lower layers for synchronization. Let
algorithmA require MA(n) bits per process –n being the number of processes in the system– to converge
under DA; MB(n) denote the bits per process required by algorithmB to converge under scheduler DB.
Memory overhead is caused by the extra bits required to run the lower layer algorithms and to store the
local variables of algorithmB at each process.

Proposition 6.1. Algorithm A

△G
B requires at most O(log n) + n · MB(n) + MA(n) bits per process.

Similarly,A△G
B under scheduler DA takes longer than algorithmB under scheduler DB to converge to

predicate PB because actions of algorithm B are synchronized with the mutual exclusion algorithms.
Let algorithm A takes TA(n) to converge to predicate PA under scheduler DA and algorithm B takes
TB(n) to converge to predicate PB under scheduler DB.

Proposition 6.2. Algorithm A

△G
B converges to a state satisfying PA ∧ PB in at most O(n2) + TA(n) +

O(TB(n) · n) execution rounds.

6.3.2 Symmetric Lifting Composition

The focus of the lifting composition has been to preserve the self-stabilization property of one of
the component algorithm under the scheduler of the other component. We now focus on the scenario
where two self-stabilizing algorithms are required to be composed such that the composed algorithm
is self-stabilizing under a scheduler that is stronger than the individual schedulers. Since the asymmet-
ric version of lifting composition can only shield one of the components from the scheduler of other
component, a symmetric composition operator that preserves the self-stabilization properties of both
components is required.

We define symmetric lifting composition for self-stabilizing algorithms that ensures that the com-
posed algorithm is self-stabilizing under a weakly-fair scheduler regardless of the respective schedulers
of the components. However, correct evaluation of ranking functions of component algorithms may re-
quire different synchronization mechanisms. Therefore, we present three versions of symmetric lifting
composition. It is assumed throughout this section that each component algorithm has exactly one en-
abled guarded command per process. Algorithm A consists of li guarded commands and algorithm B

has mi guarded commands per process. In order to gather a snapshot of the system, the communication
registers are extended as described in Chapter 5.

Symmetric Lifting Composition with Global Mutual Exclusion

In case both components require a global mutual exclusion algorithm (referred to as GME in the sequel),
the symmetric composition is defined as follows.

Definition 6.2 (Symmetric Lifting Composition with GME). Sub-algorithm Ai
△SBi consists of 9·li·mi

guarded commands of the following structure:

100 6 Generalized Compositional Operators

GAix
∧ GBiy ∧ ¬PA ∧ ¬PB ∧ (δBiy < 0) ∧ (δAix < 0) →actAix

; actBiy ; paint_token; (1)

GAix
∧ GBiy ∧ PA ∧ PB →actAix

; actBiy ; paint_token; (2)

GAix
∧ GBiy ∧ ¬PA ∧ ¬PB ∧ (δBiy < 0) ∧ (δAix ≥ 0) →actBiy ; paint_token; (3)

GAix
∧ GBiy ∧ ¬PA ∧ ¬PB ∧ (δBiy ≥ 0) ∧ (δAix < 0) →actAix

; paint_token; (4)

GAix
∧ GBiy ∧ PA ∧ ¬PB ∧ (δBiy < 0) →actAix

; actBiy ; paint_token; (5)

GAix
∧ GBiy ∧ ¬PA ∧ PB ∧ (δAix < 0) →actAix

; actBiy ; paint_token; (6)

GAix
∧ GBiy ∧ PA ∧ ¬PB ∧ (δBiy ≥ 0) →actAix

; paint_token; (7)

GAix
∧ GBiy ∧ ¬PA ∧ PB ∧ (δAix ≥ 0) →actBiy ; paint_token; (8)

GAix
∧ GBiy ∧ ¬PA ∧ ¬PB ∧ (δBiy ≥ 0) ∧ (δAix ≥ 0) →paint_token; (9)

for all x ∈ {1, · · · , li} and all y ∈ {1, · · · ,mi}. AlgorithmA△S
B is the union of Ai

△SBi run by all processes

in Π .

Sub-algorithm Ai
△SBi is embedded in the critical section of the global mutual exclusion algorithm run

by process Pi. As explained previously, the global mutual exclusion algorithm uses the spanning tree
algorithm to function correctly. Each process has li · mi guarded commands of Type 1. Each Type 1
guard corresponds to a guard of algorithms A and B each. A Type 1 guard is true 1) if corresponding
guards of the component algorithms are true, 2) neither predicate PA nor predicate PB holds, and 3)
the assignment statements lead to decrease of the respective ranking functions. A Type 2 guard is true
if the corresponding guards of the component algorithms are true and both predicates hold. In the
both cases respective assignment statements of algorithms A and B are executed. The guards of Type
3 and 4 are enabled when the safety predicates of both algorithms do not hold, and the corresponding
assignment statement of one of the components does not lead to a decrease in the value of the respective
ranking function. Process Pi executes the action of the component whose assignment statement leads
to a decrease in the value of the ranking function if a Type 3 or Type 4 guard is enabled. Type 5 and 6
guards are true in a state if the safety predicate of one of the component holds while the safety predicate
of the other component does not and, the assignment statement of the component whose safety predicate
does not hold leads to a decrease in the value of respective ranking function. Assignment statesment of
both the components are executed if a Type 5 or 6 guard is enabled. Type 7 and 8 guarded commands
correspond to the scenarios where only one of the safety predicates hold but the guarded command of
the component whose safety predicate does not hold does not lead to a decrease in the value of the
ranking function; in this case, the action of the component whose safety predicate holds is executed. In
case both the safety predicates do not hold and none of the components’ assignment statements lead to
a decrease in the value of the respective ranking functions, then process Pi simply updates the snapshot
compartment of the communication register.

The composed algorithm might have progress inducing guarded commands of component algo-
rithms in two different processes; however, concurrent execution can lead to inconsistent snapshots.
Therefore, the composed algorithm is nested in the critical section of a single instance of the mutual
exclusion algorithm. We now prove that the composition preserves the self-stabilization property of
both component algorithms.

Lemma 6.6. The projection of any maximal execution of composed algorithm A

△S
B under a weakly

fair scheduler on algorithmA is a maximal execution of algorithm A under scheduler DA.

Proof. Consider a prefix Ξ|¬PA
of a maximal execution ofA△S

B such that the projection of any state on
algorithmA in Ξ|¬PA

does not satisfy predicatePA. Since algorithmA converges to the states satisfying
predicate PA under scheduler DA, there exists at least one process whose enabled guarded command

6.3 Extensions of Lifting Composition 101

guarantees decrease in the value of ranking function ∆A. Let process Pi be the only such process in the
system. Either of a Type 1, Type 4, or Type 6 guarded command is enabled in process Pi. A scheduler
can extend Ξ|¬PA

by selecting all other processes except process Pi. Clearly, projection of the suffix
extended in this manner on scheduler A is not a maximal execution. However, such an execution of
A

△S
B will violate weak-fairness because process Pi remains continuously enabled without being ever

selected. �

Lemma 6.7. The projection of any maximal execution of the composed algorithm A

△S
B under a

weakly-fair scheduler on algorithmB is a maximal execution of algorithmB under scheduler DB.

Proof. The proof of this lemma can be derived in the fashion similar to Lemma 6.6 by showing that a
maximal execution ofA△S

B, whose projection on algorithmB is not a maximal execution of algorithm
B, does not fulfill weak-fairness constraint. �

Theorem 6.4. AlgorithmA△S
B is self-stabilizing with respect to predicate PA ∧PB under any weakly-

fair scheduler.

Proof. Convergence of algorithms A and B follows from Lemma 6.6 and Lemma 6.7, respectively.
Since both safety predicates are assumed to be closed under any weakly-fair scheduler, the theorem
follows. �

Symmetric Lifting Composition with κ-Local Mutual Exclusion

We now consider the case where both components require the κ-local mutual exclusion (κ-LME) algo-
rithm for synchronization. Although symmetric lifting composition with the global mutual exclusion
can be used to compose such algorithms, however –as argued earlier in this work– it delays the conver-
gence by reducing concurrency of the system.

Let algorithms A and B require κ1-local mutual exclusion and κ2-local mutual exclusion respec-
tively for continuous evaluation of the corresponding ranking functions. The result of κ-LME symmetric
lifting composition of algorithmsA andB is shown in Figure 6.1. Component sub-algorithms are mod-
ified in the manner described in Chapter 5; Ài and B̀i represent the modified component sub-algorithms.
The composed algorithm A

△κ
B uses a single instance of the κ-local mutual exclusion algorithm for

synchronization and evaluation of the ranking functions. The κ-mutual exclusion is slightly modified
to facilitate the synchronization of two algorithms. Each process has two secondary clocks –clocki2

and clocki3– instead of a single secondary clock. Since every process constructs ordering of secondary
clocks in its κ-neighborhood, two extra variables –res2

i1 and res2
i2 are also required. The composition

operation binds the actions of a component sub-algorithm to one of the secondary clocks. More specif-
ically, an action of sub-algorithm Ài is executed only if process Pi is the process with a minimal clocki2

in its κ1 neighborhood. Similarly, process Pi executes a guarded command of B̀i if Pi has the minimal
clocki3 value in its κ2 neighborhood. Essentially, each process has two critical sections –each corre-
sponding to a component algorithm– whose entries are regulated by two different variables. Therefore,
it is possible that process Pi may have privilege to enter only one of the two critical sections in a
state. In such a scenario, process Pi updates the snapshot compartment of its communication registers
notwithstanding which component sub-algorithm executes its guarded command. Both secondary clock
variables are incremented modulo K2. The larger of the two parameters κ1 and κ2 is used to select an
appropriate value of K2.

Remark 6.1. Note that κ-LME symmetric composition could have been implemented by using two in-
stances of the κ-local mutual exclusion algorithm. However, such an implementation would use two
primary clocks. Since the purpose of a primary clock variable is to maintain asynchronous unison in the
system, two primary clocks introduce superfluous overhead without offering any added functionality.

102 6 Generalized Compositional Operators

process Pi

{

localvar clocki1, clocki2, clocki3 ∈ Z;
localvar res1

i1, res1
i2, res2

i1, res2
i2 ∈ Z × Π ;

const Ni ≡ {P j|P j is neighbor of Pi}

macro normalstepix ≡ (clockix ≥ 0) ∧ (∀ j∈Ni
(clockix = clock jx)

∨(clock jx = clockix + 1 mod [Kx]));
macro locallycorrectix ≡ (clockix ≥ 0) ∧ (∀ j∈Ni

(clockix = clock jx)
∨(clock jx = clockix + 1 mod [Kx])
∨(clockix = clock jx + 1 mod [Kx]));

macro resetix ≡ ¬locallycorrectix ∧ clockix ≥ 0;
macro nextstepi ≡ normalstepi1 ∧ locallycorrecti2 ∧ locallycorrecti3;
macro convergestepix ≡ (clockix < 0) ∧ (∀ j∈Ni

(clockix ≤ 0) ∧ (clockix ≤ clock jx));
nextstepi → if clocki1 = (κ1)mod[κ1 + 1] {

if normalstepi2 ∧ (〈i, clocki2〉 = res1
i2) {

Ài 〈〈 modified component algorithm Ai〉〉;
clocki2 := (clocki2 + 1) mod [K2]; }

res1
i1 := 〈clocki2, i〉; res1

i2 := 〈clocki2, i〉; }
elseif {

res1
i1 := res1

i2; res1
i2 := 〈clocki2, i〉 ⊕ res1

jy
, j ∈ Ni; }

if clocki1 = (κ2) mod [κ2 + 1] {
if normalstepi3 ∧ (〈i, clocki3〉 = res2

i2) {
B̀i 〈〈 modified component algorithm Bi〉〉;
clocki3 := (clocki3 + 1) mod [K2]; }

res2
i1 := 〈clocki3, i〉; res2

i2 := 〈clocki3, i〉; }
elseif {

res2
i1 := res2

i2; res2
i2 := 〈clocki2, i〉 ⊕ res2

jy
, j ∈ Ni; }

writestate() 〈〈write latest local state of modified components〉〉;
clocki1 := (clocki1 + 1) mod [K1];

∀x∈{1,2,3} 8 convergestepix → clockix := (clockix + 1) mod [Kx];
∀x∈{1,2,3} 8 resetix → clockix := −αx;
}

Fig. 6.1: Sub-algorithm Ai
△κBi

We now show that the self-stabilization properties of both the components are preserved by κ-LME
symmetric composition. In particular, we show that the presence of two secondary clocks in a single
instance of the κ-local mutual exclusion algorithm does not violate the consistency of the snapshots.
We assume that clocki2 regulates the access critical section corresponding to component Ai and clocki3

manages the execution of the guarded commands of B̀i.

Lemma 6.8. The projection of any maximal execution of the composed algorithm A

△κ
B under any

weakly-fair scheduler on algorithmA is a maximal execution of algorithmA under scheduler DA.

Proof. We consider the two aspects of any maximal computation of composed algorithm A

△κ
B: con-

sistency of the snapshot that process Pi receives when it gets the privilege, and the effect of clocki3 on
the execution of A.

Consider a state σι in a maximal execution Ξ̂ of A△κB such that process Pi executes an enabled
guarded command of algorithm Ài exclusively in its κ1 neighborhood for the second time in Ξ̂. Let
clocki2 be equal to η1 in σi. Since process Pi is the minimal process in its κ1 neighborhood, process P j

6.4 Lifting Composition with Variable Dependencies 103

(P j ∈ N
κ1
i

) does not execute sub-algorithm À j when clock j2 is equal to η1. Process P j does not execute
an action of Ài while η1 − κ1 < clock j2 < η1 + κ1. A process can unilaterally increment its primary
clock at most twice else its predicate locallycorrecti1 would not hold. Thus, if process P j (∀P j ∈ N

κ1
i

)
executed an action of sub-algorithm A j in a state where clock j2 < η1 − κ1, then process Pi gets the
updated local variables of sub-algorithm A j in state σi.

Assume that there exists a process Pl (Pl∈ N
κ1
i

) such that clockl1 is equivalent to (κ2) mod [κ2 + 1]
and, clockl3 is minimum in the κ2-neighborhood of process Pl. Predicate nextstepl holds at process
Pl; since clockl3 is minimal, predicate normalstepl3 holds as well. However, since process Pi is the
minimal element in its κ1-neighborhood in the phase corresponding to η1 and Pl∈ N

κ1
i

, process Pl

cannot execute any action of Ài when clocll2 is equal to clocki2. Let the distance between processes Pi

and Pl be ς (ς ≤ κ1). The value of clockl1 cannot be equal to η1 and lies either in the interval [η1−ς, η1) or
(η1+ς]. Process Pl could have executed an action of Àl ς−κ1−1 phases ago at the earliest. Nonetheless,
process Pi has the updated value of the local variables of Àl because process Pl cannot increment clockl1

unilaterally. Additionally, when process Pl executes an action of sub-algorithm B̀l it does not enter the
critical section corresponding to sub-algorithm Al. Therefore, process Pi has the correct values of the
local variables of all the process inNκ1

i
in global state σi even if one of them has simultaneous privilege

to access the critical section corresponding to sub-algorithm B j. The lemma follows from the fact that
an action of algorithmA cannot be delayed indefinitely by a weakly-fair scheduler. �

The following lemma can also be proven in an analogous manner to Lemma 6.8.

Lemma 6.9. The projection of any maximal execution of the composed algorithm A

△κ
B under any

weakly-fair scheduler on algorithmB is a maximal execution of algorithmB under scheduler DB.

The following theorem follows directly from Lemmata 6.8 and 6.9

Theorem 6.5. AlgorithmA

△κ
B is self-stabilizing with respect to predicate PA ∧PA under any weakly-

fair scheduler.

Remark 6.2. Note that if κ1 is equal to κ2 then κ-LME symmetric lifting composition can achieved by a
single critical section. Guarded commands of the composed algorithm can be constructed in the manner
analogous to GME symmetric lifting composition. Modified guarded commands are then placed in the
critical section of the κ-local mutual exclusion algorithm.

The κ-LME lifting composition can be used to compose self-stabilizing algorithms even if one of
them requires global mutual exclusion for synchronization. Actions of the component requiring global
mutual exclusion are executed when the primary clock is equal to D, where D is the diameter of the
network. Let A refer to the component which requires global mutual exclusion and B the component
for which κ2-local mutual exclusion is sufficient. Then, the composed algorithmA

△κ
B can be obtained

by instantiating κ1 to D. The following corollary can be inferred directly from Theorem 6.5.

Corollary 6.7. AlgorithmA△κB is self-stabilizing with respect to predicate PA ∧PB under any weakly-

fair scheduler even if the modified component algorithm À requires global mutual exclusion for syn-

chronization.

6.4 Lifting Composition with Variable Dependencies

The lifting composition and its variants have been defined for self-stabilizing algorithms which do not
have any variable dependencies, implying that, none of the components reads the variables of its coun-
terpart while evaluating its guards. We now consider the cases where composition is required to preserve
the self-stabilization property of the component algorithms –in addition to the incompatible schedulers

104 6 Generalized Compositional Operators

of the components– in presence of variable dependencies. To that end, we define the extensions of the
lifting composition which cater to preserving the correctness of the components even if they read each
others variables. However, the notion of variable dependency between two self-stabilizing algorithms
need to be formulated before defining the desired compositional operators.

Definition 6.3 (Unidirectional Variable Dependency). There exists a unidirectional variable depen-

dency between algorithmsA and B if exactly one of the following condition holds:

- for each process Pi, the local variables of sub-algorithm Bi appear either in the guards or on the

right-hand side of the expressions in the assignment statements of sub-algorithm Ai or A j, where

P j is a neighbor of Pi.

- for each process Pi, the local variables of sub-algorithm Ai appear either in the guards or on the

right-hand side of the expressions in the assignment statements of sub-algorithm Bi or B j, where

process P j is a neighbor of process Pi.

Definition 6.4 (Bidirectional Variable Dependency). There exists a bidirectional dependency between

algorithmsA and B if both of the following conditions hold:

- for each process Pi, the local variables of sub-algorithm Bi appear either in the guards or on the

right-hand side of the expressions in the assignment statements of sub-algorithm Ai or A j, where

process P j is a neighbor of process Pi.

- for each process Pi, the local variables of sub-algorithm Ai appear either in the guards or on the

right-hand side of the expressions in the assignment statements of sub-algorithm Bi or B j, where

P j is a neighbor of Pi.

Note that the dependency relation between the algorithms does not allow the modification of local vari-
ables of a component algorithm by the other component. The dependency relation essentially partitions
local variables of each component algorithm into two classes: immutable and mutable local variables.
A variable is said to be immutable if a sub-algorithm can only read it, whereas mutable variable can
be read as well as modified. Thus, a variable of componentA becomes an immutable local variable of
componentB if it appears in the guards or the assignment expressions of B.

6.4.1 Lifting Composition and Unidirectional Dependency

Since we intend to define compositional operators based on lifting composition, two scenarios need
to be differentiated between while defining compositional operators for algorithms with unidirectional
variable dependency. More specifically, assume that a unidirectional variable dependency exists be-
tween algorithmsA andB. It leads to two possibilities with respect to the direction of the dependency,
either the variables of A appear in the guards or the assignment expressions of algorithm B or vice
versa. It is, therefore, necessary to investigate both scenarios while defining the suitable variants of the
lifting composition. We first present the asymmetric variant of the lifting composition for the algorithms
with unidirectional variable dependency.

Asymmetric Lifting Composition with Unidirectional Dependency

Assume that the variables of sub-algorithm Ai appear in the guards or the assignment expressions of sub-
algorithm Bi or B j where process P j is a neighbor of process Pi. AlgorithmA self-stabilizes to predicate
PA under scheduler DA. Since there exists a unidirectional variable dependency between algorithm A

andB, we need to qualify the assumptions under which algorithmB self-stabilizes to predicatePB. The
requirement to qualify the self-stabilization property of algorithm B stems from the fact that certain
values of the immutable variables of B may not allow B to converge to the states satisfying predicate
PB.

6.4 Lifting Composition with Variable Dependencies 105

We, therefore, assume that algorithmB is “conditionally” self-stabilizing with respect to predicate
PB under scheduler DB. More specifically, algorithm B converges to the states satisfying PB under
scheduler DB if its immutable variables – the variables of algorithm A which appear in the guards of
algorithmB– satisfy predicatePA. It follows immediately that algorithmB can only stabilize after algo-
rithmA has converged to the states satisfyingPA. However, since stabilization ofB also depends on the
underlying scheduler as well, any compositional operator defined for algorithmsA andBmust also ac-
count for potential incompatibility of the schedulers of the components. In the light of above discussion,
the generalized version of asymmetric lifting composition can preserve the self-stabilization property
of both components despite unidirectional variable dependency. This property of generic asymmetric
lifting composition is formally proven by the following lemmata.

Lemma 6.10. The projection of any maximal execution of algorithmA

△G
B under a weakly-fair sched-

ulerDA over algorithmA is a maximal execution ofA underDA even if the local variables ofA appear

in the guards or the right-hand side assignment expressions of B.

Proof. The lemma follows directly from the fact that the guards of A are unchanged in the composed
algorithmA

△G
B. �

Lemma 6.11. The projection of any maximal execution of algorithmA

△G
B under a weakly fair sched-

uler DA over algorithm B is a maximal execution of algorithm B under scheduler DB even if the local

variables of algorithm A appear in the guards or the right-hand side assignment expressions of algo-

rithm B.

Proof. Consider a prefix Ξ¬PB
of a maximal execution of A△G

B such that no state in Ξ¬PB
satisfies

predicate PB. Since actions of A are unhindered in A△G
B (Lemma 6.10) and algorithm B cannot

converge to predicate PB before predicate PA holds, there exists a state in Ξ¬PB
after which predicate

PA holds and predicate PB does not hold. Let σPA∧¬PB
be such state and let ε|σPA∧¬PB

be suffix of Ξ¬PB

starting with σPA∧¬PB
. In any state of ε|σPA∧¬PB

, there exists at least one process with an enabled guarded

command G̀Bi
because, algorithmB is self- stabilizing with respect to predicate PB provided predicate

PA holds. Also, once predicatePA holds in an execution it is not violated unless a transient fault occurs.
An infinite extension of ε|σPA∧¬PB

in which scheduler DA never selects the process with an enabled G̀Bi

is not possible under DA, because that would violate scheduler DA since it is weakly fair. �

The following theorem follows immediately from Lemmata 6.10 and 6.11.

Theorem 6.6. Algorithm A

△G
B is self-stabilizing with respect to predicate PA ∧ PB under a weakly-

fair scheduler DA even if the variables of algorithm A appear in the guards or the right-hand side

assignment expressions of algorithmB.

We now analyze the effect of asymmetric lifting composition if the direction of unidirectional variable
dependency is reversed. Let the mutable variables of algorithm B appear in the guards of algorithm
A. As assumed above, algorithmB is self-stabilizing with respect to predicate PB under scheduler DB.
Algorithm A, on the other hand, converges to the states satisfying predicate PA under scheduler DA if
its immutable variables –the variables ofB appearing in the guards ofA– satisfy predicatePB. It is also
assumed that both algorithms have exactly one enabled guarded command per process in every state.
We now show that the change in the direction of variable dependency does not not affect the result of
the generic asymmetric lifting composition.

Lemma 6.12. The projection of any maximal execution of algorithmA

△G
B under a weakly-fair sched-

uler DA on algorithm B is a maximal execution of B under scheduler DB even if the variables of B

appear in the guards or the assignment expressions of A.

106 6 Generalized Compositional Operators

Proof. At least one process has an enabled guard G̀Bi
in A△G

B because algorithm B converges to
predicate PB under scheduler DB. Also, the mutual exclusion algorithm ensures that every process gets
the token infinitely often in any execution; thus, the predicate have_token is infinitely often true in every
process inA△G

B. Consider a state σx in a maximal execution ofA△G
B such that predicate PB does not

hold in global state σx. Since convergence of algorithmA is contingent on the variables of algorithmB

satisfying predicate PB, state σx does not satisfies predicate PA as well. As reasoned above, at least on
process in state σx has a guarded command of algorithm B̀; assume that process Pi –the process with
an enabled guarded command of algorithm B̀– possesses the token in state σx. As every process has an
enabled guarded command of algorithmA in every state, process Px has an enabled guarded command
which allows execution of actions of both algorithms. Process Px cannot be ignored indefinitely by
scheduler DA owing to the fact that DA is weakly-fair. The lemma follows directly from the fact that
algorithmB does not depend on algorithmA for convergence. �

Lemma 6.13. The projection of any maximal execution of algorithmA

△G
B under a weakly-fair sched-

ulerDA on algorithmA is a maximal execution of algorithmA under schedulerDA even if the variables

of algorithm B appear in the guards or the right-hand side assignment expressions of algorithmA.

Proof. Note that algorithm A can converge to the states satisfying predicate PA only after the projec-
tion of a state of A△G

B on algorithm B satisfies predicate PB. Let σy be the first state in a maximal
execution of A△G

B such that predicate PB holds. Consider the suffix ε|σy
of the maximal execution of

A

△G
B starting with state σy. Actions of algorithmA in ε|σy

are unhindered (by construction) and once
predicate PB is not violated unless a transient fault occurs. �

The following theorem is a direct consequence of Lemmata 6.12 and 6.13.

Theorem 6.7. Algorithm A

△G
B is self-stabilizing with respect to predicate PA ∧ PB under a weakly-

fair scheduler DA even if the variables of algorithm A appear in the guards or the right-hand side

assignment expressions of algorithmB.

Symmetric Lifting Composition under Unidirectional Dependency

Having shown that the asymmetric lifting composition preserves the self-stabilization property of the
component algorithms despite unidirectional variable dependencies, we next analyze the result of the
symmetric lifting composition of self-stabilizing algorithms.

Consider the case where the variables of algorithmA are used in the guards of algorithm B. Since
convergence of algorithm B is contingent on the convergence of algorithm A, any execution of algo-
rithm B till A converges will not reach the states satisfying predicate PB. Also, actions of algorithm
A in A△S

B are unaffected by the truth values of the guards of algorithmB. The proof of the following
lemma is similar to the proof of Lemma 6.6.

Lemma 6.14. The projection of any maximal execution of algorithm A

△S
B under any weakly-fair

scheduler on algorithm A is a maximal execution of A under scheduler DA even if the variables of

A appear in the guards or the right-hand side assignment expressions of algorithmB.

Lemma 6.15. The projection of any maximal execution of algorithm A

△S
B under any weakly-fair

scheduler on algorithm B is a maximal execution of B under scheduler DB even if the variables of

A appear in the guards or the right-hand side assignment expressions of algorithmB.

Proof. Actions of algorithm A are unaffected by the composition operation (from Lemma 6.14). Let
σx be the state in a maximal execution where predicate PA holds and predicate PB does not hold.
Predicate PA remains true in any execution suffix which starts in state σx. Rest of the proof is similar
to Lemma 6.7. �

6.4 Lifting Composition with Variable Dependencies 107

The theorem below follows directly from Lemmata 6.14 and 6.15.

Theorem 6.8. AlgorithmA△S
B is self-stabilizing with respect to predicate PA ∧PB under any weakly-

fair scheduler even if the variables of algorithm A appear in the guards or the right-hand side assign-

ment expressions of algorithmB.

The correctness of symmetric generic lifting composition is now analyzed under assumption that the
variables of algorithmB appear in the guards or the right-hand side assignment expressions of algorithm
B. As is the case with the asymmetric lifting composition, the symmetric variant of the generic lifting
composition preserves the self-stabilization properties of component algorithms. We provide the proof
of the lemma central to the correctness proof.

Lemma 6.16. The projection of any maximal execution of algorithm A

△S
B under any weakly-fair

scheduler on algorithm B is a maximal execution of algorithm B under scheduler DB even if the vari-

ables of algorithm B appear in the guards or the assignment expressions of algorithmA.

Proof. As a result of self-stabilization of the algorithms providing mutual exclusion, every process gets
the token infinitely often in any maximal execution of A△S

B. There exists at least one process which
has an enabled Type 3 guarded command as algorithm B is self- stabilizing with respect to predicate
PB. Note that algorithmA cannot converge to predicate PA in a suffix of a maximal execution ofA△S

B

unless predicate PB holds in the prefix. A weakly-fair scheduler cannot starve the process with an
enabled Type 3 guarded command indefinitely. �

The proof of the following lemma is similar to Lemma 6.14 by dissecting maximal executions ofA△S
B

after a state satisfying predicate PB is reached.

Lemma 6.17. The projection of any maximal execution of algorithm A

△S
B under any weakly-fair

scheduler on algorithm A is a maximal execution of algorithm A under scheduler DA even if the

variables of variablesB appear in the guards or the assignment expressions of algorithmA.

Theorem 6.9. AlgorithmA△S
B is self-stabilizing with respect to predicate PA ∧PB under any weakly-

fair scheduler even if the variables of algorithm B appear in the guards or the right-hand side assign-

ment expressions of algorithmA.

We have, thus, shown that the direction of unidirectional variable dependency does not affect the result
of the lifting composition. The following corollary can be directly deduced from Theorems 6.6, 6.7, 6.8,
and 6.9.

Corollary 6.8. If algorithm A is self-stabilizing with respect to predicate PA and algorithm B is self-

stabilizing with respect to predicate PB, then the result of the generic lifting composition of algorithms

A and B is self-stabilizing with respect to the predicate PA ∧ PB even if there exits unidirectional

variable dependency between algorithmsA andB.

Discussion

It is in order here to remark that the lifting composition in presence of unidirectional dependency is
similar to the hierarchical composition. Recall that the hierarchical composition [81] is defined over the
self-stabilizing algorithms having unidirectional variable dependency. However, unlike the hierarchical
composition, the lifting composition does not put restrictions on the execution semantics of the com-
ponent algorithms. Assume that algorithm B requires the variables of algorithmA to satisfy predicate
PB in order to stabilize. Hierarchical composition would require that the actions of algorithm B are
suspended till algorithmA converges to predicate PA and, subsequently the actions of algorithmA are
suspended. This requirement restricts the class of self-stabilizing algorithms which can be constructed

108 6 Generalized Compositional Operators

using the hierarchical composition. More specifically, if algorithm A is a non-silent algorithm then,
the closure property of algorithm A is not guaranteed by the hierarchical composition because, the
hierarchical composition requires that the actions of algorithm A must be suspended once it satisfies
predicate PA. The lifting composition, on the other hand, only assumes that closure properties of algo-
rithms with respect to their respective safety predicates are preserved. The hierarchical composition also
implicitly assumes that the (conditional) self-stabilization of component algorithms require schedulers
which are compatible. On the contrary, the lifting composition preserves the self-stabilization property
of component algorithms despite incompatibility of the respective schedulers.

6.4.2 Lifting Composition and Bidirectional Dependency

We now define a compositional operator for the scenario where 1) bidirectional variable dependency
exists between the component algorithms and, 2) the respective schedulers are incompatible. While
the generic lifting composition without modification is able to preserve the self-stabilization properties
of algorithms with unidirectional dependency, bidirectional dependency requires enhanced lower layer
support because the system may start in a state where no component satisfies its respective safety
predicate.

Consider algorithmsA and B such that the mutable variables of algorithm A appear in the guards
and/or the right-hand side assignment expressions of algorithm B and vice versa. Algorithms A and
B also have the following properties. AlgorithmA converges to the states where predicate PA holds if
the immutable variables of algorithm A satisfy predicate PB; similarly, algorithm B is self-stabilizing
with respect to predicate PB under scheduler DB if its immutable variables satisfy predicate PA. Addi-
tionally, the safety predicate of algorithmA (B) is not violated in any maximal execution of algorithm
A (B) once it reaches a state which satisfies predicate PA (PB). Assume that algorithms A and B are
composed using the generic asymmetric lifting composition and let σx be the state where neither of
the algorithms satisfies its respective safety predicate. σx is a deadlock state because each component
can only converge if the safety predicate of its counterpart holds. Therefore, an extraneous mechanism
to break the deadlock is required. There are two alternatives with respect to the additional corrective
mechanism: repairing and resetting. A repair operation [95, 123] typically involves saving local history
at each process, and reconstructing an execution based on the local histories stored at the constituent
processes. A reset operation [97], on the other hand, sets a distributed system to a predefined legal
state after an inconsistency is detected. We opt for a reset operation because a repairing mechanism is
memory- intensive and delays the convergence of the composed algorithm. A reset mechanism, con-
trastingly, requires only a spanning tree to function correctly, and therefore, does not require any extra
algorithmic support, because the algorithm obtained by the lifting composition constructs a spanning
tree. In the sequel we assume that the mutable variables of each algorithm can be reset to a predefined
state which satisfies its respective safety predicate.

Reset Operation

The communication registers of the constituent processes are extended to support the functioning of the
reset operation. Since we need to monitor the execution of both the components, each process writes
the latest values of the variables of algorithm A to its communication registers. The reset operation
is implemented with the help of the wave-based reset algorithm of [97]. It is integrated in the generic
lifting composition by adding an extra layer. The layered structure of the modified algorithm is shown
in Figure 6.2. The wave-based reset algorithm due to Arora and Gouda [97] uses two variables to set
the variables to predefined values; variable flagi indicates the phase in which the reset algorithm is in,
and variable seriali tracks the number of reset requests serviced in any epoch. The algorithm needs a
distinguished process and a spanning tree to function correctly, and therefore, a reset layer is positioned

6.4 Lifting Composition with Variable Dependencies 109

above the spanning tree layer. The reset algorithm is initiated when a process Pi sets the variable flag to
initiate. As the reset operation needs to be initiated by an algorithm that monitors the system state, the
reset layer is positioned below the mutual exclusion layer. The reset algorithm works in three phases.

Mutual Exclusion Layer

snapshoti

Reset Layer

Spanning Tree Layer

parenti

resetopi resetopi

tokeni Modified

AlgorithmB

Algorithm A

Fig. 6.2: Layered View of the Lifting Composition with Bidirectional Dependency

The first phase is started when a process Pi –on detecting an “anomaly”– sends a request for reset to
the root of the spanning tree. The request is forwarded to the root process and, while doing so, requests
initiated by other process are merged into a single request. The second phase of the algorithm begins
when the request reaches the root process and the root process starts a reset wave by setting flagroot to
reset. Each process sets its variables to a predefined state when the flag j variable of its parent is equal
to reset. The third phase starts when the the leaf processes of the spanning tree reset their variables and
set their flagi variables to nrml. The algorithm ends when the completion wave reaches the root process.

Asymmetric Lifting Composition with Bidirectional Dependency

Definition 6.5 (Asymmetric lifting Composition with Bidirectional Dependency). Sub-algorithm

Ai
△BBi consists of li · mi + 1 guarded commands of the following structure:

¬PA ∧ ¬PB → reset_action(B); (1)

GAip
∧ have_tokeni ∧ (flagi = nrml) →

`GBi1 → actAip
; actBi1 ; paint_token;

...
`GBiη → actAip

; actBiη ; paint_token;

(2)

GAip
∧ ¬have_tokeni ∧ (flagi = nrml) → actAip

; token_op; (3)

for all q ∈ {1, · · · , li}. AlgorithmA

△B
B is the union of all sub-algorithms Ai

△BBi

A

△B
B =
⋃

∀i Ai
△BBi

run by the processes in Π .

Algorithm A

△B
B has an additional guarded command compared to A△G

B. The Type 1 guarded com-
mand is enabled if none of the safety predicates hold in the system and, the process with enabled Type 1
guard initiates a request wave to reset the variables of algorithmA. The rest of the guarded commands
are similar to the guarded commands of algorithm A

△G
B except for the extra conjunctive term in the

guards. An assignment statement of algorithmA is executed if the respective guard is true and no reset
wave is in operation. A process executes an action of algorithm B if it decreases the value of ranking

110 6 Generalized Compositional Operators

function ∆B and no reset wave is in operation. Note that the wave-based reset algorithm of [97] is a
self-stabilizing algorithm.

We now show that self-stabilization properties of both components are preserved by A△B
B.

Theorem 6.10 (based on [97]). Irrespective of the initial state, the reset algorithm is guaranteed to

eventually reach a state where, for all Pi ∈ Π , flagi is not equal to request and seriali is equal to η

where η is an arbitrary integer.

Lemma 6.18. The projection of any maximal execution of A△B
B on algorithm B has a suffix which

satisfies predicate PB.

Proof. Consider the projection Ξ̆|B of a maximal execution of A△B
B on algorithm B. Let σi(σi|B) be

the first state of Ξ̂
A

△B
A

(Ξ̆|B).
Assume that predicate PA holds in state σi. Since algorithm A under scheduler DA does not violate
predicate PA once it holds and, the actions of algorithm A are unchanged in A△B

B, Type 1 guarded
command is never enabled in Ξ̂

A

△B
A

. As predicate PA holds, the value of variable flagi is equal to nrml

in all processes in the system. As only Type 2 and 3 guards are enabled in the system, the projection of
Ξ̂
A

△B
A

on algorithmB is a maximal execution of algorithmB under scheduler DB (from Lemma 6.5).
Ξ̆|B reaches a state satisfying predicate PB because predicate PA is not violated in Ξ̂

A

△B
A

.
We now consider the case where neither predicate PA nor predicate PB holds in state σi. Since each
process collects the snapshot of the variables of algorithmA as well, eventually a process in the system
will detect that predicate PA does not hold. The process which detects that predicate PA does not hold
will request a reset as guard of Type 1 will be enabled at that process. The lemma follows immediately
because, the reset algorithm is guaranteed to reach state where the variables of algorithm B are set to
the values which satisfy predicate PB (Theorem 6.10). �

Lemma 6.19. The projection of any maximal execution of A△B
B on algorithm A has a suffix which

satisfies predicate PA.

Proof. Consider the first state σi of a maximal execution Ξ̂
A

△B
A

of A△B
B. If neither predicate PA

nor predicate PB holds in state σi then eventually a reset wave will be started by some process in the
system; predicate PB will hold at the completion of the wave-based reset algorithm (Theorem 6.10).
Let σ j be the first state in Ξ̂

A

△B
A

where predicatePB holds. The actions of algorithmA are unhindered
in any suffix starting with state σ j (by construction). The proof is completed by the fact that algorithm
A converges to predicate PA under DA. �

The following theorem is an immediate consequence of Lemmata 6.18 and 6.19.

Theorem 6.11. AlgorithmA△B
B is self-stabilizing with respect to predicatePA∧PB under any weakly-

fair scheduler DA.

Symmetric Lifting Composition with Bidirectional Dependency

We now define the symmetric variant of the lifting composition that preserves the self-stabilization
properties of component algorithms under any weakly-fair scheduler even if bidirectional dependency
exists between the component algorithms.

Definition 6.6 (Symmetric Lifting Composition with Bidirectional Dependency). Sub-algorithm

Ai
△βBi consists of 5 · li · mi + 1 guarded commands of the following structure:

6.5 Summary 111

¬PA ∧ ¬PB →reset_action(B); (1)

GAix
∧ GBiy ∧ PA ∧ PB ∧ (flagi = nrml) →actAix

; actBiy ; paint_token; (2)

GAix
∧ GBiy ∧ PA ∧ ¬PB ∧ (δBiy < 0) ∧ (flagi = nrml) →actAix

; actBiy ; paint_token; (3)

GAix
∧ GBiy ∧ ¬PA ∧ PB ∧ (δAix < 0) ∧ (flagi = nrml) →actAix

; actBiy ; paint_token; (4)

GAix
∧ GBiy ∧ PA ∧ ¬PB ∧ (δBiy ≥ 0) ∧ (flagi = nrml) →actAix

; paint_token; (5)

GAix
∧ GBiy ∧ ¬PA ∧ PB ∧ (δAix ≥ 0) ∧ (flagi = nrml) →actBiy ; paint_token; (6)

for all x ∈ {1, · · · , li} and all y ∈ {1, · · · ,mi}. AlgorithmA△βB is the union of Ai
△βBi run by all processes

in Π .

The guarded commands of algorithm A

△β
B are embedded in the critical section of the mutual exclu-

sion algorithm, unlike A△B
B where only modified guards of algorithm B are embedded in the critical

section. Nevertheless, a reset layer is common to both the compositional operators. If none of the safety
predicates hold in a state, then Type 1 guard is enabled, and the mutable variables of algorithm B are
set to the values which satisfy predicate PB. The rest of the guarded commands are enabled only if
no reset request is being processed. In a state where predicate PA does not hold actions of algorithm
A are executed only if they guarantee a decrease in the value of ranking function ∆A (Type 4 guarded
command); similarly actions ofB in a state where predicate PB does not hold are executed if they lead
to a decrease in the value of ranking function ∆B (Type 3 guarded command).

The proof of the following lemma is similar to the proof of Lemma 6.18.

Lemma 6.20. The projection of any maximal execution of algorithm A

△β
B under any weakly-fair

scheduler on algorithmB has a suffix which satisfies predicate PB.

Lemma 6.21. The projection of any maximal execution of algorithm A

△β
B under any weakly-fair

scheduler on algorithmA has a suffix which satisfies predicate PB.

Proof. Assume that neither predicatePA nor predicatePB holds in the first state of a maximal execution
of A△βB. Eventually at least one process will detect that predicate PA does not hold and, the process
start a reset wave. Predicate PB would hold at the termination of the reset algorithm. Rest of the proof
is analogous to Lemma 6.6. �

We get the following theorem directly from Lemmata 6.18 and 6.19.

Theorem 6.12. AlgorithmA△βB is self-stabilizing with respect to predicatePA∧PB under any weakly-

fair scheduler.

6.5 Summary

We extended scheduler-oblivious transformation to handle the case where the transformed algorithm
runs under read/write atomicity or distributed scheduler. In addition, an extension of the transformation
method for the message passing model was proposed. The scheduler-oblivious transformation method
was mated with the lifting composition to devise a generic compositional scheme that preserves the self-
stabilization properties of the component algorithms despite incompatible schedulers. It was also shown
that the generic lifting composition preserves self-stabilization even if convergence of one of the com-
ponents is a prerequisite for the convergence of other component. We presented another variant of the
generic lifting composition extending the scope of our compositional framework to the self-stabilizing
algorithms with bidirectional variable dependencies. Figure 6.3 summarizes the various compositional
operators defined in this chapter along with the conditions under which algorithm designers may use
them.

112 6 Generalized Compositional Operators

Components and respective schedulers

Direction of
variable

dependency?

Target
scheduler of

the composed
algorithm?

Target
scheduler of

the composed
algorithm?

Scope of
ranking

function?

Symmetric lifting
composition
with GME

(Defintion 6.2)

Symmetric lifting
composition
with κ-LME
(Figure 6.1)

Symmetric lifting
composition with

bidirectional
dependency

(Defintion 6.6)

Asymmetric lifting
composition with

bidirectional
dependency

(Definition 6.5)

Lifting cmposition
for general graphs

(Defintion 6.1)

unidirectional bidirectional

any weakly-fair

global

κ-local

any weakly-fair

DA or DBDA or DB

Fig. 6.3: Concise Summary of the Compositional Framework

7

Conclusion

We summarize the contributions of this dissertation in the scope of designing large self-stabilizing
algorithms. Before we conclude, we also discuss the potential extensions of the results presented in this
work.

7.1 Summary

Essentially, this work delivers a set of compositional methods for self-stabilizing algorithms. A compo-
sitional method can be selected based on the properties of the self-stabilizing algorithms acting as the
building blocks. The suite of the compositional methods distinguishes itself from the hitherto proposed
compositional methods in that it allows composition of distributed algorithms whose self-stabilization
require mutually incompatible assumptions. Another distinguishing feature of the compositional frame-
work is the potential of automatization of the composition operation. The potential of automatization
owes to the fact that the guards of component algorithms appear unchanged in the guards of the com-
posed algorithm. Moreover, auxiliary constructs used to deal with the incompatible proof assumptions
of the component algorithms do not depend on the component algorithms.

We began the quest of defining “oblivious” composition methods by asking whether two self-
stabilizing algorithms can be composed –without compromising the respective self-stabilization properties–
if the respective self-stabilization proofs require different schedulers. The question was answered pos-
itively, and the skeleton of the generic composition method, lifting composition, was devised in the
process. It was realized that the constraints imposed by the respective schedulers of the component algo-
rithms can be overcome by using the information culled from the respective proofs of self-stabilization.
We showed that the use of a ranking function – a by-product of the self-stabilization proof of a dis-
tributed algorithm– in the guards of the composed algorithm preserves the stabilization property of a
component algorithm under the scheduler of its counterpart. However, the evaluation of ranking func-
tion requires a degree of synchronization between the processes implementing the composed algorithm.

In order to pave the way for the implementation of lifting composition, we proposed a transfor-
mation method which preserves the self-stabilization of a distributed algorithm under any weakly-fair
scheduler. The method uses a spanning tree algorithm and a mutual exclusion algorithm to facilitate
the coordination required for the evaluation of a ranking function. However, the coordination between
the processes leads to an increase in the convergence time of the transformed algorithm. The increase
in convergence time is unavoidable because coordination is required for the correctness of the trans-
formed algorithm. Nevertheless, we showed that the convergence of the transformed algorithm can be
reduced by exploiting the structure of the ranking function supplied by the self-stabilization proof. More
specifically, we proved that a κ-local mutual exclusion algorithm is sufficient for coordination among

114 7 Conclusion

processes if evaluation of a ranking function at every process requires only κ-hops information. The
benefits of using the local mutual exclusion algorithm for coordination, and the importance of using a
local ranking function became apparent as system size was increased during the simulations. Another
feature of the transformation method is its modular nature which allows usage of suitable spanning tree
and mutual exclusion algorithms because the transformation method is not bound to a specific auxiliary
algorithm.

Lifting composition and scheduler-oblivious transformation form the foundation of the composi-
tional framework. The scheduler-oblivious transformation and lifting composition were mated to define
the generic lifting composition. As a result we had two variants of lifting composition; the first method
uses general mutual exclusion and the other is based on local mutual exclusion. Symmetric variants of
the generic lifting composition were defined to preserve the self-stabilization of component algorithms
under any weakly-fair scheduler. It was also proven that the composed algorithm is self-stabilizing un-
der any distributed scheduler even though component algorithms themselves might be self-stabilizing
only under a sequentialized scheduler. In order to extend the scope of the framework, generic lifting
composition was used as a kernel to define composition operation over the algorithms that have bidi-
rectional variable dependencies. Thus, the compositional framework provides the methods which allow
system designers to select component algorithms –without being constrained by potentially incompati-
ble proof assumptions or variable dependencies– solely based on the functional requirements.

7.2 Outlook

The framework presented in this dissertation relies on the scheduler-oblivious transformation method
to compose self-stabilizing algorithms with disparate schedulers. The transformation method itself uses
the proof artifacts of the component algorithms to monitor the execution of the composed algorithm.
The scheduler transformation method can also be viewed as a method to transform a non-self-stabilizing
algorithm into a self-stabilizing algorithm because, prior to the transformation, a scheduler –stronger
than the one assumed during the stabilization proof– can generate an execution that never reaches
the states satisfying the safety predicate. In contrast to the earlier methods of transforming a non-
self-stabilizing algorithms to a self-stabilizing algorithm with help of reset operations [95, 97], our
approach exploits the fact that a use algorithm might exhibit convergence under a restricted scheduler.
As a result, unlike the methods based on reset operations, the scheduler transformation method does
not need to store the complete execution history. Each approach, however, has associated costs, namely,
the second approach requires history to be stored at each process and the time required to reset the
system. The convergence time of an algorithm becomes larger if the first approach is used. There is,
hence, a trade-off involved between the methods. Therefore, it would be worthwhile to compare the two
approaches. More specifically, we need to map the above two methods to the scenarios where one of
the two methods is superior to the other. In particular, the performance of the two methods should be
measured in terms of 1) memory usage, 2) message complexity, and 3) time required to converge to the
safety predicate. If neither of the two methods outperforms the other method in all possible scenarios,
then we need to investigate, whether the state space of a transformed algorithm can be demarcated into
regions where one of the two methods outperforms the other method. A positive answer to this problem
would pave the way for “scheduler-adaptive” self-stabilizing algorithms. Scheduler-adaptivity in the
context of self-stabilizing algorithms would ensure that a self-stabilizing algorithm converges to the set
of safe states in an optimal number of steps despite an adversarial or easily realizable scheduler. Thus,
a scheduler-adapter would relieve system designers of the burden of optimizing the performance and
proving the correctness of self-stabilizing algorithms in all possible implementation scenarios.

References

[1] Anish Arora et al. “Project ExScal (Short Abstract)”. In: First IEEE International Confer-

ence on Distributed Computing in Sensor Systems (DCOSS). Ed. by Viktor K. Prasanna et al.
Vol. 3560. Lecture Notes in Computer Science. Springer, 2005, pp. 393–394 (cit. on p. 1).

[2] Felix C. Gärtner. “Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous
Environments”. In: ACM Comput. Surv. 31.1 (1999), pp. 1–26 (cit. on pp. 1, 19, 20).

[3] Edsger W. Dijkstra. “Self-stabilizing Systems in Spite of Distributed Control”. In: Communi-

cations of ACM 17.11 (1974), pp. 643–644 (cit. on pp. 1, 10, 18).
[4] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic Computing”. In: IEEE

Computer 36.1 (2003), pp. 41–50 (cit. on p. 1).
[5] Ian F. Akyildiz et al. “A Survey on Sensor Networks”. In: IEEE Communications Magazine

40.8 (2002), pp. 102–116 (cit. on p. 1).
[6] Fabrice Theoleyre and Fabrice Valois. “About the Self-stabilization of a Virtual Topology for

Self-Organization in Ad Hoc Networks”. In: Self-Stabilizing Systems. Ed. by Ted Herman and
Sébastien Tixeuil. Lecture Notes in Computer Science 3764. Springer-Verlag, 2005, pp. 214–
228 (cit. on p. 2).

[7] Hongwei Zhang and Anish Arora. “GS3: Scalable Self-Configuration and Self-Healing in Wire-
less Networks”. In: Proceedings of the twenty-first annual symposium on Principles of Dis-

tributed Computing (PODC). ACM, 2002, pp. 58–67 (cit. on p. 2).
[8] Emmanuelle Anceaume et al. “Towards a Theory of Self-Organization”. In: Nineth Interna-

tional Conference on Principles of Distributed Systems (OPODIS). Ed. by James H. Anderson,
Giuseppe Prencipe, and Roger Wattenhofer. Vol. 3974. Lecture Notes in Computer Science.
Springer, 2005, pp. 191–205 (cit. on p. 2).

[9] Olga Brukman et al. “Self-Stabilization as a Foundation for Autonomic Computing”. In: IEEE

ARES 2007 Workshop on Foundation of Fault-tolerance Distributed Computing. 2007 (cit. on
p. 2).

[10] Andrew Berns and Sukumar Ghosh. “Dissecting Self-* Properties”. In: Third IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE Computer So-
ciety, 2009, pp. 10–19 (cit. on p. 2).

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. ISBN 0-262-02649-X.
The MIT Press, 2008, p. 975 (cit. on p. 2).

[12] Mohamed G. Gouda, Rodney R. Howell, and Louis E. Rosier. “The Instability of Self-
Stabilization”. In: Acta Informatica 27.8 (1989), pp. 697–724 (cit. on p. 2).

[13] Abhishek Dhama and Oliver Theel. “A Tranformational Approach for Designing Scheduler-
Oblivious Self-stabilizing Algorithms”. In: Proceedings of 12th International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS). Ed. by Shlomi Dolev et al.
Vol. 6366. Lecture Notes in Computer Science. Springer, 2010, pp. 80–95 (cit. on p. 3).

[14] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts. John Wiley
& Sons, Inc., 2008. isbn: 0-470-12872-0 (cit. on p. 5).

[15] Romit Roy Choudhury and Nitin H. Vaidya. “Deafness: A MAC Problem in Ad Hoc Net-
works when using Directional Antennas”. In: ICNP ’04: Proceedings of the 12th IEEE Inter-

national Conference on Network Protocols. Washington, DC, USA: IEEE Computer Society,
2004, pp. 283–292. isbn: 0-7695-2161-4 (cit. on p. 5).

[16] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996 (cit. on
p. 5).

[17] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. “Efficient Synchronization on Multiprocessors
with Shared Memory”. In: PODC ’86: Proceedings of the fifth annual ACM symposium on

Principles of distributed computing. ACM, 1986, pp. 218–228. isbn: 0-89791-198-9 (cit. on
p. 7).

[18] Allan Gottlieb et al. “The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel
Computer”. In: IEEE Transactions on Computers 32.2 (1983), pp. 175–189 (cit. on p. 7).

[19] Maurice Herlihy. “Wait-free synchronization”. In: ACM Trans. Program. Lang. Syst. 13.1
(1991), pp. 124–149. issn: 0164-0925 (cit. on p. 7).

[20] Ambuj K. Singh, James H. Anderson, and Mohamed G.Gouda. “The elusive atomic register”.
In: J. ACM 41.2 (1994), pp. 311–339. issn: 0004-5411 (cit. on p. 7).

[21] Eli Upfal and Avi Wigderson. “How to share memory in a distributed system”. In: Journal of

the ACM 34.1 (1987), pp. 116–127 (cit. on p. 7).
[22] Tim J. Harris. “A survey of PRAM simulation techniques”. In: ACM Computing Surveys 26.2

(1994), pp. 187–206 (cit. on p. 7).
[23] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Sharing memory robustly in message-

passing systems”. In: Journal of ACM 42.1 (1995), pp. 124–142. issn: 0004-5411 (cit. on pp. 7,
8).

[24] Edsger W. Dijkstra. “Guarded Commands, Nondeterminancy, and Formal Derivation of Pro-
grams.” In: Communications of ACM 18 (1975), pp. 453–457 (cit. on pp. 8, 9).

[25] Nechama Allenberg-Navony, Alon Itai, and Shlomo Moran. “Average and randomized com-
plexity of distributed problems”. In: Distributed Algorithms. Vol. 857. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 1994, pp. 311–325 (cit. on p. 10).

[26] Paul C. Attie, Nissim Francez, and Orna Grumberg. “Fairness and Hyperfairness in Multi-Party
Interactions”. In: Distributed Computing 6.4 (1993), pp. 245–254 (cit. on pp. 10, 12, 15, 91).

[27] Shlomi Dolev, Amos Israeli, and Shlomo Moran. “Self-Stabilization of Dynamic Systems As-
suming Only Read/Write Atomicity”. In: Distributed Computing 7.1 (1993), pp. 3–16 (cit. on
pp. 11, 12, 57).

[28] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. “On Relaxing Interleaving As-
sumptions”. In: Proceedings of the MCC Workshop on Self-Stabilization. MCC Tech. Rep. STP-
379-89. 1989 (cit. on pp. 11, 12, 53).

[29] Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. “Maintaining Digital Clocks in Step”.
In: Parallel Processing Letters 1 (1991), pp. 11–18 (cit. on pp. 11, 12).

[30] Shing-Tsaan Huang, Lih-Chyau Wuu, and Ming-Shin Tsai. “Distributed Execution Model for
Self-Stabilizing Systems”. In: ICDCS:Proceedings of the 14th International Conference on Dis-

tributed Computing Systems. IEEE Computer Society Press, 1994, pp. 432–439 (cit. on pp. 11,
12).

[31] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992. isbn: 978-0-387-97664-8 (cit. on pp. 13, 15, 24).

116

[32] Bowen Alpern and Fred B. Schneider. “Recognizing Safety and Liveness”. In: Distributed Com-

puting 2.3 (1987), pp. 117–126 (cit. on pp. 13, 14).
[33] Zohar Manna and Amir Pnueli. “A Hierarchy of Temporal Properties”. In: PODC:Proceedings

of the Ninth Annual ACM Symposium on Principles of Distributed Computing. ACM, 1990,
pp. 377–410 (cit. on p. 14).

[34] A. Prasad Sistla. “On Characterization of Safety and Liveness Properties in Temporal Logic”.
In: PODC: Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed

Computing. ACM, 1985, pp. 39–48 (cit. on p. 14).
[35] Bowen Alpern and Fred B. Schneider. “Defining Liveness”. In: Information Processing Letters

21.4 (1985), pp. 181–185 (cit. on p. 14).
[36] Hagen Völzer, Daniele Varacca, and Ekkart Kindler. “Defining Fairness”. In: Concurrency The-

ory, 16th International Conference, CONCUR. Vol. 3653. Lecture Notes in Computer Science.
Springer, 2005, pp. 458–472. isbn: 3-540-28309-9 (cit. on p. 14).

[37] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. CRC Press, 2006. isbn:
9781584885641 (cit. on p. 14).

[38] Marta Zofia Kwiatkowska. “Fairness for Non-Interleaving Concurrency”. PhD thesis. Univer-
sity of Leicester, 1989 (cit. on p. 14).

[39] Nissim Francez. Fairness. Springer-Verlag, 1986. isbn: 0-387-96235-2 (cit. on pp. 14, 15).
[40] Edsger W. Dijkstra. “Hierarchical ordering of sequential processes”. In: Acta Informatica 1.2

(1971), pp. 115–138 (cit. on p. 15).
[41] Hagen Völzer. “On Conspiracies and Hyperfairness in Distributed Computing”. In: Distributed

Computing, 19th International Conference, DISC. Vol. 3724. Lecture Notes in Computer Sci-
ence. Springer, 2005, pp. 33–47. isbn: 3-540-29163-6 (cit. on pp. 15, 41, 91).

[42] Leslie Lamport. “Fairness and hyperfairness”. In: Distributed Computing 13.4 (2000), pp. 239–
245 (cit. on p. 15).

[43] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988. isbn: 978-0201058666 (cit. on pp. 15, 24).

[44] Agathe Merceron. “Fair Processes”. In: Advances in Petri Nets. Vol. 266. Lecture Notes in
Computer Science. Springer, 1987, pp. 181–195 (cit. on p. 15).

[45] Eike Best. “Fairness and Conspiracies”. In: Information Processing Letters 18.4 (1984), pp. 215–
220 (cit. on p. 15).

[46] Marco Schneider. “Self-stabilization”. In: ACM Comput. Surv. 25.1 (1993), pp. 45–67. issn:
0360-0300. doi: http://doi.acm.org/10.1145/151254.151256 (cit. on p. 17).

[47] Algirdas Aviz̆ienis et al. “Basic Concepts and Taxonomy of Dependable and Secure Comput-
ing”. In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004), pp. 11–33 (cit.
on pp. 19, 20).

[48] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1994, p. 448 (cit. on pp. 19,
20).

[49] Anish Arora and Sandeep S. Kulkarni. “Designing Masking Fault Tolerance via Nonmasking
Fault Tolerance”. In: Proceedings of 14th Symposium on Reliable Distributed Systems. IEEE
Computer Society, 1995, pp. 174–185 (cit. on p. 20).

[50] Sandeep S. Kulkarni and Ali Ebnenasir. “Enhancing The Fault-Tolerance of Nonmasking Pro-
grams”. In: Proceedings of 25th International Conference on Distributed Computing Systems

(ICDCS). IEEE Computer Society, 2003, pp. 441–449 (cit. on p. 20).
[51] Felix C. Freiling and Sukumar Ghosh. “Code Stabilization”. In: Proceedings of 7th Interna-

tional Symposium on Self-Stabilizing Systems (SSS). Ed. by Ted Herman and Sebasitien Tixeuil.
Vol. 3764. Lecture Notes in Computer Science. Springer, 2005, pp. 128–139 (cit. on p. 20).

[52] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. “Stabilization and Pseudo-
Stabilization”. In: Distributed Computing 7.1 (1993), pp. 35–42 (cit. on pp. 20, 21).

117

http://dx.doi.org/http://doi.acm.org/10.1145/151254.151256

[53] Mohamed G. Gouda. “The Theory of Weak Stabilization”. In: Self-Stabilizing Systems. Vol. 2194.
LNCS. Springer, 2001, pp. 114–123 (cit. on pp. 20, 40, 41, 53).

[54] Ted Herman. “Probabilistic Self-Stabilization”. In: Information Processing Letters 35.2 (1990),
pp. 63–67 (cit. on p. 21).

[55] Dana Angluin. “Local and Global Properties in Networks of Processors (Extended Abstract)”.
In: Twelfth Annual ACM Symposium on Theory of Computing, STOC. 1980, pp. 82–93 (cit. on
p. 21).

[56] Kenneth L. Mcmillan. Symbolic Model Checking. Kluwer Academic, 1993, p. 194 (cit. on
p. 23).

[57] Tatsuhiro Tsuchiya et al. “Symbolic Model Checking for Self-Stabilizing Algorithms”. In:
IEEE Transactions on Parallel and Distributed Systems 12.1 (2001), pp. 81–95 (cit. on pp. 23,
24).

[58] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications”. In: ACM Transactions on

Programming Languages and Systems 8.2 (1986), pp. 244–263 (cit. on p. 23).
[59] Nikolaos D. Liveris et al. “State space abstraction for parameterized self-stabilizing embedded

systems”. In: 8th ACM & IEEE International conference on Embedded software (EMSOFT).
Ed. by Luca de Alfaro and Jens Palsberg. ACM, 2008 (cit. on p. 23).

[60] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley Professional, 2002, p. 384 (cit. on p. 24).
[61] Mohamed G. Gouda and Nicholas J. Multari. “Stabilizing Communication Protocols”. In: IEEE

Transactions on Computers 40.4 (1991), pp. 448–458 (cit. on p. 24).
[62] Rodney R. Howell, Mikhail Nesterenko, and Masaaki Mizuno. “Finite-state self-stabilizing pro-

tocols in message-passing systems”. In: ICDCS Workshop on Self-stabilizing Systems (WSS).
Ed. by Anish Arora. IEEE Computer Society, 1999, pp. 62–69 (cit. on p. 24).

[63] Michael Siegel. “Phased Design and Verification of Stabilizing Systems”. PhD thesis. Univer-
sity of Kiel, 1996 (cit. on p. 24).

[64] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE. 1977, pp. 46–57 (cit. on p. 24).
[65] Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: A Prototype Verification System”.

In: 11th International Conference on Automated Deduction (CADE). Ed. by Deepak Kapur.
Vol. 607. Lecture Notes in Computer Science. Springer, 1992, pp. 748–752 (cit. on p. 24).

[66] Ignatius Sri Wishnu Brata Prasetya. “Mechanically Supported Design of Self-stabilizing Algo-
rithms”. PhD thesis. Utrecht University, 1995 (cit. on p. 24).

[67] Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge University Press,
1993. isbn: 0521441897 (cit. on p. 24).

[68] Joffroy Beauquier et al. “Proving Convergence of Self-stabilizing Systems using First-Order
Rewriting and Regular languages”. In: Distributed Computing 14.2 (2001), pp. 83–95 (cit. on
p. 25).

[69] Nachum Dershowitz and Jean-Pierre Jouannaud. “Handbook of Theoretical Computer Sci-
ence”. In: ed. by Jan van Leeuwen. Vol. B: Formal Methods and Semantics. Elsevier and MIT
Press, 1990. Chap. Rewrite Systems, pp. 243–320 (cit. on p. 25).

[70] Oliver Theel and Felix C. Gärtner. “An Exercise in Proving Convergence through Transfer
Functions”. In: ICDCS Workshop on Self-stabilizing Systems (WSS). Ed. by Anish Arora. IEEE
Computer Society, 1999, pp. 41–47 (cit. on p. 25).

[71] Hassan K. Khalil. Nonlinear Systems. 3rd ed. Prentice Hall, 2001, p. 750. isbn: 0130673897
(cit. on p. 25).

118

[72] Oliver Theel. “Exploitation of Ljapunov Theory for Verifying Self-Stabilizing Algorithms”. In:
Proceedings of the 14th Symposium on Distributed Computing (DISC). Ed. by Maurice Herlihy.
Vol. 1914. Lecture Notes in Computer Science. Springer, 2000, pp. 209–203 (cit. on p. 25).

[73] Oliver Theel. “An Exercise in Proving Self-Stabilization through Ljapunov Functions”. In:
ICDCS Workshop on Self-Stabilization (WSS). Ed. by Anish Arora. IEEE Computer Society,
2001, pp. 727–730 (cit. on p. 25).

[74] Jens Oehlerking, Abhishek Dhama, and Oliver Theel. “Towards Automatic Convergence Veri-
fication of Self-Stabilizing Algorithms”. In: Self-Stabilizing Systems, 7th International Sympo-

sium on Self-Stabilizing Systems. Ed. by T. Herman and S. Tixeuil. Vol. 3764. Lecture Notes in
Computer Science. Springer-Verlag, 2005, pp. 198–213 (cit. on p. 25).

[75] Abhishek Dhama, Jens Oehlerking, and Oliver Theel. “Verification of Orbitally Self-Stabilizing
Distributed Algorithms using Lyapunov Functions and Poincaré Maps”. In: Proceedings of 12th

International Conference on Parallel and Distributed Systems (ICPADS). IEEE Computer So-
ciety, 2006, pp. 23–30 (cit. on p. 25).

[76] Hans S. Witsenhausen. “ A class of hybrid-state continuous-time dynamic systems”. In: IEEE

Transactions on Automatic Control 11.2 (1966), pp. 161–167 (cit. on p. 25).
[77] Aleksandr Mikhailovich Lyapunov. “Probléme général de la stabilité du movement”. In: An-

nales de la Faculté des Sciences de Toulouse 9 (1907). Translation of a paper published in
Comm. Soc. math. Kharkow, 1893, reprinted in Ann. math. Studies No. 17, Princeton Univer-
sity Press, 1949, pp. 203–474 (cit. on p. 25).

[78] Stefan Pettersson. “Analysis and Design of Hybrid Systems”. PhD thesis. Chalmers University
of Technology, 1999 (cit. on p. 25).

[79] Stephen Boyd et al. Linear Matrix Inequalities in Systems and Control Theory. SIAM, 1994,
p. 193 (cit. on p. 26).

[80] John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-

furcations of Vector Fields. Springer, 1983, p. 459 (cit. on p. 26).
[81] Mohamed G. Gouda and Ted Herman. “Adaptive Programming”. In: IEEE Transactions on

Software Engineering 17.9 (1991), pp. 911–921 (cit. on pp. 27, 107).
[82] William Leal and Anish Arora. “Scalable Self-Stabilization via Composition”. In: 24th Interna-

tional Conference on Distributed Computing Systems (ICDCS). IEEE Computer Society, 2004,
pp. 12–21 (cit. on p. 27).

[83] Anish Arora and Sandeep S. Kulkarni. “Component Based Design of Multitolerant Systems”.
In: IEEE Transactions on Software Engineering 24.1 (1998), pp. 63–78 (cit. on p. 27).

[84] George Varghese. “Compositional Proofs of Self-stabilizing Protocols”. In: 3rd Workshop on

Self-stabilizing Systems (WSS). Ed. by Sukumar Ghosh and Ted Herman. Carleton University
Press, 1997, pp. 80–94. isbn: 0886293332 (cit. on p. 28).

[85] Mohamed G. Gouda and F. Furman Haddix. “The Alternator”. In: Distributed Computing 20.1
(2007), pp. 21–28 (cit. on pp. 30, 53, 65).

[86] Joep L. W. Kessels. “An Exercise in Proving Self-Stabilization with a Variant Function”. In:
Information Processing Letters 29.1 (1988), pp. 39–42 (cit. on p. 31).

[87] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. “Randomized Self-Stabilizing and
Space Optimal Leader Election under Arbitrary Schedulers on Rings”. In: Distributed Comput-

ing 20.1 (2007), pp. 75–93 (cit. on pp. 39, 40).
[88] Stéphane Devismes, Sébastien Tixeuil, and Masafumi Yamashita. “Weak vs. Self vs. Proba-

bilistic Stabilization”. In: International Conference on Distributed Computing Systems ICDCS.
IEEE Computer Society, 2008, pp. 681–688 (cit. on pp. 41, 53).

[89] Ananda Basu et al. “Priority Scheduling of Distributed Systems Based on Model Checking”.
In: CAV. Vol. 5643. LNCS. 2009, pp. 79–93 (cit. on p. 53).

119

[90] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. “Modular Ranking Abstraction”. In: Interna-

tional Journal of Foundations of Computer Science 18.1 (2007), pp. 5–44 (cit. on p. 53).
[91] Shmuel Katz and Kenneth J. Perry. “Self-Stabilizing Extensions for Message-Passing Sys-

tems”. In: Distributed Computing 7.1 (1993), pp. 17–26 (cit. on p. 54).
[92] Baruch Awerbuch and George Varghese. “Distributed Program Checking: a Paradigm for Build-

ing Self-stabilizing Distributed Protocols (Extended Abstract)”. In: 32nd Annual Symposium on

Foundations of Computer Science. IEEE, 1991, pp. 258–267 (cit. on p. 54).
[93] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. “Self-Stabilization By Local

Checking and Correction (Extended Abstract)”. In: 32nd Annual Symposium on Foundations

of Computer Science. IEEE, 1991, pp. 268–277 (cit. on p. 54).
[94] Yehuda Afek, Shay Kutten, and Moti Yung. “The Local Detection Paradigm and Its Application

to Self-Stabilization”. In: Theoretical Computer Science 186.1-2 (1997), pp. 199–229 (cit. on
pp. 54, 57, 58, 60–62, 66, 94, 95).

[95] Yehuda Afek and Shlomi Dolev. “Local Stabilizer”. In: Journal of Parallel and Distributed

Computing 62.5 (2002), pp. 745–765 (cit. on pp. 54, 108, 114).
[96] Joffroy Beauquier et al. “Transient Fault Detectors”. In: 12th International Symposium on Dis-

tributed Computing (DISC). Vol. 1499. Lecture Notes in Computer Science. Springer, 1998,
pp. 62–74 (cit. on p. 54).

[97] Anish Arora and Mohamed G. Gouda. “Distributed Reset”. In: IEEE Transactions on Comput-

ers 43.9 (1994), pp. 1026–1038 (cit. on pp. 54, 108, 110, 114).
[98] Masaaki Mizuno and Hirotsugu Kakugawa. “A Timestamp Based Transformation of Self-

Stabilizing Programs for Distributed Computing Environments”. In: International Workshop

on Distributed Algorithms WDAG. Vol. 1151. LNCS. 1996, pp. 304–321 (cit. on p. 54).
[99] Hirotsugu Kakugawa, Masaaki Mizuno, and Mikhail Nesterenko. “Development of Self -

Stabilizing Distributed Algorithms using Transformation: Case Studies”. In: WSS. Carleton
University Press, 1997, pp. 16–30. isbn: 0886293332 (cit. on p. 54).

[100] K. Mani Chandy and Jayadev Misra. “The Drinking Philosopher’s Problem”. In: ACM Trans-

actions on Programming Languages and Systems 6.4 (1984), pp. 632–646 (cit. on p. 54).
[101] Joffroy Beauquier et al. “Self-Stabilizing Local Mutual Exclusion and Daemon Refinement”.

In: DISC. Vol. 1914. LNCS. Springer, 2000, pp. 223–237 (cit. on p. 54).
[102] Mikhail Nesterenko and Anish Arora. “Stabilization-Preserving Atomicity Refinement”. In: J.

Parallel Distrib. Comput. 62.5 (2002), pp. 766–791 (cit. on p. 54).
[103] Christian Boulinier, Franck Petit, and Vincent Villain. “When Graph Theory helps Self-

Stabilization”. In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing.
2004, pp. 150–159 (cit. on p. 54).

[104] Mehmet Hakan Karaata. “Self-Stabilizing Strong Fairness under Weak Fairness”. In: IEEE

Transactions on Parallel and Distributed Systems 12.4 (2001), pp. 337–345 (cit. on p. 54).
[105] Matthew Lang and Paolo A. G. Sivilotti. “A Distributed Maximal Scheduler for Strong Fair-

ness”. In: Proceedings of 21st International Symposium on Distributed Computing (DISC).
Vol. 4731. Lecture Notes in Computer Science. Springer, 2007, pp. 358–372 (cit. on p. 54).

[106] Alain Cournier et al. “Self-Stabilizing PIF Algorithm in Arbitrary Rooted Networks”. In: Pro-

ceedings of International Conference on Distributed Computing Systems (ICDCS). IEEE Com-
puter Society, 2001, pp. 91–98 (cit. on p. 56).

[107] Baruch Awerbuch et al. “Time optimal self-stabilizing synchronization”. In: Proceedings of the

Annual ACM Symposium on Theory of Computing (STOC). ACM, 1993, pp. 652–661 (cit. on
p. 56).

[108] Ichiro Suzuki and Tadao Kasami. “A Distributed Mutual Exclusion Algorithm”. In: ACM Trans-

actions on Computer Systems 3.4 (1985), pp. 344–349 (cit. on p. 57).

120

[109] Shlomi Dolev. Self-Stabilization. The MIT Press, 2000. isbn: 0-262-04178-2 (cit. on pp. 58, 60,
63, 66, 94, 95).

[110] Monika Rauch Henzinger and Valerie King. “Randomized Dynamic Graph Algorithms with
Polylogarithmic Time per Operation”. In: Proceedings of the Twenty-Seventh Annual ACM Sym-

posium on Theory of Computing, STOC. ACM, 1995, pp. 519–527 (cit. on p. 63).
[111] Christian Boulinier and Franck Petit. “Self-stabilizing Wavelets and ̺-Hops Coordination”. In:

International Symposium on Parallel and Distributed Processing (IPDPS). IEEE, 2008, pp. 1–8
(cit. on pp. 80, 83).

[112] James Gosling et al. The Java® Language Specification. 3rd ed. Addison Wesley, 2005 (cit. on
p. 87).

[113] Wolfgang Schreiner. A Toolkit for the Simulation of Distributed Algorithms in Java. Accessed
on February 1, 2011. doi: https://www.risc.jku.at/software/daj/ (cit. on p. 87).

[114] Leon Winter. Simulationsumgebung zur Transformation selbststabilisierender Algorithmen.
Bachelor Thesis, Carl von Ossietzky University of Oldenburg. 2011 (cit. on p. 89).

[115] Joseph Y. Halpern and Yoram Moses. “Knowledge and Common Knowledge in a Distributed
Environment”. In: Journal of ACM 37.3 (1990), pp. 549–587 (cit. on p. 90).

[116] Jim N. Gray. Notes on Database Operating Systems. Tech. rep. RJ2188. San Jose, California
95193: IBM Research Laboratory, 1978 (cit. on p. 90).

[117] Gil Neiger and Sam Toueg. “Simulating Synchronized Clocks and Common Knowledge in
Distributed Systems”. In: Journal of ACM 40.2 (1993), pp. 334–367 (cit. on p. 90).

[118] Joseph Y. Halpern and Sabina Petride. “A knowledge-based analysis of global function compu-
tation”. In: Distributed Computing 23.3 (2010), pp. 197–224 (cit. on p. 90).

[119] Ernst-Rüdiger Olderog and Krzysztof R. Apt. “Fairness in Parallel Programs: The Transfor-
mational Appproach”. In: ACM Transactions on Programming Languages and Systems 10.3
(1988), pp. 420–455 (cit. on p. 91).

[120] Matthew Lang and Paolo A.G. Sivilotti. “On the Impossibility of Maximal Scheduling for
Strong Fairness with Interleaving”. In: International Conference on Distributed Computing Sys-

tems (ICDCS). IEEE Computer Society, 2009, pp. 482–489 (cit. on p. 91).
[121] Yehuda Afek and Geoffrey M. Brown. “Self-Stabilization Over Unreliable Communication Me-

dia”. In: Distributed Computing 7.1 (1993), pp. 27–34 (cit. on p. 96).
[122] Shlomi Dolev, Amos Israeli, and Shlomo Moran. “Resource Bounds for Self-Stabilizing

Message-Driven Protocols”. In: SIAM Journal on Computing 26.1 (1997), pp. 273–290 (cit.
on p. 96).

[123] Shlomi Dolev and Ted Herman. “Superstabilizing Protocols for Dynamic Distributed Systems”.
In: Chicago Journal of Theoretical Computer Science 1997 (1997) (cit. on p. 108).

121

http://dx.doi.org/https://www.risc.jku.at/software/daj/

List of Publications

1. Pepijn Crouzen, Ernst Moritz Hahn, Holger Hermanns, Abhishek Dhama, Oliver Theel, Ralf Wim-
mer, Bettina Braitling and Bernd Becker. Bounded Fairness for Probabilistic Distributed Algo-
rithms. In B. Caillaud, J. Carmona and K. Hiraishi, editors, Eleventh International Conference on

Application of Concurrency to System Design. ACSD, 2011, pages 89–97. IEEE .
2. Ralf Wimmer, Bettina Braitling, Bernd Becker, Ernst Moritz Hahn, Pepijn Crouzen, Holger Her-

manns, Abhishek Dhama and Oliver Theel. Symblicit Calculation of Long-Run Averages for Con-
current Probabilistic Systems. In Seventh International Conference on the Quantitative Evaluation

of Systems. QEST, 2010, pages 27–36. IEEE Computer Society.
3. Abhishek Dhama and Oliver Theel. A Transformational Approach for Designing Scheduler-

Oblivious Self-stabilizing Algorithms. In S. Dolev, J. A. Cobb, M. J. Fischer and M. Yung, editors,
Stabilization, Safety, and Security of Distributed Systems, SSS, volume LNCS 6366, 2010, pages
80–95. Springer-Verlag.

4. Abhishek Dhama, Oliver Theel, Pepijn Crouzen, Holger Hermanns, Ralf Wimmer and Bernd
Becker. Dependability Engineering of Silent Self-stabilizing Systems. In R. Guerraoui and F. Petit,
editors, Stabilization, Safety, and Security of Distributed Systems, SSS, volume LNCS 5873, 2009,
pages 238–253. Springer-Verlag.

5. Nils Müllner, Abhishek Dhama, and Oliver Theel. Derivation of Fault Tolerance Measures of Self-
Stabilizing Algorithms by Simulation. In Forty-first Annual Simulation Symposium. ANSS, 2008,
pages 183–192. IEEE Computer Society.

6. Steffen Becker, Wilhelm Hasselbring, Alexandra Paul, Marko Boskovic, Heiko Koziolek, Jan
Ploski, Abhishek Dhama, Henrik Lipskoch, Matthias Rohr, Daniel Winteler, Simon Giesecke,
Roland Meyer, Mani Swaminathan, Jens Happe, Margarete Muhle and Timo Warns. Trustwor-
thy software systems: a discussion of basic concepts and terminology. In ACM SIGSOFT Software

Engineering Notes, volume 31, (2006) pages 1–18.
7. Abhishek Dhama, Oliver Theel and Timo Warns. Reliability and Availability Analysis of Self-

Stabilizing Systems. In A. Datta and M. Gradinariu, editors, Stabilization, Safety, and Security of

Distributed Systems, SSS, volume LNCS 4280, 2006, pages 241–261. Springer-Verlag.
8. Abhishek Dhama, Jens Oehlerking, and Oliver Theel. Verification of Orbitally Self-Stabilizing Dis-

tributed Algorithms using Lyapunov Functions and Poincaré Maps. In 12th International Confer-

ence on Parallel and Distributed Systems (ICPADS), 2006, pages 23–30. IEEE Computer Society.
9. Jens Oehlerking, Abhishek Dhama and Oliver Theel. Towards Automatic Convergence Verification

of Self-stabilizing Algorithms. In T. Herman and S. Tixeuil, editors, Self-Stabilizing Systems, SSS,
volume LNCS 3764, 2005, pages 198–213. Springer-Verlag.

	Acknowledgements
	Abstract
	Zussamenfassung
	List of Figures
	List of Symbols
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Self-Stabilizing Distributed Algorithms
	Process Model
	Communication Model
	Guarded Commands

	Distributed Algorithm
	Non-Determinism and Schedulers
	Execution Semantics
	Schedulers, Properties and Fairness

	Self-Stabilization
	Self-Stabilization and Fault Tolerance
	Weaker Forms of Convergence
	Summary

	Design and Verification of Self-Stabilizing Algorithms
	Verification Techiques for Self-Stabilizing Algorithms
	Algorithmic Verification Techniques
	Deductive Verification Techniques
	Term Rewrite Systems based Technique
	Control-Theoretic Verification Techniques

	Compositional Methods for Self-Stabilizing Systems
	Asymmetric Compositional Methods
	Symmetric Composition

	Summary

	Lifting Composition of Self-Stabilizing Algorithms
	Introduction
	System Model
	Lifting Composition
	Definitions
	Preservation of Self-Stabilization

	The Role of Schedulers in Lifting Composition
	Examples
	Summary

	Scheduler Transformation of Self-Stabilizing Algorithms
	Introduction
	Related Work
	Transformation of Self-Stabilizing Algorithms
	Definition
	Preservation of Self-Stabilization
	Concurrency Optimization
	Efficiency of the Transformation
	Simulation Results

	Discussion
	Knowledge-Theoretic Interpretation of the Transformation
	A Scheduler-based Perspective of the Transformation

	Summary

	Generalized Compositional Operators
	Introduction
	Extensions of the Scheduler-Oblivious Transformation
	Read/Write Atomicity and Scheduler Transformation
	Scheduler Transformation and Distributed Scheduler
	An Extension for the Message Passing Communication Model

	Extensions of Lifting Composition
	Lifting Composition for General Communication Graphs
	Symmetric Lifting Composition

	Lifting Composition with Variable Dependencies
	Lifting Composition and Unidirectional Dependency
	Lifting Composition and Bidirectional Dependency

	Summary

	Conclusion
	Summary
	Outlook

	References
	List of Publications

