
FAKULTÄT II – INFORMATIK, WIRTSCHAFTS- UND RECHTSWISSENSCHAFTEN

DEPARTMENT FÜR INFORMATIK

Reference Architecture for Smart
Environmental Information Systems

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Ingenieurswissenschaften (Dr.-Ing.)

angenommene Dissertation

von Frau Ruthbetha Kateule
geboren am 15.03.1987 in Tanzania

Oldenburg, September 2019

Gutachter:

Prof. Dr. Andreas Winter

Prof. Dr. Jorge Marx Gómez

Tag der Disputation:

17.09.2019

This thesis is dedicated to my beloved late father Beatus Ngalela Kateule for his
unconditional love and support. Thank you so much dad.

Acknowledgements

This thesis represents the critical point of my career, and it incorporates knowledge from
different sources, professionals and academics. During this research, I was privileged to
get support, guidance and encouragement from many people and I would like to take this
opportunity to acknowledge their contributions.

Firstly, I would express my profound gratitude to my supervisor Prof. Dr. Andreas Winter
for initiating the research and his patience, understanding, immense knowledge, support and
guidance during the past four years. I could not have imagined having a better supervisor
and mentor for my PhD study. I extend my special thanks to Prof. Dr. Jorge Marx Gómez
(my second supervisor) for his valuable inputs and support throughout my research.

I would like to express my sincere gratitude and appreciation to my colleagues; Dr. Christian
Schönberg, Dr. Dilshodbek Kuryazov, Johannes Meier, Jan Jelschen, and Muzaffar Artikov
for their valuable inputs, time and encouragements that motivated me to complete my thesis.
I would also like to thank my mother Alwina Unami, whole family and friends for your
continuous support throughout this journey. A special thanks to my friends Dr. Tupokigwe
Isagah and Ola Mustafa for their support.

Finally, but most importantly, I would like to thank the German Academic Exchange Service
(DAAD) for their financial support throughout the research and also University of Dar es
Salaam (UDSM) for granting the study leave.

Abstract

Smart environmental information systems (SEISs) are playing a more prominent role in mod-
ern society as the utilization of SEISs has dramatically increased for effectively monitoring
and controlling environmental events. This is achieved by firstly, monitoring and displaying
the environmental conditions. Afterwards, the environmental conditions are analysed and
manipulated with the intent of preventing or reducing the effects of various environmental
phenomena, i.e. air pollution, fire, flood, road traffic congestion etc. The wireless sensor-
actuator networks (WSANs) enable SEISs to monitor the environment in both non-real-time
and real-time on remote and inaccessible places, diagnostics, and finally protection of further
environmental severe phenomena. The intention of SEISs is not restricted to only gathering
and manipulating data from various locations, but also to disseminate information required by
practitioners such as researchers, planners, and policy-makers for making crucial decisions
regarding the management and improvement of the environment.

Although there is a high potential, the growth of SEISs is coupled with the existence
of various hardware devices, extensive use of off-the-shelf components, growth of the size,
various stakeholders and multiple programming languages. The inevitable complexity of such
systems makes the development and maintenance of the SEISs to be difficult, time-consuming
and require extensive knowledge of the domain. Dealing with such complexity can be
challenging for even most experienced software engineers such as architects, developers and
maintainers if start from scratch. Since, in spite of the considerable relevance and established
architectural knowledge of the existing SEISs, there is a lack of a reference architecture
for SEISs that supports the development of SEISs. This can be achieved by replacing
the ad-hoc solutions (which focus on single-solution development) with reuse-driven and
knowledge-based best practices for SEISs.

A conventional method for maximizing the reusability of established knowledge and
best-practices of systems that belong to a particular domain is a Reference Architecture.
The reference architecture encompasses systems common sets of requirements, architecture
designs, and software elements from the previous software developments mainly existing
concrete software architectures that can be applied to a number of concrete systems in a

i

particular domain. The elements of these software architectures which are being reused
in the reference architecture are proven to be good. It is argued that the employment of
reference architecture in SEISs would facilitate the development of SEISs by reducing the
SEISs development time and efforts. Therefore, the main objective of this thesis is to propose
a reference architecture for SEISs that would serve as a baseline for creating concrete SEISs.

An effective approach to describe an understandable and easier maintainable software
architectural description is by partitioning the software architecture into a number of separate
views. Each view addresses one aspect of the architecture using a specific set of models
from a specific viewpoint. Therefore this thesis proposes a required set of Viewpoints for
SEISs, some of these viewpoints are adopted from Siemens view model. Essential viewpoints
for SEISs include conceptual, module, execution, code, topology, and data viewpoints.
Furthermore, these viewpoints have been integrated to ensure conceptual integrity and
consistency in the construction of a well-integrated system. Such viewpoints are applied in
the development of the reference architecture for SEISs (RefSEISs). The description of the
RefSEISs follows the ISO/IEC/IEEE 42010:2011 standard for the architectural description
and adopts the best practices established in the existing SEISs. Thus, the proposed RefSEISs
encompasses various software artefacts and knowledge such as the sets of stakeholders,
concerns, requirements and architectural designs that could be reused in the construction of
concrete SEISs architectures.

As proof of concept, the proposed RefSEISs is applied to several applications. First, the
RefSEIS is applied in the construction of forest fire detection system as new concrete SEIS to
demonstrate the applicability of the proposed RefSEISs in real scenarios and verification of
the design with the requirements. Secondly, a conceptual validation is presented in which the
proposed RefSEISs is used for mapping some of the existing SEISs; Forest Fire Monitoring
System (IPNAS), Urban Air Quality Monitoring System, Flood Risk Assessment System
and Indoor Air Quality Monitoring System. These mappings demonstrated the proposed
RefSEISs provides insights into how to improve the existing SEISs since the similarities and
differences of existing SEISs with respect to RefSEISs have been described.

An analysis of these experiences showed that the proposed RefSEISs effectively supports
the constructions of new concrete SEISs since the time and efforts required for developing
and maintaining forest fire detection system have been substantially reduced. And also
the mappings have demonstrated that the proposed RefSEISs can be used to compare and
improve the existing SEISs by describing the similarities, differences, and how such SEISs
can be improved. Results indicated that the RefSEISs has a positive influence in achieving
the requirements of SEISs. This RefSEIS presents, therefore, good perspectives to be adopted
and contribute to the development and maintenance of SEISs.

ii

Kurzfassung

Intelligente Umweltinformationssysteme (SEISs) spielen in der modernen Gesellschaft eine
immer herausragendere Rolle, da die Nutzung von SEISs zur wirksamen Überwachung
und Kontrolle von Umweltereignissen stark zugenommen hat. Dies wird erreicht, in-
dem zum einen Umweltereignisse überwacht und angezeigt werden. Zum anderen werden
Umweltereignisse analysiert und manipuliert, um die Auswirkungen verschiedener Umwelt-
phänomene, z.B. Luftverschmutzung, Feuer, Erdrutsche, Verkehrsstaus usw., zu verhindern
oder zu reduzieren. Drahtlose Sensor-Aktuator-Netzwerke (WSANs) ermöglichen es einem
SEIS, die Umgebung sowohl verzögert als auch in Echtzeit an abgelegenen und schwer
zugänglichen Orten zu überwachen und flexibel vor schwerwiegenden Folgen zu schützen.
Ziele eines SEIS sind nicht nur das Sammeln und Manipulieren von Daten von verschiede-
nen Standorten sondern auch die Verbreitung von Informationen an Praktiker wie Forscher,
Planer und Entscheidungsträger, um ihnen Entscheidungshilfen zum Management und zur
Verbesserung der Umwelt an die Hand zu geben.

Obwohl es ein hohes Potenzial gibt, ist das Wachstum von SEISs mit dem Vorhandensein
verschiedener Hardwaregeräte, der umfangreichen Nutzung von off-the-shelf-Komponenten,
dem Wachstum der Größe, verschiedenen Interessengruppen und mehreren Programmier-
sprachen verbunden. Die unvermeidliche Komplexität solcher Systeme macht die Entwick-
lung und Wartung von SEISs komplex, zeitaufwändig und erfordert umfangreiche Kenntnisse
der Domäne. Der Umgang mit dieser Komplexität kann selbst für erfahrene Software-
Entwickler wie Architekten, Entwickler und Wartungspersonal eine Herausforderung sein,
wenn sie ein SEIS von Grund auf neu entwickeln. Obwohl sie eine erhebliche Relevanz
besitzt und die Architektur vieler bestehender SEISs gut bekannt ist, fehlt eine Referenzar-
chitektur für SEISs, die die Entwicklung von SEIS unterstützt. Dies kann erreicht werden,
indem die Ad-hoc-Lösungen (die sich auf die individuelle Entwicklung genau eines einzigen
SEIS konzentrieren) durch bewährte und wissensbasierte Verfahren insbesondere mit dem
Ziel der Wiederverwendung ersetzt werden.

Eine bewährte Methode zur Erhöhung der Wiederverwendbarkeit von etabliertem Wis-
sen und Bestpraktiken innerhalb von Systemen, die zu der gleichen Domäne gehören, ist

iii

die Nutzung einer Referenzarchitektur. Die Referenzarchitektur beschreibt allgemeine An-
forderungen, Architekturentwürfe und Softwareelemente aus früher entwickelten Systemen
dieser Domäne, die auf neue konkreter Systeme innerhalb der gleichen Domäne angewendet
werden können. Es wird argumentiert, dass die Verwendung einer Referenzarchitektur in
SEISs die Entwicklung von SEISs erleichtern würde, indem die Entwicklungszeit und der
Entwicklungsaufwand der SEIS verringert würde. Das Hauptziel dieser Arbeit ist es daher,
eine Referenzarchitektur für SEISs vorzuschlagen, die als Basis für die Erstellung konkreter
SEIS dienen soll.

Ein effektiverer Ansatz zum verständlichen, übersichtlichen und leichter wartbaren
Beschreiben von Softwarearchitekturen besteht darin, die Softwarearchitektur in mehrere
separate Sichten zu unterteilen. Jede Sicht zeigt für einen Aspekt der Architektur aus einem
bestimmten Blickwinkel die dazu passenden Modelle. In dieser Arbeit wird daher zunächst
eine Menge von Sichten für SEIS vorgeschlagen. Einige dieser Sichten werden aus dem
Siemens-View-Modell übernommen. In den zentralen Sichten für SEIS werden u.a. Kom-
ponenten, Module, Ausführung, Code, Topologie und Daten beschrieben. Darüber hinaus
wurden diese Gesichtspunkte integriert, um die konzeptionelle Integrität und Konsistenz beim
Aufbau eines gut integrierten Systems sicherzustellen. Solche Standpunkte werden bei der
Entwicklung der Referenzarchitektur für SEISs (RefSEISE) verwendet. Die Beschreibung der
RefSEISs folgt dem ISO/IEC/IEEE 42010:2011 Standard für die Architekturbeschreibung
und übernimmt die best-practices, die in den bestehenden SEISs eingeführt wurden. So
umfassen die vorgeschlagenen RefSEISs verschiedene Software-Artefakte und Kenntnisse,
wie z.B. die Mengen an Interessengruppen, Bedenken, Anforderungen und architektonische
Entwürfe, die für den Bau von konkreten SEIS-Architekturen wiederverwendet werden
können.

Als Proof of Concept werden die vorgeschlagenen RefSEIS auf mehrere Anwendungen
angewendet. Erstens wird das RefSEIS beim Bau eines Waldbrandmeldesystems als neues
konkretes SEIS angewendet, um die Anwendbarkeit der vorgeschlagenen RefSEIS in realen
Szenarien und die Überprüfung des Designs mit den Anforderungen zu demonstrieren. Zweit-
ens wird eine konzeptionelle Validierung vorgestellt, in der die vorgeschlagenen RefSEISs
zur Abbildung der vorhandenen SEISs verwendet werden; Waldbrandüberwachungssystem
(IPNAS), System zur Überwachung der Luftqualität in Städten, Hochwasserrisikobewer-
tungssystem und System zur Überwachung der Luftqualität in Innenräumen. Diese Zuord-
nungen haben gezeigt, dass die vorgeschlagenen RefSEIS Einblicke in SEIS bieten, da die
Ähnlichkeiten und Unterschiede der bestehenden SEIS in Bezug auf RefSEIS beschrieben
wurde.

iv

Eine Analyse dieser Erfahrungen hat gezeigt, dass die vorgeschlagenen RefSEIS die
Entwicklung von konkreten SEIS effektiv unterstützen, da die Zeit und der Aufwand für die
Entwicklung und Weiterentwicklung von Waldbranderkennungssystemen erheblich reduziert
wurden. Auch die Zuordnungen haben gezeigt, dass die vorgeschlagenen RefSEIS zum
Vergleich mit und zur Verbesserung der vorhandenen SEIS verwendet werden können, indem
Ähnlichkeiten, Unterschiede und Möglichkeiten zur Verbesserung dieser SEIS beschrieben
werden. Die Ergebnisse zeigen, dass die RefSEIS einen positiven Einfluss auf die Erfüllung
der Anforderungen für SEIS haben. Diese RefSEIS bieten daher gute Möglichkeiten, die zur
Entwicklung und Aufrechterhaltung von SEIS beitragen und die zukünftig weiterentwickelt
werden können.

v

Table of contents

Abstract i

Kurzfassung iii

List of figures xiii

List of tables xv

I Challenges 1

1 Introduction 5
1.1 Motivation . 5
1.2 Research Questions . 7
1.3 Research Methodology . 9
1.4 Thesis Outline . 11
1.5 Summary . 12

II Background and Related Work 13

2 Foundations 17
2.1 Software Architecture . 17
2.2 Reference Architecture . 19

2.2.1 Definitions . 19
2.2.2 Quality Criteria . 21
2.2.3 Architectural Styles and Patterns 22
2.2.4 Evaluation of software Architecture 23

2.3 Software Architecture Documentation . 24
2.3.1 ISO/IEC/IEEE 42010:2011 Architectural Description 25

2.3.2 Software Architectural Viewpoints Models 27
2.3.3 Architectural Description Languages (ADLs) 34

2.4 Summary . 36

3 Related Work for SEIS 37
3.1 Overview . 37
3.2 Forest Fire Detection Systems . 38

3.2.1 Stakeholders and their concerns 38
3.2.2 Functional Features . 39
3.2.3 Architectures . 40
3.2.4 Quality Attributes . 42

3.3 Flood Detection Systems . 43
3.3.1 Stakeholders and their Concerns 43
3.3.2 Functional Features . 44
3.3.3 Architectures . 44
3.3.4 Quality Attributes . 46

3.4 Air Pollution Detection Systems . 47
3.4.1 Stakeholders and their Concerns 47
3.4.2 Functional Features . 48
3.4.3 Architectures . 49
3.4.4 Quality Attributes . 50

3.5 Landslide Detection Systems . 51
3.5.1 Stakeholders and their Concerns 52
3.5.2 Functional Features . 52
3.5.3 Architectures . 53
3.5.4 Quality Attributes . 54

3.6 Road Traffic Control Systems . 54
3.6.1 Stakeholders and their Concerns 55
3.6.2 Functional Features . 55
3.6.3 Architectures . 56
3.6.4 Quality Attributes . 57

3.7 Summary . 57

4 Existing Reference Architectures 61
4.1 Introduction . 61
4.2 Reference Architecture for Sensor Networks Integration and Management . 62
4.3 Reference Architecture for Early Warning System 63

viii

4.4 Distant Early Warning System (DEWS) reference architecture 64
4.5 Reference Architecture for Real-time environmental monitoring, early warn-

ing and decision support systems (EMEWD) 65
4.6 Internet of Things (IoT) Reference Architecture 66
4.7 Industrial Internet Reference Architecture (IIRA) 69
4.8 Summary . 73

III Approach: Reference Architecture for SEISs (RefSEISs) 75

5 RefSEISs Requirements Establishment 79
5.1 Stakeholders and their concerns . 80
5.2 RefSEISs Requirements Analysis . 86

5.2.1 Functional Requirements . 86
5.2.2 Non-Functional Requirements . 88

5.3 Summary . 92

6 Architectural Viewpoints 93
6.1 Conceptual Viewpoint . 94

6.1.1 Structure . 94
6.1.2 Notations . 95

6.2 Module Viewpoint . 96
6.2.1 Structure . 96
6.2.2 Notations . 98

6.3 Execution Viewpoint . 99
6.3.1 Structure . 99
6.3.2 Notations . 100

6.4 Code Viewpoint . 101
6.4.1 Structure . 101
6.4.2 Notations . 103

6.5 Topology Viewpoint . 104
6.5.1 Structure . 104
6.5.2 Notations . 105

6.6 Data Viewpoint . 105
6.6.1 Structure . 106
6.6.2 Notations . 107

6.7 Viewpoints Integration . 108

ix

6.7.1 Establishing Correspondence Relations and Consistency rules . . . 108
6.7.2 Realization of Viewpoints Integration 113

6.8 Summary . 115

7 RefSEISs Architectural Views 117
7.1 Global Analysis . 118
7.2 Architecture Views . 119

7.2.1 Conceptual View . 119
7.2.2 Module View . 122
7.2.3 Execution View . 125
7.2.4 Code View . 127
7.2.5 Topology View . 129
7.2.6 Data View . 132

7.3 Use of RefSEISs . 134
7.4 Summary . 135

IV Evaluation 137

8 Application: Forest Fire Detection System 141
8.1 Introduction . 141
8.2 Software Architecture . 142

8.2.1 Stakeholders and Concerns . 142
8.2.2 Requirements Establishment . 143
8.2.3 Architecture Views . 144

8.3 Architectural Prototype Implementation 155
8.3.1 Hardware . 155
8.3.2 Assumption . 155
8.3.3 Prototype . 157

8.4 Summary . 158

9 Validation of RefSEISs 159
9.1 Forest Fire Monitoring System (IPNAS) 159
9.2 Urban Air Quality Monitoring System . 161
9.3 Indoor Air Quality Monitoring System . 162
9.4 Flood Risk Assessment System . 163
9.5 Summary . 165

x

10 RefSEISs Requirements Verifications 167
10.1 Functional Requirements Verifications . 167
10.2 Non-Functional Requirements Verifications 170

10.2.1 Domain Level . 171
10.2.2 Reference Architecture Level . 174

10.3 Summary . 177

V Conclusion 179

11 Conclusion and Recommendations 183
11.1 Thesis Summary . 183
11.2 Answers to Research Questions . 184
11.3 Future Works . 186
11.4 Main Contributions . 187

Bibliography 189

xi

List of figures

1.1 Research Methodology . 11

2.1 Conceptual model of an architecture description Figure copied from [ISO/IEC/IEEE,
2011] . 28

3.1 Data Model of Air Pollution Dispersion figure taken from [Ujang et al., 2013] 50

4.1 Reference Architecture for SeNsIM figure taken from [Casola et al., 2009] . 62
4.2 An EWS reference architecture figure taken from [Athanasiadis and Mitkas,

2004] . 63
4.3 DEWS reference architecture from [Esbrí et al., 2011] 65
4.4 Reference Architecture for EMEWD figure taken from [Balis et al., 2017] . 66
4.5 Functional View of IoT Reference Architecture figure taken from [Bauer

et al., 2013] . 68
4.6 A Vision and Value-Driven Model figure taken from [Lin et al., 2017] . . . 71
4.7 Usage Viewpoint’s main concepts and how they relate to each other figure

taken from [Lin et al., 2017] . 71
4.8 Functional Domains of Functional Viewpoint figure taken from [Lin et al.,

2017] . 73

5.1 Stakeholders of SEISs . 80

6.1 Conceptual Viewpoint . 96
6.2 Module Viewpoint . 98
6.3 Execution Viewpoint . 101
6.4 Code Viewpoint . 103
6.5 Topology Viewpoint . 105
6.6 Data Viewpoint . 107
6.7 Viewpoints Integration . 110
6.8 Operator Orchestration for the technical Integration of both SEISs viewpoints114

xiii

7.1 Conceptual View of RefSEISs . 120
7.2 Module View of RefSEISs . 123
7.3 Execution View of RefSEISs . 127
7.4 Code View of RefSEISs . 129
7.5 Taxonomy of energy consumption sources in WSNs from [Abdelaal, 2015]. 131
7.6 Topology View of RefSEISs . 131
7.7 Data View of RefSEISs . 134

8.1 Conceptual View . 145
8.2 Module View . 148
8.3 Execution View . 149
8.4 Code View . 151
8.5 Topology View . 152
8.6 Data View . 154
8.7 Arduino Uno R3 . 156
8.8 Raspberry Pi Model . 156
8.9 Screenshots of the architectural prototype 158

9.1 Mapping of IPNAS architecture from [Stipanicev et al., 2018] and RefSEISs 160
9.2 Mapping Air Pollution Dispersion Architecture from [Ujang et al., 2013]

and RefSEISs . 161
9.3 Mapping of Indoor Air Quality Monitoring System Architecture from [Abra-

ham and Li, 2016] and RefSEISs . 163
9.4 Mapping of Flood Risk Assessment System Architecture from [Amire-

brahimi et al., 2016] and RefSEISs . 164

10.1 Power Analysis at the Sensor Node Level 172
10.2 Data from Heterogeneous Sensor Nodes 175

xiv

List of tables

7.1 Factors influencing architectural design of SEISs 118
7.2 Factors and corresponding strategies . 118
7.3 Mapping between Conceptual and Module Architecture Views 122

8.1 Mapping between Conceptual and Module Architecture Views 147

10.1 Functional Requirements Verifications . 168
10.2 The RefSEISs against the Dimensions of Reference Architecture 175

xv

Part I

Challenges

1

Part I. Challenges

This thesis takes the step towards improving the development and maintenance of SEISs
by developing a reference architecture for SEISs. The thesis is divided into five parts; Part I:
Challenges, Part II: Background and Related Work, Part III: Approach, Part IV: Evaluation
and Part V: Conclusion. The thesis commences with Part I, in which the motivation, research
questions, and methodology are presented in Chapter 1.

3

Chapter 1

Introduction

This chapter introduces the main areas in this thesis, which are linked to the smart envi-
ronmental information systems (SEISs) and software architecture paradigms. In which the
motivation, research questions, and methodology are presented.

1.1 Motivation

Environmental information systems manage data about the soil, water, air, and other things
such as vehicles in the world around us [Günther, 1997]. These systems intend to support
high-level decisions regarding the ecosystem, natural resources and other external factors
that would affect human life by performing the following tasks; environmental phenomena
description and response, environmental monitoring, environmental reporting, data storage
and access, modeling and decision-making [Athanasiadis and Mitkas, 2004]. This is achieved
through environmental data collection, analysis, storage and meta-data management. Moni-
toring and controlling of environmental parameters such as humidity, temperature, smoke,
pressure, gases, etc., enable the more in-depth understanding of environmental processes so
as to overcome the devastating effects of environmental phenomena mainly fire, flood, air
pollution, air quality deterioration, freshwater shortages, threats to drinking water quality,
landslides, etc. The actual access to up-to-date and high-quality information is critical in
minimizing the impacts of environmental phenomena.

As the requirements for accurate and timely information in environmental information
systems are increasing, the need for incorporating advanced, and intelligent features in
these systems is revealed. In this context, the emergence of sensing-actuating techniques,
information technologies and wireless networks led to the proliferation of low-power sensors
and wireless sensor-actuator networks (WSANs) [Massinissa et al., 2016, Warneke and

5

Chapter 1. Introduction

Pister, 2002] which are promising to satisfy these requirements. These inventions allow the
environmental information system to monitor and control the environmental parameters in
both non-real-time and real-time on remote and inaccessible places [Arslan et al., 2014].
This initiated the formation of smart environmental information systems (SEISs). The SEIS
incorporates the functions of sensing, actuation and control to analyze the current status of
the environment and are associated with the rising of an automatic alarm if some event such
as forest fires, flood, air pollution, landslides etc. occurred. The use of SEISs facilitates the
establishment of self-monitoring and self-protecting environment. The road traffic congestion,
landslides air pollution, and forest fires detection systems are among a range of SEISs. The
intention of SEISs is not restricted to only gathering data from various locations, but also to
disseminate information required practitioners such as scientists, researchers, planners, and
policy-makers for making crucial decisions regarding the management and improvement of
the environment.

Various researchers have proposed a number of SEISs as described in Section 3. For
instance, [Zhang et al., 2008, Sunkpho and Ootamakorn, 2011, Lozano et al., 2012, Nguyen
et al., 2015, Ranjini et al., 2011] proposed forest fire detection, real-time flood monitoring
and warning, indoor air quality monitoring, rainfall-induced landslide detection and adaptive
road traffic control systems respectively. The diversity of these systems is observed on the ap-
plication level, and technically they possess similar three subsystems mainly sensor-actuator,
information control centre and communication subsystems [Kateule and Winter, 2016]. The
Sensors-Actuators Subsystem measures physical environment events, i.e., temperature, hu-
midity etc., pre-processing the collected data and alters the state of environmental phenomena
to satisfy the intended objectives of a system. The Information Control Centre Subsystem
integrates, analyzes, processes, stores and visualizes the information as received from the
sensors and generates alarms and events via actuators based on the objectives of a particular
system. The Communication Subsystem facilitates the interactions between the subsystems
mentioned above.

Although there is a high potential, the growth of SEISs is coupled with the existence
of various hardware platforms, extensive use of off-the-shelf components, growth of the
size, various stakeholders and multiple programming languages. This increases the systems’
development learning curve and hence makes the development, maintenance and comparison
of SEISs to be difficult, time-consuming and require extensive knowledge of the domain.
Dealing with such complexity can be challenging for even most experienced software
engineers such as architects, developers and maintainers if it starts from scratch. In spite of
the considerable relevance and established architectural knowledge of the existing SEISs, a
reference architecture for SEISs that could support a more systematic development of SEISs

6

Chapter 1. Introduction

while dealing with those recurring challenges, i.e. energy efficiency, maintainability and
interoperability in a holistic way is missing, and hence these systems are built from scratch
which consumes more time and efforts.

To overcome the challenges mentioned above, automated approaches need to be adopted
to facilitate the development and maintenance of SEISs. This can be achieved by replacing
the ad-hoc solutions (which focus on single-solution development) with reuse-driven and
knowledge-based practices for SEISs. Effective reuse of requirements, architecture designs,
knowledge and software elements from the previous software developments facilitate the
development and quality of systems [Lin et al., 2009]. In this context, a conventional
method for maximizing system reusability is a development of the reference architecture
which provides reusable solutions or artifacts and best practices from the previous software
developments that can be applied to a number of concrete systems in a particular domain
[Affonso and Nakagawa, 2013]. Currently, the SEISs have already accumulated enough
experience to be comprehended by a reference architecture.

A reference architecture for SEISs is considered as the first and necessary foundation to
facilitate the correct understanding of the stakeholders, concerns, requirements, comparisons
of SEISs, how the elements of the SEISs interact, the underlying principle of the design, and
determine the quality of the SEISs. Therefore, this work proposes a reference architecture for
smart environmental information systems (RefSEISs). The proposed RefSEISs can be used as
the blueprint or baseline for designing concrete SEISs. Such reference architecture manifests
best practices which are derived from the predefined existing architectures and associated
with both common and variable parts as described in Section 2.2. The variable parts refer
to those parts of the architecture which can be changed or adapted to satisfy the needs of
concrete SEISs, while the common elements refer to those elements which are used as they
are without being altered or replaced. During this work, the RefSEISs is iteratively built
following the best practices principles of recommended practice for describing architecture
based on the ISO/IEC/IEEE 42010:2011 Standard [ISO/IEC/IEEE, 2011], and Siemens View
Model [Hofmeister et al., 2000].

1.2 Research Questions

As just discussed, a reference architecture is a baseline for the software systems belongs
to a particular domain. The use of reference architecture allows systematically reuse of
knowledge and elements when developing concrete software architectures for a specific
domain. This thesis aims at facilitating the rapid development and maintenance of SEISs
through the design of a reference architecture for SEISs.

7

Chapter 1. Introduction

The core objective of this thesis is to introduce a reference architecture for Smart
Environmental Information Systems (RefSEISs) to facilitate the development and
maintenance of SEISs.

The proposed RefSEISs intends to be independent of technologies, abstract, complete and
applicable. This main objective is achieved through the investigation of the following research
questions:

1. Which are essential aspects or perspectives that are required to describe SEISs?

The use of a single software architecture view which is overloaded with all-encompassing
model makes the resulted software architecture description to be difficult to understand,
maintain and also quickly becomes irrelevant in developing a system [Rozanski and
Woods, 2005]. A common and more effective approach to describe an understandable
and easier maintainable software architectural description is by partitioning the soft-
ware architecture into a number of separate views. Each view addresses one aspect of
the software architecture using a specific set of models from a particular viewpoint.
Therefore this research question concerns with an investigation of the current state of
SEISs regarding the approaches and technologies used in developing SEISs. This will
sketch out the state-of-the-art in SEISs to identify the crucial aspects or perspectives
required to frame the concerns of the stakeholders of SEISs. As a result, a required set
of viewpoints for describing essential aspects of SEISs is defined. Such viewpoints
contain the conventions for constructing, interpreting and analyzing the views of the
reference architecture for SEISs.

2. How to describe a reference architecture for SEISs (RefSEISs)?

The second research question deals with the actual development of the RefSEISs. In
which the specified set of viewpoints from the Research Question 1 will be applied
in describing the RefSEISs, and hence the RefSEISs validates the description of
the proposed viewpoints. The resulted RefSEISs manifests the best practices of the
existing SEISs, and its description follows the ISO/IEC/IEEE 42010:2011 standard
[ISO/IEC/IEEE, 2011]. Thus, the proposed RefSEISs will encompass various software
artefacts and knowledge such as the sets of stakeholders, concerns, requirements
and architectural designs that could be reused in the construction of concrete SEISs
architectures.

3. How to apply the proposed reference architecture for SEISs?

As a proof of concept, the proposed RefSEISs from Research Question 2 will be
applied to several applications to demonstrate its applicability. First, the RefSEIS

8

Chapter 1. Introduction

will be employed in the construction of forest fire detection system to illustrate the
applicability of the proposed RefSEISs in the construction of new concrete SEIS. Then
to demonstrate the applicability of the proposed RefSEISs on the existing SEISs. The
Forest Fire Monitoring System (IPNAS) [Stipanicev et al., 2018], Urban Air Quality
Monitoring System [Ujang et al., 2013], Flood Risk Assessment System [Amirebrahimi
et al., 2016] and Indoor Air Quality Monitoring System [Abraham and Li, 2016] will
be mapped onto the RefSEISs.

4. How to evaluate the proposed reference architecture for SEISs?

To demonstrate the effectiveness of the proposed RefSEISs, the resulted architecture
of forest fire detection system from Research Question 3 will be implemented to verify
the fulfilment of specified requirements of the system. Similarly, the adherence of the
RefSEISs to the identified quality attributes will be demonstrated.

A design-oriented research approach is adopted to address the aforementioned research
questions as described in the next section.

1.3 Research Methodology

This thesis follows a design-oriented research approach for the design and development of
reference architecture for SEISs and is associated with a case study for evaluation. Usually, a
design science research approach consists of six-steps; problem identification and motivation,
design and development, demonstration of the product, evaluation and communication
through publishing the results [Peffers et al., 2008].

Four artefacts will be created following the guidelines of the design-oriented research
approach. The required set of viewpoints for describing essential aspects of SEISs are formed
from the analysis of the existing SEISs during the literature review. Some of these viewpoints
are adopted from the Siemens View Model [Hofmeister et al., 2000]. The RefSEISs is created
from the requirements based on the research work done in the literature review. The forest
fire detection system software architecture and its implementation artefacts are generated
from the specified requirements while referring to the proposed RefSEISs. Finally, these
artefacts will be evaluated by demonstrating their adheres to the requirements.

Figure 1.1 depicts the steps undergone in this thesis while answering the research ques-
tions identified in Section 1.2. Each step will act as a basis for the following step as further
elaborated below:

9

Chapter 1. Introduction

• Research Background: This involves the exploration of the literature to gain a clear
understanding of software architecture and their essential concepts. Besides, the related
work sections include the architectures of the existing SEISs, description of software
architectures and state of the art of reference architectures. This step establishes the
requirements of SEISs.

• Design and Development: This involves the design and development of the view-
points and RefSEISs and hence fulfil the research question 1 and research question
2. First, the specified requirements from the research background step are used to
define a set of viewpoints that is required to describe essential aspects of SEISs. Then
the established set of viewpoint is applied in the construction of the RefSEISs. The
description of the RefSEISs follows ISO/IEC/IEEE 42010:2011 [ISO/IEC/IEEE, 2011]
which starts with an identification of stakeholders and their concerns. Followed by
the derivation of requirements of the RefSEISs. Then the architecture views of the
RefSEISs are created using the established set of viewpoints and their corresponding
architecture models while encompassing best practices of the existing SEISs (design
decisions). The approach does not focus on a specific type of technology or content.
The main intention of the proposed RefSEISs is to provide a high-level description of
SEISs which can assist the actual implementation of concrete SEISs.

• Case Study: This demonstrates the applicability of the proposed RefSEISs on the
construction of the concrete architecture of SEISs. A forest fire detection systems is
used as a case of study. In which the requirements of such a system are identified while
referring to the defined requirements of the RefSEISs. Then to fulfil such requirements,
an architecture of forest fire detection system is constructed as referred to the proposed
RefSEISs. Similarly, to demonstrate the applicability of the proposed RefSEISs on
the existing SEISs. Some of the existing systems such as the Forest Fire Monitoring
System (IPNAS) [Stipanicev et al., 2018], Urban Air Quality Monitoring System
[Ujang et al., 2013], Flood Risk Assessment System [Amirebrahimi et al., 2016] and
Indoor Air Quality Monitoring System [Abraham and Li, 2016] are mapped onto the
RefSEISs. This step answers the research question 3.

• Evaluation: The prototype implementation of the resulted architecture of the forest
fire detection system from the previous phase verify the fulfilment of the specified
requirements proposed RefSEISs. This phase answers research question 4.

• Conclusion: Finally, a conclusion is written, lessons learned and future research areas
identified.

10

Chapter 1. Introduction

Picture2.pdf Picture2.pdf Picture2.pdf

Validation

Case Study

Design and Development

Research Background

1

1
1 1..*11..*

1

1..*
*

1

10..*

Existing SEIS

Existing Concrete
Architecture

Mapping of the existing SEISs
on the Reference Architecture

Applicability and Fulfillment
of Requirements

Create Concrete Architecture
of SEISs

Identify Concrete SEISs
Requirements

Create Reference Architecture
for SEISs

Identify RefSEISs Requirements

Software Architectures
of the Existing SEISs

Software Architecture

Forest Fire Detection
System

Forest Fire Detection
Architecture

Architecture
Viewpoint

Architecture
View

Concrete
Architecture

Reference
Architecture

Architectural
Model

Design
Decision Architecture

Architectural
Requirement

Concern

input

Stakeholder

SEISs Implementation

Architecture

SEIS Architecture

«mapping»

«implements»

«conformsTo»

«selects»«defines»

«derives»

«accountsFor»

«use»

«use»

«implements»

«use»

«produces»

«refersTo»

Figure 1.1: Research Methodology

1.4 Thesis Outline

This thesis is divided into five parts; Challenges, Background and Related Work, Approach,
Evaluation and Conclusion. The thesis starts with Part I: Challenges which include Chapter
1. In which the motivation of the thesis, research questions, and methodology are presented.

In Part II: Background and Related Works, the fundamental concepts related to software
architecture and an overview of the current state of smart environmental information systems
(SEISs) are presented. This part includes Chapter 2, Chapter 3 and Chapter 4. Chapter
2 outlines the essential foundation concepts of this thesis mainly software architecture,
reference architecture and documentation of software architecture. Chapter 3 presents
the research synthesis in which the existing software architectures of SEISs are reviewed,
examined and presented. Chapter 4 provides an outline of the related work on the existing
reference architectures that will be considered reference while developing the proposed
RefSEISs.

Part III: Approach is the core part of the thesis which describes the proposed RefSEISs.
This part is divided into three chapters; Chapter 5, 6 and Chapter 7. Chapter 5 demonstrates
the establishment of the requirements of the proposed RefSEISs which include the set of
stakeholders, their concerns and architectural requirements. Chapter 6 proceeds with the
identification and definition of the set of required viewpoints in describing essential aspects

11

Chapter 1. Introduction

of SEISs. Chapter 7 presents the views of the proposed RefSEISs which resulted from the
application of the specified viewpoints into ReFSEISs.

Part IV: Evaluation demonstrates the evaluation of the proposed approach which is partitioned
in three chapters; Chapter 8, Chapter 9 and Chapter 10. Chapter 8 demonstrates a case
study for evaluating the proposed RefSEISs through a detailed description of the software
architecture and prototype implementation of the forest fire detection system as concrete
SEISs. Chapter 9 provides the conceptual validation of the proposed RefSEISs by mapping
it to some of the existing architectures of SEISs. Chapter 10 presents how the specified
requirements of the proposed RefSEISs are fulfilled.

Part V: Conclusion presents the conclusion of the dissertation in Chapter 11 with the thesis
summary, main contributions of the thesis and discusses future work that can be accomplished
to improve the proposed RefSEISs.

1.5 Summary

In this chapter, the motivation and research problem to be addressed have been summarized
and provide context for the research objective. Then the essential research questions to
fulfil the specified objective of the thesis have been described. Finally, the overall research
methodology and outline of the thesis have been presented.

12

Part II

Background and Related Work

13

Part II. Background and Related Work

This part presents basic concepts related to software architecture, overviews of both the
current state of smart environmental information systems (SEISs) and existing reference ar-
chitectures within the area of environmental monitoring and controlling information systems.
Such that Chapter 2 gives the reader brief introductions to software architecture, reference
architecture, and documentation of software architecture since they are core concepts which
have been employed in this thesis. Chapter 3 presents the research synthesis in which some
of the existing software architectures of SEISs, i.e. forest fire detection systems, air pollution
detection systems, flood detection systems, landslide detection systems and road traffic
control systems are reviewed, examined and presented. Such review is important to identify
a commonality of SEISs so as to identify and make use of the abstractions that are common
to all SEISs in the development of a reference architecture for SEISs. Chapter 4 describes
and analyzes some of the existing reference architectures within the area of environmental
monitoring and controlling information systems so as to be used as a reference or basis in
developing the reference architecture for SEISs.

15

Chapter 2

Foundations

The chapter introduces significant concepts that technically guide the development of the
proposed approach of this research. Thus to fully comprehend the topics discussed in
this thesis, basic knowledge of some related fields of software architecture has to be known
beforehand. This chapter aims to give the reader brief introductions to software architecture in
Section 2.1, reference architecture in Section 2.2, and documentation of software architecture
in Section 2.3 since they are core concepts which have been employed in this thesis. To
acquire a deeper understanding of such theories, please refer to the quoted literature for more
details. Finally, a summary of the chapter is presented in Section 2.4.

2.1 Software Architecture

The recent research in the field results in abundant definitions of software architecture. This
section discusses some of the essential definitions that have been applied in this thesis. Ac-
cording to the early book of software architecture written by Shaw and Garlan, the following
definition of the software architecture was provided;

Definition 2.1. "The software architecture of a system as a collection of computa-
tional components with a description of the interaction among these components
which is facilitated by connectors" [Shaw and Garlan, 1996].

The definition 2.1 represents software architectures informally in the form of the box and
line diagrams with strong emphasize on run-time mechanism via connectors. Some software
engineers somehow criticize this definition, since the static structures of the system are left
out [Bass et al., 2003]. Nevertheless, the latest version of the software architecture book by

17

Chapter 2. Background

Shaw and Garlan handles this misconduct by proposing the following description:

Definition 2.2. "The software architecture of a program or computing system is
the structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among them"
[Bass et al., 2012].

Such a definition has some interesting aspects which are highly accepted by the software en-
gineering research community. For instance; (1) a system may consist of multiple structures
which are expressed using various architectural views as will be discussed in section 2.3.1
(2) an architecture comprises externally visible properties of components, this means some
component properties of the system may not be part of the architecture. Finally, the ISO/IEC
Standard 42010 for Systems and Software Engineering-Architecture description provide the
following definition of software architecture:

Definition 2.3. The software architecture refers to the fundamental properties of
a system in its environment embodied in its elements, relationships, and in the
principles of its design and evolution [ISO/IEC/IEEE, 2011].

This definition highlights the following influential concepts; (1) elements (2) relationships
between elements and (3) principles in the design and evolution of these interrelated elements.
Software architecture presents the earliest software design decisions which are critical in the
system development life cycle. Alternatively, software architecture is regarded as a set of
architectural decisions which can be documented in an architecture description as explained
in Section 2.3.1. Software architectures guarantee the prosperity of software (systems) by
defining sets of concepts and principles that guide the analysis of specifications, designs,
implementation, maintenance and evolution of software systems. All these definitions high-
light the architecture of the single system which is regarded as concrete software architecture
used for the development of specific software application. In this thesis, the term "concrete
software architecture" is widely utilized and referred as a structure or structures of the system
which is expressed using multiple views for its particular set of stakeholders, concerns and
requirements. The description of software architecture is further provided in Section 2.3.

Software architectures are critical design artefacts for the successful development and
evolution of software-intensive systems [Kruchten et al., 2006, Brown and McDermid, 2007].
However, the increased complexity of software systems and demands for shorter time to
market have motivated the system engineers to utilize a higher level of abstractions mainly
the use of reference architectures in handling the issues of concrete software architectures.

18

Chapter 2. Background

Reference architectures systematize the experience of developing concrete software archi-
tectures by establishing a common conceptual basis that is associated with best practices in
describing concrete software architectures of a particular domain.

2.2 Reference Architecture

A reference architecture is an abstraction of ‘real’ architectures. Enterprise reference ar-
chitectures, solution reference architectures, information systems reference architectures,
etc. represent various forms of reference architectures. This section provides the essential
concepts of the solution reference architectures. Starting with definitions of reference archi-
tectures in Section 2.2.1, quality criteria in Section 2.2.2, introduction of architectural styles
and patterns used in construction of concrete architecture in Section 2.2.3 and finally the
evaluation techniques are presented in Section 2.2.4.

2.2.1 Definitions

Reference architectures and reference models have long traditions in both software engi-
neering and information science research [Stricker et al., 2010]. The commonly accepted
definition of "reference architecture" is missing in the literature. Different research defines
and classifies reference architectures and reference models in slightly different ways, but they
all share a common notion of knowledge reuse and the principle of generalizations in the
creation of concrete systems. Some of the significant definitions of reference architectures
include;

Definition 2.4. Reference architectures are special types of software architectures
which can be applied to create concrete architectures and validated based on the
derivations from the other architectures [Müller et al., 2010].

Concrete software architecture deals with concrete business goals of the stakeholders of
a specific system [Angelov et al., 2012]. This implies concrete architectures are designed
based on the required set of functionalities and quality attributes of systems as defined by
the stakeholders. The knowledge about how to design such concrete software architectures
of a particular application domain is encompassed by a reference architecture [Nakagawa
et al., 2011]. A reference architecture can be defined in two ways [Angelov et al., 2008];
(1) After the existence of practical experiences (Bottom-up approach). In which concrete
architectures play a crucial role in the design of a reference architecture. (2) Before the
existence of concrete architectures (Top-Down Approach).

19

Chapter 2. Background

Generally, reference architectures are considered as special architectures for the specific
domain (class of systems) based on best practices [Angelov et al., 2008]. While [Amirat,
2012] defines reference architectures as software architectures which provide a frame of
reference for a particular field of interests or domain with a common vocabulary, industry
best practices and reusable designs.

Definition 2.5. According to Nakagawa et al. [Nakagawa et al., 2014], reference
architectures are regarded as abstract architectures that encompass experiences and
knowledge in a given application domain to facilitate and guide the development,
evolution and interoperability of software system in such domain.

Similar to Definition 2.5, reference architectures improve effectiveness by providing guidance
(best practices, architectural principles), architectural baseline, and blueprint as well as
managing synergy and capturing and sharing architectural patterns [Müller et al., 2010]. The
use of reference architectures allows systematically reuse of knowledge and elements when
developing concrete software architectures in a particular domain. Although syntactically
different, all these definitions imply the same essence: the reuse of architectural knowledge
or artifacts of software development in a specific domain. Such reusable software assets
include requirements, architectural designs, code, design patterns, test results, etc. The
generic nature of reference architectures facilitates their applicability in multiple and different
contexts while addressing the requirements of various stakeholders in those contexts. Thus, a
software architecture is regarded as a reference if it is abstract, independent from a particular
technology or any other context and hence can be used in different contexts [Martínez-
Fernández et al., 2014]. Reference architectures and models are widely used in assisting
decision-makers and other stakeholders to make crucial design decisions.

Despite the considerable relevance of SEISs as described in Chapter 3, the reference
architecture for SEISs is missing. SEISs are still centred on ad-hoc solutions associated
with concrete architectures, rather than reuse-driven and knowledge-based practices. This
implies the concrete software architectures of SEISs are described from scratch make the
actual development of these systems to be difficult, intensive and time-consuming. This
could be avoided or reduced through the use of reference architectures in the generation of
concrete architectures based on reusability of architecture knowledge rather than reinventing
the wheel. The SEISs have already accumulated enough experience to be comprehended
by a reference architecture. For this purpose, this research focuses on the description
of reference architecture for SEISs as proposed in Chapter 5, Chapter 7 and Chapter 6.
Such proposed reference architecture is envisioned to be a baseline for designing concrete

20

Chapter 2. Background

SEISs. Establishment of the reference architecture for SEISs is crucial for describing
essential components and design decisions while fulfilling both functional and non-functional
requirements.

2.2.2 Quality Criteria

According to [Bass et al., 2003, Reidt et al., 2018], reference architectures should possess
the following characteristics:

• Abstraction

A reference architecture represents a family of abstract architectures which highlights
the established common components and other components namely variants which
are not common [Bosch, 2000, Clements et al., 2001]. The established components
are abstract in the sense that the implementation details are not included or specified.
The chosen level of abstraction for the reference architectures is important [Winter,
2000] to facilitate the re-use of knowledge in the construction of concrete models
[Hars, 1994]. Describing the reference architecture in more details limits the broad
use of the reference architecture in the domain and therefore limits its generality while
representing only a few very abstract parts reduces the benefit of reusing the reference
architecture for concrete architectures [Winter, 2000].

• Independence

Since the domain is made of various systems that incorporated multiple technologies,
then, the reference architecture should not be tied to any specific standards, technolo-
gies or implementation details to represent common abstractions of the whole domain.
With higher abstractions, there will be no implementation or technology restrictions
[Reidt et al., 2018]. As a result, the reference architecture allows the encapsulation of
the entire domain in a technology independent way through merging all the domain
best practices, standards and technologies.

• Completeness

The architecture is considered to be complete if all the relevant aspects of the system
are covered based on the goal of the architecture and if the architecture does not
describes parts which are beyond the specified purpose [Winter, 2000]. However,
with high abstractions, the reference architectures are considered to be incomplete.
Since reference architectures should cover the main parts of systems within one
domain and understandably describe them, reference architectures cannot include all

21

Chapter 2. Background

individual cases. Despite the importance of these criteria in software architecture, the
incompleteness of reference architectures does not imply low-quality of them. An
incomplete reference architecture is expected to be extensible regarding upcoming
changes and new objectives.

• Applicability

The reference architecture should apply to a specific group of systems within a par-
ticular domain (universal applicability), not only one specific, concrete system. The
applicability refers to how easy is the application of reference architectures. The devel-
opers, implementers or other stakeholders are expected to use reference architectures
as a basis or guide for developing or comparing concrete systems. Applicability is sig-
nificant for reference architectures because they do not describe concrete architectures
completely [Gamma et al., 1994]. Applicability can be supported by an understandable
reference model regarding its complexity in terms of its size and structure [Winter,
2000], which decreases the initial understanding, and by an easy adaption, for example
with defined variants or configurations [Rosemann and van der Aalst, 2007]. This cri-
terion is fundamental because architectures have to be proven as reference architecture
by at least two applications, which is supported by easy applicability. This implies at
least two different applications of the reference architecture are required to prove the
applicability of the proposed reference architecture.

2.2.3 Architectural Styles and Patterns

The development of concrete architectures involves a series of transformation from reference
architectures (abstract architectures) to more concrete form. Such conversions should be
done iteratively while ensuring the properties of the reference architectures are maintained
throughout [Moriconi et al., 1995]. This could be achieved through various mechanisms
of transformations including imposing an architectural style, imposing an architectural
pattern, using a design pattern, converting non-functional requirements to functionality and
by distributing non-functional requirements on transformations [Bosch and Molin, 1999].

Architectural styles and patterns refer to the way of organizing the elements of the system
to support the construction of a complete system which achieves the specified requirements
of stakeholders [Dobrica and Niemelä, 2002]. There are several architectural styles and
patterns available in the software industry, some of these are categorized as follows; shared
memory systems (e.g. pipes and filters style), distributed systems (e.g. client-server style),
messaging systems (e.g. publish-subscribe style), adaptable systems (e.g. microkernel style),
structural systems (e.g layered style) and modern systems (e.g. multi-tenancy style) [Dobrica

22

Chapter 2. Background

and Niemelä, 2002]. Architectural styles and patterns are very similar and can even possess
the same names, though architectural patterns are more problem-oriented than architectural
styles by providing a solution on a particular recurring design problem that affects only a
limited number of classes in architecture, while architectural style describes overall structural
frameworks of a system [Buschmann et al., 1996].

This work utilizes the concept of strategies in the development of reference architectures
for SEISs which are induced systematically in the constructions of Concrete architectures of
SEISs. Such strategies encompass architectural styles and patterns including client-server,
Model View Controller (MVC), and layering as described in Chapter 7.

2.2.4 Evaluation of software Architecture

The successful development of reference architectures must be associated with the demon-
stration of the reusability of the proposed reference architecture on that domain [Harrington,
2012]. Various methods can be employed to assess the effectiveness of such reference
architecture which is classified into; (1) Numerical based methods [Vanek et al., 2008] and
(2) Scenario-based methods [Muskens et al., 2002].

Numerical based methods utilize metrics to assess the effectiveness of software archi-
tectures, for instance, standard coupling metrics, i.e. fan-in or fan-out that relate with the
conventional views of a system architecture description [Muskens et al., 2004]. This method
is highly applicable in concrete architectures rather than reference architecture since it is
dependent on the architecture description and development languages while the reference
architectures are supposed to be independent. Stochastic methods determine the architec-
ture robustness or change and error based on change propagation probability on software
architecture and error propagation probability introduced in [Abdelmoez et al., 2005] and
[Popic et al., 2005] respectively. In the context of higher-level abstractions, e.g. reference
architecture, these stochastic methods tend to increase uncertainty [Harrington, 2012].

Scenario-based methods include Software Architecture Analysis Method (SAAM) and
Architecture Trade-off Analysis Method (ATAM) as the most common architecture assess-
ment methods in the software industry [Muskens et al., 2002]. These methods require sets
of scenarios against the tested system architecture. These scenarios should be derived from
the concerns of key stakeholders which are analysed concerning both software performance
(implementation specific) and experienced based analysis [Del Rosso, 2006]. Most of the
existing reference architectures have been evaluated using scenario-based methods, e.g. auto-
motive [Sanz and Zalewski, 2003], manufacturing planning [Howard et al., 1996] and hybrid
vehicle control systems reference architectures [Larsen et al., 2002].

23

Chapter 2. Background

Therefore a scenario-based method is the most appropriate method for the assessment of
the proposed reference architecture for SEISs. Such evaluation demonstrates the reusability
of the proposed reference architecture over the scope of SEISs and is conducted in two
phases; the First phase involves the building of an instance architectural prototype of the
reference architecture based on a set of scenarios that can be used to prove the predefined
objective of the thesis are defined in Chapter 8. In the second phase, the proposed reference
architecture is used to map the existing SEISs in Chapter 9.

2.3 Software Architecture Documentation

Software architecture documentation is very crucial in the life-cycle of the system to meet
the specified objectives, as it provides high-level perspectives of a system to a variety of
stakeholders. According to the ISO/IEC/IEEE 42010 Standard, an architecture description
is: a work product used to express an architecture [ISO/IEC/IEEE, 2011]. Also [Rozanski
and Woods, 2005], define an architectural description as set of products that documents an
architecture in a way its stakeholders can understand and demonstrate that the architecture
has met their concerns . This allows the clear understanding of the architecture which in turn
facilitates the selection of right and effective decisions on both technical and business levels
during system definition as well as in later phases of systems development life-cycle, such as
system evolution. Such an architectural description describes or specifies all the architectural
elements, diagrams, rationale, model decisions and others related to software architecture
[Clements et al., 2005].

The software architectural description provides a comprehensive description of software
structure and behavior of the software and tends to be both prescriptive (it prescribes some
rules and limitations to be considered by stakeholder while taking crucial architectural deci-
sions), descriptive and abstract to be understood by new employee of the company but is so
complete with enough information for system analysis. Such description serves as [Clements
et al., 2005]; (1) means of introducing and educating users, i.e. team, new architects and
others to the system. (2) Means of communication between various stakeholders (3) the bases
for system analysis for instance for analyzing the quality attributes of the system. In this
thesis, the description of the reference architecture for SEISs follows the IEEE 42010:2011
Recommended Practice for Architectural Description Standard of Software-Intensive Sys-
tems. This section introduces important concepts that technically guide the description of a
software architecture using ISO/IEC/IEEE 42010:2011 standard in Section 2.3.1. Section
2.3.2 describes some of the essential viewpoints that can be considered in developing a

24

Chapter 2. Background

software architecture based on the existing software architectural viewpoints models. Then
architecture description languages are presented in Section 2.3.3.

2.3.1 ISO/IEC/IEEE 42010:2011 Architectural Description

The ISO/IEC/IEEE 42010 is the international standard of Systems and Software Engineering-
Architecture description [ISO/IEC/IEEE, 2011]. This standard specifies the conventions,
principles and practices required for the description of architectures in a particular domain. It
defines how the architectural description of software-intensive systems should be expressed
and organized, the essential constructs of ISO 42010 conceptual framework and type of
information found in any ISO 42010-compliant architecture description [ISO/IEC/IEEE,
2011]. This standard was developed based on the consensus of current practices with
emphasis on the use of multiple views, and reusable models within views of the architecture.

The architectural description template is depicted in Figure 2.1 in terms of Unified Mod-
eling Language (UML) class diagrams which provide an overview of different concepts and
their relationship. Every System-of-interest (a system that will be developed based on the
described architecture) has one Architecture. An Architecture is expressed (described) by an
Architecture Description. Architectural description consists of a set of related Architectural
Views which addresses one or more concerns of the stakeholders [ISO/IEC/IEEE, 2011]. An
Architectural Description supports the correspondences between views in terms of archi-
tectural elements which defined by Correspondence Rules and documents the architectural
decisions with their Architecture Rationale. An Architecture Description provides one or
more model kinds in order to frame some concerns of its stakeholders. Some of the essential
concepts are further described;

Stakeholders

Stakeholders are defined as people or organization or things (other systems) that have require-
ments or expectations about a system [Bennett, 1997]. Similarly, IEEE 1471-2000 defines;

Definition 2.6. A stakeholder is defined as an individual, team or organization (or
classes thereof) with interests in or concerns relative to a system [Group, 2000].

Stakeholders are key players of the successful SEISs and possess a strong influence in the
evolution of such systems. These stakeholders include both technical and non-technical
people who drive the conception and development of SEISs. Each stakeholder has interests
and concerns that need to be addressed. Multiple stakeholders are involved in SEISs. To

25

Chapter 2. Background

mention a few; stakeholders of SEISs include residents, government agencies, researchers,
designers, developers, etc.. These stakeholders possess different interests (concerns) which
are mapped into different requirements. The identified stakeholder needs or interests could
be addressed by an architect while designing architecture. An architect is supposed to find
out the requirements of these stakeholders, analyse them and then construct an architecture
that fulfils the specified requirements (or demands of the stakeholders).

Concerns

The construction of software architecture for software-based systems must consider the
requirements (concerns) that fulfil the needs of various stakeholders for the system [Baida,
2001]. Such concerns in the context of SEISs include the functionalities of SEIS fulfilled,
feasibility of constructing the SEIS, etc.

Definition 2.7. Concerns refer to an area of interests of a system which could be a
requirement, objective, an interest, aspiration or intention of a stakeholder has for a
system [Rozanski and Woods, 2005].

Viewpoints

Software architectural viewpoints consist of a set of guidelines and principles that describe
the whole system uniformly [Babar and Gorton, 2011].

Definition 2.8. A viewpoint is a subdivision of the specification of a complete
system, established to integrate those pieces of information based on specified
concerns [Vallecillo and Informática, 2001].

Viewpoints composed of a collection of patterns, templates and conventions for the construc-
tion of software architectural views. Such viewpoints define aims, stakeholders and their
concerns [Rozanski and Woods, 2011].

Definition 2.9. The IEEE 42010 defines viewpoints as established conventions for
constructing, interpreting and analyzing the views to address concerns framed by
that viewpoint [ISO/IEC/IEEE, 2011].

Based on the Definition 2.9, the viewpoints frame one or more concerns. Even though
the IEEE 42010 standard does not specify a particular viewpoint to be considered explicitly,
a set of viewpoints should be included while describing an architecture. As each view is
supposed to have a viewpoint explaining the conventions that have been employed in that

26

Chapter 2. Background

view. Definition 2.9 will be used throughout this thesis; some of the viewpoints used in the
reference architecture for SEISs include conceptual, module, execution, etc.

Views

The system architecture is presented through a set of architecture views [ISO/IEC/IEEE,
2011]. Each view is made up of architectural system models and described based on the
convention specified by its governing viewpoint.

Definition 2.10. A view is a particular representation of the entire system using a
set of models from the specific perspective of a viewpoint [ISO/IEC/IEEE, 2011].

Architecture Models

An architecture view consists of one or more architecture models. Architecture models
employ appropriate modelling conventions in addressing the concerns of stakeholders. Such
conventions are specified using model kinds governing those models which are optionally
organized into viewpoints.

Model Kinds

Model kind defines conventions for a given type of modelling by describing rules, operations,
metamodels and templates that used to represent information and relationships in an architec-
ture description. Such model kinds include class diagrams [OMG, 2011], data flow diagrams
[Gane and Sarson, 1977], statecharts [Harel, 1987], etc.

In general, an architecture description is considered as the main artefact in expressing
software architectures. Thus, the IEEE 42010 standard is adapted to enable the construction
of an adequate architecture description that can be effectively used during the life-cycle of
software systems. This section presented essential elements of the architecture description of
software systems based on the IEEE 42010 standard. However, the IEEE 42010 standard
does not specify a particular set of viewpoints to be used. Hence Section 2.3.2 describes
some of the essential viewpoints that can be considered in developing a software architecture
based on the existing software architectural viewpoints models.

2.3.2 Software Architectural Viewpoints Models

As described in section 2.3.1, a common approach to defining software architecture is by
using viewpoints. Based on the Definition 2.9, architectural viewpoints represent perspectives

27

Chapter 2. Background

Figure 2.1: Conceptual model of an architecture description Figure copied from
[ISO/IEC/IEEE, 2011]

of a system based on a related set of concerns. Multiple software architecture views are
essential to deal with a diverse set of stakeholders, i.e. users, developers, maintainers,
architects, testers, etc. that need to both understand and use the software architecture from
their viewpoints [Babar and Gorton, 2010].

Many architectural viewpoints models are sometimes referred to as architectural frame-
works have been proposed based on practical experience to capture various aspects of

28

Chapter 2. Background

software architecture. Such models emphasize describing software architecture using multi-
ple views based on the principle of separation of concerns to manage systems complexity.
These models provide essential viewpoints taxonomies that should be considered during the
description of software architecture while covering various software architecture domains
associated with both organization, business and technological environments demands. Some
of the existing architectural viewpoints models are associated with the support design ratio-
nale. In this section, a number of useful viewpoints models are reviewed and described to
assist the determination of an optimum set of viewpoints required for SEISs. This section
provides a short review of some predominant models for software architecture development;
ISO Reference Model for Open-Distributed Processing (RM-ODP) [Vallecillo and Infor-
mática, 2001], Siemens four View Model [Hofmeister et al., 2000], Kruchten’s "4+1" View
Model [Kruchten et al., 2006], and viewpoints Model for Information Systems Architecture
[Rozanski and Woods, 2011].

ISO Reference Model of Open Distributed Processing (RM-ODP)

The ISO Reference Model of Open Distributed Processing (RM-ODP) provides a coordina-
tion framework for the standardization of open distributed processing (ODP) applications
[Vallecillo and Informática, 2001]. The model intends to integrate a wide range of current
and future ODP standards for distributed systems and maintain consistency among them.
RM-ODP provides all stakeholders (from managers to users, from designers to developers)
with common vocabulary and semantics as well as emphasizes the use of formal notations on
architecture description. RM-ODP has five generic and complementary viewpoints which
address stakeholder concerns in a particular set of aspects of the system as described below.
Each viewpoint is associated with viewpoint language.

• Enterprise viewpoint describes the business requirements with the main focus on the
scope, purpose and policies of the system and how to fulfil such requirements.

• Information viewpoint concerns with the semantics and processing of the information.
This viewpoint describes how the system manages the data, structure and content type
of the supporting data.

• Computation viewpoint describes system functionality and its functional decomposition
on the system into objects which interact at interfaces.

• Engineering viewpoint describes the distribution of processes to provide the functional-
ity of the system and manage the information. This viewpoint supports the distribution
interactions between objects in the system.

29

Chapter 2. Background

• Technology viewpoint describes the technology of the system used in processing,
functionality and presentation of information.

RM-ODP provides an architecture that assures mutual consistency among viewpoints and
use the standard object model to bind all the viewpoints together [Vallecillo and Informática,
2001]. Although the RM-ODP is intended for distributed software domain, its coverage
shows that it is also applicable to other domains. Adhering to RM-ODP viewpoints is not
easy as it seems, such that readings of the standard may lead to different interpretations.
Since the model does not prescribe any method in guiding the development of software
architecture [Vallecillo and Informática, 2001]. Additionally, some concepts in RM-ODP are
not found in Unified Modeling Language (UML), e.g. an object with multiple interfaces and
multiple types of object in RM-ODP, while the interface can not be instantiated directly and
an object has a single type in UML [Putman, 2001]. As presented in Section 2.3.3, UML is
used in describing both the reference architecture for SEISs and concrete architectures of
SEISs. Therefore RM-ODP viewpoints are not suitable in the description of SEISs.

Siemens Four View Model

The Siemens four view model is developed at Siemens Corporate Research which resulted
from the industrial practices of software architecture [Hofmeister et al., 2000]. The model
has a strong emphasize on the re-use and reconfiguration of software and hence led to the
reduction of implementation complexity of the system. This model is associated with a
design approach (model) for the software architect and consists of four views, i.e. conceptual,
module, execution and code as described below. Each view addresses different stakeholder
concerns.

• Conceptual view concerns with the issues relating to the application domain mainly
how the system fulfils its requirements. This view describes how the functionality of
the system is partitioned to the conceptual components.

• Module view describes how the conceptual components are mapped to the actual
software entities, i.e. subsystems and modules. In this view, the conceptual view of a
system is realized with today’s software platforms and technologies.

• Execution view describes the runtime interactions of a software application. Such a
view is also deal with how the subsystems and modules are allocated to the hardware
platforms.

30

Chapter 2. Background

• Code view concerns with the mapping of runtime entities into the deployment entities,
i.e. executables, libraries etc.

The view mappings are explicitly defined. Starting from the conceptual view to the code
view, the design flow as the information passed between views. Such that the conceptual
structures are implemented by module structures and assigned-to execution structures. Mod-
ule structures can be located in or implemented by code structures. Execution structures
can be configured by code structures. Each view is an input to another view and hence
helps the software architect to analyze the trade-offs as they receive feedback results from
the testing of views for the conformance with non-functional requirements of the system.
The software architecture development using this model posses feedback loops with both
source code development and hardware architecture. This model provides a design approach
model that guides software architect in constructing software architectures hence reduce
the occurrence of misinterpretations. Additionally, the Siemens four view model provides
essential viewpoints required by the SEISs, however, these viewpoints are not enough to
cover all the essential aspects of SEISs i.e. topology and data concerns. Therefore the
Siemens four view model is adopted with an addition of two viewpoints; topology and data
viewpoints.

Kruchten’s "4+1" View Model

Kruchten proposed a 4+1 viewpoints model associated with an iterative process for architec-
ture design which starts with the description of concrete scenario [Kruchten, 1995]. Such
viewpoints model is used for software architectural analysis and modeling via UML notations.
Also, it consists of multiple, concurrent views, that allow the different stakeholder concerns
to be addressed separately. Such a viewpoints model includes five interrelated views;

• Scenario view presents use cases to discover and verify the architectural design. This
view depicts narrative use cases which show how the other four views can work
together and hence provide an overall picture of the whole system to all stakeholders.

• Logical view presents how the functional requirements of the system are fulfilled
through the static structural layout of the software system from the software developer
perspective.

• Process view partitions the software into independent software tasks to represent run-
ning processes and their inter-process communication while fulfilling non-functional
requirements, i.e. performance, availability, system integrity, fault tolerance, concur-
rency, etc.

31

Chapter 2. Background

• Development view concerns with the organization of software modules. The software is
divided into small chunks belongs into subsystems organized in a hierarchy of various
layers.

• Physical view describes hardware-software configurations at a platform and deals with
non-functional requirements, i.e. availability, scalability, performance, etc. This view
involves the mapping software units into hardware nodes based on administrator and
developers perspectives.

These multiple views are developed concurrently and not independent. Hence it would
be challenging to model the views of SEISs separately without following the design flow
between views such as starting with scenarios view proceeding to logical view and then
other views. The model relies on a feedback loop in the development process. Although this
viewpoint model is popular and has great relevance, a design model for the construction of
software architectures is missing and does not explicitly address data or operational concerns
[Omrani and Ebrahimi, 2013]. Hence this model restricts the expressiveness of architecture
documentation of SEISs.

SEI Viewpoints (Views and Beyond)

Views and Beyond (V & B) is a collection of techniques that should be helpful to the people
who depend on it to accomplish their work [Omrani and Ebrahimi, 2013]. Such techniques
are classified into a few categories; (1) Determining the stakeholders’ needs. (2) Satisfying
those needs by providing the information via recording design decisions based on a variety of
views plus the beyond-view information. (3) Checking the resulted documentation to verify
the fulfilment of the needs. (4) Packaging the information in a useful and understandable
form to its stakeholders. Category 3 and 4 concern with the document-centric activities while
category 1 and 2 refer to the activities that focus on the architecture design. The SEI model
utilizes styles to determine the views of the system that can be generated. V & B consists of
three views [Clements et al., 2005];

• Module View describes the principle implementation units or modules of a system
along with their relations among these units. The architectural styles included in the
module view are; uses, generalization, decomposition and layered.

• Component and Connector View demonstrates elements that have some runtime pres-
ence. Such view includes pipe-and-filter, shared-data, publish-subscribe, client-server,
peer-to-peer and communicating process architectural styles.

32

Chapter 2. Background

• Allocation View describes a mapping between non=software elements in the software’s
environment and software elements from either a module or component and connector
views. Such view includes deployment, implementation and work assignment styles.

The SEI viewpoints model specifies useful views that can be used to describe many
systems. However, this set of views is not enough in describing SEISs. Also, Siemens four
view model provides more than the set of views generated by SEI viewpoints model. Thus
SEI is not suitable in describing SEISs.

Viewpoints Model for Information Systems Architecture

Nick Rozanski and Eoin Woods proposed a viewpoints catalogue for describing software
architectures of information systems such as financial systems, etc. [Rozanski and Woods,
2011]. The recommended viewpoints are as described below;

• Functional viewpoint describes how the functional requirements of the system are
fulfilled in terms of functional elements, their interfaces and interactions. This view-
point influences the shape of other system structures for instance information structure,
deployment structure and other structures. Besides, this viewpoint posses a significant
impact on the system quality, i.e. modifiability, security and performance.

• Information viewpoint describes the way the information is being stored, managed,
distributed and manipulated by architecture. This viewpoint provides a high-level view
of static data structure and information flow.

• Concurrency viewpoint maps functional elements to concurrency units which refer
to parts of the system which can execute concurrently and how the overall process is
coordinated and controlled. This viewpoint involves the creation of models associated
with process and thread structures that will be utilized by the system and interprocess
communication mechanisms for coordinating their operations.

• Development viewpoint concerns with the actual software development process. This
viewpoint guides the construction of the development view that will facilitate the
communication between stakeholders in building, testing, maintaining and enhancing
the system.

• Deployment viewpoint describes the environment into which the system will be de-
ployed as well as capturing the dependencies of the system during the runtime environ-
ment. The resulted view captures both hardware environment required by the system

33

Chapter 2. Background

including processing nodes, network infrastructures, the technical background needed
for each identified element and also a mapping of the software elements to the runtime
environment.

• Operational viewpoint concerns with how the system will be operated, administered
and supported during the operational time in its production environment.

The Rozanski and Woods viewpoints catalogue is similar to Kruchten’s with an addition
of two other viewpoints, i.e., Information and Operational viewpoint. Hence managed to
address the data and operational concerns. However, the architectural description process is
missing; it becomes unclear what the software architect is required to do to define suitable
architectural description [Kheir et al., 2013].

Lesson Learned The use of viewpoints facilitates the management of architecture views.
Since they present general aspects in the construction of architecture views which are easier
to reuse and do not need to be redefined for every system in a particular domain. Architectural
viewpoint models cover relevant architecture views that enable software architect to select
a set of viewpoints rather than creating the viewpoints from scratch. The section served
as the roadmap towards a selection of the right and appropriate viewpoint model based on
stakeholder and concerns of SEISs. The set of viewpoints provided by Siemens view model
is best choice viewpoint model for the description of SEISs. Since most of the existing SEISs
architecture views are described using the views that belong to this model as described in
Chapter 3 and importantly this viewpoint model is associated with an architectural description
process model which will assist an architect during the designing phase. However, these
viewpoints are not enough to cover all the aspects of SEISs as defined in Chapter 3. Therefore
two more viewpoints topology and data viewpoints are added. As a result, the optimum set
of viewpoints for SEISs with the most significant coverage includes a conceptual, module,
execution, code, data and topology viewpoints as presented in Chapter 6.

2.3.3 Architectural Description Languages (ADLs)

Many researchers believed that software architecture must be provided with its own body
of specification languages and analysis techniques to obtain the benefits of an explicit
architectural focus [Medvidovic et al., 2002, Wolf, 1997, Allen and Garlan, 1996]. Such
languages termed as Architecture Description Languages (ADL) which is defined as a
language (graphical, textual, or both) for describing a software system in terms of its
architectural elements and the relationship among them [Varadharajulu and Sridharan, 2009].

34

Chapter 2. Background

This is required to define and analyze the properties of the system. A good ADL must
provide abstractions which are adequate for modeling a large system. ADLs are capable
of formalizing, describing, specifying, modeling and reasoning on software architectures
[Varadharajulu and Sridharan, 2009]. An infinite number of ADLs have been proposed
[Medvidovic, 1996, Moriconi et al., 1995, Magee and Kramer, 1996, Luckham and Vera,
1995, Garlan et al., 1994, Allen and Garlan, 1997]. Each ADL has a particular approach
towards the specification and evolution of an architecture [Medvidovic et al., 2002]. In
this thesis, a Unified Modeling Language (UML) is used as an emerging standard software
design language whose ADL supports architectural building blocks. Since UML provides
diagrammatic notations which are easily understandable by everyone dealing with software
development.

Unified Modeling Language (UML)

A Unified Modeling Language (UML) is a graphical language defined by Object Management
Group (OMG) and is considered as the de facto standard for general-purpose systems which
can be used to specify and document the artefacts of the system throughout the system
development life-cycle [Varadharajulu and Sridharan, 2009]. UML is a high-level modeling
language with well defined semi-formal syntax and semantics, useful and extensible set
of predefined constructs, the potential for robust tool and is based on the experience with
mainstream development methods [Medvidovic et al., 2002, Varadharajulu and Sridharan,
2009].

UML appears to be well suited for describing software architectures of SEISs because
of its expressive architectural power in modeling software architectures. Additionally,
UML allows different stakeholders or contributors associated with diverse perspectives, i.e.
analysts, developers, architects and end-users to communicate on the common ground in
regards to specify, visualize and document a system [Kaur and Singh, 2009]. Also, UML
supports multiple architecture views via a collection of diagrams for depicting both structural
information (class, object and package diagrams) and behaviour information (state machine,
use case and interaction diagrams) of a system. This thesis focused on structural information,
in which the viewpoints are described using class diagrams, while the views are described
using either class, object or package diagrams.

35

Chapter 2. Background

2.4 Summary

This chapter presents related work on software architecture and its description. Such that the
essential foundation concepts of this thesis have been examined mainly, software architecture,
reference architecture, and documentation of software architecture. A consistent set of termi-
nologies for both software architecture and reference architecture is essential for preventing
any confusion. Various definitions of both software architectures and reference architectures
have been discussed. In general, software architecture is a structure (/structures) of the
systems made up of software elements and their external properties. Well-defined software
architectures are crucial for successful system development and evolution while a reference
architecture represents special kind of software architecture which encompasses software
elements and architectural knowledge that can be reused in the construction of concrete
architectures of systems that belongs to a particular domain. The IEEE 42010 standard
[ISO/IEC/IEEE, 2011] as the main standard for software architecture documentation has
been described. Various architectural viewpoints models have been discussed. These models
provide sets of viewpoints to be considered in describing software architecture rather than
starting from scratch. It is followed by a brief description of architectural style and patterns.
Finally, the architectural description language is discussed. The next chapter continues with
the discussion on the foundations by focusing on the actual review of the existing SEISs and
reference architectures.

36

Chapter 3

Related Work for SEIS

This chapter presents the research synthesis in which some of the existing software architec-
tures of SEISs are reviewed, examined and presented. It is worth mentioning that the topic
regarding architectures of SEISs is a broad discipline of research, hence the comprehensive
survey of the available researches is outside the scope of this thesis. The focus is on the
software architectures of SEISs, namely software systems that collect, analyze, process,
control and visualize environmental conditions (parameters) for effective monitoring and
controlling environmental phenomena. This review describes a set of SEISs with clear
descriptions of software architectures as representatives of SEISs. Such review is important
to identify a commonality of SEISs so as to identify and make use of the abstractions that are
common to all SEISs in the development of a reference architecture for SEISs.

3.1 Overview

The ultimate objective of this review is to identify and describe existing SEISs while paying
special attention to their developmental needs and structures. There are many SEIS architec-
tures based on applications that have been proposed by individual researchers, academicians,
and companies from various countries [Milke and McAvoy, 1995]. However, some SEISs
which serve as representatives of SEISs are briefly discussed; Forest Fire Detection Systems
in Section 3.2, Flood Detection Systems in Section 3.3, Air Pollution Detection Systems in
Section 3.4, Landslides Detection Systems in Section 3.5, and Road Traffic Control Systems
in Section 3.6. Such description includes various systems for each group of SEISs, and the
fundamental architectural description concepts, i.e. stakeholders and their concerns, systems’
functionalities, architectures, and quality attributes as deduced from IEEE 42010 standard.
These constructs facilitate the description of essential architectural elements, commonality
and challenges of SEISs that should be considered in developing the reference architecture

37

Chapter 3. Review of Existing SEISs

for SEISs. The "underline" emphasizes architecture views and styles. The chapter concludes
with an outline of ongoing research directions for SEISs.

3.2 Forest Fire Detection Systems

Forests are essential resources for social development and survival of living organisms.
However, because of uncontrolled conditions, the life of the forest is threatened by fires. This
led to the growth of gas emissions in the planet reaching about 20 per cent of Carbon-dioxide
(CO2) emissions in the atmosphere [Zhang et al., 2008]. The occurrence of forest fires is
increasing considerably due to human activities, climate changes and other factors. These
forest fires are among the most severe disasters to the infrastructure, environment, economy
and most importantly, the lives of humans and other living organisms. Many countries in
the world are subjected to forest fires, about 13 million hectares of forest are destroyed each
year [Bouabdellah et al., 2013]. To mention a few, some of the highly vulnerable countries
include India [Sharma, 2016], Europe (the forest fires burn on average of about 500000 ha
every year) [Karafilovski et al., 2014] and other countries.

Early detection of forest fires can drastically reduce or prevent the consequences of fire.
Hence monitoring, controlling and prevention of forest fires became global concerns in
environmental conservation. Traditionally, forest fires were detected using human-operated
observation towers such as towers at fire high points [Hefeeda and Bagheri, 2009] and
Osborne fire finder [Bahrepour et al., 2008]. However, such techniques were unreliable,
inefficient and partially effective since they employ both camera surveillance systems and
satellite imaging technologies in monitoring forests which are costly and highly affected
by certain weather conditions and (/or) physical obstacles [Kletnikov et al., 2017]. The
revolution of sensing-actuating techniques paves the way for the introduction of conventional
techniques based on wireless sensor-actuator networks and others [Hartung et al., 2006, Son
and Kim, 2006, Bernardo et al., 2007]. The descriptions of the existing software architectures
of forest fire detection systems are based on the following categories: stakeholders and
their concerns in Section 3.2.1, core functional features of forest fire detection systems
are described in Section 3.2.2, their architectures in Section 3.2.3, and supported quality
attributes in Section 3.2.4.

3.2.1 Stakeholders and their concerns

A comparative analysis of the forest fire situation in central-eastern Europe presented in
[Albers, 2012] defines a set of stakeholders who are crucial for the success of the forest

38

Chapter 3. Review of Existing SEISs

fire detection systems. Such stakeholders include general public (citizens), operators, fire
agencies, non-governmental organizations, forest management groups, landowners, wild-land
fire researchers, government and national authorities [Alkhatib, 2014]. The firefighters are
in charge of controlling the situation when fires occur to lower the consequences [Hartung
et al., 2006, Bernardo et al., 2007]. Hence they should be equipped with a suitable tool or
system to view or forecast the occurrence of fire. The major concerns of these stakeholders
include system feasibility, decomposition, integration, distribution and management of the
nodes, functionalities, and supported quality attributes.

3.2.2 Functional Features

The forest fire detection system proposed in [Canada, 2018] provides public (citizens) with
the information regarding the daily danger and conditions for the occurrence of fire in
Canada. Such a system uses the Canadian Forest Fire Weather Index (FWI) for modeling and
displaying the prediction of fire occurrence in forests via daily monitoring of temperature,
wind speed, rainfall and relative humidity.

The FireWxNet [Hartung et al., 2006] provides the firefighters with the ability to measure
and view fire and weather conditions over a wide range of locations. FireWxNet detects
and locates the actual focus of fire and use images to verify the resulted measurements and
then predict fire behaviour, heightening safety considerations. Also, an alarm application
based on Telos B motes proposed in [Bernardo et al., 2007]. Such a system facilitates
firefighting operations. A combination of both temperature, light and humidity sensors are
utilized in difficult access environments. While a fire rescue application named FireNet is
proposed in [Sha et al., 2006]. FireNet utilizes wireless sensor networks to fulfil the following
requirements; real-time monitoring, resource allocation, accountability of firefighters, and
web-enabled services.

The Forest-fires Surveillance System (FFSS) has been deployed to gather measurements
of temperature, humidity and illumination from the environment [Son and Kim, 2006]. FFSS
consists of a middleware program that determines the forest-fire risk-level by a formula from
the Forestry Office. In which, if a fire is detected, an alarm is automatically activated to
facilitate an early extinguishing of the fire. Similar to [Son and Kim, 2006], the forest fire
detection based on the Fire Weather Index was proposed in North America [Hefeeda and
Bagheri, 2009]. This system determines the risk of propagation of fire based on a collected
set of index sensors parameters.

An advanced system for monitoring forest area and early detection of forest fires using
wireless sensor networks is described in [Kletnikov et al., 2017], is associated with the

39

Chapter 3. Review of Existing SEISs

following features; capturing and storing information from various sensors based on the
line of sight, the collected data is then transmitted through the local wireless network using
Zigbee, processing the received information based on models of prediction and approximation
algorithms, presenting centralized alarms, captured data and predictions via a base station.
Also, a video-based early fire warning system presented in [Dimitropoulos et al., 2012]
provides an automatic early warning of fire and extreme weather conditions by remotely
monitoring areas of archaeological and cultural. Finally, FireWatch is produced by German
Aerospace Institute (DLR) to provide an automatic smoke detection system capable of
identifying smoke within a range of 10 – 40km [Alasia, 2013].

To summarize, the main features of forest fire detection systems include monitoring of
forests parameters using a collection of sensors, the sensed data is sent to the information
system for storage and further processing to predict the occurrence and risk of propagation
of forest fires, issuance of alarms in case of the (or high probability) of fire, viewing both
collected and processed information.

3.2.3 Architectures

In general, forest fire detection systems are made up of the monitoring nodes, base stations,
communication systems, internet access and the information control centre. Sensor nodes
are randomly deployed in a forest and construct wireless sensor networks to monitor the
forest parameters such as humidity, temperature, smoke, gases and others. Such data is
periodically collected and sent to the sink (base station) then to the information control centre
for further processing, i.e., alerting citizens or residents and dispatching firefighting crews.
Different views have been used to describe various forest fire detection systems in satisfying
the stakeholders’ concerns while fulfilling functional features as mentioned in Section 3.2.1
and Section 3.2.2.

The decomposition and components integration of forest fire detection systems were
described using module views with layered architecture styles. For instance, Jadhav et
al in [Jadhav and Deshmukh, 2012], used a module view which was associated with a
layered architecture style to describe a sensor node. The sensor node is divided into two
layers; Operating System (OS) kernel and Application Programming Interface (API). The
OS kernel layer provides a low-level node driver of all hardware devices. The kernel layer
consists of task debugging module for controlling the control flow throughout the operating
system, power management module for supporting radio frequency transceiver, processor,
sensors and other parts of the state control of energy consumption and energy management
module for waking up the node at the right time to maximize the energy utilization. The API

40

Chapter 3. Review of Existing SEISs

layer provides sensor acquisition via sensor modular and radio frequency communication
modules.

Also, European Forest Fire Information System (EFFIS) that has been implemented
by the Joint Research Centre (JRC) and the General Environmental Directory (ENV) was
described using a module view with a layered architecture style [Commission, 1998]. In
such a view, the system consists of web-based modules, the data processing part and spatial
database for collecting and presenting the information of forest fires on the pan-European
scale. Additionally, the system consists of web-based mapping tools of which the EFFIS
layers are published and allow the user to access the system by searching and analyzing
the information in a web browser. EFFIS layers include wide range of formats; INSPIRE
and Open Geospatial Consortium (OGC) standards, such as Web Map Service (WMS), that
generates maps in an image format online, and Web Coverage Service (WCS) that offers
raster or grid data, and Web Feature Service (WFS), which generates vector data using
Geographic Mark-Up Language (GML).

A fire management system installed in South Africa named FireHawk used a module view
with a layered architecture style to describe the system’s decomposition [Alasia, 2013]. The
architecture consists of three layers: Imaging layer which represents installed cameras in
suitable places. The Communication layer used to set up the connection through the wireless
link. The Machine vision layer is the core layer of FireHawk which employ ForestWatch
software and Geographical Information System (GIS) to estimate the actual location and
shortest path to the fire. Also, Hartung et al. presented FireWxNet which has been designed as
a multi-tiered architecture [Hartung et al., 2006]. This system used web cameras to provide
images for the fire and other sensors with small GPS forming wireless sensor networks to
provide weather information. FireWxNet is equipped with directional antennas on the top of
mountains and ends with multi-hope sensor network to monitor the specified environmental
parameters.

Similarly, the forest fire monitoring system called IPNAS introduced and supported by
the ministry of science, education and sport of Republic Croatia. The IPNAS was described
using module view [Stipanicev et al., 2018]. IPNAS is automated surveillance associated
with automatic detection of forest fires. The IPNAS is based on the fields units and a central
processing unit. The field units consist of video cameras and min meteorological station
which are connected through wireless LAN to a central processing unit for further processing.
The data collected by the field units is stored in the databases (GIS database, SQL database
and Data warehouse). With the use of data interface, IPNAS offers various services including
user-friendly camera control, automatic fire detection and archival retrieval of both data and
video. The IPNAS is web-based with a user interface displayed in a standard web browser. A

41

Chapter 3. Review of Existing SEISs

user can access the system through tunneled SSL (Secure Socket Layer) and VPN (Virtual
Private Network).

The distribution and management of nodes in the forest were described using a topology
view with a network cluster tree-topology view in which the nodes in the network are
organized based on three categories; ordinary bottom nodes, cluster heads and network
coordinators [Zhang et al., 2008]. Data is collected by sensor nodes (ordinary bottom nodes)
deployed in the forest then transmitted to its cluster head. A cluster head performs both
fusion and transmission of data packets to the centralized servers for further processing if
there is a direct connection. Otherwise, the information is sent to the network coordinators.
The Network coordinators are responsible with the network management functions mainly
access control, configurations and equipment registrations.

Also, a topology view with network clustering was used by this system to describe the
network topology of sensor nodes [Jadhav and Deshmukh, 2012]. In which, nodes are
classified into common and cluster-head nodes. All sensor nodes are allocated to some
clusters. The common nodes collect the data and then transmit it to the cluster-head node
which stores the data to the database. At the same time, the expert decision support system
uses such data for further processing and analysis.

Finally, the description of the main functionalities and how all the components of for-
est fire detection system fit together was presented using a conceptual view that utilizes
client/server architecture style. Such a view described a forest fire detection system pro-
posed in [Zhang et al., 2008].

3.2.4 Quality Attributes

The forest fire detection system described in [Aslan et al., 2012] supports; energy efficiency,
accuracy and adaptability. Energy Efficiency, since batteries power the sensor nodes deployed
in the forest, then the system was designed with low consumption of energy as replacement
of batteries in the forest is too costly, and impractical or infeasible. Accuracy, the early
detection of forest fires with an accurate estimation of the fire location is crucial for the
control of fire. This system estimates the accurate fire location to send the firefighters to the
correct spots with minimal duration. Adaptability, this system is highly flexible and hence
capable of operating in harsh conditions, i.e. high temperature, humidity pressure and even
with node damages and link errors.

Yu et al. proposed energy efficient real-time forest fire detection system [Liyang et al.,
2005]. Such system prolongs the lifetime of a sensor network by using neural wireless sensor

42

Chapter 3. Review of Existing SEISs

network and an efficient clustering algorithm for routing the data, in which the nodes used
to send the sensed data to the cluster head and then are sent to the base station. Also, the
communication between sensors was reduced through in-network processing mechanisms.

The fire monitoring system presented in [Kumar and Kishore, 2017] posses low main-
tenance and low power consumption. This is achieved through the utilization of a wireless
sensor network that has included both short-range communication via Zigbee and long-range
communication via GPRS. The short-range communication used for data exchange locally in
the forest, and processing of the collected data while long-term communication is used for
sending alerts. Also, Gao et al. proposed forest fire monitoring and early warning system
which offers the flexible structure, easy maintained and low cost of operations based on
multi-sensor and multi-level data fusion [Gao and Huang, 2015].

3.3 Flood Detection Systems

Flood is also one of the major problems in many countries around the world. According to the
United Nations Educational Scientific and Cultural Organizations (UNESCO), fifty per cent of
water-related natural disasters worldwide are caused by flood [Organization, WMO]. In most
cases, a flood is regarded as a natural disaster caused by the changing weather conditions, i.e.
global warming which led to heavy rainfall, strong winds, unusually high tides or tsunamis
etc. [Nuhu et al., 2016]. Various experts have researched flooding on different perspectives
[Sunkpho and Ootamakorn, 2011], in which flood monitoring, prediction or forecasting and
alerting or warning were identified as crucial aspects of managing the flood.

SEISs facilitate flood management by using sensors in monitoring environmental pa-
rameters, i.e. precipitation, flow or water bodies levels in real-time. The collected data is
sent to the information control centre, in which models are used to predict the occurrence
of the flood to make reasonable decisions in preventing or reducing the effects that could
be imposed by flood [Sunkpho and Ootamakorn, 2011]. The descriptions of the existing
software architectures of flood detection systems are based on the following categories:
stakeholders and their concerns in Section 3.3.1, core functional features of flood detection
systems are described in Section 3.3.2, their architectures in Section 3.3.3, and supported
quality attributes in Section 3.3.4.

3.3.1 Stakeholders and their Concerns

To prevent or reduce the effects of floods, several stakeholders are required to participate
in flood detection systems to make crucial decisions. These stakeholders are as defined in

43

Chapter 3. Review of Existing SEISs

[Sari et al., 2013] include; (1) Governmental agencies such as regional planning agency, local
disaster management agency, environmental offices, a regional parliament and health depart-
ment. All these agencies are responsible for managing water resources, and coordinate the
activities of environmental, disaster and emergency management. (2) Police help the people
in the emergency during evacuation processes and also advise the local government to curb
the building in flood areas. (3) Universities, research institutes and NGOs participate in both
the prevention and reduction of consequences of the flood. (4) Local community or citizens
(5) Technical people such as developers, analysts, operators, architects, maintainers ensure
the system works as required. In order to accomplish their objectives, these stakeholders are
interested to know the feasibility of flood detection systems, how are they decomposed and
implemented, their nodes interconnected, functionalities and supported quality attributes.

3.3.2 Functional Features

The flash-flood alerting system proposed in [Castillo-Effen et al., 2004] aims at aiding the
population of the Andean region of Venezuela, where large amounts of property damage
and residents casualties occur due to flash-floods. The proposed system fulfils the following
requirements; collection of relevant meteorological, and hydrological data from the threatened
regions in which flash-flood and landslides originate, data transmission from the sensed
fields to the urban areas, extraction of data, and graphical display of relevant information
for assisting authorities to make crucial decisions, registration and storage of collected data,
generation of alerting signals and allowance of users using mobile devices to interact with
the system.

Also, Sunkpho et al. presented a real-time flood monitoring and warning system for a
specific region of the southern part of Thailand [Sunkpho and Ootamakorn, 2011]. Such a
system provides an information channel for responsible authorities and also a web-based
information source for the public which used to respond to their requests regarding the
information of water conditions and flood. Also, the flood forecasting and warning response
submit reports to various government agencies along with public media sources to distribute
the alert [Chowdhury, 2005].

3.3.3 Architectures

The flood detection systems use module views with layered architecture styles to describe
the decomposition and main components of such systems. For instance, the real-time flood
monitoring and warning system in [Sunkpho and Ootamakorn, 2011] was described using a
module view with three modules; Monitoring Remote Sensor module, Database and Web

44

Chapter 3. Review of Existing SEISs

Application Server module, and Data Processing and Transmission modules in both remote
site and control centre. The monitoring remote sensor module includes customized sensors
for collecting data; precipitation, water level and flow measurements. Such data passes
through mobile General Packet Radio Service (GPRS) tunnel via a Data Processing and
transmission module in the remote site to the data processing and transmission module in
the control centre. The data processing and transmission module involve a GPRS Data Unit
(GDU) installed at a remote site while the GPRS gateway server is implemented at the control
centre. The database and web application server module processes the collected information
in real-time and makes them accessible to the user via a web-based application.

Also, The flood risk assessment system proposed in [Amirebrahimi et al., 2016] uses
module view of this system using layered architecture style consists of four layers; i.e. Data
Layer (DL), Data Access Layer (DAL), Business Layer (BL), and the Presentation Layer
(PL). The data layer (DL) contains both the required spatial and non-spatial data to undertake
the damage/risk assessment and visualization processes. The data access layer (DAL) is an
intermediate layer between the data and business layers as well as providing simplified access
and retrieval mechanisms for data stored in the data storage, e.g. files or databases. The
business layer (BL) concerns with execution and maintenance of the logical processes and
rules that required for calculations. The functionalities of this layer include water infiltration
modeling, damage and costs assessment, etc. The output of these functionalities is transmitted
to Presentation Layer for the presentation to the user, which in turn the data is sent back to
Data Access Layer for the export and storage. The presentation layer (PL) consists of the
user interface (UI) which allows the interactions of the users to the system, i.e. capturing
users requests and presenting responses.

Similarly, the flood monitoring and detection system (FMDS) in [Udo and Isong, 2014],
uses a module view with three modules; sensor field, surveillance centre and mobile phone.
The sensor field module consists of sensors for sensing and transmitting the observed
parameters to the gateway. The surveillance centre module includes a database which holds
the phone numbers and the monitored parameters in the host computer (for the GUI and
to initiate alert SMS to the occupants of the flood area), printer and a broadband modem
to enable the sending of SMS. The mobile phone module presents the residents of the
flood-prone region who will receive the alerts through SMS.

The implementation of weather monitoring in flood disaster management system in
[Nithya and Vanamala, 2018] was described using an execution view with a client/server
architecture style. Such a view included a person, controller and sensor nodes are used. The
person node specifies time and date and request access to the controller. The controller
node validates the user (person) to grant the permission of accessing the system. The

45

Chapter 3. Review of Existing SEISs

sensor node consists of two components for measuring and displaying the data. Finally,
the flood detection systems proposed in [Greenwood et al., 2006, Seal et al., 2012] utilizes
a hierarchical architecture with sensing nodes, computation nodes and monitoring stations.
The computation node concerns with data aggregation and transmission. The system in
[Greenwood et al., 2006] is different from the one in [Seal et al., 2012] since [Greenwood
et al., 2006] uses a mini-grid based computational model of which part of the computation is
done at the monitoring station while the rest is at the nodes.

3.3.4 Quality Attributes

The flood monitoring system described in [Degrossi et al., 2013] supports; interoperability
and adaptability. The interoperability is achieved through the adoption of the Sensor Web
Enablement standards defined by the Open Geospatial Consortium (OGC) [Botts et al., 2008].
The OGC defines the Sensor Observation Service (SOS) which handles data originating from
sensors in an interoperable way. While adaptability is achieved by using specifically the
SOS framework provided by 52 North German initiative for Geospatial OpenSource software
[Jirka et al., 2012]. Such software is easily adapted since it is open source code distributed
under the terms of GNU license.

The proposed real-time flood monitoring and warning system offer accurate and reliable
information for the southern provinces of Thailand to avoid unnecessary destructions and
losses [Sunkpho and Ootamakorn, 2011]. The flash-flood alerting system [Castillo-Effen
et al., 2004], ensures energy efficiency, flexibility and extendability. The system is supposed
to remain functional for a longer period of time. Hence, sensor networks are required to be
energy efficient to possess long lifetime. This makes the energy optimization to be considered
explicitly in designing sensor networks. Also, this system is required to be flexible and
extendable to accommodate the growth of sensor network and topological changes. The node
discovery strategies and self-forming capability need to be included in the network routing
protocols to facilitate the accommodation of new nodes in joining the network.

The real-time flood monitoring and warning system proposed in [Marin Perez et al.,
2012] is cost effective, reliable, energy efficient, heterogeneous and maintainable. The
system is energy efficient with robust communication capability and also provides accurate
measurements in real-time. The system is flexible to accommodate many applications for
autonomous data collection with reliable transmission over large areas.

46

Chapter 3. Review of Existing SEISs

3.4 Air Pollution Detection Systems

Air pollution refers to the presence of contaminants (i.e. hazardous gases, dust particles
and chemical substances) in the air which results into dangerous damages to the health of
living organisms mainly humans and harmful environmental effects. Air pollution is one of
the major factors that affect the health of humans [Alesheikh et al., 2005] and ecological
balance. The World Health Organization reported that 2.4 million people die each year from
causes directly attributable to air pollution, so clean air is a crucial requirement for good
health [WHO, 1999]. Many activities including industrial activities, burning of forests and
(or) trees, transportation, and the explosion of gases pollute the air. Such pollution led to the
reduction of air quality which will eventually harm the health of humans and other living
organisms [WHO, 2000]. Some of the primary air pollutants in the atmosphere which cause
the reduction of air quality include ozone (O3), nitrogen oxides (NO2), sulphur dioxide
(SO2), carbon monoxide (CO), aromatic compounds and particulate matter. O3 and NO2 are
originating from photochemical reaction while NO, aromatic compounds and CO are from
traffic [Lee et al., 1999]. Therefore measuring the level of air pollution is highly required to
raise the level of clean air.

Even though monitoring of air pollution is being a very crucial task but is very difficult
[Khedo and Chikhooreeah, 2017]. Initially, data loggers were utilized to collect data periodi-
cally. This process consumed more time and too costly. The invention of sensors simplifies
the process and allows the obtainment of more instantaneous readings [Ma et al., 2008]. The
data collected by sensors is sent to the information control centre for further processing, in
which models are utilized to determine the quality of air. The following sections provide
the descriptions of the existing software architectures of air pollution detection systems are
based on stakeholders and their concerns in Section 3.4.1, core functional features of air
pollution detection systems are described in Section 3.4.2, their architectures in Section 3.4.3,
and supported quality attributes in Section 3.4.4.

3.4.1 Stakeholders and their Concerns

According to the air quality monitoring workshops; SECURE workshop [FP7, 2016] and
Research to Practice workshop [Clements et al., 2017], some stakeholders were identified
and classified in two groups; the first group focuses on collecting and using air quality for
creating policies and awareness about the sources and control of air pollution [Clements
et al., 2017] for the betterment of the environment and public health improvement. Such
group includes government, regulatory agencies, private companies, citizens, environmental
experts, academia and research institutes. This second group concerns with the actual

47

Chapter 3. Review of Existing SEISs

development of the system (the technical aspect of the system) with regards to how data can
be collected, integrated and communicated to other stakeholders. Such group includes IT
related experts (developers, maintainers, analysts, architects, operators). The main concerns
of these stakeholders include the feasibility of air quality monitoring to meet the intended
objectives of the system, system decomposition and implementation, data management,
functionalities and supported quality attributes.

3.4.2 Functional Features

Samadzadegan et al. developed an air quality monitoring web-based system that utilizes the
internet to help disaster managers to reduce the impacts of air pollution through distributed
component system [Samadzadegan et al., 2013]. While in Baralis et al. [2016], an air
monitoring system is proposed to help people (citizens) to realize their activities concerning
the deterioration of air quality. This system creates awareness of the public on how various
factors like pollutants and toxic gases affect the quality of air and analyze air pollution based
on meteorological data, pollutants and traffic data.

The CO pollution warning system [Purnamasari et al., 2013] monitors the conditions of
air pollution in the covered parking area and warnings to humans for creating an awareness of
pollution nearby. Such system displays CO in the form of graph and numbers for ppm level
and three pollution conditions: safe (AMAN), alert (WASPADA) and dangerous (BAHAYA).
The pollution conditions are indicated in three colours of the LED; green, yellow and red for
safe, alert and dangerous respectively. The system activates a buzzer and fan in dangerous
pollution conditions.

Air quality monitoring and analysis system presented in [Yaacoub et al., 2013] assists
decision makers in making appropriate measures to reduce or mitigate the impacts of air
pollution by providing reliable information regarding air pollution. This system handles
data cleaning and filtering hence it processes and presents the air quality measurements in
real-time and adequate formats depending on specific end-user groups, e.g. the general public
or environmental experts.

In [Ustad et al., 2014], Ustad et al. introduced an air pollution monitoring system that
monitors the concentration level of air pollutants, i.e. CO, SO2, and dust concentration in the
environment due to the industrial processes. Similarly, Kgoptjo et al. presented an air quality
monitoring system (AQMS) based on IEEE/ISO/IEC 21451 standard [Zheng et al., 2016].
AQMS uses electrochemical and infrared sensors to measure the concentrations of CO, CO2,
SO2, and NO2 and store the collected information in the data server.

48

Chapter 3. Review of Existing SEISs

3.4.3 Architectures

The indoor air quality monitoring system presented in [Lozano et al., 2012] uses module
architecture to describe the decomposition of a system. In which a sensor node is decom-
posed into four modules: Communication and Processors Module, Conditional Signal and
Conversion Module, Sensor Module, and Power Supply Module. The communication and
processors module uses XBee and XBee pro modules from Maxstream. The conditional
signal and conversion modules are electronic circuits and instrumentation used for adapting
sensor signals to the range of the conversion modules. The sensor module includes temper-
ature sensor (LM35DZ from National Semiconductor), humidity sensor (HIH–4000 from
Honeywell), light sensor (light dependant Resistance NSL-19M51 from SILONEX) and
quality air sensor (TGS 2600 from FIGARO with High sensitivity to gaseous air contaminants
i.e. hydrogen, ethanol, iso-butane and carbon monoxide). The power supply module is used
for energizing the entire sensor node and is designed using commercial electronic devices.

Also, an air quality monitoring systems [Raju, 2014] uses a module view with a layered
architecture style to describe the decomposition of the system into two layers: physical layer
and application layer. The physical layer concerns with the acquisition of real-time data
from sensors together with physical location, date and time through the GPS module. The
application layer is responsible for the provision of services relating to the monitoring of air
pollution through a website. This layer enables users to have access to the system by log on
to the system and view the concentration of pollutants that have been measured.

Similarly, a noise and air pollution system proposed in [Guthi, 2007], uses module view
to describe system decomposition into 4-tier architecture. Tier 1 is the environment, provides
the collected information regarding the environmental parameters of a particular region
required for noise and air pollution control. Tier 2 belongs to sensor data acquisition, and
this concerns with suitable sensor devices based on specified characteristics, i.e. the range of
sensing and sensitivity. Tier 3 is for decision making. This tiered process the data originated
from tier 2 before making crucial decisions regarding the control of noise and air pollution.
The intelligent environment belongs to tier 4 which is specifically for the identification of
variations in sensor data and fixation of the threshold value based on the observed level of
CO and noise.

The implementation of an air pollution monitoring system was described using execution
view with a client/server architecture style [Al-Ali et al., 2010]. Such view include Data-
Acquisition Unit (Mobile-DAQ) and a fixed Internet-Enabled Pollution monitoring Server
(Pollution-Server).

49

Chapter 3. Review of Existing SEISs

Finally, Ujang et al. uses a data view to conceptualize the data that are either processed
inside the process or exchanged between the processes of air pollution dispersion system
[Ujang et al., 2013]. Such a system is used to improve visual analysis of air quality monitoring
in the event of dealing with urban air pollution. In which, the Operational Street Pollution
Model (OSPM) is adopted to implement the 3D spatial city model. Figure 3.1 depicts the
attributes of CityGML and OSPM parameters for the amalgamation. The urban air pollution
dispersion models involve Operational Street Pollution Model (OSPM), meteorological
(wind flow, wind speed, vertical turbulence, and canyon Ventilation), physical data (receptor
height, vortex, recirculation zone, and trapeze slant edge length) and other geometrical
information. The OSPM includes plume model for calculating vehicle emission, box model
for recirculating pollutant and background pollutant information.

Figure 3.1: Data Model of Air Pollution Dispersion figure taken from [Ujang et al., 2013]

3.4.4 Quality Attributes

Wireless Sensor Network Air Pollution Monitoring System (WAPMS) attained the improved
energy efficiency through a data aggregation algorithm (Recursive Converging Quartiles
(RCQ)) and a hierarchical routing protocol [Khedo et al., 2010]. Such algorithm significantly

50

Chapter 3. Review of Existing SEISs

reduces the amount of data to transmit by filtering out invalid readings, merging data to
eliminate duplicates and summarizing the data to be sent. A hierarchical routing protocol was
used for managing power by making nodes to sleep during idle time. Similarly, an Indoor
Air Quality monitoring (IAQ) system possess energy efficiency via an adaptive duty cycling
mechanisms in sensors [Jeličić et al., 2011].

The air quality monitoring system in [Ahuja et al., 2016] uses the Internet of things (IoT)
to provide a low-cost portable system that creates awareness to the public regarding the
air quality and hence make better decisions of either travelling routes or house purchase.
F. Samadzadegan et al. proposed a flexible and interoperable air pollution monitoring
system [Samadzadegan et al., 2013]. The system is web-based which uses Sensor Web
Enablement (SWE) framework of the Open Geospatial Consortium (OGC) standard in
addressing interoperability and flexibility challenges in monitoring and alerting air quality
information for supporting the management of air quality. Similarly, Kumar et al. presented
an air quality monitoring system in [Kumar and Jasuja, 2017]. This offers low cost, low
power, high accurate system for monitoring the environment using dedicated remote sensors
through a single board minicomputer Raspberry Pi.

3.5 Landslide Detection Systems

Landslides are one of the major catastrophic disasters that happen around the world. This has
been a major problem in many countries including India which faces landslides every year Sri
Lanka [W.A.S.R. et al., 2017], Malaysia [Yunus et al., 2015], etc. Landslide involves mass
failures of slope, i.e. movement in rock, ice, soil or organic materials due to the influence
of gravity and which eventually led to considerable damage to the environment, economy,
natural habitat and others [Dakave and Gaikwad, 2015]. The occurrence of landslides
originated from either geological, human activities, morphological or physical effects.

The continuous monitoring and early warnings of landslides may reduce or prevent the
loss of human, other living organisms and the destruction of properties. However, the design
of an early warning system is complicated due to the increased degree of unpredictability of
landslides and rapid change of contributing conditions [Ramesh, 2014]. Also, conventional
landslide monitoring systems, i.e. traversing inclinometer system are not efficient and very
expensive [Hass et al., 2008]. Innovative mechanisms or techniques, i.e. sensing techniques
are highly required to capture relevant signals at the right time with minimal monitoring
delays. Sensing techniques are one of the leading technologies capable of capturing quickly
and processing data in real-time even under harsh or remote environment [Ramesh, 2014],

51

Chapter 3. Review of Existing SEISs

and WSN has become a most commonly used method for landslide detection. The data
collected by sensors is sent to the information control centre for further processing, in
which models are utilized to determine the likelihood of landslides. The description of the
existing software architectures for landslides detection systems are based on the following
categories: stakeholders in Section 3.5.1, core functional features of landslides detection
systems are described in Section 3.5.2, their architectures in Section 3.5.3, and supported
quality attributes in Section 3.5.4.

3.5.1 Stakeholders and their Concerns

Stakeholders participation in landslide detection systems is needed to ensure the effectiveness
of early warnings to prevent or reduce the consequences of landslides. Such stakeholders
include public authorities and other institutions, experts, residents, operators, the general
public and others [Preuner et al., 2017, Picarelli, 2014]. Public authorities such as national
authorities, police, etc. are responsible for the promotion of responsibility sharing and local
participation. Hence they are required to interact with the system to determine response
time, information distribution mechanisms and receivers. Residents need to protect them-
selves; thus they expect to be provided with information regularly. Experts possess detailed
knowledge of the hazard (landslide) hence are responsible for providing crucial design pa-
rameters that can be integrated into the system with the intent of collecting and analyzing
data. Additional technical experts develop and maintain the systems. The main concerns of
these stakeholders include the feasibility of landslides detection system to meet the intended
objectives of the system, system decomposition and implementation, functionalities and
supported quality attributes.

3.5.2 Functional Features

Nguyen et al. proposed a system for detecting rainfall-induced landslides capable of data
acquisition, data processing, data storage and wireless data transmission [Nguyen et al.,
2015]. The system collects data on soil pore water pressure, the vibration of the earth, soil
movement, moisture and temperature of the environment.

A drought forecast and alert system (DFAS) alerts the users through mobile communi-
cation [Kung et al., 2006]. While the landslide detection system in [Ramesh, 2014] uses
broadband to provide connectivity to a broader audience mainly public while streaming
data in real-time to allow experts to analyze data, possible predict the actual occurrence of
landslide and disseminate information to the government.

52

Chapter 3. Review of Existing SEISs

The essential requirements of landslide detection system presented in Kotta et al. [2011]
are the identification of required sensors to monitor and detect landslide while ensuring
efficient delivery of data in real-time.

3.5.3 Architectures

The landslides detection system in [Nguyen et al., 2015] was described using a module view.
Such system was decomposed into with three modules; The data acquisition module allows
the collection of data from both digital and analogue signals obtained from accelerometer
using digital drivers and directly from soil moisture and temperature sensors respectively. The
data processing module is a core component used for processing all the collected data from
sensors and outgoing data to the gateway via the following submodules; sensor sampling,
health monitoring, and power saving. The data communication module concerns the routing
algorithms and methods for synchronizing time in a wireless sensor network.

Similarly, the wireless sensor network for landslides detection in Nusa Tenggara Timur,
Indonesia [Kotta et al., 2011], uses a module view with a layered architecture style. Such
system was decomposed into the two-layer hierarchy; the lower layer consists of wireless
sensor nodes which sample and collects data from the deep earth probe (DEP) then data
packets are sent to the upper layer. The upper layer aggregates and integrate the data received
from the lower layer before sending it to the gateway (sink node).

Finally, the landslide detection system proposed in [Huang et al., 2015], uses a module
view with a layered architecture style. The system was decomposed into three layers: sup-
port, service and client layers. The support layer uses ArcGIS server to provide a distributed
computing environment to meet the high-efficiency requirements for data analysis and pro-
cessing. This layer consists of databases; a spatial database for spatial data, i.e. images,
vector data and lithology, attribute database provides detailed information regarding landslide
flows, i.e. name, location, etc., and monitoring database stores real-time monitored data. The
service layer employs ArcGIS Extension for Bing Maps application programming interface
(API) and Bing maps Interactive Software Development Kit (SDK) to provide data and map
services. Besides, this layer sets the triggering criteria and landslide warning thresholds. The
client layer consists of three dimensional Virtual Earth interface, supported by Bing maps 3D
and JavaScript programming to allow end-users to access the system.

53

Chapter 3. Review of Existing SEISs

3.5.4 Quality Attributes

The landslides detection system presented in [Nguyen et al., 2015] is flexible and energy
efficient. Flexibility is achieved by implementing flexible switching between star and tree
topologies to ensure reliable transmission based on weather conditions. The power manage-
ment is also employed to improve operational reliability and energy efficiency. Similarly,
Arnhardt et al. proposed a easy maintainable real-time monitoring of landslides using open
spatial data infrastructure and wireless sensor networks Hass et al. [2009].

A heterogeneous landslide detection system described in [Kung et al., 2006]. This system
supports various communication technologies, i.e. ZigBee, GSM, satellite to ensure efficient
delivery of data to the management centre in real time. While Jian et al. proposed a user-
friendly landslide monitoring system [Huang et al., 2015]. Such a system supports a wide
range of users that analyze, manage and interpret monitored data and also enhance the public
to have a better understanding of landslide.

Ramesh introduced a scalable, reliable and energy efficient sensor based landslide de-
tection system [Ramesh, 2014]. The energy efficient data collection methods, fault tolerant
clustering approaches, and threshold based data aggregation techniques are incorporated in
the system in order to improve reliability and energy efficiency.

3.6 Road Traffic Control Systems

Vehicular traffic is increasing tremendously around the world especially in urban and
metropolitan areas worldwide [Kafi et al., 2012]. This led to increasing traffic conges-
tion which causes dramatic impacts on human health, environment and economy. The
physical approaches, i.e. extension of roads are no longer feasible due to high construction
costs and physical limitations [Jo et al., 2014]. The road traffic management systems have
appeared to be the more viable and suitable solution towards an effective traffic control.

Despite the involvement of many researchers in the study of innovative road traffic
management techniques, traditional solutions relied on traffic lights with fixed cycles or
manually controlled by humans [Collotta et al., 2014]. Such systems tend to be more
effective and suitable in road sections with lower traffic flows rather than areas with high
vehicle density. The sensor-based traffic control systems have been deployed to address
the challenges of existing solutions. These systems make use of sensors to monitor road
parameters such as vehicle density, etc., such information is sent to an information control
system so as to be processed and analysed then the resulted control actions are executed

54

Chapter 3. Review of Existing SEISs

through actuators i.e. traffic signal to optimize traffic flow. The descriptions of the existing
software architectures for road traffic control systems are based on the following categories:
stakeholders and their concerns in Section 3.6.1, core functional features of road traffic
control systems are described in Section 3.6.2, their architectures in Section 3.6.3, and
supported quality attributes in Section 3.6.4.

3.6.1 Stakeholders and their Concerns

The successful introduction or utilization of road traffic control systems requires the mobi-
lization of the following stakeholders; local traffic management agencies, administrators,
transportation engineers, regional transport authorities and other researchers involved in
planning, design, implementation, operating and maintenance of traffic management and
traveler information systems, while police (enforcement agencies), and road users (travellers),
are interested in accessing traveller information systems for effective control of the traffic
flow [Association, 2018]. The major concerns of these stakeholders include the feasibility of
road traffic control systems to meet the intended objectives of the system, decomposition,
integration, functionalities, and supported quality attributes.

3.6.2 Functional Features

George et al. introduced a traffic monitoring system using IR sensors in [George et al.,
2017]. This system fulfilled the following requirements; vehicle detections and increases or
decreases the count based on the vehicle density, detection of traffic congestion, control of
traffic flow based on vehicle density, handle the data of registered users of the system and
suggestions of alternate paths to the registered users.

Ranjin et al. proposed an adaptive road traffic control system which continuously monitors
the traffic flow, and then execute an effective scheme on the controller to determines an
efficient traffic flow to reduce or prevent congestion [Ranjini et al., 2011]. Additionally, this
system consists of a detector store which stores the details of detectors and the vehicles pass
through such detectors and (/ or) wait for the signal.

The [Tavladakis and Voulgaris, 1999] proposed an adaptive traffic control system that
reads detectors’ states and then computes traffic flow information to allocate timing schedule
to traffic lights of a particular intersection based on traffic flow. The system allows the
communication between controllers of adjacent nodes to share data and synchronization
information, switches on and off traffic lights. Similarly, both Zhou et al. proposed an
adaptive traffic light control algorithms which consider various traffic factors, i.e. traffic

55

Chapter 3. Review of Existing SEISs

volume, vehicle density and waiting time to adjust both the sequence and length of traffic
lights based on the collected traffic information in real time [Zhou et al., 2010, 2011].

3.6.3 Architectures

An adaptive road traffic control system in [Ranjini et al., 2011] uses conceptual view to
describe the system as the whole. The system is partitioned into the following classes; The
traffic controller as the main class of the system coordinates other classes. The detector
class reflects the detectors (sensors) hence describes the properties of detectors, i.e. physical
location and count of vehicles passing through during a certain period. The optimizer class
which optimizes the traffic flow and is the parent of other subclasses; signal Optimizer,
time limit optimizer and adjacent signal optimizer. The road class comprises information
regarding the roads and their average traffic flow rate.

Similarly, the multi-model intelligent traffic signal system (MMITSS) described in
[of Arizona et al., 2013] uses a conceptual view with client/server architecture style to
describe the partition of the system. The system was partitioned into a traffic signal controller,
field sensors and MMITSS Roadside Processor associated with various physical devices, i.e.
a processor (at least one), memory, and physical interfaces (e.g. Ethernet, RS-232, or wireless
– 3G/4G, 5.9GHz DSRC, or other such as CAN-bus). The system is intended for two types
of travelers; motorized vehicles and non-motorized travelers. Non-motorized travelers do not
require licenses to operate on the public roadway including pedestrians, bicyclists and other
modes. Motorized vehicle travelers include any vehicle that must be licensed to operate on
the public road which is either equipped or unequipped.

A real-time traffic adaptive signal control system (RHODES) in Arizona [Mirchandani
and Head, 2001], uses module view with hierarchical architecture to describe the decomposi-
tion of the system. In which the global traffic control problem is split into small sub-problems
which are handled locally and then hierarchically connected to optimize traffic flow. Similarly,
Curiac et al. presented a hierarchical architecture of the urban traffic control system which
aims at optimizing the vehicle and pedestrian traffic flow in big cities [Curiac and Volosencu,
2010] with the wireless sensor-actuator networks at the first lower level and zonal control
systems at the second level of the hierarchy.

Finally, a traffic control system based on wireless sensor network in [Zhou et al., 2010]
uses a module view with layered architecture to describe the decomposition of the system.
The system has been decomposed into three layers which consist of a traffic flow policy
model and Intersection Control Agents (ICAs). Wireless sensors located on the lanes at the
intersection collect traffic information such as the number of vehicles, speed etc. and then

56

Chapter 3. Review of Existing SEISs

send the collected information to the ICAs which determine the optimal flow model of the
intersection based on the data sent by sensors.

3.6.4 Quality Attributes

The road traffic monitoring system presented in [George et al., 2017] is secured since the
admin specify accessibility of the system, easy maintained, accessible to all even visually
impaired people, and reliable. While, the urban traffic control system proposed in [Curiac
and Volosencu, 2010], is flexible such that accommodates various application changes, i.e.
adding or removing monitored entities, integrating other services or applications etc.

Jo et al. proposed a traffic information acquisition system emphasizing on high accuracy,
energy efficiency and low maintenance using small ultrasonic sensors and routing protocol
with an associated power-saving mechanism [Jo et al., 2014]. Similarly, a sensor-based
system for traffic jam avoidance presented in [Jiménez and García, 2015] is energy efficient
by using a data collection algorithm which reduces the number of transmissions and amount
of information.

Finally, the smart traffic management system in [Asensio et al., 2015] has been developed
with the intention of handling heterogeneity of devices by using u-Clouds. u-Clouds allows
the deployment of the infrastructure along with wide spaces in the city.

3.7 Summary

In this chapter, a literature review on the existing SEISs was performed to answer the first
research question (RQ1): Which are essential aspects or perspectives that are required to
describe SEISs?.

To answer the research question 1, this review has retrieved a set of existing solutions for
SEISs which provide users and other stakeholders with a wide range of services and features
for environmental phenomena monitoring and controlling, i.e. forest fires, flood, air pollution,
etc. The diversity of these systems is observed on the application level, while technically
they possess similar subsystems mainly sensor-actuator, information control centre and
communication subsystems. The sensor-actuator subsystem describes the solutions which
measure physical environment events, i.e., temperature, humidity, etc., pre-processing the
collected data and alter the environmental parameters to control particular environmental
phenomena. The information control centre subsystem refers to a subsystem which concerns
with the integration, analysis, storage, and presentation of the information received from the

57

Chapter 3. Review of Existing SEISs

sensors and then generates alarms and control actions via actuators based on the specified
objectives of particular SEIS. The communication subsystem facilitates the interactions within
and between the sensor-actuator subsystem and information control centre subsystem.

From this review, the following set of common functionalities were identified relating
to real-time monitoring and controlling of environmental parameters in the field of interest,
visualization, prediction and control of environmental phenomena. For instance, forest fire
detection systems described in Section 3.2.2, perform real-time monitoring and view fire and
weather conditions of forests, use algorithms and alarms to determine forest-fire risks and
control the propagation of fires. The flood detection systems as described in Section 3.3.2,
collect and analyse relevant meteorological and hydrological data from threatened fields,
graphical display of such information and generation of alerting signals warnings to the
public in case of likelihood of a landslide. The air pollution detection systems described in
Section 3.4.2, perform real-time monitoring of the pollutants, analyse air pollution based on
meteorological data, pollutants and traffic data, visualization of such conditions and issuance
of alerts in dangerous pollution conditions. The landslides detection systems described in
Section 3.5.2, monitor data on soil pore water pressure, earth vibrations, soil movement, etc.,
visualize and analyse the collected data to predict the occurrence of landslides, disseminate
information to public and issue alerts in the likelihood of landslides. Finally, the road traffic
control systems described in Section 3.6.2, perform real-time monitoring and viewing of
vehicle density, detect traffic congestion, control traffic flow through actuators i.e. traffic
signals.

The most critical and common recurring non-functional features include (i) Energy
Efficiency: SEISs involve battery-powered sensors which consume energy during sensing,
processing, communication and in an idle state. Hence the SEISs should be designed to
maximize the lifetime of sensor networks (and (or) sensor nodes). (ii) Interoperability:
The heterogeneity of SEISs can be demonstrated into two different facets in terms of both;
heterogeneous data and network originated from the involvement of various sensor or actuator
nodes [Nithya and Vanamala, 2018, Al-Ali et al., 2010]. Therefore the reference architecture
for SEISs needs to provide a mechanism of unifying heterogeneous data to support the
effortless and seamless integration of different data sources. (iii) Maintainability: SEISs are
required to monitor and control the environmental phenomena autonomously. The operations
of SEISs should be designed in such a way that it does not provide an additional burden of
human involvement especially in extreme conditions of remote or inaccessible sites.

Currently, the existing SEISs are stand-alone solutions and their descriptions resulted
from the application of a lot of different viewpoints and utilizing various architectural styles
or patterns to fulfil specified requirements. For instance, conceptual viewpoint [Ranjini

58

Chapter 3. Review of Existing SEISs

et al., 2011, Zhang et al., 2008, of Arizona et al., 2013], module viewpoint [Jadhav and
Deshmukh, 2012, Alasia, 2013, Hartung et al., 2006, Commission, 1998, Stipanicev et al.,
2018, Sunkpho and Ootamakorn, 2011, Amirebrahimi et al., 2016, Udo and Isong, 2014,
Greenwood et al., 2006, Seal et al., 2012, Lozano et al., 2012, Raju, 2014, Guthi, 2007,
Nguyen et al., 2015, Kotta et al., 2011, Huang et al., 2015, Curiac and Volosencu, 2010,
Zhou et al., 2010, Mirchandani and Head, 2001], execution viewpoint , topology [Jadhav
and Deshmukh, 2012, Zhang et al., 2008], data viewpoint [Ujang et al., 2013]. Nevertheless,
to support maintainability, the module viewpoint was applied in flood risk assessment
system with layering architectural style with four layers, i.e. data, data access, business and
presentation layers [Amirebrahimi et al., 2016]. For dealing with interoperability, a data
viewpoint was applied to construct a unified data view with Key-Value type table architectural
style for the environmental monitoring system was used in [Ujang et al., 2013]. The energy
efficiency of sensor networks has been achieved by the application of topology viewpoint
with network cluster-tree on forest fire detection system [Zhang et al., 2008]. In which
the nodes in the SEISs were organized based on three categories; ordinary bottom nodes,
cluster heads and network coordinators. Despite effective applications of these viewpoints in
constructions of SEISs, there is no clear and standardized understanding of these viewpoints
in modeling SEISs software architectures. Many SEISs use their own native conventions
(or even worse, no particular convention at all). However, it is extremely useful to have
well-defined viewpoints to increase consistency and efficiency in modeling SEISs.

Additionally, this review showed that there is still a technological gap between developed
and developing countries. Since most of the SEISs are deployed in developed countries for
examples forest fire detection systems in Canada [Canada, 2018], Forest Fire Surveillance
System in South Korea [Son and Kim, 2006], flash-flood alerting system in Venezuela
[Castillo-Effen et al., 2004], flood monitoring system in Germany [Jirka et al., 2012], etc.
this implies that the developing countries are still suffering from various environmental
phenomena, i.e. landslides, air pollution, flood, etc. without proper precautions. However,
the advancement of technologies promotes the development of cost-effective SEISs which
can be afforded by developing countries. Despite the fact that some of the presented SEISs
have achieved substantial performance, they possess similar requirements that could be
fulfilled holistically to gain the full benefit of these systems. A robust and holistic reference
architecture for SEISs is still missing. It is therefore vital to have a reference architecture for
SEISs which is associated with established best practices to facilitate the development and
maintenance of SEISs instead of reinventing the wheel.

The results of this review serve as a roadmap in defining the viewpoints required by
SEISs in Chapter 6 and deducing the common stakeholders and their concerns in Chapter 5.

59

Chapter 3. Review of Existing SEISs

Chapter 4 proceeds with the related work on the existing reference architecture around the
domain SEISs to establish theoretical foundations of the proposed reference architecture for
SEISs.

60

Chapter 4

Existing Reference Architectures

The objective of this chapter is to establish theoretical concepts and rationale of facilitating
the development and maintenance of SEISs. This is achieved by describing and analyzing
some of the existing reference architectures within the area of environmental monitoring and
controlling information systems. The previous chapter presented the analysis of the existing
SEISs towards the identification of the common requirements and essential perspectives
required in the description of SEISs. Eventually, related work on the existing reference
architectures is briefly outlined to be used as a reference or basis in developing the reference
architecture for SEISs.

4.1 Introduction

A reference architecture achieves the well-recognized understanding of the specific domain,
promotes the reuse of design expertise and facilitates the development, standardization and
evolution of software systems. A number of reference architectures for various domains
relating to the environmental monitoring applications are found in the literature. However, in
this section, some reference architectures which serve as representatives of the most relevant
reference architectures for SEISs are presented. The amount of research on SEISs is vast,
and the relevant information regarding reference architectures is scattered. Such that the
central theme of reference architectures around the SEISs domain revolves across the sensor
systems, real-time environmental monitoring and early warning systems. In the following
sections, such reference architectures and their potential usage and limitations with regards
to the context of this research will be presented.

61

Chapter 4. Existing Reference Architectures

4.2 Reference Architecture for Sensor Networks Integra-
tion and Management

The reference architecture for Sensor Networks Integration and Management (SeNsIM)
enables the deployment of applications such as environmental monitoring, based on multiple
sensor systems by providing a standardized way to manage, query, and interact with sensors
[Casola et al., 2009]. The SeNsIM provides a general integration platform for heterogeneous
sensor systems by facilitating the; (a) deployment of applications based on multiple sensor
systems/networks and (b) a generic user or a application to access data sensed by a network.
Moreover, the SeNsIM reference architecture ensures scalability since new networks are
easily accommodated or deployed. The architectural model of this reference architecture
utilizes wrapper-mediator paradigm to bridge the gap between heterogeneous sensor systems
and provide a unique mechanism of managing, querying and interacting with those sensor
systems. SeNsIM consists of the mediator component which conceal sensor networks
heterogeneity from end-users or applications using ad hoc connectors (wrappers). The
mediator is responsible for formatting and forwarding user requests to the different networks
as well as organising the information received from the wrapper to satisfy user or application
queries. The wrappers are responsible for translating the incoming queries and forwarding
them to the underlying sensors and then sends to the mediator appropriate description of the
related information based on a common data model.

Figure 4.1: Reference Architecture for SeNsIM figure taken from [Casola et al., 2009]

Figure 4.1 illustrates the SeNsIM reference architecture using a module view with a
layered pattern. SeNsIM reference architecture is decomposed into four logical layers;
Application or User, Mediator, Wrapper and Sensor system layers. The application or
user layer allows a user to send requests and elaborate the retrieved data. Also, a generic
application can access sensor data through the system API. The mediator layer classifies

62

Chapter 4. Existing Reference Architectures

network features, format and forward queries to specific wrappers. This layer is associated
with a DBMS for storing data related to networks with their sensors, user queries and related
results. The wrapper layer extracts and manages information on the underlying network
and its sensors. This layer receives data from the mediator and is executed on the local
system using its API and the local query language. The sensor system layer extracts the
network features and performs the retrieval process. However, this reference architecture
focused only on the integration of heterogeneous sensor systems using a unified data model
and the description of such reference architecture resulted from the application of a module
viewpoint. Therefore this reference architecture does not cover all the essential aspects of
SEISs as specified in Chapter 3.

4.3 Reference Architecture for Early Warning System

The reference architecture for Early Warning System (EWS) demonstrates integrated archi-
tectural designs of early warnings systems like flood, tsunami, and storms [Athanasiadis and
Mitkas, 2004]. The description of such reference architecture includes the system structure,
functional behavior and non-functional requirements.

Figure 4.2: An EWS reference architecture figure taken from [Athanasiadis and Mitkas,
2004]

63

Chapter 4. Existing Reference Architectures

As shown in Figure 4.2, the reference architecture for EWS uses a conceptual view to
describe the main components of EWS. The EWS consists of the following main components;
sensor management, data filtering and fusion, external information systems, observation
information provision, and observation storage. The sensor Management concerns with the
sensor management tasks, i.e. sensor communication, sensor control and dynamic addition
and removal of sensors. The data filtering and fusion are responsible for the processing of
raw sensor data into the output of a monitoring system. The external information systems
supply the necessary auxiliary information for data filtering and data fusion components.
The observation information provision facilitates the communication to external systems and
transforms the output of data fusion/filtering component into the require presentation. The
observation storage is responsible for storing raw and processed data and providing access to
past observations and increases the robustness of the system [Meissena and Fuchs-Kittowskib,
2014]. It is not clear how this reference architecture handles all the functionality, leading
to a rough representation of functional classes. It is also interesting to observe that the
components of information systems are ignored. Moreover, the description of this reference
architecture did not cover all the essential perspectives of SEISs, since only conceptual
viewpoint was applied.

4.4 Distant Early Warning System (DEWS) reference ar-
chitecture

The Distant Early Warning System (DEWS) reference architecture facilitates interoperable
early warning systems based on an open sensor platform [Esbrí et al., 2011]. DEWS gather
process and display events and data collected by open sensor platforms to enable operators
to quickly decide whether an early warning is necessary and to send warning messages to
the authorities and public if desired. This reference architecture is based on service-oriented
architecture (SOA) concepts and relevant standards (OGC, W3C, OASIS) and is independent
such that it can be applied to multiple situations (forest fires, tsunamis, earthquakes, floods,
etc.).

As shown in Figure 4.3, the DEWS reference architecture uses a conceptual view to
describe the main functionalities of DEWS. In which the DEWS reference architecture
follows modular principles of SOA. Typically, the operator works with the Command and
Control User Interface (CCUI). The operator initiates the message composition process
during the issuance of an early warning. The Information Logistics Component (ILC)
generates simple warning messages for each user that must receive the message. User profiles

64

Chapter 4. Existing Reference Architectures

are usually stored in a separate database which is associated with various parameters for
registered users, i.e., language settings, exciting areas, dissemination channels and other
settings, which enable personalization of the warning messages to be disseminated. The
generated messages are transmitted to the Information Dissemination Component (IDC)
converts the messages into channel specific which formats and propagates the messages.
Other components like the sensor platform, the simulation and the map servers are connected
via standardized OGC services. This reference architecture relies on the application of
conceptual viewpoint only, hence other perspectives of SEISs were uncovered.

TV

RSS

FAX

SMS

EMAIL

Operator

OGC Services

User Profile
Database

Map
ServerSimulationSensor

Network

Information
Dissemination

Information
LogisticCCUI

Figure 4.3: DEWS reference architecture from [Esbrí et al., 2011]

4.5 Reference Architecture for Real-time environmental mon-
itoring, early warning and decision support systems
(EMEWD)

The reference architecture for Real-time environmental monitoring, early warning and
decision support systems (EMEWD) facilitates the development of large-scale environmental
monitoring, early warning and decision support systems [Balis et al., 2017]. Such reference

65

Chapter 4. Existing Reference Architectures

architecture is associated with the distinction between operational data needed for ongoing
assessment and decision-making, and archive data for research and analytical purposes.

Figure 4.4: Reference Architecture for EMEWD figure taken from [Balis et al., 2017]

Figure 4.4 depicts a reference architecture for EMEWD using a conceptual view with the
focus on the data management system. The data management system handles the stream of
time series data collected from the environmental sensors and allows multiple users to invoke
queries through computing services offered by a decision support system. The storage system
is divided into an operational database for storing recent data and handling real-time analysis
scenarios, and an analytical database for storing archival data. These databases are accessed
using a unified programmer’s interface (API). This design of databases is crucial for handling
the increases sensor measurement frequency, and user queries during the crisis events. This
reference architecture lacks guidelines definition for its use and instantiation and ignores
other perspectives that required in the description of SEISs, i.e. important architecture views
such as execution and topology views were not defined.

4.6 Internet of Things (IoT) Reference Architecture

The IoT reference architecture is designed as a reference for the generation of compliant IoT
concrete architectures based on the specific needs [Bauer et al., 2013]. The IoT reference
architecture has been kept rather abstract in order to enable the construction of many,
potentially different, IoT architectures. This reference architecture is made up of the following
views; functional, information, deployment and operational views.

66

Chapter 4. Existing Reference Architectures

The functional view describes the functional components of IoT systems by first mapping
the IoT unified requirements to the different Functionality Groups of the IoT Functional
Model. Then clusters of requirements of similar functionality are formed and a Functional
Component for these requirements defined. Afterwards, the Functional Components are
refined after discussion with the technical work packages. Figure 4.5 depicts the Functional
View diagram and shows the nine functional groups of the Functional Model. Such functional
groups include; Application, Device, Management, Security, IoT Process Management,
Service Organisation, Virtual Entity, IoT Service and Communication. The Management
functional group describes the management activities of IoT systems, i.e. configurations,
fault, reporting, etc.. The Security functional group concerned with ensuring the security
and privacy of IoT-A-compliant systems. The IoT Process Management functional group
provides the functional concepts and interfaces necessary to augment traditional (business)
processes with the idiosyncrasies of the IoT world. The Service Organisation functional
group composes and orchestrates Services of different levels of abstraction and hence acts as
a communication hub between several other Functional Groups. The Virtual Entity functional
group describes functions for interacting with the IoT System on the basis of virtual entities,
and functionalities for discovering and looking up services that can provide information about
virtual entities, or which allow the interaction with virtual entities. The IoT Service functional
group describes IoT services and functionalities for discovery, look-up, and name resolution
of IoT Services. The Communication functional group models the variety of interaction
schemes derived from the many technologies belonging to IoT systems and providing a
common interface to the IoT Service functional group.

The information view describes how the information to be represented in IoT is defined,
structured, stored, manipulated, managed and exchanged through the system by facilitating
the generations of static information structure and dynamic information flow. The current
version of the information view focuses on the description, handling and life cycle of the
information and flow of information through the system and the components involved. Such
that the view for modeling the types of virtual entities is provided in more details. The virtual
entity is the core element of any IoT system since it models the physical entity or the "Thing"
that is the real element of interest. The virtual entity has an identifier (ID), an entityType and a
number of attributes for more description of the entity and how it can be used. The modeling
of an entityType is of great importance since it determines the attributes that a virtual entity
instance can possess by defining its semantics. The IoT services handle the information in
the system by providing access to On-Device Resources, e.g. sensor resources which make
real-time information about the physical world accessible to the system. Furthermore, other

67

Chapter 4. Existing Reference Architectures

IoT services may derive additional higher-level information by processing and aggregating
the information provided by IoT services or resources.

Figure 4.5: Functional View of IoT Reference Architecture figure taken from [Bauer et al.,
2013]

The deployment and operation view describes how the IoT system can be realized by
selecting technologies and making them communicate and operate in a comprehensive way.
The main intention of this view is to provide users of the IoT Reference Models with a set
of guidelines for different design choices for designing the actual implementation of their
services. The deployment and operation view discusses how to proceed with designing of
IoT system from the service description and identification of different functional elements
to the selection of technologies in building up the overall networking behaviour for the
deployment. As shown in Figure 4.5, Devices, Resource and Services highlighted in red, blue
and yellow, are considered as the main elements of the IoT Domain model which possess
different deployment concern. The devices in IoT systems are ranging from the simplest
of the radiofrequency tags to the most complex servers. Every device is smart even though
with different processing capabilities and connected with one another forming part of IoT.

68

Chapter 4. Existing Reference Architectures

These devices must respect the functionality definitions of the functional model to be fully
interoperable in IoT-A compliant system.

The computational complexity for a given device is selected based on the nature of the
target application. However, the selection of connectivity types is not direct since different
choices offer comparable advantages in different areas and associated with the extraction of
communication protocols. Some of the typical technologies in IoT systems include sensor-
actuator networks, RFID and smart tags, Wifi, cellular networks, etc.. Then the system
designer has to describe where to deploy services and resources as defined in the IoT Service
functional group section, i.e. on smart objects, gateways, in the clouds, etc.. This selection
has to be made per type of resource and service and depending on the related device. It
is also important for the designer to select where to store the information collected by the
system, let the sensor networks or users gather the data. The storage choices should take into
consideration the sensitiveness, the needed data availability and the degree of redundancy
needed for data resiliency, some of the storage options include local only, web only and Local
with web cache. Eventually, the designer should choose where to deploy virtual entities,
there are two main options; (1) Internal deployment in which the core engine is installed
on a server belonging to the system deployment and is dedicated to the target application
or shared between different applications of the same provider. (2) External usage in which
the core engine is provided by a third party and the system designer has to drive the service
development on the third party APIs.

The IoT reference architecture is too abstract and encompasses a wide range of applica-
tions and technologies covering various domains such as healthcare, energy management,
environmental monitoring, transportation, or any other innovative applications. Hence it can
not be easily used as a blueprint for SEISs concrete architecture.

4.7 Industrial Internet Reference Architecture (IIRA)

The Industrial Internet Reference Architecture (IIRA) is a standards-based open architecture
that guides the development, documentation and communication about Industrial Internet
of Things (IIoT) systems [Lin et al., 2017]. The architecture description of IIRA and
representations are generic and at a high level of abstraction for supporting broad industry
applicability. The IIRA extracts and abstracts common characteristics, features and patterns
from use cases defined in the Industrial Internet Consortium and elsewhere. The Industrial
Internet Architecture Framework (IIAF) is at the foundation of the IIRA which adopts the
general concepts and constructs in the ISO/IEC/IEEE 42010:2011 architecture specification,

69

Chapter 4. Existing Reference Architectures

specifically, concern, stakeholder and viewpoint as its architecture frame, and views and
models as its architecture representation in describing and analyzing on important common
architecture concerns for IIoT systems. The IIRA consists of four viewpoints; business,
usage, functional and implementation.

The business viewpoint addresses the business-oriented concerns of business decision-
makers, product managers and system engineers that are relating to business value, expected
a return on investment, cost of maintenance and product liability in establishing an IIoT
system in its business and regulatory context [Lin et al., 2017]. Some essential concepts
and relationships between them have been introduced and defined to identify, evaluate and
address the stated business concerns as well as mapping to fundamental system capabilities
as shown in Figure 4.6. Such a description of the business viewpoint is expressed in terms
of a vision and value-driven model. In which the relationship between stakeholders, vision,
values, key objectives and fundamental capabilities. Stakeholders are identified as a major
stake in the business who drive the conception and development of IIoT systems in an
organization, from business decision makers to technical people. Such stakeholders usually
develop and present an organization’s vision which describes a future state of an organization
or an industry. Values reflect how the vision may be perceived by the stakeholders who
will fund the implementation of the new system and users of the resulting system. Key
objectives are developed by senior business and technical leaders to establish the business
outcomes expected of the resultant system in the context of delivering the values. From these
key objectives, the stakeholders derive the fundamental capabilities that are required for the
system to complete specific major business tasks.

The usage viewpoint addresses the concerns of system engineers, product managers
and the other stakeholders including the individuals who are involved in the specification
of the IIoT system. The usage viewpoint concerned with how an IIoT system realizes the
key capabilities identified in the business viewpoint. The main concerns handled in this
viewpoint pertain the expected system usage which is represented as sequences of activities
involving human or logical (e.g. system or system components) users that deliver its intended
functionality in ultimately achieving its fundamental system capabilities. Such activities
describe how the system is used to serve as an input for system requirements, guide the
design, implementation, deployment, operations and evolution of the IIoT system. The role,
party, activity and task are identified as the usage viewpoint’s main concepts. Figure 4.7
depicts the usage viewpoint’s main concepts and how they relate to each other. The task is
considered as the basic unit of work, i.e. invocation of operation, transfer of data or an action
of a party. A task is carried out by a party assuming a role.

70

Chapter 4. Existing Reference Architectures

Figure 4.6: A Vision and Value-Driven Model figure taken from [Lin et al., 2017]

Figure 4.7: Usage Viewpoint’s main concepts and how they relate to each other figure taken
from [Lin et al., 2017]

The functional viewpoint handles the concerns of architects, developers and integrators
pertaining the functional components in an IIoT system, their structure and interrelation,

71

Chapter 4. Existing Reference Architectures

the interfaces and interactions between them, and the relationships and interactions of the
system with external elements in the environment, to support the usages and activities of
the overall system. In the functional viewpoint, the functionalities of the IIoT system are
decomposed in five functional domains; control, operations, information, application and
business as shown in Figure 4.8. In which the data and control flow between functional
domains are illustrated to demonstrate how these functional domains relate to each other.
Green, red and other horizontal arrows show how data flows circulate across domains, across
domains and processing taking place within each domain respectively. The control domain
constitutes the collection of functions that are performed by industrial control systems, i.e.
reading data from sensors, exercising control over the physical system through actuators,
etc.. The operations domain encompasses set of functions responsible for the provisioning,
management, monitoring and optimization of the systems in the control domain. The
information domain consists of a set of functions for gathering data from various domains
mainly the control domain, and transforming, persisting, and modeling or analyzing those
data to acquire high-level intelligence about the overall system. The application domain
constitutes the collection of functions for implementing application logic that realizes specific
business functionalities. The business domain consists of set of functions that enable end-
to-end operations of the IIoT systems by integrating them with traditional or new types
of IIoT systems specific business functions including those supporting business processes
and procedural activities, e.g. Enterprise Resource Planning (ERP), Customer Relationship
Management (CRM), Product Lifecycle Management (PLM), etc..

The implementation viewpoint deals with the concerns of architects, developers, inte-
grators and system operators pertaining to the technologies needed to implement functional
components (functional viewpoint), their communication schemes and their life-cycle proce-
dures. These elements are coordinated by activities from the usage viewpoint and supportive
of the system capabilities including cost and go-to-market time constraints, relevant regu-
lation, etc. from the business viewpoint. The implementation viewpoint describes the IIoT
system structure and the distribution of components, and the topology by which they are
interconnected; technical description of such IIoT system components, including interfaces,
protocols, behaviors and other properties; an implementation map of the activities identified
in the usage viewpoint to the functional components, and from functional components to the
implementation components.

The IIRA covers a wide range of applications and technologies of various domains such
as manufacturing, transportation, healthcare, environmental monitoring, etc.. Hence it can
not be easily used as a blueprint for SEISs concrete architectures.

72

Chapter 4. Existing Reference Architectures

Figure 4.8: Functional Domains of Functional Viewpoint figure taken from [Lin et al., 2017]

4.8 Summary

This chapter proceeds with the related work which focuses on the existing reference archi-
tectures in the SEISs domain. Overall, most of the existing approaches attempt to propose
reference architectures for facilitating the construction of new environmental monitoring,
controlling and early warning systems. However, most of these approaches are; (i) focused in
sub-domain applications rather than a whole domain, for example, the reference architecture
for EWS focus on the flood, tsunami, and storms as described in Section 4.3. (ii) targeting

73

Chapter 4. Existing Reference Architectures

significant but specific needs of a particular subsystem, i.e. integration of heterogeneous
sensor systems and data management as described by the reference architecture for SeNsIM
in Section 4.2 and reference architecture for EMEWD in Section 4.5 respectively rather than
dealing with the requirements of all the involved subsystems. (iii) expressed using a single
architecture view rather than multi-views causing other essential perspectives of SEISs not
to be covered. For instance, the reference architecture for SeNsIM used a module view, a
reference architecture for EWS, reference architecture for DEWS and reference architecture
for EMEWD used conceptual views. Multiple software architecture views are crucial in
the description of SEISs as described in Chapter 3 due to the involvement of diverse set of
stakeholders, i.e. users, developers, testers, maintainers, etc. with various concerns. These
stakeholders need to understand and use the software architecture description from their
respective views. Despite the use of multiple views in IoT reference architecture and IIRA
as described in Section 4.6 and Section 4.7 respectively, these reference architectures are
too abstract and encompass a wide range of applications and technologies covering various
domains which make it too difficult to be used in the construction of concrete SEISs.

In contrast to the reviewed approaches, a reference architecture covering the SEISs domain
as a whole is highly required to facilitate the rapid development and maintenance of SEISs.
Nevertheless, it is clear that a reference architecture for SEISs must take into account existing
initiatives and emerging standards for effective environmental monitoring and controlling.
This research is supposed to have a strong influence on the elaboration of a useful and
practical reference architecture with substantial impacts in both functional and non-functional
requirements of SEISs. As a result, this thesis defines a set of viewpoints that is required
in describing the essential aspects of SEISs in Chapter 6, proposes a reference architecture
for SEISs and presents its description in Part III and demonstrates the applicability of such
reference architecture in creation of new concrete SEISs i.e. forest fire detection system in
Chapter 8 and mapping of the existing SEISs in Chapter 9.

74

Part III

Approach: Reference Architecture for
SEISs (RefSEISs)

75

Part III. Approach

This part presents the core ideas behind this thesis, i.e. the development of the viewpoints
and reference architecture for SEISs. First, the set of viewpoints that is required to describe
essential aspects of SEISs are defined in Chapter 6. Then the established set of viewpoint
is applied in the construction of the RefSEISs. The description of the RefSEISs follows
ISO/IEC/IEEE 42010:2011 [ISO/IEC/IEEE, 2011] which starts with an identification of
stakeholders and their concerns in Chapter 5. Followed by the derivation of requirements of
the RefSEISs. Then the architecture views of the RefSEISs are created using the established
set of viewpoints and their corresponding architecture models while encompassing best
practices of the existing SEISs (design decisions) in Chapter 7.

77

Chapter 5

RefSEISs Requirements Establishment

The literature has revealed that a common understanding of how to design SEISs is therefore
required to address the problem described in Section 1.1. This is achieved through the
development of a reference architecture for SEISs (RefSEISs). As described in Section 2.2,
the use of reference architecture allows systematic reuse of knowledge and elements when
developing concrete software architectures in a particular domain. Therefore a reference
architecture for SEISs would facilitate the development and maintenance of such systems.
According to Definition 2.5, reference architectures are regarded as abstract architectures
that encompass experiences and knowledge in a given application domain to facilitate and
guide the development, evolution and interoperability of software systems in such domain.
This definition has been introduced in Chapter 2 and will be used throughout this work.

The architectural description of the RefSEISs contains information about the fundamental
architectural constructs which specifies stakeholders, concerns, viewpoints, views, corre-
sponding rules and conditions of applicability. Architects can reuse such prescribed archi-
tecture description to identify stakeholders and concerns of the system-of-interests and can
further employ the specified architectural representations to clarify, analyze and frame up the
identified concerns. Chapter 2 introduced concepts of software architecture from a forward
engineering approach while adopting ISO/IEC/IEEE 42010:2011 Standard- Recommended
Practice for Architectural Description of Software-Intensive Systems [ISO/IEC/IEEE, 2011].
The ISO/IEC/IEEE 42010 standard is adopted to prescribes the crucial steps in designing
software architecture as explained in Section 2.3.1. In the beginning, stakeholders and their
concerns should be identified. Hence this chapter demonstrates the establishment of the
requirements of RefSEISs which includes the identification of both stakeholders, their con-
cerns and architectural requirements. Then viewpoints are defined to address the identified
concerns of stakeholders in Chapter 6. Afterwards, the reference architecture views that
conform to the defined viewpoints will be described in Chapter 7.

79

Chapter 5. RefSEISs Requirements Establishment

5.1 Stakeholders and their concerns

Stakeholders and their concerns are essential elements in the description of software ar-
chitectures as described in Section 2.3.1. According to Definition 2.6, stakeholders are
considered as individuals, team or organization with interests in or concerns relative to a
system. Stakeholders are key players of the successful SEISs and possess a strong influence
in the evolution of such systems. These stakeholders include both technical and non-technical
people who drive the conception and development of SEISs. Each stakeholder has interests
and concerns that need to be addressed. Multiple stakeholders are involved in SEISs. With a
Definition 2.7, a concern involves any influence on a system in its environment including
developmental, technological, business, operational, organizational, political, regulatory, or
social influences [ISO/IEC/IEEE, 2011]. Hence the concerns of stakeholders should cover
all the essential things that an architect must consider while envisioning the system. This
section elaborates on various stakeholders, their roles and concerns in SEISs. The method
used in such identification is purely based on literature reviews, i.e. SEISs document analysis
as described in Chapter 3.

Development
Experts

Operators

Users

Acquirers

SEISs

Figure 5.1: Stakeholders of SEISs

Following the extensive literature reviews on concrete SEISs in Chapter 3, four classes of
stakeholders of SEISs are derived as illustrated in Figure 5.1. This framework of stakeholders
consists of one central circle representing the domain (SEISs) which is surrounded by some

80

Chapter 5. RefSEISs Requirements Establishment

actors, and each actor represents a group of stakeholders, i.e. system acquirers, maintainers,
users, and development experts.

Acquirers are the owners or proprietor of SEISs. The SEISs may be provided by various
groups of stakeholders: the government agencies, academic and research institutes and
Non-Governmental Organisations (NGOs). Some examples of acquirers in the context
of SEISs include wild-land fire researchers, government and national authorities as
described in Section 3.2.1, regional planning agency, local disaster management agency,
environmental offices, a regional parliament and health department as presented in
Section 3.3.1. Protection of lives of the people, safeguarding properties and the
environment are critical roles of the acquirers mainly the government. This could be
achieved through environmental monitoring systems mainly SEISs which monitor the
likelihood of environmental phenomena or calamity and plan for mitigation procedures
to minimize the impacts of those environmental phenomena. The academics and
research institutes include all people who are involved in training people and finding
new solutions in preventing or reducing consequences that could be imposed by the
occurrence of various environmental phenomena.

These stakeholders initiate, develop, manage and maintain the whole SEISs projects.
Therefore they are concerns with constructing discussions and managing agreements
with other stakeholders, allocating and coordinating resources, i.e. materials, finances
etc. throughout the life cycle of the project with the intent of achieving specified
objectives such as time, costs and other requirements. They initiate the system by
specifying the needs of the system to be realized by an architecture. These stakeholders
concern with tracing the requirements, system development benefits, risks, schedule,
and budget. They need to assess the effectiveness of the capabilities of the solution.
They are interested to know:

• What is the general idea on the functionality of a SEIS? Acquirers would like to
have a big picture of how everything fit together in providing the functionalities
of SEISs.

• Is the proposed SEIS economic, operational and technically feasible? These
stakeholders would like to know how practicable to build the SEISs in-terms of
building and operational costs as well as technical. They are interested to assess
the costs and benefits.

• Are the functional and non-functional requirements of SEIS fulfilled? After
having a big picture of the system, these stakeholders would like to know how
these functional and non-functional requirements are fulfilled.

81

Chapter 5. RefSEISs Requirements Establishment

Development Experts refer to technical people from both private companies, individuals
or academic research staff responsible for designing, coding, integrating, testing and
maintaining SEISs mainly developers, testers, integrators, system engineers, maintain-
ers, and architects as described in Section 3.2.1, Section 3.3.1, Section 3.4.1, Section
3.5.1 and Section 3.6.1. These are experts that could design new services of the sys-
tem, improve or customize the system based on the requirements of the organization.
Therefore it is crucial for them to understand the internal structure of the system to
realize components of the systems and their relations as well as identifying parts which
could be re-used.

These stakeholders are responsible for the actual development and maintenance of
SEISs. They are concerns with data modeling and access mechanisms, development,
code management and organization, effective topology configurations of field nodes,
installation of the system on site, diagnosis of faults and failures, replacement or
addition of system elements etc. Concerns that development experts desire to know
include:

• How is the SEIS technically realized? Developments experts need to know how
the SEIS can be realized, i.e. from the collection of inputs from stakeholders,
clarifications of those inputs, conversion of those inputs to technical requirements
to be fulfilled by the system.

• How is the SEIS is decomposed? Development experts would like to know how
the system is decomposed. Since the system is supposed to be decomposed into
software modules or elements to reduce complexity before it is realized.

• What are the components of the systems and their relations? Development experts
would like to know the main components of SEISs and their relations which are
responsible for fulfilling the specified requirements of SEISs.

• How are the identified components of the SEIS distributed among processing
nodes at runtime? After the identification of the main components of the SEIS.
The development experts would like to know how the identified components of
the SEIS are distributed among processing nodes at runtime. This is important
for daily operations and maintenance of the system.

• How are the SEIS software components, distributed in different processing nodes,
and do they interact at runtime? It is also important for developing experts
to know how the identified SEISs software components that are distributed in
different processing nodes communicate or interact with each other.

82

Chapter 5. RefSEISs Requirements Establishment

• How to distribute the nodes within the specified field to achieve the best range
and coverage from the sensors? To achieve the desired objective of the SEIS,
it is important for the development experts to know how the nodes of SEIS are
supposed to be distributed to achieve the best range and coverage.

• How is the SEIS integrated? Development experts are interested in the SEIS
integration for improving productivity and efficiency by ensuring subsystems
function together as a system.

• How are the functionalities of the SEIS fulfilled? Development experts are
interested to know how the functionalities of SEIS are technically realized.

• How is data created, accessed, updated and stored in the system? Development
experts are interested to know how data is created, accessed, updated and stored in
the system in order to ensure effective management, maintenance and processing
of data stored in databases.

• How easy to change the SEIS to correct faults, improve performance, or other
attributes, or adapt to a changing environment? for effective maintenance of the
SEIS, the development experts would like to know how easy to change the SEIS
to correct faults, improve performance, or other attributes or adapt to a changing
environment.

• How can the system can be optimized to meet the specified requirements effec-
tively? Development experts are interested in how the specified requirements
can be optimized for successful implementation of the SEIS functionality in a
cost-effective manner.

• How are the non-functional requirements supported? Development experts would
like to know how the crucial non-functional requirements such as maintainability,
energy efficiency and interoperability are fulfilled.

Operators include individuals or organizations which are responsible for providing service
or product using skills, procedures and knowledge in performing functions of the
system. The operators possess different roles in supporting the daily activities of SEISs
(SEISs during the operational time) from primary operators of the system, i.e. the
field operators, and administrators as described in Section 3.2.1, Section 3.3.1, Section
3.4.1, Section 3.5.1 and Section 3.6.1.

The operators are interested in managing and ensuring the fulfilment of the services
offered by SEISs to discover, prevent and reduce the consequences of certain en-
vironmental phenomena. Hence they are concerns with the daily operations of the

83

Chapter 5. RefSEISs Requirements Establishment

system, diagnosis of faults and failures, replacement or addition of system elements
with minimal impacts on the operations of SEISs. These stakeholders are interested to
know:

• How is the SEIS decomposed? In order to manage SEISs, Operators would like
to know how the system is decomposed.

• What are the components of the systems and their relations? Operators would
like to know the main components of SEISs and their relations that fulfils the
specified requirements of SEISs.

• How are the identified components of the SEIS distributed among processing
nodes at runtime? After the identification of the main components of the SEIS.
The operators would like to know how the identified components of the SEIS are
distributed among processing nodes at runtime or implemented. This is important
for daily operations and maintenance of the system.

• How are the SEIS software components, distributed in different processing nodes,
and do they interact at runtime? It is also important for operators to know how the
identified SEISs software components that are distributed in different processing
nodes communicate or interact with each other.

• How is the SEIS integrated? Operators are interested in the SEIS integration for
improving productivity and efficiency by ensuring subsystems function together
as a system.

• How are the functionalities of the SEIS fulfilled? Operators are interested to
know how the functionalities of SEIS are technically realized.

• How is data created, accessed, updated and stored in the system? Operators are
interested to know how data is created, accessed, updated and stored in the system
in order to ensure effective management, maintenance and processing of data
stored in databases.

• How easy to change the SEIS to correct faults, improve performance, or other
attributes, or adapt to a changing environment? for effective maintenance and
optimization of the SEIS, the operators would like to know how easy to change
the SEIS to correct faults, improve performance, or other attributes or adapt to a
changing environment.

• How are the non-functional requirements supported? Operators would like to
know how the crucial non-functional requirements such as maintainability, energy
efficiency and interoperability are fulfilled.

84

Chapter 5. RefSEISs Requirements Establishment

Users of the SEISs refer to individuals or organizations which possess different roles of the
system, e.g. the organization’s staff and also citizens (people) who require timely and
high-quality environmental information to be empowered through the knowledge of
environmental conditions to act upon that knowledge. This information needs to be
understandable and easy-to-access [Peinel et al., 2000]. Some examples of users in
the context of SEISs include police as described in Section 3.3.1 and Section 3.5.1,
residents as presented in Section 3.2.1, Section 3.3.1, Section 3.4.1 and Section 3.6.1.

The users are interested in the functionalities such as (1) Accessing sensors measure-
ments and their manipulation based on demands. (2) Viewing Maps for locations. (3)
Estimation and visualization of environmental phenomena propagation e.g. estimation
of fire, air pollution, landslides, etc. propagation. (4) Getting visual and acoustic
alarms in case of environmental phenomena. End users are usually interested with
easy-access, error-less data processing and intuitive interactions of software [Schmidt,
2013]. Since the SEIS is intended to be used as an assistive tool for these stakeholders,
hence SEIS is supposed to be reliable, and user-friendly to achieve the maximum
benefit of these systems. Hence, users desire to know:

• What is the general idea on the functionality of a SEIS? Users would like to know
how everything fit together in SEISs while providing their functionalities.

• Is the proposed SEIS easy to use, is it easy for users to find their way through
different parts of SEISs.

Summary of the concerns

More specifically, this thesis addresses the following concerns which have been summarized
from the previous section;

• C1: What is the general idea on the functionality of a SEIS?

• C2: Is the proposed SEIS economic, operational and technically feasible?

• C3: How is the SEIS technically realized?

• C4: How are the functionalities of SEIS fulfilled?

• C5: What are the components of SEISs and their relations?

• C6: How is the SEIS decomposed?

85

Chapter 5. RefSEISs Requirements Establishment

• C7: How to distribute the nodes within the specified field to achieve the best range
and coverage from the sensors?

• C8: How is SEIS integrated?

• C9: How is data created, accessed, updated and stored in the SEIS?

• C10: What are communication mechanisms and protocols of SEISs?

• C11: How are the identified components of SEISs distributed among processing nodes
at runtime?

• C12: How are the SEIS software components, distributed in different processing nodes,
and do they interact at runtime?

• C13: How are the identified components of SEISs implemented?

• C14: How are the non-functional requirements supported?

A careful examination of these concerns of stakeholders indicates that some identified
concerns are possessed by multiple stakeholders, for example; both acquirers and users have
a concern on (C1) What is the general idea of functionality of SEIS. Also, these concerns
tend to be intertwining and covering the full development life-cycle of the SEISs for instance;
(C1) What is the general idea of functionality of SEIS? belongs to SEIS planning, (C2) Is
the proposed SEIS economic, operational and technically feasible? belongs to analysis, (C3)
How are the functionalities of SEIS fulfilled? belongs to design, (C10) How the identified
components of SEISs are implemented? belongs to implementation, (C7) How is SEIS
integrated? belongs to testing and integration. This requires various architectural viewpoints
to facilitate systematic fulfilment and evaluation of those concerns as defined in Chapter 6.

5.2 RefSEISs Requirements Analysis

This section describes functional and non-functional requirements that should be fulfilled by
the RefSEISs. Such requirements are derived from both the existing SEISs as described in
Chapter 3 and general requirements of reference architectures as presented in Section 2.2.2.

5.2.1 Functional Requirements

The reference architecture functional requirements refer to the set of requirements of a refer-
ence architecture that describes the common functionalities of a system domain [Nakagawa

86

Chapter 5. RefSEISs Requirements Establishment

et al., 2014]. The extraction of SEISs from the literature in Chapter 3 is associated with the
identification of functional requirements. Such functional requirements are deduced from
Section 3.2.2, Section 3.3.2, Section 3.4.2, Section 3.5.2, and Section 3.6.2. Each architec-
tural requirement of a reference architecture could be instantiated into one or more system
requirements during the design of concrete architectures from the reference architecture
[Gamma et al., 1994]. The extraction of SEISs from the literature in Chapter 3 is associated
with the identification of functional requirements. Such requirements include:

FN1 Data Acquisition: The reference architecture must allow the development of SEIS
that can acquire data (environmental parameters) in both non-real-time and real-time
from sensors spread over the field of interest. Such environmental parameters include
temperature, light, and humidity as described in [Sha et al., 2006], water conditions
[Sunkpho and Ootamakorn, 2011], dust concentrations, and gases [Ustad et al., 2014],
soil pore water pressure, vibrations of the earth, and soil movement [Nguyen et al.,
2015], vehicle density [George et al., 2017], etc.

FN2 Storage: The reference architecture must support the development of SEISs that able
to store the collected data for further processing such as data storage and detector store
as presented in [Castillo-Effen et al., 2004, Zheng et al., 2016] and [Ranjini et al.,
2011] respectively.

FN3 Phenomena Analysis: The reference architecture must allow the development of
SEIS that can establish analysis models i.e. Canadian Forest Fire Weather Index
(FWI) model [Canada, 2018] on the processed information to gain an understanding
of the environmental phenomena of interest, predict the possible occurrence of such
environmental phenomena such as forest fires [Hartung et al., 2006], air pollution
[Zheng et al., 2016], flood detection [Chowdhury, 2005], etc. and issue an alert in case
of high probability of occurrence of such environmental phenomena.

FN4 Visualization: The reference architecture must enable the development of SEIS that is
capable of visualizing collected environmental parameters, predictions and propagation
of environmental phenomena, e.g. displaying propagation of fires [Hefeeda and
Bagheri, 2009], landslides [Ramesh, 2014], flood forecasting [Chowdhury, 2005], etc.

FN5 Phenomena Control: The reference architecture should support the development of
SEIS that can manipulate environmental parameters to control environmental phenom-
ena in the field of interest. This includes the use of adaptive traffic control system
which considers various traffic factors, i.e. traffic volume, vehicle density and waiting
time to adjust both the sequence and length of traffic lights based on the collected

87

Chapter 5. RefSEISs Requirements Establishment

traffic information in real time traffic lights in controlling traffic flow [Zhou et al., 2010,
2011].

FN6 Sensor Management: The reference architecture should enable the development of
SEIS that can coordinate, monitor and control sensors spread over the field of interest.

FN7 Actuator Management: The reference architecture should enable the development
of SEIS that can coordinate, monitor and control actuators spread over the field of
interest.

5.2.2 Non-Functional Requirements

Apart from functional requirements, the design of the reference architecture is primarily
driven by important non-functional requirements. Non-functional requirements are some-
times referred to quality attributes, as measurable or testable properties of a system which
indicate how well the system satisfies the concerns of its stakeholders [Bass et al., 2012].
Non-functional requirements judge the operation of a system, rather than specific behaviours.
Architectures provide the foundation for the achievement of the qualities of a system rather
than achieving the qualities by themselves. Hence, non-functional requirements need to
be explicitly considered throughout the system development life-cycle starting from the
designing phase. In this thesis, the non-functional requirements of RefSEISs incorporate the
requirements in two-levels; domain and reference architecture levels.

Non-Functional Requirements of RefSEISs on the domain level

At the domain level, the most recurring non-functional requirements of SEISs as deduced
from Section 3.2.4, Section 3.3.4, Section 3.4.4, Section 3.5.4, and Section 3.6.4 include
energy efficiency, interoperability [Degrossi et al., 2013, Samadzadegan et al., 2013, Kung
et al., 2006, Asensio et al., 2015] and maintainability [Kumar and Kishore, 2017, Samadzade-
gan et al., 2013, Hass et al., 2009, George et al., 2017]. These requirements are considered
as paramount, essential non-functional requirements which need special attention to be
considered explicitly during the designing phase of a SEIS. Therefore the proposed RefSEISs
should be able to support such requirements as described below.

NFN1 Energy Efficiency

SEISs consists of sensor nodes with scarce resources (bandwidth, energy source,
sensing range, and processing capability) [Mekkaoui and Rahmoun, 2011, Aslan
et al., 2012, Marin Perez et al., 2012, Khedo et al., 2010, Nguyen et al., 2015]. The

88

Chapter 5. RefSEISs Requirements Establishment

SEIS is supposed to ensure that the intended objectives of the system are fulfilled
regardless of possession of sensors nodes with limited resources, i.e. battery. And
the deployment area is usually isolated, remotely and very large with thousands of
sensor nodes hence the recharge and replacement of batteries is infeasible, costly and
impractical. Therefore the SEIS should consume energy very efficiently.

The development of energy efficient SEISs is among the critical challenges for the
researchers in this domain. The involved battery-powered sensors consume power
during sensing, processing, communication and in an idle state. It is required to check
the energy level of sensor nodes of SEISs mainly during the designing phase before
the deployment to avoid incorrect sensor readings by predicting in advance the energy
depletion rate of each sensor nodes [Tolle et al., 2005]. This will reduce the earlier
failure of the SEISs. The energy consumption of SEISs should be balanced on sensor
nodes to maximize the lifetime of sensor networks. Since a large amount of energy
is consumed during the communication [Mekkaoui and Rahmoun, 2011], then the
employment of suitable routing communication mechanisms should be considered
throughout the designing phase to prevent or reduce energy consumption. Therefore
the reference architecture must enable the development of energy efficient SEIS.

NFN2 Maintainability

SEISs are required to monitor and control the environmental phenomena autonomously.
The operation of SEIS should be designed in such a way that it does do not provide an
additional burden of human involvement especially in extreme conditions of remote
or inaccessible sites, i,e, forests [Aslan et al., 2012, Liyang et al., 2005], water bodies
[Marin Perez et al., 2012], soil [Nguyen et al., 2015], etc. In this context, maintainabil-
ity is one of the crucial design challenges of SEISs to ensure the long-term success of
the software system. Maintainability refers to the ability of the system to accommodate
new or change requirements with a degree of ease. In general, maintainability is the
capability of the software product to be modified [ISO/IEC, 2001]. This includes the
addition or manipulation of functionalities, fixation of errors and fulfilment of new
raised requirements to meet the demands of the business.

Since it is found that the maintenance phase consumes a large part of a system costs
such as between 50 to 80 per cent of the system total costs [Lientz and Swanson,
1980]. Therefore the reference architecture for SEISs must enable the development of
SEISs that is easily maintainable SEIS. Such that the resulted SEIS possess the ability
to be easily configurable, add, repair and remove both functionalities and (/or) other
architectural elements such as new stations, more sensors, actuators or adding mobile

89

Chapter 5. RefSEISs Requirements Establishment

phone numbers to deliver alerts with the purpose of fixing the problem, improvement
of system performance or adaption of the needs of various applications.

NFN3 Interoperability

The increased availability and robustness of sensors, the wide-spread use of the internet
as a communication environment, as well as intensified research in the area SEISs led
to interoperability challenges. Interoperability is the ability of two or more systems
or components to exchange data and use information [van der Veer and Wiles, 2008].
Since SEISs involve a collection of heterogeneous sensors which operate on different,
proprietary hardware platforms and contain multifaceted types of sensor nodes to
capture environmental phenomena which cause interoperability problems [Marin Perez
et al., 2012, Kung et al., 2006, Asensio et al., 2015]. Such heterogeneity of sensor
nodes is demonstrated into two different facets in terms of both; heterogeneous data
and network. The heterogeneous networks are demonstrated when multiple sensors
with different protocols form a network. This makes communication between those
sensors to be difficult. The heterogeneous data resulted from the involvement of a
wide range of parameters originated from various sensors required to estimate or
creating a particular dataset. As a result, the integration of multiple sensors into the
sensor networks becomes difficult. Also, most systems tend to incorporate the sensor
resources through proprietary mechanisms rather than developing a system upon a
well-defined and established databases. The interoperability does not guarantee by the
type of architecture; instead, the architecture helps to achieve it. This is accomplished
through the utilization of suitable design choices. Therefore the reference architecture
should enable the development of interoperable SEIS, that supports the easy and
seamless integration of data as well as allowing effective communication between
heterogeneous sensor nodes.

Non-Functional Requirements of RefSEISs on the reference architecture level

In [Bass et al., 2003, Reidt et al., 2018], a number of general requirements to be considered
by the reference architectures are presented as described in Section 2.2.2. Inspire by them,
and after thorough investigations of reference architectures, the most critical requirements
found were generality, completeness, and applicability, as further described below:

NFN4 Generality

Reference architectures describe generic constructs and provide representations for
similar systems that belong to a particular domain. Generality is deduced from ab-
straction and independence quality criteria of reference architecture as described in

90

Chapter 5. RefSEISs Requirements Establishment

Section 2.2.2. Such that the involvement of more details of reference architecture
description the less the use of such reference architecture in the domain since it limits
its generality. The involvement of very few abstract parts reduces the benefits of
reusing such reference architecture in concrete models. Therefore the chosen level
of abstraction is important in promoting the generality of the reference architecture
by facilitating the re-use of knowledge in the constructions of concrete architectures
[Hars, 1994].

Since the domain consists of various systems that incorporate multiple technologies,
then, a generic reference architecture is supposed to be independent by not being
tied to any specific standards, technologies or implementation details to represent
common abstractions of the whole domain. With higher abstractions, there will be no
implementation or technology restrictions [Reidt et al., 2018]. Reference architecture
of a particular domain is considered to be generic if it can be applied in the defining any
concrete system of that domain. Practically, this is achieved by developing an abstract
RefSEISs that is independent of underlying technologies, standards and implementation
details. Such that the RefSEISs is supposed to encapsulate the entire domain in a
technology independent way by merging all the domain best practices, standards and
technologies.

NFN5 Completeness

The completeness of models is achieved if the model covers all the relevant aspects of
the system [Winter, 2000]. Since the reference architectures are supposed to general,
then completeness is not always possible. Preferably, the reference architectures are
expected to cover the essential aspects of the systems within a specific domain that
advocates the use of context, goal and design dimensions of a reference architecture
documentation as described in [Angelov et al., 2012].

NFN6 Applicability

The applicability of models is reflected through how easy is the application of reference
architectures. Reference architectures should be applicable to the systems within a
specific domain (universal applicability) rather than only a particular concrete system
[Pajk et al., 2012]. The reference architectures can be applied for the design of new
concrete SEISs as well as analysis of the existing systems. This implies that the
RefSEISs is supposed to be easily understandable by both business and other experts
or stakeholders to enable the architects to use RefSEISs as a baseline towards the
construction of new concrete and existing SEISs architectures. The applicability of
reference architectures can be proven by at least two applications [Gamma et al., 1994].

91

Chapter 5. RefSEISs Requirements Establishment

5.3 Summary

The development of RefSEISs commences with the elicitation of requirements from the
information sources of the existing SEISs described in Part II (Foundations) of the thesis
which provide the essential inputs to the identification of stakeholders, their concerns and
requirements of SEISs. Therefore, this chapter presented the stakeholders, their concerns
and requirements of SEISs. In which common characteristics and functionalities that should
be possessed by a proposed reference architecture are identified. And the non-functional
requirements have been introduced that will be used in the analysis of the RefSEISs. Then
chapter 6 proceeds with the description of architecture viewpoints for the design of RefSEISs
with a strong emphasis on the granularity and separation of concerns to frame up the identified
concerns.

92

Chapter 6

Architectural Viewpoints

At the core of the ISO/IEC/IEEE 42010:2011 standard (Recommended Practice for Archi-
tectural Description of Software-Intensive Systems) [ISO/IEC/IEEE, 2011] are viewpoints.
Following the Definition 2.9 and description of the viewpoints provided in Section 2.3.1,
viewpoints specify the conventions that enable the creation, illustration, and analysis of views.
Viewpoints are considered as metamodels representing the basic concepts of the system
architecture from a particular perspective. One viewpoint addresses one or more architectural
concerns. Hence the analysis of the existing SEISs in Chapter 3, and identification of the
relevant stakeholders of SEISs and their concerns in Chapter 5 led to the selection of essential
viewpoints required in the description of SEISs which will be presented in this chapter.

The specification of SEISs is structured around the concept of architecture viewpoints of
Siemens view model as described in Section 2.3.2 with an addition of two other viewpoints:
topology and data viewpoints. Therefore in this thesis, six viewpoints are proposed to cover
essential aspects or perspectives of SEISs as will be described in their corresponding sections:
conceptual viewpoint described in Section 6.1, module viewpoint in Section 6.2, execution
viewpoint in Section 6.3, code viewpoint in Section 6.4, topology viewpoint in Section
6.5, and data viewpoint in Section 6.6 as proposed in [Kateule and Winter, 2016]. The
integration of SEISs viewpoints is described in Section 6.7 for ensuring consistency between
the proposed viewpoints. The proposed viewpoints are selected and specified based on the
separation of concerns, understandability, and principle of granularity. The description of
these viewpoints is associated with the structure of architectural viewpoint and conforming
notations used in the construction of the view models. Each viewpoint provides the constructs
for describing different views of the architecture from these viewpoints. This chapter ends
with the summary in Section 6.8

93

Chapter 6. Architectural Viewpoints

6.1 Conceptual Viewpoint

The conceptual viewpoint presents the architecture design that describes the system realiza-
tion of main functionalities and their dependencies at a high-level of abstraction in terms
of component and connectors. The system functionality represents a service of the system
which is provided to either another function of the system or external entity. The conceptual
viewpoint is considered as a fundamental viewpoint of software architectures since it serves
as an input for other viewpoints which at the end facilitate the understanding of the system
as the whole. This viewpoint addresses the following concerns;

• C1: What is the general idea behind the SEIS?

• C2: Is the proposed SEIS economic, operational and technically feasible?

• C4: How are the functionalities of SEISs fulfilled?

• C5: What are the components of SEISs and their relation?

• C6: How is SEIS decomposed?

• C14: How are the non-functional requirements supported?

The stakeholders of these concerns typically consist of acquirers, users, operators and
development experts as described in Section 5.1.

6.1.1 Structure

To address the stated concerns, a conceptual viewpoint is needed as demonstrated in the
existing SEISs [Ranjini et al., 2011, Zhang et al., 2008, of Arizona et al., 2013]. The proposed
conceptual viewpoint of SEISs is based on application domain components necessary to
implement the functional requirements of SEISs. The Siemens four view model well-
known abstractions of components, connectors and configuration of conceptual viewpoint
are adapted [Hofmeister et al., 2000] to address the identified concerns. The conceptual
viewpoint is presented in Figure 6.1 which describe essential concepts and their relations
required in the description of conceptual views;

• Conceptual Components: A CComponent represents a functionality of the system, i.e.
computation unit or storage unit. The SEIS is decomposed into a set of CComponents
which reflect the functionalities of SEISs. CComponents consist of CPorts which
define how the component can interact with other elements of the SEISs. When the

94

Chapter 6. Architectural Viewpoints

component is further decomposed its ports can be bound directly to the port of the
resulted components.

• Conceptual Connectors: A CConnector facilitates the interactions between CCom-
ponents of the system by specifying the models and rules, e.g. method invocation,
pipes and filter, client-server protocols, etc.. The CConnectors contain CRoles for
interaction, and both a port and role obey a specified protocol. The CConnector can
contain multiple CRoles. Both port and role obey a particular CProtocol which defines
how the incoming and outgoing operations can be ordered.

• Conceptual Configuration: A Configuration refers to an arrangement of elements and
relations of conceptual view that describe the SEISs. The SEISs can be decomposed to
a certain extent to fulfil various non-functional requirements.

The conceptual viewpoint facilitates the construction of the conceptual view which
provides an overview of the software architecture of SEISs. It is actually the first design
which stakeholders would get a big picture of how everything fits together and hence find out
how the system will do what it is supposed to do. By doing so, the acquirers will be able to
get a general idea behind the SEISs and assess the feasibility of the system economically,
operationally and technically. The conceptual viewpoint is adapted from the Siemens four
view model [Hofmeister et al., 2000] with some extensions to suit the need of SEISs. For
instance, the Container is added as a superclass that encloses the resulted conceptual view or
configuration by showing the beginning and end of the design.

6.1.2 Notations

The constructed conceptual views shall use the UML profile diagrams for describing the
static configurations of the system, state diagrams (or sequence diagrams) for specifying the
functional behaviour of SEIS and sequence diagrams for showing a particular sequence of
interactions among a group of components. Conceptual views can also be detailed using
informal non-technical language that can be easily understood by all stakeholders. The
conceptual viewpoint is used for the construction of conceptual views as demonstrated in
Section 7.2.1

95

Chapter 6. Architectural Viewpoints

[0..*] supportedByRoles

[1..1] supportedProtocols[1..1] supportedProtocols

[0..*] supportedByPorts
[0..*] ports

[1..1] component

[1..1] connector

[2..2]roles

[0..*]cport [0..*] connections

[0..*] availableProtocols

[1..1] configuration

[0..*] containedComponents
[0..*] containedConnectors

[1..1] container[1..1] container

CPort CRole

Protocol

name : String

CComponent

name: String

CConnectorConfiguration

Container

Figure 6.1: Conceptual Viewpoint

6.2 Module Viewpoint

The module viewpoint focuses on describing the software implementation modules in SEISs,
their interfaces and interactions in attaining the intended objective of the system. This
viewpoint addresses the following concerns;

• C3: How is the SEIS technically realized?

• C4: How are the functionalities of SEISs fulfilled?

• C6: How is the SEIS decomposed?

• C14: How are the non-functional requirements supported?

These concerns are of particular interest to system operators and development experts
mainly developers, maintainers, architects, and integrators as described in Section 5.1.

6.2.1 Structure

To address these concerns, a module viewpoint is needed as demonstrated by the existing
SEISs [Jadhav and Deshmukh, 2012, Hartung et al., 2006, Stipanicev et al., 2018, Sunkpho

96

Chapter 6. Architectural Viewpoints

and Ootamakorn, 2011, Amirebrahimi et al., 2016, Udo and Isong, 2014, Seal et al., 2012,
Lozano et al., 2012, Raju, 2014, Guthi, 2007, Nguyen et al., 2015, Kotta et al., 2011, Huang
et al., 2015, Curiac and Volosencu, 2010, Zhou et al., 2010, Mirchandani and Head, 2001].
The proposed module viewpoint of SEISs is depicted in Figure 6.2, in which implementation
elements and their relationship required for the construction of module views of SEISs are
illustrated. Such elements include;

• Modules: The module view should show how the elements of the software are mapped
to the implementation modules. The modules are units of software implementation
that encapsulate data and operations to fulfil a coherent set of system functionalities.
Modules are organized into two orthogonal structures, i.e. decomposition and layers.
The decomposition structure demonstrates how the system is decomposed into sub-
systems and modules, while the layering structure demonstrates how the modules are
assigned to layers which are then constrained their dependencies to other modules.

• Relationship between modules: Modules interact with each other through the required
and provided Interfaces, though these interfaces possess no associated implementation.
The modules can also be decomposed in other modules, and are organized in terms of
subsystems and layers since most of the existing SEISs utilized a layered architectural
style [Sunkpho and Ootamakorn, 2011, Udo and Isong, 2014, Nguyen et al., 2015,
Lozano et al., 2012]. Subsystems correspond to the conceptual components of higher
level (one that is decomposed in other components and connectors), they can contain
other subsystems or modules. Each subsystem consists of various modules which
interact with each other through module use-dependency. While in a layering view,
modules are organized into a partially ordered hierarchy and they use interfaces to
declare their services. The interaction of modules across different layers is facilitated
by interfaces (both required and provided interfaces). Furthermore, modules in the
specific layer have the same abstraction hence they should depend on other modules in
the same layer and can communicate with modules in the layer directly underneath
through interfaces.

To facilitate easy changing in SEISs and maintainability, the modules should be designed
with low coupling and high cohesion such that individual modules are cohesive while
unrelated modules are loosely coupled. Also, the power saving module can be encompassed
in the module view to facilitate energy efficient SEIS. The module viewpoint is adapted
from the Siemens four view model [Hofmeister et al., 2000] with some extensions to suit
the need of SEISs. For instance the Configuration, and InterfaceElement classes are added
in the metamodel. The Configuration class is for enclosing the resulted module view or

97

Chapter 6. Architectural Viewpoints

configuration by showing the beginning and end of the design. A InterfaceElement to express
both a module and layer that use interfaces for communication. The decomposition structure
of Module modeled using a composite pattern to treat all objects of SEISs, i.e. both individual
and composite uniformly.

[0..*] containedBy
[0..1] contain

[0..*] communicatedWith

[0..*] communicatedBy

PModuleCModule

[0..*] layers

[0..*] interfaces

[0..*] requiredBy

[0..*] required

[0..*] provided

[0..*] providedBy

[1..1] configuration

[0..1] configuration

[0..*] subsystems

[0..1] configuration

[0..*] containedModules

[0..1] subsystem

[0..*] communicatedWith

[0..*] communicatedBy

Subsystem

name : String

[0..*] childmodules

[0..*] containedModules

[0..1] Layer

[0..*] childLayers

Configuration

Layer

InterfaceElement

name : String

Module

Interface

name : String

Figure 6.2: Module Viewpoint

6.2.2 Notations

The constructed module views shall use UML class diagrams for describing the use-dependencies
between modules, package diagrams for showing both subsystem decomposition dependen-
cies and use-dependencies among layers and assignment of modules to layers. The module
viewpoint facilitates the constructions of module views in which the elements of the concep-
tual view as shown in Section 7.2.1 are mapped into software implementation modules as
described in Section 7.2.2.

98

Chapter 6. Architectural Viewpoints

6.3 Execution Viewpoint

The execution viewpoint assigns the corresponding modules from the module view described
in Section 7.2.2 into runtime entities and allocating them to the hardware resources. The
execution viewpoint handles the concerns of operators and development experts mainly
developers, testers, sensor providers and architects as described in Section 5.1 such as;

• C10: What are communication mechanism and protocols of SEISs?

• C11: How are the identified components of SEISs distributed among processing nodes
at runtime?

• C12: How are the SEIS software components, distributed in different processing nodes,
and do they interact at runtime?

6.3.1 Structure

All the aforementioned concerns are handled by execution viewpoint which identifies how the
SEISs components mainly software modules will be deployed and allocated to the processing
nodes. This involves the description of runtime structure and behaviour of SEISs that can be
facilitated using an execution viewpoint illustrated in Figure 6.3. This execution viewpoint
provides an essential set of elements and relationships that are utilized in execution models.
The execution views of the existing SEISs [Nithya and Vanamala, 2018, Al-Ali et al., 2010]
indicates that such an execution view of SEISs should describe information on the following
aspects;

• Processing nodes: The processing nodes in the execution views should describe more
consistent and useful information. Such that the execution viewpoint describes that the
execution platform elements should include information about the characteristics infor-
mation of processing nodes and functional elements. Hence the functional elements of
SEISs are represented using RuntimeEntities which assign modules from the module
view as described in Section 6.2. It is also recommended to include the characteristics
of processing nodes such as allocated system-specific hardware devices, operating
systems, system software through HardwareResource, PlatformResource, and Softwar-
eResource respectively. The HardwareResource refers to the physical device in which
provide platform resources. The PlatformResource refers to the operating system or
program execution environment, or a combination of both, while the SoftwareResource
refers to the actual software which executes specified runtime entities.

99

Chapter 6. Architectural Viewpoints

• Links between processing nodes: The interaction between processing nodes is facili-
tated through links. Hence the execution viewpoint should encompass the description
of links between processing nodes. The crucial aspects of the links to be included in
the description include; the function of the link or link’s technological characteristics
such as bandwidth or capacity or other resources the system require from the link. All
these properties can be expressed through CommunicationPaths and Communication-
Mechanisms which facilitate communication between multiple runtime entities using
multiple communication protocols.

This execution viewpoint of SEISs extends the concepts of predefined execution viewpoint
of Siemens four view model to address the concerns of SEISs. The particular extensions that
have been introduced include the ExecutionModel, BoundedElement and composite pattern
in SoftwareResource. The ExecutionModel is used for demonstrating the execution config-
urations by showing the beginning and end of the execution design. The BoundedElement
allows description of multiple instances of bothPlatformResources and RuntimeInstances The
SoftwareResource is decomposed using composite pattern to reflect the current technology to
treat all object both composite and singular resources uniformly.

6.3.2 Notations

The constructed execution views shall use UML class diagrams for describing the execution
configurations of SEISs, UML sequence diagrams for showing the dynamic behaviour of
SEISs and UML state diagrams (or sequence diagrams) for demonstrating protocols of the
communication path. The execution viewpoint facilitates the constructions of execution
views in which the software modules of the module view as described in Section 7.2.2 are
assigned into runtime entities and allocating them to the hardware resources as described in
Section 7.2.3.

100

Chapter 6. Architectural Viewpoints

CResourcePResource

BoundedElement

instancesUpperBound : Int = 1
instancesLowerBound : Int = 1

[0..*] communications

[1..1] executionModel

[0..*]providedSoftwareResorces

[0..*] assigns

[0..*] assignedBy

Module

name : String

[0..*] hardwareResources

[0..*] availableCommMechanisms

[0..*] executing

[1..1] executedBy

[0..*] usedBy

[1..1] usedMechanism

[0..*] communications

[2..*] commPartners

[0..*]providedPlatformResources

[1..1] platform

[0..1] platform

[0..*] childResources

[1..1] executionModel

[1..1] executionModel

CommunicationPath

CommunicationMechanism

name : String

HardwareResource

name : String

Platform
Resource

name : String

RuntimeEntity

name : String

SoftwareResource

name : String

ExecutionModel

Figure 6.3: Execution Viewpoint

6.4 Code Viewpoint

The code viewpoint describes how the software implementation is organized by mapping the
elements from both module and execution views to code components. The code viewpoint
handles the C13: How are the identified components of SEISs implemented? the concern of
operators and development experts mainly developers, maintainers, testers and architects.

6.4.1 Structure

The code viewpoint addresses the stated concern by describing how the software implement-
ing the system is organized into source and deployment components. This is achieved by
mapping the software elements from module and execution views as described in Section
7.2.2 and Section 7.2.3 respectively to code components of SEISs. i.e. source files, libraries,
configuration files etc and their organizations. Figure 6.4 illustrates essential concepts and

101

Chapter 6. Architectural Viewpoints

relations that can be utilized in the construction of code views of SEISs. The description of
those code components of the SEISs includes the following aspects;

• Source Components: The Implementation of software modules led into creation of
multiple separate files such as those contain the source codes. SourceComponents
implement individual software modules. Thus it is important for code views to include
the information about SourceComponents and they should be organized using storage
structures, i.e. files or directories. These SourceComponents are related to each other
by two kinds of language-specific dependencies; (i) For the successful compilation, a
SourceComponent may need to import another SourceComponent. (ii) A SourceCom-
ponent may be generated from another SourceComponent, e.g. during pre-processing.
The SourceComponents are associated with BinaryComponents which are specific to
the implementation language and development environment and in some languages are
compiled to one or more program libraries. The BinaryComponents are related to their
respective SourceComponents by link dependency. The BinaryComponents are also
related to static Libraries by link dependency.

• Deployment Components: The runtime entities are instantiated through deployment
components during runtime. These components include files that have to be included
and usually contain definitions of processes and (/or) resources, files that describe
how to build an executable, and files that are the result of translating, or compiling,
i.e. dynamic Libraries, ConfigurationDescriptions and Executables respectively. Ex-
ecutables and dynamic Libraries are related to BinaryComponent and static library
by a link dependency. The link dependency has also bound the relationship between
the Executables and dynamic Libraries. The use of dynamic libraries can reduce the
link-time dependencies and offer more flexibility in changing the implementations.

• Organization of Code Components: After the identification of source and deployment
components, then these components need to be organized for the development so as
not to lose control and integrity of the system [Clements et al., 2005]. The configu-
ration management techniques can be employed; in the simplest case, a hierarchy of
directories in a file system using CodeGroups for grouping. CodeGroups are organized
such that they contain other CodeGroups or various SourceComponents, Libraries,
Executables, and ConfigurationDescriptions.

The code viewpoint is adapted from the Siemens four view model with some extensions
to suit the need of SEISs. For instance the Component class is added in the metamodel. The
Component class is allowing multiple instances of code components in the code views. Also

102

Chapter 6. Architectural Viewpoints

the decomposition structure of CodeGroup is modeled using composite pattern to treat all
code groups, i.e. both individual and composite uniformly (CCodeGroup and PCodeGroup).

CCodeGroupPCodeGroup

Component

name : String
instancesLowerBound : Int = -1
instancesUpperBound : Int = 1

[1..1] executable

[0..*] executables

[0..*] configurations

[0..*] binaries

[0..*] childCodeGroups

[1..1] codeGroup

[1..1] codeGroup

[1..1] codeGroup

[1..1] codeGroup

[0..*] sources

[0..*] generating

[0..*] generatedBy [0..*] importedBy

[0..*] importing

[0..*] sourceComponent

[0..*] compiledToBinary

[0..*] compiledToLibrary[0..*] sourceComponent

[0..*] usedConfigurations

[0..*] linkedByLibrary

[0..*] linkedToExecutable

[0..*] linkedToExecutable[0..*] linkedByExecutable

[0..*] linkedByBinary

[0..*] linkedToLibrary

[0..*] libraries

[1..1] codeGroup

ConfigurationDescription

ExecutableSourceComponent BinaryComponent Library

CodeGroup

name : String

Figure 6.4: Code Viewpoint

6.4.2 Notations

The constructed code views shall use UML component or class diagrams to represent the
source, intermediate and executable files. The package notation is used for directories. This
viewpoint is selected to facilitate the construction, installation, integration and testing of the
SEISs. The resulted code views are particularly useful as a guide for developing experts and
maintainers during the construction, integration, installation, and maintenance of a system.
The code viewpoint facilitates the constructions of views in software elements from module
and execution views as described in Section 7.2.2 and Section 7.2.3 respectively to code
components SEISs. i.e. source files, libraries, configuration files etc., and their organizations
as described in Section 7.2.4.

103

Chapter 6. Architectural Viewpoints

6.5 Topology Viewpoint

The topology viewpoint determines the organization of nodes and their interconnecting
links in the field of interests. The topology viewpoint is the new viewpoint which is also
required in the description of SEISs [Zhang et al., 2008, Jadhav and Deshmukh, 2012]. Such
viewpoint addresses the concerns of operators, and development experts mainly developers,
sensor-actuator providers, maintainers and architects such as;

• C7: How to distribute the nodes within the specified field to achieve the best range
and coverage from the sensors?

• C10: What are communication mechanism and protocols of SEISs?

• C14: How are the non-functional requirements supported?

The topology viewpoint determines the organization of nodes and their interconnecting
links in the field of interests. The main intention of this viewpoint is to guide the construction
of topology views focusing on the specification of the field nodes network topology. Such a
topological structure of the network may be depicted either physically or logically.

6.5.1 Structure

The topology viewpoint addresses the aforementioned concerns by describing the physical
layout or network arrangement of multiple nodes and how they communicate with each
other in the field of interest. The topology viewpoint is depicted in Figure 6.5 describes the
required main entities for the construction of the network topology. The topology views of
the existing SEISs [Jadhav and Deshmukh, 2012, Zhang et al., 2008] indicate that; such a
topology view of SEISs should describe the information of the following aspects;

• Nodes: The Nodes in the topology view refer to the devices connected to the network.
In the context of SEISs, the nodes reflect the hardware resources of the execution view
of SEISs as described in Section 7.2.3. The nodes can be of different type NodeType.,
i.e. sensor nodes, server, actuators, computers, etc..

• Links: The Nodes in the network can have more than one Link connected to other
Nodes (source and outgoing links) which are denoted by LinkEnd. Links reflect the
communication paths of execution view of SEISs as described in Section 7.2.3.

• Distribution of Nodes: The topology view should resemble as much as possible the
actual physical and geographical distribution of the nodes. This is particularly required

104

Chapter 6. Architectural Viewpoints

to make some design decision explicit to support certain non-functional requirements,
i.e. energy efficiency, best range and coverage of sensors, security measures, etc.. For
instance, the topology view of SEISs can indicate how the sensor nodes are distributed
in the field of interest through various topologies i.e. bus, star, mesh, etc..

[1..1] topologyModel

NodeType

name : String
 [1..1]type

[0..*]types

[0..*]nodes

[1..1] source

[1..1] target
[0..*] ends

[1..1] node
LinkEnd

lowerBound : Int
upperBound : Int

[0..1] outgoing

[0..1] incoming

[0..*] links

[1..1] topologyModel
[1..1] topologyModel

Node

name : String

Link

[0..*] nodes

TopologyModel

Figure 6.5: Topology Viewpoint

6.5.2 Notations

The constructed topology views shall use UML class diagrams for showing the interconnec-
tion among multiple nodes and graph like structures for visualizing the network topologies
[Shikhaliyev, 2012]. The topology viewpoint facilitates the constructions of topology views
in which the hardware resources and communication paths of execution view as described
in Section 7.2.3 are mapped to nodes and links forming topologies as described in Section
7.2.5.

6.6 Data Viewpoint

The data viewpoint describes the high-level view of the static data structure in terms of
data entities and their relationships. The data viewpoint is also the new viewpoint which
is required in the description of SEISs [Ujang et al., 2013]. Such viewpoint addresses
the concerns of operators and development experts mainly developers, testers, maintainers,
sensor providers and architects mainly;

• C9: How is data created, accessed, updated and stored in the SEIS?

• C14: How are the non-functional requirements such as interoperability supported?

105

Chapter 6. Architectural Viewpoints

6.6.1 Structure

Data viewpoint is one of the core viewpoints required in describing the structure of the
data handled in information systems [Merson, 2009]. The data viewpoint facilitates the
construction of data views which describes the static information structure in terms of data
entities and their relationships. In addition to other practical advantages, the data viewpoint
serves as the blueprint for the creation of a physical database, i.e. how data is stored,
manipulated, interpreted and accessed. The data viewpoint led into the construction of
standardized data view which supports interoperability by enabling smooth data exchange
between systems. The data views (or models) are often represented graphically using entity-
relationship diagrams (ERDs) or UML class diagrams. Therefore, this data viewpoint is
derived from the UML class diagram metamodel as described in [F. Paige et al., 2011] and
contains only the relevant elements and properties for data modeling as shown in Figure 6.6.
Such viewpoint shows that the data view of SEISs should describe the following aspects;

• Data Entities: The data entity is the fundamental entity of this viewpoint. It represents
any piece of data involved in the system. The data modeling in SEISs is concerned
with data entities and their respective attributes which are relevant to SEISs. Such
entities possess names, and list of attributes. Such that the data model of SEISs is
bundled in a Package. The Package can contain various Classifiers. The Classifier is a
super class representing data entities or elements and only contains a Name attribute to
give each element a name. A Classifier is either a PrimitiveDataType i.e. String, Int,
etc., Class or an Association. The Class can have multiple Attributes and Operations.
The Attribute, Operation and Parameter are associated with the Classifier.

• Relationship between Data Entities: The description of the relationship between
data entities is important for designating a logical association between entities. This
is specified using Association which is associated with source and target Classes.
There three allowed relationships Composition, Aggregation and Generalization. The
Composition represents a part-whole relationship between entities. The Aggregation is
an abstraction which turns a relationship between entities into an aggregate entity. The
Generalization indicates an is-a relation between data entities.

106

Chapter 6. Architectural Viewpoints

parent

[0..*] attribute

[0..*] parameter

[0..*]returnType

[0..*]type

Operation

name : String

Parameter

name : String

target

source

Association

+isComposition : Boolean
+isAggregation : Boolean
+isGeneralization : Boolean

Class

+isAbstract : Boolean

Attribute

name : String

SuperSub

[0..*] subPackage

[0..*] usedAsAttributeType

[0..*] operation

[0..*] classifier

[1..1] package PrimitiveDataTypeClassifier

name : String

Package

name : String

Figure 6.6: Data Viewpoint

6.6.2 Notations

The constructed data views shall use entity-relationship and UML class diagrams for model-
ing both static and dynamic information structure of SEISs. The data viewpoint facilitates
the constructions of data views in which each software module of module view as described
in Section 7.2.2 contains data entities as described in Section 7.2.6.

107

Chapter 6. Architectural Viewpoints

6.7 Viewpoints Integration

The principle of separation of concerns is a well-known and valid principle in software
development but it can easily lead to lacking integration between the viewpoints of various
stakeholders [Gordijn et al., 2001]. Therefore, it is important to make relations between
viewpoints visible and traceable. This can be achieved through the unification of viewpoints,
i.e. viewpoints integration. Since the results of modeling a system using a certain viewpoint
may be different from the modeling of the same system using another viewpoint. Thus, we
have to deal with multiple viewpoints. Despite the fact that these viewpoints are required
to be independent with useful semantics to their respective stakeholders, they all represent
one architecture. There is a need for integrating viewpoints to demonstrate that the contents
of those viewpoints are fully integrated and coherent to facilitate the construction of well-
integrated system architecture. This integration addresses the concern of developing experts
which pertain to C8: How is SEIS integrated?. Thus viewpoints integration is required in
SEISs to ensure conceptual integrity and consistency. Such consistency should be done
automatically rather than manually by hand since the consistency management by hand is
tiresome and error-prone.

The viewpoints integration is associated with maintaining the consistency of viewpoints
by establishing the suitable correspondence relations between viewpoints, and, finally ap-
plying suitable consistency rules to verify the consistency between the viewpoints [Enders
et al., 2002]. In which the correspondence relation describes the relationship between cor-
responding viewpoints. The semantics of these relations must be specified separately and
can partly be done by means of consistency rules [Dijkman et al., 2008]. The consistency
rules represent requirements on the relations between the contents of different viewpoints to
handle inconsistencies that could take place between the related viewpoints. All consistency
rules must evaluate to ’true’ in a consistent design [Dijkman et al., 2008]. This enables
continuous evaluation in early design stages which avoids problems like unknown feature
or design entity hence promotes the verification of the system functional integrity. The
correspondence relations and consistency rules have been developed by Ruthbetha kateule
and Johannes Meier, a PhD candidate in the Software Engineering Group at the Carl von
Ossietzky University of Oldenburg.

6.7.1 Establishing Correspondence Relations and Consistency rules

A suitable correspondence relation is achieved by identifying exactly which parts of the spec-
ifications of the viewpoints have to do with the concerns of the system. SEISs are described
using six viewpoints, i.e. conceptual, module, execution, code, topology, and data viewpoints.

108

Chapter 6. Architectural Viewpoints

Recalling objectives of these viewpoints; conceptual viewpoint describes the main system
functionalities and their dependencies in terms of components and connectors cf. Section
6.1. Module viewpoint maps the conceptual elements into the software implementation
modules cf. Section 6.2. Execution viewpoint defines how the software implementation
modules will be assigned, their run-time instances communicate and allocation into physical
resources cf. Section 6.3. Code viewpoint describes how the software implementing the
system is organized by mapping the elements from both module and execution views to
code components cf. Section 6.4. Topology viewpoint describes how the nodes and their
interconnecting links from the execution viewpoint are organized. cf. Section 6.5. Data
viewpoint describes how the software modules store, manipulates, manages and distribute
data cf. Section 6.6. These objectives demonstrate the relations between these viewpoints by
keeping tracks of the relation between the basic features or elements of the viewpoints and
their mappings to other viewpoints.

An inconsistency check is initiated by a specific viewpoint with respect to a particular
feature or element within another viewpoint. Thus, first, a relationship between these
viewpoints need to be established in order to check and handle well such inconsistency.
Therefore to be able to specify and check these relations, integration of viewpoints is
considered as part of the design. As shown in Figure 6.7, the correspondence relations of
these viewpoints exists between: conceptual - module, module - data, module - code, module-
execution - code, execution - topology. To facilitate the consistency of viewpoints, such
relations are associated with the consistency rules (CRs).

Conceptual - Module

The module viewpoint refines the main functions of the system as represented using com-
ponent and connectors by the conceptual viewpoint in terms of implementation software
modules. This relation is associated with the following corresponding rule;

CR1.1: Conceptual elements (components, connectors, ports, roles and protocols) are
mapped into software modules in module view.

CR1.2: The complete mapping of conceptual elements into software modules has to be
decided manually and cannot be automated. Since an arbitrary number of conceptual
elements such as components, connectors, ports, roles and protocols can be realized in
a single module.

109

Chapter 6. Architectural Viewpoints

CR4CR5

CR3

CR2
CR1

Code Viewpoint Topology Viewpoint

Execution Viewpoint

Data Viewpoint

Module Viewpoint

Conceptual Viewpoint

Figure 6.7: Viewpoints Integration

Module - Data

The data viewpoint describes how software modules represented by module viewpoint store,
manipulate, manage and distribute data. Each software module and interface defined by
module viewpoint can contain multiple data entities. This relation is associated with the
following corresponding rule;

CR2: Modules and Interfaces have to be linked with the packages which contain the data
structures which are required for them. This has to be done manually since there is no
automation for that.

Module - Execution - Code

The execution viewpoint allocates software modules of the module viewpoint to the execution
platform elements, i.e. their run-time entities, and allocation into physical resources. Software
elements of both module and execution viewpoints are mapped to code components. This
relation is associated with the following corresponding rules;

110

Chapter 6. Architectural Viewpoints

CR3.1: Each module in the module view can be deployed at an arbitrary number of runtime
entities in the execution view.

• If a module is deployed at a runtime entity, an arbitrary number of executables
can be specified (which are runnable on the hardware resource and is derived
from the implementation of the module). The arbitrary number of executables is
helpful since there might be several executables which are required to execute
one module.

• The complete mapping/deployment has to be decided manually and cannot be
automated. Since an arbitrary number of software modules can be deployed in a
single module.

CR3.2: The communication paths between runtime entities in the execution view can be
derived from the communication between Modules (internal and external) in the
module view.

• Communication between Modules inside the Module view can be with and
without the use of an Interface, i.e. direct communication without Interface is
demonstrated between the Modules inside the same Layer while the indirect
communication via an Interface is provided by at maximum one Module and is
required/used by an arbitrary number of Modules.

• If two Modules communicate with each other (whether they use an Interface or
not), the corresponding RuntimeEntities are connected with a Communication-
Path.

Execution - Topology

The topology viewpoint describes how the nodes (mainly physical resources) and their
interconnecting links from the execution viewpoint are organized. The execution - topology
relation is associated with the following corresponding rules;

CR4.1: Each hardware resource in the Execution view is represented by exactly one node in
the Topology view (and vice versa).

• Corresponding instances are identified by the same names.

• Newly created elements in execution view are also added to the topology view
(and vice versa).

111

Chapter 6. Architectural Viewpoints

• Deleted elements in execution view are also deleted in the topology view (and
vice versa).

CR4.2: Each communication path in the Execution view is represented by exactly one link in
the Topology view (and vice versa). This counts only for communication paths which
connect two runtime entities which belong to different hardware resources. (Otherwise,
it represents internal communication, which is not shown in the Topology view.)

• In the SEIS domain, there is at maximum one communication path between two
hardware resources. There are no cases, where more than one communication
path between the same two hardware resources exist.

• New (external) communication paths in the execution view result in new links in
the topology view since they will be derived.

• New links in the topology view will be removed/are not allowed, because they
cannot be realized in the execution view since information about the related
runtime entities is missing.

Module - Code

The code viewpoint describes how the software implementation is organized by mapping the
elements from both module view to code components. This relation is associated with the
following corresponding rules;

CR5.1: Modules and interfaces are implemented in source components.

• Since modules and interfaces can be implemented for different platforms, each
module and interface can have an unlimited number of implementations.

• There might be modules or interfaces without any implementation.

• Normally, each source component realizes only one module or interface. Since
there are special some situations, for example, there are various modules in sensor
nodes but they are all implemented within a single source component, one source
component can be linked to more than one Module or Interface.

• All mappings have to be specified manually since there is no automation.

CR5.2: The implementation of subsystems and layers from the module view and hardware
resources from the execution view are contained in code groups from the code view.

112

Chapter 6. Architectural Viewpoints

• Since subsystems and layers can be implemented for different platforms, each
subsystem and layer can have an unlimited number of implementations which
can be linked by code groups.

• Since code groups can be used also for hierarchical structuring, there might be
code groups without a linked subsystem or layer.

• Additionally to subsystems and layers, also hardware resources (from the Execu-
tion View) can be linked by code groups.

• Some mappings can be automated by comparing their names regarding equality.

6.7.2 Realization of Viewpoints Integration

The integration of SEISs viewpoints has been realized by Johannes Meier through a MoCon-
seMI (Model Consistency Ensured by Metamodel Integration). The MoConseMI is a Single
Underlying Model (SUM) approach which starts with existing initial models and conforming
metamodels and creates a Single Underlying MetaModel (SUM(M)) [Meier et al., 2019].
MoConseMI is a suitable approach for the integration of SEISs viewpoints compared to other
approaches,i.e. since this integration involves existing viewpoints (metamodel) which need to
be reused [Meier et al., 2019]. The MoConseMI is capable of handling the inconsistencies in
the existing models and resolve them during integration. This approach is based on chains of
operators which describe the transformations between the initial models and the SUM. These
chains of operators are executed to initialize the SUM and ensuring all the initial models and
the SUM to be consistent with each other [Meier and Winter, 2018]. Furthermore, operators
split long transformation into short and manageable transformations that can be easily de-
bugged and iterative developed while ensuring the models before and after are consistent
[Meier and Winter, 2018]. Such operators can be configured regarding their impact on the
metamodel and model to fulfil the current consistency rule.

The integration of SEISs viewpoints as illustrated in Figure 6.8 is demonstrated by a chain
of operators. Such that the SUM(M) is formed based on the initial metamodel (viewpoint),
then the operators are applied to change the current metamodel and model together in a
step-wise way (both viewpoints and views). For instance, the integration of module and data
viewpoints is associated with the CR2 in which Modules and Interfaces have to be linked
with the packages which contain the data structures which are required for them. This has
to be done manually since there is no automation for that. These consistency rules have
been used to express that the data viewpoint must be the correct refinement of the part of
the module viewpoint to which it is related. For the realization of this integration, a new

113

Chapter 6. Architectural Viewpoints

association has to be created between Packages and their related Modules and Interfaces.
This is achieved through the configuration of the following operators in Figure 6.8:

• 11 → 12 for addClass to create the new Class with their (already existing) subclasses
Module and Interface.

• 21 → 22 addRelation to create the new Association in the metamodel, without adding
any links in the model.

Conceptual 01
Integrate

Metamodel

Module

Integrate

M
etam

odel 02
Add Class

03
Add As-
sociation

04
Add As-
sociation

06
Integrate

Metamodel

Execution 05
Rename
Classifier

Integrate

M
etam

odel
07

Rename Feature

08

M
e
r
g
e

C
la

s
s
e
s

09
Merge At-
tributes

11
Integrate

Metamodel

Code 10
Rename
Classifier

Integrate

M
etam

odel
12

Add Class
13

Add As-
sociation

14
Add Class

15
Add As-
sociation

16

A
d
d

C
la

s
s

17
Add As-
sociation

18
Add As-
sociation

19
Add As-
sociation

20
Add As-
sociation

21
Integrate

Metamodel

Data

Integrate

M
etam

odel 22
Add As-
sociation

23

In
t
e
g
r
a
t
e

M
e
t
a
m

o
d
e
l

Topology

Integrate

M
etam

odel24
Rename Feature

25
Merge Classes

26
Merge At-
tributes

27
Merge Classes

28
Change Ref-
erence Target

29
Delete As-
sociation

30

M
e
r
g
e

R
o
o
t

C
o
n
t
a
in

e
r

C
la

s
s
e
s

31
Merge Root
Container
Classes

32
Merge Root
Container
Classes

SUM(M)
Merge Root
Container
Classes

Figure 6.8: Operator Orchestration for the technical Integration of both SEISs viewpoints

114

Chapter 6. Architectural Viewpoints

6.8 Summary

Capturing the essence and details of the whole architecture in a single model may result
in complex architecture which cannot be understandable to the stakeholders. Therefore an
efficient way of dealing with such complexity is the use of multiple views which focus on
important aspects of SEISs while addressing key concerns of various stakeholders. However,
the selection of which views to be used is facilitated by the use of viewpoints which provide
standardized definitions of views contents. This chapter proposed viewpoint catalog of
SEISs, comprising, conceptual, module, execution, code, topology and data viewpoints.
Such viewpoints have been defined by analyzing various SEISs, identifying stakeholders
of SEISs and determining the proper framing of identified concerns described in Chapter
5. Furthermore, the SEISs viewpoints have been integrated to ensure consistency between
viewpoints. Then Chapter 7 proceeds with the application of these viewpoints into the
construction of RefSEISs.

115

Chapter 7

RefSEISs Architectural Views

The software architecture of the system is organized into one or more architectural views. As
noted in Chapter 2.3, the description of RefSEISs adheres to ISO/IEC/IEEE 42010 standard.
The standard describes, analyzes and resolves the set of specific concerns in each of the
viewpoints are expressed as the architecture views. The combination of both architecture
views and their corresponding architecture models are considered as the representations of the
software architecture. As stated in Definition 2.10, a view refers to a particular representation
of the entire system using a set of models from the specific perspective of a viewpoint. This
definition has been introduced in Section 2.3.1 and will be used throughout this work. The
separation and modeling of different views for the various concerns of the stakeholders
reduce the complexity of the architectural description of a system and specialized notations
can be used to describe each view.

This chapter presents the multi-views of RefSEISs which conform to their corresponding
viewpoints specified in Chapter 6. These views depict the generic structures of SEISs (con-
cepts and relations). Although the identified views of RefSEISs can be constructed separately,
they are somehow related as each view describes the same system. The descriptions of
concrete SEISs architectures do not require the description of all the proposed views instead
some views can be omitted. The RefSEISs encompasses six views as described in their
respective sections (i) Conceptual view in Section 7.2.1, (ii) Module view in Section 7.2.2,
(iii) Execution view in Section 7.2.3, (iv) Code view in Section 7.2.4, (v) Topology view in
Section 7.2.5, and (vi) Data view in Section 7.2.6. Additionally, the adoption of Siemens
view model is associated with the use of global analysis as a starting point. Hence, the
description of architecture views of RefSEISs starts with global analysis in Section 7.1.

117

Chapter 7. RefSEISs Architectural Views

7.1 Global Analysis

The global analysis intends to identify essential factors that influence the architectural
design and then develop strategies for each identified factor. Comprehensive analysis helps
software development experts mainly software architects to determine factors that affect
the architectural design as well as identifying, making and recording crucial architectural
design decisions [Schwanke, 2003]. This is accomplished through the use of factor tables in
capturing the information. Such factors represent vital issues that must be satisfied during the
development of SEISs. Based on the identified concerns of stakeholders and requirements of
SEISs established in Chapter 5, the main factors related to the development of SEISs that are
appropriate to the benefits of identified stakeholders are as summarized in Table 7.1.

Table 7.1: Factors influencing architectural design of SEISs

Factor 1 The system must be easily maintainable and capable of evolv-
ing by supporting new features.

Factor 2 The system should possess energy efficient sensor networks.
Factor 3 The system must support heterogeneous devices.
Factor 4 The system must be operated by a user.
Factor 5 The system must have a friendly user interface.

The identification of architectural factors proceeds with the identification and selection
of architectural strategies that could be used to fulfil the factors mentioned above. Such
strategies may include architecture styles, architecture tactics and design patterns. These
strategies guide architectural decisions. Those factors discussed above in Table 7.1 are
supposed to be covered by at least one strategy. The factors and their corresponding strategies
are illustrated in Table 7.2.

Table 7.2: Factors and corresponding strategies

Factors Corresponding Strategies
1,5 Use of well-known architectural patterns such as Model View Controller

(MVC), Client - Server and Layering.
1,4,5 Utilize a central controller component.
1,3 Use of Key-Value type table architectural style.
1,4,5 Decouple the user interaction module.
1,2 Utilize a network cluster tree-topology architecture style.
1,2,4,5 Modules are designed to achieve high cohesion and low coupling.

The RefSEISs consists of three main subsystems that can be combined in different
variants to build a concrete SEIS solution; Sensor-Actuator subsystem, information control

118

Chapter 7. RefSEISs Architectural Views

centre subsystem and communication subsystem. A complete SEIS must consist of all these
three subsystems even if the functionality of some subsystems are reduced to a minimum.
The sensor-actuator subsystem describes the solutions which measure physical environment
events, i.e., temperature, humidity etc., pre-processing the collected data and alter the state
of environmental phenomena to satisfy the intended objectives of a system. The information
control centre subsystem describes the integration, analysis, storage and presentation of the
information received from the sensor and then generates alarms and events via actuators
based on the objectives of particular SEIS. The communication subsystem facilitates the
interactions within and between the sensor-actuator subsystem and the information control
centre subsystem. Hence the communication subsystem is usually demonstrated implicitly
within both sensor-actuator and information control centre subsystems.

7.2 Architecture Views

This section describes the architecture views used to design the RefSEISs which are associated
with the elements of the system and how these elements are mapped to one another. Each
view results from their respective viewpoint provided in Chapter 6 and also documented
based on concerns and requirements described in Chapter 5, global analysis factors and
strategies outlined in Section 7.1 that serve as a rationale using a specific architectural style
or pattern.

7.2.1 Conceptual View

This conceptual view provides an abstract (or high level) design of essential system functional
entities and their relationship with each other in terms of components and connectors. The
conceptual view is supposed to be a technology-independent and conforms to the conceptual
viewpoint described in Section 6.1. This view employs a Client-Server architecture style,
central controller component, and decouple the user interaction model strategy through
Module-View Controller (MVC) pattern as adapted from [Zhang et al., 2008, Ramesh, 2014,
Sulistyowati et al., 2015]. The conceptual view of RefSEISs addresses the following archi-
tectural requirements: FN1: Data Acquisition, FN2: Storage, FN3: Phenomena Analysis,
FN4: Visualization, FN5: Phenomena Control, FN6: Sensor Management, and FN7: Ac-
tuator Management. The utilization of Client-Server architecture style and decouple the
user interaction model strategy through MVC makes the SEISs highly maintainable and
adaptable since the changes will be accommodated comfortably. As depicted in Figure 7.1,

119

Chapter 7. RefSEISs Architectural Views

the conceptual view of SEISs is expressed in terms of sensor-actuator, information control
centre and communication subsystems.

Figure 7.1: Conceptual View of RefSEISs

The sensor-actuator subsystem is decomposed into three main components; BaseStation,
SensorNode and Actuator. The BaseStation communicates with both SensorNodes and
Actuators through data and control connectors respectively. The BaseStation manages both
sensor and actuator nodes in the field of interests. The BaseStation integrates data from
various SensorNodes and then transmits the collected data to the information control centre

120

Chapter 7. RefSEISs Architectural Views

subsystem for further processing. The BaseStation distributes and executes control actions
through Actuators as commanded by information control centre subsystem. The SensorNodes
measures the environmental parameters directly from the field of interest while Actuators ma-
nipulates the environmental parameters via execution of control actions. With the application
of decouple the user interaction model strategy and separation of concerns; the BaseStation
is further decomposed into Aggregator for acquiring data from sensors, BSProcessing for
local processing through data connectors, the local database (LocalDB) is used for storing
the collected data locally in the field of interest, BSDisplay for allowing the user (mainly an
operator) to view data, as well as control data acquisition and (or) execution of control actions,
and BSComm is used for transmission of the collected data or receive information to and from
sensor nodes, actuators and information control centre subsystem. The BaseStation defines
and sets the policies for collecting and processing the data (environmental parameters). The
SensorNode is further decomposed into Sensing, SProcessing and STransmitter for collecting,
processing and transmitting the observed environmental parameters to the BaseStation. The
Actuator is also decomposed into ATransmitter, AProcessing and Actuating for receiving,
processing and executing control actions or signals from the BaseStation.

Similarly, the information control centre subsystem employs a client-server architecture
style, central controller component, and decouple the user interaction model strategy through
Module-View Control (MVC) pattern. A user interface is expressed as a Client component
as an operator uses a port to send requests to the Server component as the controller. The
interaction between the Client and Server components is facilitated by UIAccess connector.
The Server component uses another port to access the model in the RemoteDB component via
DBAccess connector while processing the requests of the clients and send them back as views.
A Server is further decomposed into Acquisition, ServerProcessing, ControlDispatcher,
Analyser and Viewing. The Acquisition for receiving the observed information from the
field of interests. The ServerProcessing processes and analyses the observed information
through Analyser and send the control actions to the actuators through ControlDispatcher.
The Viewing generates potential views for displaying information as required by clients.

The communication subsystem is demonstrated explicitly within both subsystems (sensor-
actuator subsystem and information control centre subsystem) through connectors which
encompass protocols to be obeyed by each of the ports or roles. This conceptual configuration
is described using UML Class diagram using special graphical symbols for the component,
connector, role and port to make the description more clear, easy and natural to read.

121

Chapter 7. RefSEISs Architectural Views

7.2.2 Module View

The module view is originated from the application of the module viewpoint described
in Section 6.2. The module view of the RefSEISs addresses the following architectural
requirements; FN1: Data Acquisition, FN2: Storage, FN3: Phenomena Analysis, FN4:
Visualization, FN5: Phenomena Control, FN6: Sensor Management, and FN7: Actuator
Management. All these requirements are fulfilled by module view which brings the system
closer to the software implementation by mapping the elements of the conceptual view of
SEISs described in Section 7.2.1 into the implementation modules as shown in Table 7.3.

Table 7.3: Mapping between Conceptual and Module Architecture Views

Conceptual Element Module or Subsystem
Sensing MSensing
SProcessing, STransmitter, and data
connectors

MSensorManager, MPowerSaving

Actuating MActuating
AProcessing, ATransmitter and con-
trol connectors

MActuatorManager

Aggregator MAggregator
BSProcessing, BSComm, data and
control connectors

MTopology, MFProcessing

Analyser MAnalysis
Viewing MViewing
Acquisition MAcquisition
ControlDispatcher MControlDispatcher
Acquisition MAcquisition
ServerProcessing, data and control
connectors

MServerProcessing

LocalDB MLocalDB
RemoteDB MRemoteDB
BSDisplay MFDisplay
Client MUserInterface
UAccess IUserAccess
DBAccess IDataAccess

A module is a representation of a set of functionalities of the SEISs that can be real-
ized and provided as service. Figure 7.2 shows the module view of RefSEISs based on
modules and dependency relationships. According to global analysis, the module view of
RefSEISs is described in terms of sensor-actuator, information control centre and communi-
cation subsystems that use layered architectural pattern, in which modules of subsystems
are organized hierarchically into a triple-layer classic architecture; GUI, Application, and

122

Chapter 7. RefSEISs Architectural Views

DataAccess. These layers are associated with commonly defined interfaces to facilitate
communication between modules. This layered architecture formed based on the following
strategies: separate the user interface and database model from the application-specific logic
via MVC with a central controller component, and the resulted modules possess low coupling
and high cohesion such that individual modules are cohesive while unrelated modules are
loosely coupled. All these strategies have been adopted from the architectural knowledge
of the successful implementations of the existing SEISs [Huang et al., 2015, Sunkpho and
Ootamakorn, 2011, Udo and Isong, 2014, Nguyen et al., 2015, Lozano et al., 2012].

«module»
MController

IFDataAccess
IRDataAccess

IFUserAccess

SEIS Subsystem

«module»
MAcquisition

Interface

Subsystem

IRUserAccess

Layer

Module

«layer»

«module»

Use-Dependency Relationship
This represents communication
subsystem

Notation:

«module»
MUserInterface

«layer»
GUI

«module»
MFDisplay

«layer»
Application

«module»
MViewing

«module»
MControlDispatcher

«module»
MServerProcessing

«module»
MAnalyser

«module»
MActuatorManager

«module»
MTopology

«module»
MFProcessing

«module»
MAggregator

«module»
MSensorManager

«module»
MPowerSaving

«module»
MActuating

«module»
MSensing

«module»
MLocalDB

«module»
MRemoteDB

«layer»
DataAccess

Sensor-Actuator Subsystem
InformationControlCentre Subsystem

Figure 7.2: Module View of RefSEISs

The SEIS subsystem consists of sensor-actuator, information control centre and com-
munication subsystems. The GUI Layer handles the interaction between users and the
SEIS that comprise the business logic layer mainly Application Layer. This layer consists
of MUserInterface and MFDisplay modules for a user to access both sensor-actuator and
information control centre subsystems respectively.

The Application Layer defines the sets of modules that implement the business logic of
SEISs. This layer encapsulates the system services, data processing units, rules and data.

123

Chapter 7. RefSEISs Architectural Views

The Application Layer is a user-centric layer which executes various tasks for the users using
MUserInterface and MFDisplay use IRUserAccess and IFUserAccess interfaces for sending
users’ requests and accepting responses to and from the Application Layer. In this layer,
the sensor-actuator subsystem consists of: MSensing, MFProcessing, MSensorManager,
MActuatorManager, MActuating, MTopology, MPowerSaving and MAggregator modules.
The MSensing module obtains data from the real world by allowing the collection of data
from either digital or analog sensors. The MPowerSaving module imposes power saving
mechanisms to the sensor nodes such as the implementation of state transitions mechanisms
on sensor nodes. The MActuating module executes control actions as commanded. The
MSensorManager and MActuatorManager modules specify and control the activities of
sensor nodes and actuators respectively. The MFProcessing module is the core module which
processes both incoming and outgoing data in the field of interest. This module implements
the sensor sampling and actuator tasks, time synchronization and is distributed on the multiple
physical nodes of the sensor-actuator subsystem. Additionally, the MFProcessing handles
user requests that received through MFDisplay that concern with accessing the system in
the field of interests. The MTopology module handles the configurations of nodes in the
field. The MFProcessing module is associated with MAggregator module to collect, filter
and integrate data originated from various sensors and process them for transmission to the
information control centre subsystem.

The information control centre subsystem in Application Layer is made up of: MServer-
Processing, MAnalyser, MAcquisition, MController, MViewing and MControlDispatcher
modules. The MServerProcessing and MAnalyser modules handle the received data from
the sensor nodes in the field through MAcquisition module, analyzing the environmental
phenomena and then issue the control actions and send them to the actuator nodes in the field.
The MControlDispatcher module dispatches commands, or control actions for controlling
certain environmental phenomena or issue alerts in case of occurrence of particular environ-
mental phenomena or the high probability of occurrence of such environmental phenomena
is observed. The MServerProcessing module receives the requests and sends the responses
from and to the users respectively. In processing the requests of users, the MViewing module
generates views as instructed or required by the MServerProcessing. In processing the
requests of users, the MViewing module generates views as instructed or required by the
MController. The MController handles the control functionality while other modules in this
layer handle the application functionality.

The bottom layer is the DataAccess Layer which provide the database interfaces of SEISs
for storing the data in both remote and local (located in the field of interest) databases via
MRemoteDB and MLocalDB respectively. These modules belong to the sensor-actuator

124

Chapter 7. RefSEISs Architectural Views

and information control centre subsystems which are accessed through IFDataAccess and
IRDataAccess interfaces. The communication subsystem is described explicitly through
the use-dependency relationship between the modules of different layers and implicitly
through the dependencies between the modules belong in the same layer. Modules in the
specific layer have the same abstraction hence they should depend on other modules in the
same layer and can communicate with modules in the layer directly underneath through
interfaces. The separation of these modules is logical rather than physical, such that multiple
modules may co-exist on the same physical node and also single module can be distributed
on multiple physical nodes. This view helps to achieve maintainable SEISs and utilization
of MPowerSaving module facilitate the development of energy efficient SEIS. This module
configuration is described using packages for layers, while the modules are demonstrated
using stereotyped classes. Each module of the module view of RefSEISs can be instantiated
during the design of concrete SEISs software architectures. Besides, modules can be omitted
depending on the goals of the system. This design helps to reduce system complexity.

7.2.3 Execution View

The execution view assigns the corresponding modules from the module view described in
Section 7.2.2 into runtime entities and allocating them to the hardware. This view conforms
to the execution viewpoint described in Section 6.3 while addressing the following functional
architectural requirements; FN1: Data Acquisition, FN2: Storage, FN3: Phenomena Analysis,
FN4: Visualization, FN5: Phenomena Control, FN6: Sensor Management, and FN9: Actuator
Management.

According to global analysis, this execution view supports maintainability by utilizing
the high cohesion and low coupling strategy for minimizing dependencies among processes
and resource utilization. This is reflected through the use of client-server architecture style as
inherited from the module view such that a single-server and base station processes are used
to serve many clients. This minimizes the number of executable processes and associated
context switches. These strategies have been adopted from the successful implementation of
the existing SEISs [Greenwood et al., 2006, Seal et al., 2012, Mirchandani and Head, 2001,
Curiac and Volosencu, 2010, Jadhav and Deshmukh, 2012, Alasia, 2013, Raju, 2014, Kotta
et al., 2011]. As depicted in Figure 7.3, the execution views of the most SEISs possess the
same basic structure for their execution configurations.

In sensor-actuator subsystem, the field devices include SensorNode, Actuator, BaseS-
tation, LocalDBServer and FUserComputer. Such devices contain SensorNodeManager,
ActuatorManager, GatewayApplicationContainer and WebBrowser processes respectively

125

Chapter 7. RefSEISs Architectural Views

which are executed in their corresponding operating systems. Each process is associated with
one or more modules as described from the module view in Section 7.2.2. The SensorNode-
Manager process deploys all the modules of sensor nodes, i.e. MSensing, MSensorManager,
and MPowerSaving. The modules of actuators, i.e. MAProcessing and MActuating are
deployed in the ActuatorManager process, while that of BaseStation i.e. MAggregator,
MFProcessing, and MTopology are deployed in the GatewayApplicationContainer process
and WebBrowser process is used for accessing the system locally in the field. Both Sen-
sorNodeManager and ActuatorManager processes communicate to the higher level nodes
mainly a GatewayApplicationContainer process through wired or wireless communication
mechanisms. The LocalDBServer process deploys MLocalDB module for storing data locally
in the field.

The information control centre subsystem is deployed into ApplicationServer, DBServer
and RUserComputer devices which consist of one or more WebBrowser, one WebContainer,
AppContainer and DBServer processes. These processes are also associated with their corre-
sponding modules. The WebContainer process handles the requests of users on the server’s
side by deploying MController and MViewing modules. The WebBrowser process deploys
MUserInterface module to allow users to access the system. The AppContainer process
is associated with MAnalyser, MServerProcessing, and MControlDispatcher modules for
executing the intended business logic of the system. The DBServer process deploys MRe-
moteDB module. The Application Server is connected to field nodes through BaseStation.
Finally, the communication subsystem is reflected explicitly through the communication
paths: SensorConnection, ActuatorConnection, BSConnection, UserConnection, and DB-
Connection. This execution view can be supplemented with other diagrams, i.e. sequence
diagrams for describing the sequence of operations or other changes in the configuration.

126

Chapter 7. RefSEISs Architectural Views

«DBConnection»

«execution environment»
DBServerOS

«application»
DBServer

«process»
Database System

«module»
MLocalDB

«device»
LocalDBServer

Software Resource«application»

«application»
GatewayApplicationContainer

«application»
SensorNodeContainer

«module»
MSensing

«application»
AppServer

«application»
DBServer

«module»
MControlDispatcher

«application»
WebServer

«ApplicationConnection»

Runtime Entity

Platform Resource

Hardware Resource

Module

Communication Path

«module»

«execution environment»

«process»

«device»

Notations:

1..*

«process»
SensorNodeManager

«process»
ActuatorManager

«execution environment»
BaseStationOS

«module»
MFDisplay

«execution environment»
FUserComputerOS

«DBConnection» «process»
Database System

«execution environment»
LocalDBServerOS

«device»
DBServer

«module»
MUserInterface

«execution environment»
ApplicationServerOS

«execution environment»
RUserCompOS

«process»
AppContainer

«module»
MAcquisition

«module»
MServerProcessing

«module»
MAnalyser

«module»
MViewing

«module»
MController

«process»
WebContainer

«module»
MRemoteDB

*
«UserConnection»

«device»
RUserComputer

«process»
Web Browser

«device»
ApplicationServer

«BSConnection»

«device»
Actuator

«execution environment»
ActuatorOS

«module»
MActuating

«module»
MActuatorManager

«module»
ActuatorContainer

«module»
MPowerSaving

«module»
MSensorManager

«execution environment»
SensorNodeOS

1..*«device»
SensorNode

«SensorConnection» «ActuatorConnection»

«module»
MAggregator

«module»
MFProcessing

«process»
GatewayApplicationManager

«device»
BaseStation

«module»
MTopology

«UserConnection»

*

«device»
FUserComputer

«process»
Web Browser

Figure 7.3: Execution View of RefSEISs

7.2.4 Code View

The code view describes how the system modules and interfaces presented in Section 7.2.2
are partitioned into source files. Then these source files are organized into directories. This
view originated from the application of code viewpoint described in Section 6.4. The code

127

Chapter 7. RefSEISs Architectural Views

view describes how the software of SEIS is implemented to perform the specified functional
architectural requirements: FN1: Data Acquisition, FN2: Storage, FN3: Phenomena Anal-
ysis, FN4: Visualization, FN5: Phenomena Control, FN6: Sensor Management, and FN7:
Actuator Management.

The code view presents the actual modules that should be implemented in a particular
programming language. Such a view indicates how the system is built out of implementation
artefacts, such as modules, tables, classes, etc. This view is useful in guiding software experts
mainly developers and maintainers during the software implementation and maintenance
respectively. Although, the code view is usually product-specific, for the case of RefSEISs,
this view present high level of abstractions. The source files and directories are represented
using components and package notations and are also associated with their corresponding
stereotypes to clarify their meanings. According to global analysis, the source files have been
organized while maintaining the primitive architecture styles that have been used initially
in the module view of RefSEISs. This view unifies the configurations of the existing SEISs
[Zhang et al., 2008, Nithya and Vanamala, 2018, Greenwood et al., 2006, Seal et al., 2012,
Mirchandani and Head, 2001, Curiac and Volosencu, 2010, Hartung et al., 2006, Guthi, 2007,
Jadhav and Deshmukh, 2012, Alasia, 2013, Raju, 2014, Kotta et al., 2011, Huang et al., 2015,
Zhou et al., 2010, Sunkpho and Ootamakorn, 2011, Udo and Isong, 2014, Lozano et al.,
2012, Nguyen et al., 2015, Ujang et al., 2013, Ramesh, 2014] while reflecting the specified
modules described in Section 7.2.2.

The directory structure for the code view of the RefSEISs is shown in Figure 7.4 follows
the layering and module decomposition to the subdirectories for subsystems: sensor-actuator
and Information Control Centre. Each major directory contains all the modules for the process
as specified in the execution view in Section 7.2.3 as well as enforcing the design constraints
or usage dependencies established in module view as described in Section 7.2.2. The sensor-
actuator subsystem consists of Gateway, LocalDBServer, SensorNode and Actuator which
are made up of source codes, library and configuration files for pulling up the appropriate
files, packages and system services as required. The Gateway contains the GSource directory
which is made up of GatewayApp source files for implementing the gateway application,
GConfig configuration files for configuring the gateway and Communication library for
facilitating communication between the gateway and other nodes. The LocalDBServer
directory contains source code for the local database to be used in the field. The SensorNode
contains the SensorSketch source file, and Loggings configuration files for implementing
the sensor node manager and configuring the sensor node respectively, while SensorLib and
multiple Communication library files are used for managing the sensors and communication
with other nodes. Similarly, the Actuator contains the ActuatorSketch source, Communication

128

Chapter 7. RefSEISs Architectural Views

library and Loggings configuration files for implementing the actuator manager, managing
the communication with other nodes and configuring the actuator.

LibraryLocalDBServer

*

*

ASource

Library

Configuration

Composition

*

GUI

*
Configuration«configuration»

GConfig

Composition

Configuration Description

Library

Source Component

«configuration»

«library»

Package

*
«library»

Communication

«source»
GatewayApp

GSource

«source»
ActuatorSketch

«configuration»
Loggings

«library»
Communication

«configuration»
Loggings

«source»
SensorSketchSNSource

*

«library»
Communication

«library»
SensorLib

Library

«Source»

Code Group

Notations:

Configuration

Library

«source»
DatabaseServer

AppModel

View

*
«source»

Processing

«source»
Viewing

*

*

Controller
«source»
Controller

Information Control Centre
Subsystem

ConfigurationDBServerApplicationsActuatorSensorNodeBaseStation

Sensor and Actuator
Subsystem

SEIS
CodeGroup

Figure 7.4: Code View of RefSEISs

The information control centre subsystem directory is organized based on the layering
structure of the module view as described in Section 7.2.2. Such directory contains a
set of source components for the intended applications, data and user access services as
well as configurations through Applications, DbServer, GUI and Configuration directories
respectively. In which the Applications directory reflects MVC by having AppModel, View
and Controller directories for implementing the processing tasks or business logic of the
system and processes handling user inputs. The DBServer directory contains DBSource, for
implementing the database. The Configuration for configuration files of information control
centre subsystem. The communication subsystem is not explicitly expressed but is included
in both sensor-actuator and information control centre subsystems directories.

7.2.5 Topology View

The topology view provides an overview of the network topology of the RefSEISs by
describing the relationship and possible connections between nodes of the system. The
topology view demonstrates the configuration of physical resources as described by the
execution view in Section 7.2.3 while addressing the specified functional architectural
requirements such as FN1: Data Acquisition, FN5: Phenomena Control, FN6: Sensor

129

Chapter 7. RefSEISs Architectural Views

Management, and FN7: Actuator Management. The topology view resulted from the
application of topology viewpoint described in Section 6.5.

The topology view describes the configurations, possible connections and distribution
of SEISs nodes mainly ApplicationServer, RUserComputer, DBServer, LocalDBServer,
FUSerComputer, BaseStation, SensorNodes, Sensors, and Actuators. The LocalDBServer,
FUSerComputer, SensorNodes, Actuators, and BaseStation are deployed in the field of
interests. Given that these SensorNodes possess limited energy and computation resources.
The energy costs of data transmission of these sensor nodes are usually higher than that of
computation [Ganesan et al., 2004]. This requires maximization of local computation while
minimizing the transmission of raw data [Sabit et al., 2009]. There are various mechanisms
for reducing the power consumption of sensor networks based on the taxonomy of energy
consumption sources of WSN as shown in Figure 7.5 [Abdelaal, 2015]. To mention the few,
such mechanisms have been used to optimize the energy consumption of sensor networks in
various SEISs, i.e. tree-topology clustering control management [Zhang et al., 2008, Jadhav
and Deshmukh, 2012, Liyang et al., 2005], routing protocols [Jiménez and García, 2015,
Castillo-Effen et al., 2004], clustering algorithm for routing in real-time forest fire detection
system [Liyang et al., 2005], state switching through adaptive duty cycling mechanisms
[Jeličić et al., 2011, Kumar and Kishore, 2017, Marin Perez et al., 2012], and phenomena
detection that uses threshold in aggregating the observed data [Ramesh, 2014].

In the context of RefSEISs, the state switching using an adaptive duty cycling and
topology control process using network clustering tree-topology mechanisms are considered
to be the most effective power consumption optimization techniques. Such that the network
cluster tree-topology architecture style is used in the configuration of the sensor-actuator
subsystem as shown in Figure 7.6 with three-tier nodes; end-nodes, routers and coordinators
as adopted from [Zhang et al., 2008, Jadhav and Deshmukh, 2012]. The sensor nodes are end-
nodes deployed in the field of interest collect data and then transmit the collected data to other
SensorNodes. The SensorNodes which collect data from other SensorNodes are considered to
be routers that transmit the data packets to the BaseStation. The BaseStations are coordinators
which act as gateways between wireless sensor networks and wired network. The BaseStation
concerns with data filtering, integration, storage of data locally in LocalDBServer and
transmission of data packets to the ApplicationServer in the information control centre
subsystem for further processing. These coordinators (BaseStations) configure and manage
the network to the lower nodes, i.e. routers and end nodes. The control commands are flowing
from the ApplicationServer in the information control centre subsystem to the BaseStation in
the sensor-actuator subsystem and then executed by Actuators as end nodes. The BaseStation
is responsible for managing both SensorNodes and Actuators. The BaseStation is also

130

Chapter 7. RefSEISs Architectural Views

Startup energy

Modulation scheme

Transmit/receive(b,d,r,t)Read/write(N)

Computation (N)
Sampling (f),

ADC

Phenomena
detection

Overemitting
Software inefficiency

Security

Collision

Neighbor
monitoring

Overhearing

Protocol overhead

Idle listening

Redundancy

Packet loss

Topology control

Protocol overhead

Routing

GlobalLocalState SwitchingRadioMemoryMCUSensors

Component level

Energy Consumption

Functional level

Figure 7.5: Taxonomy of energy consumption sources in WSNs from [Abdelaal, 2015].

connected to multiple FUserComputer for allowing the user to access the system in the field.
In the information control centre subsystem the ApplicationServer processes and stores data
in the DBServer, and supports queries from users through multiple RUserComputers.

1

0..*

«Node»
LocalDBServer

1

0..*

1

1

1

0..*

«Node»
FUserComputer

«Node»
DBServer

«Node»
RUserComputer

Link

Node
NodeType

Notations:

1

0..*

«Node»
SensorNode

0..*

0..1

0..*

1

«Node»
Actuator

1

0..*

«Node»
BaseStation

«Node»
ApplicationServer

Figure 7.6: Topology View of RefSEISs

131

Chapter 7. RefSEISs Architectural Views

7.2.6 Data View

The data view describes the data entities and their relationship involved in SEISs from how
data is created, accessed, updated, transmitted and stored. The data view demonstrates the
static data structure of each software implementation module that is originated from the
module view presented in Section 7.2.2 while addressing the specified functional architec-
tural requirements such as FN1: Storage, FN6: Sensor Management, and FN7: Actuator
Management. The data view resulted from the application of data viewpoint described in
Section 6.6.

Additionally, this data view intends to show how the data collected by various het-
erogeneous sensor nodes. This is achieved through the adoption of Key-Value type table
architectural style from [Kim et al., 2013] in association with sensing and actuating profiles,
hence enable the seamless integration of various data types. This data view has substantial
impacts on both maintainability and interoperability. Such a view is described based on the
module view provided in Section 7.2.2, in which the communication between modules or
subsystems is associated with the exchange of information. Such information is expressed in
terms of classes which are organised in packages of their corresponding module as shown in
Figure 7.7.

In sensor-actuator subsystem, the MSensing contains a Sensor class for storing infor-
mation about the end nodes (sensors) which sense the environmental parameters and a
Measurement for storing those measured parameters. The MSensorManager uses a SensorN-
ode as a data source for storing information about the sensor node and the MPowerSaving
uses SensingControl for imposing duty cycling on the operations of sensor nodes. The MAg-
gregator is associated with Aggregate for measurements (aggregates) that have derived from
various sensor nodes through multi-hoping such that the sensor nodes near the base station
send the information collected by other sensor nodes. Both Measurement and Aggregate store
the observed data using Key-Value type table architecture style in which the data declared
of type any to accommodate any type of data. The base station is responsible with the field
processing, contains a gateway which sends the data collected from various sensor nodes
to the information control centre and receives the control instructions from the information
control centre and then executes them through actuators. The MFProcessing is associated
with Gateway as a data source for storing information about the gateway and FusedData
for storing integrated information derived from various sensor nodes. Both Aggregate and
FusedData support the storage of any data type of sensor nodes (observed environmental
parameter) to be stored in the database without further modifications. A base station requires
a DHandler to connect to the IFUserAccess for accessing the system locally in the field

132

Chapter 7. RefSEISs Architectural Views

through MFDisplay which is associated with FDisplay as data entity for storing information
about the display. Similarly, a base station requires a DBHandler which has the database con-
nection information in the IFDataAccess to access the database MLocalDB using LocalDB
as a data entity for storing information about the local database. The MActuatorManager
uses Actuator as a data entity for storing information about the actuator and execute control
actions implemented by MActuating which uses Task for storing the information about the
control actions.

In the information control centre subsystem, the MServerProcessing responsible with
the business logic of an application through a models which encapsulate methods to access
and manipulate data i.e., databases, files, etc. The information about models is provided by a
Model. A Model utilizes an Acquisition to store information about the observations received
from various gateways in the fields. The Model requires the DBHandler which stores the
information about the connection in the IRDataAccess to access the database MRemoteDB.
The MRemoteDB is associated with the RemoteDB as a data source for storing information
about the database. The MAnalyser uses Analysis for storing the analysed data. The MCon-
trolDispatcher contains ControlDispatcher and ControlInstruction. The ControlDispatcher
data source is used for storing information about the dispatcher of the control instruction
from the information control centre subsystem to the sensor-actuator subsystem. The Con-
trolInstruction is used for storing information of the control instructions. The MViewing
controls the way data is displayed and how the user interacts with the system. The MViewing
is associated with View data entity for storing information about the views. The MController
is responsible for handling the events which are triggered by either a user or a system. The
MController contains Controller data entity for storing information about the controller.
The controller accepts requests using a Request that stores information about the requests
in the IRUserAccess from the user via a MUserInterface. The MUserInterface has User
which provide the information of the user. Similarly, the controller sends response which
its information is stored in the Response in the IUserAccess to the user. The MController
interacts with both MServerProcessing and MViewing for retrieving the required data and
generating views respectively.

133

Chapter 7. RefSEISs Architectural Views

1..*

1

MAcquisition

SEIS

collect

collectBy

receive control data

1..*

utilizeBy

1..*

usedBy

use

useBy

1..*

requiredBy

1

send control datareceive data

send data

1

0..1

use

1..*forwardedBy

forward

1

1 Acquisition

id : integer
sourceAddress : string
timeStamp : date
Commtype : string

ControlDispatcher

id : integer
targetAddress : String
timeStamp : date
Commtype : string

0..*

0..*

1..*

1..*

1

supervisedBy

supervise

generatedBy

generate

requiredBy

usedBy

analyzedBy

requiredBy

invokedBy

fowardedBy

respondedBy

requestedBy

generateBy

accessBy

collectBy

aggregateBy

controlBy

executeBy

measureBy

control

manage

providedBy
manageBy

requireBy

accessBy

access

requiredBy

fuse

1

utilize

access

1..*

foward

use

respond

requests

invoke

generate

1..*

require

accessedBy

require

1

require1..*

1

1

1

1

1..*

1

1

manage

1..*

1

1..*

0..*
1..*

1

provide

managedBy

control

aggregate 1..*

1

fusedBy

1

require1..* 1..*

1..*

1..*

1..*

1..*

1..*

1..*

11 1..*

1

1..*

1

1..*

1

1..*

1..*

1

1..*

0..*

Gateway

id : string
location : geometry
targetAddress : string
Commtype : string
timeStamp : date

require

1..*

1..*

DBHandler

dbConn : connection

IRDataAccess

Model

id : integer
name : string
description : string

Analysis

id : integer
name : string
riskIndex : string
status : string
timeStamp : date

ControlInstruction

id : integer
action : string
timeStamp : date

MServerProcessing

View

id : string
name : string
description : string

Controller

view : View
model : Model

Request

name : string

Response

name : string

IRUserAccess

RemoteDB

name : string
dbUser : string
dbPasswd : string
tableName : string

MControlDispatcher

MRemoteDB

MAnalyser
MViewing

MController

measure

1..*

1

controlBy

collect

access

0..*

1

SensorNetwork

networkId : string
networkName : string
nodeCount : string

FDisplay

name : string
uname : string
pwd: string

DHandler

DConn : connection

IFUserAccess MFDisplay

IFDataAccess

DBHandler

dbConn : connection

MLocalDB

Aggregate

id : integer
value : any
timeStamp : date

LocalDB

name : string

execute

SensorNode

id : string
name : string
type : string
targetAddress : string
location : geometry
commType : string

0..*

1

SensingControl

state : string

MPowerSaving

Measurement

id : integer
name : string
value : any
timestamp : date

Task

id : string
action : string
aTime : date

Actuator

id : string
name : string
location : geometry
commType : string

MActuating

MActuatorManager

MTopology

MAggregator

MFProcessing

User

id : integer
uname : string
pwd: string

MUserInterface

Sensor

id : string
name : string

MSensing

MSensorManager

FusedData

id : integer
sensorID : string
value : any
timeSpan : date

Sensor-Actuator Subsystem

1..*

Package
Name

Information Control Centre Subsystem

Reference

Class
Name

Notations:

1

Figure 7.7: Data View of RefSEISs

7.3 Use of RefSEISs

The RefSEISs encompasses the architectural knowledge and artefacts mainly a set of stake-
holders, concerns, requirements and designs that can be reused in the construction of new

134

Chapter 7. RefSEISs Architectural Views

SEISs, comparing and improving the existing SEISs. The elements of architecture knowl-
edge and artefacts of RefSEISs are either variable or common elements; hence they can be
changed, deleted or unchanged to satisfy the needs of a particular scenario. However, this
section demonstrates the essential steps towards the construction of new concrete SEIS using
RefSEISs (an instance of the reference architecture for SEISs) as a baseline:

1. Description of the business case that adopts the domain model of SEISs.

2. Description of the stakeholders and their concerns for an instance refer to Section 5.1.

3. Description of the functional and non-functional requirements that should be addressed
by the resulted architecture instance refer to Section 5.2.

4. Description of the global analysis to identify the potential architectural factors and
strategies that have a strong influence over the quality of architectural design 7.1.

5. Selection of the viewpoints and then design the views for this new architecture instance
refer to Chapter 6 and Section 7.2 respectively.

6. Evaluation of the resulted architecture instance as described in Chapter 10.

7.4 Summary

In this chapter, the architecture views of RefSEISs have been derived from the architecture
viewpoints described in Chapter 6 while addressing the stakeholder concerns and require-
ments specified in Chapter 5. These views are abstract such that they do not delve into specific
implementation details. This will be handled while describing the software architectures
instances of the RefSEISs, in which the concepts defined in the reference architecture will be
refined, extended or specialized according to the problem at hand. The views of RefSEISs
adopts some of the essential architectural styles from the existing SEISs to achieve some
critical quality attributes. The proposed RefSEISs can be used as a baseline for improving
and comparing the existing SEISs and designing a new concrete SEIS by concretising the
software elements. In Chapter 8, a proof of concept will be demonstrated to prove the
applicability of the proposed RefSEISs in construction of concrete SEIS. And Chapter 9
demonstrates the mapping of the RefSEISs to the existing SEISs.

135

Part IV

Evaluation

137

Part IV. Evaluation

Part IV demonstrates the application of the proposed RefSEISs on real-world systems.
The proposed RefSEISs is first applied in the construction of the concrete architecture of
SEISs. A forest fire detection system is used as a case of study as described in Chapter
8. In which the requirements of such a system are identified while referring to the defined
requirements of the RefSEISs. Then to fulfil such requirements, an architecture of forest
fire detection system is constructed as referred to the proposed RefSEISs. Similarly, to
demonstrate the applicability of the proposed RefSEISs on the existing SEISs. Some of the
existing systems such as the Forest Fire Monitoring System (IPNAS) [Stipanicev et al., 2018],
Urban Air Quality Monitoring System [Ujang et al., 2013], Flood Risk Assessment System
[Amirebrahimi et al., 2016] and Indoor Air Quality Monitoring System [Abraham and Li,
2016] are mapped onto the RefSEISs as described in Chapter 9. Finally, the RefSEISs is
verified by checking the fulfilment of the specified requirements by the proposed designs in
Chapter 10.

139

Chapter 8

Application: Forest Fire Detection
System

In this chapter, a case study is presented to demonstrate the application of the proposed
RefSEISs on real-world systems. As a proof-of-concept, the proposed RefSEISs from the
Part III is used to build an architecture of a Forest Fire Detection System (FFDS) as an
example of how the proposed architecture RefSEISs can be applied in the construction of new
concrete SEIS. This chapter consists of three sections; Section 8.1 provides an introduction
about the forest fire detection system. Section 8.2 presents an architecture for forest fire
detections system, while the architecture implementation is presented in Section 8.3. Finally,
Section 8.4 provides the overall summary of the chapter.

8.1 Introduction

As explained in Section 3.2, forest fires are one of the greatest evils happening in the world
today which cause significant economic damage, loss of lives of living organisms, climate
change and destruction of properties. The combination of both early detection of forest fires
and application of rapid and appropriate intervention is crucial for the forest fire damage
minimization. This is where SEISs are required to monitor remotely potential forest fire
parameters such as humidity, temperature, smoke, etc. to control and prevent the occurrence
of forest fires. The development of forest fire detection system begins with the architectural
description of the system.

141

Chapter 8. Application: Forest Fire Detection System

8.2 Software Architecture

The architecture design of forest fire detection system follows the description of the RefSEISs
proposed in Part III. In this section, the description of the architecture of forest fire detection
system is provided starting with the stakeholders and concerns in Section 8.2.1, followed by
the establishment of the requirements in Section 8.2.2, and then the design of architecture
views in Section 8.2.3.

8.2.1 Stakeholders and Concerns

The stakeholders and concerns of forest fire detection system are deduced from the RefSEISs
as detailed in Section 5.1 which include development experts (developers, maintainers,
testers, architects), acquirers, operators, and users mainly firefighters, and residents. These
stakeholders and their concerns are as follows:

A. Acquirers

Acquirers initiate, develop, manage and maintain the whole project of development and
maintenance of forest fire detection systems. These stakeholders include fire agencies,
non-governmental organizations, forest management groups, landowners, forest fire
researchers, government and national authorities. These stakeholders concern with
improving public safety, early detection of forest fires, reduce costs of controlling
forest fires and improve the information to predict wildfire behavior and allocation of
adequate firefighters to fight forest fires.

B. Development experts

The development experts include developers, testers, sensor-actuator experts and archi-
tects, are responsible for the actual development of forest fire detection system. Hence
they are concerns with data modeling and access, development, code management and
organization, effective topology configurations of field nodes and installation of the
system on site, etc.

C. Operators

Operators include forests operators are responsible for providing and supporting the
daily operations of the system. Hence they are interested with managing and ensuring
the fulfillment of their services. The concerns of these stakeholders include; data
acquisition, storage, access and transmission, code management and organization,
topology configurations of field nodes and installation of the system on site, etc..

142

Chapter 8. Application: Forest Fire Detection System

D. Users

Users include firefighters, and residents. The users are interested with the use of
the system for getting information on forest fires for both early detection of fires,
well-allocation of firefighters, and effective evacuation of residents in case of fire.

8.2.2 Requirements Establishment

After the identification of stakeholders and their concerns, the functional and non-functional
requirements of the system are identified. These requirements are defined based on this work
motivation and preliminaries of the existing systems which serve as the critical inputs for the
software architecture development.

Functional Requirements

The functional requirements of forest fire detection system are deduced from the functional
requirements of RefSEISs described in Section 5.2.1. In which five primary functions of the
system are identified;

FFN1 Data Acquisition: The system must be able to acquire data from sensors spread over
the forest.

FFN2 Data Storage: The system must be able to store collected data.

FFN3 Forest Fire Analysis: The system must be able to use data processing methods based
on models of prediction and approximation algorithms to predict the occurrence of fire
and generating fire alarms.

FFN4 Visualization: The system must be able to display or visualize data.

FFN5 Sensor Management: The system must be able to configure, manage, and display
the nodes deployed in the forest.

Non-Functional Requirements

The development of a fully functional forest fire detection system requires the following
non-functional requirements or challenges to be considered explicitly as derived from the
non-functional requirements of RefSEISs identified in Section 5.2.2;

FNFN1 Energy Efficiency: The system should be energy efficient. Since the battery-
powered nodes are involved in continuous monitoring of forest parameters. The

143

Chapter 8. Application: Forest Fire Detection System

deployment of these nodes in the forest make it hard and infeasible to be replaced or
recharged often.

FNFN2 Maintainability: The system should be easily maintainable to avoid additional
burden of human involvement in the forest.

FNFN3 Interoperability The system should be interoperable to support the integration of
data originated from various sources or nodes.

8.2.3 Architecture Views

The design of forest fire detection system is a multi-view perspective as referred to the
architecture views of RefSEISs proposed in Section 7.2. In which, the abstract views of
RefSEISs have been concretised to satisfy the needs of forest fire detection system. As
described in Section 1.1, some elements are common while others are variable.

Conceptual View

The conceptual view of forest fire detection system refers to the conceptual view of the
RefSEISs presented in Section 7.2.1. In which the functional entities of the system and their
relationships with each other are described in terms of components and connectors. This
view addresses the concerns of acquirers, users and development experts by describing how
the functionalities of the systems are fulfilled, and the system is decomposed.

The conceptual view addresses the following requirements of the system; FFN1: Data
Acquisition, FFN2: Storage, FFN3: Forest Fire Analysis, FFN4: Visualization, FFN5: Sensor
Management. This is achieved through the configurations of SensorNode, BaseStation, Forest
Fire Detection System Server, Client and RemoteDB components. In which the Client-Server
architecture style, central controller component, and decouple the user interaction model
strategy through MVC pattern are employed as adapted from the RefSEISs. As depicted in
Figure 8.1, in which the data, and control connectors in both sensor-actuator and information
control centre subsystems are concretized into various types of connectors such as IPC,
USB, HTTP, MySQL, UART and 1-Wire to reflect the concrete communication mechanisms
mainly the protocols to be obeyed by each of the ports or roles. Some of the components
specified in the conceptual view of the RefSEISs are common components which have been
adapted as they are in both sensor-actuator and information control centre subsystems, i.e. in
Acquisition, SProcessing, Aggregator, BSDisplay, Analyser, Viewing etc. Other components
have been removed mainly the functionalities of actuators, since this system does not involve
actuators.

144

Chapter 8. Application: Forest Fire Detection System

Figure 8.1: Conceptual View

The sensor-actuator subsystem is decomposed into two main components; BaseStation,
and SensorNode. The BaseStation communicates with SensorNodes through Zigbee connec-
tor. The BaseStation manages both sensor nodes in the forest. The BaseStation integrates data
from various SensorNodes and then transmits the collected data to the information control
centre subsystem for further processing. The SensorNodes measures the environmental
parameters of the forest i.e. temperature, humidity, smoke, etc.. With the application of
decouple the user interaction model strategy and separation of concerns; the BaseStation is
further decomposed into Aggregator for acquiring data from sensors, BSProcessing for local
processing through IPC connectors, BSDisplay for allowing the user (mainly an operator)
to view data, as well as control data acquisition, and BSComm is used for transmission of

145

Chapter 8. Application: Forest Fire Detection System

the collected data or receive information to and from sensor nodes and information control
centre subsystem. The BaseStation defines and sets the policies for collecting and processing
the data (environmental parameters). The SensorNode is further decomposed into Sensing,
SProcessing and STransmitter using 1-Wire and UART connectors for collecting, processing
and transmitting the observed environmental parameters to the BaseStation.

The information control centre subsystem employs a client-server architecture style,
central controller component, and decouple the user interaction model strategy through
Module-View Control (MVC) pattern. A user interface is expressed as a Client component as
an operator uses a port to send requests to the Forest Fire Detection System Server component
as the controller. The interaction between the Client and Server components is facilitated
by HTTP connector. The Server component uses another port to access the model in the
ForestDB component via MySQL connector while processing the requests of the clients and
send them back as views. A Server is further decomposed into Acquisition, ServerProcessing,
Analyser and Viewing. The Acquisition for receiving the observed information from the forest.
The ServerProcessing processes and analyses the observed information through Analyser.
The Viewing generates potential views for displaying information as required by clients.

The communication subsystem is demonstrated explicitly within both subsystems (sensor-
actuator subsystem and information control centre subsystem) through connectors which
encompass protocols to be obeyed by each of the ports or roles. This conceptual configuration
is described using UML Class diagram using special graphical symbols for the component,
connector, role and port to make the description more clear, easily and natural to read.

Module View

The module view of forest fire detection system refers to the module view of the RefSEISs
presented in Section 7.2.2. This view addresses the concerns of operators and development
experts by describing the software implementation modules of the system. This view maps
the elements of the conceptual view into the implementation modules as shown in Table 8.1.

The module view addresses the following requirements of the system; FFN1: Data
Acquisition, FFN2: Storage, FFN3: Forest Fire Analysis, FFN4: Visualization, FFN5: Sen-
sor Management. This is achieved through the configurations of software implementation
modules as depicted in Figure 8.2. In which the module view of forest fire detection system
is designed as a three-layered style; GUI, Application, and Data Access. The strategies;
MVC with a central controller component and modules with low coupled and high cohesion
are adopted as well. The first layer, GUI Layer incorporates visualization modules which
provide and receive information to and from users using MFDisplay and MUserInterface at

146

Chapter 8. Application: Forest Fire Detection System

Table 8.1: Mapping between Conceptual and Module Architecture Views

Conceptual Element Module or Subsystem
Sensing MSensing
SProcessing, STransmitter, 1-Wire
and UART connectors

MSensorManager, MPowerSaving,

Aggregator MAggregator
BSProcessing, BSComm, IPC,
UART and USB connectors

MTopology, MFProcessing

Analyser MAnalysis
Viewing MViewing
DataAcq, ServerProcessing, and
IPC connectors

MServerProcessing, MAlerting

RemoteDB ForestDB
BSDisplay MFDisplay
Client MUserInterface
UAccess IUserAccess
DBAccess IDataAccess

the forest and in the information control centre respectively. The business logic modules of
the forest fire detection system are situated in the Application Layer which consists of the ap-
plication server with MServerProcessing, MController, MViewing, MAlerting and MAnalysis
modules in the information control centre subsystem for integrating, analysing, alerting and
predicting the potential occurrence of forest fires, while MSensorManager, MPowerSaving,
MAggregator, MAcquisition and MFProcessing modules are situated in the sensor-actuator
subsystem for collecting data in the field. All these are common modules adopted as they are,
while the MRemoteDB in the DataAccess Layer of RefSEISs is concretised into the ForestDB
for storing data collected from the forest. The MPowerSaving module is associated with a
duty cycle mechanism to reduce the power consumption of sensor nodes and hence extends
the life cycle of sensors. The communication between layers are facilitated by IDataAccess
and IUserAccess interfaces. Both sensor-actuator and information control centre subsystems
belong to the forest fire detection system.

147

Chapter 8. Application: Forest Fire Detection System

«module»
MController

IRDataAccess

IFUserAccess

SEIS Subsystem

«module»
MAcquisition

Interface

Subsystem

IRUserAccess

Layer

Module

«layer»

«module»

Use-Dependency Relationship
This represents communication
subsystem

Notation:

«module»
MUserInterface

«layer»
GUI

«module»
MFDisplay

«layer»
Application

«module»
MViewing

«module»
MServerProcessing

«module»
MAnalyser

«module»
MTopology

«module»
MFProcessing

«module»
MAggregator

«module»
MSensorManager

«module»
MPowerSaving

«module»
MSensing

«module»
MForestDB

«layer»
DataAccess

Sensor-Actuator Subsystem
InformationControlCentre Subsystem

Figure 8.2: Module View

Execution View

The execution view of forest fire detection system refers to the execution view of the RefSEISs
presented in Section 7.2.3. In which the corresponding modules from the module view are
assigned to the runtime entities and their allocation to the hardware. This view addresses the
concerns of operators and development experts and the specified architectural requirements
of the system by describing how the system is integrated, components of the system interact
and deployed.

As depicted in Figure 8.3, the execution view supports maintainability by utilizing the
strategies inherited from the module view such as client-server architecture style in which
a single-server and base station processes are used to serve many clients. This minimizes
the number of executable processes and associated context switches. Most components
of the execution view of the RefSEISs are variable components which have been refined
to reflect the concrete components of the system. For instance, the ApplicationServer,
ApplicationServerOS, AppContainer, DBServer, SensorNodeOS, and GatewayApplication-

148

Chapter 8. Application: Forest Fire Detection System

Container of RefSEISs are replaced by FFDSServer (Forest Fire Detection System), Linux
OS, FFDSContainer, MySQLServer, Arduino and Raspbian OS respectively. Also the User-
Connection, DBConnection BSConnection, ApplicationConnection, and SensorConnection
are concretized to HTTP, MySQL, HTTP, IPC, and ZigBee respectively.

«MySQL»

Software Resource«application»

«application»
Python IDLE

«application»
Arduino IDE

«module»
MSensing

«application»
PHP

«application»
MySQL DBServer

«module»
MAlerting

«application»
Apache WebServer

«IPC»

Runtime Entity

Platform Resource

Hardware Resource

Module

Communication Path

«module»

«execution environment»

«process»

«device»

Notations:

«process»
SensorNodeManager

«execution environment»
Raspbian OS

«module»
MFDisplay

«execution environment»
Windows OS

«process»
MySQL Server

«module»
MUserInterface

«execution environment»
Linux OS

«execution environment»
Windows OS

«process»
FFDSContainer

«module»
MAcquisition

«module»
MServerProcessing

«module»
MAnalyser

«module»
MViewing

«module»
MController

«process»
WebContainer

«module»
MForestDB

*
«HTTP»

«device»
RUserComputer

«process»
Web Browser

«device»
FFDSServer

«HTTP»

«module»
MPowerSaving

«module»
MSensorManager

«execution environment»
Arduino Uno

1..*«device»
SensorNode

«ZigBee»
«module»

MAggregator

«module»
MFProcessing

«process»
GatewayApplicationManager

«device»
BaseStation

«module»
MTopology

«SSH»

*

«device»
FUserComputer

«process»
Web Browser

Figure 8.3: Execution View

In sensor-actuator subsystem, the devices deployed in the forest include SensorNode,
BaseStation, and FUserComputer. Such devices contain SensorNodeManager, GatewayAp-
plicationContainer and WebBrowser processes respectively which are executed in their
corresponding operating systems. Each process is associated with one or more modules as
described from the module view in Section 7.2.2. The SensorNodeManager process deploys
all the modules of sensor nodes, i.e. MSensing, MSensorManager, and MPowerSaving while
that of BaseStation include MAggregator, MFProcessing, and MTopology are deployed in
the GatewayApplicationManager process and WebBrowser process is used for accessing

149

Chapter 8. Application: Forest Fire Detection System

the system locally in the forest. The SensorNodeManager process communicates to the
higher level nodes mainly a GatewayApplicationManager process through wired or wireless
communication mechanisms.

The information control centre subsystem is deployed into FFDSServer, and RUserCom-
puter devices which consist of one or more WebBrowser, one WebContainer, FFDSContainer
and DBServer processes. These processes are also associated with their corresponding
modules. The WebContainer process handles the requests of users on the server’s side by
deploying MController and MViewing modules. The WebBrowser process deploys MUserIn-
terface module to allow users to access the system. The FFDSContainer process is associated
with MAcquisition, MAnalyser, MServerProcessing, and MAlerting modules for integrating
data gathered by BaseStations, processing, and analysing possible occurrence of fire as well
as alerting the users in case of fire. The DBServer process deploys MForestDB module. The
Application Server is connected to field nodes through BaseStation. Finally, the communica-
tion subsystem is reflected explicitly through the communication paths: Zigbee, IPC, HTTP,
HTTP, and MysQL.

Code View

The code view of forest fire detection system refers to the code view of the RefSEISs
presented in Section 7.2.4. Such a view shows how the modules of forest fire detection
system are mapped into system source files. This view addresses the concerns of operators
and development experts related to how the system is integrated and identified system
modules or components are implemented. The code view shows the directory structure of
forest fire detection system as depicted in Figure 8.4 which contain generated codes of the
system and runtime loadable files that correspond to the runtime processes in the execution
view. Each subsystem (sensor-actuator and information control centre subsystems) has sets
of source components.

The code view is usually platform dependent, this system requires multiple programming
languages to depict their corresponding classes, interfaces and packages. This is reflected
through the variable components of the code view of RefSEISs which were concretized
to their corresponding files. For instance, in the sensor-actuator subsystem, the Gateway
directory consists of Aggregator.py the source file for implementing the gateway application.
The xbee_serial_array.h and cgi-bin libraries are used for facilitating communication to
the sensor nodes and information control centre subsystem. The Config.txt used to store
configuration files of the base station. The SensorNode directory contains MyConfig.h
and arduino.ini for the configurations of the sensor node. The sensor nodes source files

150

Chapter 8. Application: Forest Fire Detection System

is SensorSketch.ino for implementing the sensor node manager. The MQ2.h, DHT.h and
XBee.h are libraries of the sensor node for facilitating communication between smoke,
temperature-humidity and base station.

«source»
paths.php

«source»
func.php

«source»
includes.php

Library

«library»
XBee.h

«library»
MQ2.h

«library»
DHT.h

«configuration»
arduino.ini

«configuration»
MyConfig.h

«library»
xbee_serial_array.h

«library»
cgi-bin

«configuration»
logs.txt

«configuration»
web.php

«configuration»
param.php

«configuration»
db.php

«source»
ColumnSchemaBuilder.php

«source»
Schema.php

«source»
QueryBuilder.php

«source»
NodeView.php

«source»
UserView.php

«source»
StatusView.php

«source»
DataView.php

«source»
FireAnalyser.php

«source»
Status.php

«source»
User.php

«source»
Node.php

«source»
Data.php

«source»
NodeController.php

«source»
UController.php

«source»
SController.php

«source»
DController.php

Composition

DBServer

Configuration«configuration»
Config.txt

Composition

Configuration Description

Library

Source Component

«configuration»

«library»

Package

«source»
GatewayApp.py

GSource

«source»
SensorSketch.inoSNSource

Library

«Source»

Code Group

Notations:

Configuration

Library

FFDSModel

View

Controller

Information Control Centre
Subsystem

Configuration

GUI

ApplicationsSensorNodeBaseStation

Sensor and Actuator
Subsystem

SEIS
CodeGroup

Figure 8.4: Code View

The information control centre directory contains a set of source components for the
intended applications, database services and configurations through ApplicationServer, DB-
Server, and GUI directories respectively. In which the ApplicationServer directory contains
source codes of Controllers, FFDSModels and Views for implementing the software modules
of forest fire detection system through various components, i.e. DController.php, FireAnal-
yser.php, StatusView.php, Data.php, Node.php etc. The Configuration directory consists
of web.php, db.php, param.php and logs.txt for configuring the webserver, database . The
Library contains include.php, func.php and paths.php for declaring public interfaces and
shared files. The DatabaseServer contains DBSource and Configuration directories for
storing the files of implementing and configuring database server respectively. The DBSource
includes Schema.php, QueryBuilder.php and ColumnSchemaBuilder.php while Configuration
directory include db.php. All these files reflect modules and runtime processes that implement
the actual application for analysing the forest fire parameters, predict the occurrence of fire
and issue alerts in case of fire.

151

Chapter 8. Application: Forest Fire Detection System

Topology View

The topology view refers to the topology view of the RefSEISs presented in Section 7.2.5
which describe the connections between the nodes. The topology view addresses the concerns
of operators and development experts while addressing issues related to the how nodes are
distributed, and communicate in the forests while focusing on the construction of energy
efficient system since the system is made up the resource (mainly power, memory and
processing) constrained sensor nodes. The topology view of forest fire detection system is
depicted in Figure 8.5.

1

0..*

0..*

1

«Node»
FUserComputer

«Node»
RUserComputer

Link

Node
NodeType

Notations:

«Node»
SensorNode

0..*

0..1

0..*

1

1

0..*

«Node»
BaseStation

«Node»
FFDSServer

Figure 8.5: Topology View

A tree topology is adopted from the RefSEISs using a ZigBee protocol in the sensor-
actuator subsystem as specified in execution view. Then the SensorNodes are considered to
be end nodes collecting the raw data (smoke, humidity and temperature parameters) from the
forest and send the data to the SensorNode. The SensorNodes are considered to be the routers
responsible for transmitting the collected data and aggregates of other SensorNodes via multi-
hop routings to the BaseStation. The SensorNodes are connected forming a tree topology.
The BaseStation is a coordinator used for managing the SensorNodes, and integrating data
from various SensorNodes and transmit them to the information control centre subsystem
through a FFDSServer for further processing. The BaseStation is also connected to multiple
FUserComputer for allowing the user to access the system in the field. In the information

152

Chapter 8. Application: Forest Fire Detection System

control centre subsystem, the FFDSServer deploys the application and web containers as
well as database server processes and stores data in the DBServer and supports queries from
users through multiple RUserComputers.

Data View

This data view refers to the data view of the RefSEISs presented in Section 7.2.4 as shown in
Figure 8.4. The data view addresses concerns of operators and development experts related
to how data is created, accessed, updated and stored in the system. The data view of the
RefSEISs with Key-Value type table architectural style has been referred, except the classes
related to actuators, i.e. Actuator and Tasking have been omitted. This data view addresses
the FFN2: Storage, and FN5: Sensor Management architectural requirements.

The data view of forest fire detection system is depicted in Figure 8.6. In sensor-actuator
subsystem, the MSensing contains a Sensor class for storing information about the end
nodes (sensors) which sense the environmental parameters and a Measurement for storing
those measured parameters i.e. temperature, humidity and smoke. The MSensorManager
uses a SensorNode as data source for storing information about the sensor node and the
MPowerSaving uses SensingControl for imposing duty cycling on the operations of sensor
nodes. The MAggregator is associated with Aggregate for measurements (aggregates) that
have derived from various sensor nodes through multi-hoping such that the sensor nodes near
the base station send the information collected by other sensor nodes. Both Measurement and
Aggregate store the observed data using Key-Value type table architecture style in which the
data declared of type any to accommodate any type of data. The base station is responsible
with the field processing, contains a gateway which sends the data collected from various
sensor nodes to the information control centre for further processing. The MFProcessing
is associated with Gateway as a data source for storing information about the gateway and
FusedData for storing integrated information derived from various sensor nodes. Both
Aggregate and FusedData support the storage of any data type of sensor nodes (observed
environmental parameter) to be stored in the database without further modifications. A base
station requires a DHandler to connect to the IFUserAccess for accessing the system locally
in the field through MFDisplay which is associated with FDisplay as data entity for storing
information about the display.

153

Chapter 8. Application: Forest Fire Detection System

supervisedBy

supervise

utilizeBy

utilize

require

requiredBy

generatedBy

usedBy

analyzedBy

requiredBy

invokedBy

fowardedBy

respondedBy

requestedBy

generateBy

accessBy

collectBy

aggregateBy

controlBy

measureBy

control

manage

access

requiredBy

fuse

1..*

analyze

access

1

foward

use

respond

requests

invoke

generate

1..*

requiredBy

accessedBy

require

1..*

1

1

1

1

1..*

1

1..*

1..*

1

managedBy

control

aggregate

1..*

1

fusedBy

generate

1

require

1..* 1..*

1..*1

1..*

1..*

1..*

1..*

1..*

1..*

11

1..*

1..* 1..*

1..*

1

1..*

1..*

1

1..*

0..*

Gateway

id : string
location : geometry
timeSpan : date
Commtype : string

require

1..*

1..*

DBHandler

dbConn : connection

IRDataAccessModel

id : integer
name : string
description : string

Analysis

id : integer
name : string
riskIndex : string
status : string
timeStamp : date

«DataType»
cAction

id : integer
action : string
timeStamp : date

MServerProcessing

View

id : string
name : string
description : string

controller

view : View
model : Model

Request

name : string

Response

name : string

IRUserAccess

ForestDB

name : string
dbUser : string
dbPasswd : string
tableName : string

MAlerting

MRemoteDB

MAnalyser
MViewing

MController

measure 1..*

1

controlBy

collect

1

SensorNetwork

networkId : string
networkName : string
nodeCount : string

FDisplay

name : string
dbUser : string
dbPasswd : string
tableName : string

DHandler

DConn : connection

IFUserAccess MFDisplay

«DataType»
Aggregate

id : integer
sensorID : string
targetAddress : string
value : any
timeStamp : date

SensorNode

id : string
clusterid : string
name : string
type : string
location : geometry
commType : string

sensingControl

state : string

MPowerSaving

«DataType»
Measurement

id : integer
name : string
value : any
timestamp : date

MTopology

MAggregator

MFProcessing

User

id : integer
uname : string
pwd: string

MUserInterface

Sensor

id : string
name : string

MSensing

MSensorNodeManager

«DataType»
FusedData

id : integer
sensorID : string
value : any
timeSpan : date
timeStamp : date

Sensor-Actuator Subsystem

1..*

Package

Data Type

Name

«DataType»

Information Control Centre Subsystem
Reference

ClassName

Notations:

1

Figure 8.6: Data View

In the information control centre subsystem, the MServerProcessing responsible with the
business logic of forest fire detection system through a models which encapsulate methods to
access and manipulate data. The information about models is provided by a Model. A Model
utilizes an Acquisition to store information about the observations received from various
gateways in the forest. The Model requires the DBHandler which stores the information
about the connection in the IRDataAccess to access the database MForestDB. The MForestDB
is associated with the ForestDB as a data source for storing information about the database.
The MAnalyser uses Analysis for storing the analysed data. The MAlerting contains Alert is
used for storing information about alerts generated by MServerProcessing. The MViewing
controls the way data is displayed and how the user interacts with the system. The MViewing

154

Chapter 8. Application: Forest Fire Detection System

is associated with View data entity for storing information about the views. The MController
is responsible for handling the events which are triggered by either a user or a system. The
MController contains Controller data entity for storing information about the controller. The
controller accepts requests using a HTTPRequest that stores information about the requests
in the IRUserAccess from the user via a MUserInterface. The MUserInterface has User
which provide the information of the user. Similarly, the controller sends response which its
information is stored in the HTTPResponse in the IRUserAccess to the user. The MController
interacts with both MServerProcessing and MViewing for retrieving the required data and
generating views respectively. This data view supports the FNFN2: Maintainability and
FNFN3: Interoperability.

8.3 Architectural Prototype Implementation

The software architectural prototype of forest fire detection system has been developed based
on the software architecture described in Section 8.2. This section describes such a prototype
of that system starting with the used hardware, assumptions and prototype.

8.3.1 Hardware

The hardware that used for the implementation of forest fire detection system includes; (i)
Two Arduino Uno R3 with XBee transceivers as sensor nodes consisting temperature and
humidity sensor DHT11 and gas smoke sensor MQ for collecting environmental parameters
such as humidity, temperature and smoke from sensors on the forest. (ii) A single Raspberry
Pi Model B with XBee transceiver as the base station. Such a base station aggregates the
observed data from the forest remotely and transmits the collected data to the information
control centre for further processing. (iii) A personal computer as the information control
centre. In which, data processing methods are deployed to analyse and predict the occurrence
of forest fires. The following diagrams show the Raspberry Pi Model B and Arduino Uno R3
which have been used in this prototype.

8.3.2 Assumption

In this thesis, the sensor nodes are assumed to be static. Thus, their addresses and locations
are known. The sensor reports the power level of their battery level as they send data.
Considering that this system collects temperature, humidity and smoke values, the chosen
forest fire danger index was a Swedish index called the Angstrom Fire Index [Willis et al.,
2001]. This index calculates the likelihood of a forest fire occurrence using the observed

155

Chapter 8. Application: Forest Fire Detection System

Figure 8.7: Arduino Uno R3 Figure 8.8: Raspberry Pi Model

temperature and humidity values. The Angstrom fire index calculation (I) is expressed as
[Willis et al., 2001]:

I =
R
20

+[
(27−T)

10
] (8.1)

where

• I= Angstrom Index

• R= Relative Humidity (%)

• T= Air Temperature (oC)

Interpretation:

• >4 : Fire occurrence unlikely (unlikely)

• 4.0-2.5 : Fire conditions unfavourable (low probability)

• 2.5 - 2.0 : Fire conditions favourable (moderate)

• <2.0 : Fire occurrence very likely (high probability)

This calculation, for the designed system, is done in the PHP script responsible for
calculating the likelihood of fire occurrence while processing the received data at the infor-
mation control centre and then send alarms or notify an operator. Similarly, the MQ2 sensor

156

Chapter 8. Application: Forest Fire Detection System

activates the alarm, i.e. buzzer when the observed value is above the threshold value 400 gas
concentration.

8.3.3 Prototype

The prototype of the forest fire detection system intends to predict the probability of fire
using temperature, humidity, and gas smoke data. Temperature and humidity (DHT11) and
gas (MQ2) sensors are connected to a sensor node (Arduino Uno R3). The sensor node
collects environmental information from sensors and sends it to the Gateway (Raspberry
Pi 3 Model B) via Zigbee. The gateway receives the data in XBeeDataFrames format and
after preprocessing sends the appropriate temperature, humidity, and smoke values to API of
Information Control System through a web server in HTTP GET Request format. The web
server uses PHP as the scripting language to process and store the incoming data into the
MySQL database. Then a fire analyser model consumes the data by analyzing the probability
fire probability based on an Angstroms Fire Index formula [Willis et al., 2001]. A user then
views the data and fire status via a web browser that uses a combination of JavaScript and
Google Maps. The information control centre was implemented using LAMP stack with Yii
MVC framework [Safronov and Winesett, 2014]. Figure 8.9 depicts some of the features of
the forest fire detection system.

157

Chapter 8. Application: Forest Fire Detection System

(a) Node Status (b) Phenomena

(c) Notifications (d) Observations

Figure 8.9: Screenshots of the architectural prototype

8.4 Summary

This chapter demonstrated the applicability of the proposed RefSEISs in the construction
of new concrete SEISs mainly forest fire detection system. The RefSEISs encompasses
architecture knowledge such as requirements, viewpoints, views, etc. that can be reused in
the development of particular SEISs. Most of the architecture knowledge of RefSEISs have
been reused, the software architecture description of forest fire detection system employed
short time and efforts. This chapter answered the third research question (RQ3): How to
apply the proposed reference architecture for SEISs?

158

Chapter 9

Validation of RefSEISs

This Chapter describes the conceptual validation of the proposed RefSEISs by mapping it to
some of the existing architectures of SEISs presented in Chapter 3. Differences are depicted,
and a conclusion summarizes the applicability of such reference architecture. The RefSEISs
is mapped to four SEISs as described in their respective sections; (i) Forest Fire Monitoring
System (IPNAS) in Section 9.1, (ii) Urban Air Quality Monitoring System in Section 9.2,
(iii) Indoor Air Quality Monitoring System in Section 9.3, and (iv) Flood Risk Assessment
System in Section 9.4. Finally, Section 9.5 provides the overall summary of the chapter.

9.1 Forest Fire Monitoring System (IPNAS)

The forest fire monitoring system called IPNAS is automated surveillance associated with
automatic detection of forest fires. IPNAS is supported by Ministry of science, education
and sport of Republic Croatia [Stipanicev et al., 2018].

The architecture and the mapping of the Croatian Integral Forest fire Monitoring System
IPNAS onto RefSEISs is shown in Figure 9.1. The software architecture of IPNAS represents
the module view of RefSEISs as described in Section 7.2.2. The IPNAS is based on the
fields units and a central processing unit. The field units consist of video cameras and mini-
meteorological stations which are connected through wireless LAN to a central processing
unit for further processing. The data collected by the field units is stored in the databases
(GIS database, SQL database and Data warehouse) which is represented by field and remote
databases in the Data Access Layer of RefSEISs. With the use of data interface, IPNAS offers
various services including user-friendly camera control, automatic fire detection and archival
retrieval of both data and video which is reflected through user sensor node, processing, con-
trol dispatcher modules in the Application Layer of RefSEISs. The IPNAS is web-based with

159

Chapter 9. Validation of RefSEISs

a user interface displayed in a standard web browser. A user can access the system through
tunnelled SSL (Secure Socket Layer) VPN (Virtual Private Network). This user interface
reflects the user interface modules of RefSEISs. The data access, application and GUI layer
represents software modules for Sensor-Actuator, Communication, and Information Control
Centre subsystems. In regards to IPNAS, the module view of the RefSEISs covers each
element of the architecture though the architecture was too abstract and modules were not
explicitly defined. Therefore, this reflects an appropriate mapping to the definition of the
RefSEISs.

Data Access

Layer

Application

Layer

GUI

Layer

Figure 9.1: Mapping of IPNAS architecture from [Stipanicev et al., 2018] and RefSEISs

160

Chapter 9. Validation of RefSEISs

9.2 Urban Air Quality Monitoring System

The urban air quality monitoring system concerns with monitoring and managing of air
pollution in urban areas using 3D spatial city model in the dispersion model in the aspect
of model scaling, data acquiring, 3D visualization, and visual analysis [Ujang et al., 2013].
This urban air quality monitoring system has been designed in such a way that air quality
parameters are sent directly from the sensor nodes in the sensor-actuator subsystem to the
information control centre subsystem for analysis. Figure 9.2 depicts an integrated data
view of urban air quality modeling with a 3D city model mainly CityGML which is an
open-standard data model and its comparison against the data view of RefSEISs.

Measurement

Measurement

Measurement

Measurement

Measurement

Measurement

Measurement

Measurement
Analyser

AnalyserModel
Analyser

Constant

+InitialDispersionHeight : Double
+AeroDynamicCoefficient : Double
+StreetRoughnessFactor : Double
+WindSpeedDependantFactor : Double

BuildingGeometry

+AxisInformationX : Double
+AxisInformationY : Double
+AxisInformationZ : Double

-getLeeward() : Double
-getWinward() : Double
-getBuildingHeights() : Double

City3DModel

+CityGNLProperties : String[*]

Physical/SpatialData

+ReceptorHeight : Double
+VortexLength() : Double
+RecirculationZoneLength : Double
+TrapezeSlantEdgeLength : Double

RecirculationContribution

-computeContributionValues() : returnType

StreetFurniture

+SpeedProperties : String[*]

StreetGeometry

+SpeedLimits : Int[*]

-computeStreetWidth() : Double
-computeStreetWindSpeed() : Double

DirectContribution

-computeContributionValues()

VehiclesData

+EmissionSource : Type
+NumberOfVehicles: Int
+AreaOccupied : Double

-getPassengerCarSpeed()
-getHeavyVehicleSpeed()
-TrafficTurbulance()

OSPM

+PollutantConcentration : String

-getBackgroundPollutantValues()
-getRecirculationContributionValues()
-getDirectContributionValues()

MeteorologicalData

+WindSpeedRootLevel

-getWindDirection()
-getVerticalTurbulance()
-getInflowContribution()
-getCanyonVentilation()
-getSideWindSpeed()

BackgroundPollutantConcentration

-getBackgroundPollutantValues()

Figure 9.2: Mapping Air Pollution Dispersion Architecture from [Ujang et al., 2013] and
RefSEISs

The CityGML consists of geometrical attributes which are essential in air pollution
dispersion model [Ujang et al., 2013]. The urban air pollution dispersion model involves
the Operational Street Pollution Model (OSPM) which is represented by Model in the Ref-
SEISs. The OSPM determines the concentration of pollution through background pollutant
concentration, direct contribution and recirculation contribution. The background pollutant
concentration, direct contribution and recirculation contribution present the Analysers of
RefSEISs. And finally, the meteorological data, constants, vehicle data, street geometries,
street furniture, 3D city models, building geometries and physical or spatial data are actual

161

Chapter 9. Validation of RefSEISs

data values represented by the Measurements of RefSEISs as some of them originated from
various sensor nodes, i.e. meteorological data, vehicle data, street geometry, etc.. Since
all the elements of the data model of urban air quality system are mapped onto some data
entities of the RefSEISs, then this is appropriate to the definition of the RefSEISs.

9.3 Indoor Air Quality Monitoring System

An indoor air quality monitoring is a SEIS which facilitate the detection and improvement
of the indoor air quality [Abraham and Li, 2016]. The mapping of the architecture of
an indoor air quality monitoring system onto the RefSEISs is shown in Figure 9.3. This
architecture represents a topology view of RefSEISs as described in Section 7.2.5. The main
components of the system include the sensor nodes as both end device and router, the base
station as coordinator, database and web server. The base station aggregates the data from
the sensor nodes periodically using wireless connections and either mesh or tree topology
algorithm. Then the aggregated data is sent to the server and stored in the database server
for further processing. To access the data and manage the system remotely, a web server
provides a convenient web interface for users. The sensor nodes as end devices, sensor
nodes as router and base station represent the SensorNode and BaseStation field nodes in the
RefSEISs, while the database and web server present the Database Server and Application
Server of RefSEISs. The web clients can access the system through client machines i.e.
RUserComputer as reflected in RefSEISs. Considering the architecture of an indoor air
quality monitoring system, each element of such a system is mapped to the corresponding
node of the topology view of the RefSEISs. Therefore this makes the definition of the
RefSEISs to hold.

162

Chapter 9. Validation of RefSEISs

Figure 9.3: Mapping of Indoor Air Quality Monitoring System Architecture from [Abraham
and Li, 2016] and RefSEISs

9.4 Flood Risk Assessment System

The flood risk assessment system intends to provide a detailed assessment of flood risks to
proposed buildings [Amirebrahimi et al., 2016]. The system supports current planning needs,
allows for the identification of the type and the monetary costs of potential flood damages at
building individual component level, and also generates a visualization of damages through
an interactive 3D environment.

Figure 9.4 shows the architecture and mapping of the flood risk decision support system
onto RefSEISs. Such architecture consists of four layers; i.e. Data Layer (DL), Data Access
Layer (DAL), Business Layer (BL), and the Presentation Layer (PL) which reflect the
module view of RefSEISs as described in Section 7.2.2. The Data Layer of the system
contains both required spatial and non-spatial data to undertake the damage/risk assessment
and visualization processes. While the Data Access Layer (DAL) is an intermediate layer
between the Data and Business layers as well as providing simplified access and retrieval
mechanisms for data stored in the data storage, e.g. files or databases reflecting the database
modules of the RefSEISs. Both Data Layer and Data Access Layer belong to Data Access
Layer of RefSEISs. The Business Layer concerns with the execution and maintenance of
the logical processes and rules that are required for calculations. The modules of this layer
include water infiltration modeling, damage and costs assessment, etc., such modules reflect
the server processing, analyser and control dispatcher modules of the RefSEISs. The outputs

163

Chapter 9. Validation of RefSEISs

GUI

Layer

Application

Layer

Data Access

Layer

Figure 9.4: Mapping of Flood Risk Assessment System Architecture from [Amirebrahimi
et al., 2016] and RefSEISs

of these modules are then transmitted to Presentation Layer for the presentation of the system
to the user through a user interface, which in turn the data is sent back to Data Access Layer
for the export and storage. The user interface of this architecture reflects the user interface
module of RefSEISs. The Business Layer represents the Application Layer of RefSEISs.
The Presentation Layer consists of the User Interface (UI) which allows the interactions of
the users to the system, i.e. capturing users requests and presenting responses. Such user
interface reflects the user interface module of RefSEISs. The Presentation Layer reflects the
GUI Layer of RefSEISs.

164

Chapter 9. Validation of RefSEISs

Considering the architecture of flood risk assessment system, the RefSEISs covers each
module of the architecture though modules were not explicitly defined. This demonstrates an
appropriate mapping to the definition of RefSEISs.

9.5 Summary

This Chapter presented one of the RefSEISs evaluation approaches with the intention of
answering the fourth research question: How to evaluate the proposed reference architecture
for SEISs (RefSEISs)?. In which the applicability of the proposed RefSEISs on the existing
SEISs has been demonstrated since the proposed RefSEISs has been successfully used in
mapping the existing SEISs. In such mappings, the key components or elements of the
RefSEISs have been utilized. Then Chapter 10 proceed with the requirements verifications
of the RefSEISs.

165

Chapter 10

RefSEISs Requirements Verifications

In this Chapter, the RefSEISs is verified by checking the fulfilment of the specified require-
ments by the proposed designs. The primary goal of this evaluation is to determine the
practical feasibility of the proposed RefSEISs and demonstrate its adherence to the identified
quality attributes. As part of the validation, the application scenario is recalled and use its
implementation to evaluate the concrete architecture derived from the RefSEISs.

The proposed RefSEISs is required to fulfil the requirements presented in Section 5.2. There-
fore this chapter describes how those specified requirements have been satisfied. Such that
each requirement is associated with the description of the part of the reference architec-
ture that handles such a requirement. This requirements verification is done based on both
functional and non-functional requirements as described in Section 10.1 and Section 10.2
respectively.

10.1 Functional Requirements Verifications

Table 10.1 describes the functional requirements of the RefSEISs and its relation to the
design.

167

Chapter 10. RefSEISs Requirements Verifications

Table 10.1: Functional Requirements Verifications

Requirement Design Verification
(FN1) Data Acquisition: The ref-
erence architecture must allow the
development of SEIS that can ac-
quire data (environmental parame-
ters) in both non-real-time and real-
time from sensors spread over the
field of interest.

The RefSEISs incorporates the SensorNode component,
MAcquistion module, SensorNodeManager, and Sen-
sorNode directory in conceptual, module, execution,
and code views as described in Section 7.2.1, Section
7.2.3 and Section 7.2.4 respectively to enable the data
acquisition in both real-time and non-real time from
various sensors in the field of interest. Furthermore,
the adoption of Client-Server architectural style in the
RefSEISs allows a user to retrieve the data by sending
requests to the server in the information control centre
subsystem. The server is responsible for handling re-
quests of the clients. This can be achieved by the server
to command the sensor node to collect data.

(FN2) Storage: The reference archi-
tecture must support the development
of SEISs that able to store the col-
lected data for further processing.

The RefSEISs consists of the LocalDB, and RemoteDB
in the conceptual view as described in Section 7.2.1,
MLocalDB and MRemoteDB in the module view as de-
scribed in Section 7.2.2, and DBServer in the execution
view as described in Section 7.2.3 software elements
in conceptual, module and execution views. All these
software elements support the storage of data in both
local and remote databases in the field of interest as well
as information control centre which may be located far
from the field. In addition, the data view of the Ref-
SEISs provides the description of data entities involved
from the collection of raw data from the sensor to the
execution of control actions by the actuators in the field
of interests. Such description facilitates the identifica-
tion of suitable columns needed in the creation of those
databases.

Continued on next page

168

Chapter 10. RefSEISs Requirements Verifications

Table 10.1 – Continued from previous page
Requirement Design Verification
(FN3) Phenomena Analysis: The
reference architecture must allow the
development of SEIS that can estab-
lish analysis models on the processed
information to gain an understanding
of the environmental phenomena of
interest, predict the possible occur-
rence of such environmental phenom-
ena.

The RefSEISs utilizes the ServerProcessing and Anal-
yser in the conceptual view as described in Section 7.2.1
and MServerProcessing, MAnalyser and MControlDis-
patcher modules in module view as described in Section
7.2.2, The MServerProcessing, MAnalyser and MCon-
trolDispatcher modules are deployed in AppContainer
modules in the execution view as described in Section
7.2.3. All these software elements of the RefSEISs in-
corporate analysis algorithm to analyse and predict the
environmental phenomena of interest.

(FN4) Visualisation: The reference
architecture must enable the develop-
ment of SEIS that is capable of visual-
izing collected environmental param-
eters, predictions and propagation of
environmental phenomena.

The RefSEISs uses BSDisplay and Client components
in the conceptual view in Section 7.2.1, MFDisplay and
MUserInterface modules in the module view in Section
7.2.2, and the Web Browser processes in the execution
in Section 7.2.3 to allow users of the system to access
the system and hence manage to visualize collected
environmental parameters, predictions and propagation
of environmental phenomena.

(FN5) Phenomena Control: The
reference architecture should support
the development of SEIS that can ma-
nipulate environmental parameters to
control environmental phenomena in
the field of interest.

The RefSEISs incorporates the Actuator component,
MActuating module, ActuatorManager, and Actuator
directory in the conceptual, module, execution, and code
views as described in Section 7.2.1, Section 7.2.2, Sec-
tion 7.2.3 and Section 7.2.4 respectively to enable the
execution of control actions in real-time by various ac-
tuators in the field of interest. These software elements
are associated with control instructions for controlling
a specified environmental phenomenon.

Continued on next page

169

Chapter 10. RefSEISs Requirements Verifications

Table 10.1 – Continued from previous page
Requirement Design Verification
(FN6) Sensor Management: The
reference architecture should enable
the development of SEIS that can co-
ordinate, monitor and control sensors
spread over the field of interest.

The RefSEISs utilizes the BaseStation component of
the conceptual view in Section 7.2.1, MFProcessing
module of module view in Section 7.2.2, and BaseS-
tation device of the execution view in Section 7.2.3
are responsible for coordinating, monitoring and con-
trolling sensors which are distributed over the field of
interest. Additionally, the field nodes networks of SEISs
mainly sensor-actuator networks are modeled as tree-
topology clustering networks through topology views
as described in Section 7.2.5. In which the BaseStation
coordinate, monitor, and control various SensorNodes to
sample, store and transmit data in real-time as described
in the topology view.

(FN7) Actuator Management: The
reference architecture should enable
the development of SEIS that can co-
ordinate, monitor and control actua-
tors spread over the field of interest.

The RefSEISs utilizes the BaseStation component of
the conceptual view in Section 7.2.1, MFProcessing
module of module view in Section 7.2.2, and BaseS-
tation device of the execution view in Section 7.2.3
are responsible for coordinating, monitoring and con-
trolling actuators which are dispersed over the field of
interest. Additionally, the field nodes networks of SEISs
mainly sensor-actuator networks are modeled as tree-
topology clustering networks through topology views
as described in Section 7.2.5. In which the BaseStation
coordinate, monitor, and control various Actuators to
sample, store and transmit data in real-time as described
in the topology view.

10.2 Non-Functional Requirements Verifications

The RefSEISs incorporated the non-functional requirements in two levels; domain and
reference architecture levels.

170

Chapter 10. RefSEISs Requirements Verifications

10.2.1 Domain Level

As explained in Section 2.2.4, the RefSEISs has been assessed using a scenario based
evaluation method. Various scenarios have been created by considering possible ways that
SEISs fulfil the specified domain level requirements described in Section 5.2.2. Since it is
clearly infeasible to identify and include all possible scenarios, thus three scenarios were
defined to demonstrate how the specified requirements are fulfilled; (i) Optimization of power
consumption. (ii) The change of environmental phenomena analysis algorithms, database
or sensor measuring types. (iii) Use of heterogeneous sensor nodes. This is demonstrated
through the evaluation of the proposed forest fire detection system presented in Chapter 8.
Therefore this section described how the aforementioned scenarios using forest fire detection
system cover the evaluation of the recurring non-functional requirements of SEISs domain
mainly energy efficiency, interoperability and maintainability.

Scenario 1: Optimization of Power Consumption

As described in Section 7.2.5, there are various mechanisms for optimizing the power
consumption of sensor networks in various SEISs, i.e. tree-topology clustering control
management [Zhang et al., 2008, Jadhav and Deshmukh, 2012, Liyang et al., 2005], routing
protocols [Jiménez and García, 2015, Castillo-Effen et al., 2004], clustering algorithm
for routing in real-time forest fire detection system [Liyang et al., 2005], state switching
through adaptive duty cycling mechanisms [Jeličić et al., 2011, Kumar and Kishore, 2017,
Marin Perez et al., 2012], and phenomena detection that uses threshold in aggregating the
observed data [Ramesh, 2014]. The RefSEISs adopts a cluster tree-topology architecture
style which is considered to be the most effective, suitable and low-power consumption
topology for sensor networks. This type of topology extends the life cycle of the entire sensor
network, by minimizing the data transmission distance and allowing only the nodes near the
base station to send the data directly while the rest send data through other sensor nodes
(multi-hoping).

Besides the computation burden over battery-powered sensing nodes has been reduced
through an edge computing device mainly a base station that has its local processing unit,
and databases. This is achieved through the use of the MPowerSaving module in module
view as described in Section 7.2.2. In the proposed design, the duty cycle of the sensor
node is directly regulated by time interval, such that the sensor node sample (or collect)
data every two minutes. This implies the sensor node was changing states from sleeping
to awake, listen and then transmit every after two minutes. Similarly, another experiment
was run to measure the voltage used by the sensor node without MPowerSaving module that

171

Chapter 10. RefSEISs Requirements Verifications

contains the duty cycle algorithm, i.e. the sensor nodes samples or collect and transmit the
data simultaneously. The microwatt-meter device has been used for measuring the power
consumption of the sensor node. The results obtained showed that the sensor node without
the duty cycle algorithm consumed high power than the sensor node with the duty cycle
algorithm as shown in Figure 10.1. This implies the use of MPowerSaving module optimizes
the energy consumption of sensor nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

En
er

gy
 (J

ou
le

s)

Time (Minutes)

Energy Measurements vs Time

SensorNodeWithDutyCycle SensorNodeWithoutDutyCycle

Figure 10.1: Power Analysis at the Sensor Node Level

Scenario 2: The change of environmental phenomena analysis algorithms, database or
sensor measuring types

The incorporation of maintainability demands in an early phase of the system design is
crucial for achieving a well-functional and reasonable cost system since the resulted system
will be able to accommodate the changes or new requirements throughout its lifetime.
Maintainability is one of the software quality attributes that can be expressed naturally
through change scenarios [Kazman et al., 1994]. Some of the potential change scenarios
of forest fire detection system as concrete SEIS that could arise as new requirements in the
future include; the change of forest fire detection analysis algorithms, database or sensor
measuring types.

172

Chapter 10. RefSEISs Requirements Verifications

The advancements of technologies and change of demands of the acquirers promote the
need of novel forest fire detection analysis algorithms to suit the demands. The database
schema of the forest fire detection system can be changed to another schema type, i.e. from
SQL to Oracle. Also, the sensor measuring types could be changed to meet new demands
and increasing the accuracy of the system, for instance, the forest fire detection system
can include CCTV cameras in addition to temperature, humidity, and smoke measuring
types. These changes could affect many components or software elements of the system and
possibly led to the reconfiguration of the whole system. However, the forest fire detection
system was designed using a module view as described in Section 8.2.3, which employed
a layered architectural style with loosely coupled software modules. The modules were
associated with the separation of the user interface and database model from the application
logic through MVC strategy. Such design facilitates maintainability by enabling these
changes (e.g. analysis algorithms, database or sensor measuring types) on a per module
basis, i.e. MAnalyser, MForestDB or MSensorManager respectively rather than on the whole
system and hence reduce ripple-effect. This makes the SEISs easier to replace components
or modules, add, remove or to upgrade a component or module without affecting the other
components or modules.

Furthermore, the code view of forest fire detection system described in Section 8.2.3
shows how the specified software module of the system are mapped into system source
files. Such that each module was placed in a certain source file that can be specified using
a different name but contains the functionality of such module, for example, MAnalyser,
and MSensorManager of module view are placed in FireAnalyser.php and SensorSketch.ino
source code files of the code view as presented in Section 8.2.3. Such description enables
multiple developers to focus in different parts of the system concurrently and hence integrate
changes independently of each other.

Scenario 3: Use of heterogeneous sensor nodes

Interoperability enables multiple software systems to incorporate or work with each other.
The interoperability of SEISs is ensured by handling the heterogeneity of sensor nodes at two
levels; data and network as described in Section 5.2.2. The interoperability at the network
level is ensured when multiple and heterogeneous sensor nodes with different protocols
form a network, such that manages to communicate or exchange information with each
other. The communication between heterogeneous sensor nodes of SEISs is handled using
an interoperable topology view as described in Section 7.2.5. The topology view supports
different kinds of standards and communication protocols (wired or wireless). Such a view
manages the heterogeneous sensor nodes effectively through the base stations which contains

173

Chapter 10. RefSEISs Requirements Verifications

gateways for transmitting data to the server for further processing. The base stations possess
the management functionality which tends to reduce memory and computation requirements
on sensor nodes as well as bridge the gap between heterogeneous sensor nodes and to provide
way to manage, query and interact with them, for example a general message exchange
mechanism that uses XML as message style and SOAP as transmission protocol [Vodel et al.,
2012] can be imposed in sensor nodes to enable uniform data to be transmitted across the
network. Furthermore, a user can perform management tasks using a base station, and this
can be remotely located on the Internet.

At the data perspective, the interoperability is ensured by the easy integration of data
originated from heterogeneous sensor nodes. This is achieved using the data view as described
in Section 7.2.5 which focus on how to acquire, process and combine such heterogeneous
data. The data view provides an integration data structure which includes all the SEISs
data entities and their relationship involved in all stages like data measurement, processing,
storage and finally data analysis tasks. In this data view, the sensor node as an object has
been modeled using both structural and behavioural features, i.e. SensorNode provides
sensor global information (name, id, type, etc.), Measurement for describing the variables
that a sensor can measure (temperature, light, humidity, etc.), Aggregate describes data that
collected from other sensor nodes and SensingControl is used for describing the sensor
operating state/mode (on, off, sleep, etc.). Similarly, the base station is associated with
Gateway, SensorNetwork and FusedData for providing the information about the gateway,
network topology and data that is integrated from various sensor nodes. Both Measurement
and FusedData allow any data to be stored. The sensor nodes, base station and server adopt a
Key-Attribute value table architecture style to support the seamless integration of various data
types hence enable the seamless integration of data originated from heterogeneous sensor
nodes. For instance, the forest fire detection system managed to integrate data from three
types of sensors, i.e. smoke, temperature and humidity as shown in Figure 10.2

10.2.2 Reference Architecture Level

At the reference architecture level, the proposed RefSEISs fulfils the following requirements:

NFN4 Generality

The RefSEISs models abstract architectural elements of SEISs independent of existing
technologies and protocols. These elements are considered to be common and variants
abstracted elements for the implementation of SEISs as described in Chapter 7. The
RefSEISs makes good use of best practices while avoiding reliance on specific, and
concrete technologies.

174

Chapter 10. RefSEISs Requirements Verifications

Figure 10.2: Data from Heterogeneous Sensor Nodes

NFN5 Completeness

The RefSEISs covers all the critical dimensions for reporting a reference architecture
as described in [Angelov et al., 2012] as shown in Table 10.2. This demonstrates that
the proposed RefSEISs has achieved the completeness requirement as specified in
Section 5.2.2.

Table 10.2: The RefSEISs against the Dimensions of Reference Architecture

Dimension Sub-Dimension RefSEISs
Context Who defines it? It is defined as a part of a research.

Where will it be used? It aims to facilitate the development and main-
tenance of a SEIS.

What is the maturity
stage of the domain?

The RefSEISs is considered as preliminary be-
cause to the best of our knowledge; a com-
prehensive and robust reference architecture is
missing.

Continued on next page

175

Chapter 10. RefSEISs Requirements Verifications

Table 10.2 – Continued from previous page
Dimension Sub-Dimension RefSEISs
Goal Why is it defined? The RefSEISs aims to facilitate the develop-

ment and maintenance of concrete SEISs by
providing the conceptual, module, code, exe-
cution, topology, and data views as described
in Section 7.2.1, Section 7.2.2, Section 7.2.3,
Section 7.2.4, Section 7.2.5 and Section 7.2.6
respectively.

Design What is described? The RefSEISs is described in terms of high-
level component-connector, modules, runtime
entities, files and directories, nodes-links, and
data entities using conceptual, module, execu-
tion, code, topology, and data views respec-
tively and design principles of the reference
architecture.

How is it described? It is described based on ISO/IEC/IEEE
42010:2011 using UML diagrams.

How is it represented? It is described as high-level representations
using semi-formal approaches.

Instantiation How is it instantiated? The RefSEISs has been instantiated into the
concrete architecture of forest fire detection
system, and its prototype has been imple-
mented.

Evaluation How is it evaluated? The RefSEISs have been evaluated using sce-
narios for functional requirements, quality at-
tributes and its prototype has been assessed.

NFN6 Applicability

The applicability of the RefSEISs has been demonstrated in the construction of the
new concrete architecture of SEISs mainly forest fire detection system and mapping of
the existing SEISs on the reference architecture as described in Chapter 8 and Section
9 respectively.

176

Chapter 10. RefSEISs Requirements Verifications

All the specified requirements of RefSEISs in Chapter 5 have been addressed and verified.
Architecture documentation is never complete because it is impossible to cover all concerns
and details. However, the documentation of the proposed RefSEISs manages to capture
enough knowledge which is relevant and useful for the development and maintenance of
SEISs.

10.3 Summary

This chapter finalized Part IV of the thesis while addressing the fourth research question:
How to evaluate the proposed reference architecture for SEISs (RefSEISs)?. The RefSEISs is
verified by checking the fulfilment of both functional and non-functional requirements with
the designs. Results indicated that the RefSEISs has a positive influence in achieving the
requirements of SEISs. This RefSEIS presents, therefore, good perspectives to be adopted
and contribute to the development and maintenance of SEISs. Then Chapter 11 concludes
this thesis with the summary of the main contributions and future work.

177

Part V

Conclusion

179

Part V. Conclusion

This is the final part of the thesis, in which the conclusion is written, lessons learned and
future research areas identified as presented in Chapter 11.

181

Chapter 11

Conclusion and Recommendations

This is the final chapter which provides the overall findings of this thesis and future research
options. Section 11.1 summarises the work reported in this thesis. After that, the answers
to research questions presented in the Section 1.2 are outlined in Section 11.2. Then the
recommendations for further research follows in Section 11.3. Finally Section 11.4 proceeds
with summarising the contributions of this thesis.

11.1 Thesis Summary

The thesis is divided into five parts. Part I commenced with the challenges which include
the motivation, research objectives and research methodology. Then Part II presented the
foundations which describe the current state of work in software architectures and SEISs.
Both contents are essential for the development of RefSEISs with a strong emphasize on
quality attributes. Part III described the RefSEISs based on ISO/IEC/IEEE 42010:2011
standard and Siemens View Model. Part IV has demonstrated the applicability of the
proposed RefSEISs in the development of forest fire detection system as a concrete SEIS,
mapping to the existing SEISs and evaluation of the RefSEISs. Then the conclusion and
future recommendations are provided in Part V. A central learned lesson of this thesis is that
a systematic approach to deal with software architecture is essential in the context of SEISs.
Since many decisions are repeatedly executed over multiple designs situation in different
SEISs with similar subsystems. Then the reuse of the established best practices through
the use of reference architecture is chosen as a basis for the systematic approach for rapid
development and maintenance of SEISs.

183

Chapter 11. Conclusion and Recommendations

11.2 Answers to Research Questions

The primary objective of this thesis is to propose a reference architecture for smart environ-
mental information systems (RefSEISs) to facilitate the development and maintenance of
SEISs. In Section 1.2, four research questions have been identified to achieve the specified
objective. This section summarizes the answers to these questions based on the findings of
this research.

RQ1: Which are essential aspects or perspectives that are required to describe SEISs?

The analysis on the existing SEISs, i.e. forest fire detection systems, flood detection systems,
air pollution detection systems, landslides detection systems and road traffic control systems
as SEISs representatives have been conducted and described in Section 3.2, Section 3.3,
Section 3.4, Section 3.5 and Section 3.6 respectively. Such analysis revealed that the existing
SEISs are stand-alone solutions which were associated with different architectures covering
various aspects, i.e. conceptual, module, execution, topology and data. Thus this thesis
proposes a set of six viewpoints for SEISs which reflect the essential aspects or perspectives
required in the description of SEISs. Such viewpoints include the conceptual, module,
execution, code, topology and data viewpoints as defined in Chapter 6. The first four
viewpoints namely conceptual, module, execution, and code viewpoints were adopted from
Siemens view model which were modified to fit the context of SEISs.

RQ2: How to describe a reference architecture for SEISs (RefSEISs)?

The second research question is discussed in Part III where a reference architecture for SEISs
is developed. The RefSEIS encompasses requirements, architecture designs, knowledge and
software elements derived from the predefined existing architectures to facilitate the devel-
opment and quality of SEISs. The description of the RefSEISs is based on ISO/IEC/IEEE
42010:2011 standard and Siemens View Model.

The initial fundamental concepts of the RefSEISs documentation is described in Chapter
5, in which the stakeholders, their concerns and the overall architecture requirements were
identified based on the analysis of the existing SEISs in Chapter 2. The acquirers, devel-
opment experts, operators, and users are the primary stakeholders of SEISs. The concerns
of these stakeholders are related to the general idea and feasibility of SEIS, fulfilment and
decomposition of the SEISs functionalities, system integration, creation, access, manipulation
and storage of data, communication mechanisms and protocols involved in SEISs, system
components or modules implementation, maintainability, energy efficiency and interoperabil-
ity concerns of SEISs. These concerns are intertwining and covering the full life-cycle of
SEISs. The analysis of these concerns led to the identification of the recurring functional

184

Chapter 11. Conclusion and Recommendations

and non-functional requirements of RefSEISs as presented in Section 5.2. The functional
requirements include FN1: Data Acquisition, FN2: Storage, FN3: Phenomena Analysis, FN4:
Visualization, FN5: Phenomena Control, FN6: Sensor Management, and FN7: Actuator
Management. The non-functional requirements include both at the domain level; NFN1:
Energy Efficiency, NFN2: Maintainability, and NFN3: Interoperability while at the reference
architecture level; NFN4: Generality, NFN5: Completeness and NFN6: Applicability.

Afterwards, Chapter 7 described the software design of RefSEISs fulfilling the concerns and
requirements in terms of six architectural views referring to their corresponding viewpoints
defined in Chapter 6 and associated with the established architecture knowledge (best prac-
tices) of existing SEISs presented in Chapter 3. Such views include conceptual, module,
execution, code, topology and data views. The conceptual view divides the functionalities of
the system in terms of components and connectors as described in Section 7.2.1. The module
view maps the identified components and connectors into the implementation modules and
their dependency relationships as presented in Section 7.2.2. The execution view assigns the
implementation modules from the module views into runtime entities and their allocation to
the hardware as demonstrated in Section 7.2.3. The code view shows the implementation
modules into files and directories as described in Section 7.2.4. The topology view describes
the relationships and possible connections between the nodes in the field of interest as pre-
sented in Section 7.2.5. And finally, the data view represents the data entities involved in
SEISs as described Section 7.2.6. Each view can be demonstrated using various diagrams.

This multi-views perspective of RefSEISs partitioned SEISs into different architectural views,
based on the principle of separation of concerns, is found to be more effective and useful in
meeting both functional and nonfunctional requirements. The use of UML in the development
of various system software artefacts facilitate the smooth discussions among stakeholders and
the creation of constructive feedback loops. In the design of reference architecture views, the
layered, client-server, and Key-Value type table architecture styles, tree-topology clustering,
a central controller component, and decoupling of the user interaction module strategy
through the MVC pattern have been used to achieve maintainability, energy-efficiency, and
interoperability.

RQ3: How to apply the proposed reference architecture for SEISs?

As a case study, the forest fire detection system as concrete SEIS has been developed to
prove the applicability of the proposed RefSEISs in Chapter 8. Such that the RefSEISs
was applied in the construction of forest fire detection system as a new concrete SEIS
using the instantiation steps described in Section 7.3. When applied, less time and efforts
have been utilized in the construction of the forest fire detection system since most of the

185

Chapter 11. Conclusion and Recommendations

architecture knowledge encompassed by the RefSEISs have been reused. Additionally, the
proposed RefSEISs has been used in mapping the some of the existing SEISs, i.e. Forest Fire
Monitoring System (IPNAS) in Section 9.1, Urban Air Quality Monitoring System in Section
9.2, Indoor Air Quality Monitoring System in Section 9.3, and Flood Risk Assessment
System in Section 9.4. These mappings demonstrated that the proposed RefSEISs can
provide insights into how to improve the existing SEISs since the similarities and differences
have been drawn.

RQ4: How to evaluate the proposed reference architecture for SEISs?

The fourth and last objective is discussed in Chapter 10, which involve the evaluation of the
proposed RefSEISs by discussing some scenarios based on the implementation of forest fire
detection system architectural prototype and demonstrating the fulfilment of the specified
requirements of the RefSEISs by the proposed designs.

In the context of an architectural prototype implementation, the RefSEISs was verified to be
relevant since the specified requirements of both forest fire detection system and RefSEISs
were satisfied. While the mapping of the existing SEISs on the RefSEISs validates the
applicability of the proposed reference architecture in the existing SEISs. The essential
conclusion that can be drawn from this evaluation is that the proposed RefSEISs managed to
meet both functional and non-functional requirements; hence the RefSEISs is considered to
be useful and relevant for the SEISs.

11.3 Future Works

Although in this research, essential software elements or components of the proposed ref-
erence architecture for smart environmental information systems (RefSEISs) have applied
and the specified quality attributes of the reference architecture have been achieved, there
is a room for further improvements. An obvious further step is to create more concrete
architectures with the guidance of RefSEISs since only one case scenario have been used to
demonstrate the applicability of RefSEISs in the creation of concrete SEISs. By conducting
more case studies with the proposed reference architecture, its practical use can be shown
while its quality improved.

In this work, tools were not the primary concern. Then a future research project could
investigate practical, and useful tools or infrastructure for the constructions, and expansions
of concrete SEISs using the RefSEISs (instantiations). The instantiation of this reference
architecture is still performed in ad hoc and based entirely on the expertise of software
architect. This research opens up further investigations regarding the standardization, and

186

Chapter 11. Conclusion and Recommendations

protocols since during development of SEISs, it is essential to have the list of the best suitable
options provided by the tool.

All these proposed future works can be integrated with the high-level views adopted
within this thesis and thus generate a more explicit and detailed reference architecture that
can be used as a guideline for the constructions of SEISs.

11.4 Main Contributions

The SEISs is coupled with the existence of various hardware devices, extensive use of
off-the-shelf components, growth of the size, various stakeholders and multiple program-
ming languages. The inevitable complexity of such systems makes the development and
maintenance of the SEISs to be difficult, time-consuming and require extensive knowledge of
the domain. Dealing with such complexity can be challenging for even most experienced
software engineers such as architects, developers and maintainers if start from scratch. Since,
in spite of the considerable relevance and established architectural knowledge of the existing
SEISs, there is a lack of a reference architecture for SEISs that supports the development of
SEISs. This thesis takes the step towards improving the development and maintenance of
SEISs by developing a reference architecture for SEISs. The main contributions of this thesis
are;

Set of Viewpoints for SEISs: An effective approach to describe an understandable and
easier maintainable software architectural description is by partitioning the software
architecture into a number of separate views. Each view addresses one aspect of
the architecture using a specific set of models from a specific viewpoint. Therefore
this thesis proposes a required set of Viewpoints for SEISs which include conceptual,
module, execution, code, topology, and data viewpoints. Some of these viewpoints,
i.e. conceptual, module, code and execution viewpoints are adopted from Siemens
view model. Furthermore, these viewpoints have been integrated to ensure concep-
tual integrity and consistency in the construction of a well-integrated system. Such
viewpoints are applied in the development of the reference architecture for SEISs
(RefSEISs).

Reference Architecture for SEISs: The description of the RefSEISs follows the ISO/IEC/
IEEE 42010:2011 standard for the architectural description and encompasses the best
practices established in the existing SEISs. Thus, the proposed RefSEISs includes
various software artefacts and knowledge such as the sets of stakeholders, concerns,

187

Chapter 11. Conclusion and Recommendations

requirements and architectural designs that could be reused in the construction of
concrete SEISs architectures.

Applications: The proposed RefSEISs has been applied to several applications. First, the
RefSEIS has been applied in the construction of forest fire detection system as new
concrete SEIS to demonstrate the applicability of the proposed RefSEISs in real
scenarios and verification of the design with the requirements. Secondly, a conceptual
validation is presented in which the proposed RefSEISs is used for mapping some
of the existing SEISs; Forest Fire Monitoring System (IPNAS), Urban Air Quality
Monitoring System, Flood Risk Assessment System and Indoor Air Quality Monitoring
System. These mappings demonstrated the proposed RefSEISs provides insights into
how to improve the existing SEISs since the similarities and differences of existing
SEISs with respect to RefSEISs have been described.

The proposed RefSEISs supports effectively the constructions of new concrete SEISs
since the time and efforts required for developing and maintaining forest fire detection
system have been substantially reduced. And also the mappings have demonstrated that the
proposed RefSEISs can be used to compare and improve the existing SEISs by describing
the similarities, differences, and how such SEISs can be improved. Results indicated that
the RefSEISs has a positive influence in achieving the requirements of SEISs. This RefSEIS
presents, therefore, good perspectives to be adopted and contribute to the development and
maintenance of SEISs. To conclude, this thesis has proposed a reference architecture for smart
environmental information systems (RefSEISs) based on literature reviews and architecture
analysis, underlining its functionality and other factors that influence the development and
maintenance of SEISs. Also, the areas that require further improvements have been identified
to establish perfect RefSEISs.

188

Bibliography

Mohamed Abdelaal. Distributed techniques for energy conservation in wireless sensor
networks. In Doctoral Consortium - DCSENSORNETS, (SENSORNETS 2015), pages
9–20. SciTePress, 2015.

W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H. H. Ammar, Bo. S. Bogazzi, M. Korkmaz,
and A. Mili. Quantifying software architectures: an analysis of change propagation
probabilities. Computer Systems and Applications in The 3rd ACSIEEE International
Conference, 3:124, 2005.

Sherin Abraham and Xinrong Li. Design of a low-cost wireless indoor air quality sensor
network system. International Journal of Wireless Information Networks, 23:57–65, March
2016.

Frank J. Affonso and Elisa Y. Nakagawa. A reference architecture based on reflection
for self-adaptive software. In 2013 VII Brazilian Symposium on Software Components,
Architectures and Reuse, pages 129–138, September 2013.

Tanuj Ahuja, Vanita Jain, and Shriya Gupta. Smart pollution monitoring for instituting aware
travelling. International Journal of Computer Applications, 145(9):4–11, July 2016.

A. R. Al-Ali, Imran Zualkernan, and Fadi Aloul. A mobile gprs-sensors array for air pollution
monitoring. IEEE Sensors Journal, 10(10):1666–1671, October 2010.

Marketing Alasia. An early warning system for forest fires, 2013. URL http://www.fire-watch.
de/system-overview. Accessed: 2017-12-30.

Jaspa Albers. Comparative analysis of the forest fire situation in central-eastern europe l,
2012.

A. Alesheikh, A., K. Oskouei, A., F. Atabi, and H. Helali. Providing interoperability for
air quality in-situ sensors observations using gml technology. International Journal of
Environmental Science & Technology, 2:133–140, June 2005.

Ahmad A. A. Alkhatib. A review on forest fire detection techniques. International Journal
of Distributed Sensor Networks, 10(3), March 2014.

Robert Allen and David Garlan. A case study in architectural modelling: The aegis system.
In Proceedings of the 8th International Workshop on Software Specification and Design,
IWSSD ’96, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7361-3.
URL http://dl.acm.org/citation.cfm?id=857204.858260.

189

http://www.fire-watch.de/system-overview
http://www.fire-watch.de/system-overview
http://dl.acm.org/citation.cfm?id=857204.858260

Chapter 11. Conclusion and Recommendations

Robert Allen and David Garlan. A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol., 6(3):213–249, July 1997. ISSN 1049-331X. doi: 10.1145/258077.
258078. URL http://doi.acm.org/10.1145/258077.258078.

Abdelkrim Amirat. Generic model for software architecture evolution. In 2012 International
Conference on Advanced Computer Science Applications and Technologies (ACSAT),
pages 139–143, November 2012.

Sam Amirebrahimi, Abbas Rajabifard, Priyan Mendis, Tuan Ngo, Soheil Sabri, and Australia
. A planning decision support tool for evaluation and 3d visualisation of building risks
in flood prone areas. In Floodplain Management Association National Conference, May
2016.

Samuil Angelov, Jos J. M. Trienekens, and Paul Grefen. Towards a method for the evaluation
of reference architectures: Experiences from a case. In Software Architecture, pages
225–240, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Samuil Angelov, Paul Grefen, and Danny Greefhorst. A framework for analysis and design
of software reference architectures. Information Software Technologies, 54(4):417–431,
April 2012.

Malik Arslan, Zainab Riaz, Adnan Kiani, and Salman Azhar. Real-time environmental moni-
toring, visualization and notification system for construction h&s management. Journal of
Information Technology in Construction (ITcon), 19:72–91, June 2014.

Ángel Asensio, Carlos Trasvina-Moreno, Ruth Blasco, Álvaro Marco, and Robert Casas.
Wireless sensor networks in traffic management systems. AICT, pages 60–68, April 2015.

Yunus Emre Aslan, Ibrahim Korpeoglu, and Özgür Ulusoy. A framework for use of wireless
sensor networks in forest fire detection and monitoring. Computers, Environment and
Urban Systems, 36(6):614–625, 2012.

World Road Association. A guide for practitioners: Road network opera-
tions and intelligent transport systems), 2018. URL https://rno-its.piarc.org/en/
its-basics-what-its-basic-its-concepts/stakeholders. Accessed: 2018-08-19.

Ioannis N. Athanasiadis and Pericles A. Mitkas. An agent-based intelligent environmental
monitoring system. In Management of Environmental Quality, An International Journal,
pages 238–249, 2004.

Muhammad Babar and Ian Gorton, editors. Software Architecture. Springer-Verlag Berlin
Heidelberg, 2010.

Muhammad A. Babar and Ian Gorton. Software Architecture. Springer, 2011.

M. Bahrepour, N. Meratniat, and P. Havinga. Automatic Fire Detection: A Survey from
Wireless Sensor Network Perspective. CTIT Technical Report Series. Centre for Telematics
and Information Technology (CTIT), Netherlands, 2008.

Ziv Baida. Stakeholders and their concerns in software architectures, November 2001.

190

http://doi.acm.org/10.1145/258077.258078
https://rno-its.piarc.org/en/its-basics-what-its-basic-its-concepts/stakeholders
https://rno-its.piarc.org/en/its-basics-what-its-basic-its-concepts/stakeholders

Chapter 11. Conclusion and Recommendations

Bartosz Balis, Marian Bubak, Danie Harezlak, Piotr Nowakowski, Maciej Pawlik, and
Bartosz Wilk. Towards an operational database for real-time environmental monitoring
and early warning systems. International Conference on Computational Science (ICCS),
pages 2250–2259, 2017.

Elena Baralis, Tania Cerquitelli, Silvia Chiusano, Paolo Garza, and Mohammad R. Kavoosifar.
Analyzing air pollution on the urban environment. In 39th IEEE International Conven-
tion In Information and Communication Technology, Electronics and Microelectronics
(MIPRO), pages 1464–1469, May 2016.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley, 2003.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley, 2012.

Martin Bauer, Mathieu Boussard, Nicola Bui, Francois Carrez, Christine Jardak (SIEMENS,
Jourik De Loof (ALUBE, Carsten Magerkurth (SAP, Stefan Meissner, Andreas Nettsträter
(FhG IML, Alexis Olivereau, Matthias Thoma (SAP, Walewski Joachim, Julinda Stefa,
and Alexander Salinas. Internet of things – architecture iot-a deliverable d1.5 – final
architectural reference model for the iot v3.0, July 2013.

Douglas W. Bennett. Designing Hard Software : The essential tasks. Manning Publications
Co., Greenwich Connecticut, 1997.

Luis Bernardo, Rodolfo Oliveira, Ricardo Tiago, and Paulo Pinto. A fire monitoring ap-
plication for scattered wireless sensor networks - a peer-to-peer cross-layering approach.
In Proceedings of the International Conference on Wireless Information Networks and
Systems (WINSYS 2007), Barcelona, Spain, pages 189–196, July 2007.

Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000. ISBN
0-201-67494-7.

Jan Bosch and Peter Molin. Software architecture design: evaluation and transformation. In
IEEE Engineering of Computer Based Systems Symposium (ECBS), 1999.

Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC® Sensor Web Enable-
ment: Overview and High Level Architecture, pages 175–190. Springer Berlin Heidelberg,
Berlin, Heidelberg, October 2008.

Kechar Bouabdellah, Houache Noureddine, and Larbi Sekhri. Using wireless sensor networks
for reliable forest fires detection. In Proceedings of the 4th International Conference
on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd International
Conference on Sustainable Energy Information Technology (SEIT-2013), Halifax, Nova
Scotia, Canada, pages 794–801, June 2013.

Alan W. Brown and John A. McDermid. The art and science of software architecture. First
European Conference (ECSA) Lecture Notes in Computer Science, 4758:439–466, 2007.

191

Chapter 11. Conclusion and Recommendations

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns. Wiley Publishing,
1996. ISBN 0471958697, 9780471958697.

Natural Resources Canada. Canadian wildland fire information system (cwfis), 2018. URL
http://cwfis.cfs.nrcan.gc.ca. Accessed: 2018-01-30.

Valentina Casola, Andrea Gaglione, and Antonino Mazzeo. A reference architecture for
sensor networks integration and management. In GeoSensor Networks, pages 158–168.
Springer Berlin Heidelberg, 2009.

Mauricio Castillo-Effen, D.H. Quintela, Wilfrido Moreno, Ramiro Jordan, and Wayne
Westhoff. Wireless sensor networks for flash-flood alerting. In Fifth IEEE International
Caracas Conference on Devices, Circuits and Systems, pages 142–146, December 2004.
ISBN 0-7803-8777-5. doi: 10.1109/ICCDCS.2004.1393370.

Rashed Chowdhury. Consensus seasonal flood forecasts and warning response system
(ffwrs): An alternate for nonstructural flood management in bangladesh. Environmental
management, 35:716–25, July 2005.

Andrea L. Clements, William G. Griswold, Abhijit RS, Jill E. Johnston, Megan M. Herting,
Jacob Thorson, Ashley Collier-Oxandale, and Michael Hannigan. Low-cost air quality
monitoring tools: From research to practice (a workshop summary). Sensors, 17(11):2478,
10 2017.

Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures: Methods
and Case Studies. SEI Series in Software Engineering. Addison-Wesley, Boston, MA,
2001.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, and Judith Stafford. Documenting Software Architecture - Views
and beyond; SEI Series in Software Engineering. Addison-Wesley, 2005.

Mario Collotta, Giovanni Pau, Gianfranco Scatà, and Tiziana Campisi. A dynamic traffic
light management system based on wireless sensor networks for the reduction of the
red-light running phenomenon. Transport and Telecommunication, 15(01):1–11, January
2014.

European Commission. European forest fire information system, 1998. URL http://effis.jrc.
ec.europa.eu/. Accessed: 2017-11-30.

Daniel-Ioan Curiac and Constantin Volosencu. Urban traffic control system architecture based
on wireless sensor-actuator networks. In 2nd International Conference on Manufacturing
Engineering, Quality and Production Systems, pages 1–5, March 2010.

C. C. Dakave and M. S. Gaikwad. Landslide detection and alert system using psoc. Interna-
tional Journal of Innovative Research in Computer Science and Technology (IJIRCST), 3
(3), May 2015. ISSN 2347–5552.

192

http://cwfis.cfs.nrcan.gc.ca
http://effis.jrc.ec.europa.eu/
http://effis.jrc.ec.europa.eu/

Chapter 11. Conclusion and Recommendations

Lívia Castro Degrossi, Guilherme G. Do Amaral, Eduardo S. M. De Vasconcelos, João Porto
de Albuquerque, and Jo Ueyama. Using wireless sensor networks in the sensor web for
flood monitoring in brazil. In 10th International ISCRAM Conference, pages 458–462.
ISCRAM Association, May 2013.

Christian Del Rosso. Continuous evolution through software architecture evaluation: a case
study. Journal of Software Maintenance and Evolution: Research and Practice, 18(5):
351–383, September 2006.

Remco M. Dijkman, Dick A. C. Quartel, and Marten J. van Sinderen. Consistency in multi-
viewpoint design of enterprise information systems. Information and Software Technology,
50(7-8):737–752, June 2008.

K. Dimitropoulos, O. Gunay, K. Kose, F. Erden, F. Chaabene, F. Tsalakanidou, N. Gramma-
lidis, and E. Cetin. Flame detection for video-based early fire warning for the protection of
cultural heritage. In Progress in Cultural Heritage Preservation, pages 378–387, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

Liliana Dobrica and Eila Niemelä. A survey on software architecture analysis methods. IEEE
Trans. Software Engineering, 28:638–653, 2002.

Bettina Enders, Torsten Heverhagen, Michael Goedicke, Peter Tröpfner, and Rudolf Tra-
cht. Towards an integration of different specification methods by using the viewpoint
framework. Transactions of the SDPS, 6(2):1–23, 2002.

Miguel Ángel Esbrí, Jose Fernando Esteban, Martin Hammitzsch, Matthias Lendholt, and
Edward Mutafungwa. Dews: Distant early warning system: Innovative system for the
early warning of tsunamis and other hazards, 2011. URL http://www.dews-online.org.
Accessed: 2018-12-28.

Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran Fernandes, Christopher
Power, Gøran K. Olsen, and Steffen Zschaler. Rigorous identification and encoding of
trace-links in model-driven engineering. Software and System Modeling, 10:469–487,
October 2011. doi: 10.1007/s10270-010-0158-8.

EU FP7. Network statistics of environmental change, resources and ecosystems (secure),
2016. URL https://www.gla.ac.uk/research/az/secure/. Accessed: 2018-04-30.

E. Gamma, R. Helm, R.and Johnson, and J. Vlissides. Design patterns. elements of reusable
object-oriented software, 1994.

C. Gane and T. Sarson. Structured Systems Analysis: tools and techniques. Prentice-Hall,
Englewood-Cliffs, NJ, 1977.

Deepak Ganesan, Alberto Cerpa, Wei Ye, Jerry Zhao, and Deborah Estrin. Networking
issues in wireless sensor networks. Journal of Parallel and Distributed Computing, 64(7):
799–814, July 2004.

Zhifu Gao and Linsheng Huang. A forest fire monitoring and early warning system based
on the technology of multi-sensor and multilevel data fusion. In 2015 2nd International
Conference on Electrical, Computer Engineering and Electronics, pages 195–199. Atlantis
Press, January 2015.

193

http://www.dews-online.org
https://www.gla.ac.uk/research/az/secure/

Chapter 11. Conclusion and Recommendations

David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architectural design
environments. SIGSOFT Softw. Eng. Notes, 19(5):175–188, December 1994. ISSN 0163-
5948. doi: 10.1145/195274.195404. URL http://doi.acm.org/10.1145/195274.195404.

Priya George, Disha D. Malavika, and Soumya Deekshitha. Traffic monitoring system
using ir sensors. International Journal for Research in Applied Science and Engineering
Technology (IJRASET), 5(IV):568–578, June 2017.

Jaap Gordijn, Hans de Bruin, and Hans Akkermans. Scenario methods for viewpoint
integration in e-business requirements integration. In Proceedings of the 34th Annual
Hawaii International Conference on System Sciences (HICSS-34)-Volume 7 - Volume 7,
HICSS ’01, page 7032, Washington, DC, USA, 2001. IEEE Computer Society. ISBN
0-7695-0981-9.

Phil Greenwood, Danny Hughes, Barry Porter, Paul Grace, Geoff Coulson, Gordon Blair,
Francois Taiani, Florian Pappenberger, Paul Smith, and Keith Beven. Using a grid-enabled
wireless sensor network for flood management. In 4th ACM Conference on Embedded
Networked Sensor Systems, pages 10–13, January 2006.

Group. IEEE recommended practice for architectural description of software-intensive
systems. IEEE Std 1471-2000, pages 1–23, 2000.

Oliver Günther. Environmental information systems. SIGMOD Rec., 26(1):3–4, March 1997.

Anjaiah Guthi. Implementation of an efficient noise and air pollution monitoring system
using internet of things (iot). International Journal of Advanced Research in Computer
and Communication Engineering, 7(5):237–242, October 2007.

David Harel. Statecharts: A visual formalism for complex systems. Science Computer
Programming, 8(3):231–274, June 1987.

Cian Harrington. Definition and Verification of a Set of Reusable Reference Architectures for
Hybrid Vehicle Development. PhD thesis, Cranfield University, 2012.

Alexander Hars. Rahmenbedingungen für die Nutzung von Referenzdatenmodellen, pages
6–40. Gabler Verlag, Wiesbaden, 1994.

Carl Hartung, Richard Han, Carl Seielstad, and Saxon Holbrook. Firewxnet: A multi-tiered
portable wireless system for monitoring weather conditions in wildland fire environments.
In Proceedings of the 4th International Conference on Mobile Systems, Applications and
Services, MobiSys ’06, pages 28–41, New York, NY, USA, 2006. ACM.

Stefanie Hass, Kai Walter, Frank Niemeyer, Christian Arnhardt, Kristine Asch, Raffig Azzam,
Ralf Bill, Tomas Fernandez-Steeger, Stefan D. Homfeld, and Hartmut Ritter. Sensor-based
landslide early warning system (slews), development of a spatial data infrastructure
with integrated real-time sensor data as a basis for early warning systems exemplifying
landslides. Geotechnologien science report 10, pages 69–70, 2008.

Stefanie Hass, Kai Walter, Frank Niemeyer, Christian Arnhardt, Kristine Asch, Raffig Azzam,
Ralf Bill, Tomas Fernandez-Steeger, Stefan D. Homfeld, and Hartmut Ritter. Slews – a
prototype system for flexiblereal time monitoring of landslides using an open spatial data

194

http://doi.acm.org/10.1145/195274.195404

Chapter 11. Conclusion and Recommendations

infrastructure and wireless sensor networks. Geotechnologien science report, 13:3–15,
January 2009.

Mohamed Hefeeda and Majid Bagheri. Forest fire modeling and early detection using
wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 7:169–224, 2009.

Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0-201-32571-3.

A. Howard, Ashok Kochhar, and J. Dilworth. Application of a generic manufacturing plan-
ning and control system reference architecture to different manufacturing environments.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 213(4):381–396, April 1996.

Jian Huang, Runqiu Huang, Nengpan Ju, Qiang Xu, and Chaoyang He. 3d webgis-based
platform for debris flow early warning: A case study. Engineering Geology, 197(C):57–66,
2015.

ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, January 2001.

ISO/IEC/IEEE. Systems and software engineering - architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pages 1–46,
January 2011.

P. S. Jadhav and V. U. Deshmukh. Forest fire monitoring system based on zig-bee wireless
sensor network, 2012.

Vana Jeličić, Michele Magno, Giacomo Paci, Davide Brunelli, and Luca Benin. Design,
characterization and management of a wireless sensor network for smart gas monitoring.
In 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pages
115–120, June 2011.

Víctor P. G. Jiménez and Julia M. F. García. Simple design of wireless sensor networks for
traffic jams avoidance. Journal of Sensors, 2015:1–7, April 2015.

Simon Jirka, Arne Bröring, Peter Kjeld, Jon Maidens, and Andreas Wytzisk. A lightweight
approach for the sensor observation service to share environmental data across europe.
Transactions in GIS, 16:293–312, 2012.

Youngtae Jo, fJinsup Choi, and Inbum Jung. Traffic information acquisition system with
ultrasonic sensors in wireless sensor networks. International Journal of Distributed Sensor
Networks, 10(5):1–12, May 2014.

Mohamed A. Kafi, Yacine Challal, Djamel Djenouri, Abdelmadjid Bouabdallah, Lyes Khel-
ladi, and Nadjib Badache. A study of wireless sensor network architectures and projects
for traffic light monitoring. Procedia Computer Science, 10:543–552, December 2012.

Igorce Karafilovski, Vladimir Zdraveski, and Dimitar Trajanov. Case studies of forest
fire detection systems. 11th International Conference on Informatics and Information
Technologies (CIIT), pages 243–248, April 2014.

195

Chapter 11. Conclusion and Recommendations

Ruthbetha Kateule and Andreas Winter. Viewpoints for sensor based environmental infor-
mation systems. In Environmental Informatics-Stability, Continuity, Innovation, pages
211–217, September 2016.

Harpreet Kaur and Pardeep Singh. Uml (unified modeling language): Standard language for
software architecture development. International Symposium on Computing, Communica-
tion, and Control (ISCCC 2009), pages 118–125, 2009.

Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. Saam: A method for analyzing the
properties of software architectures. In Proceedings of the 16th International Conference
on Software Engineering, ICSE ’94, pages 81–90, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

K. K. Khedo, R. Perseedoss, and A. Mungur. A wireless sensor network air pollution
monitoring system. International Journal of Wireless & Mobile Networks (IJWMN), 2(7):
31–45, May 2010.

Kavi K. Khedo and Vishwakarma Chikhooreeah. Low-Cost Energy-Efficient Air Quality
Monitoring System Using Wireless Sensor Network, chapter 7. IntechOpen, Rijeka, October
2017.

Ahmad Kheir, Hala Naja, Mourad Oussalah, and Kifah Tout. Overview of an approach
describing multi-views/ multi-abstraction levels software architecture. In Proceedings
of the 8th International Conference on Evaluation of Novel Approaches to Software
Engineering - Volume 1: ENASE, pages 140–148. SciTePress, 2013.

J. Kim, C. Lee, T. Kwon, G. Park, and J. Rhee. Development of an agricultural data
middleware to integrate multiple sensor networks for an farm environment monitoring
system. Journal of Biosystems Engineering, 38:25–32, 2013.

Slobodan Kletnikov, Jugoslav Achkoski, Nikola Kletnikov, Igorche Karafilovski, Rumen
Stainov, and Rossitza Goleva. Design of advanced system for monitoring of forest area
and early detection of forest fires using drones, camera and wireless sensor network. The
13th Annual International Conference on Computer Science and Education in Computer
Science, pages 281–296, 2017.

H. Z. Kotta, K. Rantelobo, S. Tena, and G. Klau. Wireless sensor network for landslide
monitoring in nusa tenggara timur. TELKOMNIKA (Telecommunication Computing
Electronics and Control), 9(1):9–18, April 2011.

P. Kruchten. Architectural blueprints - the “4+1” view model of software architecture. IEEE
Software, 12(6):42–50, November 1995.

Philippe Kruchten, Henk Obbink, and Judith Stafford. The past, present, and future for
software architecture. IEEE Software, 23(2):22–30, March 2006. ISSN 0740-7459.

Kiran D. Kumar and Suresh T. V. Kishore, G. snd Kumar. Fire monitoring system for fire
detection using zigbee and gprs system. IOSR Journal of Electronics and Communication
Engineering, 12:23–27, February 2017.

196

Chapter 11. Conclusion and Recommendations

Somansh Kumar and Ashish Jasuja. Air quality monitoring system based on iot using
raspberry pi. International Conference on Computing, Communication and Automation
(ICCCA2017), pages 1341–1346, 2017.

Hsu-Yang Kung, Jing-Shiuan Hua, and Chaur-Tzuhn Chen. Drought forecast model and
framework using wireless sensor networks. Journal of Information Science and Engineer-
ing, 22(4):751–769, July 2006.

Michael Larsen, Steve De La Salle, and Dave Reuter. A reusable control system architecture
for hybrud powertrains. SAE International, 111(3):2579–2583, 2002.

D. S. Lee, M. K. Holland, and N. Falla. The potential impact of ozone on materials in the uk.
Atmospheric Environment, 30:1053–1065, 1999.

Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980. ISBN 0201042053.

Freya H. Lin, Timothy K. Shih, and Won Kim. An implementation of the cordra architecture
enhanced for systematic reuse of learning objects. IEEE Transactions on Knowledge and
Data Engineering, 21(6):925–938, June 2009.

SW Lin, B Miller, J Durand, G Bleakley, A Chigani, R Martin, B Murphy, and M Crawford.
The industrial internet of things volume g1: reference architecture. Industrial Internet
Consortium, pages 10–46, 2017.

Yu Liyang, Wang Neng, and Xiaoqiao Meng. Real-time forest fire detection with wireless
sensor networks. In Wireless Communications, Networking and Mobile Computing,
volume 2, pages 1214–1217, 2005.

Jesús Lozano, José Ignacio Suárez, Patricia Arroyo, José M. Ordiales, and Fernando Álvareza.
Wireless sensor network for indoor air quality monitoring. In Chemical Engineering
Transactions, volume 30, pages 319–324, January 2012.

David C. Luckham and James Vera. An event-based architecture definition language. IEEE
Trans. Softw. Eng., 21(9):717–734, September 1995. ISSN 0098-5589.

Yajie Ma, Mark Richards, Moustafa Ghanem, Yike Guo, and John Hassard. Air pollution
monitoring and mining based on sensor grid in london. Sensors, 8(6):3601–3623, 2008.

Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. SIGSOFT Softw.
Eng. Notes, 21(6):3–14, October 1996. ISSN 0163-5948. doi: 10.1145/250707.239104.
URL http://doi.acm.org/10.1145/250707.239104.

Rafael Marin Perez, Javier García-Pintado, and Antonio Skarmeta Gómez. A real-time
measurement system for long-life flood monitoring and warning applications. Sensors, 12
(4):4213–4236, 2012.

Silverio Martínez-Fernández, Claudia P. Ayala, Xavier Franch, Helena Martins Marques, and
David Ameller. Towards guidelines for building a business case and gathering evidence of
software reference architectures in industry. Journal of Software Engineering Research
and Development, 2(1):7, August 2014.

197

http://doi.acm.org/10.1145/250707.239104

Chapter 11. Conclusion and Recommendations

Saoudi Massinissa, Bounceur Ahcene, Euler Reinhardt, Kechadi Tahar, and Alfredo Cuz-
zocrea. Intelligent data mining techniques for emergency detection in wireless sensor
networks, July 2016.

Nenad Medvidovic. Formal modeling of software architectures at multiple levels of abstrac-
tion. In In Proceedings of the California Software Symposium, pages 28–40, 1996.

Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. Mod-
eling software architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol., 11(1):2–57, January 2002. ISSN 1049-331X. doi: 10.1145/504087.504088.
URL http://doi.acm.org/10.1145/504087.504088.

Johannes Meier and Andreas Winter. Model consistency ensured by metamodel integration.
In 6th International Workshop on The Globalization of Modeling Languages (GEMOC),
co-located with ACM/IEEE 21st International Conference on Model Driven Engineering
Languages and Systems (MODELS 2018), pages 408–415, Copenhagen, 10 2018. CEUR
Proceedings of MODELS 2018 Workshops.

Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf Reussner,
and Andreas Winter. Single underlying models for projectional, multi-view environments.
In Proceedings of the 7th International Conference on Model-Driven Engineering and
Software Development, page (to appear), Prag, February 2019. SCITEPRESS.

Ulrich Meissena and Frank Fuchs-Kittowskib. Crowdsourcing in early warning systems. 7th
International Congress on Environmental Modelling and Software Society (iEMSs), 2014.

Kheireddine Mekkaoui and Abdellatif Rahmoun. Short-hops vs. long-hops -energy efficiency
analysis in wireless sensor networks. In Third International Conference on Computer
Science and its Applications (CIIA11), volume 825, pages 13–15, 12 2011.

Paulo F. Merson. Data model as an architectural view. Research, Technology, and System
Solutions, October 2009.

James A. Milke and Thomas J. McAvoy. Analysis of signature patterns for discriminating
fire detection with multiple sensors. Fire Technology, 31(2):120–136, 1995.

Pitu Mirchandani and Larry Head. A real-time traffic signal control system: Architecture,
algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9(6):
415–432, 12 2001. doi: 10.1016/S0968-090X(00)00047-4.

Gerrit Müller, Eiri Hole, Robert Cloutier, Dinesh Verma, Roshanak Nilchiani, and Mary
Bone. The concept of reference architectures. Syst. Eng., 13(1):14–27, February 2010.
ISSN 1098-1241.

Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture refinement.
IEEE Transactions on Software Engineering, 21:356–372, April 1995.

Johan Muskens, Michel R. V. Chaudron, and Rob Westgeest. Software architecture analysis
tool - software architecture metrics collection. Proceedings of the 3rd Progress workshop
on embedded systems, Utrecht, Neatherlands, 3:128–139, October 2002.

198

http://doi.acm.org/10.1145/504087.504088

Chapter 11. Conclusion and Recommendations

Johan Muskens, V Chaudron, Michel R, and Christian Lange. Investigations in applying met-
rics to multi--view architecture models. Systems Engineering, pages 372–379, September
2004.

Elisa Y. Nakagawa, Flavio Oquendo, José C. Maldonado, and Milena Guessi. Consolidating
a process for the design, representation, and evaluation of reference architectures. In
Proceedings - Working IEEE/IFIP Conference on Software Architecture 2014, WICSA
2014, pages 143–152, April 2014. ISBN 978-1-4799-3412-6.

Elisa Yumi Nakagawa, Pablo Oliveira Antonino, and Martin Becker. Reference architecture
and product line architecture: A subtle but critical difference. In Software Architecture,
pages 207–211. Springer Berlin Heidelberg, 2011.

Chinh D. Nguyen, Tan D. Tran, Nghia D. Tran, Tue H. Huynh, and Duc T. Nguyen. Flexible
and efficient wireless sensor networks for detecting rainfall-induced landslides. Interna-
tional Journal of Distributed Sensor Networks, 11(11):235954, November 2015.

Priya A.P Nithya and C.K. Vanamala. Wireless sensor network (wsn) based weather mon-
itoring in flood disaster management by using iot. International Journal of Emerging
Technology in Computer Science and Electronics (IJETCSE), 25:27–32, May 2018.

Bello Nuhu, Arulogun O.T., Ibrahim Adeyanju, and Abdullahi I.M. Wireless sensor network
for real-time flood monitoring based on 6lowpan communication standard. APTIKOM
Journal on Computer Science and Information Technologies, 1:12–22, September 2016.

University of Arizona, University of California PATH Program, Savari Networks, Inc, SCSC,
and Econolite. Multi-modal intelligent traffic signal system, 2013.

OMG. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1,
August 2011.

Valiallah Omrani and Seyyed Ali Razavi Ebrahimi. Software architecture viewpoint models:
A short survey. ACSIJ Advances in Computer Science: an International Journal, 2(5):
55–62, November 2013.

World Meteorological Organization(WMO). Manual on flood forecasting and warning, 2011.
URL https://library.wmo.int/. Accessed: 2017-12-30.

Dejan Pajk, Mojca Stemberger, and Andrej Kovačič. Reference model design: An approach
and its application. In Proceedings of the International Conference on Information
Technology Interfaces, ITI, pages 455–460, 2012.

Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. A design
science research methodology for information systems research. Journal of Management
Information Systems, pages 45–77, 2008.

G. Peinel, T. Rose, and R. S. Jose. Customised information services for environmental
awareness in urban areas. 7th World Congress on Intelligent Transport Systems, November
2000.

Luciano Picarelli. Improved knowledge of landslide hazard. Landslides, 11:745–745, October
2014.

199

https://library.wmo.int/

Chapter 11. Conclusion and Recommendations

Peter Popic, D. Desovski, Walid Abdelmoez, and Bojan Cukic. Error propagation in the
reliability analysis of component based systems. In International Symposium on Software
Reliability Engineering (ISSRE), pages 53–62, December 2005.

Philipp Preuner, Anna Scolobig, Joanne Linnerooth-Bayer, David Ottowitz, Stefan Hoyer, and
Birgit Jochum. A participatory process to develop a landslide warning system: Paradoxes
of responsibility sharing in a case study in upper austria. Resources, 6(4), October 2017.
ISSN 2079-9276.

Prima D. Purnamasari, Evan G. Sumbayak, Vicky D. Kurniawan, and Wulan R. Apriliyanti.
Co pollution warning system for indoor parking area using fpga. International Journal of
Reconfigurable and Embedded Systems (IJRES), 2(2):64–75, July 2013.

Janus Putman. Architecting with RM-ODP. Prentice-Hall, Upper Saddle River, NJ, 2001.

Hemadri Prasad Raju. Real time mobile monitoring of air quality in urban areas using solid
state GAS sensors GPS and wireless network. PhD thesis, St Peters University, 2014.

Maneesha Vinodini Ramesh. Design, development, and deployment of a wireless sensor
network for detection of landslides. Ad Hoc Networks, 13:2–18, February 2014.

Kudva Ranjini, A. Kanthimathi, and Y. Yasmine. Design of adaptive road traffic control
system through unified modeling language, February 2011.

Andreas Reidt, Matthias Pfaff, and Helmut Krcmar. Der referenzarchitekturbegriff im wandel
der zeit. HMD - Praxis Wirtschaftsinform., 55:893–906, 2018.

M. Rosemann and W. M. P. van der Aalst. A configurable reference modeling language
information systems, 2007.

Nick Rozanski and Ein Woods. Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. Addison-Wesley Professional, 2 edition, 2011. ISBN
032171833X, 9780321718334.

Nick Rozanski and Eoin Woods. Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. Addison-Wesley, Boston, 2005.

H. Sabit, A. Al-Anbuky, and H. Gholam-Hossein. Distributed wsn data stream mining based
on fuzzy clustering. 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing, pages 395–400, 2009.

Mark Safronov and Jeffrey Winesett. Web Application Development with Yii 2 and PHP.
Packt Publishing, 2014.

F. Samadzadegan, H. Zahmatkesh, M. Saber, and H. J. G. khanlou. An interoperable
architecture for air pollution early warning system based on sensor web. ISPRS - Int.
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1:
459–462, September 2013.

Ricardo Sanz and Janusz Zalewski. Pattern--based control systems engineering. IEEE
Control Systems Magazine, 23(3):43–60, July 2003.

200

Chapter 11. Conclusion and Recommendations

Annisa N. Sari, Adi Susilo, and Edi Susilo. The role of stakeholders in flood management:
Study at ponorogo, indonesia. The International Journal Of Engineering And Science
(IJES), 2:01–10, October 2013.

Richard Schmidt. Software Engineering: Architecture-driven software development. Morgan
Kaufmann, 2013.

Robert W. Schwanke. Architectural requirements engineering: Theory vs. practice, 2003.
URL https://cs.uwaterloo.ca/~straw03/finals/Schwanke.pdf. Accessed: 2018-08-28.

Victor Seal, Arnab Raha, Shovan Maity, Shouvik K. Mitra, Amitava Mukherjee, and Mrinal K.
Naskar. A simple flood forecastig scheme using wirelesss sensor networks. International
Journal of Adhoc Sensor and Ubiquitious Computing, 3:45–60, March 2012.

Kewei Sha, Weisong Shi, and Oliver Watkins. Using wireless sensor networks for fire
rescue applications: Requirements and challenges. IEEE International Conference on
Electro/Information Technology, pages 239–244, May 2006.

Dhirendra Sharma. Real time online early forest fire detection using wsn in the western
himalayan region of india. International Journal of Engineering Science and Computing
(IJESC), 6:3926–3928, 2016.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

Ramiz Shikhaliyev. About methods for visualizing network monitoring. In Problems of
Cybernetics and Informatics (PCI), pages 1–2, September 2012. ISBN 978-1-4673-4500-2.
doi: 10.1109/ICPCI.2012.6486280.

Byungrak Son and Jung-Gyu Kim. A design and implementation of forest-fires surveil-
lance system based on wireless sensor networks for south korea mountains. In IJCSNS
International Journal of Computer Science and Network Security, volume 6, 2006.

Darko Stipanicev, Tomislav Vuko, Maja Štula, and Ljiljana Bodro. Forest fire protection by
advanced video detection system - croatian experiences, October 2018.

Vanessa Stricker, Kim Lauenroth, Piero Corte, Frédéric Gittler, Stefano De Panfilis, and
Klaus Pohl. Creating a reference architecture for service-based systems: A pattern-based
approach. In Future Internet Assembly, pages 149–160. IOS Press, 2010.

Riny Sulistyowati, Hari A. Sujono, and Ahmad K. Musthofa. A river water level monitoring
system using android-based wireless sensor networks for a flood early warning system.
Proceedings of Second International Conference on Electrical Systems, Technology and
Information (ICESTI), pages 401–408, 2015.

Jirapon Sunkpho and Chaiwat Ootamakorn. Real time flood monitoring and warning system.
In Songklanakarin Journal of Science and Technology, volume 33, pages 227–235, April
2011.

K. Tavladakis and N. C. Voulgaris. Development of an autonomous adaptive traffic control
system. In In ESIT ’99 - The European Symposium on Intelligent Techniques, March 1999.

201

https://cs.uwaterloo.ca/~straw03/finals/Schwanke.pdf

Chapter 11. Conclusion and Recommendations

Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin Tu,
Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong. A macro-
scope in the redwoods. In Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, pages 51–63, New York, NY, USA, 2005. ACM.

Edward Udo and Etebong B. Isong. Flood monitoring and detection system using wireless
sensor network. The Asian Journal of Computer and Information Systems (ISSN: 2321 –
5658), 1:2321–5658, 01 2014.

Uznir Ujang, François Anton, and Alias A. Rahman. Unified data model of urban air pollution
dispersion and 3d spatial city model: Groundwork assessment towards sustainable urban
development for malaysia. Journal of Environmental Protection, 4(7):701–712, July 2013.

V. Ustad, A.S. Mali, and S. S. Kibile. Zigbee based wireless air pollution monitoring system
using low cost and energy efficient sensors. International Journal of Engineering Trends
and Technology (IJETT), 10(9):456–460, April 2014.

Antonio Vallecillo and Etsi Informática. Rm-odp: The iso reference model for open dis-
tributed processing. DINTEL Edition on Software Engineering, pages 69–99, March
2001.

Hans van der Veer and Anthony Wiles. Achieving technical interoperability: The etsi
approach. In ETSI White Paper, volume 3, April 2008. URL https://www.etsi.org/images/
files/ETSIWhitePapers.

Francis Vanek, Peter Jackson, and Richard Grzybowski. Systems engineering metrics and
applications in product development: A critical literature review and agenda for further
research. Systems Engineering, 11:107–124, February 2008.

Bharathi Varadharajulu and D. Sridharan. Uml as an architecture description language.
International Journal of Recent Trends in Engineering, pages 230–232, May 2009.

Matthias Vodel, Wolfram Hardt, and René Bergelt. A generic data processing framework for
heterogeneous sensor-actor-networks. International Journal On Advances in Intelligent
Systems, pages 483–492, December 2012.

Brett Warneke and Kristofer S. J. Pister. Mems for distributed wireless sensor networks.
In 9th International Conference on Electronics, Circuits and Systems, volume 1, pages
291–294, September 2002.

Gunarathna W.A.S.R., Dissanayake S.A., Darshana D.G.T., Bandara H.M.P.M., and D. Dham-
mearatchi. Suraki bhoomi: Landslide early warning system. International Journal of
Scientific and Research Publications (IJSRP), 7(7):544–548, July 2017.

WHO. Air quality guidelines for europe, european series 91. Copenhagen, Denmark: World
Health authority Regional Publications, pages 1–198, 1999.

WHO. Ozone and other photochemical oxidants, volume 2, pages 175–186. WHO Regional
Publications, Copenhagen: WHO Regional Office for Europe, 2000.

202

https://www.etsi.org/images/files/ETSIWhitePapers
https://www.etsi.org/images/files/ETSIWhitePapers

Chapter 11. Conclusion and Recommendations

Carla Willis, Brian Van Wilgen, Kevin Tolhurst, Colin Everson, Peter D’Abreton, Lionel Pero,
and Gavin Fleming. The development of a national fire danger rating system for south
africa, 2001. URL http://www.daff.gov.za/doaDev/sideMenu/ForestryWeb/dwaf/cmsdocs/
Elsa/Docs/Fire/DevofNatFireDangerRatingSystem2001.pdf. Accessed: 2018-08-30.

Andreas Winter. Referenz-Metaschema für visuelle Modellierungssprachen. PhD thesis,
Koblenz University, 2000.

Alexander L. Wolf. Succeedings of the second international software architecture workshop
(isaw-2). SIGSOFT Softw. Eng. Notes, 22(1):42–56, January 1997. ISSN 0163-5948.

Elias Yaacoub, Abdullah Kadri, Mohammed Mushtaha, and Adnan Abu-Dayya. Air quality
monitoring and analysis in qatar using a wireless sensor network deployment. In 9th
International Wireless Communications and Mobile Computing Conference (IWCMC),
pages 596–601, July 2013.

Mohd A. M. Yunus, Sallehuddin Ibrahim, Mohd Taufiq M. Khairi, and Mahdi Faramarzi. The
application of wifi-based wireless sensor network (wsn) in hill slope condition monitoring.
Jurnal Teknologi, 73(3):75–84, February 2015.

Junguo Zhang, Wenbin Li, Ning Han, and Jiangming Kan. Forest fire detection system
based on a zigbee wireless sensor network. Frontiers of Forestry in China, 3:369–374,
September 2008.

Kan Zheng, Shaohang Zhao, Zhe Yang, Xiong Xiong, and Wei Xiang. Design and implemen-
tation of lpwa-based air quality monitoring system. IEEE Access, 4:3238–3245, January
2016.

Binbin Zhou, Jiannong Cao, X. Zeng, and Hejun Wu. Adaptive traffic light control in
wireless sensor network-based intelligent transportation system. In IEEE 72nd Vehicular
Technology Conference - Fall, volume 38, pages 1–5, September 2010.

Binbin Zhou, Jiannong Cao, X. Zeng, and Hejun Wu. Adaptive traffic light control of
multiple intersections in wsn-based its. 2011 IEEE 73rd Vehicular Technology Conference
(VTC Spring), pages 1–5, May 2011.

203

http://www.daff. gov.za/doaDev/sideMenu/ForestryWeb/dwaf/cmsdocs/Elsa/Docs/Fire/DevofNatFireDangerRatingSystem2001.pdf.
http://www.daff. gov.za/doaDev/sideMenu/ForestryWeb/dwaf/cmsdocs/Elsa/Docs/Fire/DevofNatFireDangerRatingSystem2001.pdf.

Declaration of Authorship

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt und die allgemeinen Prinzipien wis-
senschaftlicher Arbeit und Veröffentlichungen, wie sie in den Leitlinien guter wissenschaftlicher
Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe.

Ruthbetha Kateule, 17.09.2019

	Title: Reference Architecture for Smart Environmental Information Systems
	Acknowledgements
	Abstract
	Kurzfassung
	Table of contents
	List of figures
	List of tables
	I Challenges
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Outline
	1.5 Summary

	II Background and Related Work
	2 Foundations
	2.1 Software Architecture
	2.2 Reference Architecture
	2.2.1 Definitions
	2.2.2 Quality Criteria
	2.2.3 Architectural Styles and Patterns
	2.2.4 Evaluation of software Architecture

	2.3 Software Architecture Documentation
	2.3.1 ISO/IEC/IEEE 42010:2011 Architectural Description
	2.3.2 Software Architectural Viewpoints Models
	2.3.3 Architectural Description Languages (ADLs)

	2.4 Summary

	3 Related Work for SEIS
	3.1 Overview
	3.2 Forest Fire Detection Systems
	3.2.1 Stakeholders and their concerns
	3.2.2 Functional Features
	3.2.3 Architectures
	3.2.4 Quality Attributes

	3.3 Flood Detection Systems
	3.3.1 Stakeholders and their Concerns
	3.3.2 Functional Features
	3.3.3 Architectures
	3.3.4 Quality Attributes

	3.4 Air Pollution Detection Systems
	3.4.1 Stakeholders and their Concerns
	3.4.2 Functional Features
	3.4.3 Architectures
	3.4.4 Quality Attributes

	3.5 Landslide Detection Systems
	3.5.1 Stakeholders and their Concerns
	3.5.2 Functional Features
	3.5.3 Architectures
	3.5.4 Quality Attributes

	3.6 Road Traffic Control Systems
	3.6.1 Stakeholders and their Concerns
	3.6.2 Functional Features
	3.6.3 Architectures
	3.6.4 Quality Attributes

	3.7 Summary

	4 Existing Reference Architectures
	4.1 Introduction
	4.2 Reference Architecture for Sensor Networks Integration and Management
	4.3 Reference Architecture for Early Warning System
	4.4 Distant Early Warning System (DEWS) reference architecture
	4.5 Reference Architecture for Real-time environmental monitoring, early warning and decision support systems (EMEWD)
	4.6 Internet of Things (IoT) Reference Architecture
	4.7 Industrial Internet Reference Architecture (IIRA)
	4.8 Summary

	III Approach: Reference Architecture for SEISs (RefSEISs)
	5 RefSEISs Requirements Establishment
	5.1 Stakeholders and their concerns
	5.2 RefSEISs Requirements Analysis
	5.2.1 Functional Requirements
	5.2.2 Non-Functional Requirements

	5.3 Summary

	6 Architectural Viewpoints
	6.1 Conceptual Viewpoint
	6.1.1 Structure
	6.1.2 Notations

	6.2 Module Viewpoint
	6.2.1 Structure
	6.2.2 Notations

	6.3 Execution Viewpoint
	6.3.1 Structure
	6.3.2 Notations

	6.4 Code Viewpoint
	6.4.1 Structure
	6.4.2 Notations

	6.5 Topology Viewpoint
	6.5.1 Structure
	6.5.2 Notations

	6.6 Data Viewpoint
	6.6.1 Structure
	6.6.2 Notations

	6.7 Viewpoints Integration
	6.7.1 Establishing Correspondence Relations and Consistency rules
	6.7.2 Realization of Viewpoints Integration

	6.8 Summary

	7 RefSEISs Architectural Views
	7.1 Global Analysis
	7.2 Architecture Views
	7.2.1 Conceptual View
	7.2.2 Module View
	7.2.3 Execution View
	7.2.4 Code View
	7.2.5 Topology View
	7.2.6 Data View

	7.3 Use of RefSEISs
	7.4 Summary

	IV Evaluation
	8 Application: Forest Fire Detection System
	8.1 Introduction
	8.2 Software Architecture
	8.2.1 Stakeholders and Concerns
	8.2.2 Requirements Establishment
	8.2.3 Architecture Views

	8.3 Architectural Prototype Implementation
	8.3.1 Hardware
	8.3.2 Assumption
	8.3.3 Prototype

	8.4 Summary

	9 Validation of RefSEISs
	9.1 Forest Fire Monitoring System (IPNAS)
	9.2 Urban Air Quality Monitoring System
	9.3 Indoor Air Quality Monitoring System
	9.4 Flood Risk Assessment System
	9.5 Summary

	10 RefSEISs Requirements Verifications
	10.1 Functional Requirements Verifications
	10.2 Non-Functional Requirements Verifications
	10.2.1 Domain Level
	10.2.2 Reference Architecture Level

	10.3 Summary

	V Conclusion
	11 Conclusion and Recommendations
	11.1 Thesis Summary
	11.2 Answers to Research Questions
	11.3 Future Works
	11.4 Main Contributions

	Bibliography

