
Department für Informatik

Direct Handling of Ordinary Differential
Equations in Constraint-Solving-Based

Analysis of Hybrid Systems

Dissertation zur Erlangung des Grades
eines Doktors der Ingenieurwissenschaften

vorgelegt von

M.Sc. Andreas Eggers

Einreichung am 23. April 2014
Disputation am 23. Juli 2014

Gutachter:

Prof. Dr. Martin Fränzle
Prof. Dr. Nacim Ramdani (Université d’Orléans, IUT de Bourges)
weitere Mitglieder der Prüfungskommission:

Prof. Dr. Ernst-Rüdiger Olderog (Vorsitz)
PD Dr. Elke Wilkeit

2

3

Abstract

We encode the behavior of hybrid discrete-continuous systems, their initial
conditions, and the target states in whose reachability we are interested in
a bounded model checking (BMC) formula comprising boolean connectives,
arithmetic constraints, and ordinary differential equations (ODEs). These Satis-
fiability (SAT) modulo ODE formulae are the input to our solver, which combines
reasoning for boolean combinations of non-linear arithmetic constraints over
discrete and continuous variables in the form of the iSAT algorithm with vali-
dated numerical enclosures for ODEs, implemented in the VNODE-LP library.
Our scientific contribution (made beforehand in our publications on which this
thesis is based) lies primarily in introducing the SAT modulo ODE formalism
and the combination of iSAT with VNODE-LP into iSAT-ODE, a solver for SAT
modulo ODE formulae. This thesis describes in detail these formalisms, related
work, and the components we use. The tight integration that is necessary for an
efficient solver requires significant effort to avoid unnecessary yet costly recom-
putations, the optimization of the computed enclosures to achieve tight bounds
and thereby powerful pruning of the search space, and several acceleration
techniques. To overcome some of the limitations of VNODE-LP on non-linear
differential equations with large initial value sets, we implement bracketing
systems from the literature, which exploit monotonicity properties of the ODE
systems under analysis, and embed them into the enclosure computation. We
validate our approach experimentally on case studies from the literature and
of our own design and report results and performance measurements. Our
findings show that the direct satisfiability-based analysis of hybrid systems is
feasible without the need of rewriting the ODE constraints, that describe these
systems’ continuous evolutions, into simpler theories. Experimental results,
however, also demonstrate the limited scalability that must be expected for a
problem of undecidable nature and when using algorithms that may have to
pave a search space of exponentially many small boxes in the worst case. While
contributing to the state of the art in satisfiability solving for rich theories and
in the analysis of hybrid systems, we unfortunately cannot provide the ultimate
solution to analyzing arbitrary hybrid systems that play an ever increasingly
important role in our lives.

4

5

Übersetzung der englischen Zusammenfassung

Wir kodieren das Verhalten diskret-kontinuierlicher hybrider Systeme, ihrer In-
itialbedingungen und die Zielzustände, an deren Erreichbarkeit wir interessiert
sind, in einer Formel mit tiefenbeschränkter Abrollung des Transitionssystems
(engl. BMC), die neben booleschen Konnektiven und arithmetischen Ausdrücken
somit auch Differentialgleichungen (engl. ODEs) enthält. Diese Satisfiability (SAT)
modulo ODE Formeln (sinngemäß: Erfüllbarkeit unter Erfüllung der Differen-
tialgleichungsbedingungen) sind die Eingabe zu unserem Erfüllbarkeitsprüfer
(Solver), der das Lösen boolescher Kombinationen von nichtlinearen arithmeti-
schen Bedingungen über diskreten und kontinuierlichen Variablen in Form des
iSAT-Algorithmus kombiniert mit der validierten numerischen Integration von
Differentialgleichungen, die durch die VNODE-LP Programmbibliothek imple-
mentiert wird. Unser wissenschaftlicher Beitrag, den wir im Rahmen der dieser
Dissertation zu Grunde liegenden Publikationen geleistet haben, liegt primär
in der Einführung des SAT modulo ODE Formalismus und der Kombination
von iSAT mit VNODE-LP zum iSAT-ODE-Solver für SAT modulo ODE Formeln.
Diese Dissertation beschreibt detailliert diese Formalismen, angrenzende For-
schungsarbeiten und die Komponenten, die wir benutzen. Die enge Integration,
die für einen effizienten Solver nötig ist, erfordert signifikante Anstrengungen,
um unnötige aber kostspielige Wiederholungen von Einschließungsberechnun-
gen zu vermeiden, um die Genauigkeit der berechneten Einschließungen zu
optimieren und dadurch ein wirkungsvolles Beschneiden des Suchraumes zu
erreichen und erfordert weitere Beschleunigungstechniken. Um einige der Be-
schränkungen VNODE-LPs auf nichtlinearen Differentialgleichungen mit großen
Anfangswertmengen zu überwinden, implementieren wir Systeme oberer und
unterer Schranken (bracketing systems) aus der Literatur, die Monotonieeigen-
schaften des zu analysierende Differentialgleichungssystems ausnutzen, und
betten diese in die Berechnung der Einschließungen ein. Wir validieren unseren
Ansatz experimentell auf Fallstudien aus der Literatur und aus unserem eigenen
Entwurf und berichten die Ergebnisse und Leistungsmessungen. Unsere Ergeb-
nisse zeigen dass die direkte erfüllbarkeitsbasierte Analyse hybrider Systeme
machbar ist, ohne Differentialgleichungsbedingungen, welche die kontinuierliche
Entwicklung dieser Systeme beschreiben, in einfachere Theorien übersetzen zu
müssen. Die experimentellen Ergebnisse demonstrieren aber auch die begrenzte
Skalierbarkeit, die man erwarten muss bei einer unentscheidbaren Problem-
klasse und der Verwendung von Algorithmen, die im schlimmsten Fall einen
Raum exponentiell vieler kleiner Suchboxen überdecken müssen. Während die
Arbeit also zum Stand der Forschung im Bereich der Erfüllbarkeitsprüfung über
reichhaltigen Theorien und in der Analyse hybrider Systeme beiträgt, können
wir leider keine ultimative Lösung des Problems der Analyse beliebiger hybrider
Systeme liefern, welche eine immer größere werdende Rolle in unserem Alltag
spielen.

6

Acknowledgements

Without Martin Fränzle, this thesis would not exist. I came to his working group
before he came back from Lyngby to Oldenburg, when I was hired by Christian
Herde as a student assistant. Since then I wrote my Bachelor’s and Master’s
thesis under his supervision and he offered me a job in AVACS to delve deeper
into the topics that had emerged from the open questions raised by my Master’s
thesis. Throughout all these many years he offered his guidance and advice, but
it never felt like being steered into one direction. It was much more like having
an open ear and brilliant mind available when I felt that I got stuck or could not
decide on the best way to proceed. We would then analyze together where our
previous steps had taken us, discuss the many possible directions, and thereby
distill the decision, which course to set. I am deeply grateful for all the freedom
he gave me in this endeavor and, despite the many times I may have felt not up
to it, for offering me this great challenge.

It seems to me that in science it is quite common to meet people at conferences
or workshops, discuss the great potential of cooperating and joining different
approaches, only to later find that the cooperation somehow did not materialize.
I am glad that in the case of Nacim Ramdani, this was not the case. He invited
me to give a talk at the Small Workshop on Interval Methods in Lausanne in
2009, we invited him to Oldenburg half a year later, and since then, we have
had numerous virtual and luckily also a number of real meetings, working hard
to combine our approaches and achieving publishable results. This thesis has
greatly benefited from this cooperation and I am very happy that Nacim agreed
to co-referee my thesis, as much as I am grateful for the welcoming atmosphere
and his hospitality during my stays at Bourges.

Thanks must definitely also go to Ned Nedialkov. Writing our papers together,
exchanging our progress across the time zones—so that paper writing could
follow the sun over the Atlantic—still somewhat amazes me. His insights into
VNODE-LP and his support when I felt mathematically unsure, his correction
sweeps over our papers, and the good questions he asked all have an important
impact also on this thesis.

Of the many roads not traveled during these years, one would have led
towards Taylor Models and I am happy that Markus Neher accompanied me
on the first steps on that road. We had a number of interesting discussions
and meetings, especially one in Prague with Stefan Ratschan, but ultimately
the decision to use VNODE-LP and not Taylor Models for handling ODEs in
our approach separated our paths. Nonetheless, I am grateful for his help in
understanding Taylor Models and their potential, which I am sure will play an
important role also in the analysis of hybrid systems.

7

8

I cannot start to thank all my colleagues from AVACS, the Hybrid Systems
research group, OFFIS, and the university for the many many hours of fruitful
or funny, scientific or social conversations. Regarding this thesis itself, the close
cooperation with Stefan Kupferschmid, Karsten Scheibler, Natalia Kalinnik, and
Tobias Schubert from Bernd Becker’s group in Freiburg on the development of
iSAT was fundamental. In Oldenburg, Christian Herde and Tino Teige deserve
the greatest thanks not only for their scientific contribution to the iSAT solver,
but also for the research atmosphere we shared. Christian was my mentor when
I started as a student assistant, and his experience, his advice, his opinions,
and his passion for research and teaching have been inspiring. With Tino, I did
not only have the great pleasure to work together on many topics related to his
Stochastic SMT research, but he colored up our routine. Life could never be
dull with all these great people around, and I am grateful for this diversity of
personalities that I was allowed to enjoy during these years.

My life outside the office was enriched by my family and friends. They allowed
me to occasionally get all the research problems out of my mind—which is so
important to liberate one’s perspective on the scientific questions and thereby
to gain a chance for a fresh start come Monday morning. I am deeply grateful to
my parents for their encouragement and example to never give up from early
on in my life, my mother in her struggle to live, which she lost far too early,
and my father to keep our family going ever since, and to give me the chance
to study and find my way. When I started my research, my sister’s daughter
was born, and experiencing her and her siblings’ steps of growing up is truly
wonderful, albeit also a bit frustrating if one compares the fact that a child can
learn everything from mastering its arms and legs to walk and climb trees to
even the acquisition of language with the little amount of things that one has
learned in the same time and that can be summarized in this thesis. Quite a
lesson in humility.

Only a few years back, Joke came into my life and has made it better by so
much with his love and support. I am most thankful that I may experience our
love and deeply hope that it never ends.

Scientists far too seldom thank the true supporters of our profession—the
artists who rekindle our spirits with their music or acting, their writing, their
melodies, their wit and humor. They had a tremendous impact in keeping me
going when my mind could not find answers to the scientific questions in front
of it or could not really relax after thinking too long about something. Musicians
and actors, screen writers and poets of all professions: be thanked for your
service to keeping scientists go on.

Nearly last, but by no means least, I would like to thank Ernst-Rüdiger
Olderog and Elke Wilkeit for serving on my thesis committee, for taking the
time to get involved with the ideas presented in this thesis, and for the friendly
atmosphere they brought to my thesis defense.

Formally, I shall add thanks at the end in the following way: This work
has been supported by the German Research Council DFG within SFB/TR 14
“Automatic Verification and Analysis of Complex Systems”. But I would like
to add that I am truly grateful to the DFG for offering me a temporary home
in science, one which I enjoyed living in, and for giving me the opportunity to
make—hopefully meaningful—contributions to the state of the art.

Contents

1 Introduction 13
1.1 Context and Motivation . 13
1.2 Structure of this Thesis . 15
1.3 Contributions and Prior Publication 15

2 Foundations and Problem Statement 19
2.1 Hybrid Systems . 19
2.2 Encoding by Formulae Involving Ordinary Differential Equations 31
2.3 Satisfiability Modulo ODE . 37
2.4 Related Work . 43

3 Algorithmic Approach 55
3.1 The Core iSAT Algorithm: Learning Conflicts by Branching and

Pruning Intervals . 55
3.1.1 Interval Constraint Propagation 56
3.1.2 Input Language and Preprocessing 62
3.1.3 Unit Propagation . 66
3.1.4 Branching by Splitting Intervals 67
3.1.5 Implication Graph and Conflict Analysis 68
3.1.6 The iSAT Solver . 70

3.2 Enclosing Solution Sets of Ordinary Differential Equations 77
3.2.1 From Approximations to Enclosures 80
3.2.2 Fighting the Wrapping Effect 84
3.2.3 Automatic Differentiation 91
3.2.4 VNODE-LP . 91

3.3 Embedding ODE Enclosures into iSAT 94
3.3.1 Structure of the iSAT-ODE Solver 94
3.3.2 Extended Solver Input . 97
3.3.3 Deduction for ODE Constraints 101
3.3.4 Computation of Enclosures and Refinements 105
3.3.5 Backward Deduction . 115
3.3.6 Utilizing Deduction Results in iSAT-ODE 118
3.3.7 Acceleration Techniques 121
3.3.8 Direction Deduction . 124

3.4 Avoiding Repeated Enclosures 127
3.5 Building Bracketing Systems Automatically 130

9

10 CONTENTS

4 Experimental Evaluation 137
4.1 Bounded Model Checking Case Studies 137

4.1.1 Two Tank System . 137
4.1.2 A Conveyor Belt System 145
4.1.3 Comparison with hydlogic 152

4.2 Range Estimation for Hybrid Systems 161

5 Conclusions 167
5.1 Summary . 167
5.2 Topics for Future Work and Open Questions 169

Bibliography 177

Imagine, you design a machine and you want to know before building it from
actual materials whether it will work. So you build a virtual model. Your model
contains the relevant physics, maybe some mechanics or electrical components,
and with some probability, it also contains some form of control, likely in the
form of a digital controller, potentially mixed with some analog circuits that
realize low-level control functions. From the innocent onset to build a model for
your machine, you have slipped into creating a mixture of discrete and continuous
components, a hybrid system, and you are lucky that the tool you created your
model with supports simulation, since otherwise you would not have the faintest
idea about whether all the interactions in your model behave in the way you
intended. But does it really work? Does your system really behave as stated in
the specification your machine is requested to fulfil? You simulate and you do
not find any bugs anymore after changing and tweaking the model a lot, but
that does not mean that the system will be working correctly in every possible
situation—after all, the continuous world offers an infinite number of starting
points and influences, some of which might lead to disastrous consequences.
You have a problem and this thesis does not offer the solution. It offers a glimpse
at what might be possible if a lot more time and energy is spent on continuing
this research. It pioneers a combination of safe mathematical evaluation of the
continuous dynamics described by ordinary differential equations with automatic
satisfiability search for formulae consisting of boolean, integer, and real-valued
variables—all of which are the natural ingredients of hybrid system models.

12 CONTENTS

Chapter 1

Introduction

1.1 Context and Motivation

Hybrid systems are everywhere. Wherever machines are controlled by comput-
ers, discrete and continuous components interact, sensors sample physical
quantities, digital controllers undergo mode changes and define set points for
actuators, which finally manipulate the physical world and whose effects are
then measured again. But also some biological systems can be thought of as a
combination of continuous evolution and discrete mode changes. Water crys-
tallizing into ice. Chemicals interacting and forming products whose dynamics
differ from the reactants. A teacup’s continuous movement stopped when it
comes into contact with the surface of a table: a mode change, different dynamic
laws.

Hybrid systems allow a combined approach at modeling the world. The world
becomes discrete if you go far enough down to the smallest relevant pieces, if
you model individual atoms or split a deforming piece of metal into thousands
of interacting objects. The world becomes continuous if you go far enough
up such that all individual pieces blur away and only large-scale effects stay
observable. Models can also be made finite or be made continuous by explicitly
accepting imprecision, by sampling time, by quantizing continuous variables,
by smoothing abrupt changes such that they become continuous.

Accepting imprecision actually is a core principle in modeling: models are
built to serve a particular purpose, to make particular observations about the
system that is modeled without the need for access to the actual system. Models
need only to be good enough such that these observations can be made. Precision
however comes in different flavors: merely approximating an observed behavior
will lead to a model that will only give approximate answers, whose reliability
may be too low or in fact unknown for the purpose of the model. However, if
imprecision is taken into account explicitly in the model, if unknown parameters
are e.g. represented by intervals covering the entire range of their possible values,
models are still imprecise, but at the same time, they cover all behavior of the
actual instance, they not only approximate, but instead overapproximate the
actual system. Introducing a mode change where the actual system evolves
with complex continuous dynamics may be imprecise, but if the conditions,
under which the dynamic change happens, are overapproximated by the added

13

14 CHAPTER 1. INTRODUCTION

discrete mode change, this approach of modeling a complex continuous system
by a hybrid system may even allow the generation of a significantly simpler
model.

Not only the modeling, but also the analysis of the model is imprecise for
most kinds of continuous and hybrid models. Numerical simulation introduces
imprecision stemming from rounding in floating-point arithmetics or truncation
errors in the integration of differential equations. Sometimes simulators use
fixed step sizes and thereby may perform mode changes at a later time point
than they would actually occur. All good gained from overapproximating the
model may be counteracted by the approximations made e.g. in a traditional
simulation tool.

If adherence to a specification is the goal of the analysis, simulations are
most likely to be incomplete, since neither all possible initial conditions nor all
possible inputs can be tested explicitly with a finite number of simulation runs.
No matter how close samples are chosen, there is still a chance that a value in
between may cause undesired behavior. In practice, systems are often designed
to be robust such that slightly different initial conditions and inputs will lead to
comparable system states, avoiding chaotic behavior that would make system
design unmanageable. While formal notions of robustness have been exploited
to reach completeness, in today’s practice a lot of the perceived certainty about
the results from simulation and testing may be a form of misguided trust in a
fuzzy notion of robustness and may therefore be without measurable degrees
of completeness or coverage. A rigorous mathematical analysis would allow a
much cleaner certificate of correctness, especially if the consequences of failures
may be fatal for life, health, a mission, or a company’s business.

The problem however is, that it is a hard problem. The combination of
discrete and continuous aspects, their interaction, the infinite search space
stemming from the continuous domains, and the huge amount of branching
stemming from the non-determinism that is used to overapproximate the system
behavior, they all complicate the analysis of hybrid systems. Not much is
needed to make the problem even theoretically undecidable, rendering any
attempt at building a general algorithm for the automatic analysis of hybrid
systems a futile endeavor clearly bound to fail in at least some cases. The
computational complexity—even the simplest building block, a propositional
satisfiability search, is already well-known to be NP-complete—additionally
causes concern about the practical applicability of any incomplete algorithm
that one may think of. Why try it anyway?

If successful, automatic analysis of hybrid systems, even if confined to quite
abstract models and certainly requiring significant effort for building suitable
models, may be a game changer in the development process of complex systems.
It may allow new design loops where automatic verification analyzes models
built by automatic synthesis tools and gives feedback about errors. It may be
the single most helpful tool during engineering, when a debugger complains
about an interaction overlooked by the system designer—far in advance of any
expensive prototyping. Thinking of ever improving compilers and their help in
detecting programming errors, an analysis engine that could be plugged into a
tool like Matlab to automatically check a specification on the fly, would certainly
be highly supportive. Checking the most abstract, most high-level models of
the system early in the design process will save time and cost, reduce redesign
loops, will allow engineers to be more audacious about their designs and thereby

1.2. STRUCTURE OF THIS THESIS 15

open new, more efficient, design options to them previously thought to be too
dangerous because they could not be explored sufficiently deeply. Having a tool
at intermediate stages that checks refined models of subsystems against the
relevant contracts from the specification will be equally helpful. This is why
computer scientists have made steps into this direction despite their knowledge
that theoretical results may stand in their way at some point and that hardware
may be too limited to get results for real-world models. This is why in this
thesis an approach is explored, that attempts to combine techniques which each
handle individual aspects of hybrid system’s analysis. This is why even limited
success with regard to the system sizes that can be handled today, means a
step forward towards a great goal on an adventurous journey that may take a
few more decades of traveling time.

1.2 Structure of this Thesis

This first chapter is dedicated to the motivation of and introduction into the topic.
In the second chapter, the problem is developed in more detail, introducing
hybrid systems formally and their encoding by constraint systems involving
ordinary differential equations (ODEs). The second chapter also briefly sketches
the surrounding research landscape. The core of this thesis lies in chapters three
and four which present the algorithmic approach, a combination of interval-
based constraint solving with safe numerical enclosures for ODEs and the
experimental evaluation of this algorithm’s implementation on a number of case
studies. Chapter five finally concludes the thesis with a summary of the findings
and an outlook on potential future work.

1.3 Contributions and Prior Publication

This thesis as a document contains little that has not been published beforehand
in journals or workshop and conference proceedings by the author together
with other researchers, who contributed mostly their thoughts in discussion,
sometimes their guidance, concrete software in the case of Ned Nedialkov in
the form of the VNODE-LP library [Ned06], its documentation and insights into
its implementation, and who participated in the interpretation of results and
the writing of the papers. In the scientific context of a DFG-funded research
project, an over-six-year research without intermediate and joint publications
would have been impossible and therefore clearly the desired goal of producing
doctoral dissertations not attainable without accepting the fact that these theses
will mostly combine research that has been peer-reviewed and published before
the thesis is written. This is a well-accepted state of affairs in computer science
and those who grade this dissertation are well aware of it. It needs to be stated
clearly and prominently at this point nonetheless to make it visible to every
reader that this document is known to consist to its largest degree of material
that has been published before—though mostly in a less detailed manner than
possible here. The greatest efforts have been made to clearly name all these
publications in the respective chapters, but no attempt is made to explicitly
quote these excerpts and highlight all the small and larger changes that need to
be done for the sake of readability in this larger context. The proposed referees

16 CHAPTER 1. INTRODUCTION

of this thesis have been coauthors of the relevant publications and are therefore
the best to judge on the author’s contribution to those original papers and hence
to also judge on whether these contributions to the state of the art are suitable
as doctoral dissertation.

Research Question. Before discussing the necessary formal notions and fun-
damentals in the next chapter, an abstract definition of the research question is
already possible and useful: the goal of this thesis is to examine a satisfiability-
based approach to hybrid systems verification, i.e. to find a way to analyze
hybrid systems automatically via checking the satisfiability of formulae that
represent all their possible behavior. An explicit goal of this approach is to avoid
those abstraction steps during modeling that have to be employed when the
formula class does not directly support ordinary differential equations. The the-
sis therefore strives to answer the research question, how existing satisfiability
solving can be extended to cover a class of formulae that contain ODEs and
thereby allow a direct encoding of hybrid systems.

Contributions to the State of the Art. In the original papers on which this
thesis is based, the author of this thesis made the following scientific contribu-
tions with the support as stated above by the respective coauthors.

We pioneered the combination of safe enclosure methods for ODEs with
a solver for constraint-systems over boolean, integer, and real-valued vari-
ables [EFH08] and were the first to describe the Satisfiability (SAT) modulo ODE
problem that has later been taken up by other researchers [IUH11, GKC13]. This
pioneering work was still based on an earlier work by the author [Egg06] using
an own implementation of a Taylor-series based safe enclosure mechanism for
the enclosures of ODEs based on the description of the AWA algorithm [Loh88]
embedded prototypically into the HySAT-II tool [FHR+07].

Apart from the subsequently named points which clearly provide a significant
difference between the earlier work done for the author’s Master’s thesis [Egg06]
and this thesis, also the algorithmic basis has been entirely redone in a different
way: by not using a limited own implementation for the enclosure generation, but
instead integrating and extending a state-of-the art interval numerical library;
by not discarding learned facts during the backtracking search, but instead
preserving them by a learning scheme and a complex caching structure to
recognize previously encountered queries; and by not prototypically embedding
the ODE-related parts into the HySAT-II tool, but modularly adding them to its
successor iSAT to whose development the author contributed and later extracting
them into a stand-alone library which has been made available to the scientific
community.

Based on theoretical work and manually constructed examples by Ramdani
et al. [RMC09], we extended our algorithm with an automatic on-the-fly genera-
tion of bracketing systems and evaluated the implementation on a well-known
academic case study from the literature [ERNF11].

Subsequently, the latter publication has been significantly extended with
an implementation of a more efficient evaluation of the enclosures generated
by VNODE-LP, a tighter coupling of the direct and bracketing methods, and an
evaluation on a larger number of case studies including a comparison with the
closest competitor tool [IUH11] on their examples and a larger own case study

1.3. CONTRIBUTIONS AND PRIOR PUBLICATION 17

of a system of parallel hybrid automata with non-linear ODEs and non-linear
flow invariants [ERNF12a].

The author has contributed to the development of the core iSAT solver and
has done all algorithm and data structure design and all implementations that
were necessary to combine the VNODE-LP library with iSAT into iSAT-ODE. Also
all implementations of the bracketing approach have been done by the author.
The evaluation, including the modeling of the hybrid systems in the tool’s input
language and the debugging of these models, the setup and execution of the
experiments and the extraction and visualization of the results from the solver’s
output has been done entirely and solely by the author. The interpretation
of results has been done in cooperation with the coauthors. The author has
written the significant central parts of the publications including the description
of the iSAT-ODE algorithm and the evaluation. The proposed referees of this
thesis have coauthored these relevant publications and are witnesses of these
facts.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Foundations and Problem
Statement

2.1 Hybrid Systems

The most wide-spread type of of hybrid system models can probably be found in
the form of graphical modeling languages like the ones from Matlab’s Simulink
and Stateflow tools. The ability to simulate the model and to organize large
models hierarchically are certainly as much key selling points as a (seeming)
simplicity of the graphical language, which hides much of its complexity and
subtleties behind an easy-to-use interface.

Yet, from an academic perspective, the richness of many practically-used
modeling languages and their often incompletely described formal semantics
complicate reasoning about the properties of the models and the language itself.
Therefore, theoretical results about hybrid systems, which are now as old as
two decades, have been obtained using a more confined formalism given in the
form of hybrid automata like the one used in [Hen96]. However, with proper
restrictions and sufficient care about semantics, also models created for example
with Simulink and Stateflow can be converted into a form that is suitable for
rigorous analysis.

In this thesis, most examples are illustrated by hybrid automata or parallel
compositions thereof. The actual basis for the analysis, however, are formulae
that encode the systems’ behaviors. Whatever original models are used, the
relevant property is therefore that they have formal semantics that allow the
generation of these formulae. We first recall the notion of hybrid automata from
the literature and throughout this chapter develop an encoding using this base
formalism.

Definition 1 (expression, constraint, predicate). Given a set of boolean, integer,
and real-valued variables {x1, . . . , xn}, an expression is composed of the vari-
ables and constants from the rational numbers (Q) using standard arithmetic
operators like +, ·,−, /, sin, cos, exp, log, √, . . . with the usual precedence and
bracketing rules. Constraints are formed over these expressions by combin-
ing two expressions with relational operators (≤, <,=,,, >,≥). Finally, boolean
variables and constraints form the most basic predicates, which may then be

19

20 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

combined into a larger predicate p(x1, . . . , xn) by using boolean connectives, e.g.

p(a, x, y, z) ≡ ¬ a︸︷︷︸
boolean variable

⇒ ((x ≥ 0.2 ∨ y ≥ 2 · √z − x︸ ︷︷ ︸
expression︸ ︷︷ ︸

constraint

)

︸ ︷︷ ︸
predicate

∧x
z
≤ 0)

︸ ︷︷ ︸
predicate

.

We additionally allow to write e.g. x ∈ [3, 3.2) as an abbreviation for the predicate
x ≥ 3 ∧ x < 3.2.

Definition 2 (hybrid automaton). We loosely follow the definition from [Hen96],
but deviate in notation and some details. A hybrid automaton H consists of a
vector ~x = (x1, . . . , xn)T of continuous variables, a set M = {m1, . . . , mq} of modes,
and a multiset J ⊆ (M ×M)∪ (M) of jumps (discrete transitions), with elements of
J written with intermediate arrows in the form mO −→ mD or ϸ −→ mI—calling
mO the origin of a jump, mD the destination of the jump, and mI an initial
mode of H . Each mode m ∈ M is decorated by a mode invariant (also called
a flow invariant) predicate Im(~x), which describes the admissible values for ~x
in m, and whose constraints over ~x are of the form x ∼ c, with x a continuous
variable, ∼∈ {≤,≥}, and c ∈ Q. Most importantly, each mode is attributed by a
system of time invariant ordinary differential equations ~̇x = dx

dt = ~fm(~x), with ẋ
denoting the derivative of variable x with respect to time t and the right-hand
side ~fm : Rn → Rn (with R the real numbers) of the ODE being restricted to
functions that are analytic (i.e. infinitely often differentiable)1 over the entire
subset of Rn that satisfies the invariant Im (and in practice over a sufficiently
large region around it to accommodate for numerical overapproximation). Each
jump j ∈ J is attributed by a combined guard and action predicate pj over
variables ~x denoting the state before the jump and primed variables ~x ′ denoting
their state after the jump. For initial conditions, i.e. jumps leading from ϸ
to an initial mode, the prime-decoration of variables can be (and usually is)
omitted since only their state after the jump is relevant. To distinguish guards,
which define the condition on the state before the jump is taken, from actions,
which define how the variables may change during the jump, guard and action
predicates may be split, such that only the guard is written as a predicate
and the actions are written (following a “/”) as a list of assignments with
individual (now unprimed) variables on the left-hand sides and expressions over
the variables on the right-hand sides. In this case, assignments, that do not
change a variable, i.e. those derived from x ′ = x constraints, are allowed to
be omitted for brevity. As an example for such a split display of a predicate
pj(x, y, z) ≡ x ≤ 5 ∧ z ≥ 2 ∧ x ′ = x ∧ y′ = y ∧ z′ = −z consider the equivalent
rewriting (x ≤ 5 ∧ z ≥ 2)/(z := −z).
To facilitate parallel composition of automata, an additional vector ~c of boolean
communication variables can be added to the system of parallel automata.
Communication variables can be used as boolean variables in mode invariants
as well as in jump predicates of all automata to flexibly realize different types

1Our method actually supports ODEs whose right-hand sides are sufficiently often differentiable,
with the meaning of “sufficiently” depending on a solver parameter typically chosen to be in the
order of 20 − 30, and locally Lipschitz continuous. Depending on the reader’s taste, one or the other
restriction may be used.

2.1. HYBRID SYSTEMS 21

of synchronization behavior: forcing e.g. a communication variable to be true
in the jump predicates of two automata and forcing it to false during all mode
invariants will synchronize the jumps of these two automata. Similarly, they
can be used to allow jumps in one automaton only if another is currently in a
specific mode.
Additionally, all variables of each component automaton may occur within
predicates and right-hand sides of ODEs of all other components, but may not be
be left-hand-side variables of ODE constraints in any other automaton than the
one they belong to. Having hybrid automata H1, . . . ,Hz with respective variable
vectors ~xH1 , . . . , ~xHz , the jump predicate for a jump j can therefore be given over
the entire set of unprimed and primed variables: pj(~xH1 , ~x

′
H1
, . . . , ~xHz , ~x

′
Hz
,~c,~c′)

(for an initial jump j of course only over unprimed variables), similarly the flow
invariant for a mode m: Im(~xH1 , . . . , ~xHz ,~c), and finally the ODE system in mode
m of automatonHi may define the behavior of ~xHi using all continuous variables,
instead of just the ones belonging to Hi : ~̇xHi = ~fm(~xH1 , . . . , ~xHz).
Hybrid automata can be and almost exclusively are represented in graphical
form. Modes are then drawn as vertices and discrete transitions as edges of a
directed multigraph. Edges are also introduced for jumps into initial modes,
but no ϸ-location is added, i.e. these edges are drawn without a predecessor.
Edges are labeled with the guard and action predicates of the corresponding
jump, while vertices are labeled with the ODE and flow invariant predicate of
the mode they represent.

Flow Invariants. Although our definition restricts flow invariants to the form
x ∼ c, more general conditions on flows that may be desirable in practice can still
be modeled with this formalism. Assuming to find in a modem ’s invariant a more
general flow invariant constraint γ(~x(t)) ∼ c (retaining for clearer illustration
the explicit t that we drop most of the time in accordance to the usual practice
for ODEs), we only require γ(~x(t)) to be differentiable with respect to t and the
derivative to be analytic since it will be used inside the system of differential
equations. We can then introduce a new variable y(t) := γ(~x(t)) and replace the
original flow invariant constraint γ(~x(t)) ∼ c in Im with y(t) ∼ c. Additionally, we
add y := γ(~x) to all incoming jumps for the mode m. Using the assumption of
differentiability, we can add in mode m to the system of differential equations

ẏ =
dγ(~x(t))
dt

=

n∑

i=1

∂γ(~x(t))
∂xi(t)

· dxi(t)
dt

.

Making use of all the known right-hand sides for ẋi , we can rewrite this into

ẏ =

n∑

i=1

∂~x(t)
∂xi(t)

· f(m,i)(~x),

with ~fm = (f(m,1), . . . , f(m,n)). The fundamental theorem of integral calculus
together with the semantics that will be introduced below then guarantees that
the solution function for y will hold the same value as the original expression
γ(~x(t)) for the entire duration that the automaton dwells in mode m. For all
other modes, we can simply force the new variable y to be constant by adding
ẏ = 0 or add the same dynamic law as for mode m. Of course, y then becomes
one of the normal continuous variables, hence increasing the dimensionality of
the system by one.

22 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

FREE_CRUISE_1

ṗ1 = v1

v̇1 = a1

ȧ1 = 0
ḋ = v2 − v1

v1 ≤ VMAX

∧ v1 ≥ 0
∧ d ≥ DB

p1 ≤ p2 − DR ∧ d = p2 − p1 ∧ a1 ∈ [AB1, AMAX1]A1

true/a1 :∈ [AB1, AMAX1]

BRAKING_1

ṗ1 = v1

v̇1 = a1

ȧ1 = 0
ḋ = v2 − v1

v1 ≥ 0

STOPPED_1

ṗ1 = v1

v̇1 = a1

ȧ1 = 0
ḋ = v2 − v1

d ≤ DB

/a1 := AB1

d ≥ DR

/a1 :∈ [AB1, AMAX1]

v1 ≤ 0 /a1 := 0

FREE_CRUISE_2

ṗ2 = v2

v̇2 = a2

ȧ2 = 0

v2 ≤ VMAX

∧ v2 ≥ 0

a2 ∈ [AB2, AMAX2]A2

true/a2 :∈ [AB2, AMAX2]

Figure 2.1: System of two simple hybrid automata modeling the behavior of two
vehicles and an emergency braking system in the follower car.

This rewriting occurs entirely on the automaton level and is used in some of
our the examples.

Remark. An important difference of our definition with respect to the definition
from [Hen96] is the restriction to ODEs instead of allowing more general inequal-
ity constraints over the variables and their derivatives. While this more general
kind of constraint is certainly desirable from a modeling perspective (especially
due to its usefulness for formulating overapproximations), it significantly com-
plicates the analysis: instead of “just” dealing with ODEs, a direct approach
for the more general class would have to also cover the handling of differential
algebraic equations and differential inequalities. For the purpose of this thesis,
we will mostly ignore these richer formalisms, and will only occasionally refer to
them when discussing related work.

Running Example. As an example, consider the two automata A1 and A2
depicted in Figure 2.1. Their parallel composition models the longitudinal
movement of two vehicles driving behind each other on the same lane. While
A2 always allows jumps at which the acceleration variable a2 can be freely
chosen to have a new value, the automaton A1, which models the following
vehicle, implements an emergency braking protocol: whenever the distance
between the vehicles decreases below DB (a constant parameter which needs to
be instantiated with a rational constant prior to analysis), the acceleration a1
is forced to a (negative) braking velocity AB1 and the vehicle may return to its
FREE_CRUISE_1 mode only if the distance has grown above the brake-release
distance DR. If the velocity reaches zero while the vehicle is forced to brake and
the distance has not grown sufficiently, the STOPPED_1 mode is entered and
cannot be left again.

This model can also be considered an example for rewriting a differentiable
complex flow invariant into the simpler structure allowed by our formalism.
Consider the flow invariant p2−p1 ≥ DB, which requires position p2 to be at least

2.1. HYBRID SYSTEMS 23

DB distance units in front of position p1. First, we introduce a variable d, whose
value represents the distance and hence fortunately has an intuitive real-world
semantics. Subsequently, we rewrite the invariant into the form d ≥ DB. As
initialization on the incoming edge ϸ −→ FREE_CRUISE_1, we add d := p2 − p1
and since all other incoming transitions do not change the value of p1 and p2,
we can omit explicit reinitializations on these edges. For the dynamics of d, we
compute the symbolic partial derivatives with respect to p1 and p2 and obtain:

ḋ =
∂p2 − p1

∂p1
· ṗ1 +

∂p2 − p1

∂p2
· ṗ2 = −1 · v1 + 1 · v2 = v2 − v1,

which also intuitively makes sense since the distance simply grows or shrinks
according to the velocity difference between the two vehicles.

We use this simple model to illustrate the necessary definitions and to
exemplify the subsequent conversion steps needed for a satisfiability-based
analysis. This conversion is based on an encoding of the possible traces of a
hybrid system.

Definition 3 (valuation). A valuation σ maps variables to values. Given a vector
~x = (x1, . . . , xn)T of n variables (or a set {x1, . . . , xn} of n variables with an ordering
for that matter) and a point ~y = (y1, . . . , yn) ∈ dom(x1) × · · · × dom(xn) from the
variables’ domains, the valuation σ maps all xi to their respective values σ(xi) =

yi , i.e. σ(~x) = ~y. We allow valuations to be concatenated into larger valuations:
having vectors ~a = (a1, . . . , an) and ~b = (b1, . . . , bm) and having valuations
σ1(~a) = (σ1(a1), . . . , σ1(an)) and σ2(~b) = (σ2(b1), . . . , σ2(bm)), the concatenation
is defined as (σ1(~a), σ2(~b)) := (σ1(a1), . . . , σ1(an), σ2(b1), . . . , σ2(bm)).

Definition 4 (satisfaction of predicates and constraints). Given a predicate
p(~x) and a valuation σ(~x) for the variables occurring in the predicate, we call
the predicate satisfied by the valuation, σ |= p, if and only if p evaluates to
true under the standard semantics of the boolean connectives, relations, and
arithmetic operators, when for each variable xi in p the value σ(xi) is assumed.
Similarly, we call constraints (and occasionally even boolean variables) satisfied,
if under σ they evaluate to true.

Definition 5 (trace semantics of one hybrid automaton). Again loosely following
the definitions from [Hen96], which explicitly describe (infinite-state) labeled
and timed transition systems, we define the semantics of hybrid automata by
their transitions. To simplify the exposition, we consider the current (or active)
mode of an automaton H a variable m with dom(m) = M and define σM , a
valuation, that assigns a mode from M to m. We call S = (σM (m), σ(~x)) ∈ M × Rn
a state of H , which consists of the active mode σM (m) and the valuation σ(~x)
of the automaton’s continuous variables ~x. A trace of H is a possibly infinite
sequence of states S0,S1, . . . with the following properties:

• S0 = (m0, σ0) satisfies the initial condition, i.e. the mode of S0 is initial,
i.e. there is j ∈ J such that j ≡ ϸ → m0, and the state’s valuation σ0
satisfies the initial predicate of the jump which makes the mode initial,
i.e. σ0(~x) |= pj(~x) (again considering all variables to occur in the unprimed
version in this jump’s predicate even though they describe the state after
the initial jump has been taken).

24 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

• Each pair of subsequent states Si = (mi , σi(x1), . . . , σi(xn)) and Si+1 =

(mi+1, σi+1(x1), . . . , σi+1(xn)) is connected by either a flow or a jump:

– Si and Si+1 are connected by a jump if there exists a jump j ∈ J such
that j ≡ mi −→ mi+1 and the valuations satisfy this jump’s guard and
action predicate pj(~x, ~x ′), while the mode invariant of the origin of the
jump Imi holds in Si and the invariant Imi+1 of the destination of the
jump holds in Si+1, i.e.

(σi(~x), σi+1(~x)) |= pj(~x, ~x ′)
∧ σi(~x) |= Imi (~x)
∧ σi+1(~x) |= Imi+1 (~x).

– Si and Si+1 are connected by a flow of duration δ if there is no
mode change, i.e. mi = mi+1, and the valuations of the continuous
variables are connected by a δ-long solution trajectory of the system of
ordinary differential equations active inmi and this solution trajectory
does not leave the region that is admissible by the mode’s flow
invariant. More precisely, given ODEs and flow invariants from mode
mi , ~̇x = ~fmi = ((~fmi)1(x1, . . . , xn), . . . , (~fmi)n(x1, . . . , xn))T and Imi , this
condition is satisfied if there exists a differentiable function ~y : R→
Rn, such that ~y(0) = σi(~x), ~y(δ) = σi+1(~x), and for all j = {1, . . . , n}
and all t ∈ [0, δ] the slope of the solution trajectory satisfies the ODE:
ẏj(t) = (~fmi)j(y1(t), . . . , yn(t)), while all of the solution trajectory’s
intermediate and end-point values satisfy the flow invariant, i.e. for
all t ∈ [0, δ], a valuation at time t, σ(~x)(t), given by the value ~y(t)
satisfies Imi (~x): σ(~x)(t) = ~y(t) |= Imi (~x).

Concurrency. For the parallel execution of multiple automata or other types
of transition systems (like first and foremost parallel programs for example),
traditionally, there are two major models: synchronous jumps of all components,
also called true concurrency, and on the other hand asynchronous jumps (often
referred to as interleaving) under the assumption of a scheduler that selects
one component at a time for making its jump (see e.g. Chapter 2 of [BK08] for
a more nuanced overview of concurrent transition systems). These models of
concurrency reflect fundamental paradigms of computation: single units (e.g.
processors) requiring sequentialization and interleaving versus parallel units
allowing truly parallel execution of commands.

For parallel compositions of hybrid automata, additionally the time that is
spent between mode switches is particularly important, due to the evolution of
the continuous variables during this time. However, the coupling of components
via shared variables representing physical (and hence naturally truly concurrent)
entities like e.g. velocities, positions, temperatures, or forces would render an
asynchronous model of evolutions not a very suitable choice for an execution
model of continuous flows. Between jumps, time is hence understood as passing
synchronously for all component automata.

Since the predicative encoding we will later use for the analysis easily
supports both paradigms and many intermediate forms, the semantics of the
concurrency model chosen for the automata is less relevant than knowing
that there are different options to choose from. For the sake of clarity of the

2.1. HYBRID SYSTEMS 25

representations, we nonetheless have to define, which model of concurrency we
will use in the examples.

In this thesis, we opt for a model which allows synchronous jumps of all
components and implicit stuttering, i.e. each mode can be understood as having
an invisible self-loop that can be taken whenever a jump is performed by another
component automaton and which does not change the automaton’s state. A
jump of the parallel system therefore interrupts all continuous evolutions, but
only one component automaton really needs to take one of its jumps, while
the others are allowed to perform a stuttering jump or to also take a real jump
simultaneously.

Note that while a stutter jump has no other guard than true and no other
action than to keep all continuous variables of the stuttering automaton at
their previous value, it does in fact observe the mode invariant of the mode in
which stuttering occurs. In particular, these mode invariants can enforce a
particular valuation of the communication variables, which may cause a jump
of one component to be incompatible with another component dwelling in a
particular mode, thereby effectively “communicating” the current mode of one
component into the guard of another component’s jump.

By introducing a special communication variable that is forced to true in
some or all of the modes of one automaton and required to be false in some or
all guards of another automaton, stuttering can even be forbidden selectively or
entirely for the first automaton. Making the assumption that stuttering jumps
are implicitly allowed therefore does not impede our model’s generality.

Definition 6 (trace semantics for the parallel composition of hybrid automata).
For parallel composition of automata H1, . . . ,Hz, the notion of a state S intro-
duced in Definition 5 is extended to consist of a valuation σM of the currently ac-
tive mode variables mH1 , . . . , mHz of all component automata, of a valuation σ for
all continuous variables ~xH1 , . . . , ~xHz , and of a valuation σC for the boolean com-
munication variables ~c: S = (σM (mH1), . . . , σM (mHz), σ(~xH1), . . . , σ(~xHz), σC(~c)).
To simplify the exposition, we introduce a joint vector of current modes ~m :=
(mH1 , . . . , mHz)

T and a vector ~x of all n = nH1 + . . . + nHz continuous variables
as the concatenation of the component variable vectors

~x := ((~xH1)1, . . . , (~xH1)nH1
, (~xH2)1, . . . , (~xHz)nHz)T .

For these, a state then includes valuations σM : ~m → (MH1 × · · · × MHz) and
σ : ~x → Rn. We can now abbreviate the representation of a state significantly:
S = (σM (~m), σ(~x), σC(~c)).

A (potentially infinite) sequence of states S0,S1, . . . is a trace of the parallel
composition of automata H1, . . . ,Hz if and only if the following properties hold.

• The state S0 = (σ(M,0)(~m), σ0(~x), σ(C,0)(~c)) is initial, i.e. there are initial jumps
j1 ∈ JH1 , . . . , jz ∈ JHz with j1 ≡ ϸ → σ(M,0)(mH1), . . . , jz ≡ ϸ → σ(M,0)(mHz)
and the valuation of the continuous variables and of the communication
variables satisfies the respective initial conditions belonging to these initial
jumps, i.e. (σ0(~x), σ(C,0)(~c)) |= (pj1 ∧ . . . ∧ pjz).

• Each pair of subsequent states Si = (σ(M,i)(~m), σi(~x), σ(C,i)(~c)) and Si+1 =

(σ(M,i+1)(~m), σi+1(~x), σ(C,i+1)(~c)) is connected by a jump or by a flow.

26 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

– Si and Si+1 are connected by a jump if at least one component
automaton Ha with a ∈ {1, . . . , z} performs a true jump and all
other components either stutter or perform jumps as well—all while
satisfying the conjunction of the jumps’ guard and action predicates
and relevant mode invariants. Formally, the system of automata
makes a jump if and only if

∃a ∈ {1, . . . , z} : there is Ha

(∃j ∈ JHa : j ≡ σ(M,i)(mHa)→ σ(M,i+1)(mHa) with a jump j, whose
∧ (σi(~x), σi+1(~x), σ(C,i)(~c), σ(C,i+1)(~c)) |= pj predicate is satisfied
∧ (σi(~x), σ(C,i)(~c)) |= Iσ(M,i)(mHa) as are the invariants
∧ (σi+1(~x), σ(C,i+1)(~c)) |= Iσ(M,i+1)(mHa))
∧(∀b ∈ {1, . . . , z}\{a} : and all other Hb ’s

(∃j ∈ JHb : j ≡ σ(M,i)(mHb)→ σ(M,i+1)(mHb) also do true jumps
∧(σi(~x), σi+1(~x), σ(C,i)(~c), σ(C,i+1)(~c)) |= pj

∧(σi(~x), σ(C,i)(~c)) |= Iσ(M,i)(mHb)

∧(σi+1(~x), σ(C,i+1)(~c)) |= Iσ(M,i+1)(mHb))

∨ (σ(M,i)(mHb) = σ(M,i+1)(mHb) or stutter,
∧σi(~xHb) = σi+1(~xHb))) keeping ~xHb constant
∧(σi(~x), σ(C,i)(~c)) |= Iσ(M,i)(mHb) and satisfying the
∧(σi+1(~x), σ(C,i+1)(~c)) |= Iσ(M,i+1)(mHb)) mode invariant.

– Si and Si+1 are connected by a flow of duration δ if there is no mode
change, i.e. σ(M,i)(~m) = σ(M,i+1)(~m), and the valuations σi and σi+1 are
connected by a δ-long solution trajectory of the system of ordinary
differential equations active in the modes σ(M,i)(~m) and this solution
trajectory does not leave the region that is admissible by the flow
invariants in these modes. Note that the flow invariants may depend
on the communication variables, which however do not change during
the flow and which can therefore be substituted by their valuations,
i.e. occurrences of a communication variable c are replaced by σ(C,i)(c).
Hence, having the ODE system

~̇x =

(~̇xH1)1
...

(~̇xH1)nH1
(~̇xH2)1
...

(~̇xH2)nH2
...

(~̇xHz)nHz

=

(~fσ(M,i)(mH1))1(~x)
...

(~fσ(M,i)(mH1))nH1
(~x)

(~fσ(M,i)(mH2))1(~x)
...

(~fσ(M,i)(mH2))nH2
(~x)

...
(~fσ(M,i)(mHz))nHz (~x)

=: ~f (~x)

and conjunction of flow invariants with substituted valuations for

2.1. HYBRID SYSTEMS 27

the communication variables

I(~x) =
∧

j∈{1,...,z}

(
Iσ(M,i)(mHj)(~x,~c)

∣∣∣∣∣
(~c/σ(C,i)(~c))

)
,

a flow of duration δ is given by the existence of a differentiable solution
function ~y : R→ Rn, such that ~y(0) = σ(M,i)(~x), ~y(δ) = σ(M,i+1)(~x), and
~̇y(t) = ~f (y(t)) for all t ∈ [0, δ], while the flow invariant is never left, i.e.
for each t ∈ [0, δ], the valuation σ(~x)(t) = ~y(t) |= I(~x).

Running Example (continued). We apply the above definition to illustrate
the meaning of a trace using the running example. Automaton A1 has three
possible modes mA1 ∈ MA1 = {FREE_CRUISE_1,BRAKING_1,STOPPED_1} and
four continuous variables ~xA1 = (p1, v1, a1, d) representing the vehicle’s position,
velocity, acceleration, and distance from the second car, which drives in front of
it. The second automaton, A2, has only one possible mode, i.e. mA2 ∈ MA2 =

{FREE_CRUISE_2}, and continuous variables ~xA2 = (p2, v2, a2). There is no
communication variable since the system does not require any synchronization.
The system has a number of parameters, whose instantiation has a significant
impact on the traces that are possible. For this illustration, we choose the
distance at which braking is initiated to be DB := 10, the distance at which the
brake is released to be DR := 15, the braking accelerations to be AB1 = AB2 := −2,
the maximum accelerations to be AMAX1 = AMAX2 := 2, and the maximum velocity
to be VMAX := 5.

A state of this system must give a value for each of the mode and continuous
variables. Table 2.1 contains a sequence of states S0, . . . ,S6 that shows a trace
of this system. We have added a variable t representing the global time, to make
it easier to distinguish flows and jumps—the latter happening without passage
of time.

t m1 p1 v1 a1 d m2 p2 v2 a2
S0 0 FREE_CRUISE_1 0 4 1 20 FREE_CRUISE_2 20 4 0
S1 0.8 FREE_CRUISE_1 3.52 4.8 1 19.68 FREE_CRUISE_2 23.2 4 0
S2 0.8 FREE_CRUISE_1 3.52 4.8 0 19.68 FREE_CRUISE_2 23.2 4 0
S3 12.9 FREE_CRUISE_1 61.6 4.8 0 10 FREE_CRUISE_2 71.6 4 0
S4 12.9 BRAKING_1 61.6 4.8 -2 10 FREE_CRUISE_2 71.6 4 0
S5 15.3 BRAKING_1 67.36 0 -2 13.84 FREE_CRUISE_2 81.2 4 0
S6 15.3 STOPPED_1 67.36 0 0 13.84 FREE_CRUISE_2 81.2 4 0

Table 2.1: Tabular representation of a trace for the running example.

In this trace, S0 is an initial state, i.e. its modes are initial and the valuation
of the continuous variables satisfies the conjunction of the conditions of the
initial jumps:

σ0(p1, v1, a1, d, p2, v2, a2)
= (0,4,1,20,20,4,0)
|= p1 ≤ p2 − DR ∧ d = p2 − p1 ∧ a1 ∈ [AB1, AMAX1] ∧ a2 ∈ [AB2, AMAX2]

Subsequently, a flow of duration δ = 0.8 occurs and leads to state S1. Easily
to be seen, this flow does not change the modes of the component automata.
Hidden by the trace semantics is, however, the behavior of the continuous

28 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

t

p1
p2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

15

20

t

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

t

v1
v2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2

−1

0

1

t

a1
a2

Figure 2.2: Trace from Table 2.1 with visualization of intermediate flows.

variables between t = 0 and t = 0.8. A trace is only a witness for the existence
of a solution trajectory of the ODEs of the system’s active modes. In contrast to
the general case, for this example we can easily compute closed-form solution
functions for p1, v1, a1, d, p2, v2, a2 by sorting the ODEs and performing symbolic
integration:

p1(δ) = p1(0) + δv1(0) + 1/2 δ2a1(0)
v1(δ) = v1(0) + δa1(0)
a1(δ) = a1(0)
d(δ) = d(0) + (p2(δ) − p2(0)) − (p1(δ) − p1(0))
p2(δ) = p2(0) + δv2(0) + 1/2 δ2a2(0)
v2(δ) = v2(0) + δa2(0)
a2(δ) = a2(0)

In Figure 2.2, we visualize the example trace over dense time using these solution
functions to plot the intermediate flows.

By inserting the valuation σ0(p1, v1, a1, d, p2, v2, a2) as starting point for the
flow (p1(0), v1(0), a1(0), d(0), p2(0), v2(0), a2(0)) and by setting δ = 0.8, we com-
pute with the closed-form solution (p1(δ), v1(δ), a1(δ), d(δ), p2(δ), v2(δ), a2(δ)) =

(3.52,4.8,1,19.68,23.2,4,0) = σ1(p1, v1, a1, d, p2, v2, a2), i.e. the valuation of
stateS1. The flow invariant conditions v1(t) ≤ VMAX∧v1(t) ≥ 0∧d(t) ≥ DB∧v1(t) ≤
VMAX ∧ v2(t) ≥ 0 hold for all t ∈ [0, δ]—in this example easily deducible from the
monotonicity of the solution functions.

2.1. HYBRID SYSTEMS 29

A more intriguing question about this flow may be, why its duration is
δ = 0.8 time units and the answer may be unsatisfying: because it is allowed;
nothing prevents the system from performing a jump after an arbitrary flow
duration while it resides in the FREE_CRUISE_1 mode, as long as it satisfies the
constraints on the valuation originating from the guard and action predicates
and mode invariants. Similary, also the choice of the initial valuation was by no
means unique. This system, albeit looking quite simple, contains a number of
sources for non-determinism, which cause the existence of an infinite number
of traces, all of which satisfy the conditions we have laid out before.

Following the flow, the transition from state S1 to S2 is a jump along the
self-loop from A1’s FREE_CRUISE_1 mode. Again, non-determinism can be
observed in the choice of the new valuation for a1, which is set from 1 to 0.
There is no change in A2, i.e. it stutters. This pair of states represents a valid
jump, since the taken jump’s predicate is satisfied

(σ1(p1, v1, a1, d, p2, v2, a2), σ2(p1, v1, a1, d, p2, v2, a2))
|= true ∧ a′1 ∈ [AB1, AMAX1]

along with the invariants at the origin of the jump by the valuation before the
jump is taken

σ1(p1, v1, a1, d, p2, v2, a2) |= v1 ≤ VMAX ∧ v1 ≥ 0 ∧ d ≥ DB
and the invariant of the target (which is the same mode) by the valuation after
the jump is taken

σ2(p1, v1, a1, d, p2, v2, a2) |= v1 ≤ VMAX ∧ v1 ≥ 0 ∧ d ≥ DB
and the stuttering in the other automaton A2 does not change the valuation of
its variables and also there the currently active mode’s invariant is not violated
by the valuation neither before

σ1(p1, v1, a1, d, p2, v2, a2) |= v2 ≤ VMAX ∧ v2 ≥ 0

nor after the jump

σ2(p1, v1, a1, d, p2, v2, a2) |= v2 ≤ VMAX ∧ v2 ≥ 0.

The subsequent transition from S2 to S3 is a flow of duration δ = 12.1. While
non-deterministic interruptions of this flow with jumps performing acceleration
changes would again have been possible, its maximum duration is determined
by reaching the border of the states admitted by the flow invariants. When
δ = 12.1, the distance d = 10 is reached and therefore any continuation of this
flow would cause the flow invariant d ≥ DB = 10 of mode FREE_CRUISE_1 to be
violated, since d would decrease further. In S3, the system could still perform
an arbitrary number of self-loop jumps, but due to being on the border of the
admissible state space, it could not perform a flow of any non-zero duration.

Jumping from FREE_CRUISE_1 to BRAKING_1 in the transition from S3 to
S4, however, opens up the possibility of a flow, which takes δ = 2.4 time units
and leads to the first car’s velocity reaching zero (S5)—at which point a jump
into the STOPPED_1-mode in S6 concludes this example trace. Again, there
could have been arbitrarily many branches off this trace, e.g. by A2 performing
jumps changing its acceleration.

30 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

x

t

t = 0

0 0.5 1 1.5 20

0.5

1

1.5

2

y

x

t = 0

−1 0 1

−1

0

1

Figure 2.3: On the left: vector field for ẋ = x and solution trajectory for x(0) = 0.3;
on the right: vector field as phase plot (x, y) for harmonic oscillator ẋ = −y, ẏ = x,
with a solution trajectory for (x, y)(0) = (1,0). For the dynamics on the left, a
flow invariant like x ≤ 1.5 can easily be used to model urgency, while for the
system on the right, the example trajectory and flow invariant y ≤ 1 provide an
example, where this approach would not suffice to limit the duration to the first
point of time, when the switching surface at y = 1 is reached.

Urgency. As can be seen in the example, flow invariants can be used to force
flows to stop. By using a relaxed version of the negated guard condition, this stop
of the flow can be timed to occur exactly at the point, when a guard condition
is satisfied. This modeling approach is actually quite classic, instances of
it can e.g. already be found in [Hen96]. In our example, the flow invariant
d ≥ DB of FREE_CRUISE_1 is such a relaxed negation of the guard d ≤ DB: both
constraints share a common value at d = DB, but movement in one direction
will invalidate either the flow invariant or the guard condition. In this system,
we use this approach to model a behavior, that is often described as urgency: a
jump shall be taken as soon as its guard is satisfied. While this is sometimes
incorporated directly into the semantics, we need to model it explicitly by adding
to flow invariants the conjunction of all relaxed negated guard conditions of all
outgoing urgent jumps. In this way, as soon as one of the guards becomes true,
also the border of the admissible state space for the mode, as defined by the
flow invariant, is reached and therefore a flow cannot continue into a region
violating the flow invariant.

Note however, that this modeling of urgency via flow invariants is weaker
than an approach where an explicit notion of urgency is added to the semantics.
In Figure 2.3, we compare two cases: one where flow invariants model urgency
exactly, and one, where they are not sufficient to force trajectories to end when
the guard of the urgent jump becomes satisfied. The left part of the figure shows
the directional field of an ODE and an initial condition for which urgency can
easily be modeled by a flow invariant. The trajectory shown on the right side of
the figure, however, only touches the switching surface, i.e. the common values
of guard and flow invariant. Its direction does not force it to leave the region
admissible under the flow invariant and it is therefore not forced to end when

2.2. ENCODING BY FORMULAE INVOLVING ODES 31

first satisfying the guard condition. In such cases only additional modeling
tricks may still allow to achieve the desired behavior (e.g. by splitting a mode into
multiple modes to explicitly handle regions in the state space where trajectories
could slide along switching surfaces).

Overapproximation. The modeling of urgency via flow invariants is one in-
stance of overapproximation: while in an “original” system, a particular urgent
jump has to be taken as soon as a guard is satisfied, in a system where urgency
is modeled by flow invariants, all these trajectories, whose flows end when the
guard is reached, are present, too, but alongside there are additional spurious
trajectories, which do not correspond to any trajectory of the original system.

A formal understanding of overapproximations is often based on the notion
of simulation relations, see e.g. [BK08, Chapter 7.4]. Having two transition
systems T1 and T2, a simulation relation is a (potentially partial) mapping of
states from T1 to T2. Furthermore, T2 is called an abstraction of T1, if for
each transition between states in T1 there exists a transition in T2 between
the states mapped to by the simulation relation. For each trace (i.e. sequence
of states connected by transitions) of T1, an abstraction therefore contains a
trace—simply obtained by replacing the states of the sequence with their images
under the simulation relation. Traces in T1 can thus be simulated by traces in T2.
However, unless the two transition systems differ merely by renaming of states,
there are traces of T2, which do not have a counterpart in T1, i.e. they exist
in the abstraction, but cannot be concretized. The abstract transition system
T2 is therefore called an overapproximation of T1. Note, that in some contexts,
abstractions are used with respect only to a specific property of a system. In
that case, an overapproximation needs not necessarily contain abstract versions
for all concrete traces, but only for those which are relevant with respect to the
property.

In this thesis, we will use overapproximations over a wide range of objects.
We have seen an example above for their application to hybrid systems, but we
will also call a formula an overapproximation of a hybrid system or an interval
evaluation of a constraint an overapproximation of its real-valued interpretation.
In all these cases, the general intuition is the same: an overapproximation
allows the same behavior as the concrete object, but may contain additional
spurious solutions or behaviors that cannot be concretized.

2.2 Encoding by Formulae Involving Ordinary Dif-
ferential Equations

So far, we have only gathered the ingredients for modeling the behavior of
hybrid systems. For an analysis, and often also for the process of creating a
suitable model, however, we also require an analysis goal. In the general case,
this can be as complex as a (timed) temporal logic property or the question
whether the system stabilizes towards an attractor (see e.g. [KGG+09] for a broad
overview of classes of analysis goals). For the purpose of this thesis, we focus
on step-bounded reachability, with the reachability target being encoded by a
target predicate over the mode, continuous, and communication variables.

32 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

Bounded Model Checking. In [BCCZ99], Biere et al. introduced Bounded
Model Checking (BMC) for finite-state Kripke structures as an alternative to
model checking based on Binary Decision Diagrams (BDDs).2 A good intuition
about BMC is that a finite unwinding of the transition system is encoded by a
formula in such a way that this formula is satisfiable if and only if a trace (path)
of a length equal (or in some variants less than or equal) to the unwinding depth
exists. By adding to this formula an encoding of a bounded linear temporal
logic (LTL) property, a solution only exists if a path satisfies this property.
Biere et al. also give conditions on the paths and LTL properties such that
unbounded results can be deduced from bounded unwindings. They also stress
the importance of finding counter examples, e.g. violations of a safety property,
in practical applications of model checking. The simplest form of a target
condition, showing that an error state is eventually reached (as the negation
of a property that holds globally), combined with a progressively increased
number of transition unwindings (sometimes called incremental BMC), leads
to an algorithmic approach that can find error traces with minimal length—
well-suited for identifying errors in a system. However, if applied without any
knowledge about a maximum path length, BMC is inherently incomplete because
it misses error traces that have a length larger than the investigated unwinding
depth.

By extending the approach to result in formulae containing not only proposi-
tional variables, but richer types of constraints, BMC has later been applied to
classes of hybrid automata, whose dynamics are governed by linear expressions
over the continuous variables [ABCS05] and by linear inclusion functions as-
signing in each mode a maximum and minimum slope to each variable [FH05].
Similarly, BMC has been used to analyze discrete-time hybrid automata, with
post-states depending linearly on pre-states [GPB05].

Even further relaxations of the types of allowed constraints within the pred-
icative encoding allowed the application of BMC to hybrid automata, whose
dynamics could be captured by non-linear (including transcendental) expres-
sions over the pre- and post-states of the continuous variables. These have
been published for a concrete example in the form of a Simulik/Stateflow model
in [HEFT08] and a generalized form of the encoding process can be found in
Chapter 2.2 of [Her11].

Our encoding, which is based on what we have first published in [EFH08]
and refined in [ERNF12a], relaxes the restriction on the atoms of the formula
even further by introducing constraints that allow the direct encoding of the
ODEs and flow invariants occurring in the automaton under investigation. This
will lead to the notion of Satisfiability modulo ODE, which is the topic of the next
section.

Definition 7 (variable instantiation). Given a variable v, a k-fold instantiation of
v is given by introducing variables v1, . . . , vk that all represent different instances
of the same original variable v. This notion is directly raised to sets and vectors
of variables by introduction of instances for each element / component.

2Even earlier, in [GvVK94], Groote et al. applied finite unwinding and encoding as a propositional
tautology checking problem to the low-level safety control program of a railway system, which can
be interpreted as a precursor to BMC.

2.2. ENCODING BY FORMULAE INVOLVING ODES 33

Predicative Encoding of Hybrid Automata. We now apply the method of
bounded model checking as described above to the trace semantics for paral-
lel compositions of hybrid automata H1, . . . ,Hz from Definition 6. First, we
introduce a set of variables. In addition to the obvious variables representing
the mode, continuous, and communication variables, we declare variables that
explicitly encode, which component performs a jump. Furthermore, a variable
flow indicates whether the subsequent state will be connected via a continuous
flow or via a discrete jump. The global time t sums up the individual durations
δ of each flow and is not increased when a jump occurs.

~m = (mH1 , . . . , mHz) ∈ MH1 × . . . ×MHz

~x = (~xH1 , . . . , ~xHz) ∈ dom((~xH1)1) × . . . × dom((~xHz)nHz)

~c ∈ {0,1}|~c|
(jump1, . . . , jumpz) ∈ {0,1}z

flow ∈ {0,1}
t ∈ [0, T]
δ ∈ [0,∆]

Like BMC for other types of systems, our encoding utilizes predicates over
variable instantiations. Let s := (~m,~x,~c, jump1, . . . , jumpz, flow, t, δ). Each state
Si of the trace, that is to be identified or whose existence is to be disproved
by BMC, is encoded by one instance si of the variables introduced above. The
predicate init(s), encoding the initial state S0, is applied to the instance s0. For
a k-fold unwinding of the transition system (i.e. jumps and flows), we introduce
a predicate trans(s, s′), which is applied to pairs (si , si+1) for i ∈ {0, . . . , k − 1}.
And finally, since a target condition must hold in the final state of the trace, the
target predicate target(s) must hold for the instance sk. The bounded model
checking formula is thus:

Φ = init(s0) ∧ trans(s0, s1) ∧ . . . ∧ trans(sk−1, sk) ∧ target(sk). (2.1)

Definition 6 requires that in the initial state S0 of a trace, each component
automaton is in an initial mode and the valuations of the continuous and
communication variables are compatible with the initial jumps that lead to the
corresponding modes. Consequently, a predicate init(s) must encode these two
properties, i.e.

init(s) ≡
∧

i∈{1,...,z}

∨

j=(ϸ−→m)∈JHi

(
mHi = m ∧ pj(~x,~c)

︸ ︷︷ ︸
For each automaton, one initial jump must be taken and its predicate must hold. . .

∧ Im(~x,~c)︸ ︷︷ ︸
. . .as well as the invariant of the initial mode resulting from taking this jump.

)

∧ t = 0︸︷︷︸
Global time starts at 0.

The target(s) predicate, that is applied to the last instance sk , must be chosen
in such a way that it characterizes a state Sk of the trace, whose reachability
is under investigation. Such a predicate can e.g. consist of just a particular

34 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

mode—like in classical reachability for finite state automata—or can also describe
a region in the state space spanned by the mode and continuous variables,
including conditions on the global time.

For all pairs of consecutive instances si and si+1 between the initial and
target instance, the transition predicate trans(s, s′) encodes the discrete jumps
and continuous flows, which connect pairs of consecutive states Si and Si+1 in
the trace.

trans(s, s′) ≡ t′ = t + δ︸ ︷︷ ︸
Sum of durations.

∧ (¬flow ⇒ δ = 0)︸ ︷︷ ︸
Jumps do not take time.

∧
(
¬flow ⇒

(∨

i∈{1,...,z}
jumpi

))

︸ ︷︷ ︸
A step is either a flow or at least one component must do a jump.

∧
∧

i∈{1,...,z}

(
jumpi ⇒

︸ ︷︷ ︸
If a component performs a discrete transition, . . .

(∨

j=(m−→m′)∈JHi︸ ︷︷ ︸
. . .one of its jumps . . .

(mHi = m ∧m′Hi
= m′ ∧ pj(~x, ~x ′,~c))

︸ ︷︷ ︸
. . .must be taken and its predicate must hold.

))
(2.2)

∧
(
¬flow ⇒

∧

i∈{1,...,z}
(¬jumpi ⇒ (~x ′Hi

= ~xHi))

︸ ︷︷ ︸
All stuttering components must keep their valuations constant.

)

∧
∧

i∈{1,...,z}

∧

m∈MHi

(
(m′Hi

= m)⇒ Im(~x ′,~c′)
)

︸ ︷︷ ︸
In all automata, in all modes, the mode invariants must always hold.

(2.3)

∧
flow ⇒

(∧

i∈{1,...,z}

∧

m∈MHi

(
(mHi = m)

︸ ︷︷ ︸
During a flow, the active mode’s . . .

⇒

~̇xHi = fm(~x)︸ ︷︷ ︸
. . .ODE and . . .

∧ Im |~x (~x(t))︸ ︷︷ ︸
. . .projection of its

flow invariant to ~x must hold.

))
 (2.4)

∧
(
flow ⇒

∧

i∈{1,...,z}
m′Hi

= mHi

)

︸ ︷︷ ︸
Modes are constant during a flow.

Note that for the predicate (2.2) the unabbreviated jump predicates pj contain
constraints of the form x ′ = x for all non-changing variables. This is important
for a predicative encoding, since not constraining a variable implies that its
value can be chosen freely.

The predicate (2.3) is given only over the primed state s′ because of the BMC
unwinding (2.1). For the instance s0, init(s0) already enforces that invariants

2.2. ENCODING BY FORMULAE INVOLVING ODES 35

hold. The predicate (2.3) in the transition relation trans(si , si+1) thus only has
to enforce that the invariant also holds for all future instances, but does not
need to duplicate it for the instance s0.

Finally, the predicate (2.4) introduces two kinds of constraints, that have
so far not been covered in our definition of constraints and predicates: ODE
constraints in which the occurring left-hand-side continuous variable is marked
by the derivation operator, e.g. ẋ, and flow invariant constraints, in which the
continuous variable is marked by x(t). These constraint types directly import
their semantics from Definition 6. Before formally defining satisfaction for ODE
and flow invariant constraints, we apply the approach to the running example.

Running Example (continued). First, we choose a concrete instance of the
model from Figure 2.1 by selecting values for the constants DB = 10, DR =

15, AMAX1 = AMAX2 = 2, AB1 = AB2 = −2, VMAX = 5. To begin the encoding, we
introduce the following variables and domains:

mA1 ∈ {FREE_CRUISE_1,BRAKING_1,STOPPED_1},
mA2 ∈ {FREE_CRUISE_2},
p1, p2 ∈ R,
v1, v2 ∈ [0, VMAX],
a1, a2 ∈ [AB1, AMAX],

d ∈ [0,∞),
jump1, jump2, flow ∈ {0,1},

t ∈ [0, T], and
δ ∈ [0,∆],

hence s = (mA1 , mA2 , p1, v1, a1, d, p2, v2, a2, jump1, jump2, flow, t, δ). Later, our
approach will require us to introduce bounded domains for all variables. This
will require some additional modeling insight or explicit choices, which we
postpone for the moment. We have, however, already chosen tight domains
for the velocities and accelerations, since these can be deduced quite easily
from the model in this case. Also the maximum duration ∆ of a flow and the
maximum aggregated duration T must be chosen before an analysis can take
place. Since these are not relevant for the encoding, we also postpone a decision
about appropriate values for these parameters.

Over these variables, we define init(s) as instructed above:

init(s) ≡ mA1 = FREE_CRUISE_1

∧ (p1 ≤ p2 − DR ∧ d = p2 − p1 ∧ a1 ∈ [AB1, AMAX1]
∧ v1 ≤ VMAX ∧ v1 ≥ 0 ∧ d ≥ DB)

∧mA2 = FREE_CRUISE_2

∧ a2 ∈ [AB2 , AMAX2] ∧ v2 ≤ VMAX ∧ v2 ≥ 0
∧ t = 0

Applying the encoding strategy to the continuous and discrete transitions of

36 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

the system, yields the following trans(s, s′) predicate:

trans(s, s′) ≡ t′ = t + δ

∧ (¬flow ⇒ δ = 0)
∧ (¬flow ⇒ (jump1 ∨ jump2))
∧ (jump1 ⇒ (

(mA1 = FREE_CRUISE_1 ∧m′A1
= FREE_CRUISE_1

∧ a′1 ∈ [AB1, AMAX1] ∧ p′1 = p1 ∧ v′1 = v1 ∧ d′ = d)
∨ (mA1 = FREE_CRUISE_1 ∧m′A1

= BRAKING_1

∧ d ≤ DB ∧ a′1 = AB1 ∧ p′1 = p1 ∧ v′1 = v1 ∧ d′ = d)
∨ (mA1 = BRAKING_1 ∧m′A1

= FREE_CRUISE_1

∧ d ≥ DR ∧ a′1 ∈ [AB1, AMAX1] ∧ p′1 = p1 ∧ v′1 = v1 ∧ d′ = d)
∨ (mA1 = BRAKING_1 ∧m′A1

= STOPPED_1

∧ v1 ≤ 0 ∧ a′1 = 0 ∧ p′1 = p1 ∧ v′1 = v1 ∧ d′ = d)))
∧ (jump2 ⇒ (

(mA1 = FREE_CRUISE_2 ∧m′A1
= FREE_CRUISE_2

∧ a′2 ∈ [AB2, AMAX2] ∧ p′2 = p2 ∧ v′2 = v2)))
∧ (¬flow ⇒ (

(¬jump1 ⇒ (p′1 = p1 ∧ v′1 = v1 ∧ a′1 = a1 ∧ d′ = d))
∧ (¬jump2 ⇒ (p′2 = p2 ∧ v′2 = v2 ∧ a′2 = a2))))

∧ (m′A1
= FREE_CRUISE_1⇒ (v1 ≤ VMAX ∧ v1 ≥ 0 ∧ d ≥ DB))

∧ (m′A1
= BRAKING_1⇒ (v1 ≥ 0))

∧ (m′A2
= FREE_CRUISE_2⇒ (v2 ≤ VMAX ∧ v2 ≥ 0))

∧ (flow ⇒
(mA1 = FREE_CRUISE_1⇒ (
ṗ1 = v1 ∧ v̇1 = a1 ∧ ȧ1 = 0 ∧ ḋ = v2 − v1

∧ v1(t) ≤ VMAX ∧ v1(t) ≥ 0 ∧ d(t) ≥ DB))
∧ (mA1 = BRAKING_1⇒ (

ṗ1 = v1 ∧ v̇1 = a1 ∧ ȧ1 = 0 ∧ ḋ = v2 − v1

∧ v1(t) ≥ 0))
∧ (mA1 = STOPPED_1⇒ (

ṗ1 = v1 ∧ v̇1 = a1 ∧ ȧ1 = 0 ∧ ḋ = v2 − v1))
∧ (mA2 = FREE_CRUISE_2⇒ (

ṗ2 = v2 ∧ v̇2 = a2 ∧ ȧ2 = 0
∧ v2(t) ≤ VMAX ∧ v2(t) ≥ 0)))

∧ (flow ⇒ (m′A1
= mA1 ∧m′A2

= mA2))

The predicate target(s) can be chosen arbitrarily to define the state of the
system, whose reachability is to be analyzed. A most simple choice could be
target(s) ≡ true, which would mean that for any trace S0, . . . ,Sk, there would
exist a solution s0, . . . , sk for the k-fold unwinding of the transition system as

2.3. SATISFIABILITY MODULO ODE 37

shown in Equation (2.1). Conversely, choosing target(s) ≡ false would make the
BMC formula trivially unsatisfiable and hence there would not be a single trace
of the system, for which we could find a corresponding solution. A much more
interesting choice would be target(s) ≡ d ≤ 1. If this target condition is used
in (2.1), solutions would only exist for traces of length k which finally reach
a near-collision distance d ≤ 1 in their last step. Such traces, which identify
undesired situations, are obviously useful to falsify the safety of the system and
help fixing e.g. the choice of parameters that allows the undesired behavior.
Again, we should stress that unsatisfiability of (2.1) means that no trace of
length k exists, that ends in a near-collision situation. However, nothing can be
deduced about traces of length k + 1, unless by some other argument it can be
shown that no new (undesired) behavior can occur for larger unwindings than
k.

Size of the Encoding for Parallel Compositions. As can be seen from the
general rules and their application to our example, an important quality of
the encoding is that there is no need for an explicit construction of a product
automaton. More importantly, nowhere within the encoding is there a need to
build any cross-product over modes or variables of the component automata.
In fact, it is often argued (e.g. in [FHR+07, Her11]) that BMC encodings allow
parallel composition by mere conjunction of the individual transition systems.
For the parallel composition of independent programs (i.e. no communication,
no shared state, and no continuous evolution) it has already been known since
at least 1984 that parallel composition can be represented by mere conjunction
of the predicates that encode the behavior of the component programs [Heh84].
While this may not be true in the strictest sense for our encoding (we still need
to extend e.g. the predicate that enforces ¬flow ⇒ ∨z

i=1 jumpi), the fundamental
message that an explosion of the representation size—that would be expected
for a parallel composition based on explicit product-automaton generation—can
be avoided. Unfortunately, but rather naturally, and this will later be addressed
in more detail, the price for the additional complexity that comes with the
interaction and interleaving of parallel components still has to be paid. In our
case, it comes in the form of a larger number of variables and the state space
they span for the solver to search for solutions in.

2.3 Satisfiability Modulo ODE

Starting with hybrid automata and introducing an encoding that creates for-
mulae which are satisfiable by valuations that represent traces of the encoded
automata has led us to the essence of the problem this thesis tries to address:
solving formulae over discrete and continuous variables involving non-linear
arithmetics and ODEs. We have introduced this problem with the same motiva-
tion in [EFH08], calling it SAT modulo ODE, and extended it among others by
the introduction of flow invariant constraints in [ERNF12a].

The propositional satisfiability problem (SAT) can safely be considered “one
of the classical problems in computer science” [CESS08]. Within that paper,
Claessen et. al. first give a brief overview of SAT as a theoretical problem and
then focus on the “SAT revolution” that was caused by the advent of bounded
model checking coinciding with the availability of a first “high-performance SAT

38 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

solver” and a decade-long history of improvements of SAT solving algorithms.
While SAT deals with formulae consisting of the usual boolean connectives over
propositional variables and their negation as atoms (often called literals), SAT
modulo Theories (SMT) lifts the restriction on what constitutes an atom in the
formula. In [BSST09], Barret et. al. provide a survey of SMT over a wide variety
of theories and of the underlying theoretical foundations. Intuitively, like a SAT
formula, an SMT formula is satisfiable if and only if there exists a valuation
that satisfies a set of atoms from the formula which together satisfy the boolean
structure and hence the formula as such. However, while the question, whether
an individual atom is satisfied, is close to trivial in the case of propositional
formulae, it becomes far more intriguing when the formula consists of atoms
from one or several background theories. Among the “theories of interest”
enumerated by Barret et. al. are reasoning about equality with uninterpreted
functions (e.g. deducing that when the two atoms f (x) = y and f (z) = y hold,
so must x = z), various types of restricted arithmetic, most prominently linear
constraints like 5x + 7y − 2.1z ≤ 4.2, and bit-vectors, which allow more compact
representations of operations over boolean variables. The focus of the survey
thus lies on combining SAT solving with decidable theories.

In contrast to these decidable theories, in [FHR+07], the problem of satis-
fiability modulo non-linear arithmetics over boolean, integer, and real-valued
variables involving transcendental functions has been investigated, accepting
the incompleteness of the method due to the undecidability introduced by
the rich arithmetics. Adding to this problem class ODE constraints and flow
invariants will obviously not bring us back into the domain of a decidable
SMT problem. However, theoretical research in the direction of robustness
for hybrid systems [Frä99], approximation metrics [GP07] exploiting similarity
of neighboring trajectories to simplify verification, quasi-decidability [FRZ11]
for systems of equations over real analytic functions, and most recently δ-
completeness [GKC13] has introduced notions that are only slightly weaker than
traditional decidability.

In [GKC13], Gao et al. have explicitly targeted the class of Satisfiability
modulo ODE problems. They define a δ-complete “decision” procedure as one
that only needs to detect unsatisfiability if a formula stays false even if the
right-hand-side constants of all constraints (normalized such that the relational
operators are from {>,≥} and the right-hand side is zero) are changed to −δ.
Due to this modification, a valuation still satisfies this relaxed constraint system
if it violates each original constraint by at most δ. By allowing the solver to give
an arbitrary answer if the relaxed constraint system becomes satisfiable while
the original formula was not, the notion of δ-completeness is weaker than actual
decidability. The price that needs to be paid for achieving δ-completeness is,
however, that all pruning operators, which are used to remove non-solutions
from the search space, must be able to provide δ accuracy. If rewriting of a
formula’s complex expressions into simpler constraints is taken into account,
this may require even significantly higher accuracy to mitigate the effect that also
the constraints added for freshly introduced auxiliary variables will be relaxed by
δ. This requirement of being able to produce arbitrarily fine overapproximations
of arithmetic and of ODE constraints is a significant burden for a practical
implementation of δ-complete algorithms.

We expect that future work in this direction will further bridge the gap
between a theoretically desirable decidability notion and limitations induced by

2.3. SATISFIABILITY MODULO ODE 39

practical numerics.

Definition 8 (SAT modulo ODE formula). With only cosmetic modifications,
we repeat our definition from [ERNF12a]. A SAT modulo ODE formula is a
quantifier-free boolean combination of arithmetic constraints over real-, integer-,
and boolean-valued variables with bounded domains, simple bounds, ODE
constraints over real variables, and flow invariants with the following properties:

• arithmetic constraints over variables x, y, and z are of the form x ∼ ◦(y, z)
or x ∼ ◦(y), where ∼ is a relational operator from {<,≤,=,≥, >}, and ◦ is a
total unary or binary operator from {+,−, ·, sin, cos,powN, exp,min,max},
with powN denoting a power with constant positive integer exponent and
the other operators having their usual meanings;

• simple bounds are of the form x ∼ c with ∼ as above a relational operator,
x a variable, and c ∈ Q a constant;

• ODE constraints are given by ẋi = dxi/dt = f (x1, . . . , xn) with all occurring
variables xi themselves again being defined by ODE constraints and f
being a function composed of {+,−, ·, /,powN, exp, ln, N√ , sin, cos} (with N

√
denoting roots with positive integer index); and

• flow invariant constraints are of the form x(t) ≤ c or x(t) ≥ c with x being
an ODE-defined variable and c ∈ Q being a constant.

A SAT modulo ODE formula is specified by a variable declaration, which in-
troduces the domain for each variable, and by an initial, transition, and a
target predicate over the declared variables. The actual formula is then ob-
tained by a k-fold instantiation of the variables and unwinding of the transition
predicate in the BMC fashion as introduced in Equation (2.1). ODE con-
straints and flow invariants must only occur within the transition predicate
and only under an even number of negations, allowing e.g. an implication like
m1 ⇒ ((ẋ = sin(y)) ∧ (ẏ = −x)), but forbidding e.g. (ẋ = sin(y)) ⇒ m1 to avoid
subtleties in the semantics of the formula. A special variable t denotes the global
time and a special variable δ denotes the duration of each transition.

The semantics of a Satisfiability modulo ODE formula is anchored in the
notion of a satisfying valuation for it, and this notion of satisfiability is naturally
chosen to be compatible with the trace semantics for hybrid automata, that has
dominated the previous sections.

Definition 9 (satisfiability of SAT modulo ODE formulae). A SAT modulo ODE
formula Φ over variables ~v is satisfiable if and only if there exists a point in
dom(~v), which satisfies Φ. For a valuation σ to satisfy Φ, there must be a
combination of atoms in Φ that is satisfied by σ, such that the boolean structure
of Φ is satisfied. An arithmetic atom is satisfied by σ if the evaluation of the left-
and right-hand-side expressions under σ satisfies the constraint’s relational
operator or—in case the atom only consists of a boolean literal—this literal
evaluates to true under σ. We can safely consider the details of this part of the
semantics to be well known and standard, and refer e.g. to [Her11] for a more
in-depth definition.

Essential for the extended problem class is the question of satisfying ODE
constraints and flow invariants. As defined above, the variables of Φ are actually

40 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

k instances that were introduced for the unwinding of the transition system.
We call these sub-vectors of variables (~v0, . . . ,~vk) = ~v and split σ accordingly
into σ0, . . . , σk. Additionally, we call a set of ODE constraints from the same
unwinding depth i ∈ {0, . . . , k} definitionally closed if and only if each variable
occurring on a right-hand side of one of the ODE constraints in the set occurs
exactly once as a left-hand-side variable, i.e. its slope is defined by an ODE
constraint as well. Such a set of ODE constraints over variables ~x can then easily
be rewritten as an ODE system ~̇x = ~f (~x). For depth i, we use σi as valuation;
similarly, we use σi+1 as valuation for the successor depth. This depth i + 1 is
always less or equal to k since we have restricted ODEs to occur only within the
transition system and not within the target predicate.

We then call an ODE system of dimensionality n on unwinding depth i
satisfied if and only if there exists a solution function ~y : [0, δi]→ Rn of duration
δi with the right starting point σi(~x) = ~y(0), the right slope for all points in
between, i.e. ∀τ ∈ [0, δ] : ~y(τ) = ~f (~y(τ)), and the right end point σi+1(~x) = ~y(δ).

A flow invariant constraint xj(t) ∼ c on the same depth i is satisfied if and
only if the j-th dimension of the solution function never violates the constraint,
i.e. ∀τ ∈ [0, δ] : yj(t) ∼ c holds.

By construction, this formula class contains sufficiently powerful atoms to
directly perform the encoding that we have introduced in the previous section.
Obviously, some of the choices made in these definitions are tailored specifically
to the intended usage scenario, especially the requirement that the formula
be written as a combination of initial, transition, and target predicate. A more
general definition could easily be made if variables were explicitly marked as
being connected by ODEs instead of relying on unwindings and the resulting
pre- and post-instances. Such a generalization might in fact be useful in other
contexts or even for model checking approaches that do not follow the strict
unwinding scheme, we have pursued in this thesis.

Example 1 (SAT modulo ODE formula [ERNF12a]). In Figure 2.4, we illustrate
the encoding and the formula written in the syntax of our iSAT-ODE tool on
an originally non-BMC-oriented model from [GMEH10]. This problem can be
stated as follows: find two points A and B on a circle with radius 1 around
(1,0) and from the box [−1,1] × [−1,1], such that a trajectory of a harmonic
oscillator around (0,0) with fixed temporal length (here, we choose 1), starting
in A ends in a point X , forming an equilateral triangle A, B, X . The special
variables t and δ are represented by variables time and delta_time in the input
syntax. On the right side, the figure also contains a graphical depiction of a
satisfying valuation—represented by the three points. A simulated trajectory
leading from point A to point X validates the solution. In the example, no flow
invariants have been used, not even to enforce the variable domains. As a
result, the connecting trajectory between A and X is not forced to stay within
[−1,1] × [−1,1]. Were these flow invariants added, the illustrated valuation
would no longer be a solution of the formula.

Running Example (continued). We provide the actual encoding of the running
example as a SAT modulo ODE formula in the input language used by our tool
in Figure 2.5. In the first part (lines 1–32), some symbolic names for numerical
constants and the variables of the system with their domains are declared. Also
the declarations of the special variables time for the global time t and delta_time

2.3. SATISFIABILITY MODULO ODE 41

DECL
float [−1, 1] ax, ay, bx, by;
float [−10, 10] x, y;
float [0, 10] time;
float [1, 1] delta_time;

INIT
−− A and B on circle around (1,0).
(ay−0)^2 + (ax−1)^2 = 1; (by−0)^2 + (bx−1)^2 = 1;
−− A and B must be distinct points.
ax != bx or ay != by;
−− Trajectory must start in A.
x = ax; y = ay;
time = 0;

TRANS
−− A and B stay the same.
ax’ = ax; ay’ = ay; bx’ = bx; by’ = by;
−− Trajectory.
(d.x / d.time = y); (d.y / d.time = −x);
time’ = time + delta_time;

TARGET
−− Equilateral triangle: equal distances between points.
(ay−by)^2 + (ax−bx)^2 = (ax−x)^2 + (ay−y)^2;
(ay−by)^2 + (ax−bx)^2 = (bx−x)^2 + (by−y)^2;

y

x

A

B

X

−0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

Figure 2.4: Example of an iSAT-ODE input (before being automatically rewritten
into the solver’s internal format by its frontend). The right graph shows a
candidate solution that has been found by the solver, illustrating a satisfying
valuation of a one-step unwinding of this constraint system. (Based on our
previous publication in [ERNF12a].)

for the duration δ introduce bounds, which limit the duration of each BMC step
and the total duration of any trajectory that may be a solution. Choosing these
bounds may be a non-trivial task in general, but if no a-priori choice is possible,
the model can be extended by self-loops in such a way that it is always possible
to glue together two shorter flows by an intermediate jump that does not change
anything. As a minor deviation from the strict encoding scheme applied in the
previous section, no mode variable for the second automaton is introduced since
its value would never change.

In lines 33–41, the initial predicate encodes what constitutes an admissible
initial state of the system. Again, some constraints have been left out since they
are redundant, e.g. a2 ∈ [AB2 , AMAX2], which is already implied by the chosen
variable domain.

The largest part of the encoding is spent on the transition relation. It
begins with general constraints (lines 43–49), which enforce that the global
time t accumulates the durations δi , jumps do not take time, and modes are
kept constant during a flow. A deviation from the encoding scheme lies in the
constraint in line 46, which requires that flows and jumps are strictly alternating.
This condition is sometimes useful, especially if it is known that trajectories
without strict alternation of discrete and continuous transitions do not lead
to any additional interesting system states. In lines 51–60, the continuous
evolution is encoded by ODE constraints. It is beneficial for technical and for
readability reasons to write each ODE constraint only once and guard it with
a disjunction of all the modes in which it is active—or, as is possible in this
example, to even enforce them globally for each flow if they are the same in all
modes. Lines 63–76 constrain the continuous trajectories by mode-dependent
flow invariants. The predicate ¬flow ⇒ jump1 ∨ jump2 in line 83 explicitly

42 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

1 DECL
2 define BRAKE_DIST = 10;
3 define RELEASE_BRAKE_DIST = 15;
4 define MAX_ACCELERATION = 2;
5 define MAX_SPEED = 5;
6 define BRAKE_ACC = −2;
7
8 define FREE_CRUISE = 0;
9 define BRAKING = 1;

10 define STOPPED = 2;
11
12 −− Modes, posititions, speeds,
13 −− and accelerations.
14 int [0,2] m1;
15 float [−1000, 1000] pos1, pos2;
16 float [0, MAX_SPEED] speed1, speed2;
17 float [BRAKE_ACC,
18 MAX_ACCELERATION] acc1, acc2;
19
20 float [0, 2000] distance;
21
22 define MAX_TIME = 10;
23 define MAX_DELTA_TIME = MAX_TIME;
24
25 float [0, MAX_TIME] time;
26 float [0, MAX_DELTA_TIME] delta_time;
27
28 boole flow;
29 −− If one of the parallel components performs
30 −− a mode switch, its jump variable must be
31 −− true during !flow.
32 boole jump1, jump2;
33 INIT
34 time = 0;
35 −− The follower car1 starts in FREE_CRUISE
36 −− mode with safe distance to the lead car.
37 m1 = FREE_CRUISE;
38 pos2 >= pos1 + RELEASE_BRAKE_DIST;
39 −− Leading car2 is always in FREE_CRUISE
40 −− mode and is ahead of the follower car.
41 distance = pos2 − pos1;
42 TRANS
43 −− Time progress.
44 time’ = time + delta_time;
45 −− Strict alternations of jumps and flows.
46 flow <−> !flow’;
47 !flow −> delta_time = 0;
48 −− Mode does not change during flow.
49 flow −> m1’ = m1;
50
51 −− Dynamics of system dimensions.
52 flow −> (d.pos1 / d.time = speed1);
53 flow −> (d.speed1 / d.time = acc1);
54 flow −> (d.acc1 / d.time = 0);
55 flow −>
56 (d.distance / d.time = speed2 − speed1);
57
58 flow −> (d.pos2 / d.time = speed2);
59 flow −> (d.speed2 / d.time = acc2);
60 flow −> (d.acc2 / d.time = 0);
61
62
63 −− May stay in FREE_CRUISE as long as
64 −− neither braking distance nor maximum
65 −− speed are reached.
66 flow and m1 = FREE_CRUISE
67 −> (distance(time) >= BRAKE_DIST
68 and speed1(time) <= MAX_SPEED
69 and speed1(time) >= 0);
70

71 −− Mode BRAKING as long as speed >= 0.
72 flow and m1 = BRAKING −> speed1(time) >= 0;
73
74 −− Flow invariants for car2.
75 flow −> (speed2(time) >= 0
76 and speed2(time) <= MAX_SPEED);
77
78 −− Jumps.
79
80 −− Note that multiple jumps can occur
81 −− simultaneously or components can perform
82 −− jumps while the other ones do not change.
83 !flow <−> jump1 or jump2;
84
85 −− Common for all jumps.
86 !flow −> distance’ = distance
87 and pos1’ = pos1
88 and pos2’ = pos2
89 and speed1’ = speed1
90 and speed2’ = speed2;
91
92 −− Keep all remaining variables constant if
93 −− component does not perform jump.
94 !flow and !jump1 −> acc1’ = acc1 and m1’ = m1;
95 !flow and !jump2 −> acc2’ = acc2;
96
97 −− Individual jumps for car1. Self−loop at
98 −− FREE_CRUISE: allow arbitrary acceleration.
99 jump1 and m1 = FREE_CRUISE

100 and m1’ = FREE_CRUISE
101 −> acc1’ >= BRAKE_ACC
102 and acc1’ <= MAX_ACCELERATION;
103
104 −− Jump from FREE_CRUISE to BRAKING.
105 jump1 and m1 = FREE_CRUISE
106 and m1’ = BRAKING
107 −> distance <= BRAKE_DIST
108 and acc1’ = BRAKE_ACC;
109
110 −− Jump from BRAKING to STOPPED.
111 jump1 and m1 = BRAKING
112 and m1’ = STOPPED
113 −> speed1 = 0
114 and acc1’ = 0;
115
116 −− Jump from BRAKING to FREE_CRUISE: again
117 −− arbitrary acceleration.
118 jump1 and m1 = BRAKING
119 and m1’ = FREE_CRUISE
120 −> distance >= RELEASE_BRAKE_DIST
121 and acc1’ >= BRAKE_ACC
122 and acc1’ <= MAX_ACCELERATION;
123
124 −− Define allowed jumps.
125 jump1 −> m1 = FREE_CRUISE
126 and m1’ = FREE_CRUISE
127 or m1 = FREE_CRUISE and m1’ = BRAKING
128 or m1 = BRAKING and m1’ = FREE_CRUISE
129 or m1 = BRAKING and m1’ = STOPPED;
130
131 −− Car2 is always in FREE_CRUISE and can
132 −− therefore change its acceleration freely.
133 −− The flow invariant will avoid negative or
134 −− excessive positive velocities.
135 jump2 −> (acc2’ >= BRAKE_ACC
136 and acc2’ <= MAX_ACCELERATION);
137 TARGET
138 −− Find a near−collision situation.
139 distance <= 1;

Figure 2.5: Encoding of the model from Figure 2.1 as an iSAT-ODE input.

2.4. RELATED WORK 43

encodes that at least one component must actually perform a jump in each
non-flow step. Extracting from the jumps all variables that are kept constant
(lines 85–90) compactifies the remaining individual jump encodings up to the
end of the transition predicate (line 136).

Finally, the target predicate at the end describes a state, in which the distance
variable reaches a critically small value. A solution of a k-fold unwinding of this
formula would hence have to reach such a small distance after having started
from a much larger initial separation between the vehicles. Such a solution—if
not an artifact of a modeling error—would expose an interesting behavior of the
analyzed system, that probably should be investigated further and may be used
to tune some of the system’s parameters.

2.4 Related Work

Before looking at our algorithmic approach to solving SAT modulo ODE problems
and at experimental results in the chapters to come, a step back to a wider
perspective is now in order and helps to understand the work related to this
thesis. Our core motivation is the prospect of a tool for the automatic analysis
of hybrid systems. Clearly, we are neither the first nor the last to pursue this
goal. Simulation has reached the stadium of industrial maturity as has of course
testing of physical prototypes, which has been in use much longer than people
have been thinking of their systems as hybrid. Both play an important practical
role in building up a developer’s and a client’s trust in the actual system under
construction (cf. e.g. [Mar11]).

Reachability Computation. Model checking approaches, which aim more
closely at being fully automatic and at yielding mathematically-rigorous and
complete results, have existed for hybrid systems at least since the development
of HyTech [HHWT97]. HyTech is restricted to linear hybrid automata in the
sense that the solution functions are linear, i.e. ODEs must be of the form
ẋ = c or ẋ ∈ [c − ϸ, c + ϸ]. The core algorithm in HyTech and many other
model checkers iteratively constructs the entire space of reachable states until
it either contains a target state or no new states can be added to the identified
reachable state space because a fixed point has been reached. In [HPWT01]
reasons for non-termination in practice are given as the size of the reachable
state space exceeding available memory, impractical running times, countably
infinite or non-linear reachable state sets, and arithmetic overflows caused by
finite-precision representations. In the case of HyTech, the algorithm is based
on polyhedra and their manipulation by the linear ODE solution functions and
discrete jumps. Obviously, having a characterization of the entire reachable
state space grants deep insight into a hybrid system’s behavior since it allows
e.g. to immediately decide for multiple target conditions whether they can be
reached or by how large a margin they are missed. In some cases, it may even
suffice to identify some form of stabilization or oscillation behavior. If a fixed
point is actually reached by the analysis, the characterization is complete in
the sense that it allows reasoning about all trajectories, including unbounded
ones. Such desirable qualities have been the reason why a multitude of different
geometric objects have been explored over nearly two decades for capturing
reachable-states of hybrid systems.

44 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

In [Gir05] an approach was presented to compute the set of reachable states
for linear ODEs (and the hybrid systems in which they occur) using zonotopes, a
form of polytopes, which are closed under linear transformation and Minkowski
sum. This approach makes use of the matrix exponential to compute near-
overapproximations of the solution sets, which are represented by sequences (or
unions) of zonotopes in what is often called a flowpipe. The actual computations
however are done via standard approximative numerics, leaving potential to miss
some solutions in the enclosure. Old [OM88, BM89] and more recent [Gol09]
work on computing the matrix exponential for interval matrices could however
mitigate this shortcoming.

We note briefly, that more general polytopes have successfully been used
in [HK06] and so-called ellipsoidal approximations even earlier in [BT00]. The
variety of methods is further diversified by Bézier curves [Dan06] adapted from
computer graphics and applied to the analysis of hybrid systems with polynomial
ODEs. More recently in [DT12], their basis, Bernstein expansions, have been
combined with template polyhedra and used to improve the scalability of the
Bézier approach in the context of polynomial discrete-time dynamical systems—
with future applications to hybrid systems to be expected.

Hybridization. One core argument, why an analysis tool’s restrictions of the
continuous dynamics are not a major obstacle to the verification of more complex
hybrid systems, is given by Asarin et al. in [ADG03]. Replacing a system of
non-linear ODEs in one mode by a number of modes in which the original
dynamic is overapproximated e.g. by linear ODEs and a sufficiently-large error
term, the original dynamics is subjected to what is called hybridization. Such
an introduction of additional modes shifts some of the analysis complexity from
the continuous flows to the discrete mode changes. Additionally, it may be
hard to find a suitable trade-off between the degree of conservativeness in the
overapproximation and the number of modes that need to be introduced. Clever
strategies for the division of the continuous state space are necessary in all
but the lowest-dimensional systems to avoid the exponential blow-up, which is
caused by naively subdividing each variable’s domain.

One approach to mitigate this problem is proposed in [DLGM09] as dynamic
hybridization. The central idea is to construct the hybridization during the
reachability analysis: whenever the reachable successor states computed by the
post-operator have partially left the cell of the hybridization, the last step is taken
back, the cell shifted into the direction where it has been left, and the reachability
computation repeated with the newly computed (linear) overapproximation for
this shifted cell. The underlying idea of first computing the reachable states
and a-posteriori checking the computation’s validity is in fact also used in our
approach for computing bracketing systems (cf. Sect. 3.5).

In [Her11, Chapter 6], a method is suggested to perform hybridizations on
the fly inside bounded model checking with an iSAT-like solver. This would allow
to automatize the trade-off between overestimation and discrete state-space
complexity. A general problem with this approach in the context of bounded
model checking would be the increase of trace lengths, which is induced by the
introduction of additional modes, through which a previously uninterrupted
continuous trajectory needs to pass in the hybridized system.

2.4. RELATED WORK 45

Application of Hybridization in Model Checking. In the PHAVer [Fre05]
model checker, automatic hybridization is used to generate piecewise-linear
solution functions for affine dynamics, i.e. ODEs with linear right-hand sides.
This approach is based on an earlier understanding of hybridization, called
linear phase-portrait approximation [HHWT98], which overapproximates the
solution functions of linear ODEs like e.g. ẋ = f (x) = 2x—which naturally may
contain trigonometric and exponential terms—by linear enclosure functions like
x(t0 + h) ≥ x(t0) + h · a and x(t0 + h) ≤ x(t0) + h · b, which are the solutions of
constant differential inclusions of the form ẋ ∈ [a, b]. By splitting the continuous
state space into cells and finding in each cell appropriate a and b such that
they cover the possible values of f (x) = 2x, the original solution function is
enclosed within that cell. PHAVer performs the necessary partitioning recursively
according to user-defined parameters and combines this hybridization approach
with a fixed-point computation similar to the one of HyTech. One of its major
improvements is to limit the precision of the computed representations of
rational coefficients, whose growth was found to be problematic in HyTech.
An additional improvement lies in the deliberate introduction of imprecision
by combining computed elements of the reach set into fewer—hence larger—
and simpler polyhedra, which leads to more compact representations of the
reachable state set and at the same time may avoid infinitesimally small progress
during the fixed-point computation. Both advantages come at the cost of a
more conservative estimate of the reachable state space, potentially introducing
spuriously non-empty intersections with unsafe target states.

PHAVer’s successor, SpaceEx [FLGD+11], combines template polyhedra with
support functions as an alternative representation of reachable states. In this
context, support functions can be used as exact representations of convex sets
with finitely many directions stemming from the template polyhedra represen-
tation and allow for efficient applications of linear maps, Minkowski sum, and
the computation of the convex hull of several sets, whereas template polyhedra
allow efficient computation of intersections and deciding containment. SpaceEx
therefore uses conversions between the two representations—again incurring
some overapproximation—to have efficient versions of all these operations, from
which its reachable state computation for hybrid systems with affine dynamics
and nondeterministic inputs is composed.

Comparison with our Approach. Contrasting these reachability-based meth-
ods to our approach of solving a SAT modulo ODE formula, we observe the
following central differences. While the goal of tools like SpaceEx is to charac-
terize the entire reachable state space, our approach is focused on finding only
one step-bounded trajectory of the hybrid system under analysis or proving its
non-existence. While the latter may amount to the same work—after all, the
entire state space may have to be analyzed to prove that no trajectory leads
to a target state—in principle, our goal is significantly less ambitious. Having
found one trajectory, by luck or by the virtue of well-crafted search heuristics,
we can stop. Also the step-boundedness of BMC is a significant difference:
without an additional argument, our approach is unable to prove anything
about trajectories that are longer than the threshold for the number of steps
that has been chosen. On the positive side, from the solution of a SAT modulo
ODE formula, it is trivial to extract the values of each variable at each step,

46 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

including e.g. uncertain inputs. Constructing an actual trajectory after having
found a non-empty intersection between reachable and target states may, on
the other hand, require additional computations to reconstruct the concrete
values which need to be chosen at each step.

The technical differences are even more striking. Reachable state compu-
tation for hybrid systems is about computing successor states from what is
known to be reachable, intersecting them with guards, and applying actions to
the intersection result. Our approach starts with the entire state space as a
possible valuation and tries to prune off parts that are known to be inconsistent
under the given formula. Splitting the remaining consistent state space and
generalizing observed inconsistencies, the solver tries to close-in on a solution
and uses a backtracking search to escape non-satisfying parts of the state space.
While the one is like constructing step-by-step a reachability frontier, the other
can better be described as carving a single trajectory from a large domain full of
inconsistent points.

Due to these unequal goals and different technical approaches, the direct
comparison of results is complicated. While it is possible to say which models
and specifications can be analyzed by the one tool or the other, the results
of a successful analysis differ significantly. If a target is unreachable, the
reachability-based approaches give a more detailed result by showing the entire
reachable state space instead of just the proof that the analyzed formula is
unsatisfiable. Otherwise, if the target can actually be reached, the satisfiability-
based approach computes a concrete trace leading to the target, instead of
just showing that the intersection of reachable and target states is non-empty.
While in some applications either result may be acceptable, often one would be
preferable over the other.

In the following, after introducing some more context and background for our
own approach, we discuss more direct competitor tools. Part of our experimental
evaluation is concentrated on a comparison with these, which indirectly also
yields a comparison with the reachability-computation-based model checking
algorithms above.

Lyapunov Stability Proofs. An important class of real-world problems in-
volves the question of whether a system stabilizes towards equilibrium points or
attractor regions. To address this question, the direct Lyapunov method, which
is used to prove stabilization in the domain of continuous systems, has been
lifted to hybrid systems [Oeh11]. One central issue is the automatic generation
of suitable Lyapunov functions, for which template candidates and algorithmic
fitting of coefficients can be employed—successfully at least in the case of linear
ODEs (and generalized to some degree beyond this class). To prove stability
in case of hybrid systems, the approach extends the Lyapunov argument from
the continuous trajectories along which the Lyapunov function needs to de-
crease, also to the relevant jumps of the hybrid system, such that they can be
shown to equally reduce the system’s “energy”. Scalability of the approach is
improved by the use of hierarchical proof schemes based on automatized system
decompositions into smaller components.

In one of our experiments (cf. Section 4.1.1), we apply our method to prove
stabilization of a hybrid system towards an attractor region. In general, however,
Lyapunov methods are a more suitable tool if stabilization is to be shown

2.4. RELATED WORK 47

rather than reachability, since they allow reasoning without having to solve or
overapproximate the differential equations. On the other hand, if stabilization
properties of a system are known, e.g. from a proof based on Lyapunov methods,
this information can be used to improve the system’s encoding (for example by
making it explicit that a trajectory can never leave a certain mode after it has
entered it while being close to an attractor that is catching the trajectory).

Validated Numerical Integration of ODEs. In an earlier attempt to improve
HyTech, HyperTech [HHMWT00] was introduced as a successor tool, which
utilized interval arithmetics to compute enclosures for the solution sets of
ODEs, enabling the tool to compute overapproximations of the set of reachable
states for hybrid systems with non-linear ODEs. To the best of our knowledge,
HyperTech was the first tool to apply methods from the domain of validated
numerical integration of ODEs in the context of hybrid systems model checking.
In particular, HyperTech used ADIODES (Automatic Differentiation Interval
Ordinary Differential Equation Solver) [Sta97] to compute enclosures of the ODE
solution sets. While our approach differs significantly from HyperTech in that
we try to find solutions of constraint systems instead of computing the entire
set of reachable states, the idea of using methods from interval arithmetics has
significantly influenced our work.

In the 1960s, (the historically most recent incarnation of) interval analysis
has been pioneered by Moore [Moo66] and has even then found one of its first
applications in the computation of enclosures for set-valued initial problems of
ODEs. Moore already detected that stepwise integration and use of axis-parallel
boxes to enclose the solution sets could cause significant overapproximation.
This wrapping effect, which is the result of having to compute not only the actual
solution points, but also the successors of all those points, which were “wrapped”
in together with the solution in each intermediate integration step, has been
the topic of further research. Moore himself identified that coordinate transfor-
mations would help to reduce wrapping. One of Lohner’s contributions [Loh88]
was the additional use of the “QR-method” to orthogonalize the transformation
matrix used for these coordinate transformations. Stauning [Sta97], whose
work has been used in HyperTech, has provided a more modern implementa-
tion, which heavily uses C++ templates for automatic differentiation, parts of
which (the FADBAD++ library) are still found in VNODE-LP [Ned06], in which
the Taylor series expansion of the (unknown) solution is complemented by a
Hermite Obreschkoff series. VNODE-LP also solves the long-standing problem
of finding an a-priori solution for larger integration step sizes by using higher
order enclosures (HOE). We will describe these techniques in more detail in the
next chapter.

It may be noteworthy that the goal of these enclosure methods is similar to
the goal pursued by the model checking algorithms that are based on reachability
computations. Being able to compute over a finite temporal horizon an enclosure
of all trajectories that emerge from a set of initial values, the validated numerics
methods could adequately be called reachability tools for continuous systems.
This similarity makes it less astonishing that the choice of geometric shapes is as
important as in reachability computation. While the most natural shape for an
interval-based tool is simply a box consisting of n intervals in the n dimensions
of the problem, representations based on coordinate transformations implicitly

48 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

form (regular) polytopes—represented by a coordinate transformation matrix
and intervals with respect to the sheared and rotated axes.

Taylor Models. A second line of methods to mitigate the wrapping effect ad-
dresses the shortcoming that whenever non-convex solution sets are enclosed by
convex shapes, wrapping cannot be avoided. Real-world examples include the
determination of object paths in particle accelerators [BM98] and checking for
decades into the future, whether an asteroid may impact the earth [ADLBZB10].
These instances of non-linear ODE enclosure problems cause significant overap-
proximation when boxes with coordinate transformation are used.

In [MB03, p. 8ff], Taylor models implemented in the COSY-VI (“validated
integrator”) tool, are compared with Lohner’s AWA (for “Anfangswertaufgabe” –
initial value problem) [Loh88] using a single use expression (SUE) of the ODEs to
reduce the dependency problem3 and highlight issues caused by the wrapping
effect. A detailed comparison is made on the example of the non-linear Volterra
equations. While the Taylor-model-based enclosures can be used to tightly
follow the solution sets over an entire oscillation period, the enclosure computed
by AWA quickly deteriorates—making it impossible to compute an enclosure
for an entire period. The detailed analysis includes graphical depictions of the
Taylor-model enclosures at various time points, which show the non-convexity
of the solution sets.

In a survey paper [Neu03], Neumaier puts Taylor models into their historical
context (stressing that they are actually a reinvention of Taylor forms / arith-
metics from the 1980s). More importantly, he also highlights that “Taylor models
in themselves are as prone to wrapping as other naive approaches such as
simple integration with a centered form, since wrapping in the error term cannot
be avoided” [Neu03, p. 52]. However, also in his view, their curved boundaries
offer benefits in the case of highly non-linear ODEs, if e.g. the shrink wrapping
technique is used, which Neumaier characterizes as a “slightly modified nonlin-
ear version of the parallelepiped method”. While allowing tighter bounds, Taylor
models have been found to come at high computational cost. Neumaier, in the
same survey, quotes runtimes of COSY4 being in the order of 60–1000 times
higher than those of AWA for celestial mechanics examples [Neu03, p. 53].

This high computational cost has influenced our choice of opting for VNODE-
LP albeit the wrapping-induced limitations that have to be expected in non-linear
systems and large initial domains. A recent development in the field of Taylor
models is Flow* [CÁS13]. In the paper, the expectable higher accuracy of
Taylor models versus VNODE-LP is demonstrated, but more importantly, also a
significantly improved runtime performance. In the future, the choice of Taylor
models for ODE enclosures may thus be much more viable than it has been
during the development of our approach.

Interval Methods in Abstraction Refinement. In HSolver [RS07], interval
arithmetic is used to compute the valuation of right-hand sides of ODEs over

3Dependency in this context means that if the same variable occurs more than once in an
expression, e.g. y = x · x, interval evaluations with x ∈ [−10,10] would yield y ∈ [−100,100].
Single use expressions avoid this effect; in the example y = x2 would yield y ∈ [0,100], a tight
representation of the range.

4Reported for the COSY-INFINITY package—available from http://www.bt.pa.msu.edu/index_
cosy.htm.

http://www.bt.pa.msu.edu/index_cosy.htm
http://www.bt.pa.msu.edu/index_cosy.htm

2.4. RELATED WORK 49

the facets of sub-boxes, into which it partitions the state space of the hybrid
system under analysis. The interval result allows to easily decide for each
border, whether a trajectory can pass it. With this information, the cell graph
can be completed into a discrete abstraction of the hybrid system by introducing
edges between cells whenever trajectories can pass through them. Abstraction
refinement is done not only by splitting cells, which lie on abstract paths
between initial and target states, but also by pruning off parts of cells, which
have been shown by interval analysis methods to be unreachable. To prune
cells, HSolver uses a linear overapproximation of the possible evolution, based
on the mean-value theorem.

Like reachability computation methods, also this approach overapproximates
the entire set of reachable states. Instead of consecutive addition of elements to
the reachable state set, however, the abstraction always is an overapproximation
of the result—albeit initially a very coarse one. By refuting the concretizability of
abstract paths, refinements are done until the target states can be shown to
be unreachable. The size of the abstraction depends on the number of discrete
modes of the original hybrid automaton and the number of cells introduced by
splitting boxes during refinement. The restriction to linear overapproximations
may cause a significant amount of overestimation, which may necessitate
further refinement steps. Using more accurate ODE enclosure methods would
theoretically be possible, but is complicated by trajectories that never leave a
cell and therefore cannot be captured by any time-bounded enclosure.

Theorem Proving. The KeYmaera tool [PQ08] offers an interactive theorem-
proving approach to the analysis of hybrid systems. While automation of proofs
is a research goal for theorem provers, in practice, user interactions are required
and may only be possible with deep insight into the behavior of the system under
analysis. KeYmaera requires closed-form solutions of the ODEs occurring in the
hybrid system under analysis. In [PQ08] Mathematica and a Java-based library,
Orbital, are named as tools to obtain these solution functions. While numerical
methods cover a wide range of practically-relevant ODEs, even the best symbolic
approach to compute closed-form solutions will be limited to those ODEs for
which they exist—with practical implementations being even more restrictive.

Constraint Programming. Closer to our approach than theorem proving,
which tries to deduce new knowledge through the application of (potentially
user-selected) rules on already-derived facts, is the Constraint Logic Programming
(Functions) approach CLP(F) [HW04]. It consists of an input language which
allows the encoding of arithmetic and analytic constraints over real and function
variables, an interpreter for this language, and integrated interval arithmetic
solvers, which deduce ranges for the solutions of the variables under the given
constraints. The language then allows to submit queries, which can encode
target conditions like reachability or counter-examples to an invariance property.
Additionally required are user-specified choices of solver-algorithms (e.g. a simple
iteration of the encoded transition system or splitting and contraction). The
interpreter then deduces intervals which potentially contain a solution or proves
unsatisfiability of the constraints. This approach allows the direct encoding
of hybrid systems with non-linear ODEs like the approach, we explore in this
thesis.

50 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

The ODEs, which can be specified in this language, are automatically trans-
lated into arithmetic constraints. This process is described in [Hic00]. The
underlying idea is to introduce constraints that represent the Taylor series of
the exact solution and the remainder term. For integration horizons that require
more than one step, explicit encoding of the intermediate integration steps
is required, exemplified by a CLP(F)-procedure that generates the appropriate
constraints. Importantly, however, the handling of differential equations by mere
replacement with the corresponding Taylor series constraints, does nothing
to prevent the wrapping effect that so prominently dominates the research on
validated numerical solving of ODEs. Hickey and Wittenberg clearly admit
this shortcoming: “CLP(F) makes no attempt to handle the wrapping problem,
other than the simple minded solution technique of dividing each rectangle
into smaller pieces, exacerbating the performance problems.” [HW04, p. 414]
In [Hic00], a comparison with the literature is made and even on a simple
one-dimensional non-linear example, the CLP(F) approach is found to take
220 seconds to enclose the solution with the same precision which the then
state-of-the-art solvers were able to achieve within 0.12 seconds.

Similar, yet different, is more recent work by Goldsztejn et al., who investigate
including ODEs in classical constraint programming [GMEH10]. This work is
similar to the CLP(F) approach in that also here a declarative constraint language
is introduced over real variables, but different in that differential equations are
represented only by their role of connecting two instances of real variables and
a duration by the ODE’s solution instead of by general analytic constraints
over function variables. An important restriction of this work with respect to
its applicability to the analysis of hybrid systems is that the constraint system
must be purely conjunctive and all variables must be continuous. While this
easily allows the analysis of purely continuous systems, an application to hybrid
systems would require a number of modeling tricks (like extracting discrete
variables from the reals, e.g. through trigonometric functions, and encoding
of modes by use of these discretized variables as coefficients in ODEs and
arithmetic constraints). For the intended scenario of continuous conjunctive
problems, the approach utilizes a combination of validated numerical integration
of ODEs, using the CAPD interval library5, with the uni- and multi-variate interval
Newton methods, which are local optimization tools that converge towards
solutions by making use of the known derivatives. Moreover, using interval
Newton, proofs of existence can be derived, which may be important for some
applications. For finding errors in (hybrid) systems, however, such proofs may
not be much better than candidate solutions for which the near-satisfaction of
all constraints has been shown (and hence attention is drawn to potential error
trajectories that may only be slightly off).

An important observation that underlines the similarities between this ap-
proach and ours is that also within the CP framework the traditional optimization
goal of validated numerics libraries to provide tight enclosures from tight initial
conditions may be detrimental to their ability to quickly prune the search space
when, initially, interval boxes are still rather large and enclosure computation
with high accuracy hence very costly. Goldsztejn et al. suggest: “experiments
have shown that at the beginning of the search, when intervals are large, the
pruning is not efficient so reducing the order of the Taylor expansion would

5CAPD is available from http://capd.ii.uj.edu.pl—cited after [GMEH10].

http://capd.ii.uj.edu.pl

2.4. RELATED WORK 51

certainly pay off.” [GMEH10, p. 233] The addition of bracketing systems to
our approach aims at the same issue: giving faster enclosures for larger do-
mains. A totally satisfying solution has, however, not been incorporated in either
approach—and might in fact consist of an entire portfolio of pruning methods
with different degrees of accuracy.

Satisfiability Modulo ODE Approaches. The closest competitors to our ap-
proach are both using the same central idea as we are: to extend satisfiability
search to cover the entire range of boolean combinations over arithmetic and
ODE constraints. The central goal and ideas being equal, we need to present
some more technical details to be able to outline the remaining differences.

As will become clearer in the next chapter, our approach is based on an
extension of the iSAT solver for boolean combinations of arithmetic constraints.
Essentially, iSAT performs three operations: deduction of new bounds (i.e.
pruning of the search space), splitting of intervals (when deduction no longer
yields progress), and learning of conflict clauses from analyzing the reasons when
a branch of the search has lead to an empty box. Jumping back and undoing
decisions that led to the conflict, iSAT traverses the state space until it either
finds a box whose width is below a user-defined threshold and is consistent
under the given deductions—hence a candidate solution—or it encounters an
empty box, but during analysis of the reasons for this conflict finds that no
undoing of decisions would mitigate it. In this case, the conflict is inherent
to the constraint system, which is thus found unsatisfiable. While proven
unsatisfiability is a conclusive answer, reporting a candidate solution leaves
margin for error, since a refined analysis with more splitting or tighter deduction
resolution might have ruled out an actual solution within that box. A guarantee
can hence only be given for unsatisfiability, but no proofs of existence are
provided in the candidate solution case, which is therefore also reported as
“unknown”.

This algorithm is different from classical SMT algorithms in that it does not
combine a boolean SAT solver with a number of theory solvers, but instead lifts
classical conflict driven clause learning (CDCL) from propositional SAT to SMT
by incorporating interval constraint propagation (ICP) for deductions and using
intervals as the search domain for the variables.

Our extension of the core iSAT to iSAT-ODE is based on computing, during
the deduction phase, interval enclosures for the ODE constraints under the
assumption of the active flow invariants and the current valuation. Its results
are learned as clauses, added to the constraint system, and thereby indirectly
lead to new deductions on the ICP level. Again, we have left out the details,
which are the subject of the next chapter.

In [IUHG09], Ishii et al. introduced an approach to solve hybrid constraint
systems (HCS) by combining ODE enclosures based on VNODE-LP with con-
straint programming. The HCS language allows the specification of non-linear
ODEs and non-linear guard conditions, whose first intersection is to be com-
puted. This approach therefore solves a sub-problem that commonly occurs in
the analysis of hybrid systems: to identify switching times and the correspond-
ing regions of the state space in which switching occurs. To achieve a higher
convergence rate of the pruning operator, univariate interval Newton is applied
on top of the ODE enclosures. This is achieved by first computing an enclosure

52 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

of the trajectories for one step (whose size is determined by VNODE-LP) and
thereafter to compute the interval extension of the ODE’s right-hand side over
this enclosure at the next time point. By applying automatic differentiation on
an interval extension of the guard function with which the intersection is to be
determined, the ingredients for the interval Newton method can be computed.
When interval Newton converges towards an intersection of guard and trajectory,
this can additionally be taken as an existence guarantee for a solution inside
the narrowed box.

While in this paper, Ishii et al. apply their method to examples, which require
only successive computations of the trajectory-guard intersections, in a later
paper [IUH11], they address the entire Satisfiability modulo ODE problem. Their
solver hydlogic takes as input a hybrid system description and performs bounded
unwindings of its transition predicate. In their paper, two theoretical approaches
are presented. The simpler one is a classical SMT approach, where a SAT solver
selects a set of constraints, which together would satisfy the formula’s boolean
structure, and a theory solver—based on the HCS algorithm from [IUHG09]—
checks this set’s satisfiability. In the second one, called IncSolve, this SMT
scheme is applied in a more forward directed fashion. Starting from an initial
mode and continous state given by an interval box, the HCS propagator is used
to test all guard predicates that belong to jumps from the current mode. The
goal is thus to find continuous evolutions that reach within bounded time the
guard condition (without violating the flow invariant of the current mode in
between). Using the HCS propagator’s existence guarantees, the solver can
detect whether at least one guard can be reached. If no such guarantee can
be given, the algorithm splits an initial interval and retries on this smaller box.
Jumps whose guard predicate cannot be reached are discarded from the set
of possible successors in the trace. If a guarantee has been obtained that at
least one jump is feasible, the unwinding depth is increased and the successor
mode from this jump is taken as the frontier from which the next step continues.
When this successor mode is labeled unsafe, a counter-example to safety has
been found.

If in this case, all intermediate jumps have been proven to be guaranteed,
the authors consider the resulting error trace to be guaranteed as well. For this
to be correct, it is important that at all intermediate steps, the entire domain
of reachable states is retained. This way, an exact error trajectory from an
initial point would be known to definitely reach a point which satisfies the
guard conditions. Assuming the computed domains are entirely traced through
the subsequent continuous evolutions, this guarantee can be retained to the
final step, when an unsafe mode is reached. It is important to note that in
constraint solving based on box consistency, which aims only at satisfying each
constraint individually, the individual existence guarantees are not sufficient
for the existence of a point solution that satisfies all (active) constraints. The
strict adherence to one direction in the IncSolve algorithm, however, lifts local
guarantees to the level of the entire formula. A similar idea based on explicitly
computing suitable redirections has been presented under the name “strong
satisfiability” in [FHR+07] for the core iSAT solver, but has not been included in
iSAT-ODE.

We understand that hydlogic is an implementation of the IncSolve algorithm,
making use of a toolkit for SAT solving, supporting the construction of SMT
solvers, called Decision Procedure Toolkit (DPT) and the HCSLib for solving

2.4. RELATED WORK 53

hybrid constraint systems as outlined above. This library makes use of an
interval-based constraint solver (Elisa) “based on box-consistency” and VNODE-
LP for computing the enclosures of ODEs.

We observe the following central differences with our own solver iSAT-ODE.
The hydlogic IncSolve algorithm effectively enumerates abstract traces by SAT
solving of a boolean abstraction (of the mode graph) and uses HCS propagation to
select suitable successor modes. While our approach also supports solving with
incrementally increased BMC unwinding depths and also stores learned facts like
conflict clauses and ODE propagations from previous unwinding depths such
that they can be used for the enlarged formula as well, in iSAT-ODE, propagation
and search go in every direction. Splitting in hydlogic is restricted to the initial
domains of the variables, in iSAT-ODE splitting occurs on every variable, it may
e.g. also occur in the middle of a trajectory or search may actually go entirely
backwards if e.g. the target state is known entirely and backward propagation
from there reduces the number of possible initial states. From the hydlogic
algorithm and from the examples used as benchmarks in [IUH11], it is doubtful
that the algorithm can be applied to systems that allow non-determinism in
their actions and later evolve differently depending on which value is chosen
for a variable when such an action is performed: restricting splitting to initial
variables is not sufficient to resolve this situation and following all possible
states after a jump will be practically impossible if trajectories diverge. This
restriction can certainly be lifted by modeling the non-deterministic choices as
part of the initial state, such that they can be subjected to splitting. On the
other hand, regarding the entire constraint system without a sense of direction
as done in iSAT-ODE, is detrimental to our ability to prove the existence of a
trajectory. The use of interval Newton in HCS solving together with the strict
forward analysis allow hydlogic to give guarantees on the existence of point-
valued trajectories, which iSAT-ODE cannot give in its current state. We think
that such checks could however be done after finding a candidate solution by
redirecting the constraints of the formula such that propagations point strictly
into one direction and no part of the valuation is removed by splitting. An
important technical detail is only hinted at in [IUHG09], namely that results
from VNODE-LP are cached for reusing. In iSAT-ODE considerable effort has
been invested in detecting reusable results and avoid recomputations, too.

In chapter 4, we give detailed comparisons with a number of benchmarks
from [IUH11], which themselves have been compared by Ishii et al. with HSolver
and PHAVer within the reasonable limitations we have mentioned above.

Most recently, Gao et al. have introduced dReal [GKC13], a solver for SAT
modulo ODE formulae. The paper’s theoretical contributions have already been
discussed in Section 2.3. In the paper, the actual implementation is described
only briefly, but it is clear that it does not deliver a method to δ-decide SAT
modulo ODE formulae, since it builds on off-the-shelf libraries, which cannot
provide the arbitrary precision which is required for the theoretical results to
apply. More precisely, dReal uses a classical SMT scheme (with the opensmt
library as a SAT framework), and combines interval constraint propagation
(using the realpaver algorithm) with enclosure methods for ODEs coming from
CAPD, which is also used in [GMEH10]. This solver architecture together with
the theoretical algorithms described in the paper suggests that the SAT layer is
used to instantiate sets of constraints such that they satisfy the boolean formula
structure. This conjunction of constraints is then analyzed by the ICP layer,

54 CHAPTER 2. FOUNDATIONS AND PROBLEM STATEMENT

which tries to find solutions by propagation (making use of ODE enclosures for
the ODE constraints and flow invariants) and by splitting intervals when the
image of the current interval valuation under the functions occurring in the
constraints exceeds a maximum width threshold.

Chapter 3

Algorithmic Approach

We could not avoid to briefly sketch some parts of our approach in the previous
chapter when trying to point out differences to the related literature. In the
following sections, we will however be able to give a coherent and much more
detailed presentation of how we try to solve SAT modulo ODE formulae.

First, we describe the iSAT algorithm for solving boolean combinations of
non-linear arithmetic constraints over continuous and discrete variables. The
second building block is given by the VNODE-LP algorithm for computing
trajectory enclosures for sets of initial value problems of ODEs. These two
algorithms form the basis for the contribution of this thesis: to extend iSAT into
iSAT-ODE for solving SAT modulo ODE formulae, which additionally include
ODE and flow invariant constraints. An important technical aspect is to avoid
expensive recomputations of enclosures for ODE solution sets by learning and
caching on multiple layers. When VNODE-LP is used to compute enclosures
for non-linear ODEs and the initial states are given by rather large sets, the
size of the enclosures may grow too strongly to be of any use. We therefore
implemented the bracketing system approach from the literature, which—in
some cases—provides dramatically better enclosures than using VNODE-LP
directly. Its downside is its inability to fight the wrapping effect, which is why it
is combined with the direct method in iSAT-ODE. The experimental evaluation
in the subsequent chapter will then highlight the effects of these algorithmic
improvements.

3.1 The Core iSAT Algorithm: Learning Conflicts
by Branching and Pruning Intervals

The iSAT algorithm, which has been introduced in [FHR+07] is described in detail
and evaluated on a number of benchmarks in [Her11, Chapter 5]. Underlying
this thesis is a reimplementation of the iSAT algorithm that was done within the
AVACS H1/2 project and has been made publicly available as iSAT 1.01. The
author of this thesis has contributed to this reimplementation, but it does not
form a scientific contribution of this thesis.

The iSAT algorithm can be understood to be a tight coupling of two major
1https://projects.avacs.org/projects/isat/

55

https://projects.avacs.org/projects/isat/

56 CHAPTER 3. ALGORITHMIC APPROACH

−1012345
0122.53

−10
0

10
20
30
40
50

z = 2

z = 50

x
y

z

Figure 3.1: Interval pruning for x = y · z over given interval ranges x ∈ [−1,5],
y ∈ [0, 3], and z ∈ [2, 50]. Plotted are the surface z = x/y and its contour lines at
z = 2 and z = 50, which mark the boundary of z’s given range. Pruned intervals
are x ∈ [0,5], y ∈ [0,2.5], and z ∈ [2,50].

ideas. One is modern SAT solving as introduced in Section 2.3, the other is
interval constraint propagation (ICP) (cf. e.g. [BG06]).

3.1.1 Interval Constraint Propagation

Essentially, solving a formula amounts to searching for a point in the variables’
n-dimensional domain, which satisfies sufficiently many constraints such that
their boolean combination evaluates to true. Since some of these variables are
continuous, i.e. their domain is a subset of R, there is potentially an infinity
of points to choose a variable’s value from. While for some theories, there
are clever—though not necessarily cheap—strategies (like linear programming
or cylindrical algebraic decomposition), which allow to only look at a finite
number of points to decide whether a solution exists, the central idea in interval
analysis and ICP is to not look at individual points, but instead take subranges
of the variables’ domains, i.e. intervals and boxes spanned by them in multiple
dimensions, and evaluate the expressions over these intervals instead.

Example 2 (pruning intervals). As a motivating example, consider the constraint
x = y · z and given ranges for all three variables, x ∈ [−1,5], y ∈ [0,3], and
z ∈ [2, 50]. The goal is thus to find a point (xs, ys, zs) from [−1, 5]× [0, 3]× [2, 50]
such that xs = ys · zs holds. The idea of ICP is to prune points from this box
that are known not to be possible solutions. From the ranges for y and z,
we can deduce that x ∈ [0,3] · [2,50] = [0,150]. However, we already know
that x ∈ [−1,5] from the given domain. By simply intersecting the known
and the computed bounds, we find that x ∈ [−1,5] ∩ [0,150] = [0,5]. Also
a deduction in the other direction is possible by transforming the constraint
into y = x/z and computing y ∈ [0,5]/[2,50] = [0,2.5]. Again, we intersect with the
known interval for y, and receive y ∈ [0,2.5] ∩ [0,3] = [0,2.5]. Last, we try to

3.1. THE CORE ISAT ALGORITHM 57

compute a refined enclosure for z via z = x/y, hence z ∈ [0,5]/[0,2.5]. With zero in
the denominator interval, this enclosure is not very useful, it could be trivially
expressed as z ∈ (−∞,+∞) (or as z ∈ [0,+∞), since it is known in this case that
the quotient of any two points from the given intervals would be non-negative),
whose intersection with the known interval for z would leave us with z ∈ [2, 50].
While not having given us a point solution, this approach has actually removed
infinitely many points and hence refined the search space, in which we have to
look for a solution. This interval pruning is illustrated in Figure 3.1.

Definition 10 (interval extension). Within the example, we implicitly lifted
arithmetic operators to interval operands. We call IR the set of intervals over
R ∪ {−∞,+∞}. An element of IR is thus an interval [a, b], (a, b], [a, b), or (a, b)
with a and b real numbers or positive / negative infinity and denoting the
continuum of real numbers between the two bounds. Similarly we define IZ as
the set of integer intervals over Z, in which each interval contains all integer
numbers between the given bounds. Following closely [BG06, Definition 16.5],
we call an interval function F : IRn → IR an interval extension of a function
f : Rn → R, if and only if for every interval box~I ∈ IRn, the set of exact values of f
over the points from ~I is contained in the valuation F (~I), i.e. {f (~x) | ~x ∈~I} ⊆ F (~I).

The simplest form of interval extension (and at least as old as Moore’s seminal
work on the domain [Moo66]) is obtained by introducing interval extensions
for each arithmetic operator and replacing the point operators in f with these
interval operators to form F . Having a binary operator ◦ and arguments x, y ∈ R,
the interval extension for X, Y ∈ IR must contain the set of all point solutions
Z := {z ∈ R | z = x ◦ y, x ∈ X, y ∈ Y } and must at the same time be an interval
from IR. The smallest set satisfying both conditions is the interval hull, i.e.
ideally X ◦ Y := [inf(Z), sup(Z)] ∈ IR. Similarly, these definitions can be made
for unary operators and for discrete domains.

For practical implementations, interval borders need to be representable.
In iSAT, the data type used to represent interval boundaries are floating-point
numbers. These have limited precision, i.e. in practice, the above definition of
an interval extension needs to be supplemented by a third condition: the lower
and upper bound of the interval must be floating-point numbers. Calling F the
set of floating-point numbers of a given precision, and IF the set of intervals
whose boundaries can be represented by these floating-point numbers, we define
infF(Z) := max({x ∈ F | x ≤ inf(Z)}) and similarly supF(Z) := min({x ∈ F | x ≥
sup(Z)}. These are the largest floating-point number below or the smallest
above the set’s lower and upper bounds respectively. The tightest possible
floating-point interval extension of x ◦ y with x, y ∈ R for X, Y ∈ IF is then
X ◦ Y := [infF(Z), supF(Z)]. In practice, we also call any other floating-point
interval that contains this tightest possible interval extension a valid enclosure
of the interval extension, since it may still be usable for pruning as long as
the amount of overestimation is not too large. These operations can be safely
implemented by using directed rounding, which is offered either directly by the
IEEE 754-compatible programming language, compiler, and CPU architecture
for primitive operations or is constructed in software from these primitives, e.g.
via libraries like MPFR [FHL+07] and filib++ [LTG+06].

Example 3 (deduction chains). Figure 3.2 explains ICP on an example with
a conjunction of two constraints and also illustrates that constraint systems

58 CHAPTER 3. ALGORITHMIC APPROACH

c1 : y = x2

c2 : y ≤ 2 · x

0
1

2

3

4

5

6

7

8

X Y
0 [−100.00, 100.00] [−100.00, 100.00]

[−√100,
√

100] [0.00, 100.00]
1 [−10.00, 10.00] [0.00, 100.00]
2 [0.00, 10.00] [0.00, 20.00]

[0.00,
√

20] [0.00, 20.00]
3 [0.00, 4.48] [0.00, 20.00]
4 [0.00, 4.48] [0.00, 8.96]

[0.00,
√

8.96] [0.00, 8.96]
5 [0.00, 3.00] [0.00, 8.96]
6 [0.00, 3.00] [0.00, 6.00]

[0.00,
√

6] [0.00, 6.00]
7 [0.00, 2.45] [0.00, 6.00]
8 [0.00, 2.45] [0.00, 4.90]

−6 −4 −2 0 2 4 6 8 10

0

10

20 c1

c2

1

1

2

3

4

x

y

Figure 3.2: Example for a deduction chain with two constraints.

in which variables occur multiple times can lead to theoretically infinite (and
practically very long) deduction chains. Initially (step 0), X and Y are given
by their domains. Step 1 applies the first constraint c1 to this box. Since
y = x2 and y ∈ Y = [−100,100], values for x that are smaller than −10 or
greater than 10 cannot be solutions of this constraint and may hence safely
be pruned. Also, negative values of y cannot be solutions, which is why Y
can be restricted to its non-negative part. In step 2, we can prune the upper
bound of Y by intersecting 2 · [−10,10] = [−20,20] with the known interval
[0,100]. By dividing c2 by 2, we can also deduce new bounds for x through
the redirected constraint y/2 ≤ x, i.e. [0,20]/2 = [0,10] ≤ x, which can only be
satisfied by values of x that are greater or equal to the lower bound of this
interval, i.e. must be non-negative. In step 3, we apply again c1 and thereby
gain the information that values for x which are greater than the square root
of Y ’s upper bound, i.e.

√
20, cannot be solutions. However, since we are not

using an infinite precision representation, we need to perform outward rounding
here (assuming a fixed-point representation with two post-decimal digits for
illustration purposes), hence get x ≤ √20 ∈ 4.472 ± 0.001 ≤ 4.48, which we
apply as upper bound for X .

Using limited precision representations, we will obviously reach a fixed-point
eventually, i.e. deduction will not provide any new bounds. However, were
we using infinite precision, even this system of only two constraints and two
variables would cause a problem for termination. In practice, floating-point
numbers are finite precision, but may nonetheless cause deduction chains
to be much longer than desirable. The simple solution to this problem is to
introduce an acceptance threshold—in case of iSAT a user-defined parameter

3.1. THE CORE ISAT ALGORITHM 59

called absolute bound progress—which defines a lower bound for the difference
of a new bound with respect to the known bound.

The example also illustrates an important technical detail. Consider e.g.
step 2. Even without knowing the current lower bound of X , we could safely
deduce from X ’s upper bound 10, that no value for y greater than 2 · 10
could possibly satisfy c2. This observation holds in many more situations and
is essentially based on monotonicity properties of the arithmetic operators.
In [Her11], a number of propagation rules are given, which do not propose the
use of interval reasoning as applied in the example, but instead to consider
individual bounds and thereby know more precisely the reasons why a new
bound has been deduced. Besides potentially reducing the number of necessary
computations, the major motivation is in fact to get a more confined set of
reasons for each deduction, which is helpful in the context of conflict analysis—
where smaller reason sets mean more general conflict clauses, which prune off
larger parts of the search space and hence accelerate solving.

Relationship to Consistency Notions. Connecting this approach to the liter-
ature, it can be classified as box consistency, or an approximation thereof due
to the termination threshold and floating-point representations, which are not
always considered in the theoretical definitions. The definition of box consistency
for a single constraint by Benhamou and Granvilliers [BG06, Eq. 16.2] is done
via a fixed-point equation. Calling Ii the domain of variable xi and having a
constraint f (x1, . . . , xn) = 0, they call Ik box consistent if

Ik = hull{ak ∈ Ik | 0 ∈ F (I1, . . . , Ik−1,hull{ak}, Ik+1, . . . , In)},
with F being an interval extension of f . In [Her11], the notion is considered
a variant of hull consistency, but with interval versions of the operators being
used, which effectively makes the definition very similar to this one used by
Benhamou and Granvilliers.

Lifting the above definition to conjunctions of constraints additionally re-
quires us to intersect the box-consistent sets of the individual constraints and
repeat the fixed-point iteration as shown in the chain of deductions that was
shown in the example. Benhamou and Granvilliers point out that the standard
way to obtain a box-consistent valuation is based on a bisection search to find
the extreme points which constitute the end-points of the hull interval. Since
the iSAT algorithm handles more than purely conjunctive formulae and therefore
requires splitting on a layer outside of these interval propagations, we here only
consider the case of having reached a (pre-)fixed point without branching.

Interpretation of Consistency and Pruning Results. Whichever name is
used, it is important to note some fundamental characteristics that have a
significant impact on the interpretation of results. Even if deductions could be
done with perfect accuracy and be continued until the true fixed point is reached,
not every point from the remaining box is a solution. Consider e.g. the point
(1,0) in Figure 3.2. This point will remain inside the consistent box since it is
“protected” by the solutions at (0, 0) and (2, 4), which—being solutions—cannot
be pruned off by deductions. Obviously, the valuation x = 1 and y = 0 does
not satisfy the constraint c1, hence is not a solution of the conjunction of both
constraints.

60 CHAPTER 3. ALGORITHMIC APPROACH

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 3.3: Box consistent valuation for 0.5 ≤ x2 + y2 ≤ 1 ∧ x = y with
discontinuous solution sets leading to non-existence of solutions for subranges
of each dimension of the valuation. Note that without splitting, deduction rules
in iSAT only suffice to deduce the dashed box [−1,1]2 instead of the tightest
possible box [− 1/√2, 1/√2]2 that encloses all solution points.

Worse, not even for every point chosen in one dimension, there exists a point
in the remaining dimensions such that together they form a solution. As an
example, consider Figure 3.3 and e.g. x = 0 or y = 0 with their large surrounding
region in which the constraint system 0.5 ≤ x2 + y2 ≤ 1∧ x = y is not satisfiable.
The reason can be seen in the existence of non-convex solution sets which have
been enclosed by the hull operator.

Finally, a valuation may be box-consistent, but not contain a single solution
at all. Figure 3.4 illustrates this problem by showing a constraint system
consisting of two oscillating curves that do not intersect for x ∈ [−10,10]. The
only deductions that can safely be made are to exclude the ranges y ∈ (1,1.1],
which does not satisfy y = sin(x), and y ∈ [−1,0.9), which does not satisfy the
other constraint y = sin(1.001 · x) + 0.1.

It is noteworthy, that stopping deduction chains when they do not yield
sufficient progress can cause boxes to be considered consistent, even though
further propagations would show that they do not contain a solution at all.

Slow Convergence and Higher Approximation Orders. As a side note, in
iSAT, we do not employ methods with higher approximation orders that are
known to converge more quickly than the comparatively simplistic method
above. Benhamou and Granvilliers [BG06] point out: “it is clear that the search
converges slowly. The univariate interval Newton method [. . .] can be used
to accelerate the convergence [. . .].” And Neumaier provides even more of a
warning that an approach with as low a convergence as presented above may
very well have to explore an exponential number of boxes when used inside a
branch and bound scheme:

“Indeed, branch and bound methods for minimizing a function in

3.1. THE CORE ISAT ALGORITHM 61

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

x

y

Figure 3.4: For the constraints −10 ≤ x ≤ 10∧y = sin(x)∧y = sin(1.001·x)+0.1,
without splitting, only the box [−10, 10]× [−0.9, 1] can be deduced, which is the
intersection of the two bounding boxes that can be wrapped around the two sine
curves. Obviously, there is not a single intersection of the two curves, which
means that the box does not contain a solution at all.

a box (or a more complex region) frequently have the difficulty that
subboxes containing no solution cannot be easily eliminated if there
is a nearby good local minimum. This has the effect that near each
local minimum, many small boxes are created by repeated splitting,
whose processing may dominate the total work spent on the global
search.

This so-called cluster effect was explained and analyzed by Kear-
fott and Du [. . .]. They showed that it is a necessary consequence of
range enclosures with less than cubic approximation order, which
leave an exponential number of boxes near a minimizer uneliminated.
If the order is < 2, the number of boxes grows exponentially with
an exponent that increases as the box size decreases; if the order
is 2, the number of boxes is roughly independent of the box size
but is exponential in the dimension. For sufficiently ill-conditioned
minimizers, the cluster effect occurs even with methods of cubic
approximation order. [. . .]

For finding all zeros of systems of equations by branch and bound
methods, there is also a cluster effect. An analogous analysis by
Neumaier and Schichl [. . .] shows that one order less is sufficient
for comparable results. Thus first order methods (interval evalu-
ation and simple constraint propagation) lead to an exponential
cluster effect, but already second order methods based on centered
forms eliminate it, at least near well-conditioned zeros. For singular
zeros, the cluster effect persists with second order methods; for
ill-conditioned zeros, the behavior is almost like that for singular
zeros since the neighborhood where the asymptotic result applies

62 CHAPTER 3. ALGORITHMIC APPROACH

becomes tiny.” [Neu03, p. 49]

This warning has to be taken seriously and it can be taken as a hint to why
we may observe long solving times in some of our benchmarks. Our excuse for
not taking more elaborate evaluation schemes—besides the initial ignorance of
these matters—must be seen in the necessity of keeping track of reasons for each
deduction and the desire to keep the reason sets as small as possible, hence
even using the kind of bound arithmetic that is implemented in the arithmetic
deduction rules of iSAT. The current implementation also includes a rewriting
step into constraints that consist only of one arithmetic operator each and
explicit auxiliary variables to allow composition of the larger expressions. This
decomposition, which is not atypical, may hinder the easy adaption of methods
of higher approximation order. Leaving these practical considerations aside,
however, a next-generation solver should probably include methods with higher
approximation order (yet probably not rely on them exclusively as they may
behave worse when initially domains are still large) to circumnavigate these
issues pointed out in the literature.

3.1.2 Input Language and Preprocessing

Having discussed ICP as a method to handle (conjunctions of) arithmetic con-
straints over variables with interval valuations, we can now refocus on the
original problem which iSAT addresses: satisfiability modulo non-linear arith-
metic over bounded continuous and discrete variables including transcendental
functions.

Syntax of the Input Language. Examples for the input language of iSAT-ODE
have already been shown in Figures 2.4 and 2.5. Since iSAT-ODE just extends
the iSAT language by ODE- and flow-invariant-constraints, iSAT’s input language
is very similar, just lacking these ODE-related constructs. Models consist of four
parts: a declaration of variables and constants, followed by the initial, transition
and target predicates needed for encoding BMC problems.

〈model〉 ::=-- DECL ? 〈constant declaration〉
〈variable declaration〉

-

- INIT 〈formula〉 TRANS 〈formula〉 TARGET 〈formula〉 -�

Within the declaration part, identifiers for symbolic constants and variables with
their type and range information need to be introduced before they can be used
within the remaining sections. Subsequently, we will call a (symbolic or literal)
constant integer, if it has an integer value and will call all constants rational
(including integer constants).

〈constant declaration〉 ::=-- define 〈identifier〉 = 〈rational constant〉 ; -�

〈variable declaration〉 ::=-- -
- boole

int[〈integer constant〉 , 〈integer constant〉]
float[〈rational constant〉 , 〈rational constant〉]

〈identifier〉

float[0 , 〈rational constant〉] time
float[0 , 〈rational constant〉] delta_time

; -�

3.1. THE CORE ISAT ALGORITHM 63

Here, we already indicate the additional declarations for the global time and
the duration used by iSAT-ODE in gray. These are not part of the original iSAT
input language.

〈integer constant〉 ::=-- 〈identifier [defined as integer constant in DECL part] 〉

- ?〈digit〉

-

- -�

〈rational constant〉 ::=-- -
- 〈identifier [defined as rational constant in DECL part] 〉

- ?〈digit〉 . ?〈digit〉 e
E

+
-
?〈digit〉

-�

With identifiers following a usual naming convention for variable names.

〈identifier〉 ::=-- [a-zA-Z] ?[a-zA-Z]
[0-9]

_

-�

Subsequently, we refer to declared symbolic constants and variables by their
introduced identifiers. As motivated in our Definition 2 of hybrid automata,
within the transition relation we need to be able to refer to primed (e.g. x ′) and
unprimed (x) instances of these variables to describe their post- and pre-states.
Within the initial and target predicates, the primed instances of variables are
not allowed—they may thus only occur within the transition predicate. They
also cannot occur within ODE constraints or flow invariants in iSAT-ODE.

〈variable〉 ::=-- 〈identifier [defined as variable in DECL part] 〉 ’ -�

The initial, transition, and target predicates are then formulae consisting of a
conjunction of arbitrarily many boolean terms, conveniently segmented and
terminated by semicolons, which—when used between two boolean terms—just
form a low-precedence alternative to the normal boolean connective “and”.

〈formula〉 ::=-- ?〈boolean term〉 ; -�

Boolean connectives are then used between atoms, which can be boolean
constants or variables—used to model discrete aspects—together with constraints
over discrete and continuous variables. This is also the level, where ODE
constraints and flow invariants occur in our extension iSAT-ODE—shown here
to avoid repeating the entire syntax definition, later.

64 CHAPTER 3. ALGORITHMIC APPROACH

〈boolean term〉 ::=-- ! 〈boolean term〉
〈boolean term〉 and

or
xor
<->
->

nand
nor

〈boolean term〉

(〈boolean term〉)
true
false

〈boolean variable〉 ’

〈comparison constraint〉
〈ode constraint〉
〈flow invariant〉

-�

Comparisons between arithmetic terms over discrete and continuous variables
and constants evaluate to boolean values and therefore form valid boolean
terms.

〈comparison constraint〉 ::=-- 〈term〉 <
<=
=

! =

>
>=

〈term〉 -�

Arithmetic terms, finally, consist of (nested) arithmetic operators over the
declared variables.

〈term〉 ::=-- 〈rational constant〉
〈variable〉
(〈term〉)
- 〈term〉

〈term〉 *
+
-
/

〈term〉

〈term〉 ˆ 〈integer constant〉
nrt (〈term〉 , 〈integer constant〉)

sin
cos
exp
abs

(〈term〉)

min
max

(〈term〉 , 〈term〉)

-�

It is important to note that the core iSAT solver only accepts total operators,
i.e. does not accept the division operator at all and will only accept the n-th
root (nrt) for positive argument if n is even. Divisions can easily be replaced by
manually introducing an auxiliary variable and rewriting the expression into a
multiplication constraint, making explicit the choice of bounded range for the
auxiliary variable, which might otherwise be unbounded and hence unsupported

3.1. THE CORE ISAT ALGORITHM 65

by the iSAT algorithm. Within iSAT-ODE, we accept these operators in the right-
hand sides of ODE constraints, albeit also there with the semantic restriction
that the right-hand-side expression needs to be defined over at least the region
admissible under the specified flow invariants.

〈ode constraint〉 ::=-- (d. 〈real variable〉 / d.time = 〈term〉) -�

〈flow invariant〉 ::=-- 〈real variable〉 (time) <=
>=

〈rational constant〉 -�

These ODE constraints (from iSAT-ODE and here only for completeness of the
input language), finally, can only use continuous variables, i.e. using the “float”
type in their declaration. This restriction refers to the left-hand-side variables
in ODE constraints and flow invariants, as well as to the arithmetic expressions
on the right-hand side of the ODE constraint.

Rewriting into the Internal Format. While this rich input language is con-
venient for modeling, directly supporting the arbitrary nesting of arithmetic
operators and the potentially complex boolean structure would necessitate an
equally rich set of deduction rules in the solver. As indicated before, iSAT
uses deduction rules based on a simpler representation. After the creation
of the concrete BMC instance (i.e. the k-fold instantiation of variables and
unwinding of the transition predicate), the solver’s front end therefore performs
a satisfiability-preserving rewriting into a simplified normal form [Her11]. This
“definitional translation into conjunctive form” essentially splits nested arith-
metic expressions into simpler constraints containing only a single arithmetic
operator and introduces fresh auxiliary variables (with automatically computed
finite ranges). The boolean structure is equally simplified by the introduction of
boolean variables, finally leading to a format that resembles a conjunctive normal
form (CNF). Admissible atoms, however, are not only boolean variables, but also
the decomposed constraints consisting of a left-hand-side variable, a comparison
operator, and a right-hand-side expression over at most two variables and an
arithmetic operator, or simple bounds consisting of a left-hand-side variable
compared with a right-hand-side constant. After rewriting, the internal format,
which can be seen as the input to the actual solving algorithm, is structured as
follows.

〈formula〉 ::=--
∧

?〈clause〉 -�

〈clause〉 ::=-- (
∨

?〈atom〉) -�

〈atom〉 ::=-- ¬ 〈boolean variable〉

〈simple bound〉
〈complex bound〉

-�

〈simple bound〉 ::=-- 〈variable〉 ≤
<
>
≥

〈rational constant〉 -�

66 CHAPTER 3. ALGORITHMIC APPROACH

〈complex bound〉 ::=-- 〈variable〉 = 〈variable〉 +

−
·

〈variable〉

〈rational constant〉 · 〈variable〉
〈variable〉 ˆ 〈integer constant〉

nrt (〈variable〉 , 〈integer constant〉)
sin
cos
exp
abs

〈variable〉

min
max

〈variable〉 , 〈variable〉

-�

The ODE constraints and flow invariants are not shown here. Their handling
will be described in Section 3.3.

3.1.3 Unit Propagation

With ICP, we have introduced a pruning mechanism for conjunctions of arith-
metic constraints. With the input formula and its rewriting, we have concretized
the solver’s task: to find a solution for a conjunction of disjunctions of atoms. In
order to avoid having to bridge the gap between the problem and the ICP-based
pruning only via branching, which we will discuss shortly, one further ingredient
is helpful. This building block of iSAT is directly taken from propositional SAT
solving: unit propagation.

The central underlying observation is simple. If the formula is to be satisfied,
in each clause there must be at least one atom that is satisfied. Otherwise, there
would be at least one clause in which all atoms evaluate to false, hence also their
disjunction and consequently the entire formula, which is a conjunction of all
clauses. Unit propagation is applied to all clauses in which all constraints but
one are inconsistent with the current valuation. In SAT solving, these unit atoms
are simply satisfied by choosing the value of the boolean variable such that
the literal (a or ¬a) evaluates to true. In iSAT, the atoms are more general and
hence unit propagation is actually a trigger for interval constraint propagation:
if a constraint becomes unit, it is used to deduce further bounds via ICP.

Example 4 (unit propagation). Given e.g. an excerpt of a formula

(a ∨ x ≤ 5) ∧ (¬a) ∧ . . . ,

we can immediately identify the clause (¬a) to only have one atom left—in this
case because there simply is only one atom. If we were to choose a to be true, the
clause (¬a) would be false and hence the formula not satisfied by our valuation.
Consequently, if there are any valuations at all that satisfy this formula, they
will be valuations in which a is false. Like in ICP, pruning of a ’s interval range
only discards definite non-solutions, leaving a tightened search space.

In the first clause, (a ∨ x ≤ 5), the first atom, a, has become false due
to our (forced) assignment of a to false. Again, only one atom is left: x ≤ 5.
Any valuation that satisfies this formula will therefore be one, in which x ≤ 5
holds. Should x ’s interval valuation contain values greater 5, these could thus
safely be pruned off and the new upper bound of x be propagated through other
constraints in which x occurs.

3.1. THE CORE ISAT ALGORITHM 67

Watched Literal Scheme. Unit propagation motivates another mechanism
from propositional SAT solving that can be directly incorporated into iSAT: a
watched literal scheme used to perform lazy clause evaluation [Her11]. Since
atoms will not participate in ICP unless they have become unit, it suffices to
observe two atoms in each clause that are still consistent under the current
valuation. These can be considered witnesses for the clause not yet being unit.
As soon as a bound is deduced for a variable that occurs in one of the two
watched atoms of a clause, its consistency is reevaluated—using ICP without
storing the resulting bounds. Still consistent, the atom stays watched. Having
become inconsistent, the watch needs to be replaced by another atom in the
clause that is still consistent under the current valuation. If no replacement
can be found, the number of consistent atoms has dropped from two to one and
therefore the clause has become unit.

The downside of having only two watches per clause is that the solver
does not necessarily detect when a clause contains an atom that is satisfied
by the entire current valuation. If this were discovered, the clause could be
considered satisfied and its atoms would no longer have to be visited for the
current valuation and any subset thereof. The upside of not having to check
after each deduction the satisfaction of all atoms in which a variable occurs
is, however, considered to outweigh this potential loss of an earlier detection
of satisfied atoms in the case of iSAT. A comparison of an earlier version of
the iSAT algorithm with a version of itself where all atoms are visited each
time when a new bound is deduced for the variables that occur in them, was
done in [THF+07]—however not taking into account the potential benefit from
detecting when a clause becomes satisfied and therefore needs not to be visited
anymore. Within this restriction, the use of two watched atoms is shown to
accelerate the solver 2–18-fold on a set of random benchmarks, being most
beneficial on formulae with large clause sizes (in the order of 200 atoms).

3.1.4 Branching by Splitting Intervals

We have seen that ICP alone will often not suffice to reach a single point solution
even for purely conjunctive systems. Since the input of the solver actually
consists of a conjunction of disjunctive clauses, we have a second reason to
introduce some kind of branching. The classical scheme in SAT modulo theories
would be to handle these two kinds of branching separately: a SAT solver selects
atoms from the clauses and hands over the resulting conjunctive system to a
theory solver—which in our case would be an ICP solver that would require an
internal branching by splitting intervals after pruning. The approach used in
iSAT is different: at all times, all variables—including the boolean ones—have
a bounded interval valuation. Considering all variables equal in this respect,
iSAT’s only branching mechanism is splitting intervals. If a boolean variable’s
domain is [0,1] ⊆ IZ, thus in fact only {0,1}, and splitting of this interval
occurs, the new value immediately becomes one of the end-points, i.e. from
being undecided, the variable is made either true or false by splitting—depending
on whether the lower or upper part of the “interval” is selected. Continuous
intervals are split, normally at their midpoint, and either the lower or upper part
becomes the new valuation. We call this splitting of a variable’s domain and
selection of one of the possible halves a decision, since it is not a consequence
that arises out of the formula like a deduction, but instead is a deliberate choice

68 CHAPTER 3. ALGORITHMIC APPROACH

to reduce the search space temporarily. Since decisions involve a degree of
freedom, they can be undone and alternatives may have to be explored.

It is in fact the combination of splitting and unit propagation that allows
iSAT to select a set of arithmetic constraints for ICP without explicitly choosing
any atoms from the formula that should be satisfied, but instead by indirectly
forcing them into ICP by making all other atoms of the clause false. This
indirection has the advantage that boolean disjunctions and the more subtle
disjunctions encoded in arithmetics (e.g. those caused by min or max constraints
or those that arise as a result of periodic functions, which can be understood as
offering multiple different regions where their value exceeds a certain threshold)
are considered equally important and can be handled by the same branching
mechanism. It is, however, still not clear, whether the loss of the ability to
directly select atoms from the boolean structure is really outweighed by this
advantage. A recent reimplementation of the iSAT algorithm2 explores this
question by also allowing the solver to explicitly select atoms. In general,
the presented branching by splitting intervals is closer to approaches used in
the constraint satisfaction domain, while branching by selecting atoms (and
potentially splitting intervals within an isolated ICP-based theory solver) is closer
to classical SAT solving as is done in SMT solvers.

Splitting Heuristics. The selection of variables to be split can be considered a
research topic on its own. In the simplest static splitting heuristics, variables are
selected in a round-robin fashion, often after sorting them e.g. by their type and
/ or their BMC depth (either forward or backward). Preferring boolean variables,
for example, aims at satisfying that part of the formula that consists mainly of
boolean atoms before trying to find a solution for the continuous part. Dynamic
splitting heuristics are based e.g. on always splitting the widest interval or
on splitting variables that have been found “important” e.g. in the sense that
they were often involved in conflicts. For most of these splitting heuristics, a
compelling story can be told why they intuitively not only make sense, but should
outperform many inferior strategies. However, in practice, relative performances
of heuristics vary significantly over benchmark sets and it is rather the exception
when a particular heuristic leads to better computation times for a vast majority
of cases. The hardness of the problem is quite obvious. Given a perfect splitting
heuristic, if even only for the propositional fragment of the formula, we could
find solutions to satisfiable SAT problems by always choosing the right variable
and right valuation with no more decisions than variables occurring in the
formula. Since the existence of such a “perfect” heuristic is as likely or unlikely
as P=NP, iSAT settles for imperfect heuristics with compelling stories and some
support in benchmarking. For iSAT-ODE we will later consider some reasons
why splitting discrete variables first is a bit more compelling than not doing it
(and measure the impact on actual benchmark instances).

3.1.5 Implication Graph and Conflict Analysis

We have discussed during our description of ICP that an important difference
between deduction rules in iSAT and off-the-shelf libraries for interval computa-
tions is the identification of reasons for each deduction. We have also seen that

2https://projects.avacs.org/projects/isat3

https://projects.avacs.org/projects/isat3

3.1. THE CORE ISAT ALGORITHM 69

the concentration on individual bounds instead of entire intervals can help to
reduce the number of these reasons. The last classical ingredient of SAT solving
that plays a significant role in iSAT is based on the recording of these reasons:
conflict analysis and the learning of conflict clauses.

Whenever iSAT deduces a new bound for a variable, this new bound is stored
in an implication graph as a node. Incoming edges are added to this new node
from the bounds that are reasons for its deduction, including those bounds that
caused the constraint to become unit. The implication graph is layered into
decision levels. Each new decision is entered without reasons into the graph,
opening a new decision level which keeps all subsequent deductions until a new
decision is made and therefore a new decision level is opened.

If a variable’s interval valuation is found to have become empty while deducing
a new bound, the reasons for this deduction and those for the bound in the
implication graph which conflicts it become the starting points of conflict analysis.
Traversing backwards through the implication graph, the reasons for the conflict
are collected until a termination criterion is reached. As often done in SAT
solving, iSAT stops going backwards through the graph when only one of the
reasons is still on the current decision level, i.e. when all reasons but one are
not caused directly nor indirectly by the latest decision (called unique implication
point). Again, [Her11] contains additional details on this procedure.

Since real-valued variables are often assigned more than one bound (in con-
trast to propositional variables in SAT), the number of bounds in the implication
graph is not directly limited by the number of variables. This is another reason
for limiting the size of deduction chains (like shown in Figure 3.2) by stopping
at a minimum progress threshold. It should be noted that one of the additional
techniques, which have been discussed for iSAT, but not been integrated, is to
compact the graph by removing intermediate reasons and add their transitive
reason set when adding new bounds—thereby effectively doing some parts of
conflict analysis during the recording of the graph. While reducing the size
of the graph, it would eagerly do some computations from conflict analysis,
which would normally not be done at all if the corresponding bounds are not
involved in a conflict. Even more aggressive reductions in size might be achieved
by reducing the accuracy of reason sets by removing parts of the graph and
replacing them with a more compact hull (containing at least some unnecessary
reasons). In practice, the memory footprint of iSAT has been observed to grow
significantly especially on problems with long deduction chains—indicating that
some of the proposed techniques may be considered necessary in the future.

Once a set of reasons is obtained from backwards traversal through the
implication graph, this set is used to generate a conflict clause. Since each
deduction in iSAT and each split can be represented by a simple bound, the
implication graph and hence the reason set consists of simple bounds, too.
Conflict analysis therefore identifies a box within the search space in which the
formula is not satisfiable. The idea of learning a conflict clause is to force the
solver to avoid this region of the search space that has been identified to cause
the current conflict (and hence is known not to contain any solution). This is
achieved by negating the reasons and learning the disjunction of these negated
atoms as a clause. Having e.g. reasons (x ≥ 5.4 ∧ y < 2.3), which together with
the upper bound of x and lower bound of y from the given domain form a box,
the conflict clause would be (x < 5.4 ∨ y ≥ 2.3). A learned conflict clause will
become unit whenever all but one of the reasons are satisfied, enforcing that

70 CHAPTER 3. ALGORITHMIC APPROACH

the opposite of the remaining reason is deduced by unit propagation. Learning
a conflict clause thus amounts to excluding the box spanned by the identified
reasons from the search space. Unit propagation ensures that it will never again
be examined during the remainder of the search.

We already stressed that it is beneficial to keep the number of reasons for each
deduction low. The motivation is much clearer now: each unnecessary bound
that is collected during backwards traversal of the implication graph potentially
reduces the volume of the box that can be excluded from the search space by the
learned conflict clause. Similarly, the motivation for going backwards through
the graph can be stressed now. Since deductions always prune valuations,
bounds that come earlier in the implication graph are coarser than the ones they
caused. However, going backward, we may find constraints on variables that
so far did not occur in the reason set. These additional bounds will make the
resulting conflict clause less general. The unique implication point technique is
therefore only one of many potential techniques that may offer different trade-offs
between the number of dimensions constrained in a conflict clause and the
volume that it excludes.

3.1.6 The iSAT Solver

Finally, the iSAT solver can now be described by using the introduced elements
and adding only a few more technical details. Figure 3.5 provides an algorithmic
illustration of this description. Given variable domains and a preprocessed
formula, the solver first adds the initial domains to an implication queue, which
essentially is a list of bounds that need to be processed by deductions. The
main loop then consists of deductions, conflict resolution (if necessary), and
decisions by splitting intervals.

Bounds that are deduced either by unit propagation or ICP are added to the
implication queue (unless they lack progress) and, together with their reasons,
they are stored in the implication graph. The new upper and lower bounds
then replace the current interval valuation in which the solver searches for a
solution. This allows an early conflict detection by using the valuation in further
deductions even before all consequences of the respective bound have been
explored systematically. This systematic exploration happens when the bound
is taken from the implication queue and the corresponding watched atoms
from the formula are visited. These deductions continue until the implication
queue becomes empty, i.e. the last element has been visited, but no new bounds
have been entered because their progress (if any at all) does not exceed the
user-defined absolute bound progress threshold.

When a deduction leads to an empty box, the implication graph is analyzed,
reasons are identified, a conflict clause is learned, and just as many decisions
are taken back as necessary to make this newly-learned conflict clause unit. If
the conflict cannot be resolved, i.e. all of the reasons are on the zeroth decision
level and hence are not based on any decision that could be taken back, the
solver has proven that there is an inherent contradiction and that there is no
satisfying valuation.

If no conflict was encountered, a fixed point of the deduction (with respect
to the given absolute bound progress threshold parameter) has been reached.
A decision is therefore done in this situation unless all variable ranges have
widths below the user-defined minimum splitting width, which is the threshold

3.1. THE CORE ISAT ALGORITHM 71

solve() {
enqueue_domain_bounds(); // Store domains in implication queue.
while(true) {

bool found_conflict = !deduce(); // Deduce until no progress.
if (found_conflict) {

bool conflict_resolved = analyze_conflict();
if (! conflict_resolved) {

return unsat; // There were no decisions that could be undone.
} else {

backjump(); // Undo decisions. Make learned clause unit.
} // No decision here. Will unit−propagate conflict clause.

} else {
if (all_clauses_satisfied()) {

return satisfiable; // Entire box is solution.
}
bool decision_done = decide();
if (! decision_done) { // Box size below minimum splitting width:

return unknown; // candidate solution found.
} } } }

Figure 3.5: Abstract representation of the iSAT algorithm.

for stopping further splits. There also is a possibility after deduction that the
formula is actually satisfied by each point from the remaining search space. In
this case, the formula can be reported as satisfiable. Due to the issues with box
consistency that we discussed earlier, it is more likely to reach a small box as a
deduction fixed point without being able to prove that it contains only solutions.
In this case, iSAT reports this box as a candidate solution box and cautiously
calls the result “unknown”.

Correctness and Termination. A detailed formal proof of correctness and
termination is given in [Her11], which relieves us of the burden of fully analyzing
these issues in detail, here. However, an abstract analysis of these issues is
interesting and possible without any additional formalism.

Correctness is to be understood in that way that the solver does not give a
wrong answer, i.e. it does not report the formula to be satisfiable when it is not
satisfiable, nor does it claim unsatisfiability when in fact there is a solution. The
answer “unknown”, however, may be issued in both cases and even reporting
a candidate solution box along with this answer is not to be understood as a
claim that the formula is satisfiable.

We have discussed that ICP removes only definite non-solutions from the
valuation that the solver currently explores. Similarly, we have seen that unit
propagation enforces a constraint only when all other atoms in the same clause
have become false. When deduction therefore leads to a conflict, a box which is
described by the reasons for the conflict (no matter how far backwards traversal
through the implication graph is performed) definitely does not contain any
solution. The only point where parts of the search space are pruned without
knowing whether they possibly contain solutions are interval splits. These,
however, are stored as reasons in the implication graph and therefore become
part of the learned conflict clauses if they (indirectly or directly) cause the

72 CHAPTER 3. ALGORITHMIC APPROACH

conflict. Since the solver only stops conflict resolution when it cannot undo any
decisions (i.e. when all reasons are on the zeroth decision level), and since unit
propagation will cause the negation of one of the atoms to be chosen, we can
be certain that all alternatives to a decision will be explored eventually, before
the solver reports a formula unsatisfiable. This result is therefore trustworthy.
Satisfiability on the other hand is only reported under the (rare) circumstance
that in each clause there is one atom that is satisfied by each point from the
entire current valuation box. The remaining cases are those where the solver
reports “unknown” upon finding a sufficiently small box which can not be pruned
any further and hence for which no conflict has been detected. There is no
guarantee that it contains a solution, but the solver does not claim there to be a
solution in there, either.

The argument for termination is essentially based on the observation that
the remaining search space volume decreases whenever a conflict clause is
learned and that conflict clauses will always be learned eventually until either
the entire search space is covered or a candidate solution (or actual solution)
is encountered. Initially, the search space is bounded since all intervals are
required to be closed with finite limits. From the construction of conflict clauses,
we know that they describe boxes within the search space. The thresholds for
deduction and splitting guarantee that bounds in the implication graph have a
progress that does not converge to zero (unless the threshold parameters are
chosen to be zero). Since conflict clauses are constructed from the bounds
in the implication graph, also these clauses have sufficient progress, i.e. do
not exclude only infinitesimally small regions. From backjumping and unit
propagation, we know that after encountering a conflict, one of the bounds
from the newly learned clause immediately becomes unit and the solver thus
searches in a different region. A finite number of conflict clauses (covering
non-negligible and differing volumes) will therefore suffice to cover the entire
search space (if no solution or candidate solution is encountered before). Neither
deduction chains nor sequences of splits can be infinite, since both are stopped
when a minimum width has been reached—again under the assumption that
the thresholds are chosen to be non-zero. Since only a finite number of conflict
clauses is learned, the formula size does not grow infinitely either. Additional
clauses allow additional deduction steps, but since only a finite number of
conflict clauses will be generated and between the generation of two conflict
clauses only finitely many deductions and decisions can occur for non-zero
thresholds, the solver will need only finite time to enumerate all these conflict
clauses and will therefore terminate eventually.

Example 5 (iSAT algorithm). Figure 3.6 shows an iSAT constraint system
rewritten into the internal format and an illustration of the corresponding search
space. The first two lines describe the domain of the variables. Afterwards, the
constraint system asks for solution points to lie on both, the sine and the cosine
curve. The following constraints can be understood as implications of the form
a → y ≥ 0.25. Variable a can be understood as a trigger for the constraint
on the right-hand side of the implication: if a is set to true, the simple bound
y ≥ 0.25 must be satisfied as well. The last line requires at least one of the
two boolean variables to satisfied. Solutions are therefore those intersections of
the sine and cosine graphs, which lie in one of the dark gray regions—marking
those parts which are described by the triggered simple bounds—but not in the

3.1. THE CORE ISAT ALGORITHM 73

Variables:
x, y ∈ [−10,10]
a, b ∈ {0,1}
Formula:

(y = sin(x))
∧ (y = cos(x))
∧ (¬a ∨ y ≥ 0.25)
∧ (a ∨ y ≤ −0.25)
∧ (¬b ∨ x ≥ −4)
∧ (¬b ∨ x ≤ −2)
∧ (b ∨ x ≥ 2)
∧ (b ∨ x ≤ 4)
∧ (a ∨ b)

y = sin(x)

y = cos(x)

a

¬a

b ¬b

x

y

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

−0.5

0

0.5

1

Figure 3.6: Core iSAT formula after rewriting into internal format and corre-
sponding search space.

lower-right one of them since there, neither a nor b can be true. Inspecting the
search space visually, one can easily see a single solution in the lower-left dark
gray region.

In Figures 3.7–3.12, the first steps done by the iSAT algorithm are illustrated.
The solver starts on decision level 0, deducing the initial domains and thereby
pruning the range of y from [−10,10] to [−1,1]—a consequence of y = sin(x)
and y = cos(x) being unit. After these deductions, no further prunings are
possible and iSAT decides to split the range of variable b. Since b is a boolean
variable, this split leads to a point valuation of 0, signifying b being false. The
clauses (b ∨ x ≥ 2) and (b ∨ x ≤ 4) become unit, constraining the range of
x. The last clause of the constraint system (a ∨ b) requires a to become true,
which in turn makes (¬a ∨ y ≥ 0.25) unit. Since y has already been found to
have a range well in the negative numbers, a conflict is detected. In this case,
backwards traversal through the implication graph leads to (b) as a conflict
clause: the solver has learned that choosing ¬b as a valuation never leads to
a solution and therefore excludes this choice permanently from the solution
space by learning this conflict clause. Only one decision needs to be undone
(in general, the backjump distance may be larger) to cause the new clause to
become unit. In the second step, again on decision level 0, the consequences are
deduced. This restricts x to [−4,−2] and y to a corresponding range covering
the intersection of sin([−4,−2]) and cos([−4,−2]). In step 3, x has been split
and the lower half has been selected for further analysis. Deductions quickly
expose a conflict, since valuations for sin([−4,−3]) lie outside the range already
deduced for y. Again, a conflict clause is learned, and its consequences applied
as interval prunings in step 4. We only show one more step in Figure 3.12,
where again a split occurs and its consequences are explored.

Stronger pruning mechanisms might very well be able to detect at this point
the existence of a single valuation within the identified bounds. The deduction
rules for sine and cosine functions in iSAT are, however, not very strong since
they lack a number of possible inverse propagations. Therefore, iSAT needs

74 CHAPTER 3. ALGORITHMIC APPROACH

x

y

−10 −5 0 5 10−10

−5

0

5

10

Decision level: 0
Decision:
(none)
Deductions:
y ≥ −1
y ≤ 1

Figure 3.7: iSAT example, step 0, decision level 0: deductions caused by unit
clauses and domain bounds.

x

y

−10 −5 0 5 10−1

−0.5

0

0.5

1 Decision level: 1
Decision:
b ≤ 0
Deductions:
x ≥ 2
x ≤ 4
a ≥ 1
(x ≤ 4)
y ≥ −0.7568025
y ≤ 0.90929743
y ≤ −0.41614684
(x ≥ 2)
Conflict:
a → y ≥ 0.25.

Figure 3.8: iSAT example, step 1, decision level 1, the decision to assign b to
false causes a deduction chain that leads to a becoming true, causing conflicting
bounds on y. The solver learns the conflict clause (¬b). To resolve the conflict,
a backjump to decision level 0 is performed. Deductions that lack progress are
written in parentheses.

3.1. THE CORE ISAT ALGORITHM 75

x

y

−10 −5 0 5 10−1

−0.5

0

0.5

1 Decision level: 0
Decision:
(none)
Deductions:
b ≥ 1 (due to con-
flict clause)
x ≥ −4
x ≤ −2
(x ≤ −2)
y ≥ −0.90929743
y ≤ 0.7568025
y ≥ −0.41614684
(x ≥ −4)
a ≤ 0

Figure 3.9: iSAT example, step 2, decision level 0, deducing the consequences
of the learned conflict clause.

x

y

−10 −5 0 5 10−1

−0.5

0

0.5

1

Decision level: 1
Decision:
x ≤ −3
Deduction:
(x ≥ −4)
Conflict:
y = sin(x) has no
solution inside box

Figure 3.10: iSAT example, step 3, decision level 1: splitting of range of x
leads to a conflict during deduction. Learned conflict clause is (x > −3 ∨ y >
−0.416146837 ∨ x < −4). Backjump to decision level 0.

76 CHAPTER 3. ALGORITHMIC APPROACH

x

y

−10 −5 0 5 10−1

−0.5

0

0.5

1

Decision level: 0
Decision:
(none)
Deductions:
x > −3 (due to con-
flict clause)
(x ≤ −2)

Figure 3.11: iSAT example, step 4, decision level 0: deduction after back-
jump. The newly learned conflict clause leads to an exploration of the previous
decision’s alternative.

x

y

−10 −5 0 5 10−1

−0.5

0

0.5

1

Decision level: 1
Decision:
x ≥ −2.5
Deductions:
(x ≤ −2)
y ≤ −0.598472144
y ≥ −0.801143616
(a ≤ 0)
(x > −3)

Figure 3.12: iSAT example, step 5, decision level 1: splitting domain of x and
subsequent deductions.

3.2. ENCLOSING SOLUTION SETS OF ODES 77

a total of 11 decisions and 8 conflicts to find a candidate solution box for a
minimum splitting width of 0.01 and an absolute bound progress of 0.001. The
chosen splitting heuristic in this case is to always split the widest interval.

3.2 Enclosing Solution Sets of Ordinary Differen-
tial Equations

In Section 2.4, a brief overview of enclosure methods for ODEs has been given.
For a sufficiently well-founded argument, why these methods can be used to
handle ODE constraints and flow invariants within a SAT modulo ODE solver, we
first need to supply some additional mathematical background. Thereafter, we
will show its application within the VNODE-LP library for computing enclosures
of set-valued initial value problems of ordinary differential equations—laying out
the second main ingredient of iSAT-ODE.

Example 6 (approximative numerical integration). As an introductory example
to illuminate the mathematical approach, consider the harmonic oscillator
system of ODEs, which we have already used as an example in Figure 2.3.

dx

dt
(t) = −y(t)

dy

dt
(t) = x(t)

Many simple types of numerical integration methods for ODEs are based on a
Taylor series expansion of the (unknown) solution function.

x(t0 + h) =
h0

0!
d0x

dt0
(t0) +

h1

1!
d1x

dt1
(t0) +

h2

2!
d2x

dt2
(t0) + · · ·

y(t0 + h) =
h0

0!
d0y

dt0
(t0) +

h1

1!
d1y

dt1
(t0) +

h2

2!
d2y

dt2
(t0) + · · ·

Luckily, by using the right-hand sides of the ODEs, these derivatives can be
computed without knowing the solution function itself. For x, the first derivatives
are thus:

d0x

dt0
(t0) = x(t0)

d1x

dt1
(t0) =

dx

dt
(t0)

= −y(t0) (using the ODE’s right-hand side)
d2x

dt2
(t0) =

d(dxdt)
dt

(t0)

=

(
∂(dxdt)
∂x

· dx
dt

+
∂(dxdt)
∂y

· dy
dt

)
(t0)

=

(
∂(−y)
∂x

· dx
dt

+
∂(−y)
∂y

· dy
dt

)
(t0)

= (0 · (−y) + (−1) · (x)) (t0)
= −x(t0)

78 CHAPTER 3. ALGORITHMIC APPROACH

d3x

dt3
(t0) =

d(d
2x
dt2)
dt

(t0)

=

∂(d

2x
dt2)
∂x

· dx
dt

+
∂(d

2x
dt2)
∂y

· dy
dt

 (t0)

=

(
∂(−x)
∂x

· dx
dt

+
∂(−x)
∂y

· dy
dt

)
(t0)

= (−1 · (−y) + 0 · (x)) (t0)
= y(t0)

Similarly, the first derivatives of y can be computed.

d0y

dt0
(t0) = y(t0)

d1y

dt1
(t0) =

dy

dt
(t0)

= x(t0) (using the ODE’s right-hand side)
d2y

dt2
(t0) =

d(dydt)
dt

(t0)

=

∂(dydt)
∂x

· dx
dt

+
∂(dydt)
∂y

· dy
dt

 (t0)

=

(
∂(x)
∂x
· dx
dt

+
∂(x)
∂y
· dy
dt

)
(t0)

= (1 · (−y) + 0 · (x)) (t0)
= −y(t0)

d3y

dt3
(t0) =

d(d
2y
dt2)
dt

(t0)

=

∂(d

2y
dt2)
∂x

· dx
dt

+
∂(d

2y
dt2)
∂y

· dy
dt

 (t0)

=

(
∂(−y)
∂x

· dx
dt

+
∂(−y)
∂y

· dy
dt

)
(t0)

= (0 · (−y) + (−1) · (x)) (t0)
= −x(t0)

This only works when the right-hand side of the ODE is sufficiently often
differentiable, i.e. when there are at least as many derivatives as the order to
which the series is to be developed. Since the ODE system in this example has
analytic right-hand sides, there is no restriction in this case.
Truncating the Taylor series at order zero would give a constant evolution:

x(t0 + h) =
h0

0!
x(t0) = x(t0)

y(t0 + h) =
h0

0!
y(t0) = y(t0).

3.2. ENCLOSING SOLUTION SETS OF ODES 79

y

x

t = 0

−1 0 1

−1

0

1

y

x

t = 0

−1 0 1

−1

0

1

Figure 3.13: Approximative numerical integration. Left: Euler’s method applied
to the harmonic oscillator with step sizes of h ∈ {0.125, 0.25, 0.5, 0.75}. Graphs
for smaller step sizes have been drawn in darker shade. Right: Second order
Taylor expansion with the same step sizes.

This is obviously quite useless. However, increasing the order by one, we get

x(t0 + h) =
h0

0!
x(t0) +

h1

1!
dx

dt
(t0) = x(t0) + h · (−y(t0))

y(t0 + h) =
h0

0!
y(t0) +

h1

1!
dy

dt
(t0) = y(t0) + h · (x(t0)),

which yields a linear approximation, commonly referred to as Euler’s method. It
is the most intuitive numerical approximation to the solution: starting from the
current point (x(t0), y(t0)), we compute the slope in each dimension and apply
this slope as if it stayed constant for the entire duration h of the integration step.
In the left part of Figure 3.13, we plot the approximated trajectories resulting
from using this linear approximation when starting with the initial point (1,0).

In most cases, higher approximation orders yield better approximations. We
illustrate this by also computing the second-order approximation.

x(t0 + h) =
h0

0!
x(t0) +

h1

1!
dx

dt
(t0) +

h2

2!
d2x

dt2
(t0) = x(t0) + h · (−y(t0)) +

h2

2 · (−x(t0))

y(t0 + h) =
h0

0!
y(t0) +

h1

1!
dy

dt
(t0) +

h2

2!
d2y

dt2
(t0) = y(t0) + h · (x(t0)) +

h2

2 · (−y(t0))

Looking at the graphs obtained from using this second-order approximation
in the right part of Figure 3.13, one can easily see that they are much closer
to the actual solution function for the same step sizes. It should not be left
unsaid that in practical methods of higher approximation order, like e.g. a
fourth-order Runge-Kutta method, the direct computation of higher order Taylor
coefficients is replaced by a linear combination of substeps with pre-computed
weight coefficients—saving a significant number of computation steps.

80 CHAPTER 3. ALGORITHMIC APPROACH

3.2.1 From Approximations to Enclosures

A fundamental problem arises when thinking about the application of numerical
methods within a framework which forbids us to prune solutions from the search
space. How do we know, which approximation order and which step size is
“good enough”? How far away is the approximation from the actual solution,
which must not be pruned away?

In “traditional” numerics, these questions are answered by an analysis of
the convergence rates and estimates of the size of the error, often given in the
form of an O-notation in the step size. In “validated” numerics, the answer to
these questions leads directly to interval methods and guaranteed error bounds.
A thorough discussion of the underlying principles of the validated approach
can already be found in [Moo66]. Here, we try to follow the spotlights insofar as
they illuminate our subsequent discussion of VNODE-LP.

Truncation Error of Taylor Series. The choice of a Taylor series expansion
in the above example was not incidental. While more sophisticated methods
exist for approximating ODE solution trajectories, Taylor series have the distinct
advantage of offering a simple description of their truncation error. Given a
system of first-order ODEs

ẋ1
...
ẋn

=

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

(3.1)

the Taylor series expansion up to order κ with the corresponding Lagrange
remainder term of its solution is given by

x1
...
xn

(t0 + h) =

(∑κ
i=0

h i

i! · d
ix1
dt i (t0)

)
+ hκ+1

(κ+1)! · d
κ+1x1
dtκ+1 (t0 + ϑ1 · h)

...(∑κ
i=0

h i

i! · d
ixn
dt i (t0)

)
+ hκ+1

(κ+1)! · d
κ+1xn
dtκ+1 (t0 + ϑn · h)

with unknown ϑi ∈ (0,1). Just like in the example, the derivatives of the
unknown solution are given by the right-hand sides of the ODEs and their
derivatives—again assuming their existence up to at least order κ + 1.

x1

...
xn

(t0 + h) =

x1(t0) +
(∑κ

i=1
h i

i! · d
i−1f1
dt i−1 (x1(t0), . . . , xn(t0))

)

+ hκ+1

(κ+1)! · d
κ f1
dtκ (x1(t0 + ϑ1 · h), . . . , xn(t0 + ϑ1 · h))

...

xn(t0) +
(∑κ

i=1
h i

i! · d
i−1fn
dt i−1 (x1(t0), . . . , xn(t0))

)

+ hκ+1

(κ+1)! · d
κ fn
dtκ (x1(t0 + ϑn · h), . . . , xn(t0 + ϑn · h))

The zeroth order term for dimension j is simply the value xj(t0), while the i-th-
order terms are replaced by the (i − 1)-th derivatives of the ODEs’ right-hand
sides with respect to t in the point (x1(t0), . . . , xn(t0)). The remainder term is the
most crucial aspect: since it must be evaluated at time t0 +ϑj ·h, in this rewriting,
fj must be evaluated at a future point of the unknown solution trajectory. To
know the truncation error exactly, we would need to know this point—in which
case we would have no need for an approximation in the first place. However,

3.2. ENCLOSING SOLUTION SETS OF ODES 81

an evaluation of the remainder term over a box that contains at least all possible
trajectories will yield an overapproximation of the truncation error and hence
an enclosure of the trajectory. In order to compute valid error bounds of the
truncated Taylor series, we hence first need a valid enclosure of the trajectory to
evaluate the remainder term on. While this sounds not very helpful, as a matter
of fact, it is. Since the remainder term has hκ+1/(κ + 1)! as a coefficient, even a quite
conservative enclosure suffices to get a relatively small error term and hence a
much tighter enclosure than the one that was used to compute the error bound.
Moore utilized this to build a two step process, which modern algorithms are
essentially still based upon—albeit using different methods within the two steps.
First, an a-priori enclosure and a corresponding step size for which it contains
all solution trajectories are computed. This coarse enclosure is then used in the
second step to compute the remainder term of a higher-order series expansion.

Computing A-Priori Enclosures. The approach introduced by Moore [Moo66]
and refined later by Lohner [Loh88] and Stauning [Sta97] to obtain a coarse
first enclosure with which the truncation error can be overestimated is at its
core based on the Picard-Lindelöf existence and uniqueness theorem for the
solutions of initial value problems, which makes use of Lipschitz continuity
and contraction properties on Banach spaces—mathematical background topics
whose detailed discussion would lead us too far away from the subject of this
thesis, in which we will mostly rely on this theory as an invisible bedrock.

In the following paragraphs, we will therefore only summarize the approach
from [Loh88, pp. 27ff.] and [Moo66, pp. 92ff.]. Given the system of ODEs from
Equation (3.1), we require ~f to be at least p-times differentiable on the open
subset ~D ⊆ Rn and the initial value to be ~x(0) = ~x0 ∈ ~D.

We introduce interval extensions ~F = (F1, . . . , Fn) of the right-hand sides
f1, . . . , fn and require the interval extension ~F to be defined and continuous
on D and to be inclusion monotonic, i.e. ~F (~Y ′) ⊆ ~F (~Y) for ~Y ′ ⊆ ~Y . Using the
interval extension from Definition 10, which we have introduced in the previous
section, inclusion monotonicity follows from construction when tightest hulls
are used. Then ~F (~Y ′) = hull({~f (~y′) | ~y′ ∈ ~Y ′}) and ~F (~Y) = hull({~f (~y) | ~y ∈ ~Y }),
and consequently ~F (~Y) must be a superset of ~F (~Y ′) whenever ~Y ⊇ ~Y ′.3

Most centrally, we need a property that can be understood as a lifting of
Lipschitz continuity (a function f is Lipschitz continuous on D ⊆ R if ∃L ∈
R>0∀y1, y2 ∈ D : ||f (y1)− f (y2)|| ≤ L · ||y1 − y2||) to the interval representation. Let
w(I) be the width of an interval I, i.e. w(I) = sup(I) − inf(I), then there shall be
a real number L > 0 such that for all ~Y ⊆ ~D the width of ~Y ’s image under ~F is
bounded by the maximum component width of ~Y scaled by L, i.e.

∀(Y1, . . . , Yn) = ~Y ⊆ ~D : w(~F (~Y)) ≤ L ·maxj∈{1,...,n}w(Yj).

This property may in fact be restrictive, since it is not satisfied where ~f has
unbounded slope, e.g. for an f (x) =

√
x at x = 0. For the purpose of this thesis,

however, we may safely assume the right-hand sides of ODEs to satisfy this
3A practical implementation with outward rounding of floating-point borders will satisfy this

criterion as well, since rounding errors captured for ~Y ′ would also be made for the larger ~Y . Allowing
arbitrary overapproximations, inclusion monotonicity might be violated, when the enclosure for the
subset’s results contains (spurious) values that are not enclosed for the larger set’s results. These
additional values would however only worsen the tightness of the computed bounds, but not lead to
incorrect pruning of actual solutions, despite violating the definition of inclusion monotonicity.

82 CHAPTER 3. ALGORITHMIC APPROACH

property on the entire range admissible by the flow invariants, by all functions
either being analytic and all variables having bounded ranges or by the modeler
taking care about this explicitly by introducing flow invariants that exclude
regions with unbounded slope or undefinedness.

If, under these constraints, there is a box ~U ⊆ ~D such that

~B := ~x0 + [0, h] · ~F (~U) ⊆ ~U,

the initial value problem consisting of the ODE from Equation 3.1 and ~x(0) = ~x0
has a unique solution ~x : [0, h]→ ~B, i.e. ~B is a bounding box that contains the
solution for all t ∈ [0, h].

Fortunately, this result is even stronger, since the point initial condition can
be replaced by an interval box, effectively forming a set of initial value problems,
with the initial set being a box ~X0. This result is labeled as “Satz (1.2.3.3)”
in [Loh88] and proven there. Thus, having

~B := ~X0 + [0, h] · ~F (~U) ⊆ ~U,

all the initial value problems for each ~x0 ∈ ~X0 have a unique solution on t ∈ [0, h],
which is bounded by ~B.

Only this applicability of the result to interval initial conditions allows the
use of this method iteratively, since we can in general not expect an enclosure
to stay point-valued—and hence have to take the entire enclosure after one
integration step as starting set for the next.

Example 7 (rudimentary enclosure). We can now attempt a first enclosure of
the solutions of a set of a initial value problems. Again using the harmonic
oscillator with ẋ = −y and ẏ = x, we want to enclose the solutions originating
from X0 = [0.9,1.1] and Y0 = [−0.1,0.1] at time t = 0. The right-hand sides
can be summarized into a function ~f (x, y) = (−y, x), with ~F being its interval
extension. First, we then compute an a-priori enclosure. Evidently, the initial
set must be contained, i.e. we could choose

~U0 :=
(

[0.9,1.1]
[−0.1,0.1]

)

and compute
(
X0
Y0

)
+ [0, h] · ~F (~U0)

=

(
[0.9,1.1]

[−0.1,0.1]

)
+ [0, h] ·

(
[−0.1,0.1]
[0.9,1.1]

)

=

(
[0.9,1.1] + [−0.1h,0.1h]

[−0.1,0.1] + [0,1.1h]

)

=

(
[0.9 − 0.1h,1.1 + 0.1h]

[−0.1,0.1 + 1.1h]

)

?⊆ ~U0

The subset relationship only holds for h = 0. Quite obviously, the choice of ~U0
as a candidate bounding box which covers just the initial values, only allows a

3.2. ENCLOSING SOLUTION SETS OF ODES 83

step of length zero, a result that can very well be expected—to move along the
dynamics for any non-trivial time, we will most likely leave the initial region. We
therefore increase the size of ~U0

~U ′0 :=
(

[0.5,1.5]
[−0.5,0.5]

)

and repeat the computation:
(
X0
Y0

)
+ [0, h] · ~F (~U ′0)

=

(
[0.9,1.1]

[−0.1,0.1]

)
+ [0, h] ·

(
[−0.5,0.5]
[0.5,1.5]

)

=

(
[0.9,1.1] + [−0.5h,0.5h]

[−0.1,0.1] + [0,1.5h]

)

=

(
[0.9 − 0.5h,1.1 + 0.5h]

[−0.1,0.1 + 1.5h]

)

?⊆ ~U ′0
Now, h can be chosen larger than zero, more precisely, the following conditions
must be satisfied for the subset relationship to hold:

0.9 − 0.5h ≥ 0.5 ↔ −0.5h ≥ −0.4 ↔ h ≤ 0.8
1.1 + 0.5h ≤ 1.5 ↔ 0.5h ≤ 0.4 ↔ h ≤ 0.8

−0.1 ≥ −0.5 ↔ true

0.1 + 1.5h ≤ 0.5 ↔ 1.5h ≤ 0.4 ↔ h ≤ 0.26̄

We can now choose h = 0.2, and get

~B0 =

(
[0.9 − 0.5 · 0.2,1.1 + 0.5 · 0.2]

[−0.1,0.1 + 1.5 · 0.2]

)
=

(
[0.8,1.2]

[−0.1,0.4]

)
⊆

(
[0.5,1.5]

[−0.5,0.5]

)
= ~U0

′

With this ~B0, we have a bounding box for the first step and with h0 = 0.2, we
have a suitable step size for which the theoretical results guarantee that this
a-priori enclosure contains all solutions which originate from the initial box.

Recalling the already computed terms of the truncated Taylor series

x(t0 + h) = x(t0) + h · (−y(t0)) +
h2

2 · (−x(t0))

y(t0 + h) = y(t0) + h · (x(t0)) +
h2

2 · (−y(t0)),

for an enclosure, we add the error term

X (t0 + h) = X (t0) + h · (−Y (t0)) +
h2

2 · (−X (t0)) +
h3

3!
· [−0.1,0.4]

Y (t0 + h) = Y (t0) + h · (X (t0)) +
h2

2 · (−Y (t0)) +
h3

3!
· [−1.2,−0.8]

since d3x
dt3 (ϑ) = y(ϑ) and Y (ϑ) = [−0.1,0.4], and since d3y

dt3 (ϑ) = −x(ϑ) and
X (ϑ) = [0.8,1.2]. We can now compute an enclosure at time h = 0.2.

X (0.2) = [0.9,1.1] + 0.2 · [−0.1,0.1] + 0.02 · [−1.1,−0.9] + [0.0013
4] · [−0.1,0.4]

84 CHAPTER 3. ALGORITHMIC APPROACH

y

x0.8 0.9 1 1.1 1.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3.14: First step of a rudimentary ODE enclosure, showing the initial
box [0.9,1.1] × [−0.1,0.1], the a-priori enclosure [0.8,1.2] × [−0.1,0.4], the
enclosure at time t = 0.2, [0.85786,1.10256] × [0.07632,0.32096], and the
exact solution set (gray, filled).

= [0.9,1.1] + [−0.02,0.02] + [−0.022,−0.018] + [−0.00014,0.00056]
= [0.85786,1.10256]

Y (0.2) = [−0.1,0.1] + 0.2 · [0.9,1.1] + 0.02 · [−0.1,0.1] + [0.0013
4] · [−1.2,−0.8]

= [−0.1,0.1] + [0.18,0.22] + [−0.002,0.002] + [−0.00168,−0.00104]
= [0.07632,0.32096]

In Figure 3.14, we illustrate this first enclosure step. The filled gray area shows
the exact solution set. The comparison with the computed enclosure for t = 0.2
illustrates two kinds of overapproximation. Dominating is the effect of using
an axis-parallel box to enclose a solution set that is not aligned with these
coordinate axes. This wrapping effect will be the subject of the next subsection.
Not fighting it would mean that the next enclosure step would have to start with
an already enlarged initial set—and further rotation would increase the volume
of the enclosure in each successive step significantly. Far less pronounced—but
still non-negligible for this low order Taylor expansion—is the effect of bounding
the truncation error, which can also be seen numerically in the widths of the
computed remainder terms. In the illustration, the computed enclosure is
marginally larger than an ideal axis-aligned box around the exact solution set.

Using the computed box for t = 0.2, a naive enclosure algorithm could
iteratively compute a successor by using this enclosure as initial set, computing
a new a-priori enclosure and step size and thereby bounding the remainder term
of this second step. It is however obvious from this first step alone that more
has to be done to arrive at a tighter enclosure.

3.2.2 Fighting the Wrapping Effect

Figure 3.14 illustrates the inadequacy of using axis-parallel enclosures on
the example of a harmonic oscillator. Moore [Moo66] (despite then seemingly

3.2. ENCLOSING SOLUTION SETS OF ODES 85

not yet having given the name to the phenomenon) used the same example
to quantitatively analyze the impact of this wrapping effect, showing that the
width of the enclosure grows by a factor of approximately 500 per revolution
in the limit h → 0. His approach to mitigating the wrapping effect is based
on a simple observation: if the solution set rotates, so should the coordinate
system with respect to which the enclosure is represented. Consequently, a
coordinate transformation should be performed, i.e. a transformation matrix be
computed that yields a rotated (and potentially sheared) coordinate system in
every step with respect to which the enclosure is given. While this approach, a
predecessor of the parallelepiped method in later algorithms, suffices for pure
rotations like the harmonic oscillator system in our example, Moore also notes
that the transformation matrix may become singular (and the method may
thus break down) after some time (cf. [Moo66, p.136]). This problem and the
wrapping effect in general is analyzed in greater detail by Lohner [Loh88] and
he crucially extends the approach by adding an orthogonalization step, using
the Q matrix resulting from applying QR-factorization on the transformation
matrix. To minimize the amount of overapproximation incurred by no longer
exactly following the changed orientation, the dimensions of the transformation
matrix are sorted prior to orthogonalization by the widths of the enclosure in
that dimension. Thereby, the dimension with the largest interval width retains
its optimal orientation.

The direct interval evaluation used so far has an additional weakness that
needs to be addressed at the same time. Consider e.g. just a truncated first-order
Taylor expansion X (t0 +h) = X (t0) +h ·F (X (t0)), which is part of the rudimentary
enclosure generation shown above. Since this computation consists of a sum of
intervals, the successor enclosure X (t0 +h) will be at least as wide as X (t0), even
if the solution set actually decreases in width.4 If a symbolic representation of
the derivative were used like one would do in manually computed examples or
as done in the prototypical work in [Egg06], this overapproximation could be
partially avoided by first simplifying the Taylor terms before interval evaluation.
The canonical path, however, is to choose a midpoint representation, which
consists of a point solution and one or more interval vectors which hold the
accumulated enclosure widths.

Looking at the fully general problem with coordinate transformations and
changed enclosure representations leads to a rather convoluted formalism that
does not lend itself very well to illustrating the method. Luckily, Nedialkov and
Jackson [NJ01] have summarized the approach to a degree that is still relatively
digestible by constraining the ODEs to the case of linear systems with constant
coefficients. In the following paragraphs, we report their presentation of the
approach and point out that the temporary limitation of generality is done for
illustration purposes only.

Let an initial value problem of a linear system of ODEs with constant
coefficients be defined as

~̇x = B · ~x and ~x(t0) ∈ ~X0

with B ∈ Rn×n an n × n-matrix. The initial transformation matrix is A0 = I,
the identity matrix. Additionally, we need ~̂x0 = m(~X0) and ~sj = m(~Zj), with
~Zj denoting the error bounds computed using the a-priori enclosure in step j

4w([a + c, b + d]) = (b + d) − (a + c) = (b − a) + (d − c) = w([a, b]) +w([c, d]) ≥ w([a, b])

86 CHAPTER 3. ALGORITHMIC APPROACH

and m(~Zj) denoting the midpoint of this box. In practice, these midpoints may
not be representable, which can e.g. be overcome most easily by using a tight
interval instead. The initial value for the box ~R0 is set to ~0 for point-valued
initial conditions and needs to be set to ~X0 − ~̂x0 for an initial box ~X0. Due to
the linearity of the ODE and under the assumption of having a constant step
size h (again only for illustration purposes), the Taylor series expansion can be
simplified to a matrix product with a constant matrix T :

T := Tk−1(hB) :=
k−1∑

i=0

(hB)i

i!
,

such that

T · ~x(tj) =

k−1∑

i=0

h i

i!
Bi~x(tj) =

k−1∑

i=0

h i

i!
di~x

dt i
(tj),

since

d0~x

dt0
(tj) = B0 · ~x(tj)

d1~x

dt1
(tj) = B1 · ~x(tj)

d2~x

dt2
(tj) =

dB~x
dt

(tj) = Bd~x
dt

= B (B~x) (tj) = B2~x(tj)

...

With these prerequisites, the solution enclosure ~Xj at tj can be represented as

~Xj = T ~̂xj−1 + (TAj−1)~Rj−1 + ~Zj,

with a transformation matrix Aj and

~Rj = (A−1
j TAj−1)~Rj−1 +A−1

j (~Zj − ~sj).
The midpoint trajectory ~̂xj occurring in this computation is iterated by

~̂xj = T ~̂xj−1 + ~sj,

i.e. it is adjusted slightly by the midpoint ~sj of the local error term ~Zj, which is
absorbed into ~Rj in the next step to avoid wrapping.

In this linear case, the computation of the transformation matrix in the
parallelepiped method is then

Aj = TAj−1,

whereas in the more general case it is the solution of the variational equation
along the solution function ~x(t)

dA
dt

(t) =
∂f

∂~x
A(t) = JA(t),

with J being the Jacobian matrix consisting of the partial derivatives of ~f with
respect to all ~x. In Lohner’s algorithm, this solution is approximated by using a
truncated Taylor series and computed as an interval enclosure.

3.2. ENCLOSING SOLUTION SETS OF ODES 87

Example 8 (parallelepiped method). Before looking at the orthogonalization, we
compute an enclosure with the parallelepiped method for the harmonic oscillator
example. The system can easily be represented in the linear format.

~̇x =

(
ẋ1
ẋ2

)
=

(
0 −1
1 0

) (
x1
x2

)
= B~x

In order for the coordinate transformation to be effective not only on the ac-
cumulated error, but also on the entire initial box, the set of initial values
[0.9,1.1] × [−0.1,0.1] needs to be captured in the ~R0 box, which is given with
respect to the initial transformation matrix A0 = I. The midpoint of the original
box is stored in ~̂x0.

~̂x0 =

(
1
0

)
, ~R0 =

(
[−0.1,0.1]
[−0.1,0.1]

)

Previously, we have already computed a valid a-priori enclosure ~B0 for the first
time step from t0 to t1 = t0 +h = 0+0.2, which we can now use again to compute
~Z0. Its midpoint is then stored in ~s0. We still want to truncate the Taylor series
after the second-order term, hence set k = 3, which is the order of the remainder
term.

B2 =

(
0 −1
1 0

)2
=

(−1 0
0 −1

)

B3 =

(−1 0
0 −1

) (
0 −1
1 0

)
=

(
0 1
−1 0

)

~Z0 =
(hB)3

3!
~B0 =

(hB)3

3!

(
[0.8,1.2]

[−0.1,0.4]

)
=

0.008
6

(
0 1
−1 0

) (
[0.8,1.2]

[−0.1,0.4]

)

=
0.008

6

(
[−0.1,0.4]

[−1.2,−0.8]

)
=

(
[−0.000134,0.000534]
[−0.0016,−0.001066]

)

~s0 =

(
0.0002
−0.00133

)

The first step can now be computed.

T = Tκ−1(hB) =
h0B0

0!
+
h1B1

1!
+
h2B2

2!

= I + hB +
h2

2 B
2 =

(
1 0
0 1

)
+

(
0 −h
h 0

)
+

(
− h2/2 0

0 − h2/2

)

=

(
1 − h2/2 −h
h 1 − h2/2

)
=

(
0.98 −0.2
0.2 0.98

)

~X1 = T ~̂x0 + (TA0)~R0 + ~Z0

=

(
0.98 −0.2
0.2 0.98

) (
1
0

)
+

((
0.98 −0.2
0.2 0.98

) (
1 0
0 1

)) (
[−0.1,0.1]
[−0.1,0.1]

)

+

(
[−0.000134,0.000534]
[−0.0016,−0.001066]

)

=

(
0.98
0.2

)
+

(
0.98 −0.2
0.2 0.98

)

︸ ︷︷ ︸
=A1

(
[−0.1,0.1]
[−0.1,0.1]

)
+

(
[−0.000134,0.000534]
[−0.0016,−0.001066]

)
(3.2)

88 CHAPTER 3. ALGORITHMIC APPROACH

y

x0.8 0.9 1 1.1 1.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 3.15: First step of the coordinate transformation, applying the paral-
lelepiped method to the harmonic oscillator example.

=

(
0.98
0.2

)
+

(
[−0.118,0.118]
[−0.118,0.118]

)
+

(
[−0.000134,0.000534]
[−0.0016,−0.001066]

)

=

(
[0.861866,1.098534]

[0.0804,0.316934]

)

In Equation (3.2), the enclosure ~X1 is represented by a sum of a (mid-)point, a
box with respect to a transformed coordinate system, and a small error term.
We depict this representation in Figure 3.15. This decomposed representation
allows the operations to work on points and point matrices and only in the end
combines the results with interval computations. In a practical implementation,
intervals will also occur during these point-operations to capture rounding
errors, but this additional uncertainty can be moved into the interval entities.

The benefit of this representation then becomes manifest during iteration,
since the successor enclosure ~Xj is not computed using the locally wrapped
enclosure ~Xj−1, but is instead freshly combined from the components.

It should also be noted, that the object described by Equation (3.2) is in
fact a zonotope, consisting of a midpoint, two generator vectors (which form
the basis Aj) with corresponding intervals, and a (small) box, with which the
object’s boundary is finally expanded, when this small box is centered around
zero, which can easily be achieved by moving the midpoint accordingly. Since
the restriction to the linear case can be overcome when using the variational
equation, this method is not as confined as the zonotope-based approaches
discussed in Section 2.4. This relationship has been exploited in [MCRTM14] to
extend zonotope-based computations of reachable state sets for hybrid systems
to non-linear ODEs.

To prepare the next step, we need to compute ~R1 and the next midpoint
~̂x1. To do this, we first need a new a-priori enclosure ~B1, which is then used
to compute ~Z1. For this manual calculation, we simply generously expand the
locally-wrapped enclosure ~X1 and check whether the expansion suffices to cover

3.2. ENCLOSING SOLUTION SETS OF ODES 89

the time step from t1 = 0.2 to t2 = t1 + 0.2.

~B1 =

(
[0.861866,1.098534]

[0.0804,0.316934]

)
+ [0,0.2] · ~F

((
[0.4,1.5]
[0.0,0.8]

))

=

(
[0.861866,1.098534]

[0.0804,0.316934]

)
+ [0,0.2] ·

(
[−0.8,0.0]
[0.4,1.5]

)

=

(
[0.861866,1.098534]

[0.0804,0.316934]

)
+

(
[−0.16,0.0]

[0.0,0.3]

)

=

(
[0.701866,1.098534]

[0.0804,0.616934]

)
⊆

(
[0.4,1.5]
[0.0,0.8]

)

~Z1 =
hB3

3!
~B1 =

(
[0.0001072,0.000823]

[−0.001465,−0.000936]

)

~s1 =

(
0.000464
−0.001200

)

We also need to invert the transformation matrix, which in practice amounts to
computing an enclosure of this inverse since not all numbers are necessarily
representable. Implementations can be based either on the kind of exact rational
arithmetic used here in the manual case, on lifting the entirety of computations
to intervals, or on first computing an approximative result and then enlarging it
by a small ε-region until the product of A and the computed enclosure of the
inverse contains the identity matrix.

98/100 − 1/5 1 0
1/5 98/100 0 1

2501/2450 0 1 20/98
4/98 1/5 0 20/98

1 0 2450/2501 500/2501
4/98 1/5 0 20/98

1 0 2450/2501 500/2501

0 1/5 − 100/2501 490/2501

1 0 2450/2501 500/2501

0 1 − 500/2501 2450/2501

1 0 [0.97961
0] [0.19993

2]
0 1 [−0.19992

3] [0.97961
0]

A−1
1 ∈

(
[0.97960,0.97961] [0.19992,0.19993]

[−0.19993,−0.19992] [0.97960,0.97961]

)

~R1 = (A−1
1 TA0)~R0 +A−1

1 (~Z1 − ~s1)

=

((
[0.97960,0.97961] [0.19992,0.19993]

[−0.19993,−0.19992] [0.97960,0.97961]

) (
0.98 −0.2
0.2 0.98

) (
1 0
0 1

))

·
(
[−0.1,0.1]
[−0.1,0.1]

)

+

(
[0.97960,0.97961] [0.19992,0.19993]

[−0.19993,−0.19992] [0.97960,0.97961]

)

·
((

[0.0001072,0.000823]
[−0.001465,−0.000936]

)
−

(
0.000464
−0.001200

))

90 CHAPTER 3. ALGORITHMIC APPROACH

=

(
[0.999992,1.0000038] [−0.0000004,0.0000114]

[−0.0000114,0.0000004] [0.999992,1.0000038]

) (
[−0.1,0.1]
[−0.1,0.1]

)

+

(
[0.97960,0.97961] [0.19992,0.19993]

[−0.19993,−0.19992] [0.97960,0.97961]

) (
[−0.0003568,0.000359]
[−0.000265,0.000264]

)

=

(
[−0.10000152,0.10000152]
[−0.10000152,0.10000152]

)
+

(
[−0.00041,0.00041][−0.000332,0.00033]

)

=

(
[−0.10042,0.10042]
[−0.10034,0.10034]

)

As can be seen, the size of ~R1 has grown only marginally and a significant part
of this growth is due to the low precision with which we enclosed the inverse
transformation matrixA−1

1 and of course the low order κ of the Taylor expansion.
In practice, when post-decimal digits are a plus and do not eat valuable space
on a page, these intervals can be made much tighter, reducing the growth of ~R1
even further.

Finally, we only need to compute a new midpoint enclosure to be able to
iterate the method.

~̂x1 = T ~̂x0 + ~s1

=

(
0.98
0.2

)
+

(
0.000464
−0.001200

)
=

(
0.980464
0.1988

)

QR-Factorization. As could be clearly seen in the example, in order to apply
coordinate transformations of the presented kind, it is necessary to not only
compute a suitable transformation matrix, but also to enclose its inverse. The
existence of this inverse is paramount for the method to work—its non-existence,
called singularity of the transformation matrix, must therefore be avoided. Even
worse, the method already breaks down when Aj becomes nearly singular.
Singularity can among others be measured by the linear independence of the
column vectors, which can be graphically understood as the angle between the
axes spanned by these vectors no longer being orthogonal, but more and more
aligned. Nedialkov and Jackson [NJ01] analyze the case of linear ODE systems
by looking at the eigenvalues of the matrices and derive conditions, which allow
to predict whether singularity becomes a problem. For our purposes, it suffices
to say that singular transformation matrices occur often enough to merit a
countermeasure, Lohner’s orthogonalization via QR-factorization.

Again, we follow closely the presentation from [NJ01], which summarizes
Lohner’s original approach [Loh88]. Having a transformation matrix Aj−1 of the
j − 1-th step, its successor under T is computed and decomposed

TAj−1 = QjRj
and then Qj is chosen as transformation matrix for the j-th step:

Aj = Qj.
The decomposition itself is described in detail e.g. in [PTVF92]. Most importantly,
Qj is orthogonal, i.e. its column vectors are pairwise orthogonal, which is the
actual goal in this context. Also, orthogonalization causes the inverse to coincide
with the transposed matrix, i.e. Q−1 = QT .

3.2. ENCLOSING SOLUTION SETS OF ODES 91

By adding a permutation matrix Pj, the columns of TAj−1 can be re-sorted
prior to orthogonalization. This reordering is done in such a way that the longest
edge of the parallelepiped is not changed through the QR-decomposition.

3.2.3 Automatic Differentiation

In our illustrating examples, we have computed the necessary derivatives in
the traditional way using symbolic mathematics and term simplifications as
necessary. While under the impression of today’s strong computer algebra
systems and large computational resources this approach might actually have
become a viable option for an automatized method, the approach employed in
Lohner’s implementation as in VNODE-LP does not rely on symbolic mathematics
with potentially huge simplification efforts, but instead makes use of automatic
differentiation. The central idea behind automatic differentiation is to replace
the normal arithmetic evaluation rules by ones that compute the value of the
derivative instead of the value of the expression, leading to derivatives that
can be computed with nearly the same computational effort as computing the
expression itself.

Consider e.g. the expression x2 + cyx + a. Automatic differentiation like
normal evaluation is done on a per-atom basis, i.e. each arithmetic operation is
handled individually by local application of derivation rules. In what is called
the forward mode, the following evaluations would be added to compute the
derivative of the above expression with respect to x.

e1 = x e′1 = 1 (seeded, want derivative w.r.t. x)
e2 = e2

1 e′2 = 2e2−1
1 e′1 = 2x

e3 = c e′3 = 0 (seeded, not derivative w.r.t. c)
e4 = y e′4 = 0 (seeded, not derivative w.r.t. y)
e5 = e3e4 e′5 = e′3e4 + e3e

′
4 = 0

e6 = e5e1 e′6 = e′5e1 + e5e
′
1 = 0 + e3e4 = cy

e7 = e2 + e6 e′7 = e′2 + e′6 = 2x + cy

e8 = a e′8 = 0 (seeded, not derivative w.r.t. a)
e9 = e7 + e8 e′9 = e′7 + e′8 = 2x + cy

While this type of extended evaluation could be achieved by implementing
functions for the derivatives of basic operators and suitable nested calls, modern
incarnations of automatic differentiation make heavy use of generic programming
and operator overloading, thereby making the computation of a derivative nearly
transparent. The FADBAD++ library [Sta97], which is used in VNODE-LP, offers
so-called forward and backward modes and directly supports the generation of
Taylor coefficients via automatic differentiation over nearly arbitrary numerical
data types—including interval variables—as long as these data types offer the
required overloaded arithmetic operators.

3.2.4 VNODE-LP

We have introduced all major building blocks needed to compute enclosures
of sets of initial value problems. An a-priori enclosure is computed, obtain-
ing conservative bounds over which the error term of a Taylor series can be

92 CHAPTER 3. ALGORITHMIC APPROACH

1 #include <iostream>
2 #include <fstream>
3 #include "vnode.h"
4
5 using namespace std;
6
7 template <typename var_type>
8 void f(int num_dims,
9 var_type∗ fx, // result f (x)

10 const var_type∗ x, // input x
11 var_type t, // time variable
12 void∗ param) { // parameters
13 fx[0] = −1.0 ∗ x[1]; // dx_0/dt = −x_1
14 fx[1] = x[0]; // dx_1/dt = x_0
15 }
16 //−−−−−−− (skipping output methods & calls)
17 int main() {

18 const int n = 2; // two dimensions
19 iVector x(n);
20 x[0] = interval(9,11) / 10.0; // X_0 = [0.9, 1.1]
21 x[1] = interval(−1,1) / 10.0; // X_1 = [−0.1, 0.1]
22 interval t = 0; // start time
23 interval t_end = 20; // maximum time
24 vnodelp::AD∗ ad= new vnodelp::FADBAD_AD(n, f, f);
25 vnodelp::VNODE∗ solver= new vnodelp::VNODE(ad);
26 solver−>setOneStep(vnodelp::on);
27 while(t != t_end) {
28 solver−>integrate(t, x, t_end);
29 iVector a_priori(n);
30 interval Tj;
31 a_priori = solver−>getAprioriEncl();
32 Tj = solver−>getT();
33 }
34 }

Figure 3.16: Harmonic oscillator implemented in C++ program calling the
VNODE-LP solver.

evaluated—leading to a tighter enclosure. Coordinate transformations are used
to avoid the wrapping effect and with it an explosion of the enclosure’s width.
Orthogonalization is applied to avoid the coordinate transformation to fail. Struc-
turally, VNODE-LP [Ned06] works exactly in this way, but in each of these steps
it uses a better technological alternative. A-priori enclosures are computed
using a higher order [NJP01] (instead of the first-order enclosure presented
above). Taylor series results are refined by an Interval Hermite-Obreschkoff
method [Ned99], which works in a predictor / corrector scheme (cf. [Ned06,
Chapter 20] for precise details). Instead of choosing one type of coordinate
transformation, VNODE-LP uses three complementary representations, one
without coordinate transformation, one based on the parallelepiped method,
and one based on the QR-factorization.

Since, apart from a few exceptions, we use VNODE-LP mostly as a black box
and believe the fundamental approach to be well represented by the simpler
technologies introduced above, we will not detail the more precise methods, but
instead focus on matters of interfacing and computed results. These topics
are most relevant for the question of how VNODE-LP can be used within a SAT
modulo ODE solver—the topic of the next section.

Example 9 (computing enclosure with VNODE-LP). In Figure 3.16, we encode
the problem of computing an enclosure for the harmonic oscillator example
using VNODE-LP. In order to make use of automatic differentiation, the right-
hand side of the ODE needs to be given as a template function, here function f,
whose variable type can be chosen by VNODE-LP—allowing the use of derivative
and Taylor term computations over interval data types. The ODE is simply
encoded by normal C++ arithmetic operators over the components of x and
stored into the result argument fx. The function signature allows the passing of a
parameter vector param, intended to allow setting constant parameters. Within
the main function, we first initialize the state vector as an interval box with the
same initial state as in the previous examples, [0.9,1.1] × [−0.1,0.1]. Since
these boundaries are not representable by floating-point numbers, we choose
to initialize x[0] with [9,11]/10, which is being handled as a safely-rounded
interval operation by the interval library (in our case filib++). The initial time is

3.2. ENCLOSING SOLUTION SETS OF ODES 93

y

x−1 0 1

−1

0

1

0 5 10 15 20

−3
−2
−1

0
1
2
3
x

t

Figure 3.17: Output computed by VNODE-LP for the harmonic oscillator exam-
ple. On the left, we show the (locally-wrapped) enclosures at the time-points
computed by VNODE-LP and compare them with the exact solutions in gray.
This phase-space plot is complemented on the right by a plot of the enclosures
and a-priori enclosures in the x-dimension (0-th dimension in the program code)
over the time. Thick lines at time points are tight enclosures, large thin boxes
are the corresponding a-priori enclosures which cover the entire time steps (and
sometimes are valid beyond the range finally used by VNODE-LP for the step).
Gray lines follow the evolution of the set’s four corner points.

set to t = 0 and an end time t_end = 20 is given until which integration shall be
performed. VNODE-LP is initialized by first handing the ODE’s right-hand-side
function to an automatic differentiation object using the FADBAD++ library
and then handing this object to a VNODE solver object. Using the setOneStep
method, we instruct VNODE-LP to stop after every integration step, such that
we can extract the computed bounds at the end time of that step, the a-priori
enclosure via getAprioriEncl, and the corresponding time span for which it is
valid via the getT method. We have omitted the printing methods from this code,
which we use to generate the graphs in Figure 3.17.

As can be seen from the example, VNODE-LP’s intended use case is to
compute a tight enclosure of a set of initial value problems over a hard-coded ODE
for a given point of time. To get there, it computes enclosures for automatically
determined intermediate time points and also gives access to the used step
sizes and a-priori enclosures, which together capture the entire time span
from the beginning to the final enclosure. These bounding boxes are, however,
quite conservative. In Figure 3.17, on the right, the a-priori enclosures for the
x-dimension are shown and can clearly be seen to exceed the actual state space
covered by the exact solution trajectories by a large margin. On the other hand,
when one is interested in computing an enclosure over intervals of time, the
end time up to which integration shall be performed, may in fact be given as
an interval. As long as this interval is not too wide, i.e. fits well into the step
size that VNODE-LP computes, a tighter enclosure may be obtained for this
interval of time. To cover the entire time span, however, the solver may have to
be restarted many times, leading to significant computation times. In the next
section, we will therefore investigate a less expensive evaluation scheme, which
is needed in our context.

94 CHAPTER 3. ALGORITHMIC APPROACH

Solver Parametrization. The order of the series expansion can be set up to
a maximum that needs to be specified at compile time. In [Ned06, p. 33] the
amount of CPU time needed to compute an enclosure is measured for different
orders, showing that, for that analyzed example, a local optimum lies between
15 and 23, depending on the desired accuracy (which influences the step size
computation). For our purposes, we use the proposed default values of κ = 20
as order and absolute and relative tolerances of 10−12. A solver parameter
can be used to set a minimum step size, which indirectly controls the level of
precision that can be reached. This parameter is set from the outside, as will be
detailed in the next section. VNODE-LP supports different interval libraries—
making use of FADBAD++’s flexibility of supported data types. We use the filib++
library [LTG+06] since it supports extended error handling for operations that
lead to undefined results instead of aborting the computation, which happens
in case of the PROFIL/BIAS library. This recovery is important since in our
context, individual computations may very well fail, but later queries may still
lead to useful results.

3.3 Embedding ODE Enclosures into iSAT

So far, this chapter has focused on the two fundamental building blocks that
now need to be brought together to tackle the problem of solving SAT modulo
ODE formulae. The major contribution of this thesis, which has been the basis
of our scientific contributions, e.g. in [EFH08, ERNF12a], lies in combining
constraint solving for boolean combinations of arithmetic constraints with
enclosure computation for sets of initial value problems of ODEs. In this
section, we therefore describe the fundamental idea of how to make use of ODE
enclosures within iSAT, while the remaining sections of this chapter highlight
important extensions that improve this interplay, namely the storing of learned
enclosures and the computation of bracketing systems, which can lead to tighter
results on non-linear ODE problems.

3.3.1 Structure of the iSAT-ODE Solver

To anchor the description of our approach, we first give an abstract overview
of the iSAT-ODE solver structure, its data dependencies, and control flow
in the diagram shown in Figure 3.18. We should expressly state that this
diagram is neither complete nor perfectly accurate in all details, but should be
understood more as a high-level view on the components and their interplay,
whose refinement is the task of the remainder of this chapter.

As in the case of the core iSAT, also the extended solver’s front end parses the
input formula and generates a syntax tree. To the preprocessing routines from
iSAT, which are applied to this representation of the input problem, a new one
is added which filters out the ODE and flow invariant constraints and registers
them with the ODE solver. In the graph, they are replaced by freshly-introduced
trigger variables, and the correspondence between these triggers and the ODE
and flow invariant constraints they represent is stored in the ODE solver. As
a result of this extended preprocessing step, the iSAT front end again only
has to deal with the syntax graph of a formula that no longer contains any
ODE-related nodes and can therefore be processed in the accustomed manner.

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 95

front end BMC layer iSAT core ODE solver valuation deduction

input formula

parsing

syntax graph

preprocessing

unit propagation
and ICP while progress

valuation

valuation retrieval

enclosure computation

ODE result

learn ODE result

refined formula

nothing new

decision

candidate solution

conflict resolution
and backjumping

unsat

syntax graph without
ODEs and flow invariants

ODE and flow invariant
representations

variable instantiation and
BMC unwinding

depth-variable map
to internal variables

internal variables and
clauses of constraints

ODE-variable mapping
to internal variables

Figure 3.18: High-level structural and procedural view of iSAT-ODE. Ordering
from top to bottom indicates temporal order except in cases of iterations and
alternatives. Nodes in the graph with dotted outline indicate actions rather than
results or data structures. Arrows have overloaded semantics: they indicate
results from actions and usage of results in actions; additionally, when taking
the vertical ordering of actions into account, they show the control flow. Dashed
arrow lines indicate alternative control flow, e.g. ICP leading to a conflict instead
of a usable valuation.

96 CHAPTER 3. ALGORITHMIC APPROACH

The unwinding of the formula in the bounded model checking layer of the solver
leads to an instantiation of variables in the iSAT core and of a k-fold unwinding
of the constraints in the transition system. At the same time, the BMC layer
itself keeps a mapping of the symbolic variable names as used in the formula and
their k + 1 instances in the solver core. These are used for reporting candidate
solutions with respect to the original variable names and unwinding depths
instead of their obscure internal identifiers. Here, an extension is necessary
to also inform the ODE solver about the variable instances. This is done via a
newly introduced valuation object in the ODE solver which captures a mapping
of variables occurring in ODEs and of the trigger variables for ODE and flow
invariant constraints to their respective instances in the solver core.

After BMC unwinding, the iSAT core applies deduction based on the initial do-
mains using unit propagation and ICP as discussed extensively at the beginning
of this chapter. During this step, the solver investigates an increasingly smaller
interval valuation, pruning away definite non-solutions. If deduction leads to an
empty valuation, a conflict is encountered (which can only be resolved if there
are decisions that can be undone via backjumping—else, the formula is proven
unsatisfiable and the solver terminates). More interestingly from the perspective
of explaining the interplay with the ODE solver is the case when deductions
cease to produce tighter bounds (cut-off by the discussed progress threshold).

Having found a valuation that is a consistent (near-)fixed point under unit
propagation and ICP over the arithmetic constraints in the iSAT core, the ODE
solver is asked to provide deductions for the ODE constraints. We will detail later
the choices that are possible in this situation, but from the abstract perspective
we currently take, the solver either detects that no new bounds can be deduced
(leading iSAT to perform a decision and, with only a small interval width left,
to report a candidate solution) or it computes an enclosure. Not producing a
deduction happens especially when ICP has led to a valuation that has previously
been observed and for which deduction results have already been learned.

To compute an enclosure, the stored mapping of symbolic variables occurring
in ODE constraints to their iSAT counterparts is used together with a chosen
BMC depth for which a deduction shall be performed. This information suffices
to extract from the solver core the relevant bounds, a projection to the ODE-
related variables, for which an enclosure is to be computed. The computation
itself will require some explanation, too, but obviously it makes use of the
approach, which we introduced in the previous section. As a result, a deduction
object is generated, which can be understood as a set of implications, which
have a part of the current valuation as premise and bounds derived from the
computed enclosure as conclusion. Again using the stored mapping of symbolic
variable names and depth information to core variable instances, the deduction
can be applied by adding new clauses to the problem. The next section will focus
on this aspect of making the deduction persistent. ODE-related deductions
may also lead to conflicts, in which case learning these clauses may require
conflict resolution and backjumping or even lead directly to the detection of
unsatisfiability. If, on the other hand, the learned facts are consistent with the
current valuation, ICP and unit propagation can be resumed to propagate the
new bounds further through the arithmetic and boolean parts of the constraint
system.

This embedding of ODE propagation into iSAT can very well be considered to
be close to a standard theory integration in an SMT scheme, however with the

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 97

very important difference that the base solver is not a pure SAT solver, but is
capable of handling arithmetic reasoning and will accept learned facts that go
beyond merely propositional clauses.

3.3.2 Extended Solver Input

Starting with the solver’s input, we can now discuss the details of the approach.
To avoid repeating the exposition of the entire input language, we have already

added the ODE-related syntax to the description presented in Subsection 3.1.2.
However, we have been quite superficial in describing some of these elements
and have not yet discussed their rewriting into the internal format. In the
declaration part of the formula, two special variables need to be introduced
for any iSAT-ODE model. These are the delta_time and time variables, which
both must have a range starting at zero. The delta_time variable represents the
duration of a flow, i.e. takes the role of the δ variable introduced in our BMC
encoding in Definition 5. Exploiting time invariance of the ODEs, the ODE solver
later uses the interval valuation assigned to this duration variable instead of the
time variable’s valuation. This is particularly useful when the same dynamics
can occur in different steps of a trace, since learning becomes stronger when
the absolute time is not a condition of the learned deduction. The time variable
on the other hand is used to aggregate the durations of transition steps and
should therefore be incremented by the duration of flows and by zero in case
of jumps. This constraint needs to be supplied explicitly by the modeler in the
transition system. In most models also the constraint time = 0 should typically
be given in the initial predicate.

The actual ODE constraints occur only in the transition part since they
describe the connection between the states before and after a (continuous)
transition step. An important restriction following directly from Definition 8 on
SAT modulo ODE formulae is that all variables occurring in the right-hand-side
term of an ODE constraint must themselves be defined by an ODE constraint.
Without this condition, it would be unclear what the evolution of a variable x
shall be between its valuations at the beginning (given by x) and at the end (given
by x ′) of the step. The flow invariants, describing admissible regions that must
not be left by a trajectory during its continuous evolution, are distinguished
from normal constraints by the x(time) >= 5 syntax in contrast to x >= 5 or
x’ >= 5, which are constraints that only need to hold on the actual primed or
unprimed variable instances.

Most preprocessing on the syntax tree is inherited from iSAT and performs
certain normalizations like term simplifications and detection of common subex-
pressions to later avoid them being introduced multiple times in the solver core.
In iSAT-ODE, an additional step is necessary to extract the ODE constraints
and flow invariants. When encountering these constraints while traversing
the syntax tree, they are translated into the internal symbolic format of the
ODE solver (again syntax trees built from linked objects representing constants,
variables, and arithmetic operators) and stored there. For each ODE constraint
or flow invariant, a new discrete variable over {0, 1} is added to the set of declared
variables with a unique name, stored at the former position of the constraint
in the syntax graph, and the correspondence between this new trigger variable
and the constraint is stored in the ODE solver’s valuation object. The trigger
works as can be expected: having a value of 1, it signals that the constraint it

98 CHAPTER 3. ALGORITHMIC APPROACH

represents shall be active, i.e. must be satisfied by the valuation (and hence can
be used for pruning); having a value of 0, the corresponding constraint shall
be considered inactive, i.e. it does not matter whether the current valuation
satisfies it and therefore it cannot be used for pruning. Importantly, there is no
way to say that the constraint shall be not satisfied by the valuation—saving us
from the semantic trouble of thinking about the negation of an ODE constraint.
Consequently, however, we must require that ODE constraints only occur under
an even number of negations, which can easily be checked by keeping track of
this number during the traversal of the syntax tree.

Under this rewriting, the activation of ODE constraints and flow invariants
cannot change during a step. This is compatible with the understanding that
flows are governed by a specific system of ODEs, however, it introduces some
subtle semantics for disjunctions of flow invariants: whenever a different set of
disjuncts shall become active, the valuation of the trigger variables must change
and hence there must be a new step. Consider e.g. (x(time) >= 4 or x(time) <= 5),
which would in principle allow flows for x to take arbitrary values. Due to the
encoding and unwinding, however, the flow must be interrupted somewhere
between 4 and 5 such that the respectively other flow invariant constraint can
be activated.

Consistency Constraints. The condition that ODE systems must be defini-
tionally closed is so important that the ODE solver adds consistency constraints
to the formula which enforce that on each BMC depth either no ODE constraint
is active or that for each ODE-defined variable there is exactly one ODE con-
straint active on whose left-hand-side the variable occurs. Assuming there are
ODE-defined variables x and y and there are two ODE constraints defining
x, normally depending on a mode, which may be encoded by the following
constraints

flow and m1 −> (d.x / d.time = y);
flow and m2 −> (d.x / d.time = −y);

inside the transition system. Then these are replaced by trigger variables, e.g.
ode_trigger_0 and ode_trigger_1. Assuming there is one ODE defining y, i.e.
its evolution shall be the same in both modes, and the corresponding trigger
is ode_trigger_2, then the ODE solver introduces variables dimension_trigger_0
and dimension_trigger_1. By adding

dimension_trigger_0 <= 0 or (ode_trigger_0 + ode_trigger_1 >= 1
and ode_trigger_0 + ode_trigger_1 <= 1);

dimension_trigger_1 <= 0 or (ode_trigger_2 >= 1
and ode_trigger_2 <= 1);

to the transition system, it enforces that when a dimension trigger is active there
must be exactly one active ODE constraint for that dimension. Furthermore,
adding a variable odes_active and the constraints

odes_active >= 1 or ode_trigger_0 + ode_trigger_1 + ode_trigger_2 <= 0;
odes_active <= 0 or dimension_trigger_0 >= 1;
odes_active <= 0 or dimension_trigger_1 >= 1;

enforces that when there is one or more ODE triggers active (hence the sum of
them not 0), the odes_active trigger is active as well and then all ODE-defined

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 99

variables must have active dimension triggers—leading to exactly one ODE
constraint being activated per dimension. It is important to note that very little
attempt is made to detect compatible ODE constraints that could be active
simultaneously for the same variable since they always have the same value.
Only if the detection of common subexpressions incidentally detects syntactic
equivalence, can this case be handled. In general, it must be avoided by the
modeler to enforce two (even non-conflicting) ODE constraints for the same
dimension to be required to be active at the same time. We have considered this
case pathological and therefore not invested much effort into handling it, but
a more robust implementation should detect this kind of modeling error and
report it.

BMC Unwinding. After this preprocessing step, the ODE solver holds syntactic
representations of the ODE constraints and flow invariants and knows the
relevant symbolic variable names. Further preprocessing is done in the iSAT
front end, leading to a conversion of the formula into a conjunction of clauses,
which are disjunctions of atoms. This CNF-like representation still consists of
initial, transition, and target predicates. It is the solver’s BMC layer’s task to
then instantiate the variables k + 1 times in the solver core, store a mapping
from the symbolic names and unwinding depths to these instances, and finally
perform the k-fold unwinding of the transition system and addition of the initial
predicate to the zeroth depth instances and of the target predicate to those of
the final depth. With all ODE constraints and flow invariants being represented
by trigger variables, only these are instantiated, while the actual constraints
remain in the ODE solver without any duplication. The valuation object of the
ODE solver is triggered to retrieve the relevant parts of the mapping from the
BMC layer and store itself a correspondence of symbolic variable names and
BMC depths to the instances in the solver core. This is done for all ODE-defined
variables, the duration variable, and the trigger variables.

With this knowledge, the ODE solver is aware of the BMC structure of the
formula and can be asked to provide a deduction for a specific unwinding by
retrieving the corresponding valuation for the instances of that depth and its
successor. For arithmetic constraints in the solver core, which are instantiated
many times, deductions are made individually for each instance. They are not
learned as general results applicable also to the other instances. This is easily
justified by the relative computational cheapness of obtaining these deductions—
when they are needed, they can simply be computed. After the explanations of
the previous section, not much speculation is needed, however, to assume that
ODE deductions are much more expensive than those for arithmetic constraints.
Making the ODE solver BMC-aware allows iSAT-ODE to learn a deduction not
only for one particular instantiation, but immediately replicate it for all BMC
depths, just like conflict clauses are replicated when a constraints replication
scheme [Sht00] is used. This will become clearer, once we will have discussed
the learning of deduction results, but essentially, it amounts to learning the
same clauses multiple times for different instances of the variables.

A typical way of using bounded model checking is to start with an unwinding
depth of zero and increase the number of unwindings until the formula can no
longer be shown to be unsatisfiable. This iterative mode, which checks unwinding
depths consecutively while keeping those learned conflict clauses which are

100 CHAPTER 3. ALGORITHMIC APPROACH

still valid, has the advantages that it finds the shortest candidate solution trace
(having first proven that none exists for a lower number of unwindings than the
current) and that it starts with the smallest problem instance, which can be
hoped for to also be the easiest to solve. However, this assumption need not
always hold, especially, when low unwinding depths lead to trivially unsatisfiable
formulae and very large depths lead to ones that have so many solutions that
the solver can easily pick one, while for some intermediate unwinding depth
the solver has to search extensively to disprove satisfiability of a formula that is
nearly satisfiable.

When the BMC depth is thus increased, the ODE layer’s valuation object
is updated with the newly introduced variable instances and it introduces
all learned clauses also for this new depth—again, an approach imitating the
behavior often applied on learned conflict clauses in SAT and SMT solvers for
BMC.

Input formula:
DECL

define MAX_GLOBAL_TIME = 10;
define MAX_DURATION = 1;
float [0, MAX_GLOBAL_TIME] time;
float [0, MAX_DURATION] delta_time;
float [−10, 10] x;
float [−10, 10] y;

INIT
time = 0;
x >= 0.9;

x <= 1.1;
y >= −0.1;
y <= 0.1;

TRANS
time’ = time + delta_time;
(d.x / d.time = −y);
(d.y / d.time = x);

TARGET
x = −1;

Stored ODE constraints and their activation at first ODE deduction:
Stored ODEs:

[0] [act ive] (d . ode_var_1 [’ x ’] / d . time = (ode_var_2 [’ y ’] ∗ −1))
[1] [act ive] (d . ode_var_2 [’ y ’] / d . time = ode_var_1 [’ x ’])

Stored flow invariants .
(none)

Valuation object at first ODE deduction for k = 1:
BMC depth 0

Variables
0 VAR0_time_0 [0 ,0] (point interval)
1 VAR1_x_0 [0.89999.. . ,1.10000.. .] (width : 0.20000.. .)
2 VAR6_y_0 [−0.10000... ,0.10000...] (width : 0.20000.. .)

Trigger variables (ODEs)
0 VAR17_ode_trigger_0_0 [1 ,1] (point interval)
1 VAR18_ode_trigger_1_0 [1 ,1] (point interval)

Trigger variables (flow invariants)
Delta time variable
VAR14_delta_time_0 [0 ,1] (width : 1)

BMC depth 1
Variables
0 VAR13_time_1 [0 ,1] (width : 1)
1 VAR29_x_1 [−1,−1] (point interval)
2 VAR31_y_1 [−10,10] (width : 20)

Trigger variables (ODEs)
Trigger variables (flow invariants)
Delta time variable

current BMC depth : 0

Figure 3.19: Top: harmonic oscillator as iSAT-ODE input, middle: state of ODE
solver at beginning of first ODE deduction, bottom: state of valuation object.

Example 10 (ODE solver state and valuation). Figure 3.19 leads us from
this description of the preprocessing steps right into the deduction for ODE

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 101

constraints in the next subsection. It shows an iSAT-ODE encoding of the
harmonic oscillator example and (with slight modifications for better readability)
the state reported by the ODE solver when it is asked to provide its first deduction.
From the formula it is obvious that for k = 0, the solver cannot find a solution
since the initial predicate requires x ∈ [0.9, 1.1] while the target predicate, which
for k = 0 needs to be applied to the same instance of x, requires x = −1. The
solver hence progresses to the next unwinding depth by removing the target
from the zeroth variable instance, instantiating the variables once more, adding
the first unwinding of the transition system over the zeroth and first variable
instances, adding the target to the first variable instance, and finally again
performing unit propagation and ICP. Since in this simple example both ODE
constraints are part of the top-level conjunction of the transition predicate, it
is clear that no solution can exist in which these triggers are inactive (for any
depth). The trigger variables hence receive the point intervals [1, 1] as shown in
the valuation object in the middle of the figure. From these valuations of the
triggers stems the “active” marker, which is set for both stored ODE constraints
in the ODE solver state.

The valuation also contains the intervals of the other relevant variables.
To support readability, we let the solver keep track of the symbolic variable
names and unwinding depths, causing internal variables to get useful names
like VAR1_x_0 for the zeroth instance of variable x. As can be seen in the
valuation of this variable, the constraints from the initial predicate have allowed
pruning from the original domain [−10, 10] to the tighter interval [0.9, 1.1]—with
outward rounding since the borders cannot be represented exactly by floating-
point numbers. For the illustration, we have removed some post-decimal digits.
Also variable VAR6_y_0 has received the range admissible under the initial
predicate as current valuation. The target predicate has restricted VAR29_x_1
to the point interval [1,1], while no tightening of VAR31_y_1 has occurred.
Similarly, the solver knows very little about the duration of the step, denoted
by VAR14_delta_time_0 having a valuation [0, 1], which directly follows from its
declaration. This valuation, consisting of a box for BMC depth 0 and another
for depth 1 forms the input of the first ODE deduction.

3.3.3 Deduction for ODE Constraints

When unit propagation and ICP have reached a fixed point in the iSAT core,
the ODE solver is asked to provide a deduction. Having added the consistency
constraints to the formula, we know that for each BMC depth there either is
no active ODE at all or that for each ODE-defined variable there is exactly one
active ODE constraint. Unless an unreasonably large minimum splitting width
is given, ICP and unit propagation guarantee that these discrete constraints are
satisfied. Nonetheless, it can easily be checked whether this condition holds
before a deduction attempt is made.

Selection of BMC depth. There are two major options on how to answer
the core’s request for a deduction. First, deductions can be computed for all
BMC depths with activated ODEs and all these deductions then be returned
together for learning. Second, the ODE solver can choose a subset of BMC
depths, perform deductions only for these, return them for learning and further

102 CHAPTER 3. ALGORITHMIC APPROACH

arithmetic deductions to the core, and to a later query answer with deductions
for those BMC depths that have not been handled at this time.

Deduction on all active depths at once has the advantage that the core learns
about all possible conflicts as early as possible. However, it has the disadvantage
that the deduction computed for one depth is not available during the deduction
of another. If ODE deduction has pruned bounds on one depth, it is likely that
this also tightens the bounds on neighboring depths and, often separated by
a jump-transition, thereby also the valuations that are relevant for other ODE
deductions. In this mode, however, the ODE solver regards the given valuation
as static, computes results (even for very coarse valuations) individually, only
to be confronted after another round of core propagations with tighter bounds.
On the other hand, analyzing only one BMC depth at a time and potentially
performing deductions for this depth repeatedly when the valuation changes,
may hide a conflict arising from the ODE constraints of another BMC depth and
hence cause significant work that would be avoided if all depths were handled
simultaneously.

In iSAT-ODE we have implemented both options and allow the user to choose
between them via a command-line parameter. The second option is guided by the
relative width of the valuation, sorting BMC depths by how tight their valuation
already is and trying to compute from tightest to widest while returning results
for propagation in the solver core whenever a new deduction could be made.
As shown in the abstract overview in Figure 3.18, as long as the ODE solver
provides a new result, the iSAT core will always return to its own deduction
loop and thereafter ask again for further ODE deductions before a decision is
made (or potentially a candidate solution box is reported). The ODE solver can
therefore always safely start with the deduction from the BMC depth with the
tightest valuation, iterate, and return after having produced a result, knowing
that it will get another chance to produce deductions for the remaining BMC
depths. This approach leads to a scheme that first tries to find a fixed point
of unit propagation, ICP, and a subset of all possible ODE deductions and
subsequently extends this subset by adding more BMC depths to the deduction.
The motivation to try this lies in the observation that in some models there are
conditions leading to very tight valuations e.g. of the initial instance, while little
is known for instances that are far away from this depth. Concentrating on
the propagation of the evolution that starts in this tightly-defined depth avoids
computations of enclosures for the wider valuations on the other depths, which
might provide only very little to solve the problem.

Pruning of Duration, Prebox, and Postbox. When we established pruning
rules for arithmetic constraints earlier in this chapter by introducing ICP, we
pointed out that pruning must only remove definite non-solutions from the
interval valuations of the involved variables. Deduction must ensure that, if the
box currently under investigation contains a satisfying point valuation in the
sense of Definition 9, the solver will not dismiss it erroneously as a non-solution.
The same guarantee must now be given by deductions for definitionally-closed
systems of ODE constraints and activated flow invariants.

Taking the ODE solver’s valuation object and a selected BMC depth, a
forward propagation uses the valuation for the ODE-defined variables of that
depth as prebox. These form the set of initial values. It uses the valuation of

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 103

x

delta_time

prebox ~Xi

postbox ~Xi+1

0 0.5 1

−2

0

2

Figure 3.20: Deduction for the ODE constraint ẋ = (x − 2)(x + 2) with prebox
x ∈ [1,1.8], duration delta_time ∈ [0,1.2], and postbox x ′ ∈ [−2.3,−1,7].
Possible deductions are indicated by hatched areas outside the graph. Within
the graph, the dark-gray tube starting from the prebox is an exact enclosure
of all possible trajectories emerging from there over the given temporal horizon.
The light-gray area at the bottom illustrates the postbox over the entire range of
possible durations. Deductions result from the intersection and its pre-image
on the prebox.

the delta_time variable of that depth as duration, whose upper bound marks
the temporal horizon up to which the enclosure must be computed. Finally,
it uses the valuation of the ODE-defined variables of the successor depth as
postbox, i.e. the set of states in which any “interesting” trajectory may end.
Pruning can now remove those parts of the postbox which cannot be reached
by any trajectory emerging from a point in the prebox for any length within the
delta_time valuation. Similarly, it can prune the duration for which it can show
that none of the trajectories emerging from the prebox can reach any point in the
postbox. Backward propagation analogously may prune those points from the
prebox which do not lead to any point in the postbox within the given duration.

Example 11 (ODE deduction). In Figure 3.20, we illustrate ODE deductions
and their effect on prebox, postbox, and duration using a simple example.
Since the ODE system ẋ = (x − 2)(x + 2) consists of only one dimension, so
do the prebox and the postbox. The original prebox is given by ~Xi = ([1,1.8]).
During a forward propagation, all trajectories emerging from this box need to be
enclosed over the interval given for the delta_time variable, which is [0,1.2] in
this case. The goals of a forward propagation are to prune the postbox and the
duration. Therefore, the intersection between the enclosure and the postbox
needs to be identified. This leads to a new lower bound of the delta_time interval
valuation, delta_time ≥ 0.9018. The solver has thus successfully detected that
no trajectory from the prebox can reach the postbox before this time. Just
like with arithmetic deductions, pruning this part from the interval valuation
removes only non-solutions. The intersection with the postbox also reveals that
the lower part of the postbox cannot be reached within the temporal horizon
(and as a human observer one could add that the part below x = −2 could not
be reached for any larger temporal horizon either). With the given temporal
horizon delta_time ≤ 1.2, this new lower bound is x ′ ≥ −1.9038. The figure also
illustrates clearly that the trajectories emerging from the upper part of the given

104 CHAPTER 3. ALGORITHMIC APPROACH

prebox will not reach the postbox before the horizon. Backward propagation is
therefore allowed to deduce x ≤ 1.6319, since points from above this threshold
cannot be connected with points from the postbox via any solution trajectory of
admissible length and hence these points constitute removable non-solutions.

Definition 11 (interval extension for ODE constraints and flow invariants).
Formalizing the intuition that can be gathered from our description of ODE
deductions and its illustration in Figure 3.20, we define deductions for ODE
constraints and flow invariants, based on our previous publications of this
formalization in [EFH08, ERNF12a].

Given are an n-dimensional definitionally-closed, sufficiently-smooth, time-
invariant ODE system ~̇x = ~f (~x) and a (conjunctive) set of flow invariants (of the
introduced form x ∼ c over variables x which are dimensions of ~x, ∼∈ {≤,≥}, and
right-hand-side constants c ∈ Q). Furthermore, given are interval valuations
~Xpre and ~Xpost (in practice obtained from the valuations of the two successive
BMC unwinding depths used within the current deduction) and a box ~Xflow as
the subset of IRn which is consistent with the flow invariants. Lastly, there is an
interval ∆ = [0, h] denoting the interval of possible durations. The combination of
these elements may suitably be called an ODE problem P = (~f , ~Xpre, ~Xflow,∆, ~Xpost).
We introduce under slight abuse of notational conventions

~R∆ =
{
~xreach ∈ Rn | a set of points, for which

∃~x ∈ C≥1 : there exists a continuous function
~x(0) ∈ ~Xpre which starts in the prebox,
∧ ∃δ ∈ ∆ : which has admissible duration,
~x(δ) = ~xreach which reaches this point, and
∧ ∀τ ∈ [0, δ] : which, for all time before,
~x(τ) ∈ ~Xflow satisfies the flow invariants
∧ ~̇x(τ) = ~f (~x(τ)) and is an ODE solution,
}

and call ~R∆ the set of forward reachable states for which we call ~E∆ ⊇ ~R∆ an
enclosure of this set of forward reachable states. Similarly, we introduce

~R0 =
{
~x0 ∈ Rn | a set of points, for which

∃~x ∈ C≥1 : there exists a continuous function
∃δ ∈ ∆ : which has admissible duration
~x(δ) ∈ ~Xpost and ends in the postbox,
∧ ~x(0) = ~x0 which starts in this point, and
∧ ∀τ ∈ [0, δ] : which, for all time before,
~x(τ) ∈ ~Xflow satisfies the flow invariants
∧ ~̇x(τ) = ~f (~x(τ)) and is an ODE solution,
}

and call ~R0 the set of backward reachable states, calling ~E0 ⊇ ~R0 an enclosure
of this set of backward reachable states. Finally, we call

Λ =
{
δ ∈ ∆ | a set of durations, for which

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 105

∃~x ∈ C≥1 : there exists a continuous function
~x(0) ∈ ~Xpre which starts in the prebox,
∧ ~x(δ) ∈ ~Xpost which ends in the postbox,
∧ ∀τ ∈ [0, δ] : which, for all time before,
~x(τ) ∈ ~Xflow satisfies the flow invariants
∧ ~̇x(τ) = ~f (~x(τ)) and which is an ODE solution,
}

the set of relevant trajectory lengths and EΛ ⊇ Λ an enclosure of these lengths.
Deduction for ODE constraints and flow invariants therefore amounts to

computing these enclosures and subsequently the intersections ~X ′pre = ~Xpre ∩ ~E0,
~X ′post = ~Xpost ∩ ~E∆, and ∆′ = ∆ ∩ EΛ.

3.3.4 Computation of Enclosures and Refinements

Bit by bit, we can now focus on how to actually perform the computations neces-
sary for an ODE deduction—starting with the rather technical, yet fundamental
question of how to use VNODE-LP when the ODE system is known only after
having parsed and preprocessed the input file.

Run-Time Definition of ODE Constraints. In Figure 3.16, we showed the
implementation of the right-hand side of an ODE as a C++ function that is
passed to the automatic differentiation routines, which are used by VNODE-LP
for the evaluation of the function and its derivatives. While this works well when
the ODE system is known at compile time, it is unsuitable in our scenario, in
which the ODE constraints are extracted from a parsed input formula at run
time.

One could employ dynamic code generation and recompilation to generate
functions on the fly, albeit at the cost of having to deal with several technical
issues and potential errors. In our approach, we avoid these problems altogether
by making the template function fully generic and dependent on the syntax
tree of the ODE system. We recall the function signature of function f from
Figure 3.16

template <typename var_type>
void f (int num_dims, var_type∗ fx ,

const var_type∗ x , var_type t , void∗ param) ,

which also needs to be the function signature used within our ODE layer.
The central idea is to use the param argument to pass the ODE constraints
as syntax trees and a mapping of ODE variable indices to their dimension
within the ODE system and vectors fx and x. This mapping is needed since
a variable in the input formula may have become e.g. the fifth variable in the
ODE solver, ode_var_5, while it is not necessarily also the fifth dimension of the
ODE system, e.g. simply due to a different ordering or due to an optimization
which handles independent subsystems separately and therefore uses fewer
dimensions than variable indices. Instead of evaluating a hard-coded expression
for each dimension of the ODE system, the generic evaluation function iterates
over the dimensions and for each expression tree it calls a second template

106 CHAPTER 3. ALGORITHMIC APPROACH

function. This second function performs the actual evaluation recursively by
descending into the given syntax graph and using the supplied variable mapping.
Its returned results are then stored in the respective dimensions of the (output) fx
argument. Internally, it uses a case distinction to handle the different node types
from the expression tree and recursively calls itself on the child nodes, returning
e.g. their sum or product. These operations are transparently replaced by the
overloaded automatic differentiation operations once the function template is
instantiated. When a variable node—as a leaf of the expression tree—is reached,
the corresponding dimension of the (input) x argument is returned. Reaching a
constant in a leaf node, the function simply returns its interval representation.

Surprisingly, the overhead of this generic computation over a hard-coded
function is not as large as it may seem, since FADBAD++ builds up an internal
representation and therefore needs to use the actual evaluation function only
during this initialization—which Ned Nedialkov pointed out during a discussion
of this approach.

Enclosure Generation and Data Structures. Our application of VNODE-LP
in Example 9 has illustrated how an enclosure over the entire duration interval
from zero to the temporal horizon can be obtained from the sequence of a-priori
enclosures. In principle, we could just intersect these a-priori enclosures with
the postbox, discard the corresponding part from the delta_time valuation if that
intersection is empty or discard those parts of the postbox, which are not in
the intersection with any of the a-priori enclosures over the relevant time frame.
In fact, this approach is a natural first candidate for a forward propagation
algorithm since it requires little more than calling the VNODE-LP methods shown
in the example and computing some intersections. However, we have already
pointed out that the a-priori enclosures are quite coarse overapproximations
that may contain a lot of spurious points, which could and should be excluded
in order to provide a more precise pruning result.

For a tighter deduction result—as shown in Figure 3.20—we need to com-
plement the computation of a coarse enclosure with refinements that reduce
the amount of overapproximation while still keeping the guarantee of not losing
any solutions. During the development of iSAT-ODE, we have explored different
refinement schemes, starting with relying purely on the a-priori enclosures and
finally arriving at a tight integration also of the bracketing system computation,
which will be discussed in Section 3.5. Until then, we leave out the aspects
referring to bracketing and concentrate on the enclosure computation based
directly on VNODE-LP.

To support the generation of iterative refinements, the ODE solver within
iSAT-ODE introduces a solver_run class that encapsulates the (either forward or
backward) deduction computation for an ODE problem, i.e. a system of ODE
constraints, flow invariants, pre- and postboxes, and the delta_time interval
indicating the range of possible durations. A solver_run instance then offers
the different phases of enclosure computation as methods. For now, they can
be seen as a sequence: initialization, computation of an enclosure up to the
given temporal horizon, refinement of enclosures to achieve different deduction
goals, and generation of a deduction to be learned by the solver core. As can
easily be guessed from the shown examples, during this process, a sequence of
enclosures is computed, which needs to be stored for refinement and for the

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 107

extraction of relevant information that can be assembled into a deduction.
Central to the solver_run class is therefore a list of objects from an enclosure

class. Primarily, an enclosure encapsulates a subrange of the duration and
a box which encloses all trajectories over this interval. A temporally-ordered
sequence of these objects—without any gaps in the subranges of the duration
they cover—therefore represents an enclosure of the solution trajectories over
the entire interval of durations. The enclosure objects, however, also contain
all information that is needed to compute an enclosure for a subrange of their
specific interval of the duration. Early evolutions of iSAT-ODE only stored the
time and tight enclosure that VNODE-LP computed for the beginning of the range
covered by the enclosure object. As hinted earlier, this enclosure together with
an interval for what was called the t_end variable in our example can be used to
compute an enclosure for that interval—however, at the significant cost of local
wrapping and very frequent costly reinitializations of VNODE-LP. In [ERNF12a],
we circumvented the VNODE-LP interface to extract more information that allows
a much cheaper reevaluation of the enclosure for a temporal subrange and
at the same time avoids additional wrapping by restoring the transformation
matrices prior to the evaluation. We therefore added a TaylorCoefficients class
to VNODE-LP, encapsulating this internal state and methods for its accelerated
reevaluation on a subrange of time, and extended the enclosure class to hold an
object of this type.

Enclosure up to the Temporal Horizon. After initializing the solver_run by
passing an ODE system via FADBAD++ to a VNODE solver object, the first task
is to compute an enclosure up to the temporal horizon. Ignoring aspects relating
to bracketing systems for the moment, the approach amounts mostly to calling
the stepwise integration method that we also employed to generate an enclosure
in Example 9. However, instead of printing the enclosure and continuing
with the next integration step, the solver_run extracts all the information that
is necessary to generate a new enclosure object and appends it to the list of
enclosures.

If VNODE-LP is unable to perform an integration step, the horizon cannot be
reached and the enclosure is hence incomplete and not suitable for a deduction,
since the evolution after the currently-reached point of time remains unknown.
In this case, the solver_run is considered failed and error handling must occur
on the level of the ODE solver. Depending on a command-line switch, this may
simply be ignored, hoping for splitting and further deductions to yield a smaller
initial set or duration interval for which an enclosure can be computed. Ignoring
such incomplete ODE deductions, however, comes at the price of an increased
risk to produce spurious candidate solutions whenever the ODE problem cannot
be handled even after further splitting.

Flow invariants provide a second reason to stop before the horizon is reached.
If it can be proven that all trajectories have left the region of states admissible
under the active flow invariant constraints, the enclosure may be completed
by adding a special enclosure object that indicates the empty set. This object
is obviously not an enclosure of all trajectories emerging from the prebox, but
it correctly describes the set of all trajectories that emerge from the prebox
while never having left the admissible region, which we denoted by ~Xflow in
Definition 11.

108 CHAPTER 3. ALGORITHMIC APPROACH

The algorithm for computing an enclosure up to the horizon under flow
invariant constraints (implemented as enclose_flowinv_aware in the solver_run
class), without many of the technical details that are better left to the source
code and without bracketing enclosures, can be described as follows.

1. Compute ~Xflow and intersect the prebox with it.

2. Perform one enclosure step with VNODE-LP and generate an enclosure
object, holding the relevant internal representation. Refine the a-priori en-
closure by reevaluating the stored representation over the entire computed
step.

3. Check whether during this step all trajectories have left ~Xflow and therefore
the enclosure can be terminated before the temporal horizon has been
reached. If so, add a special empty enclosure to the end of the sequence
of stored enclosures.

4. Iterate from Step 2 until the horizon is reached.

The first step in detecting whether the enclosure leaves ~Xflow is to intersect
the enclosure computed for the current subrange of the duration with the
complement of ~Xflow. Thereby, the method checks whether this region outside
the admissible states may have been reached by any trajectory at all. If so, there
is a chance that during this step, not only some, but in fact all trajectories have
left the flow invariant. The solver_run therefore attempts to find a witness for
not having left ~Xflow, i.e. a sequence of enclosure points that cannot be removed
by further temporal refinement (but which might still be spurious—and might
be found so if the prebox were tighter).

There are several ways to achieve the goal of finding a trajectory that stays
inside the admissible region. The most precise method would pick a single point
from the tight enclosure at delta_time = 0 and compute an enclosure for this
starting point. As long as this trajectory stays inside ~Xflow, it is a true witness,
and the enclosure must be continued. However, when the trajectory reaches
the region outside ~Xflow, there might be an alternative starting point for which a
longer admissible trajectory exists. Picking the starting point farthest away from
the flow invariant’s border would help, but having not one, but n dimensions,
there still would be multiple choices. Using the partial derivatives would give
valuable hints in this respect—and in fact, the bracketing approach can be seen
to actually support this to some degree—but the sign of the partial derivatives
may change over the evolution of a trajectory, which may make the globally right
choice for an initial point quite complicated.

The implemented method uses a far simpler and more local argument and
does not aim to be precise, except when claiming that the flow invariant has
definitely been violated. Its central part is illustrated in Figure 3.21 and imple-
mented as try_to_prove_that_some_trajectories_stay_inside_fi. Having already
established that a part of the enclosure for the entire step lies outside the flow
invariant (but not the entire enclosure), the algorithm works essentially as
follows.

1. Calling the current step’s temporal interval T = [tj, tj+1] and the enclo-
sure for it ~X (T), compute the intersection ~X (T) ∩ ~Xflow and evaluate the
ODE’s right-hand side over this intersection. The resulting interval vector

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 109

0 1 2 3 4
−3

−2

−1
−0.5

0

1
x

delta_time

Figure 3.21: Computation of an enclosure up to the horizon for the ODE system
ẋ = −y, ẏ = x with x0 ∈ [0.9,1.1], y0 ∈ [−0.1,0.1]. Enclosure leaves region
admissible under flow invariant x(t) ≥ −0.5, causing termination of enclosure
computation before horizon. Additionally plotted are the linear evolutions from
the point farthest away from the flow invariant border, the peeking enclosures
for accelerated termination, and the splitting result of the final enclosure.

contains the most extreme slope that any trajectory starting from the
enclosure at the beginning of this step, ~X (tj), and staying inside the flow
invariant may take over T . Evaluating over the intersection is in fact
a heuristic choice, since we have not yet established the existence of a
trajectory that actually stays inside the flow invariant. This choice has
practical advantages since it decreases the range of possible slopes and
is optimistic about finding a trajectory, but it does not guarantee to find
the first point when the enclosure is left since it omits some of the slopes
associated with trajectories that do not stay inside ~Xflow.

2. For each dimension and direction (up or down), determine the largest
distance between the points from the intersection of ~Xflow and the enclosure
~Xt at the current point of time t (initially t = tj) and the lower / upper
border of ~Xflow. If there is no flow invariant constraint in this direction,
e.g. no upper bound, or the slope is strictly negative (for upper bounds)
or strictly positive (for lower bounds) this distance is infinite and the
flow invariant cannot be violated by any trajectory in this dimension and
direction. Otherwise, there is a finite distance and the quotient of distance
and slope yields the earliest point time t′, at which this flow invariant
could be violated under the discussed restrictions.

3. Take the minimum point of time from the previous step as a new t. If
t ≥ tj+1, the entire step T has been covered and this sequence is considered
a witness (even though it may be a spurious one due to the locality of
the argument and the wrapping and overapproximation entailed). Not
having reached the end of this step, a point of time tp > t is chosen a little
ahead, but inside T , and ~X (tp), a peeking enclosure, is computed. If this
enclosure lies entirely outside the flow invariant, report tp as a known new
temporal horizon, since this enclosure has proven that ~Xflow is indeed left
at or before tp and hence the flow invariant constraint is violated for at

110 CHAPTER 3. ALGORITHMIC APPROACH

least a point of time by all trajectories. The step over T is split into two
parts at tp and the part coming after tp is safely discarded.

4. If neither the peeking enclosure allowed termination of the enclosure nor
the end of the step has been reached, compute ~X (t) and iterate from Step 2
until one of the conditions is met or the progress t′ − t becomes smaller
than a given threshold. In that case, the method reports that it could not
refine the already known status, that the enclosure lies partially outside
and partially inside the flow invariant’s admissible region, and therefore
the enclosure computation needs to be continued.

Clearly, this method has some drawbacks of its own, chiefly among them the
imprecision and the problem that the progress between substeps decreases
once the border of the flow invariant is approached, which is well illustrated
in Figure 3.21. Future work might improve this algorithm significantly by
combining a locally chosen extreme point with a high-order enclosure, which
would allow large substeps while avoiding the problems of identifying an initial
point that is followed from zero to the temporal horizon. Also, when available,
the bracketing enclosures might sometimes be directly useable as witnesses
when one of them stays inside the flow invariant for the entire time.

We should note here that our approach uses flow invariants solely for
terminating the enclosure when all trajectories are known to have left ~Xflow,
but not for pruning of intermediate enclosures. Recalling the semantics of flow
invariants, a trajectory only satisfies an active flow invariant constraint when
it does not violate the invariant during its entire evolution between its starting
point in the prebox and its end point in the postbox. Consequently, we are
allowed to remove the tail of a trajectory at the point where it crosses the border
of the invariant and need not enclose this particular trajectory beyond this point.
However, we must also consider that intersecting an intermediate enclosure
with ~Xflow involves difficulties very similar to those usually encountered in
reachable state computations for hybrid systems. If the enclosures are wrapped
to perform the intersection with ~Xflow, this wrapping is not only local, but has
to be propagated throughout the subsequent integration steps. If on the other
hand an overapproximation of ~Xflow with respect to the coordinate systems of
the enclosure is computed such that an intersection can be performed in the
changed coordinates, the intersection result will not be very precise either. Since
in iSAT-ODE there is an outer loop that will provide a tighter set (due to further
deduction and splitting), we have decided not to try this kind of pruning of the
trajectories during their evolution, but instead to only try to detect when all
trajectories have left ~Xflow as shown above. Nonetheless, pruning intermediate
enclosures might in many cases lead to tighter enclosures and could therefore
accelerate the search since spurious trajectories could be discarded by pruning
rather than having to wait for a suitable refinement made by the iSAT core.

Conservative Bounds over Entire Duration. At the beginning of this chapter,
while discussing how conflict analysis within the iSAT core aims to find more
general reasons for a conflict, we pointed out that learning more general facts
increases the amount of pruning that can be applied to the search tree and
hence accelerates the search. To support this strive for generality, deduction
rules for arithmetic constraints try to limit the number of reasons they record
for a deduction in the implication graph.

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 111

0 2 4 6 8 10

−2

0

2

y

delta_time

Y ([0, 10])

0 2 4 6 8 10

−2

0

2

x

delta_time

X ([0, 10])

Figure 3.22: Computation of conservative bounds over entire duration for the
harmonic oscillator example ẋ = −y, ẏ = x, with x0 ∈ [0.9,1.1], y0 ∈ [−0.1,0.1],
and delta_time ∈ [0,10] with an unusually coarse resolution to reduce the
number of boxes for illustration purposes. Each dimension requires boxes over
different time spans to be refined, leading to seemingly superfluous refinements
when looking at one graph in isolation.

Although our approach for ODE deductions does not allow us to detect when
e.g. only a lower bound of a variable is truly relevant, we have the freedom to
perform a deduction that is independent of the postbox and hence only depends
on the prebox and the duration interval. In get_safe_tight_enclosure_over_toi,
with TOI standing for time of interest, which in this case is synonymous with the
valuation of delta_time, the solver_run computes such an enclosure by iteratively
refining the sequence of enclosures via reevaluation of the stored representations
over temporal subranges. This algorithm can be switched off by a parameter,
but if left in place, it performs the following steps.

1. Select all elements from the list of enclosure objects that cover the given
time of interest.

2. Since the outer elements may cover time outside the relevant time frame,
split them temporally and reevaluate them for the refined subranges.
Remove the (new) outer parts such that there is little to no coverage of any
time outside the given time of interest.

3. Pick one dimension and decide to either refine its upper or lower bound.

112 CHAPTER 3. ALGORITHMIC APPROACH

This could be done by sophisticated heuristics, but our implementation
simply iterates over all dimensions.

4. Sort the enclosure objects covering the time of interest by their bound in
this dimension and direction, such that the boxes are ordered by their
influence on the convex hull (i.e. the first box after ordering is most extreme
and therefore defines the value that would be reported as a bound in this
dimension and direction over the given time of interest).

5. If reasonable, refine the first element of the sorted list by splitting its
temporal width and reevaluating the enclosure over the subranges. To get
an estimate for the possible progress that can be expected from refinement,
first compute an enclosure for the temporal midpoint of this enclosure and
compare it with the bound for the entire subrange. Only if the progress
exceeds a given spatial resolution threshold, perform the actual refinement.
Also do not refine, if the computed bound for the temporal midpoint lies
outside ~Xflow, since in that case further refinement can only lead to a
deduction that is still weaker than what follows directly from the flow
invariant constraint. If refinement is done, insert the resulting elements
in the sorted list (keeping it sorted by their relevance for the convex hull)
and replace the to-be-refined element in the sequence of enclosure objects
by the refined ones (keeping it temporally sorted and without gaps).

6. Continue refining the first element of the sorted list until the temporal width
no longer exceeds a given minimum resolution threshold. Also stop the
refinement if the element has a very tight spatial width in this dimension,
which often occurs for dimensions with constant evolution, which will
not become tighter under further refinement. The latter condition is
somewhat redundant since the progress computation will quickly show
that no pruning can be expected. The thresholds are specified by an
enclosure_resolution object that is given as a parameter.

7. Continue with the next dimension and direction pair in Step 3.

The refinement and the resulting bounds, which are easily obtained by computing
the union of the refined boxes, are illustrated in Figure 3.22.

Refutation of the Reachability of the Postbox. The most essential task of
an ODE deduction is to remove parts from the valuation that do not satisfy
the ODE problem as a whole, i.e. including the question of which parts of the
postbox are reachable and for which durations. It makes, however, sense to
first check whether the postbox is reachable at all. In the try_to_refute_postbox
method, the solver_run searches for an enclosure that cannot be refined any
further under the chosen parameters and has a non-empty intersection with
the postbox for some duration from the delta_time valuation. If, on the other
hand, all enclosures have empty intersections with the postbox, it can safely
be considered unreachable and a conflict be learned. On finding a witness, the
search can be aborted and instead an attempt be made to refine the postbox
and set of durations.

Assuming the solver_run has computed a sequence of enclosures up to the
temporal horizon, stored it, and has potentially done some refinements, but

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 113

kept the sequence ordered and without gaps, the algorithm for refuting the
reachability of the postbox is as follows.

1. Iterate over the sequence of enclosures and skip those that cover a time
before the delta_time valuation. Thereafter, skip all enclosures that have
an empty intersection with the postbox.

2. If an enclosure within the delta_time range has a non-empty intersection
with the postbox, this could either be caused by intervals that are too
wide for a tight evaluation, or the enclosure could actually contain a
non-refinable enclosure with non-empty intersection with the postbox.
Therefore, reevaluate the stored VNODE-LP representation over the tempo-
ral midpoint of the current enclosure to get the tightest possible enclosure
for that point under the current choice of parameters.

3. If this midpoint enclosure has a non-empty intersection with the postbox
or the enclosure’s temporal width does not exceed the given temporal reso-
lution threshold, it is a witness. Otherwise, refine the current enclosure
by splitting its temporal width in halves, reevaluating the stored terms,
and replacing the stored enclosure with the newly computed ones.

4. Starting with the first of the newly added enclosures, skip again all
elements of the list until one is found which has a non-empty intersection
with the postbox and repeat this process from Step 2.

5. When reaching a time greater than the upper bound of the delta_time
valuation without having found a witness, all boxes have been refined
sufficiently to prove that they have an empty intersection with the postbox
and hence that the postbox is unreachable from the prebox during the
given delta_time valuation.

Tightening of Duration and Postbox. When a non-refinable enclosure is
found during the attempt to refute the reachability of the postbox, the method
tighten_toi_and_postbox is called. Its goal is to compute tighter bounds for the
postbox and delta_time. The algorithm works on the sequence of enclosure
objects that has been left behind by any preceding steps performed in the
solver_run, so this sequence is known to reach the horizon and most likely some
of the enclosures have already been refined, especially during the (failed) attempt
to refute the reachability of the postbox and optionally during the computation
of an enclosure for the entire duration independent of the postbox.

It is important to note that trajectories may reach the postbox, leave it, and
later come back, i.e. there are not only multiple durations for which trajectories
would end inside the postbox, but actually multiple disjoint sets of durations,
for which the postbox is reached. Our discussion of urgency in Section 2.1 has
already shed light on the use of flow invariants and their limitations to exclude
such non-urgent solutions if necessary. As a preparation to be able to potentially
learn these disjunctive subranges of the delta_time valuation for which the
postbox may be reached, the tighten_toi_and_postbox method introduces a set
of times of interest (TOIs). In principle, these could be learned as individual
enclosures for each subrange, some of which may be tighter than their convex
hull. Since iSAT’s deduction rules are not able to automatically propagate the

114 CHAPTER 3. ALGORITHMIC APPROACH

0 2 4 6 8 10

1

1.5

2
x

delta_time

~Xpost

~Xpre

x

delta_time

~Xpost

~Xpre

x

delta_time

~Xpost

~Xpre

Figure 3.23: Refined enclosures after attempting to refute the reachability of the
postbox and subsequent refinement of the postbox and delta_time valuations for
the ODE ẋ = (x −2)2, with x0 ∈ [0.9, 1.1], x1 ∈ [1.8, 1.9], and delta_time ∈ [0, 10].

convex hull of the elements of a disjunction without first exploring the individual
cases—e.g. they would not see that x ≥ 3 if (t ≤ 3 ∧ x ≥ 5) ∨ (t > 3 ∧ x ≥ 3) were
supplied—we have decided not to learn these individual elements, but only the
convex hull. It can either be considered an inconsistent design decision to first
compute these individual enclosures and then to only learn their hull, or, as
we should prefer to call it, a preparatory step for a possible extension which
should be considered when the solver core makes more complete use of such
disjunctions, sometimes called disjunctive reasoning.

First, a list of TOIs is initialized such that the delta_time interval is split into
TOIs at those enclosures which do not reach the postbox.

1. Given the (time-ordered, gapless) sequence of enclosures, a delta_time
valuation, and the postbox, start a fresh TOI, when the first enclosure is
encountered in the sequence which covers some of delta_time’s valuation
and has a non-empty intersection with the postbox.

2. Add all subsequent enclosures to this TOI if they have non-empty intersec-
tion with the postbox and delta_time.

3. End the current TOI when an enclosure with empty intersection with the
postbox is encountered. Further enclosures with empty intersection are
skipped, repeating from Step 1.

4. Stop, when reaching an enclosure that starts at a time whose lower bound
is greater than delta_time’s upper bound, since this indicates that there
can be no more TOIs beyond the current enclosure.

Subsequently, the enclosures over the identified TOIs are refined by an algorithm
that is quite similar to one used by the get_safe_tight_enclosure_over_toi method.
However, further refinement may uncover further enclosures which have an
empty intersection with the postbox and hence may necessitate that the currently
examined TOI be split further. Additionally, refinement must be performed from
the beginning and from the end to get tight bounds also for the duration.

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 115

1. Iteratively pick the TOI and the sequence of enclosures covering it.

2. Iteratively pick a dimension and direction (up or down) for refinement and
sort the enclosures over the currently to-be-refined TOI by their bound in
this direction of this dimension.

3. If the most extreme enclosure has a temporal and spatial width above the
respective thresholds, compute a midpoint enclosure. If this midpoint
enclosure lies partially outside ~Xflow, stop refinement for this direction
since the flow invariant provides a stronger bound than can be expected
from the enclosure. Compute a maximum possible progress by not only
comparing the enclosure over the current subrange with the midpoint
enclosure, but also comparing the postbox in this dimension with the
midpoint enclosure. Only if this possible progress exceeds the spatial
threshold, compute a refinement by performing reevaluations for temporal
subranges and replacing the enclosure. This approach avoids refinement
of enclosures whose midpoint enclosure is already known to cover the
postbox.

4. If the enclosure has been refined, compute the intersection of the refined
boxes with the postbox to check whether the TOI can be split. If the
postbox is still partially covered by the resulting enclosures, repeat their
refinement in Step 3 or continue with the next dimension of this same TOI
in Step 2 when the resolution thresholds are no longer exceeded.

5. Otherwise, if a split of the TOI has occurred, enqueue both subranges that
result from the split and repeat from Step 2 on the first element resulting
from the split. If the current TOI has become obsolete, remove it from the
list and continue with the next TOI in Step 1.

6. If the TOI has been refined successfully (without further splits), refine the
duration for this TOI (which is implemented in refine_toi_from_outside).
While the first element of the TOI’s enclosures contains points that lie
outside the postbox and has a temporal width which is larger than the given
resolution, refine this element and remove from the TOI those resulting
subranges whose enclosures have an empty intersection with the postbox.
Analogously, refine the TOI’s upper bound by refining the last element and
removing subranges which have an empty intersection with the postbox.

7. Select the next TOI from the list in Step 1.

Figure 3.23 illustrates the refined boxes after application of this method (and
the preceding steps) on an example in which the entire postbox is reachable,
but the delta_time valuation can be tightened.

3.3.5 Backward Deduction

It has probably not gone unnoticed that we have been more than a bit vague
about what needs to be done for backward deduction, i.e. for the pruning of
the prebox via a computation of the set of initial points for which trajectories
reach the postbox. The reason is that backward deduction can be performed by
the methods we have presented so far, when only a few minor modifications are
made to their input.

116 CHAPTER 3. ALGORITHMIC APPROACH

Reversing a Trajectory. Given are a sufficiently smooth time-invariant ODE
~x = ~f (~x) and a solution function ~x : R→ Rn, which connects two time instances
0 and δ ∈ R≥0 and the corresponding points ~x(0) = ~x0 and ~x(δ) = ~xδ . Since ~x is
a solution function, it has the right slope at all times and stays inside the box
admissible by the flow invariants, i.e. ∀t ∈ [0, δ] : d~x

dt (t) = ~f (~x(t)) ∧ ~x(t) ∈ ~Xflow.
We are interested in finding a reverse ODE system ~y = ~g(~y) with a solution

function ~y : R → Rn. To be useful for backward propagation, this reverse
solution function must do the “opposite” of the original solution function. Given
the final point of the original solution, the reverse solution function must follow
the original trajectory—only backwards—until it reaches the original trajectory’s
starting point, exactly after the same duration.

Considering a backward time function � : R → R with �(t) = δ − t, we
therefore want that ~y(�(t)) = ~x(t), thus e.g. ~y(0) = ~x(δ). For the slope of ~x, we
know from the original ODE system that

d~x

dt
(t) = lim

h→0

~x(t + h) − ~x(t)
h

(limit from the right side at t)

= lim
h→0

~x(t) − ~x(t − h)
h

(limit from the left side at t)

= ~f (~x(t)).

The limits from the left and from the right must coincide since the derivative is
known to exist. For the two points of time t and t + h, the backward times are
�(t) = δ−t and �(t+h) = δ−(t+h). The corresponding values are ~y(�(t)) = ~x(δ−t)
and ~y(�(t + h)) = ~x(δ − (t + h)). Therefore

d~y

dt
(�(t)) = lim

h→0

~y(�(t + h)) − ~y(�(t))
h

= lim
h→0

~x(δ − (t + h)) − ~x(δ − t)
h

= − lim
h→0

~x(δ − t) − ~x(δ − (t + h))
h

= − lim
h→0

~x(δ − t) − ~x(δ − t − h)
h

(limit from the left at δ − t)

= − lim
h→0

~x(δ − t + h) − ~x(δ − t)
h

(limit from the right at δ − t)
= −~f (~x(δ − t))
= −~f (~y(�(t)))

gives us ~̇y(�(t)) = −~f (~y(�(t))). Luckily, we have required ~f to be time-invariant,
i.e. it does not depend on t (nor �(t) in this case) directly. Therefore, we can
write the reverse ODE system as ~̇y(t) = −~f (~y(t)).

A less formalistic argument is based on simple geometry. Picking a point on
the forward trajectory, ~f yields the slope of the trajectory towards a larger point
of time. Picking the same point and “looking” backwards in time, we therefore
need to go with the negative of the forward trajectory’s slope to reach this point
on the trajectory for a smaller point of time. Whenever we go down with a slope
by e.g. −1, to undo this, we need to go up with a slope of +1.

Flow invariants apply to the reverse trajectory in the exact same way as they
apply to the forward trajectory. Since they do not vary with time, but simply

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 117

x

delta_time

~Xi

~Xi+1
0 0.5 1

−2

0

2
x

delta_time

~Xi

0 0.5 1

−2

0

2

Figure 3.24: Forward and backward ODE deductions. Left: forward deduction
as seen in Figure 3.20. Right: postbox from forward deduction taken as prebox
for backward deduction with reverse ODE system ẋ = −(x −2)(x +2) and original
prebox taken as postbox over same delta_time interval. The backward deduction
leads to the tightened prebox of the original problem.

constrain the space through which the solution function may pass, it does not
matter when we reverse the time and start at δ instead of 0.

Lifting of Reverse Trajectories to Intervals. Time invariance is in fact very
important when not only looking at individual trajectories, but at the backward
propagation algorithm we are aiming at. In Figure 3.20, a backward deduction
looked quite different from a forward deduction: instead of starting with an
enclosure at one point of time (t = 0), the backward propagation needs to start
with at box that has temporal and spatial extent, since it needs to consider all
points starting in the postbox over time instances from the delta_time valuation.
Obviously, this is not directly compatible with the kind of enclosure algorithm
we have used so far, but fortunately, it is also not necessary.

Using the time invariance argument, we can consider the postbox as prebox
at time t = 0 and compute the enclosures again over the delta_time interval.
Time invariance guarantees that the absolute value of time does not matter as
long as we do not change the duration of the trajectory. Therefore, instead of
starting over an interval of time and ending at a point, we start again at a point
of time t = 0, and enclose the reverse trajectories over all durations compatible
with the delta_time valuation. Figure 3.24 illustrates this exchange of pre- and
postbox for the reverse ODE problem with negated right-hand sides.

Computation of Backward Deductions. To actually compute backward de-
ductions, the ODE solver first creates the reverse ODE system by simply manip-
ulating the symbolically-represented ODE constraints, i.e. at the root of each
right-hand-side syntax graph it inserts a multiplication node and constant −1
as factor. Knowing that it is doing a backward deduction, it exchanges the roles
of pre- and postbox when creating the solver_run. The results are then known to
require an additional swapping of these roles. Backward deduction is therefore
already covered by the steps we have described throughout this subsection and
requires only little attention in the remaining steps that follow now.

118 CHAPTER 3. ALGORITHMIC APPROACH

3.3.6 Utilizing Deduction Results in iSAT-ODE

After having discussed the details of propagation for ODE constraints, it is
probably quite obvious that computing an ODE deduction is orders of magnitude
more expensive than ICP for an arithmetic atom. In our earlier attempts to solve
SAT modulo ODE problems [Egg06, EFH08] we tried to use ODE deductions like
any other propagator, i.e. compute deductions as they are needed, store their
reasons and consequences in the implication graph, and iterate until either no
more progress can be achieved or a conflict is encountered. In such a naive
integration scheme, every backjump that the iSAT core performs to resolve a
conflict discards all propagations made on the decision levels that are undone.
Sometimes the learned conflict clause may exclude so much of the search space
that none of these discarded propagations has to be repeated ever again, but in
general, it is much more likely that partial assignments made later in the search
will coincide with those made within the excluded branch. Having discarded
the corresponding deduction results, there is no choice then but to repeat these
deductions. With the large amount of runtime invested in the ODE deductions,
this approach was quickly discovered to be unsustainable.

In the iSAT-ODE solver as we present it here and in our later publications,
e.g. [ERNF12a], we attempt to never repeat any ODE deduction. At the core of
this attempt lies the learning of clauses that encode ODE deduction results.

Example 12 (learning of ODE deduction results). In Figure 3.21, we illustrated,
how the ODE solver detects that the flow invariant is left by all trajectories
at a peeking enclosure computed for t ≈ 2.471. We did not show that a
constraint x < −4 was given for the next unwinding depth and allowed the solver
to subsequently refute the reachability of the postbox. For this example, the
ODE solver generates the following deduction object—reformatted slightly for
better readability—which encapsulates all learned facts.
============= Deductions =========================
Implications .

((ode_var_2 [’ x ’] (time) >= −1/2 is active))
=> (ode_var_2 [’ x ’] >= −0.5

AND ode_var_2 [’ x ’] ’ >= −0.5)

(((d . ode_var_1 [’ y ’] / d . time = ode_var_2 [’ x ’]) i s active)
AND ((d . ode_var_2 [’ x ’] / d . time = (ode_var_1 [’ y ’] ∗ −1)) is active)
AND (ode_var_2 [’ x ’] (time) >= −1/2 is active)
AND ode_var_1 [’ y ’] >= −0.1000000000000000055511151231257827021181583404541015625
AND ode_var_1 [’ y ’] <= 0.1000000000000000055511151231257827021181583404541015625
AND ode_var_2 [’ x ’] >= 0.899999999999999911182158029987476766109466552734375
AND ode_var_2 [’ x ’] <= 1.100000000000000088817841970012523233890533447265625)

=> (delta_time < 2.47142775928424551779016837826929986476898193359375)

Confl ict ing boxes .
! (

(ode_var_2 [’ x ’] (time) >= −1/2 is active)
AND ((d . ode_var_1 [’ y ’] / d . time = ode_var_2 [’ x ’]) i s act ive)
AND ode_var_1 [’ y ’] >= −0.1000000000000000055511151231257827021181583404541015625
AND ode_var_1 [’ y ’] <= 0.1000000000000000055511151231257827021181583404541015625
AND ode_var_1 [’ y ’] ’ >= −100
AND ode_var_1 [’ y ’] ’ <= 100
AND ((d . ode_var_2 [’ x ’] / d . time = (ode_var_1 [’ y ’] ∗ −1)) is active)
AND ode_var_2 [’ x ’] >= 0.899999999999999911182158029987476766109466552734375
AND ode_var_2 [’ x ’] <= 1.100000000000000088817841970012523233890533447265625
AND ode_var_2 [’ x ’] ’ >= −100
AND ode_var_2 [’ x ’] ’ <= −4
AND delta_time >= 0
AND delta_time <= 10

)
==

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 119

First, since this is the very first deduction in which the flow invariant occurs,
it contains the implication that when the flow invariant x(time) >= −0.5 is active,
the values of x and of x’ shall satisfy this invariant, too. This has been derived
syntactically and needs to be done only once.

The second implication is more complex. The first three conjuncts of its
premise enumerate the active ODE and flow invariant constraints—a necessary
condition for this deduction to be applicable. Similarly, the remainder of the
premise describes the current valuation, here only the prebox since the postbox
was not necessary to detect that the flow invariant is left. The conclusion is
then the actual new knowledge: under the given circumstances, any value for
delta_time can be discarded if it is larger than the identified time when the flow
invariant is left.

The third element of this deduction object describes the observation that
the postbox is not reachable from the prebox within the given valuation for
delta_time. This is essentially the same as the box ruled out by a conflict clause,
since it describes a region of the search space—spanned by the active triggers,
the prebox, the postbox, and the duration valuation—that is known to contain
no solutions.

Learning Deductions as Clauses. The deduction object that is generated by
a solver_run is always structured into implications and conflict boxes just like
those shown in the example. The implications use the current valuation or a
subset thereof as premise and the deduced facts—like convex hulls computed
from the relevant enclosure objects or tighter bounds for the delta_time variable—
as conclusion. Having the full set of reasons for a deduction in the premise of
an implication makes it valid universally, i.e. adding it to the formula allows the
solver to propagate the conclusions whenever the premises hold. Similarly, the
conflict boxes contain the relevant premises for the conflict to occur. They are
therefore equally universal.

To instantiate the deduced facts for multiple BMC depths, the valuation
object is used, which stores a mapping of symbolic variable names and BMC
depths to their instances in the iSAT core. Again, we benefit from time invariance
and from the use of the duration variable delta_time instead of the global time:
since the deductions are premised by the context in which they are applicable,
it is allowed to add them not only to the pair of BMC unwinding depths for
which they were computed, but to all pairs of successive depths. This constraint
replication [Sht00] avoids that the same deduction has to be repeated only
because the same ODE problem occurs on another BMC depth. For a trajectory
of a hybrid system that passes multiple times through the same region of the
state space in the same mode, i.e. under the same dynamic laws, an ODE
deduction made for one unwinding depth may therefore be used for propagation
also at other steps as long as the durations of the respective flows are covered
by the learned facts. More importantly, when the solver decides to explore e.g.
an alternative switching sequence by assigning different values to the mode
variables, the replicated constraints may become useful on a different unwinding
depth than the one they were computed for.

The actual learning requires little more than transforming implications and
conflict boxes into clause form and retrieving the correct variable instances. In
the solver core, slight modifications are necessary to support learning of clauses

120 CHAPTER 3. ALGORITHMIC APPROACH

that are not necessarily conflicting with the current assignment. These changes
are, however, rather technical (e.g. the search for suitable watched atoms) and
do not change the algorithm in any fundamental way. The main difference
is that after learning clauses encoding ODE deductions, the iSAT core needs
to check whether a backjump is necessary and potentially not perform it—in
contrast to conflict clauses, which always trigger such an undoing of decision
levels. If no backjump occurs, at least some of the new clauses are already unit,
since the premises of the implications from which they were constructed consist
of the current valuation. This leads to their conclusions to be propagated as
soon as the ODE solver returns the control flow to the solver core. The replicated
clauses, which are learned for BMC depths for which they were not deduced,
will most likely trigger neither conflict nor further deductions right away, but
are simply added and may become unit at a later time.

Termination and Correctness. Were we using ODE deductions exactly like
ICP, the proofs made in [FHR+07] would directly extend their termination
and correctness guarantees to iSAT-ODE under the assumption that ODE
deductions produce locally correct results. The correctness of this assumption
is based on the use of validated numerics for the enclosure computation. These
computations are also used in the refinement of the enclosures by reevaluation
of the involved terms over temporal subranges. When terminating an enclosure
prior to reaching the temporal horizon, we have found an enclosure that lies
entirely outside the region admissible by the postbox. When claiming that
no trajectory reaches the postbox from the prebox over the given interval of
durations, we have refined all enclosures such that their intersection with the
postbox has become empty. For pruning the postbox, we use the convex hull
of all enclosures that have a non-empty intersection with it and the delta_time
valuation. Similarly, for pruning the delta_time interval, we use all enclosures
that have a non-empty intersection with the postbox.

Using ODE deductions via clause learning changes this argumentation only
slightly. Since the clauses only make explicit the implications that would other-
wise be inserted into the implication graph directly, this indirection of learning a
clause and propagating its consequences does not change the correctness of the
propagations. Due to the explicit encoding of each deduction’s premise, neither
does the constraint replication.

Sometimes not being able to compute an enclosure or failing to detect when
trajectories leave the flow invariant or do not reach the postbox is detrimental
to the precision of the solver, since the ODE constraints and flow invariants
become practically ineffective in constraining the solution, but this is only more
of the same overapproximation that the solver core has to struggle with even in
case of arithmetic atoms. Since the solver does not claim a candidate solution
box to actually contain a solution, spurious results are consistent with the
chosen notion of correctness.

More questionable is the matter of termination. In the original algorithm
infinite deduction chains can be stopped by checking, before inserting a deduc-
tion result in the implication graph, whether its progress exceeds the minimum
progress threshold. Recalling the structural diagram of iSAT-ODE as shown in
Figure 3.18, after learning deductions as clauses, the control flow returns to
unit propagation and ICP. When their progress no longer exceeds the threshold,

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 121

the ODE solver is asked again to provide a deduction. Clearly, if no new bound
has been generated in the solver core, this query will be exactly the same as
the one that has been answered before. However, we have not yet discussed
the one building block that is needed inside the ODE layer to detect that it has
previously computed a deduction for an ODE problem and therefore should not
compute the same deduction again. In fact, it is this “nothing new” answer
that is necessary for termination. Since the topic is quite technical and other-
wise independent of the computation of ODE deductions, we leave its detailed
discussion for Section 3.4. Assuming, for the sake of argument, that prior to
computing a deduction, the ODE solver checks whether the same ODE problem
with the same valuation or a superset thereof that is only slightly larger (up to a
similar threshold as used to terminate deduction chains) has been encountered
before. If the current ODE problem is thereby identified as having been covered
before, the ODE solver does not produce a new deduction. Termination then
follows from the finite number of queries of sufficient progress that can possibly
exist over the bounded search space and the consequently finite number of
clauses that the ODE solver may produce.

3.3.7 Acceleration Techniques

The goal of learning ODE deductions is to accelerate the solver by making
repetitions unnecessary. Similarly, storing VNODE-LP’s internal state and using
it for reevaluation instead of costly restarts of VNODE-LP aims at accelerated
enclosure refinements. Finally, the option to perform ODE deductions starting
from those unwinding depths and directions with the tightest valuations is mo-
tivated by our observation that this may avoid superfluous propagations. While
these improvements have already been discussed, some additional acceleration
techniques have not yet been mentioned.

Grouping of Independent Subsystems. Models of hybrid systems often con-
sist of interacting components, and sometimes such parallel subsystems may
interact not via their continuous evolutions, but merely by exchanging events.
Between these points of interaction, the continuous evolutions of the components
are independent of each other, just connected by the flow durations. On the level
of a SAT modulo ODE formula, there are ODE constraints for a set of variables
{x1, . . . , xn}. For each of these, there are one or more ODE constraints of the
form ẋi = f (x1, . . . , xn). If components do not interact, but evolve independently
of each other for the same duration of a flow, the right-hand-side functions f
of the ODE constraints do not depend on the set of all variables, but instead
require only subsets of it. It is easy to identify such disjoint subsets syntactically
and to thereby form independent groups of variables, ODE constraints, and flow
invariants.

The advantage of identifying these independent subsystems is threefold.
First, the algorithms to generate an enclosure involve superlinear computations,
e.g. the matrix operations, needed for coordinate transformations. In [Ned99,
pp. 64f] the complexity of the underlying algorithms as implemented in a
predecessor of VNODE-LP are analyzed to some detail, the highest occurring
order there is cubic in the number of dimensions. Our optimization loops that
try to refine the boxes with the largest impact on the convex hull additionally
need to repeat these refinements for each dimension and direction individually.

122 CHAPTER 3. ALGORITHMIC APPROACH

Decreasing the dimensionality can hence be expected to reduce the cost of the
individual enclosures and the number of enclosures that need to be refined per
system. The second advantage lies in the increased generality of the learned
deductions. Since the deductions computed for an ODE problem depend only on
a subset of the variables, the premise of the learned deduction may be satisfied
earlier and therefore the propagation be more effective. Finally, the independent
deductions also mean that a change to one group’s valuation only requires a
new computation of a deduction for that group, but not for the independent
dimensions.

The cost of this optimization on the other hand is relatively low. Identifying
the groups needs only be done once, initially, and when selecting an ODE
problem for propagation, instead of picking a BMC depth and direction, the ODE
solver merely needs to additionally pick a group. Both operations are rather
inexpensive and likely to be offset by the advantage of more general constraints
and accelerated enclosure computations. However, for models in which all
dimensions are inter-dependent, the optimization obviously cannot pay off, but
causes only very mild run-time penalties and can in fact be controlled by a
command-line switch.

Splitting Heuristics. When we discussed the splitting heuristics used by
the iSAT core, we pointed out that they can have a great influence on the
performance of the solver, but that one should in general not expect to find an
optimal heuristic, since it might lead straight towards also finding a polynomial-
time SAT solver. We have nothing to take back from this position, but there
is—as is often the case with heuristics—a compelling argument, why in the case
of iSAT-ODE some variables should be split first. It is certainly not always
true and we can only point to our experimental results in the next chapter for
some empirical validation, but we think that it makes sense to split the discrete
variables prior to splitting the continuous ones.

Since ODE deductions are expensive, they should not be performed for ODE
problems that are irrelevant for the solution. Additionally, computing ODE
enclosures for large initial sets over large time horizons can be quite costly,
especially in the non-linear case when this may lead to decreasing step-sizes
and a large number of enclosure computations before the solver finally gives up
and returns without a deduction.

If the solver core is allowed to split continuous variables, the ODE solver
may have to compute enclosures for the valuation tightened by this split—as
long as an ODE problem has already become active for the involved variables. If
these splits occur while there are still undecided discrete variables, the solver
has not even established that a boolean abstraction of the solution is feasible.
The ODE deductions made for some part of the trajectory may therefore later
turn out to be superfluous because they belong to a trajectory that cannot be
extended over the remaining steps.

Our “discrete first” heuristic enforces that the continuous variables are split
only after all discrete variables have reached points as their valuations—be it by
deduction or decision. As a consequence, the solver must first satisfy a boolean
abstraction of the model before it may explore the continuous state space by
splitting. Conflicts in the sequence of discrete modes are hence detected before
the ODE solver could be forced to compute more and more propagations for some

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 123

part of a trace that cannot even be completed on the discrete level. Knowing
the switching sequence, the constraints representing the transition guards and
actions from the hybrid system are also more likely to have become unit and
may thereby reduce the width of the valuation before an ODE deduction is
attempted.

Enclosure Resolutions. In the context of the ODE enclosure computation, we
have mentioned the influence of temporal and spatial thresholds to decide when
to stop the refinement. Also VNODE-LP can be given a lower bound for the
admissible step size, such that it stops the integration when its automatically-
computed step size exceeds this threshold. Further parameters in VNODE-LP
are the absolute and relative tolerances and the order of the Taylor series. Except
for these tolerances and the order of the series expansion, we make use of this
parameter set to influence the precision with which the enclosures are computed
and refined.

Intuitively, the search method performed by the combined iSAT-ODE solver
can be seen as an iterative refinement of a valuation until it becomes either
a candidate solution, which can be reported, or exhibits a conflict, in which
case an alternative must be explored. Starting with the entire domain from the
declaration as initial box, the solver will not report a candidate solution until
each variable has a valuation whose width is below the minimum splitting width.
Again, there is no ultimate truth, but there are some strong arguments why
it makes sense not to perform enclosures with the highest possible resolution
when the search space is still very large, but instead to change the parameters
that influence the precision and speed of ODE deduction dynamically.

We have implemented a two-step approach. The first step depends on the
entirety of variables, not only on those known by the ODE solver. To this
purpose, we have added a method can_there_be_another_split to the solver core
that compares all interval widths with the minimum splitting width and reports
whether there is still a variable that could be split. Doing this right before calling
the ODE solver, an enclosure_resolution object can be initialized with a coarse
resolution if another split is possible or with a fine resolution otherwise. These
resolutions are derived (using fixed coefficients) from the minimum splitting width
and absolute bound progress parameters, which are user-supplied. Deductions
in the ODE solver can therefore be requested for exactly two different resolutions.
When there is still at least one variable with a width above the minimum splitting
width, the reported deduction will be made for the coarser resolution, which
is likely to accelerate the computation inside the ODE solver, but may lead to
imprecise results. To avoid that this imprecision influences the quality of a
candidate solution box, the finer resolution is given when no further splits are
possible under the current interval width. The ODE solver’s detection of whether
a particular deduction has been done before is extended in such a way that it
differentiates this detection on the requested resolution, i.e. it will now repeat
all deductions that have only been done for a coarser resolution. Thereby, the
new deduction may unveil a conflict, which allows the solver core to discard the
current valuation—avoiding a spurious counter example, which would otherwise
be caused by the lower deduction precision. When the ODE solver is called with
the coarse resolution and produces a deduction, it will after further ICP and unit
propagation be called again, such that there is no risk that the last deduction

124 CHAPTER 3. ALGORITHMIC APPROACH

made by the ODE solver would ever be made with the coarse resolution setting.
This first step trades in the promise of never repeating an ODE deduction

for being able to first computing it at higher speed with lower precision and
hopefully only once, right before a candidate solution would be reported, having
to repeat it with the otherwise requested finer default precision. On the level
of the iSAT core, the lower precision weakens deduction as a whole and may
therefore necessitate further splitting. Balancing the effort spent on deduction
and the risk of an increased amount of branching is a highly heuristic matter.

The second step in manipulating the enclosure resolution is made optional
and is controlled by a command-line switch since it may cause the introduction
of even more repetitions and larger amounts of imprecision for earlier deductions
than the first step. When activated, the ODE solver compares the valuation
widths of each of the ODE problem’s variables with their entire domain and with
the minimum splitting width—leading to a relative measure, how far away from
a solution the solver still is with respect to this subset of variables. This leads
to a dynamic resolution choice on a continuous scale between the coarsest and
finest admissible resolutions.

The potential advantage lies in the even coarser resolutions that may speed
up especially the earliest deductions even further, when valuations are still
very wide and exactness seems not really relevant yet. On the other hand,
however, this assumption may be quite mistaken, since maybe a single precise
early deduction may allow the solver to prune off large parts of the search
space—the balance of decisions and deductions may be changed too strongly in
this case. Even worse, at least the choice of a large minimal admissible step size
in VNODE-LP can cause enclosure computations to fail for ODE problems that
can very well be analyzed with finer resolution. This aspect might be improved
by taking into account also different settings for orders and tolerances, but this
has not yet been attempted in our approach. Additionally, having not merely
two levels of precision, but a continuous scale, it may very well happen that a
deduction needs to be repeated a number of times with increased precision.

3.3.8 Direction Deduction

Although we have not yet discussed how the detection of previously encountered
queries works and have postponed the discussion of bracketing systems, the
description of the iSAT-ODE algorithm is essentially complete. However, there is
one particular type of spurious result that is quite astonishing and that cannot
be ruled out by the deduction mechanism that we have discussed so far.

Example 13 (iSAT-ODE without direction deduction). Consider the example in
Figure 3.25. The model on the left encodes a hybrid system with two modes,
one continuous variable, strict alternation of jumps and flows, and a counter
that is incremented with each step. The transition system enforces that in
both modes the slope is strictly positive. It also requires that the automaton
alternates between the two modes and that each flow has a strictly positive
duration. The mode invariants require that in mode zero x(time) <= 0 and in
mode one x(time) >= 0. Initially, x must take a value below −5.

From the strict alternation of the two modes combined with their flow
invariants follows that jumps can only occur when x = 0. However, the dynamic
laws together with the constraint delta_time > 0 cause x to always grow during

3.3. EMBEDDING ODE ENCLOSURES INTO ISAT 125

DECL
float [−10,10] x; −− Continuous state space.
int [0,1] mode; −− Discrete state space.

float [0,100] time;
float [0,100] delta_time;

boole flow; −− !flow = jump.
int [0,10] count;

INIT
time = 0;
x <= −5; −− Initial continuous state;
flow; −− Start with flow.
mode = 0; −− Initial mode.
count = 0;

TRANS
time’ = time + delta_time; −− Progress of time.
flow <−> !flow’; −− Alternating jumps & flows.
count’ = count + 1;

−− Flows.
−− ... stay in the same mode
flow −> mode’ = mode;
−− ... shall really take time.
flow −> delta_time > 0;
−− ... in mode zero (below 0): slope 2.
flow and mode = 0 −> (d.x / d.time = 2);
flow and mode = 0 −> (x(time) <= 0);
−− ... in mode one (above 0): slope 1.
flow and mode = 1 −> (d.x / d.time = 1);
flow and mode = 1 −> (x(time) >= 0);

−− Jumps.
−− ... do not take time and keep x constant.
!flow −> delta_time = 0 and x’ = x;
−− ... alternate between both modes.
!flow and mode = 0 −> mode’ = 1;
!flow and mode = 1 −> mode’ = 0;

TARGET
−− Find a 10−step trajectory ending in x=0.
count = 10;
x = 0;

-10
-5
0
5

10

0 2 4 6 8 10

x

0
1
2
3

0 2 4 6 8 10

time

0
1
2
3

0 2 4 6 8 10

delta_time

0
5

10

0 2 4 6 8 10

count

0

1

0 2 4 6 8 10

flow

0
1

0 2 4 6 8 10
BMC unwinding depth

mode

Excerpt from the candidate solution box for the delta_time and x variables:

delta_time (f l oa t) :
@0: [2.8573143,2.86155426)

(width : 0.00423995653)
@1: [0 ,0] (point interval)
@2: (0,0.00012208) (width : 0.000122070312)
@3: [0 ,0] (point interval)
@4: (0,0.00012217) (width : 0.000122167969)
@5: [0 ,0] (point interval)
@6: (0,0.00012208) (width : 0.000122070312)
@7: [0 ,0] (point interval)
@8: (0,0.00012217) (width : 0.000122167969)
@9: [0 ,0] (point interval)

x (f l oa t) :
@0: [−5.72213196,−5.71471904]

(width : 0.00741291622)
@1: [−0 ,0] (point interval)
@2: [0 ,0] (point interval)
@3: [0 ,0] (point interval)
@4: [0 ,0] (point interval)
@5: [−0 ,0] (point interval)
@6: [0 ,0] (point interval)
@7: [0 ,0] (point interval)
@8: [0 ,0] (point interval)
@9: [−0 ,0] (point interval)
@10: [0 ,0] (point interval)

Figure 3.25: Lack of direction deduction leads to spurious solution traces.

126 CHAPTER 3. ALGORITHMIC APPROACH

flows. Combined, these constraints rule out any trajectory that comes back to
0 after the second flow. As a consequence, there cannot be a trajectory with
more than one jump at all, since jumps only occur for x = 0. Surprisingly, the
candidate solution box and its visualization on the right of Figure 3.25 show that
the deduction mechanisms discussed so far are unable to prove this seemingly
simple property.

The example has been crafted specifically to expose this weakness, but the
underlying problem has actually become visible during the analysis of one of the
benchmarks that we will discuss in the next chapter. In that example, we will
analyze a time-bounded property, however, since the solver cannot prove that
time really progresses in each step even when we encode it as explicitly as in the
example here, from time-boundedness we cannot derive step-boundedness and
therefore do not know up to which BMC unwinding depth we need to analyze
the system.

The underlying reason for the behavior, however, is rather simple. If we
take e.g. the boxes shown for the x-dimension in Figure 3.22, we can see that
even though every exact solution trajectory starting in the prebox will decrease
in value for any positive duration, the very first enclosure box must include
this prebox entirely—no matter how much temporal refinement is performed.
This observation is true not only in these examples, but holds in general: the
first enclosure must contain the prebox, since it must cover the behavior for a
duration of zero.

Fortunately, the problem can be mitigated, leading to what we have in-
troduced as direction deduction in [ERNF11]. The idea is as simple as it is
effective: for as long a prefix of the sequence of enclosure objects as possible,
try to find a unique sign of the derivative. Separately for each dimension, the
solver_run therefore evaluates over the first enclosure the right-hand side of this
dimension’s ODE constraint using the same syntax graph representation that
we also pass to VNODE-LP. If the resulting interval does not contain zero, the
sign of this right-hand-side function is either positive or negative and so the
slope is determined at least for a duration equivalent to this enclosure object’s
temporal validity. The computation continues with the next enclosure until the
sign is no longer unique. The previously computed maximum duration is then
taken to generate a direction deduction for this variable.

In the example, the following direction deduction for x is computed.
(((d . ode_var_1 [’ x ’] / d . time = 2) is active)

AND (ode_var_1 [’ x ’] (time) <= 0 is active)
AND ode_var_1 [’ x ’] >= −10
AND ode_var_1 [’ x ’] <= −5
AND delta_time > 0
AND delta_time <= 16.875099999999999766941982670687139034271240234375)

=> (ode_var_1 [’ x ’] ’ > ode_var_1 [’ x ’])

The upper bound of delta_time in this case is determined by the detected leaving
of the flow invariant, without any further refinement. The implication’s premise
holds for the current valuation such that the conclusion can be used by ICP
once the deduction is learned. This conclusion encodes the direction by the
constraint x ′ > x and allows iSAT-ODE to rule out any trajectory in which the
successor instance of x has the same value, i.e. it is a mitigation for the spurious
trajectory that had x stuck at zero despite some positive time passage.

In fact, this direction deduction is a very light-weight form of a linear overap-
proximation. Instead of using only the sign, one could also learn conclusions like

3.4. AVOIDING REPEATED ENCLOSURES 127

x’ >= x + 3.2 ∗ delta_time when a lower bound for the slope of x has been com-
puted as 3.2 for such a prefix or for the entire trajectory. Whether this additional
information would pay off during search—on the one hand it strengthens ICP,
on the other hand it increases the formula size with relatively weak information
about the trajectory—is an open question. Approaches like the HSolver model
checker [RS07] rely quite heavily on (unbounded) linear arguments.

3.4 Avoiding Repeated Enclosures

Storing ODE deductions in clauses needs to be complemented by the ability to
detect when an ODE problem has already been encountered before. Since the
clauses are stored anyway, the seemingly cleanest solution would be to detect
when a deduction request is made for a valuation that follows directly from a
previously learned deduction. Such a detection would have to be added to the
solver core, since only there is it possible to access the implication graph, which
can provide the reasons for the current valuation. This approach would let
learning and avoidance of repeated deductions be based on the same storage:
learned deductions in the formula.

However, there are a number of problems with this approach. Sometimes
ODE deductions cannot be computed for a given ODE problem, e.g. when the
valuation is still very wide and the enclosures computed by VNODE-LP diverge
before the temporal horizon is reached. In these cases, there is knowledge about
the ODE problem, namely that the ODE solver cannot produce a deduction, but
this knowledge is not encoded as a clause in the formula. At the same time,
these failed deduction attempts can be quite costly when they involve large
numbers of small enclosure steps, converging to some time point before the
horizon. Attempting to repeat a deduction for the same problem with the same
resolution has no benefit, since it must fail again. Not being able to detect these
cases would therefore waste valuable computation time on cases that do not
provide any pruning at all.

Secondly, ODE deductions are resolution dependent. Unless the current
resolution were somehow encoded in the learned clauses, it would be impossible
to know which resolution the stored deduction was computed with. The whole
point of having different resolutions is, however, to be able to first compute
a coarse enclosure and later repeat the computation with finer resolution if
necessary. Without knowledge about the resolution, the solver could not decide
whether a repetition with the current resolution might yield better results.

Thirdly, adding to the solver core a potentially complex tracking of which part
of the current valuation results directly from an ODE deduction would make it
harder to transplant the ODE solving layer to future iSAT versions, since this
functionality would have to be integrated tightly with iSAT’s data structures.

For these reasons, we have decided to add the detection of previous queries
to the ODE solver and accept the price of storing learned facts both within the
formula and in these additional data structures. Fortunately, this approach has
then allowed us to employ what was originally intended to be purely used for the
detection of duplicate queries, also to caching of solver_run objects—allowing
refinements for only slightly tighter valuations to be computed without having
to recompute e.g. an enclosure up the horizon.

128 CHAPTER 3. ALGORITHMIC APPROACH

Finding Stored Boxes. To detect when the combination of current valuation,
group, resolution, ODE constraints, and flow invariants corresponds to a previ-
ously encountered query, we add an ode_cache to the ODE solver. This structure
encapsulates all previous queries under several caching layers. First, each group
of independent ODE systems has its own set of caches. The second layer orders
caches by their associated resolution. Underneath, caches are distinguished by
the activated ODE constraints and flow invariants—represented by a bit vector
that encodes the activation pattern. The innermost layer then stores the actual
valuations.

While the outer layers can be implemented using standard containers, the
inner cache needs to be able to answer the rather uncommon question whether
a given box is covered (with limited margin) by one of the stored boxes. We have
explored two different approaches to this problem. The first one could be called
a projection-based approach. Iterating over all dimensions, it finds those boxes
whose interval in the current dimension covers the interval of the to-be-searched
box. Intersecting the results, it retrieves the set of covering boxes. During our
initial experiments, especially when we had not yet implemented many of the
acceleration techniques discussed in the previous section, this approach was
sufficiently fast. However, with increased efficiency of the deduction routine and
hence growing number of stored valuations, it has proven to be quite costly in
terms of runtime for larger cache sizes, since the individual projections may
become rather large sets.

Our second approach therefore attempts to avoid these early projections.
It is strongly inspired by search trees, especially k-d trees [Ben75], and to
some degree also by decision diagrams, which are successfully used in model
checking, e.g. as binary decision diagrams, but also in interval contexts as
interval decision diagrams (IDDs) [ST98]. While IDDs represent functions by
case distinctions, which are encoded in the graph, our case is rather different,
since we are only interested in finding a set of elements. We were unable to find
prior work in the literature that is more directly related to our requirements,
but find it possible that similar solutions have arisen in other applications e.g.
to detect coverage in 3D graphics.

A necessary condition for any box ~A to cover the currently searched box ~S
is that there is no point inside ~S that is not inside ~A. This condition is very
helpful in providing a branching rule that partitions the set of all stored boxes.
For the leaf nodes in our search tree, we use a container, box_store, that can
store boxes and for a small number of elements offers a sufficiently efficient
projection-based check of containment. Whenever a new box is added to this
leaf node and its capacity exceeded, we try to identify a point ~p that splits this
set of stored boxes. For any two non-identical boxes, there is at least one point
that lies in one of these boxes and not in the other one, obtainable by picking
in the differing dimensions’ intervals a point between the borders. In practice,
since floating-point numbers are not dense, ~p may lie on the border of the outer
box, but still partition the set. Each inner tree_node therefore holds the point ~p
and pointers to two subtrees, one containing only elements that cover ~p, the
other containing those elements that do not cover it.

When given a box ~S, the search simply needs to check at each encountered
tree_node containment of its stored point ~p. If ~p is inside ~S, it can rule out the
subtree of boxes that do not contain the point and recursively investigate the
other subtree. Otherwise, ~p is not indicative and both subtrees can contain

3.5. BUILDING BRACKETING SYSTEMS AUTOMATICALLY 129

covering boxes. However, if ~p is farther away from the border of ~S than the
given threshold, boxes that cover ~p will be too large and therefore need not to
be examined either. Finally arriving at box_store containers in the identified
relevant leaf nodes, the candidate boxes can easily be checked for coverage and
the size of the margin be compared to the threshold.

Again, there are several technical details that are better left to the source code,
primarily the rebalancing of the search tree and the selection of split points to
achieve an even distribution of boxes. In our experiments, imbalanced trees were
far less problematic than originally thought. Although we implemented shifting
of nodes from deep subtrees to shallower parts, after some experimentation with
our benchmarks, the surprisingly simple setting of allowing only two nodes in
the box_store leaf nodes and not using rebalancing at all lead to a sufficiently
efficient detection of stored boxes, such that detection of previously encountered
queries no longer accounts for relevant portions of the solver’s runtime. Since
this may cause search to become worst-case linear in the number of stored
boxes, we believe that further improvements in the speed of the actual deduction
routines will necessitate more active care about rebalancing and finding suitable
leaf node capacities. The current situation, however, is one where deductions
are so much more costly than lookup that further optimization of the caching
layer does not pay off.

Use of Caches. Instantiating ode_cache objects for the four combinations of
forward and backward direction with either just the prebox and delta_time
valuation or with prebox, postbox, and delta_time valuation, the ODE solver
gains the ability to perform lookups separately for these combinations.

A side-product of finding out that a valuation has been the subject of a
previous query, is a pointer to the stored element. This pointer can be used as a
unique key to access a cache of solver_run objects. In the ode_cache_solver_runs
class, we implement such a second cache, which holds a limited number of
solver runs. We have not extensively benchmarked different settings, but have
chosen a value of 100 as the capacity of this cache, which could be subjected to
further experimentation in the future. This cache contains the stored solver_run
objects in a map that allows logarithmic lookup complexity and additionally
keeps a sorted list of all stored objects, which records the age of the last access to
an element. Replacement follows a least recently used strategy—as is standard
in many other caching applications.

Since boxes are not only retrieved when they are equal to the queried one,
but also when they extend to a slightly larger valuation covering it, this second
cache can be seen as a scheme to continue a previous deduction for a valuation
that has been refined only slightly by ICP in the solver core. If the valuation has
changed only with respect to the delta_time valuation or to the postbox, this
reuse causes no loss of precision at all. If the prebox has been tightened slightly,
but the difference does not exceed the threshold for reuse, the new deduction
will not be as tight as one that could be computed with the tighter prebox. This
threshold is therefore part of the resolution, which is controlled by the current
width of the valuation.

130 CHAPTER 3. ALGORITHMIC APPROACH

y

x−1 0 1

−1

0

1

Figure 3.26: In general, following the corner trajectories does not produce an
enclosure. ODE system: ẋ = −x · y2 and ẏ = −0.125 · y, solution trajectories
emerging from the border of the initial set with their final values after duration 1
marked.

3.5 Building Bracketing Systems Automatically

In the one-dimensional case, the solution functions of an ODE cannot cross
each other. Two trajectories hence trap all others that start between them.
In two dimensions, following only the trajectories emerging from the corner
points, however, leaves open the possibility that a point on the edge of the
initial box leads to a trajectory that escapes the convex hull spanned by the
corner trajectories—see Figure 3.26 for an example. In general, enclosures of
ODE problems are therefore computed using the entire prebox as initial set.
Nonetheless, intuitively there seem to be cases when the trajectories that emerge
from some of the corners of an initial box suffice to describe the solution set.
Intuition even suffices to come to the conclusion that monotonicity must be a
central criterion to detect these cases and to decide which points to choose.

Bracketing Systems. In [RMC09, RMC10] Ramdani et al. introduced the nec-
essary theoretical foundation for enclosing solution sets by selecting two corners
of the initial box and computing enclosures for a modified ODE system, the
bracketing system, whose solution trajectories enclose all solutions of the origi-
nal system. The major benefit of using the bracketing system instead of using
VNODE-LP directly as presented above lies in the smaller initial set that results
from choosing points instead of using the entire prebox. Especially in the case
of non-linear ODEs, large initial sets may cause significant amounts of overesti-
mation that render the computed enclosures useless for propagation. Having
point-valued initial conditions, the amount of overestimation accumulating in
the enclosure of the emerging solution trajectories often remains much smaller,
leading to tight enclosures for longer durations. On the other hand, however, the
set enclosed by the bracketing trajectories’ enclosures may grow significantly. In
some cases, especially those that benefit most from coordinate transformations,
this growth is much stronger than that obtained from using VNODE-LP directly

3.5. BUILDING BRACKETING SYSTEMS AUTOMATICALLY 131

on the original problem. Bracketing enclosures and the direct method need
therefore be combined to exploit their complementarity.

One of the underlying observations for the theoretical work is that some
systems are monotone in that their “flows preserve a suitable partial ordering
on states, hence on initial conditions” [RMC10]. We will not repeat the theory,
references to the underlying mathematical literature, and proofs presented
in [RMC09, RMC10], but instead concentrate on the algorithmic aspects and
the integration into ODE deductions, since the sole contribution of this thesis
with respect to bracketing systems is their automatic computation (and their
use in iSAT-ODE) in contrast to the primarily manual approach followed in the
literature. We should point out, that our implementation of bracketing systems
does not fulfill the entire potential opened up by this theory, in particular, it
does not try to convert an ODE system into a “cooperative” [RMC10] one, though
this might be an extension that could increase the applicability of the approach.

Signs of the Jacobian Matrix. The first step in determining the applicability
of the bracketing approach and the construction of the bracketing system lies
in the computation of the signs of the off-diagonal elements of the Jacobian
matrix. Given as input is an ODE system ~̇x = ~f (~x) represented by a vector of
right-hand side syntax graphs. In the bracketing_system object a data structure
jacobian_matrix for the Jacobian matrix

J =

∂f1
∂x1
. . . ∂f1∂xn
...

∂fn
∂x1
. . . ∂fn∂xn

is initialized via the identify_relevant_partial_derivatives method by marking the
(i, j)-th element as relevant if xj occurs in the expression tree of fi , i.e. it is known
that this entry is not trivially zero. The diagonal elements of the matrix are
always marked as not relevant since they are not needed for the construction of
the bracketing system.

Afterwards, and whenever the signs of the Jacobian need to be determined,
the evaluate_partial_derivatives method is called, which takes as parameter
a box ~X . For each element of the jacobian_matrix that is marked relevant,
the bounds of the partial derivatives over the given box must be computed.
Internally, this method uses FADBAD++ and hence relies on the same automatic
differentiation routines that are used in VNODE-LP. Since these evaluation
results are sometimes too coarse to determine a unique sign, we have—after
discussing these issues with Nacim Ramdani—experimented with an improved
evaluation that uses a local optimization loop and the second-order partial
derivatives to get a tighter interval evaluation of the Jacobian in case the direct
evaluation contains positive and negative numbers and hence no unambiguous
sign information. Once more, the right balance of precision and runtime is a
matter of progress thresholds—in this case a fixed maximum recursion depth
for the splitting of the evaluation intervals during the optimization loop, which
we have fixed at 20. This maximum depth has not been subjected to intensive
experimentation, and may in fact be too large. Our main results have been
obtained using only the direct evaluation via FADBAD++, such that we consider
this optimization an experimental extension.

132 CHAPTER 3. ALGORITHMIC APPROACH

Constructing the Bracketing System. The simplest form of the bracketing
system approach, to which our implementation is confined, requires that all
relevant off-diagonal entries of the Jacobian have a uniquely determined sign.
Under this condition, we introduce a 2n-dimensional vector of bracketing
variables

x1
x1
...
xn
xn

,

in which xi represents the upper bracketing variable for xi and xi its lower
bracketing variable.

The generate_bracketing_system method then creates the actual ODE system
over these new variables. For variable xi , it traverses the right-hand-side
syntax tree representing fi and copies each node, except when reaching a node
representing a variable. If that variable is xi itself, the bracketing ODE expression
tree receives xi . If the variable is xj for any j , i, then there is a valid entry in
the Jacobian and its sign determines which of the bracketing variables to use.
For ∂fi/∂xj > 0, the lower bracketing variable is chosen, i.e. xj. For ∂fi/∂xj < 0,
it is the upper bracketing variable xj. When building the ODE for xi , the syntax
tree of fi is traversed again and copied, except that variable replacement is done
differently, i.e. when encountering xi in the syntax tree, it is replaced by xi ,
when encountering xj for j , i and ∂fi/∂xj > 0, it is replaced by xj, and finally
any xj with ∂fi/∂xj < 0 is replaced by xj. The rule is relatively simple: for the
variable representing the bracketing dimension itself take the same bracketing
variable as the one for which the right-hand-side is currently being built, for all
other variables, if the sign of the Jacobian is positive, take the same bracketing
direction, if the sign is negative, take the opposite bracketing variable.

Integration Step for the Bracketing System. So far, all we have is a brack-
eting system that is valid for the initial set, over which the Jacobian has been
computed. Similar to the “dynamic hybridization” approach discussed as related
work in Section 2.4, which first computes a step and then checks whether the
assumptions made in the computation still hold for the region that the step
covers, our bracketing system implementation uses an a-posteriori check of its
validity.

To compute a step, the bracketing system is given to a separate VNODE
solver object, and an integration step from time t to time t + h is performed
from the current enclosure. Initially, as was our goal, this enclosure consists
of a point. More precisely, the upper bracketing variables take the supremum
of the initial box and the lower bracketing variables its infinum, i.e. xi(0) =

inf(Xi(0)) and xi(0) = sup(Xi(0)). The upper bracketing variables together
therefore take the greatest point from the initial box, the lower bracketing
variables the smallest—the two corners needed to span the initial box. As in
the direct case, the integration yields a new enclosure at time t + h and an
a-priori enclosure over [t, t + h]. Since the bracketing system relies on the
assumption that the signs of the Jacobian are known and fixed, it is now
paramount to check whether this assumption holds on the entire a-priori

3.5. BUILDING BRACKETING SYSTEMS AUTOMATICALLY 133

enclosure. The validate_jacobian_matrix_for_box method therefore takes this
box, checks whether it is a subset of the region for which the jacobian_matrix is
known to be valid—initially the prebox—and if not, repeats the computation of
the relevant partial derivatives over this new box. If the signs do not change,
the region of validity can be extended and this step’s result can be accepted as
a valid bracketing enclosure. If the extension of the box over which the partial
derivatives are evaluated leads to a sign change, the step is discarded and the
validity of the bracketing system ends before t + h. As long as the bracketing
system is valid, the box between the two bracketing enclosures is an enclosure
of the original ODE system.

Example 14 (bracketing systems). Consider the example, which we also pre-
sented in [ERNF11],

ẋ
ẏ
ṗ
q̇
ṙ
ṡ

=

−sx − px
1+qy + ry + 0.1
sx − ry

0
0
0
0

with the following initial values: x0 ∈ [1, 1.4], y0 ∈ [0.00001, 0.4], p0 ∈ [0.9, 1.1],
q0 ∈ [1.1,1.3], r0 ∈ [0.45,0.55], and s0 ∈ [0.2,0.3].

First, the relevant entries of the Jacobian are identified:
not relevant not val id not val id not val id not val id not val id
not val id not relevant not relevant not relevant not val id not val id
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant

using the same ordering as above and indicating with “not valid” those entries
that need to be computed. Using the given initial values as a box over which
to perform this computation, the first relevant entry, ∂fx/∂y is found to be
contained in [0.878,2.552] and similarly all other relevant entries, leading to
the following Jacobian for the initial box (after some reformatting and reduction
of post-decimal digits for better readability):
not relevant [0.878 ,2.552] [−1.400,−0.657] [3.9e−6,0.616] [9.9e−6,0.401] [−1.401,−1]
[0.199 ,0.301] not relevant not relevant not relevant [−0.401,−9.9e−6] [1 ,1.401]
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant
not relevant not relevant not relevant not relevant not relevant not relevant

Each relevant entry has a unique sign information. A bracketing system can
therefore be generated. We examine just one of the original dimensions:
In the bracketing system , the or ig inal ODE

(d. ode_var_1 [’ x ’] / d . time =
((ode_var_2 [’ r ’] ∗ ode_var_3 [’ y ’])
+ (1/10 + ((ode_var_4 [’ s ’] ∗ (ode_var_1 [’ x ’] ∗ −1))
− ((ode_var_5 [’ p ’] ∗ ode_var_1 [’ x ’])
/ ((ode_var_6 [’ q ’] ∗ ode_var_3 [’ y ’]) + 1))))))

w i l l be replaced by the lower bracketing ODE (dim 0)
(d . ode_var_0 [’ x : lower ’] / d . time =

((ode_var_8 [’ r : lower ’] ∗ ode_var_2 [’ y : lower ’])
+ (1/10 + ((ode_var_11 [’ s :upper ’] ∗ (ode_var_0 [’ x : lower ’] ∗ −1))
− ((ode_var_5 [’ p :upper ’] ∗ ode_var_0 [’ x : lower ’])
/ ((ode_var_6 [’ q : lower ’] ∗ ode_var_2 [’ y : lower ’]) + 1))))))

134 CHAPTER 3. ALGORITHMIC APPROACH

and the upper bracketing ODE (dim 1)
(d . ode_var_1 [’ x :upper ’] / d . time =

((ode_var_9 [’ r : upper ’] ∗ ode_var_3 [’ y :upper ’])
+ (1/10 + ((ode_var_10 [’ s : lower ’] ∗ (ode_var_1 [’ x :upper ’] ∗ −1))
− ((ode_var_4 [’ p : lower ’] ∗ ode_var_1 [’ x :upper ’])
/ ((ode_var_7 [’ q :upper ’] ∗ ode_var_3 [’ y :upper ’]) + 1))))))

The dimension numbers of the bracketing system start afresh at 0, but their
symbolic names have been printed as well, allowing better traceability. For
creating the zeroth dimension of the bracketing system, x:lower, i.e. x, the
entries of the first row of the jacobian_matrix are relevant. For example, the sign
of the partial derivative of fx with respect to r is positive, hence r is replaced by
r, shown as r:lower. In the upper bracketing dimension x, it is replaced by r for
the same reason.

The first integration step with the bracketing system starts from the initial
box obtained from the two most extreme corners of the original prebox (again
reformatted and with fewer post-decimal digits):
bracketing system prebox :

pre (ode_var_0 [’ x : lower ’]) (0) = [1 , 1]
pre (ode_var_1 [’ x :upper ’]) (1) = [1.400 , 1.401]
pre (ode_var_2 [’ y : lower ’]) (2) = [9.9e−06, 1.0e−05]
pre (ode_var_3 [’ y :upper ’]) (3) = [0.400 , 0.401]
pre (ode_var_4 [’ p : lower ’]) (4) = [0.899 , 0.900]
pre (ode_var_5 [’ p :upper ’]) (5) = [1.100 , 1.101]
pre (ode_var_6 [’ q : lower ’]) (6) = [1.099 , 1.100]
pre (ode_var_7 [’ q :upper ’]) (7) = [1.300 , 1.301]
pre (ode_var_8 [’ r : lower ’]) (8) = [0.449 , 0.450]
pre (ode_var_9 [’ r : upper ’]) (9) = [0.550 , 0.551]
pre (ode_var_10 [’ s : lower ’]) (1 0) = [0.199 , 0.200]
pre (ode_var_11 [’ s :upper ’]) (1 1) = [0.300 , 0.301]

The bracketing system’s a-priori enclosure is then extracted and converted back
to the original dimensions by setting each Xi := [xi , xi]. The following box is
obtained:
Checking va l id i t y of bracketing system for box :

(ode_var_1 [’ x ’]) (0) = [0.634 , 1.401]
(ode_var_3 [’ y ’]) (1) = [9.999e−06, 0.468]
(ode_var_5 [’ p ’]) (2) = [0.899 , 1.101]
(ode_var_6 [’ q ’]) (3) = [1.099 , 1.301]
(ode_var_2 [’ r ’]) (4) = [0.449 , 0.551]
(ode_var_4 [’ s ’]) (5) = [0.199 , 0.301]

Since it is not a subset of the box for which the bracketing system’s validity is
known (i.e. currently only the original prebox), the signs of the Jacobian need to
be reevaluated.

In this case, the check is successful, as none of the signs change. Another
step can be performed with this bracketing system. In Figure 3.27, we show the
computed a-priori enclosures of the bracketing system and compare them with
the diverging direct enclosures at the points of time chosen by VNODE-LP’s step
size control.

Combination of the Direct and Bracketing Methods. To couple the direct
and bracketing methods, the algorithm for computing an enclosure up to the tem-
poral horizon, the enclosure data structure, and the refinement algorithms are
slightly extended with respect to the description from Section 3.3. If bracketing
systems are not disabled via a command-line switch, the enclose_flowinv_aware
method, which computes an enclosure up to the horizon, interleaves the inte-
gration steps of the direct method with those of the bracketing system. For this
purpose, it initializes data structures for both approaches and computes the

3.5. BUILDING BRACKETING SYSTEMS AUTOMATICALLY 135

0 2 4 6 8 10 12 14 16 18 20

−3
−2
−1

0
1
2
3
x

t

Figure 3.27: Comparison of bracketing system’s enclosure for x in Example 14
with direct method. Direct enclosures diverge spatially and are aborted early,
while bracketing enclosures lead to tight result for desired duration.

next step always with the method that “runs behind”, i.e. if an enclosure with the
direct method has been computed up to time td and with the bracketing system
up to tb, the next enclosure is computed with the direct method if td ≤ tb and
with the bracketing system otherwise. The sequence of enclosure objects is then
extended to always cover min(td , tb), i.e. the duration covered by both methods,
unless one of them has failed and therefore had to be stopped. In the enclosure
object, the internal data of both methods is stored to allow later refinement. The
actual box stored in the enclosure object is obtained by intersecting the direct
and bracketing results. During all later refinements, the reevaluation is done
using the stored internal representation from both methods (or from the one
that is valid in case the other one has failed) and intersecting the results. This
combination therefore increases the deduction routine’s robustness against one
of the methods failing, as shown in Figure 3.27, in which the direct method
alone would not have allowed an enclosure up to the horizon.

We have, again only as an experimental extension, also tried to automate
the hybrid bounding method presented in [RMC09]. Theoretically, it can be
understood as a preprocessing step on the automaton level that replaces a mode
with submodes in which different bracketing systems for the same dynamic
govern the continuous evolution—depending on the region of the state space and
the signs of the Jacobian in them. In a central submode, the original dynamic
is used instead of the bracketing systems, allowing to bridge gaps caused by
regions in which the signs of the Jacobian are not uniquely determined. Our
prototypical implementation does not try to apply this method on the automaton
level, but instead integrates it in the coupling of direct and bracketing methods
in the deduction routine. Lazily, it tries to compute an enclosure with the
bracketing and direct methods as shown above until the bracketing system is no
longer valid. Computing the next step with the direct enclosure alone, after this
step, it tries again to restart the bracketing system by analyzing the Jacobian
over the new enclosure. Such restarts are successful if the region in which one of
the partial derivatives changes its sign have been successfully left behind. While
we have employed this combination successfully on an example, we have seen
less positive effects on our larger benchmarks than we anticipated—probably

136 CHAPTER 3. ALGORITHMIC APPROACH

because the regions in which bracketing systems were not valid are too large
or in too relevant parts of the search domain. In principle however, this kind
of combination may facilitate the analysis of systems that need the bracketing
approach for tight enclosures yet cross regions of the state space where at least
the simple criterion of the Jacobian having uniquely determined signs does not
hold.

Chapter 4

Experimental Evaluation

We have described the research problem, its context, and our algorithmic
approach to its solution. As can be expected in any matter of undecidable
nature that involves huge algorithmic complexities, heuristics, and problems
with incompletenesses of the theoretical and practical kinds, “solution” is too
big a word. Our solver copes well with some problems of our choosing, even with
some taken from the literature, and it performs underwhelmingly on others. This
chapter’s task is to present these results, show applications, and thereby shed
some light on these strengths and weaknesses. To some degree, we also provide
comparisons to competitor tools to put these results into a better context.

As pointed out already in the introduction, the factual content of this thesis
has been subject of our own prior publications—referenced on many occasions
explicitly. In contrast to the other chapters, in which at least the text and
illustrations describing this content were written to a large degree specifically
for this thesis, this chapter draws most heavily from our prior publications not
only in its content, but also in the text and figures. While minor changes have
to be made for better presentation, notational consistency, layout, composition,
or similar reasons, essentially, this chapter quotes our own publications.

4.1 Bounded Model Checking Case Studies

The text and graphics presented in this section are taken from [ERNF12a], copy-
righted by Springer-Verlag Berlin Heidelberg, and reprinted here in a modified
version under the permission granted by the copyright transfer statement.

4.1.1 Two Tank System

The goal of this first benchmark model lies in the evaluation of the integrated
tool and the influence of the different enclosure methods. A special focus lies
on the effect of the algorithmic enhancements, chiefly the storing of VNODE-
LP’s internal state and its usage for accelerated reevaluations, the detection of
trajectories leaving the region admissible under the activated flow invariants,
and the improved tree-based caching algorithm. As a baseline for assessing the
effect of these enhancements serves our previous implementation that we used
to obtain results for the same benchmark in [ERNF11].

137

138 CHAPTER 4. EXPERIMENTAL EVALUATION

·k4x2

·k2

k1

x1

k3

For x2 > k3:
(
ẋ1
ẋ2

)
=

(
k1 − k2

√
x1 − x2 + k3

k2
√
x1 − x2 + k3 − k4

√
x2

)

For x2 ≤ k3:
(
ẋ1
ẋ2

)
=

(
k1 − k2

√
x1

k2
√
x1 − k4

√
x2

)

Figure 4.1: Structure and dynamics of the two tank hybrid system
(from [SKHP97]).

We apply our solver to the two-tank model from [SKHP97], which has been
frequently used as a case study for verification tools e.g. in [HHMWT00, RS07].
This system comprises two tanks connected by a tube. The first tank has an
inflow of constantly k1 = 0.75 volume units, and its base is k3 = 0.5 length
units above the base of the second tank. The connecting tube is characterized
by a constant factor k2 = 1, which also characterizes the outflow of the system
as k4 = 1.

Figure 4.1 illustrates this setting and formalizes the dynamic behavior of
the liquid’s height x1 and x2 in the two tanks. The system’s behavior switches
between two dynamics, when x2 reaches the outlet from tank 1 and therefore
exerts a counter pressure against the incoming flow. Note that the model is
implicitly bounded to the case that x2 ≤ x1 + k3, since it does not provide the
dynamics for the inverse direction. To understand better the dynamics of this
system and the proof obligations we encoded, Figure 4.2 depicts simulated
trajectories.

Similar to our earlier examples, we encode this model in the iSAT-ODE input
language and use the ODEs from Figure 4.1 directly as constraints.1

Bounded Reachability. To validate the model, we first check bounded reach-
ability properties. As can be assumed from Figure 4.2, there should not
be any trajectory leading from region ~D = [0.70,0.80] × [0.45,0.50] to ~E =

[0.60,0.80] × [0.60,0.65]. This property has been verified by Henzinger et. al.
using HyperTech [HHMWT00].

We restrict the global time ≤ 100 and each step duration delta_time ≤ 10.
To avoid unnecessary non-determinism in the model, all steps are explicitly
enforced in the transition relation to take the maximum possible duration.
They may be shorter only if they reach the switching surface at x2 = k3, if the
time = 100, or if (x1, x2) reaches ~E.

In [ERNF11], we reported that our solver could prove unsatisfiability of this
bounded property for up to 300 unwindings of the transition system within
3109.1 seconds on a 2.4 GHz AMD Opteron machine, which is also used for
the runtime measurements presented here for this benchmark. As can be seen

1Original models and raw results from [ERNF11]:
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz
Updated models and raw results from [ERNF12a]:
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SoSyM_2012_models.tar.gz

http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SEFM_2011_models.tar.gz
http://www.avacs.org/fileadmin/Benchmarks/Open/iSAT_ODE_SoSyM_2012_models.tar.gz

4.1. BOUNDED MODEL CHECKING CASE STUDIES 139

C B

A

DCi
DCo

D

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
x2

k3

x1 + k3 < x2

Figure 4.2: Simulated trajectories for the two tanks system, inner and outer
bounds of the don’t care mode, and regions ~A - ~E used in the different verification
conditions.

from the runtime graphs in Figure 4.3, for the same model, this runtime can
no longer be achieved by the current version of our tool, unless flow invariants
provide additional pruning. For the version without flow invariants (graph “w/o
flow invariants, all encl. methods”), the runtime has increased to 17098 seconds
on the same machine, a 5.5-fold increase. Also, the previously reported flat
development of the cumulative runtimes is no longer observable. A likely reason
for this is that our previous implementation contained a subtle bug in the
collection of reasons for direction deductions in that it did not add all active
ODE constraints to the reason set and hence generated conflict clauses that
sometimes were too general. Such clauses can potentially prune off too large
parts of the search space (in the worst case including solutions) and may hence
accelerate the search in an unjustified way.

Among the other possible explanations for the slow-down, we can safely rule
out detrimental effects of our additional deduction mechanisms and optimized
data structures. A negative impact from the caching behavior, which has been
measured to take up only 13.2 seconds, and also of other changes in the ODE
solver (e.g. the evaluation of stored Taylor coefficients for refinement) are unlikely,
since our profiling indicates that only 2326.8 seconds are spent in total within
functions of the ODE layer, indicating that the majority of the runtime was
consumed by the iSAT core, i.e. for splitting, deductions, and conflict analysis.

We have also extended the benchmark to make use of the flow invariant
feature that was not available in the version used in [ERNF11] by adding flow
invariants for the variable domains and for capturing the mode invariants of
x2(time) ≤ k3 or x2(time) ≥ k3. For this more elaborate benchmark version,
iSAT-ODE is able to prove unsatisfiability for 300 unwinding depths within just

140 CHAPTER 4. EXPERIMENTAL EVALUATION

5
7

6

3

12

8

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300
BMC depth

cumulative CPU time [s]

(1) w/o flow invariants, all encl. methods
(2) w/o flow invariants, w/o bracketing method

(3) w/o flow invariants, w/o direct method
(4) w/o flow invariants, w/o direction deduction

(5) with flow invariants, all encl. methods
(6) with flow invariants, w/o bracketing method

(7) with flow invariants, w/o direct method
(8) with flow invariants, w/o direction deduction

Figure 4.3: Cumulative CPU times for checking (un)reachability from region ~D to
region ~E for the original variant of the two tank system without flow invariants
and for a new variant which contains flow invariants for each mode. Comparison
of the different solver settings, disabling one enclosure method at a time, i.e.
comparing: all enclosure methods together, without bracketing, without direct
enclosures, and without direction deduction.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 141

255.7 seconds, a more than 12-fold improvement over the originally reported
runtime.

Caching. To assess the quality of the tree-based cache implementation in light
of the previously used projection-based cache sometimes using up significant
portions of the total runtime, we have additionally measured the runtime spent
in the ODE caching layer. Over all solver runs shown in Figure 4.3, the highest
measured percentage is 2.5% of the total runtime spent within the ODE layer
(measured for the original version of the model without flow invariants, and the
solver set to not use direction deduction). In that case, the solver (before running
into the 20000 seconds timeout) accumulates 544425 calls to the ODE solver,
of which over 95% have been detected to be cached. We therefore conclude,
that the cache implementation has been adequately prevented from becoming a
dominant runtime factor even for large numbers of accesses.

Unbounded Trajectory Containment. Although the formula structure is a
bounded unwinding of the transition system, inductive arguments may be
used to prove unbounded properties. One can easily see that region ~A =

[0.6,0.7] × [0.4,0.6] contains an equilibrium point. However, the simulation
also shows that there are trajectories leaving this region. We extend our model to
show that trajectories can leave region ~A only on a bounded prefix, but thereafter
stay in ~A forever.

First, we guess a τ > 0 (supported by looking at some simulated trajectories).
With

Ml := {all trajectories of length ≥ l},
from showing that

∀~x ∈ M2τ : [0,2τ]→ R2 :
(
~x(0) ∈ ~A ⇒ ∀t ∈ [τ,2τ] : ~x(t) ∈ ~A

)
(4.1)

follows by inductive application of (4.1), as facilitated by time invariance,

⇒ ∀~x ∈ M∞ : [0,∞)→ R2 :
(
~x(0) ∈ ~A ⇒ ∀t ∈ [τ,∞) : ~x(t) ∈ ~A

)
.

Intuitively, we show that all trajectories of length 2τ stay in ~A for delta_time ∈
[τ,2τ] (ignoring their behavior for [0, τ)). All unbounded trajectories must have
these trajectories of length 2τ as prefix. At τ, they are thus (again) in ~A. Due to
time invariance, we can consider (x1, x2)(τ) as a new starting point. Since it lies
in ~A, we have already proven that for [τ + τ, τ + 2τ], the trajectory will lie in ~A
again. For the time in between, we already know that it is in ~A. By repeating
this process ad infinitum, we know that the trajectory can never leave ~A again.

Note that this proof is related to the idea of region stability [PW07] and
can be thought of as a stabilization proof for an unknown (and maybe hard to
characterize) sub-region ~AI ⊆ ~A into which all trajectories from ~A stabilize, and
which is an invariant region for the system.

Table 4.1 summarizes runtimes for this proof using iSAT-ODE and the
different enclosure methods. It also compares the current implementation with

142 CHAPTER 4. EXPERIMENTAL EVALUATION

all no bracketing no direct no direction
depth old new o/n old new o/n old new o/n old new o/n

1 C, 111.9 C, 149.2 0.75 C, 42.0 C, 4.7 9.01 C, 61.5 C, 94.0 0.65 C, 111.5 C, 146.7 0.76
2 C, 467.5 C, 157.9 2.96 C, 981.0 C, 451.0 2.18 C, 346.3 C, 102.9 3.36 C, 342.0 C, 39.7 8.61
3 U, 674.0 U, 147.8 4.56 U, 5011.6 U, 196.9 25.45 U, 404.2 U, 96.5 4.19 C, 478.8 C, 126.0 3.80
4 U, 812.1 U, 237.2 3.42 U, 1995.1 U, 706.4 2.82 U, 499.1 U, 92.4 5.40 C, 547.5 C, 196.0 2.79
5 U, 986.0 U, 270.3 3.65 U, 2431.7 U, 276.1 8.81 U, 601.1 U, 125.9 4.77 C, 682.4 C, 243.7 2.80
6 U, 1126.1 U, 227.2 4.96 U, 3303.4 U, 466.7 7.08 U, 705.0 U, 227.3 3.10 C, 834.2 C, 191.7 4.35
7 U, 1277.2 U, 254.8 5.01 U, 2486.8 U, 224.7 11.07 U, 803.6 U, 143.2 5.61 C, 982.5 C, 328.6 2.99
8 U, 1451.4 U, 279.4 5.20 U, 5273.3 U, 406.5 12.97 U, 890.8 U, 159.6 5.58 C, 1115.7 C, 434.1 2.57
9 U, 1584.6 U, 328.2 4.83 U, 4905.2 U, 444.0 11.05 U, 966.5 U, 151.5 6.38 C, 1235.8 C, 1203.0 1.03

10 U, 1706.6 U, 312.2 5.47 U, 6396.1 U, 430.7 14.85 U, 1053.2 U, 152.2 6.92 C, 1356.0 C, 807.6 1.68

Table 4.1: Comparison of the old [ERNF11] and the new implementations on
the two tank system for checking unbounded containment in region ~A. Column
all shows results and CPU times (seconds) when using all enclosure methods
combined. In the subsequent columns, one of the methods is disabled. In the
o/n columns, the old runtime is shown in multiples of the new runtime. In each
cell, left to the runtime, “C” represents a candidate solution while “U” shows
that the formula has been proven to be unsatisfiable and hence the proof of
containment is successful.

the older one reported in [ERNF11]. Our model encodes the above proof scheme
in the following way. If a trajectory exists that is shorter than 2τ or that reaches
a point outside ~A in time ∈ [τ, 2τ], this trajectory satisfies the model. The proof
is successful when the solver finds an unwinding depth k of the transition
system upon which the model becomes unsatisfiable. Here, an unwinding depth
of 3 suffices to prove the desired property. Without the direction deduction
presented in Subsection 3.3.8, the solver fails to prove unsatisfiability, because
it always finds counter examples that stay on the switching surface, spending
there only tiny amounts of time. These trajectories satisfy the target condition
of having time ≤ 2τ and do not allow proving (4.1). Direction deduction hence
enables proving the property.

The runtimes show that the approach without the direct enclosure (using
only bracketing enclosures and direction deductions) outperforms both, the
restriction to the direct usage of VNODE-LP with direction deduction and the
combination of all enclosure methods together on this benchmark in nearly all
cases. The table also shows that the changes we made to our implementation
have significantly accelerated the solver in nearly all cases for this benchmark
instance, with slowdowns only occurring for unwinding depth one. Note that
also for this and the following instances, the results reported for the old imple-
mentation from [ERNF11] may have been influenced by the incomplete set of
reasons generated for direction deductions. We assume that those too-general
deductions have caused at most an undue acceleration, since they prune off
parts of the search space for which they should not have been valid.

Introducing Artificial Non-Determinism and Hysteresis. Trying a direct
inductive proof for the region ~B = [0.4,0.8] × [0.4,0.7] (i.e. showing that ~B
cannot be left with one step of the transition system) fails with our tool since ~B’s
corner at (0.4, 0.4) cannot be represented exactly by floating-point numbers. To
compensate, ~B is overapproximated to capture rounding errors, hence includes
points that lie slightly outside ~B. Using the same proof scheme as above can be
expected to work, as the simulated trajectories point inwards from the border
of ~B. Yet, applying this proof scheme, the solver finds trajectories that can

4.1. BOUNDED MODEL CHECKING CASE STUDIES 143

all no bracketing no direct no direction
depth old new o/n old new o/n old new o/n old new o/n

1 C, 17.7 C, 2.6 6.82 C, 9.4 C, 1.2 8.09 C, 12.9 C, 1.6 7.91 C, 15.4 C, 2.6 5.96
2 C, 163.9 C, 10.2 16.02 C, 57.9 C, 5.2 11.08 C, 81.9 C, 6.9 11.82 C, 157.4 C, 8.7 18.14
3 C, 198.9 C, 16.2 12.24 C, 71.8 C, 8.9 8.03 C, 126.9 C, 10.8 11.78 C, 202.3 C, 12.6 16.02
4 C, 666.6 C, 18.0 37.07 C, 193.6 C, 8.4 22.94 C, 146.7 C, 12.2 11.99 C, 206.9 C, 14.4 14.41
5 U, 2334.2 U, 106.6 21.90 U, 3270.2 U, 62.6 52.20 C, 183.4 U, 67.7 (2.71) C, 283.6 C, 15.8 17.96
6 U, 4615.6 U, 265.5 17.38 U, 1441.2 U, 59.2 24.36 C, 182.2 U, 146.3 (1.25) C, 122.0 C, 18.1 6.75
7 U, 2967.1 U, 171.6 17.29 C, 1934.7 U, 75.5 (25.61) C, 144.1 U, 106.2 (1.36) C, 123.9 C, 21.2 5.84
8 U, 2559.0 U, 223.7 11.44 U, 2953.0 U, 74.3 39.72 C, 201.6 U, 398.4 (0.51) C, 123.6 C, 21.2 5.84
9 U, 2184.1 U, 459.4 4.75 U, 4121.2 U, 115.1 35.80 C, 135.2 U, 181.6 (0.74) C, 127.2 C, 21.2 5.98

10 U, 5541.6 U, 308.9 17.94 U, 7717.3 U, 166.3 46.39 C, 272.5 U, 333.1 (0.82) C, 127.6 C, 21.8 5.86

Table 4.2: Comparison of results and CPU times (seconds) for checking un-
bounded containment in ~B. The old columns again refer to our earlier imple-
mentation [ERNF11].

all no bracketing no direct no direction
depth old new o/n old new o/n old new o/n old new o/n

1 C, 55.3 C, 5.9 9.34 C, 20.2 C, 1.6 12.42 C, 34.4 C, 4.3 7.93 C, 54.9 C, 6.2 8.79
2 C, 203.3 C, 24.7 8.22 C, 83.4 C, 6.9 12.09 C, 103.8 C, 17.4 5.96 C, 198.3 C, 25.7 7.71
3 C, 308.1 C, 35.1 8.78 C, 121.1 C, 11.4 10.62 C, 155.8 C, 24.3 6.41 C, 291.8 C, 40.3 7.24
4 C, 419.1 C, 56.1 7.47 C, 151.0 C, 15.2 9.94 C, 199.9 C, 35.7 5.60 C, 386.6 C, 54.3 7.12
5 C, 499.3 C, 60.9 8.20 C, 163.6 C, 71.2 2.30 C, 551.7 C, 42.0 13.12 C, 468.5 C, 103.0 4.55
6 C, 525.6 C, 73.0 7.20 C, 177.8 C, 44.6 3.99 C, 536.6 C, 51.3 10.46 C, 492.9 C, 74.0 6.66
7 C, 555.6 C, 102.7 5.41 C, 196.8 C, 34.2 5.75 C, 449.9 C, 100.2 4.49 C, 524.4 C, 106.6 4.92
8 C, 577.6 C, 94.8 6.10 C, 223.8 C, 49.1 4.56 C, 448.9 C, 62.7 7.15 C, 549.3 C, 98.1 5.60
9 C, 599.6 C, 492.9 1.22 C, 235.0 C, 69.6 3.38 C, 447.4 C, 89.2 5.02 C, 574.5 C, 176.5 3.25

10 C, 617.6 C, 93.8 6.59 C, 279.7 C, 52.1 5.37 C, 448.7 C, 214.2 2.10 C, 592.2 C, 159.8 3.71

Table 4.3: Comparison of results and CPU times (seconds) for checking un-
bounded containment in region ~C (not containing an equilibrium point) with
old [ERNF11] and new implementation.

chatter indefinitely at ~p = (0.5, 0.5), since ẋ2 = 0 in ~p. This chattering is a valid
behavior, though irrelevant for the actually intended proof of ~B’s invariance.

We therefore identify intersections of the switching surface with ẋ2 = 0 (i.e.
solutions to the constraint system k2

√
x1 − k4

√
x2 = 0 ∧ x2 = k3) and, finding

only this one in ~p, add a don’t-care mode around it—depicted in Figure 4.2 as
~DCi = [0.49,0.51] × [0.49,0.51]. Since this region lies well inside ~B, we allow

any trajectory that reaches it to jump immediately or after an arbitrary positive
amount of time to the outer border of the don’t-care mode, illustrated by ~DCo,
which is ε = 0.0625 away from ~DCi . We also forbid any trajectory to enter ~DCi .
This modification trades in accuracy by introducing non-determinism for the
benefit of an artificial hysteresis: trajectories which could formerly stutter in ~p
can now jump to any point on the border of ~DCo, but must then move along the
system’s dynamics again, consuming time.

With this modification, we can prove that ~B is left for less than τ = 0.0625
using unwinding depths k ≥ 5. The results are shown in Table 4.2. For this
instance of the model, the new implementation is not only faster for all unwind-
ing depths, when the result is at least as strong as the result obtained from
the old implementation, it is also capable of producing successful proofs, i.e.
unsatisfiability results, more often. A potential reason could be that the evalua-
tion of the stored Taylor coefficients using all internal solution representations
computed by VNODE-LP can in some cases generate tighter enclosures than
the old evaluation scheme, since it does not introduce an additional wrapping of
the starting set, which was formerly unavoidable during the re-initialization of
the solver.

144 CHAPTER 4. EXPERIMENTAL EVALUATION

all no bracketing no direct no direction
depth a b a/b a b a/b a b a/b a b a/b

1 C, 149.2 C, 148.2 1.01 C, 4.7 C, 4.7 1.00 C, 94.0 C, 94.4 1.00 C, 146.7 C, 147.6 0.99
2 C, 157.9 C, 112.7 1.40 C, 451.0 C, 136.3 3.31 C, 102.9 C, 100.3 1.03 C, 39.7 C, 69.7 0.57
3 U, 147.8 U, 108.4 1.36 U, 196.9 U, 243.2 0.81 U, 96.5 U, 69.6 1.39 C, 126.0 C, 95.0 1.33
4 U, 237.2 U, 107.7 2.20 U, 706.4 U, 239.5 2.95 U, 92.4 U, 79.2 1.17 C, 196.0 C, 132.2 1.48
5 U, 270.3 U, 126.7 2.13 U, 276.1 U, 448.2 0.62 U, 125.9 U, 92.2 1.37 C, 243.7 C, 185.9 1.31
6 U, 227.2 U, 142.9 1.59 U, 466.7 U, 1182.5 0.39 U, 227.3 U, 112.2 2.03 C, 191.7 C, 217.1 0.88
7 U, 254.8 U, 160.9 1.58 U, 224.7 U, 582.0 0.39 U, 143.2 U, 131.8 1.09 C, 328.6 C, 240.6 1.37
8 U, 279.4 U, 179.4 1.56 U, 406.5 U, 696.2 0.58 U, 159.6 U, 124.5 1.28 C, 434.1 C, 450.2 0.96
9 U, 328.2 U, 199.4 1.65 U, 444.0 U, 1509.2 0.29 U, 151.5 U, 149.1 1.02 C, 1203.0 C, 266.0 4.52

10 U, 312.2 U, 217.4 1.44 U, 430.7 U, 627.7 0.69 U, 152.2 U, 157.3 0.97 C, 807.6 C, 532.4 1.52

Table 4.4: Comparison solver results and CPU times (seconds) using our new
implementation on two variants of the containment check in region ~A. Column
a contains the results for the original model without flow invariants, column b
those for the modified version with flow invariants.

all no bracketing no direct no direction
depth a b a/b a b a/b a b a/b a b a/b

1 C, 2.6 C, 2.6 0.99 C, 1.2 C, 1.2 0.98 C, 1.6 C, 1.6 0.99 C, 2.6 C, 2.6 1.00
2 C, 10.2 C, 11.3 0.91 C, 5.2 C, 5.7 0.92 C, 6.9 C, 7.6 0.91 C, 8.7 C, 11.7 0.74
3 C, 16.2 C, 23.3 0.70 C, 8.9 C, 10.2 0.88 C, 10.8 C, 14.1 0.76 C, 12.6 C, 15.2 0.83
4 C, 18.0 C, 25.2 0.71 C, 8.4 C, 14.4 0.58 C, 12.2 C, 15.4 0.80 C, 14.4 C, 25.3 0.57
5 U, 106.6 U, 155.6 0.69 U, 62.6 U, 93.9 0.67 U, 67.7 U, 93.3 0.73 C, 15.8 C, 31.9 0.50
6 U, 265.5 U, 399.8 0.66 U, 59.2 U, 61.8 0.96 U, 146.3 U, 162.7 0.90 C, 18.1 C, 37.2 0.49
7 U, 171.6 U, 405.2 0.42 U, 75.5 U, 72.9 1.04 U, 106.2 U, 176.7 0.60 C, 21.2 C, 53.4 0.40
8 U, 223.7 U, 297.4 0.75 U, 74.3 U, 147.9 0.50 U, 398.4 U, 356.0 1.12 C, 21.2 C, 65.7 0.32
9 U, 459.4 U, 447.7 1.03 U, 115.1 U, 69.9 1.65 U, 181.6 U, 257.9 0.70 C, 21.2 C, 55.4 0.38

10 U, 308.9 U, 999.8 0.31 U, 166.3 U, 206.9 0.80 U, 333.1 U, 389.0 0.86 C, 21.8 C, 88.2 0.25

Table 4.5: Comparison solver results and CPU times (seconds) using our new
implementation on two variants of the containment check in region ~B. Column
a contains the results for the original model without flow invariants, column b
those for the modified version with flow invariants.

Evaluation on an Unstable Instance. We also applied this proof scheme to the
region ~C = [0.3, 0.4]×[0.6, 0.7] again with unwinding depths 1 to 10. As expected,
none of the resulting formulae was proven unsatisfiable. Runtimes were again
consistently faster with the new implementation, ranging from 1.6 seconds for
unwinding depth 1 without bracketing system usage to 492.9 seconds observed
for depth 9, using all methods in combination. Speedups were between 1.22 for
depth 9 with all methods and 13.12 for depth 5 with disabled direct VNODE-LP
usage. Detailed results are shown in Table 4.3.

Model Instances With Flow Invariants. Using the newly introduced feature
of flow invariants, we repeated the checks for containment in region ~A and ~B on a
modified version of the model in which the domain bounds and mode invariants
for the x2 ≥ k3 and x2 ≤ k3 modes were added. Table 4.4 compares the results
of the region ~A containment check for these two different model instances using
our current implementation, Table 4.5 shows the same comparison for the
containment check in region ~B. These results show that adding flow invariants
to a model can influence the solving times in both directions, yielding roughly as
many speedups as slowdowns between 4-fold increases and 4.5-fold reductions
in solving times.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 145

x

y

air fan

movement vx = 1

primary
lane

secondary
lane

object_2

object_1

Figure 4.4: Schematic drawing of the conveyor belt system.

4.1.2 A Conveyor Belt System

In order to evaluate iSAT-ODE on a benchmark with a larger discrete and
continuous state space and more complex non-linear dynamics, we have modeled
a fictitious yet realistic system of a sorting facility in which light packages that
are traveling on a conveyor belt can be pushed by an air blast from the primary
lane on which they arrive to a secondary lane. Figure 4.4 shows a schematic
drawing of this system. Objects arrive from the left (x, y) = (0,0) and move in
positive x-direction with constant velocity vx = 1. Centered at position x = 5,
an air fan can blow air to exert a force on the objects in its vicinity. The force
applied to an object at position (x, y) is then given by F = Fα · e−((x−5)2+y2), where
Fα is the maximum force the air fan can exert. The force distribution over the
position is shown in Figure 4.5 for a fixed Fα = 1.0 (in the benchmark models,
Fα takes unknown but constant values from different ranges).

The controller of the system evaluates a sensor at x = 0, the starting position
of object_1, and subsequently decides to activate the air flow. To capture the
uncertainties in the involved measurement, the signal processing latencies, and
the actuator reactiveness, we model the switching to occur at an unknown time
point during [Tearliest_act , Tlatest_act]. Similarly, the controller deactivates the air
fan at an unknown time point during [Tearliest_deact , Tlatest_deact].

While the objects move with constant velocity vx = 1 in x-direction due to the
mechanical coupling with the grooves in the conveyor belt, their movement in
y-direction obeys a slip-stick friction model. When in sticking mode, the object’s
y-velocity vy is 0 and does not change. Up to a maximum static friction force,
all externally applied forces are counteracted by the friction. However, as soon
as the external force from the air fan overcomes this maximum friction force,
the object starts to slip and the force that counteracts the acceleration caused
by the air blast force is governed by kinetic friction which is substantially lower
than the static friction. The object goes back to the sticking mode only when its
velocity has decreased to zero again.

Flow Invariants. As described earlier, flow invariants in our formalism can
only be given by simple upper or lower bounds on variables that are defined by
ODEs. In the above slip-stick model, however, there is a more complex invariant
on the x and y variables, representing the constraint that the object sticks as
long as the force F = Fα ·e−((x−5)2+y2) does not exceed the maximum static friction
force Fs_max = µs ·m · g, where µs is the static friction coefficient, m the object’s
mass, and g the gravitational constant. The direct flow invariant for the mode
sticking when the air blast is active (symbolized by air_blast_on) is:

Fα · e−((x−5)2+y2) − µs ·m · g ≤ 0.

146 CHAPTER 4. EXPERIMENTAL EVALUATION

0
5

10

0
0.5

1
1.5

0
0.5

1
F (x, y)

x
y

Figure 4.5: Air blast force distribution over (x, y) postion.

In order to formulate this flow invariant in a way compatible with our restriction,
we introduce a new variable

f := Fα · e−((x−5)2+y2) − µs ·m · g ≤ 0,

and simply calculate its derivative with respect to the time t, i.e.

ḟ =
∂f

∂x
·

=1︷︸︸︷
ẋ +

∂f

∂y
·

=0︷︸︸︷
ẏ

= Fα · e−((x−5)2+y2) · (−2) · (x − 5) · ẋ
= Fα · e−((x−5)2+y2) · (−2x + 10).

By adding this expression for ḟ as an additional ODE to the system and adding
as initialization of f = Fα · e−((x−5)2+y2) − µs · m · g when entering the mode, we
can add f (time) ≤ 0 as flow invariant and thus model the complex condition by
means of a simple upper bound on a newly introduced variable.

Modeling and encoding. Figure 4.6 shows the complete conveyor belt model
as a system of parallel hybrid automata with three components for object_1,
object_2, and the controller ctrl . Each object automaton consists of four states
to capture the different dynamics depending on whether the object is sticking or
slipping and whether the air blast is active or inactive. Jumps occur hence when
either the air blast is activated or deactivated by the controller (at the bottom
of the figure) or when an object satisfies the condition to leave the sticking
or slipping regime. Due to a restriction in iSAT-ODE, the parameters for the
objects’ masses m1 and m2 as well as for the maximum force Fα of the air blast
have to be modeled explicitly as dimensions of the ODE system since their exact
value is unknown. We therefore also show these explicit dimensions in the
automaton. For the friction constants µk and µs and the gravitational constant
g, we have assumed known exact values and therefore do not have to model
them by additional dimensions. The initial values for x, Fα, m1, and m2 are
taken from intervals denoted with X, FA,M1, and M2 respectively. Additionally,
the controller’s behavior depends on choices for Tearliest_act , Tlatest_act , Tearliest_deact ,
and Tlatest_deact . The instantiation of these intervals allows a significant amount
of parameterization, which we exploit when using this model as a benchmark.

The nominal behavior of the system is that after reaching t = 10, object_1
has reached the secondary lane of the conveyor belt, i.e. satisfies y ≥ 1, while

4.1. BOUNDED MODEL CHECKING CASE STUDIES 147

sticking_1 ∧ ¬air_blast_on

ẋ1 = vx = 1
ẏ1 = 0
v̇y1 = 0
ṁ1 = 0
Ḟα = 0
ḟ1 = 0

object_1 sticking_1 ∧ air_blast_on

ẋ1 = vx = 1
ẏ1 = 0
v̇y1 = 0
ṁ1 = 0
Ḟα = 0

ḟ1 = e
−((x1−5)2+y2

1) · Fα · (−2x1 + 10)

f1 ≤ 0

slipping_1 ∧ ¬air_blast_on

ẋ1 = vx = 1
ẏ1 = vy1

v̇y1 = − µk1︸︷︷︸
=0.5

· g︸︷︷︸
=9.81ṁ1 = 0

Ḟα = 0
ḟ1 = 0

vy1 ≥ 0

slipping_1 ∧ air_blast_on

ẋ1 = vx = 1
ẏ1 = vy1

v̇y1 = m
−1
1 · e−((x1−5)2+y2

1) · Fα −µk1︸︷︷︸
=0.5

· g︸︷︷︸
=9.81ṁ1 = 0

Ḟα = 0
ḟ1 = 0

vy1 ≥ 0

air_blast_on/
f1 := Fα ·
e−((x1−5)2+y2

1)

− µs1 ·m1 · g

¬air_blast_on/
f1 := 0

air_blast_on
∧ f1 = 0

v1 = 0 ∧ air_blast_on/
f1 := Fα · e−((x1−5)2+y2

1)

− µs1 ·m1 · g

air_blast_on

¬air_blast_on

v1 = 0
¬air_blast_on

∧ v1 = 0

air_blast_on
∧ v1 = 0 /

f1 := Fα · e−((x1−5)2+y2
1)

−µs1 ·m1 · g

x1 :∈ X1

y1 := 0
vy1 := 0
f1 := 0
Fα :∈ FA
m1 :∈ M1

sticking_2 ∧ ¬air_blast_on

ẋ2 = vx = 1
ẏ2 = 0
v̇y2 = 0
ṁ2 = 0
Ḟα = 0
ḟ2 = 0

object_2 sticking_2 ∧ air_blast_on

ẋ2 = vx = 1
ẏ2 = 0
v̇y2 = 0
ṁ2 = 0
Ḟα = 0

ḟ2 = e
−((x2−5)2+y2

2) · Fα · (−2x2 + 10)

f2 ≤ 0

slipping_2 ∧ ¬air_blast_on

ẋ2 = vx = 1
ẏ2 = vy2

v̇y2 = − µk2︸︷︷︸
=0.5

· g︸︷︷︸
=9.81ṁ2 = 0

Ḟα = 0
ḟ2 = 0

vy2 ≥ 0

slipping_2 ∧ air_blast_on

ẋ2 = vx = 1
ẏ2 = vy2

v̇y2 = m
−1
2 · e−((x2−5)2+y2

2) · Fα −µk2︸︷︷︸
=0.5

· g︸︷︷︸
=9.81ṁ2 = 0

Ḟα = 0
ḟ2 = 0

vy2 ≥ 0

air_blast_on/
f2 := Fα ·
e−((x2−5)2+y2

2)

− µs2 ·m2 · g

¬air_blast_on/
f2 := 0

air_blast_on
∧ f2 = 0

v2 = 0 ∧ air_blast_on/
f2 := Fα · e−((x2−5)2+y2

2)

− µs2 ·m2 · g

air_blast_on

¬air_blast_on

v2 = 0
¬air_blast_on

∧ v2 = 0

air_blast_on
∧ v1 = 0 /

f2 := Fα · e−((x2−5)2+y2
2)

−µs2 ·m2 · g

x2 :∈ X2

y2 := 0
vy2 := 0
f2 := 0
Fα :∈ FA
m2 :∈ M2

phase = 0
¬air_blast_on

ṫ = 1

t ≤ Tlatest_act

phase = 1
air_blast_on
ṫ = 1

t ≤ Tlatest_deact

phase = 2
¬air_blast_on

ṫ = 1t := 0
t ≥ Tearliest_act /

air_blast_on

t ≥ Tearliest_deact /
¬air_blast_on

ctrl

Figure 4.6: Conveyor belt system modeled by parallel automata

148 CHAPTER 4. EXPERIMENTAL EVALUATION

0 2 4 6 8 10
0

0.5

1

t

y

Figure 4.7: Numerically simulated nominal trajectory for the conveyor belt
system of 10 seconds length. The dashed line shows the second object’s y-
position, which does not change, while the first object changes its lane as
desired.

object_2 has not been pushed off the primary lane, despite its proximity to the
first object. A simulated trajectory that satisfies these properties can be seen in
Figure 4.7.

Model Checking. The goal of model checking is to find trajectories which
violate this property, i.e. at least one of the objects ends up on the wrong lane.

Using simulation, we have identified ten parameter ranges which we will
subsequently analyze by model checking using iSAT-ODE. Table 4.6 gives an
overview over these parameters and also shows aggregated simulation results,
which give a hint at the expected outcome for model checking using each of the
parameter sets.

Benchmark Results. Figures 4.8–4.10 show all results obtained from 120
iSAT-ODE solver runs on a 2.6 GHz AMD Opteron machine (running multiple
instances on parallel cores independently) with a memory limit of 8 GiB each and
50000 seconds timeout. In the figures, the following abbreviations have been
used: all (all ODE enclosure methods active), no-brsys (all enclosure methods
except the bracketing systems), no-direct (all except the direct usage of VNODE-
LP), no-direction (all except direction deduction); Heuristics: disc-fst (split down
all discrete variables first), dyn-rel-width (split variable whose current range
is largest relative to its domain width), and default-heur (default heuristic: no
sorting, split round robin).

Observations and Evaluation. The data obtained from the simulation runs
(see last row of Table 4.6) suggests that sets 01, 03, and 03_wider01 are unsafe,
i.e. lead to error trajectories, while sets 02_point to 02_wider06 are safe, i.e. the
system does not have error trajectories for parameter choices from these ranges.
Consistent with this expectation, iSAT-ODE finds error trajectories in the form
of candidate solution boxes for sets 01 and 03_wider01 and successfully proves
unsatisfiability for up to the requested limit of 14 unwindings for sets 02_point
to 02_wider05 with a varying number of solver settings. For the set 02_wider06,
the solver is unable to perform this proof for BMC depths above 6, indicating
that the widening of the uncertainty of the controller’s phase switching time

4.1. BOUNDED MODEL CHECKING CASE STUDIES 149

01 02_point 02_wider01 02_wider02 02_wider03
X1 [−0.5,0.5] [0,0] [−0.1,0.1] [−0.1,0.1] [−0.1,0.1]
M1 [0.08,0.12] [0.1,0.1] [0.1,0.1] [0.09,0.11] [0.09,0.11]
X2 [0.0,2.5] [1,1] [1,1] [1,1] [1,1]
M2 [0.08,0.12] [0.1,0.1] [0.1,0.1] [0.1,0.1] [0.09,0.11]
FA [0.7,1.5] [1,1] [1,1] [1.2,1.3] [1.2,1.3]
TA [4.0,4.99] [4.5,4.5] [4.5,4.5] [4.5,4.5] [4.5,4.5]
TD [5.00,6.00] [5.5,5.5] [5.5,5.5] [5.5,5.5] [5.5,5.5]

645 0 0 0 0

. . .

. . .

02_wider04 02_wider05 02_wider06 03 03_wider01
[−0.1,0.1] [−0.2,0.2] [−0.2,0.2] [−0.2,0.2] [−0.2,0.2] X1
[0.09,0.11] [0.09,0.11] [0.09,0.11] [0.09,0.11] [0.09,0.11] M1

[1,3] [1,3] [1,3] [1,3] [1,3] X2
[0.09,0.11] [0.09,0.11] [0.09,0.11] [0.09,0.11] [0.09,0.11] M2

[1.2,1.3] [1.2,1.3] [1.2,1.3] [1.1,1.2] [1.0,1.3] FA
[4.5,4.5] [4.5,4.5] [4.4,4.6] [4.3,4.7] [4.3,4.7] TA
[5.5,5.5] [5.5,5.5] [5.4,5.6] [5.3,5.7] [5.3,5.7] TD

0 0 0 4 75 #

Table 4.6: Parameter sets used for the instantiation of the conveyor belt
benchmark. Each column shows the intervals used for the system param-
eters using the same names as in the automaton in Figure 4.6, except for
TA := [tearliest_act , tlatest_act] and TD := [tearliest_deact , tlatest_deact]. The very last row of
the table shows how many out of 1000 simulation runs using randomly-chosen
points from the column’s parameter set were violating at least one property,
i.e. one of the objects ended up on the wrong lane. Based on this estimate,
parameters chosen from sets 02_point to 02_wider06 are expected not to cause
any error trajectories.

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set01.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_point.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
,
c
u
m

u
la

ti
v
e

 i
f
in

 c
o
n
s
e
c
u
ti
v
e
 m

o
d
e
)

BMC unwinding depth

conveyor_belts__set02_wider04.hys

all, disc-fst
all, dyn-rel-width
all, default-heur

no-brsys, disc-fst
no-brsys, dyn-rel-width
no-brsys, default-heur

no-direct, disc-fst
no-direct, dyn-rel-width
no-direct, default-heur

no-direction, disc-fst
no-direction, dyn-rel-width
no-direction, default-heur

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o
lv

e
r

re
s
u
lt

BMC unwinding depth

Figure 4.8: Runtimes and results for the conveyor belt benchmark. See text on
page 148 for abbreviations.

150 CHAPTER 4. EXPERIMENTAL EVALUATION

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider01.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider02.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider03.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider04.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
,
c
u
m

u
la

ti
v
e

 i
f
in

 c
o
n
s
e
c
u
ti
v
e
 m

o
d
e
)

BMC unwinding depth

conveyor_belts__set02_wider04.hys

all, disc-fst
all, dyn-rel-width
all, default-heur

no-brsys, disc-fst
no-brsys, dyn-rel-width
no-brsys, default-heur

no-direct, disc-fst
no-direct, dyn-rel-width
no-direct, default-heur

no-direction, disc-fst
no-direction, dyn-rel-width
no-direction, default-heur

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o
lv

e
r

re
s
u
lt

BMC unwinding depth

Figure 4.9: Runtimes and results for the conveyor belt benchmark (continued).
See text on page 148 for abbreviations.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 151

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000
ru

n
ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider05.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set02_wider06.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set03.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

conveyor_belts__set03_wider01.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
,
c
u
m

u
la

ti
v
e

 i
f
in

 c
o
n
s
e
c
u
ti
v
e
 m

o
d
e
)

BMC unwinding depth

conveyor_belts__set02_wider04.hys

all, disc-fst
all, dyn-rel-width
all, default-heur

no-brsys, disc-fst
no-brsys, dyn-rel-width
no-brsys, default-heur

no-direct, disc-fst
no-direct, dyn-rel-width
no-direct, default-heur

no-direction, disc-fst
no-direction, dyn-rel-width
no-direction, default-heur

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o
lv

e
r

re
s
u
lt

BMC unwinding depth

Figure 4.10: Runtimes and results for the conveyor belt benchmark (continued).
See text on page 148 for abbreviations.

152 CHAPTER 4. EXPERIMENTAL EVALUATION

points makes the problem significantly harder to solve. Similarly, the solver
runs into memory or time limits for set03 at depth 7.

The most striking outliers are caused by the disabling of the direct enclosure
method. Restricted only to the bracketing system enclosure and the direction
deduction, iSAT-ODE terminates with candidate solution boxes for early unwind-
ing depths on all parameter sets from 02_point to 03, always in contradiction to
solver runs in which the direct method is not disabled. This clearly indicates
that for this benchmark, enclosures obtained from the bracketing system are
insufficient to rule out those boxes that are finally reported as candidate solution
boxes, whereas the direct enclosure is able to refute these spurious candidate
solution boxes.

Equally noticeable is the runtime advantage of the disc-fst splitting heuristics
on this benchmark over the other two heuristics. As explained in more detail
in Subsection 3.3.7, using disc-fst, the solver does not split any real-valued
variable, as long as there is still a Boolean or integer variable, whose width is
above the minimum splitting width. The minimum splitting width was kept
at its default of 0.01 for this benchmark, hence the disc-fst heuristic means
that first all discrete variables are split down to point values (since their ranges
can obviously either have a width of above 1 or of exactly 0). The effect of
this heuristic is that the solver—earlier than with other heuristics—examines
abstract paths of the system in which for each step only one mode or one jump
can be active. This seems to guard against some unnecessary search and the
costly ODE deductions it causes.

Compatible with the observation that the bracketing systems alone lead to
spurious candidate solution boxes is the runtime advantage when the bracketing
system is disabled. However, the difference between the all and no-brsys
runtimes is not very large, indicating that the computational cost of generating
the bracketing enclosures is not high in this example and that they do not
significantly influence the search process either. Without knowing in advance
whether or not the bracketing system’s enclosures work on a given problem, this
benchmark’s results suggest that even if they do not contribute enough to the
deduction to solve the benchmark successfully on their own, their computational
cost is so low in such a case that it is a good default choice to have them activated.

4.1.3 Comparison with hydlogic

In this subsection, we compare our tool with the results published in [IUH11] for
the hydlogic tool, which is the technologically most closely related competitive
approach, being also based on a Satisfiability modulo ODE scheme and having a
VNODE-LP core for handling of non-linear ODEs. In [IUH11], Ishii et al. present
several case studies and the results they obtained for them. Where appropriate,
they also compare the results to PHAVer and HSolver. Our comparison with the
hydlogic results therefore also yields an indirect comparison with these other
tools, which we hence do not repeat.

Based on the description as hybrid automata in [IUH11], we have remodeled
some of these systems in our predicative encoding for iSAT-ODE. As even small
changes in the modeling approach or subtle variations in the encoding can lead
to dramatically different results (especially runtimes), we want to emphasize
that such a comparison can only give a limited snapshot of the actual relation
of the tools.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 153

go_ahead

ṗ = −r · sin(γ)
γ̇ = 0
ċ = 0

p ≥ −1
p ≤ 1

left_border

ṗ = −r · sin(γ)
γ̇ = −ω
ċ = 1

p ≥ −1.5
p ≤ −1

right_border

ṗ = −r · sin(γ)
γ̇ = ω

ċ = 1

p ≥ 1

correct_left

ṗ = −r · sin(γ)
γ̇ = ω

ċ = −2

p ≥ −1
p ≤ 1
c ≥ 0

correct_right

ṗ = −r · sin(γ)
γ̇ = −ω
ċ = −2

p ≥ −1
p ≤ 1
c ≥ 0

in_canal

ṗ = 0
γ̇ = 0
ċ = 0

p = −1/c := 0 p = 1/c := 0

p = −1
p = 1

c = 0

p = 1/
c := 0

c = 0

p = −1/
c := 0

p = −1.5

p :∈ [−1,0]

γ :∈
[1
6π,

1
4π

]

c := 0

Figure 4.11: Car steering system based on [CFH+03, IUH11].

Car Steering Problem

The first benchmark from [IUH11] is based on a car steering controller originally
investigated by [CFH+03]. We depict our version of the automaton for this system
in Figure 4.11. The car’s movement is modeled by its position p and its heading
γ. Its initial position and heading are unknown, but bounded by intervals.
When the car reaches one of the borders of the street, its heading is changed
continuously and the time measured until the car reaches the border again (now
heading inwards). The heading is now changed in the opposite direction for half
the time that the car has spent outside of the road’s boundaries. The maneuver
ends in the unsafe in_canal state when the position reaches p ≤ 1.5.

Modeling Details. The cited versions of this automaton have an additional
sink mode straight_ahead which is reached from correct_left and correct_right
when the counter reaches zero (before the obverse border is reached). If flows
are allowed to take zero time or jumps to immediately follow one another,
an instantaneous sequence of mode changes arises which terminates in an
inappropriate mode. Under this semantics, traces may proceed immediately into
correct_left after entering left_border with p = −1. As the counter remains c = 0
under these circumstances, the trace races through to and then stays forever
in straight_ahead, although the car has actually never changed its direction
when crossing the border and will definitely reach p ≤ −1.5. Since neither
of [CFH+03, IUH11] detect this race condition in the model they present, we

154 CHAPTER 4. EXPERIMENTAL EVALUATION

have changed the model in two ways: (a) we have collapsed the straight_ahead
mode with go_ahead, such that this zero-time trace would not be able to hide
the eventual reaching of the in_canal state, and (b) have added a condition that,
when entering the modes left_border and right_border, there must follow a flow,
and it must take strictly more than zero time. Note that we found this trace
when validating our encoding of the original model with iSAT-ODE and were
surprised to find this obviously unintended trajectory which is compatible with
this often assumed semantics of hybrid systems (e.g. in [LJS+03]).

For the simple constant ODE components ṗ = 0, γ̇ = ±ω, and ċ = {−2,0,1},
we added the closed-form linear solutions as redundant encodings, since they are
easily obtained and may help with deduction. This step could be automated, e.g.
as a preprocessing step, but has currently not been implemented in our tool. The
bounds for the initial values of the car’s heading γ have been overapproximated
by representable interval boundaries. For the angular velocity ω, we approximate
by ω = 0.78539816 the value π/4 that is given in [CFH+03]. From there, we
also take the value for the radius r = 2. In order to reduce unnecessary non-
determinism, we also disallow any flows that end before they satisfy a guard
condition. This stuttering in one mode is otherwise very costly for the search,
since there are infinitely many points to interrupt a flow that all have to be
examined, if the system is modeled in a naive way.

Results. In [IUH11], Ishii et al. analyze the following four scenarios. We
summarize their results from their paper and compare them with the iSAT-ODE
results as shown in detail in Figure 4.14.

For the steering-1 scenario, which is using the model as described above and
in Figure 4.11, hydlogic finds a trajectory leading to in_canal in two or three
steps and proves its existence. With iSAT-ODE, we also find a trajectory with
all tried settings for four BMC unwindings. As can be seen from the trace in
Figure 4.12, these four steps amount to a sequence of one flow in go_ahead, a
mode switch to left_border, a flow in that mode, and a final switch to in_canal.
Figure 4.13 shows that this trace is consistent with a numerically approximated
trajectory emerging from the starting values identified by iSAT-ODE. Our result
is weaker only in the lack of a proof that the identified trace really exists. The
runtime reported in [IUH11] is 5.31s on 2.4 GHz Intel Core 2 Duo processor.
Our runtimes on a newer AMD Opteron 2.6 GHz processor are spread out, but
the best can be considered competitive with this number.

In the steering-2 instance of this benchmark, the canal is moved to the left
by 0.5 units, such that the guard for entering in_canal becomes p = −2. We
also change the invariant of mode left_border to cover this widened range. The
hydlogic result for this safe instance of the system is reported in [IUH11] as
unknown after three steps and 198.30s of runtime. With iSAT-ODE, the graph
in the upper right corner of Figure 4.14 shows clearly that for the large majority
of settings, we can prove unsatisfiability of the formula up to much larger
numbers of unwindings. The solver runtimes diverge depending on the chosen
heuristics. While the default heuristic leads to timeouts after depth 17, the other
two heuristics allow successful refutation up to unwinding depth 30, before
running into the 50000 seconds timeout limit. Again, one notable observation is
that disabling the direct method leads to candidate solution boxes as has been
observed already in the conveyor belt benchmark.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 155

-1.5
-1

-0.5
0

0 1 2 3 4

pos

0.3
0.4
0.5
0.6
0.7

0 1 2 3 4

heading

0
0.2
0.4
0.6
0.8

0 1 2 3 4

time

0

0.2

0.4

0 1 2 3 4

counter

in_canal

correct_right

correct_left

right_border

left_border

go_ahead

0 1 2 3 4
BMC unwinding depths

Figure 4.12: An iSAT-ODE trace for the steering-1 benchmark instance. Value
of variables at the BMC unwinding depths.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.6
−1.4
−1.2
−1
−0.8
−0.6

time

pos

Figure 4.13: Car positions for the steering-1 benchmark obtained from approxi-
mative numerical simulation (dashed line) compared with the candidate solution
box (shown by marks, actual box is tighter) from the iSAT-ODE trace.

156 CHAPTER 4. EXPERIMENTAL EVALUATION

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

steering-1.hys

unsat

cand. sol.

aborted

 0 1 2 3 4

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

steering-2.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

steering-3.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

steering-4.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
,
c
u
m

u
la

ti
v
e

 i
f
in

 c
o
n
s
e
c
u
ti
v
e
 m

o
d
e
)

BMC unwinding depth

conveyor_belts__set02_wider04.hys

all, disc-fst
all, dyn-rel-width
all, default-heur

no-brsys, disc-fst
no-brsys, dyn-rel-width
no-brsys, default-heur

no-direct, disc-fst
no-direct, dyn-rel-width
no-direct, default-heur

no-direction, disc-fst
no-direction, dyn-rel-width
no-direction, default-heur

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o
lv

e
r

re
s
u
lt

BMC unwinding depth

Figure 4.14: Results and runtimes for four instances of the car steering bench-
mark.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 157

s1

ẋ1 = 1 − √x1

ẋ2 =
√

x1 − √x2

(x1, x2) ∈ [4, 6] × [0, 1]

s2

ẋ1 = 1 − √x1 − x2 + 1
ẋ2 =

√
x1 − x2 + 1 − √x2

(x1, x2) ∈ [4, 6] × [1, 2]

unsafe

ẋ1 = ẋ2 = 0

(x1 − 4.25)2 + (x2 − 0.25)2 = 0.0625

x2 = 1

(x1, x2) :∈ A

Figure 4.15: Model of the two tank system from [IUH11].

The steering-3 instance is the same as steering-2, except that the initial range
for the position is restricted to p :∈ [−0.9,0]. This restriction helps hydlogic to
prove unsatisfiability for three steps within 22.16s. The results for iSAT-ODE
are very similar to the steering-2 example. If we compare the iSAT-ODE runtimes
for six unwindings of the formula with hydlogic’s reported runtime for three
steps, we consider our runtimes to be competitive even when factoring in the
newer CPU architecture.

Finally, steering-4 is the same as steering-3, except that the initial ranges are
set to p :∈ [−1, 1] and γ :∈ [−π/4, π/4]. For hydlogic, [IUH11] reports a timeout
at 1200 seconds of runtime for checking satisfiability for three steps of the
system. The lower right graph in Figure 4.14 shows that iSAT-ODE can prove
unsatisfiability up to unwinding depths of 27 with the disc-fst and disabled
bracketing system based enclosures. Using these settings, iSAT-ODE can e.g.
prove unsatisfiability for 12 unwinding depths in less than 100 seconds.

Two Tank System

Structurally the same model as has already been shown in Subsection 4.1.1, the
version of the two tank system from [IUH11] uses different parameters (all ki = 1),
additional invariants, and different initial ranges. The model checking goal is
then classical reachability rather than the stabilization properties we examined
in Subsection 4.1.1. The property to be checked by BMC is the reachability
of an unsafe mode, which is characterized by a circular region in the (x1, x2)
state space. For the sake of clarity, we repeat the automaton from [IUH11] in
Figure 4.15 and—since the brevity of this model allows it—also show the full
encoding of it in the iSAT-ODE language in Figure 4.16.

Modeling Details. Ishii et al. instantiate the model with ~A = [5.25,5.75] ×
[0,0.5]. Due to the √x2 term that occurs in the ODE system, this initial range
for x2 is problematic since it leaves no margin for numerical overapproximation
where x2 grows into the negative range. While there is no report of problems
in [IUH11] for hydlogic with this issue, we have observed the VNODE-LP layer
in iSAT-ODE running into long sequences of deduction failures caused by the
underlying interval library’s reports of encountered numerical errors. Without
deduction, the solver is obviously free to split down the box in the proximity
of x2 = 0, consequently finding spurious traces there, whose refutation would

158 CHAPTER 4. EXPERIMENTAL EVALUATION

1 DECL
2 float [−10, 10] x1, x2;
3 float [0, 1000] time;
4 float [0, 1000] delta_time;
5 boole s1, s2;
6 boole flow;
7 boole unsafe;
8 INIT
9 time = 0;

10 x1 >= 5.25; x1 <= 5.75;
11 x2 >= 0.01; x2 <= 0.5;
12 s1;
13 !s2;
14 !unsafe;
15 flow;
16 TRANS
17 time’ = time + delta_time;
18 s1’ + s2’ = 1;
19
20 flow and s1 −>
21 (d.x1 / d.time = 1 − nrt(x1, 2));
22 flow and s1 −>
23 (d.x2 / d.time = nrt(x1, 2) − nrt(x2, 2));
24 flow and s1 −> (x1(time) >= 4);
25 flow and s1 −> (x1(time) <= 6);
26 flow and s1 −> (x2(time) >= 0);

27 flow and s1 −> (x2(time) <= 1);
28
29 flow and s2 −> (d.x1 / d.time
30 = 1 − nrt(x1 − x2 + 1, 2));
31 flow and s2 −> (d.x2 / d.time
32 = nrt(x1 − x2 + 1, 2) − nrt(x2, 2));
33 flow and s2 −> (x1(time) >= 4);
34 flow and s2 −> (x1(time) <= 6);
35 flow and s2 −> (x2(time) >= 1);
36 flow and s2 −> (x2(time) <= 2);
37 flow −> ((s1 and s1’) or (s2 and s2’));
38 flow −> delta_time > 0;
39
40 flow −> (!flow’ or unsafe’);
41
42 !flow −> x2 = 1.0;
43 !flow −> ((s1 and s2’) or (s2 and s1’));
44 !flow −> flow’;
45 !flow −> delta_time = 0;
46 !flow −> (x1’ = x1 and x2’ = x2);
47
48 unsafe’ <−>
49 (x1’ − 4.25)^2 + (x2’ − 0.25)^2 = 0.0625;
50 TARGET
51 s1;
52 unsafe;

Figure 4.16: Two tank model encoded in the iSAT-ODE input language.

have required successful generation of ODE enclosures. In order to be able to
compare our results, we have opted for a modification of the benchmark such
that the initial value of x2 is positively separated from 0 and have therefore
chosen ~A = [5.25,5.75] × [0.01,0.5].

In Figure 4.16, we show the complete encoding of the system. The first part
contains the variable declaration, including the ranges for all variables and the
special time and delta_time variables. The next section defines the initial states
of the system: starting at time point 0, with any value for (x1, x2) ∈ ~A, being in
mode s1 and starting with a continuous flow instead of a jump. The transition
predicate contains explicitly the semantic knowledge that time progresses in
each step exactly by the amount of the duration delta_time and that the system
cannot be in both modes at the same time (only the guard condition for entering
the unsafe mode has been modeled by a predicate in lines 48–49 that can be true
independently of the current mode, as long as (x1, x2) is in the unsafe region).
Lines 20–27 and 29–36 contain the continuous dynamics and flow invariants
for modes s1 and s2 respectively. As noted earlier, the nrt symbol stands for
the n-th root. Line 37 makes it explicit that flows do not change the current
mode and line 38 requires that flows actually have positive duration (which is a
design choice that is suitable for this model). Line 40 requests that after a flow
either a jump occurs or the unsafe state is reached—enforcing that flows are
not interrupted without having reached a guard condition. Line 42 encodes the
guard condition: if the mode is changed (line 43), the guard x2 = 1 must hold.
The remainder of the section encodes that there are no two jumps following
directly after each other (again a design choice for this model) and that jumps do
not take time and do not change the continuous variables (since the automaton
has no actions). In lines 50–51, the property to be checked is, whether the
system can reach the guard condition for entering the mode unsafe while being
in state s1.

4.1. BOUNDED MODEL CHECKING CASE STUDIES 159

timeout
memout

 0.1

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

ishii_twotanks1.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 1

 10

 100

 1000

 10000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
,

c
u

m
u

la
ti
v
e

 i
f

in
 c

o
n

s
e

c
u

ti
v
e

 m
o

d
e

)

ishii_twotanks2.hys

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10

s
o

lv
e

r
re

s
u

lt

BMC unwinding depth

timeout
memout

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
,
c
u
m

u
la

ti
v
e

 i
f
in

 c
o
n
s
e
c
u
ti
v
e
 m

o
d
e
)

BMC unwinding depth

conveyor_belts__set02_wider04.hys

all, disc-fst
all, dyn-rel-width
all, default-heur

no-brsys, disc-fst
no-brsys, dyn-rel-width
no-brsys, default-heur

no-direct, disc-fst
no-direct, dyn-rel-width
no-direct, default-heur

no-direction, disc-fst
no-direction, dyn-rel-width
no-direction, default-heur

unsat

cand. sol.

aborted

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s
o
lv

e
r

re
s
u
lt

BMC unwinding depth

Figure 4.17: Results and runtimes for the instances of the two tank benchmark
as parameterized in [IUH11].

Results. For the twotanks-1 instance, which is exactly as shown in Figure 4.15
and Figure 4.16, hydlogic (again all results quoted from [IUH11]) reports unsat-
isfiability for two steps within 33.49 seconds. The upper part of Figure 4.17
shows that all iSAT-ODE instances are capable of proving unsatisfiability for
up to 40 unwindings of the formula. The runtimes for checking the 40 un-
windings consecutively are spread between 1.25 and 20.5 seconds. At least
the fastest settings can therefore be considered to be significantly faster than
hydlogic even when taking into account the differences in the CPUs on which
the benchmarking was performed.

In the twotanks-2 instance, the region of unsafety is moved such that it
becomes reachable. The new guard condition for entering the mode unsafe is
(x1 − 4.5)2 + (x2 − 0.75)2 = 0.0625. For this instance, hydlogic finds a trajectory
of two steps length and proves its existence within 36.34 seconds. As has been
detailed earlier, in our model the target property is to find a valuation that
satisfies the entrance guard for the unsafe mode while in s1. Therefore, the
solution trajectory in our model is reached already within one step (omitting
the final jump to unsafe). The trace consists of just a direct flow from a state
admissible in the initial condition and following the dynamics of s1 to the
unsafety region. As can be seen from the lower part of Figure 4.17, iSAT-ODE
finds this one-step trajectory within just a few seconds. The shortest runtime
result for the depth 1 unwinding is 3.63s with the default heuristic and disabled

160 CHAPTER 4. EXPERIMENTAL EVALUATION

bracketing, the longest runtime for depth 1 is 24.56s with the dyn-rel-width
heuristic and all ODE enclosure methods enabled.

Again, the iSAT-ODE result is weaker than the result from hydlogic since
there is no guarantee that the identified candidate solution box contains a
solution. Note that in this special case where the solution consists of only one
flow, using just the ODE enclosure and showing that all points from its prebox
satisfy the initial condition and all points from the last enclosure lie within the
unsafe region, would yield an equally strong proof.

To do a more extensive analysis of solver runtimes, we forced the solver to
check unwinding depths individually instead of using the consecutive mode
results that can be seen e.g. in the left part of Figure 4.17. The first observation
is that runtimes for larger unwindings spread out significantly. These instances
become harder to solve since the solver needs to find a trajectory that reaches the
unsafe region, but still has more than the one flow step that is actually required.
As can be seen in line 40 of Figure 4.16, our model requires alternating jumps
and flows except when the unsafe predicate (x1 − 4.5)2 + (x2 − 0.75)2 = 0.0625
is true. Since this is satisfied already by the endpoint of the trajectory after
the first step, the solver needs to find a valuation for the remaining variable
instances (e.g. 9 remaining steps for 10 unwindings) such that this predicate
still holds or find an alternating sequence of jumps and flows to satisfy line 40.

A solution to this is based on exploiting the overapproximation that occurs in
the interval-based ODE enclosures. Although the constraint in line 38 enforces
that flows have a duration strictly larger than 0, even the tightest enclosure will
still contain the starting points of that flow (which was the argument needed
to motivate the direction deduction presented in Section 3.3.8). Those solution
traces for larger unwindings that we investigated further therefore lead directly
to the satisfied unsafe predicate in the first step and thereafter contained steps
of very short duration, e.g. delta_time ∈ (0, 0.00011517), which is strictly greater
than zero, but still small enough such that the equality constraint for the
unsafe predicate was still satisfied due to the enclosure still containing the
original prebox. In a way, these results could hence be considered spurious
and a stronger form of the direction deduction might have been able to rule out
satisfiability for larger unwindings of the formula unless there also exist paths
that really perform some alternation between the two modes before reaching the
unsafe region.

Bouncing Ball on Sine-Waved Surface

The last example from [IUH11] that we use for our comparison is the model of a
ball that bounces off from a sine-wave surface, called bouncing3 in that paper.

Modeling Details. Like the classical bouncing ball hybrid automaton, this
behavior can be modeled by one mode and a self-loop that is triggered when the
height of the ball reaches the ground, which in this case is not flat, but satisfies
the constraint py = sin(px). Ishii et al. use hydlogic to “simulate” the system
for ten steps and “assumed that the ball bounces at the earliest crossing point
between the ball and the ground”. While this refers probably to an algorithmic
assumption to search and use the first intersection of the ODE enclosure with a
guard condition and pruning after all parts of the enclosure are past the guard,
we think that this can be formulated explicitly inside the automaton. From our

4.2. RANGE ESTIMATION FOR HYBRID SYSTEMS 161

falling

ṗx = vx , ṗy = vy, v̇x = 0,

v̇y = −9.8 + 0.01 · v2
y

ġ = cos(px) · vx − vy

px ∈ [0, 15], py ∈ [−10, 10], g ≤ 0

sin(px) − py = 0 ∧ g = 0/

vx :=
(1 − 0.8 cos(px)2) · vx + 1.8 cos(px) · vy

1 + cos(px)2

vy :=
1.8 cos(px) · vx + (−0.8 + cos(px)2) · vy

1 + cos(px)2
px :∈ [1.5, 1.6], py := 5,

vx := 0, vy := −5,

g := sin(px) − py

Figure 4.18: Our version of the hybrid automaton for the bouncing ball on a
sine-waved surface extending the original from [IUH11] by an extra dimension g
that captures the flow invariant.

perspective this means that there should be a flow invariant,

py ≥ sin(px)⇔ sin(px) − py︸ ︷︷ ︸
=:g

≤ 0

such that the ball cannot reach a point below the sine curve. Using the same
modeling trick that we have detailed earlier, we add a new flow invariant g ≤ 0
and the ODE ġ = cos(px) · vx − vy, which is the derivative of the original flow
invariant with respect to time. Additionally, the value of g must be initialized
correctly to g := sin(px) − py.

Results. For the “simulation”, [IUH11] reports that hydlogic proves unsatisfia-
bility for unwinding depth 10 within 29.15s. The meaning of the unsatisfiability
result is not stated explicitly (there is no target condition, so we assume that it
is simply true), but it could indicate that the given domain is left and therefore
no trajectory of that length exists within the specified bounds. The longest
trajectory that we could find with iSAT-ODE was for unwinding depth 15 and
took 19060 seconds of CPU time, using the disc-fst heuristic with disabled
bracketing systems. We were able to validate that all intermediate elements of
this candidate solution box contained points on the py = sin(px) surface.

Assuming that in the hydlogic results, again, one “step” consists of a flow
and a jump, we would need to solve unwinding depth 20 to analyze the same
10 steps instance for which hydlogic could report unsatisfiability. For this
unwinding depth, iSAT-ODE was not able to find a candidate solution or prove
unsatisfiability within 50000 seconds. We therefore consider iSAT-ODE to be
clearly slower on this benchmark.

4.2 Range Estimation for Hybrid Systems

In this section, we present an application of iSAT-ODE to the problem of
identifying internal system states from measurements. Given a system model
and measurements, we try to derive ranges for variables that are not directly
observable. Such set membership estimation (SME) is relevant e.g. for refining

162 CHAPTER 4. EXPERIMENTAL EVALUATION

bounds on uncertain system parameters or for fault diagnosis when the internal
mode change from nominal to faulty behavior is not readily “announced” by the
system, but must be extracted from the measured data collected by sensors. In
practice, data-mining and statistical techniques can be applied to achieve these
goals even in an on-line fashion on industrial-scale problems (see e.g. [Ban12]).
Our focus lies on demonstrating the applicability of Satisfiability modulo ODE
solving to this problem in order to get guaranteed results, which in this general
class of systems are otherwise hard to obtain. It is also clear from our results,
that significant progress with respect to scalability is necessary for the method
to be of any practical relevance in this application. The text and graphics
presented in this section are taken from [ERNF12b], copyrighted by IFAC Zürich,
and reprinted here in a modified version under the permission granted by the
copyright transfer statement. Also see this publication for more contextual
information and related work regarding the successful application of guaranteed
SME techniques for various classes of continuous and hybrid systems, all of
which we omit here, since our focus lies solely on demonstrating this application
of iSAT-ODE.

Encoding of SME Problems and Tool Application. The predicative encoding
of hybrid systems is very flexible, since it allows the integration of arbitrary
additional constraints into the formula, and thereby, to manipulate the space of
solution trajectories. In the case of SME problems, such additional constraints
may stem from measurements and their known error margins. Adding them
to the formula, any solution that is incompatible with these measurements is
discarded, leaving only those that represent the ranges compatible with the
observations. Together with the algorithmic guarantees that an unsatisfiability
result is only generated, if no satisfying valuation exists, iSAT-ODE can be
used to identify and prune off ranges of infeasible assignments to system
parameters and state vectors. The result either is refined knowledge about
the parameter or state vector values that can explain the measurements, or—
in case of unsatisfiability—a proof that measurements, the model, or e.g. the
assumptions made about the error intervals are inconsistent with each other.

Technically, we extend the iSAT-ODE solver slightly to first use only deduction
without splitting. It thereby removes parts of the variables’ domains that are
definitely inconsistent—leaving a range in which solutions might be found. As a
second step, it searches a candidate solution box inside the remaining box with
splitting reactivated. This and all further candidate solution boxes form a set of
possible solutions. While it is not known whether actual trajectories exist within
this box, it is clear that iSAT-ODE cannot disprove their existence in this part
of the domain. The goal is then to move the borders of the space known not to
contain any solutions and the border of the set of candidate solutions towards
each other, such that the range estimate becomes more precise. In the third
phase, the solver therefore performs a bisection search for each of the variable
bounds for which a range estimate is requested: while the distance between
the bound of the remaining variable range and the outer bound of the observed
candidate solutions is still larger than the specified threshold, the variable is
restricted to values between these two bounds, and a candidate solution is
searched. In case of unsatisfiability, this range can be excluded, since it is
known not to contain any solution. Otherwise, the enclosure of the encountered

4.2. RANGE ESTIMATION FOR HYBRID SYSTEMS 163

time

x1

x2

0
10
20
30
40

0 1 2 3 4 5 6 7

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 1 2 3 4 5 6 7

0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62

0 1 2 3 4 5 6 7

mode_dont_care

mode_above

mode_below

0 1 2 3 4 5 6 7
BMC depths

Figure 4.19: Range estimate for the two tank system with seven unwindings
(BMC depths) of the transition relation.

candidate solutions is extended to cover this new box as well.

Measuring at Discrete Time Instants. Again, we use the two tank system
from [SKHP97] as illustrated in Figure 4.1 with the parameters k1 = 0.75, k2 = 1,
k3 = 0.5, and k4 = 1 and reuse our encoding, including the introduction of the
don’t-care mode.

Our first experiment with this system is based on three measurements of the
variables x1 and x2, at time t = 0.16, t = 0.48, and t = 5.28, which are assumed
uncertain, e.g. x1(0.16) ∈ [0.341 − ε, 0.341 + ε], x2(0.16) ∈ [0.557 − ε, 0.557 + ε].
The data were obtained from a simulated trajectory emerging from x1(0) =

0.3, x2(0) = 0.6. We modify the transition relation of the model in such a
way that these measurements are interleaved with the normal transitions of
the system, i.e., a transition can not only be a continuous flow following the
dynamics of the current mode for some duration or a discrete mode switch,
but can also be the “consumption” of a measurement event. Additionally, we
enforce that a transition must have its maximum possible duration. That is,
each step must end with reaching a predefined final point of time after the last
measurement, or with reaching the switching surface from where a jump into
the other mode becomes possible, or with reaching the point of time for the
next measurement event. This modification is only aimed at ruling out solution
traces that contain additional interruptions without a reason.

The first goal is to calculate a number of unwindings of the transition
relation, such that all measurements have been consumed, and all possible
mode switches have been performed. We can now easily obtain this information
by adding a target predicate that is true, when one of the measurements has
not yet been consumed, or the final time is not yet reached. If this formula is
satisfiable for a given unwinding depth, we know that such a trajectory still

164 CHAPTER 4. EXPERIMENTAL EVALUATION

step = 2 −> (time’ >= 0.30 − EPS_T −− EPS_T is 0.01
and time’ <= 0.30 + EPS_T
and x2’ = 0.5
and (mode_below’ <−> mode_above));

step = 3 −> time’ = 0.40 ;

Figure 4.20: Part of the extended transition relation: encoding of a level crossing
detection event leading to a mode switch and additional observation step.

exists and increase the number of transition steps until the formula becomes
unsatisfiable. For our model with the three measurements, iSAT-ODE can first
prove unsatisfiability for depth 7.

Removing the target predicate and instead adding the target that all mea-
surements have been consumed, the model can be used to tighten the bounds
of the initial values x1(0), x2(0), which are only constrained to lie within the
region where the system dynamics is defined. We report the range estimate
for the variable instances of x1, x2, and the time variable in Figure 4.19, along
with the range estimates for the discrete mode in the bottom chart of the figure.
Note that for step 3, the reconstructed mode is ambiguous: uncertainty makes
feasible both modes mode_below and mode_above. This result must be inter-
preted in the following way: each trajectory of the system that is compatible
with the measurements must pass through each of the boxes for steps 0 to
7. Especially, all trajectories must start in the initial box which has been
determined to be x1(0) ∈ [0.285, 0.315], x2(0) ∈ [0.578, 0.623] and consequently
start in mode_above. This range estimate safely encloses the starting point of
the simulated trajectory from which the measurements were obtained.

Measuring at a Height Threshold. In this experiment, instead of considering
arbitrarily chosen measurements, we assume to have one sensor in each tank
that measures when a certain height is crossed. Following the idea presented
by [Kou03] for a similar model of two tanks, placing one of these sensors at
the level of switching, i.e. in our case observing when x2(t) crosses k3, allows
direct observation of the time of mode changes. We can simplify our approach
significantly, since most of the complexity in the previous experiment was caused
by the necessity to determine an a-priori unknown number of possible mode
switches, and the consequently required number of transition steps.

Starting from a basic encoding of the two tank system, we add a designated
counter variable that is incremented in each step of the transition relation.
Using this counter, we can iterate through the list of measurements and mode
switches, directly enforcing constraints on the time to be reached in this step.
While we assume the sensor to give an exact signal of whether the height level
has been crossed, we allow for a small temporal uncertainty, i.e. do not enforce
measurements to happen at a point of time, but instead within an interval
around the assumed time of the observed level crossing. Figure 4.20 exemplifies
the encoding of such an event and also shows that the a-priori knowledge of
when events happen gives us the freedom to add additional interruptions of
the flow at points of time, for which we know that no event occurs. When
performing the range estimation, these additional steps allow better observation
of the system state’s evolution.

We illustrate the range estimate in Figure 4.21, where we use the valuation

4.2. RANGE ESTIMATION FOR HYBRID SYSTEMS 165

x1

x2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 1 2 3 4 5 6

0.4

0.45

0.5

0.55

0.6

0 1 2 3 4 5 6

mode_above

mode_below

0 1 2 3 4 5 6
time

Figure 4.21: Range estimate for the measurements at discrete levels depicted
over the valuation of the time variable.

of the time variable as x-axis. Each of the boxes drawn in this graph must
be crossed by each trajectory satisfying all constraints. By having additional
observation steps, where the time variable is forced to particular points, we now
obtain actual enclosures: from the range estimate, we know that at time t = 0.4,
the values for x1 and x2 must lie within the corresponding range estimate.
Finally, we have also reconstructed the switching sequence.

Runtimes. Checking unsatisfiability up to unwinding depth 7 in the first exper-
iment has taken iSAT-ODE approximately 86 minutes on an AMD Opteron 8378,
2.4 GHz processor running 64 bit Linux using a minimum splitting width of
0.01 and absolute bound progress threshold of 0.001. The range estimate
for the 48 variable instances (six variables in eight instances) was completed
within 5.7 hours using the same settings. The results reported in Figure 4.21,
were obtained using a minimum splitting width of 0.0625 and absolute bound
progress threshold of 0.001 within 7.3 hours on the same machine. Using 0.1 as
a coarser setting for the minimum splitting width did not improve the runtime,
whereas using a minimum splitting width of 0.01, we stopped the solver after
27 hours.

166 CHAPTER 4. EXPERIMENTAL EVALUATION

Chapter 5

Conclusions

We started with the observation that hybrid systems are everywhere, in tea cups
and ice crystals, machines, or neurons. We should add to this list now: in
bouncing balls and water tanks and on conveyor belts with dubious air-blowing
packet sorters. What this thesis and the underlying research tried to address
was the question how one can describe such a diverse zoo of systems in a formal
way that lends itself to direct verification via satisfiability solving. And more
centrally, how routines for satisfiability solving can be extended to handle the
resulting formula class. Finally, the question that needs to be asked is: how
well do we solve this problem with our approach?

5.1 Summary

First, we introduced hybrid automata from the literature, highlighting their
ability to cover the relevant interactions of discrete and continuous behavior
that we would like to analyze. We pointed out that they are one of many ways to
describe hybrid systems, and that we see them as an input with concise and well-
defined semantics to a manual translation process whose output are Satisfiability
modulo ODE formulae. These form the actual basis of our approach, and their
introduction in [EFH08] constitutes the first relevant scientific contribution
presented in this thesis.

There was little doubt that a question, whose solution—or even incremental
steps towards it—would have such diverse applications, would have attracted
numerous researchers, shaping a giant research landscape, which we could
only map to a limited degree. We tried to point out how our approach, that tries
to find solutions to BMC formulae, differs from most of the other approaches,
that aim at computing the entire reachable state space of the hybrid system. We
focused more closely on related work from the constraint-solving and satisfiability
domain and pointed out the differences, often in the form of limitations made to
the allowed continuous dynamics. For the remaining competitor approaches,
which try to address the same or very similar questions, we analyzed the
differences, pointing out our reliance on the iSAT core and its ability to handle
interval valuations directly instead of only a boolean abstraction as is the case
in traditional SMT integration schemes. The closest competitor, the hydlogic
tool, supports Interval Newton to prove the existence of solutions, while our tool

167

168 CHAPTER 5. CONCLUSIONS

supports bracketing systems to overcome some of the limitations of VNODE-
LP on ODE problems involving non-linear right-hand sides and large initial
domains.

Having laid these foundations in formal underground and related work, we
looked into the two major algorithmic ingredients of our approach: the iSAT core,
for solving boolean combinations of arithmetic constraints over discrete and
continuous variables, and VNODE-LP, for computing validated enclosures of
sets of initial value problems of ODEs. We pointed out that little needs to be done
to use VNODE-LP as a propagator for ODE constraints, but that quite a number
of algorithmic enhancements are required when the propagator is expected to be
more precise than VNODE-LP’s a-priori enclosures and when one wants to avoid
throwing away all its costly computations on every conflict-induced backjump
performed by the iSAT core. These technical details, together with the tight
integration of the bracketing approach, form the major scientific contribution
presented in this thesis and published in [ERNF11, ERNF12a].

In the same papers, we published most of the experiments shown in the
previous chapter. These bring us to the question we asked at the beginning of
these conclusions: how well do we solve the problem?

From the perspective of a thesis writer, the answer is clear: we have demon-
strated the applicability of the approach on established benchmarks from the
literature and on a larger case study containing a challenging combination of
non-linear ODEs and discrete switching. We have shown that our tool outper-
forms the closest competitor tool on some of their own benchmarks, yet is weaker
on others, a mixed result that can be expected, given the technical complexity
and the large amount of parameters that influence search behavior, deduction
precision etc. which makes it very hard to directly compare tools and to deduce
whether one approach is superior. We have also shown the applicability on the
important question of set membership estimation, which is more than can be
expected for a general-purpose solver not at all developed for that application in
mind.

From a scientific and from a practical perspective, the answer may commence
in the same way, but it should put these results into context. Even the most
complex examples which we have analyzed are barely of industrial proportions.
Most of the solver times are very far away from this approach being easily
integrated into a development process, in which a system designer would not
appreciate having to wait many hours for an analysis of whether the system
contains an error trace that a few thousand simulation runs over randomized
initial values have a good chance of exposing within seconds. These issues look
merely like questions of scalability, but scalability is a giant challenge when
search spaces grow exponentially and solvers—even with all clever learning and
heuristics—have a very hard time giving timely answers.

On the other hand, the simplest base case, SAT solving, has long become
a useful tool in industrial practice despite all its known algorithms having
worst-case exponential complexity.

This thesis has shown that formulae containing arithmetic constraints and
differential equations can be solved automatically, the solver’s results can be
interpreted as safety certificates or as error traces. This is good news. It is
substantiated and not diminished by the fact that other researchers attempt to
go on similar routes. The first results published by Gao et al. in [GKC13] are
promising future gains in performance, and their and many others’ attempts

5.2. TOPICS FOR FUTURE WORK AND OPEN QUESTIONS 169

at adding notions of robustness and decidability may lead to future algorithms
that may exploit realistic restrictions on the formula class.

How well does our approach solve the problem? Well enough for this thesis,
but there is a lot of work to be done until this becomes as useful as a compiler
that complains about an uninitialized variable, whose value may feed into a
control algorithm, whose output may lead to a malfunction, whose consequences
may be fatal—at least for the developer’s next coffee break.

5.2 Topics for Future Work and Open Questions

At this very point in his thesis, Christian Herde wrote: “It seems to be an
invariant truth of solver development that with every solver finished, many ideas
on how to do even better pop up. What just appeared to be the ultimate engine,
turns out to be the precursor of a presumably much more powerful algorithm
only.” [Her11]. The invariable truth about invariants is that they tend to hold.
While we do not want to propose any fully new algorithms, among the many
notes that piled up over the years, a few open questions and ideas still feel as
intriguing as they were when written down, some still hold the promise that
they may substantially improve the approach presented here.

Hybrid Systems with Unknown Inputs. Currently, inputs in ODE constraints
are only supported with some significant restrictions, e.g. they can easily be
modeled to have an unknown value that does not change during a flow or—
by allowing interruptions of flows—to change their value only finitely often.
While flexible, the latter case comes with an increased unwinding depth of the
transition system in the BMC formula, which has a significant impact on the
size of the search space. On the other hand, by adding e.g. ẋ = y and ẏ = 0,
with x being the actual input and y being its first derivative, one can also model
systems whose input changes, but only with constant slope. The slope must
stay constant during a flow, but can be set arbitrarily between flows, as can be
the value of the input itself if desired. This addition of intermediate derivatives
can be continued further and eventually leads to covering the significant class
of smooth inputs.

However, inputs are often used in modeling to allow an abstraction of physical
entities that are not easily described or whose description would add too much
complexity to the model. Under these circumstances, inputs are unfortunately
sometimes only known to stem from a bounded interval—without any knowledge
as to their slope or even smoothness. Since the ODE enclosures we use are
based on Taylor series, not knowing the derivatives up to the order of the
expansion forbids us to compute any enclosure at all.

Future work could address this issue by introducing mixed-order ODE
enclosures. In these, the solution is expanded to the desired order only for those
variables for which the derivatives can be computed, while for other variables,
especially inputs, only a (much) lower expansion order is used—limited by the
known interval bounds on the value of the input and potentially by known
bounds on its derivatives. The goal of this approach would be to avoid having
to evaluate any unknown derivatives of an input variable, which can only
be bounded by (−∞,+∞). A challenging engineering task would then be to

170 CHAPTER 5. CONCLUSIONS

incorporate such a mixed-order series within a competitive enclosure algorithm,
such that issues like wrapping and error accumulation can be avoided.

Generalized Bracketing Systems. While inputs in the formalism would ex-
tend the expressiveness of our approach, the next potential task for future work
could be expected to contribute to the solver’s ability to provide solutions in
case of non-linear ODEs.

If in a Jacobian matrix most entries have uniquely determined signs, but
even a single entry does not, our current implementation of the bracketing
approach fails. We think that a scheme, in which some dimensions are kept
as non-point intervals, might make the bracketing approach applicable also in
these cases. While there is currently only the choice between using bracketing
for all variables or for none at all, such a generalized scheme might allow to
freely select the dimensions for which bracketing should be attempted. Some
theoretical work would be necessary to reduce the number of dimensions
present in the bracketing system, i.e. to avoid having to use the upper and
lower bracketing variables and the original ones, which would lead to thrice the
original dimensionality. Such generalized bracketing systems might then also
be helpful in supporting uncertain inputs if the system depends on them in a
monotone way.

Use of Taylor Models. Our integration of bracketing systems was motivated
by the observation that large initial sets and non-linear ODEs may lead to
weak ODE deductions when VNODE-LP alone is not capable of computing any
tight enclosures. For the same purpose, we initially considered the use of
Taylor models, which we discussed as related work in Section 2.4, but we were
discouraged by concerns about their scalability. With the recent advent of the
Flow* tool [CÁS13], it may now be time to reconsider the integration of Taylor
Models as an additional enclosure mechanism to benefit from their ability to
provide tighter enclosures for non-linear ODEs.

More Flexible Deduction Resolution. The use of Taylor models or bracketing
systems may improve the tightness of enclosures and hence lead to stronger
deduction. If the additional cost of computing them is outweighed by the amount
of splitting that they make unnecessary, this may result in an acceleration of
the solver. We have, however, also argued that the opposite may be true
in some circumstances: computing an enclosure with high precision at high
computational cost may be wasted effort when the search space is still very large
and the precision of the enclosures is not needed yet. While this topic remains
one of heuristics, for a more thorough evaluation of this idea, one should first
try to fully exploit the entire available range of precision parameters.

Chiefly among the unused VNODE-LP parameters are those for series expan-
sion order and absolute / relative tolerances. Using them together with the step
size parameter, VNODE-LP could potentially be brought to produce rather coarse
enclosures with large step sizes and very few evaluations. If the resolutions used
in the optimization loops that try to tighten these boxes are chosen accordingly,
this may allow a much coarser and faster deduction generation—fully control-
lable by the resolution parameters chosen by the solver. While the integration of
these parameters into the resolution scheme is comparably simple, a lot of work

5.2. TOPICS FOR FUTURE WORK AND OPEN QUESTIONS 171

may be required to find the right balance between the many parameters and
maybe even to implement mechanisms that adapt them automatically when e.g.
enclosures of little precision are detected to fail too often and hence contribute
only to the solver’s runtime but not to finding a solution.

Next-Generation iSAT Solver. Parallel to the development of iSAT-ODE, a
new generation of the iSAT solver, iSAT-3, has been developed in AVACS that
outperforms the implementation of iSAT used in iSAT-ODE in many cases
and that integrates stronger deduction mechanisms for linear and polynomial
constraints. Overcoming the usual technical difficulties of integrating two pieces
of software, one could couple the ODE solving layer with iSAT-3 to benefit from
core deductions that do not solely rely on ICP and unit propagation. Just this
integration alone may therefore result in a significant improvement in scalability.

Once integrated, the combined tool could exploit the better handling of linear
and polynomial constraints by learning ODE deductions that are not merely
boxes, or simple comparison constraints in the case of the direction deduction.
Already with the current iSAT, it would be possible to generate constraints
of higher order, bound their error terms by the enclosure, and add them to
the constraint system as overapproximations of the trajectories such that the
solver core can use them without resorting to computations in the ODE layer.
With polynomial reasoning directly available, this combination may however
be significantly more powerful, which may compensate for the more complex
generation of these learned facts.

Protecting Coordinate Transformations. When ODE deductions are stored
in clauses, they are represented as bounds on the variables of the system
and do not contain any information about the coordinate transformations that
were necessary during the computation of the underlying enclosures. Any
interruption of a flow therefore results in additional wrapping. When the
duration of a step is not yet known very tightly, it is not clear, which of the
many involved coordinate systems to store. However, when the solver is able to
reduce the width of the duration interval such that it becomes tight enough to
be covered by only one of the enclosure steps computed by VNODE-LP, it can be
beneficial for the next step’s enclosure to be restarted with the corresponding
coordinate transformation matrices.

However, the interruption of flows rarely occurs without reason. If the
continuous evolution is only interrupted e.g. because a parallel component
needs to perform a jump, the enclosure with which the preceding step ends
could be reused directly. But whenever a jump occurs, its guard and action
predicate may actually rule out some part of the valuation, leading to all the
manipulations of enclosure representations that complicate reachable state
computations for hybrid systems. Whether it is worthwhile to include these
algorithms in full, is unclear, but it may improve enclosure tightness already to
address those cases where enclosures and their transformation matrices stay
valid and could be copied from one flow’s end to another flow’s beginning.

Non-Determinism, Simulation, and Benchmark Hardness. The simplest
metric with which to assess a model’s degree of hardness, is to count its states.
For infinite systems this is obviously not so simple after all, but even for them,

172 CHAPTER 5. CONCLUSIONS

a finest resolution of interest and bounded domains can be used to give an
approximative finite number of boxes that need to be explored in the worst case.
This metric is employed surprisingly often to describe systems by phrases like
“n modes and m continuous variables”, but it is easy to see that it is not very
accurate in describing how hard it is to find out whether one of the system’s
trajectories satisfies a given condition.

For example in digital circuit verification, the inputs and initial states of
memory-holding elements are sufficient to determine the outputs of the circuit.
An encoding as a SAT formula will comprise a large number of intermediate
variables representing connecting lines, but the high level of determinism in such
systems makes large regions of this search space unreachable—and some of the
actual strength of a state-of-the-art SAT solver over a mere brute-force algorithm
is to detect these deterministic relationships by deduction and generalization
of conflicts and therefore to avoid trying out the majority of all the possible
combinations of variable valuations.

A model may hence very well have a vast state space when using the state
space of all variables as a metric, but it may be very easy to analyze if there are
only very few trajectories.

Looking at the problem from a forward perspective, the number of trajectories
of a model is e.g. determined by its degree of non-determinism including the size
of the initial domains. Assuming, we could enumerate all k-step trajectories of
a model, proving that none of them satisfies a given condition would mean to
check all of them. It is the benefit e.g. of the interval-based approach presented
in this thesis that it needs not necessarily have to investigate these trajectories
individually. The likelihood and therefore hardness of finding a satisfying
trajectory then depends on the ratio of satisfying to unsatisfying trajectories and
their distribution in the state space.

What fascinates and to a degree puzzles us, are the implications of this
observation. First, it seems useful to find good metrics for the degree of non-
determinism inherent to a benchmark, since it may be important for getting
a much better category describing their hardness. Secondly, it supports the
motivation for making strong deduction capabilities available—since they reduce
the amount of non-determinism that the solver adds to a problem as a form of
self-inflicted increase in the search space that needs to be covered by branching.

Finally, however, we think that this observation defines the niche of model
checking and that it contains some bad news for solver developers. If a formula
is quite deterministic, it lends itself well to simulation, since simulation thrives
on computing one successor value for each variable and in these cases does not
have to struggle with branches in the behavior. If, on top of that, the model
has many trajectories leading to target states, randomized simulations will
additionally have a good chance of finding one of them. Benchmarks with high
degree of determinism and many solutions are therefore those that practitioners
will most likely solve by brute-force simulations already today. What they leave
behind is this: models with large degrees of non-determinism and an unknown,
but likely small number of probably isolated solutions that they could not find.

We think, these models are the hardest of all, since they do not only require
strong deduction powers to be able to rule out large parts of the search space,
but also provide the largest challenge to splitting heuristics. When there are at
most a few isolated solutions, it is simply not likely to accidentally split into the
right region of the search space. Many failed branches in the search tree may

5.2. TOPICS FOR FUTURE WORK AND OPEN QUESTIONS 173

be the result before a solution is finally found or enough conflicts are amassed
to prove unsatisfiability.

On a level playing field, where not all the easiest benchmarks have been
solved by simulation, however, it would very much make sense to tightly couple
these tools: let deductions remove infeasible parts, simulate random trajectories
in the remaining space, assess by how much they violate the constraints, and
thereby guide splitting heuristics. Since this combination has been successful
in other domains, it is likely to work here as well.

A Verifiably Correct Solver. Apart from improving scalability, expressiveness
and deductive strength, there is the aspect of human error, which must be taken
into account when discussing the correctness of our approach. Mathematical
proofs can be flawed, special cases be overlooked in algorithm design, imple-
mentation errors be missed. Our implementation has been tested on a number
of benchmarks. We have instrumented the code with many assertions that
check consistency of intermediate results with our expectations. We have added
many debugging outputs to be able to validate individual steps, intermediate
computations, and the interchange of information between the different solver
layers. The iSAT algorithm has been described theoretically and its correctness
been verified in manual proof. The use of ODE enclosures, if understood as
an additional pruning operator, quite seamlessly fits into this framework. The
computation of enclosures via VNODE-LP has been implemented using literate-
programming to allow manual inspection of the actual code while reading the
mathematical approach. Still, there are a lot of possibilities for making errors
and not detecting them.

In a most recent paper [Imm14], an approach is presented to build a verified
algorithm for ODE enclosures inside the framework of a theorem prover—allowing
mechanized proofs of correctness and extraction of the verified code. One could
argue that not going this way is taking quite a shortcut, and the work of this
thesis definitely is guilty as charged in that respect. We cannot guarantee
freedom from errors, which may be capable of invalidating some or even all
of our results. We think, however, that the high additional cost involved in
building truly verified algorithms (with a complete chain of trust from mechanized
mathematical proofs down to verified compilation and execution platforms with
error detection) can only ever be gone when it is clear that the goal is truly
worthwhile and can be achieved.

Understanding this thesis as prototypical work, which may suffer from
overlooked incorrectness, it may be seen as an indication that there is a potential
benefit from joining these technologies together—and maybe eventually to also
invest the effort into doing it based on the highest level of achievable correctness
then available, once better understanding of the right way to the solution is
gained.

174 CHAPTER 5. CONCLUSIONS

List of Figures

2.1 Parallel hybrid automata for running example 22
2.2 Trace and visualization . 28
2.3 Flow invariants and urgency . 30
2.4 Input of iSAT-ODE and candidate solution 41
2.5 Encoding of the two cars model 42

3.1 Interval pruning for x = y · z . 56
3.2 Deduction chain with two constraints 58
3.3 Box consistent valuations . 60
3.4 Consistent valuation capturing empty solution set 61
3.5 Abstract representation of the iSAT algorithm 71
3.6 Rewriting into internal iSAT format and search space 73
3.7 iSAT example: step 0 . 74
3.8 iSAT example: step 1 . 74
3.9 iSAT example: step 2 . 75
3.10 iSAT example: step 3 . 75
3.11 iSAT example: step 4 . 76
3.12 iSAT example: step 5 . 76
3.13 Approximative numerical integration 79
3.14 Rudimentary ODE enclosure 84
3.15 Coordinate transformation . 88
3.16 Harmonic oscillator as VNODE-LP program 92
3.17 VNODE-LP enclosures of the harmonic oscillator 93
3.18 High-level view of iSAT-ODE structure 95
3.19 iSAT-ODE input and solver state 100
3.20 Deduction for ODE constraint 103
3.21 Detection of leaving the flow invariant region 109
3.22 Conservative bounds over entire duration 111
3.23 Refinement of enclosures . 114
3.24 Forward and backward ODE deductions 117
3.25 Spurious solution without direction deduction 125
3.26 Corner trajectories do not lead to enclosures 130
3.27 Bracketing system versus direct method 135

4.1 Structure of the two tank system 138
4.2 Two tank system: simulated trajectories 139
4.3 Two tank system: runtimes for checking unreachability 140
4.4 Schematic drawing of the conveyor belt system 145

175

176 LIST OF FIGURES

4.5 Conveyor belt system: air blast distribution 146
4.6 Conveyor belt system modeled by parallel automata 147
4.7 Conveyor belt system: simulated nominal trajectory 148
4.8 Conveyor belt system: results and runtimes 149
4.9 Conveyor belt system: results and runtimes (continued) 150
4.10 Conveyor belt system: results and runtimes (continued) 151
4.11 Car steering system . 153
4.12 Car steering system: iSAT-ODE trace 155
4.13 Car steering system: simulation and candidate solution 155
4.14 Car steering system: results and runtimes 156
4.15 Two tank system: automaton 157
4.16 Two tank system: iSAT-ODE encoding 158
4.17 Two tank system: results and runtimes 159
4.18 Bouncing ball on sine-waved surface 161
4.19 Range estimate for two tank system 163
4.20 Two tank system: encoding of a level-crossing detection 164
4.21 Range estimate for measurements at discrete levels 165

Bibliography

[ABCS05] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto
Sebastiani. Verifying industrial hybrid systems with MathSAT.
Electronic Notes in Theoretical Computer Science, 119(2):17 – 32,
Elsevier, 2005. doi:10.1016/j.entcs.2004.12.022. (on page 32).

[ADG03] Eugene Asarin, Thao Dang, and Antoine Girard. Reachability
analysis of nonlinear systems using conservative approximation. In
Oded Maler and Amir Pnueli, editors, Hybrid Systems: Computation
and Control, volume 2623 of Lecture Notes in Computer Science,
pages 20–35. Springer, 2003. doi:10.1007/3-540-36580-X_5. (on
page 44).

[ADLBZB10] R[oberto] Armellin, P[ierluigi] Di Lizia, F[ranco] Bernelli-Zazzera,
and M[artin] Berz. Asteroid close encounters characterization
using differential algebra: the case of Apophis. Celestial Mechanics
and Dynamical Astronomy, 107(4):451–470, Springer Netherlands,
2010. doi:10.1007/s10569-010-9283-5. (on page 48).

[Ban12] Patrick Bangert. Optimization for Industrial Problems. Springer,
2012. doi:10.1007/978-3-642-24974-7. (on page 162).

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In W. Cleaveland,
editor, Tools and Algorithms for the Construction and Analysis of
Systems, volume 1579 of Lecture Notes in Computer Science, pages
193–207. Springer, 1999. doi:10.1007/3-540-49059-0_14. (on
page 32).

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
ACM, 1975. doi:10.1145/361002.361007. (on page 128).

[BG06] Frédéric Benhamou and Laurent Granvilliers. Continuous and
interval constraints. In Francesca Rossi, Peter van Beek, and
Toby Walsh, editors, Handbook of Constraint Programming, pages
571–603. Elsevier, Amsterdam, Netherlands, 1st edition, 2006.
(on pages 56, 57, 59, 60).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, Cambridge, Massachusetts, London, England, 2008.
(on pages 24, 31).

177

http://dx.doi.org/10.1016/j.entcs.2004.12.022
http://dx.doi.org/10.1007/3-540-36580-X_5
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.1007/978-3-642-24974-7
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1145/361002.361007

178 BIBLIOGRAPHY

[BM89] Pavel Bochev and Svetoslav Markov. A self-validating numeri-
cal method for the matrix exponential. Computing, 43(1):59–72,
Springer, 1989. doi:10.1007/BF02243806. (on page 44).

[BM98] Martin Berz and Kyoko Makino. Verified integration of odes and
flows using differential algebraic methods on high-order taylor
models. Reliable Computing, 4(4):361–369, Kluwer Academic Pub-
lishers, 1998. doi:10.1023/A:1024467732637. (on page 48).

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marĳn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 825–885. IOS Press, 2009. doi:10.3233/
978-1-58603-929-5-825. (on page 38).

[BT00] Oleg Botchkarev and Stavros Tripakis. Verification of hybrid
systems with linear differential inclusions using ellipsoidal ap-
proximations. In Nancy Lynch and Bruce H. Krogh, editors,
Hybrid Systems: Computation and Control, volume 1790 of Lec-
ture Notes in Computer Science, pages 73–88. Springer, 2000.
doi:10.1007/3-540-46430-1_10. (on page 44).

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*:
An analyzer for non-linear hybrid systems. In Natasha Sharygina
and Helmut Veith, editors, Computer Aided Verification, volume
8044 of Lecture Notes in Computer Science, pages 258–263. Springer
Berlin Heidelberg, 2013. doi:10.1007/978-3-642-39799-8_18. (on
pages 48, 170).

[CESS08] Koen Claessen, Niklas Een, Mary Sheeran, and Niklas Sörensson.
Sat-solving in practice. In 9th International Workshop on Discrete
Event Systems, 2008. WODES 2008, pages 61–67, 2008. doi:
10.1109/wodes.2008.4605923. (on page 37).

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh,
Olaf Stursberg, and Michael Theobald. Verification of hybrid sys-
tems based on counterexample-guided abstraction refinement.
In Hubert Garavel and John Hatcliff, editors, Proceedings of the
9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 2619 of Lec-
ture Notes in Computer Science, pages 192–207. Springer, 2003.
doi:10.1007/3-540-36577-X_14. (on pages 153, 154).

[Dan06] Thao Dang. Approximate reachability computation for polynomial
systems. In João Hespanha and Ashish Tiwari, editors, Hybrid
Systems: Computation and Control, volume 3927 of Lecture Notes
in Computer Science, pages 138–152. Springer, 2006. doi:10.1007/
11730637_13. (on page 44).

[DLGM09] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reach-
able states for nonlinear biological models. In Pierpaolo Degano
and Roberto Gorrieri, editors, Computational Methods in Systems

http://dx.doi.org/10.1007/BF02243806
http://dx.doi.org/10.1023/A:1024467732637
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.1007/3-540-46430-1_10
http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1109/wodes.2008.4605923
http://dx.doi.org/10.1109/wodes.2008.4605923
http://dx.doi.org/10.1007/3-540-36577-X_14
http://dx.doi.org/10.1007/11730637_13
http://dx.doi.org/10.1007/11730637_13

BIBLIOGRAPHY 179

Biology, volume 5688 of Lecture Notes in Computer Science, pages
126–141. Springer, 2009. doi:10.1007/978-3-642-03845-7_9. (on
page 44).

[DT12] Thao Dang and Romain Testylier. Reachability analysis for
polynomial dynamical systems using the Bernstein expan-
sion. Reliable Computing, 2(17):128–152, 2012. Available
from: http://interval.louisiana.edu/reliable-computing-journal/
volume-17/reliable-computing-17-pp-128-152.pdf. (on page 44).

[EFH08] Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo
ODE: A direct SAT approach to hybrid systems. In Sungdeok (Steve)
Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Mahesh
Viswanathan, editors, Proceedings of the 6th International Sym-
posium on Automated Technology for Verification and Analysis
(ATVA’08), volume 5311 of Lecture Notes in Computer Science, pages
171–185. Springer, 2008. doi:10.1007/978-3-540-88387-6_14.
(on pages 16, 32, 37, 94, 104, 118, 167).

[Egg06] Andreas Eggers. Einbettung sicherer numerischer Integration
von Differentialgleichungen in DPLL-basiertes arithmetisches
Constraint-Solving für hybride Systeme. Master’s thesis, Carl von
Ossietzky Universität Oldenburg, Department für Informatik, 2006.
Advisors: Martin Fränzle and Christian Herde. Available from: http:
//www.avacs.org/Publikationen/Open/eggers.msc06.pdf. (on
pages 16, 85, 118).

[ERNF11] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and
Martin Fränzle. Improving SAT modulo ODE for hybrid sys-
tems analysis by combining different enclosure methods. In
Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors,
Proceedings of the Ninth International Conference on Software
Engineering and Formal Methods (SEFM), volume 7041 of Lec-
ture Notes in Computer Science, pages 172–187. Springer, 2011.
doi:10.1007/978-3-642-24690-6_13. (on pages 16, 126, 133, 137,
138, 139, 142, 143, 168).

[ERNF12a] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and
Martin Fränzle. Improving the SAT modulo ODE approach to
hybrid systems analysis by combining different enclosure methods.
Software and Systems Modeling, Springer, 2012. doi:10.1007/
s10270-012-0295-3. (on pages 17, 32, 37, 39, 40, 41, 94, 104,
107, 118, 137, 138, 168).

[ERNF12b] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and
Martin Fränzle. Set-membership estimation of hybrid systems
via sat modulo ode. In Michel Kinnaert, editor, Prooceedings of
the 16th IFAC Symposium on System Identification, pages 440–
445. International Federation of Automatic Control (IFAC), 2012.
doi:10.3182/20120711-3-BE-2027.00292. (on page 162).

[FH05] Martin Fränzle and Christian Herde. Efficient proof engines for
bounded model checking of hybrid systems. In Proceedings of

http://dx.doi.org/10.1007/978-3-642-03845-7_9
http://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-128-152.pdf
http://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-128-152.pdf
http://dx.doi.org/10.1007/978-3-540-88387-6_14
http://www.avacs.org/Publikationen/Open/eggers.msc06.pdf
http://www.avacs.org/Publikationen/Open/eggers.msc06.pdf
http://dx.doi.org/10.1007/978-3-642-24690-6_13
http://dx.doi.org/10.1007/s10270-012-0295-3
http://dx.doi.org/10.1007/s10270-012-0295-3
http://dx.doi.org/10.3182/20120711-3-BE-2027.00292

180 BIBLIOGRAPHY

the Ninth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2004), volume 133 of Electronic Notes in
Theoretical Computer Science, pages 119–137, 2005. doi:10.1016/
j.entcs.2004.08.061. (on page 32).

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. Mpfr: A multiple-precision
binary floating-point library with correct rounding. ACM Trans.
Math. Softw., 33(2), ACM, June 2007. GNU MPFR is available
from http://www.mpfr.org. doi:10.1145/1236463.1236468. (on
page 57).

[FHR+07] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schu-
bert, and Tino Teige. Efficient solving of large non-linear arithmetic
constraint systems with complex boolean structure. JSAT Special
Issue on Constraint Programming and SAT, 1:209–236, 2007. Avail-
able from: http://jsat.ewi.tudelft.nl/content/volume1/JSAT1_11_
Fraenzle.pdf. (on pages 16, 37, 38, 52, 55, 120).

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard,
Thao Dang, and Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification, volume 6806 of Lecture Notes
in Computer Science, pages 379–395. Springer, 2011. doi:10.1007/
978-3-642-22110-1_30. (on page 45).

[Frä99] Martin Fränzle. Analysis of hybrid systems: An ounce of realism
can save an infinity of states. In Jörg Flum and Mario Rodriguez-
Artalejo, editors, Computer Science Logic, volume 1683 of Lecture
Notes in Computer Science, pages 126–139. Springer, 1999. doi:
10.1007/3-540-48168-0_10. (on page 38).

[Fre05] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems
past HyTech. In Manfred Morari and Lothar Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 258–273. Springer, 2005. doi:10.1007/
978-3-540-31954-2_17. (on page 45).

[FRZ11] Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. Satisfiability
of systems of equations of real analytic functions is quasi-decidable.
In Filip Murlak and Piotr Sankowski, editors, MFCS 2011: 36th
International Symposium on Mathematical Foundations of Computer
Science, volume 6907 of Lecture Notes in Computer Science, pages
315–326. Springer, 2011. doi:10.1007/978-3-642-22993-0_30.
(on page 38).

[Gir05] Antoine Girard. Reachability of uncertain linear systems using
zonotopes. In Manfred Morari and Lothar Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 291–305. Springer, 2005. doi:10.1007/
978-3-540-31954-2_19. (on page 44).

http://dx.doi.org/10.1016/j.entcs.2004.08.061
http://dx.doi.org/10.1016/j.entcs.2004.08.061
http://www.mpfr.org
http://dx.doi.org/10.1145/1236463.1236468
http://jsat.ewi.tudelft.nl/content/volume1/JSAT1_11_Fraenzle.pdf
http://jsat.ewi.tudelft.nl/content/volume1/JSAT1_11_Fraenzle.pdf
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/3-540-48168-0_10
http://dx.doi.org/10.1007/3-540-48168-0_10
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/978-3-642-22993-0_30
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://dx.doi.org/10.1007/978-3-540-31954-2_19

BIBLIOGRAPHY 181

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. Sat-
isfiability modulo ODEs. In Formal Methods in Computer-
Aided Design (FMCAD), 2013. ISBN 978-0-9835678-3-7/13.
Available from: http://www.cs.utexas.edu/users/hunt/FMCAD/
FMCAD13/papers/25-SAT-Modulo-ODEs.pdf. (on pages 16, 38,
53, 168).

[GMEH10] Alexandre Goldsztejn, Olivier Mullier, Damien Eveillard, and Hi-
roshi Hosobe. Including ordinary differential equations based
constraints in the standard CP framework. In David Cohen, edi-
tor, Principles and Practice of Constraint Programming - CP 2010,
volume 6308 of Lecture Notes in Computer Science, pages 221–
235. Springer, 2010. doi:10.1007/978-3-642-15396-9_20. (on
pages 40, 50, 51, 53).

[Gol09] Alexandre Goldsztejn. On the exponentiation of interval matrices.
Computing Research Repository (arXiv), 2009. Available from:
http://arxiv.org/abs/0908.3954. (on page 44).

[GP07] Antoine Girard and George J. Pappas. Approximation metrics for
discrete and continuous systems. IEEE Transactions on Automatic
Control, 52(5):782–798, 2007. doi:10.1109/TAC.2007.895849. (on
page 38).

[GPB05] Nicoló Giorgetti, George J. Pappas, and Alberto Bemporad.
Bounded model checking of hybrid dynamical systems. In 44th
IEEE Conference on Decision and Control, 2005 and 2005 Euro-
pean Control Conference (CDC-ECC ’05), pages 672–677, 2005.
doi:10.1109/CDC.2005.1582233. (on page 32).

[GvVK94] J[an] F[riso] Groote, S[ebastiaan] F.M. van Vlĳmen, and J. W[ilco] C.
Koorn. The safety guaranteeing system at station Hoorn-
Kersenboogerd. Technical Report 121, Department of Philos-
ophy, Utrecht University, Logic Group Preprint Series, Octo-
ber 1994. Extended abstract published at COMPASS’95 con-
ference, cf. DOI. Available from: http://dspace.library.uu.nl/
bitstream/handle/1874/26459/preprint121.pdf, doi:10.1109/
CMPASS.1995.521887. (on page 32).

[HEFT08] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige.
Analysis of Hybrid Systems using HySAT. In The Third International
Conference on Systems (ICONS 2008), pages 196–201. IEEE Com-
puter Society, 2008. doi:10.1109/ICONS.2008.17. (on page 32).

[Heh84] Eric C. R. Hehner. Predicative programming, part II. Communica-
tions of the ACM, 27(2):144–151, 1984. doi:10.1145/69610.357990.
(on page 37).

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Logic
in Computer Science (LICS), Symposium on, pages 278–292, Los
Alamitos, CA, USA, 1996. IEEE Computer Society. doi:10.1109/
lics.1996.561342. (on pages 19, 20, 22, 23, 30).

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/25-SAT-Modulo-ODEs.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/25-SAT-Modulo-ODEs.pdf
http://dx.doi.org/10.1007/978-3-642-15396-9_20
http://arxiv.org/abs/0908.3954
http://dx.doi.org/10.1109/TAC.2007.895849
http://dx.doi.org/10.1109/CDC.2005.1582233
http://dspace.library.uu.nl/bitstream/handle/1874/26459/preprint121.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/26459/preprint121.pdf
http://dx.doi.org/10.1109/CMPASS.1995.521887
http://dx.doi.org/10.1109/CMPASS.1995.521887
http://dx.doi.org/10.1109/ICONS.2008.17
http://dx.doi.org/10.1145/69610.357990
http://dx.doi.org/10.1109/lics.1996.561342
http://dx.doi.org/10.1109/lics.1996.561342

182 BIBLIOGRAPHY

[Her11] Christian Herde. Efficient Solving of Large Arithmetic Constraint
Systems with Complex Boolean Structure – Proof Engines for the
Analysis of Hybrid Discrete-Continuous Systems. Vieweg+Teubner
Research, 1st edition, 2011. doi:10.1007/978-3-8348-9949-1. (on
pages 32, 37, 39, 44, 55, 59, 65, 67, 69, 71, 169).

[HHMWT00] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and
Howard Wong-Toi. Beyond HyTech: Hybrid systems analysis using
interval numerical methods. In Nancy Lynch and Bruce H. Krogh,
editors, Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes in Computer Science, pages 130–144. Springer, 2000.
doi:10.1007/3-540-46430-1_14. (on pages 47, 138).

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech:
a model checker for hybrid systems. International Journal on
Software Tools for Technology Transfer, 1(1-2):110–122, Springer-
Verlag, 1997. doi:10.1007/s100090050008. (on page 43).

[HHWT98] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Algo-
rithmic analysis of nonlinear hybrid systems. IEEE Transactions
on Automatic Control, 43(4):540–554, 1998. doi:10.1109/9.664156.
(on page 45).

[Hic00] Timothy J. Hickey. Analytic constraint solving and interval arith-
metic. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’00, pages 338–351,
New York, NY, USA, 2000. ACM. doi:10.1145/325694.325738. (on
page 50).

[HK06] Zhi Han and Bruce H. Krogh. Reachability analysis of large-scale
affine systems using low-dimensional polytopes. In João Hespanha
and Ashish Tiwari, editors, Hybrid Systems: Computation and
Control, volume 3927 of Lecture Notes in Computer Science, pages
287–301. Springer, 2006. doi:10.1007/11730637_23. (on page 44).

[HPWT01] Thomas A. Henzinger, Jörg Preussig, and Howard Wong-Toi. Some
lessons from the HyTech experience. In Proceedings of the 40th
IEEE Conference on Decision and Control, volume 3, pages 2887–
2892, 2001. doi:10.1109/.2001.980714. (on page 43).

[HW04] Timothy J. Hickey and David K. Wittenberg. Rigorous modeling
of hybrid systems using interval arithmetic constraints. In Rajeev
Alur and GeorgeJ. Pappas, editors, Hybrid Systems: Computation
and Control, volume 2993 of Lecture Notes in Computer Science,
pages 402–416. Springer, 2004. doi:10.1007/978-3-540-24743-2_
27. (on pages 49, 50).

[Imm14] Fabian Immler. Formally verified computation of enclosures
of solutions of ordinary differential equations. In Proceedings
of the 6th NASA Formal Methods Symposium, volume 8430 of
Lecture Notes in Computer Science. Springer, 2014. to appear.
Available from: http://home.in.tum.de/~immler/documents/
immler2014enclosures.pdf. (on page 173).

http://dx.doi.org/10.1007/978-3-8348-9949-1
http://dx.doi.org/10.1007/3-540-46430-1_14
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.1109/9.664156
http://dx.doi.org/10.1145/325694.325738
http://dx.doi.org/10.1007/11730637_23
http://dx.doi.org/10.1109/.2001.980714
http://dx.doi.org/10.1007/978-3-540-24743-2_27
http://dx.doi.org/10.1007/978-3-540-24743-2_27
http://home.in.tum.de/~immler/documents/immler2014enclosures.pdf
http://home.in.tum.de/~immler/documents/immler2014enclosures.pdf

BIBLIOGRAPHY 183

[IUH11] Daisuke Ishii, Kazunori Ueda, and Hiroshi Hosobe. An interval-
based SAT modulo ODE solver for model checking nonlinear hybrid
systems. International Journal on Software Tools for Technology
Transfer (STTT), pages 1–13, Springer, March 2011. doi:10.1007/
s10009-011-0193-y. (on pages 16, 52, 53, 152, 153, 154, 157,
159, 160, 161).

[IUHG09] Daisuke Ishii, Kazunori Ueda, Hiroshi Hosobe, and Alexandre
Goldsztejn. Interval-based solving of hybrid constraint systems. In
Alessandro Giua, Cristian Mahulea, Manuel Silva, and Janan
Zaytoon, editors, Proceedings of the 3rd IFAC Conference on
Analysis and Design of Hybrid Systems, volume 3, pages 144–
149. International Federation of Automatic Control (IFAC), 2009.
doi:10.3182/20090916-3-ES-3003.00026. (on pages 51, 52, 53).

[KGG+09] Stefan Kowalewski, Mauro Garavello, Hervé Guéguen, Gerlind Her-
berich, Rom Langerak, Benedetto Piccoli, Jan Willem Polderman,
and Carsten Weise. Hybrid automata. In Jan Lunze and Françoise
Lamnabhi-Lagarrigue, editors, Handbook of Hybrid Systems Con-
trol, chapter 3. Cambridge University Press, Cambridge, UK, 2009.
(on page 31).

[Kou03] Xenofon D. Koutsoukos. Estimation of hybrid systems using
discrete sensors. In Proceedings of the 42nd IEEE Conference on
Decision and Control, volume 1, pages 155 – 160, December 2003.
doi:10.1109/cdc.2003.1272552. (on page 164).

[LJS+03] J. Lygeros, K.H. Johansson, S.N. Simic, Jun Zhang, and S.S.
Sastry. Dynamical properties of hybrid automata. Automatic
Control, IEEE Transactions on, 48(1):2–17, jan 2003. doi:10.1109/
TAC.2002.806650. (on page 154).

[Loh88] Rudolf Lohner. Einschließung der Lösung gewöhnlicher Anfangs-
und Randwertaufgaben und Anwendungen. PhD thesis, Universität
Karlsruhe, Fakultät für Mathematik, June 1988. (on pages 16, 47,
48, 81, 82, 85, 90).

[LTG+06] Michael Lerch, German Tischler, Jürgen Wolff von Gudenberg,
Werner Hofschuster, and Walter Krämer. Filib++, a fast interval
library supporting containment computations. ACM Trans. Math.
Softw., 32(2):299–324, ACM, June 2006. FILIB++ is available
at http://www2.math.uni-wuppertal.de/~xsc/software/filib.html.
doi:10.1145/1141885.1141893. (on pages 57, 94).

[Mar11] Peter Marwedel. Embedded System Design – Emdedded Systems
Foundations of Cyber-Physical Systems. Springer, 2nd edition,
2011. doi:10.1007/978-94-007-0257-8. (on page 43).

[MB03] Kyoko Makino and Martin Berz. Suppression of the wrapping
effect by taylor model- based validated integrators. Technical
Report MSU Report MSUHEP 40910, Michigan State University,
2003. Available from: http://bt.pa.msu.edu/pub/papers/VIRC03/
VIRC03.pdf. (on page 48).

http://dx.doi.org/10.1007/s10009-011-0193-y
http://dx.doi.org/10.1007/s10009-011-0193-y
http://dx.doi.org/10.3182/20090916-3-ES-3003.00026
http://dx.doi.org/10.1109/cdc.2003.1272552
http://dx.doi.org/10.1109/TAC.2002.806650
http://dx.doi.org/10.1109/TAC.2002.806650
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
http://dx.doi.org/10.1145/1141885.1141893
http://dx.doi.org/10.1007/978-94-007-0257-8
http://bt.pa.msu.edu/pub/papers/VIRC03/VIRC03.pdf
http://bt.pa.msu.edu/pub/papers/VIRC03/VIRC03.pdf

184 BIBLIOGRAPHY

[MCRTM14] Moussa Maïga, Christophe Combastel, Nacim Ramdani, and
Louise Travé-Massuyès. Nonlinear hybrid reachability using
set integration and zonotopic enclosures. In Proceedings of the
13th European Control Conference (ECC), pages 234–239, 2014.
doi:10.1109/ECC.2014.6862491. (on page 88).

[Moo66] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs,
New Jersey, USA, 1966. (on pages 47, 57, 80, 81, 84, 85).

[Ned99] Nedialko Stoyanov Nedialkov. Computing Rigorous Bounds on the
Solution of an Initial Value Problem for an Ordinary Differential
Equation. PhD thesis, Department of Computer Science, University
of Toronto, Ontario, Canada, 1999. Available from: https://tspace.
library.utoronto.ca/bitstream/1807/13081/1/NQ41256.pdf. (on
pages 92, 121).

[Ned06] Nedialko S. Nedialkov. VNODE-LP – a validated solver for initial
value problems in ordinary differential equations. Technical Report
CAS-06-06-NN, Department of Computing and Software, McMaster
University, Hamilton, Ontario, Canada, 2006. Available from: http:
//www.cas.mcmaster.ca/~nedialk/vnodelp/doc/vnode.pdf. (on
pages 15, 47, 92, 94).

[Neu03] Arnold Neumaier. Taylor forms—use and limits. Reliable Computing,
9(1):43–79, Kluwer Academic Publishers, 2003. doi:10.1023/A:
1023061927787. (on pages 48, 62).

[NJ01] Nedialko S. Nedialkov and Kenneth R. Jackson. A new per-
spective on the wrapping effect in interval methods for initial
value problems for ordinary differential equations. In Ulrich
Kulisch, Rudolf Lohner, and Axel Facius, editors, Perspectives
on Enclosure Methods, pages 219–264. Springer, Vienna, 2001.
doi:10.1007/978-3-7091-6282-8_13. (on pages 85, 90).

[NJP01] Nedialko S. Nedialkov, Kenneth R. Jackson, and John D. Pryce.
An effective high-order interval method for validating existence and
uniqueness of the solution of an ivp for an ode. Reliable Computing,
7(6):449–465, Kluwer Academic Publishers, 2001. doi:10.1023/A:
1014798618404. (on page 92).

[Oeh11] Jens Oehlerking. Decomposition of stability proofs for hybrid
systems. PhD thesis, Carl von Ossietzky Universität Olden-
burg, 2011. urn:nbn:de:gbv:715-oops-14554. Available from:
http://oops.uni-oldenburg.de/id/eprint/1375. (on page 46).

[OM88] Edward P. Oppenheimer and Anthony N. Michel. Application of
interval analysis techniques to linear systems. II. The interval
matrix exponential function. IEEE Transactions on Circuits and
Systems, 35(10):1230–1242, 1988. doi:10.1109/31.7598. (on
page 44).

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem
prover for hybrid systems (system description). In Alessandro Ar-
mando, Peter Baumgartner, and Gilles Dowek, editors, Automated

http://dx.doi.org/10.1109/ECC.2014.6862491
https://tspace.library.utoronto.ca/bitstream/1807/13081/1/NQ41256.pdf
https://tspace.library.utoronto.ca/bitstream/1807/13081/1/NQ41256.pdf
http://www.cas.mcmaster.ca/~nedialk/vnodelp/doc/vnode.pdf
http://www.cas.mcmaster.ca/~nedialk/vnodelp/doc/vnode.pdf
http://dx.doi.org/10.1023/A:1023061927787
http://dx.doi.org/10.1023/A:1023061927787
http://dx.doi.org/10.1007/978-3-7091-6282-8_13
http://dx.doi.org/10.1023/A:1014798618404
http://dx.doi.org/10.1023/A:1014798618404
http://oops.uni-oldenburg.de/id/eprint/1375
http://dx.doi.org/10.1109/31.7598

BIBLIOGRAPHY 185

Reasoning, volume 5195 of Lecture Notes in Computer Science,
pages 171–178. Springer, 2008. doi:10.1007/978-3-540-71070-7_
15. (on page 49).

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C. Cambridge University
Press, UK, second edition, 1992. (on page 90).

[PW07] Andreas Podelski and Silke Wagner. Region stability proofs
for hybrid systems. In Jean-François Raskin and P. S. Thi-
agarajan, editors, Proceedings of the 5th International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FOR-
MATS), volume 4763 of LNCS, pages 320–335. Springer, 2007.
doi:10.1007/978-3-540-75454-1_23. (on page 141).

[RMC09] Nacim Ramdani, Nacim Meslem, and Yves Candau. A hybrid
bounding method for computing an over-approximation for the
reachable set of uncertain nonlinear systems. IEEE Transactions
on Automatic Control, 54(10):2352–2364, 2009. doi:10.1109/TAC.
2009.2028974. (on pages 16, 130, 131, 135).

[RMC10] Nacim Ramdani, Nacim Meslem, and Yves Candau. Computing
reachable sets for uncertain nonlinear monotone systems. Non-
linear Analysis: Hybrid Systems, 4(2):263–278, Elsevier, 2010.
doi:10.1016/j.nahs.2009.10.002. (on pages 130, 131).

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hybrid
systems by constraint propagation-based abstraction refinement.
ACM Transactions on Embedded Computing Systems, 6(1), ACM,
2007. Article No. 8. doi:10.1145/1210268.1210276. (on pages 48,
127, 138).

[Sht00] Ofer Shtrichman. Tuning sat checkers for bounded model checking.
In E. Allen Emerson and Aravinda Prasad Sistla, editors, Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Sci-
ence, pages 480–494. Springer, 2000. doi:10.1007/10722167_36.
(on pages 99, 119).

[SKHP97] Olaf Stursberg, Stefan Kowalewski, Ingo Hoffmann, and Jörg
Preußig. Comparing timed and hybrid automata as approximations
of continuous systems. In Panos Antsaklis, Wolf Kohn, Anil Nerode,
and Shankar Sastry, editors, Hybrid Systems IV, volume 1273 of
LNCS, pages 361–377. Springer, 1997. doi:10.1007/bfb0031569.
(on pages 138, 163).

[ST98] Karsten Strehl and Lothar Thiele. Symbolic model checking
of process networks using interval diagram techniques. In
Computer-Aided Design, 1998. ICCAD 98. Digest of Technical
Papers. 1998 IEEE/ACM International Conference on, pages
686–692, Nov 1998. Available from: http://www.cs.york.ac.
uk/rts/docs/SIGDA-Compendium-1994-2004/papers/1998/
iccad98/pdffiles/11d_3.pdf, doi:10.1109/ICCAD.1998.144343.
(on page 128).

http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1109/TAC.2009.2028974
http://dx.doi.org/10.1109/TAC.2009.2028974
http://dx.doi.org/10.1016/j.nahs.2009.10.002
http://dx.doi.org/10.1145/1210268.1210276
http://dx.doi.org/10.1007/10722167_36
http://dx.doi.org/10.1007/bfb0031569
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/1998/iccad98/pdffiles/11d_3.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/1998/iccad98/pdffiles/11d_3.pdf
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/1998/iccad98/pdffiles/11d_3.pdf
http://dx.doi.org/10.1109/ICCAD.1998.144343

186 BIBLIOGRAPHY

[Sta97] Ole Stauning. Automatic validation of numerical solutions. PhD the-
sis, Danmarks Tekniske Universitet (DTU), Kgs. Lyngby, Denmark,
1997. IMM-PHD-1997-36. Available from: http://orbit.dtu.dk/
services/downloadRegister/5268944/imm2462.pdf. (on pages 47,
81, 91).

[THF+07] Tino Teige, Christian Herde, Martin Fränzle, Natalia Kalinnik, and
Andreas Eggers. A generalized two-watched-literal scheme in a
mixed boolean and non-linear arithmetic constraint solver. In
José Neves, Manuel Filipe Santos, and José Manuel Machado,
editors, Proceedings of the 13th Portuguese Conference on Arti-
ficial Intelligence (EPIA 2007), New Trends in Artificial Intelli-
gence, pages 729–741. APPIA, December 2007. Workshop on
Search Techniques for Constraint Satisfaction (STCS). Avail-
able from: http://hs.informatik.uni-oldenburg.de/tino/papers/
TeigeEtAl_EPIA07.pdf. (on page 67).

http://orbit.dtu.dk/services/downloadRegister/5268944/imm2462.pdf
http://orbit.dtu.dk/services/downloadRegister/5268944/imm2462.pdf
http://hs.informatik.uni-oldenburg.de/tino/papers/TeigeEtAl_EPIA07.pdf
http://hs.informatik.uni-oldenburg.de/tino/papers/TeigeEtAl_EPIA07.pdf

	Acknowledgements
	Introduction
	Context and Motivation
	Structure of this Thesis
	Contributions and Prior Publication

	Foundations and Problem Statement
	Hybrid Systems
	Encoding by Formulae Involving Ordinary Differential Equations
	Satisfiability Modulo ODE
	Related Work

	Algorithmic Approach
	The Core iSAT Algorithm: Learning Conflicts by Branching and Pruning Intervals
	Interval Constraint Propagation
	Input Language and Preprocessing
	Unit Propagation
	Branching by Splitting Intervals
	Implication Graph and Conflict Analysis
	The iSAT Solver

	Enclosing Solution Sets of Ordinary Differential Equations
	From Approximations to Enclosures
	Fighting the Wrapping Effect
	Automatic Differentiation
	VNODE-LP

	Embedding ODE Enclosures into iSAT
	Structure of the iSAT-ODE Solver
	Extended Solver Input
	Deduction for ODE Constraints
	Computation of Enclosures and Refinements
	Backward Deduction
	Utilizing Deduction Results in iSAT-ODE
	Acceleration Techniques
	Direction Deduction

	Avoiding Repeated Enclosures
	Building Bracketing Systems Automatically

	Experimental Evaluation
	Bounded Model Checking Case Studies
	Two Tank System
	A Conveyor Belt System
	Comparison with hydlogic

	Range Estimation for Hybrid Systems

	Conclusions
	Summary
	Topics for Future Work and Open Questions

	Bibliography

