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Abstract. MEDICUS2 is an Intelligent Problem Solving Environment
(IPSE) currently under development. It is designed to support i) the
construction of explanation models, and ii) the training of diagnostic
reasoning and hypotheses testing in domains of complex, fragile, and
uncertain knowledge. MEDICUS is currently developed and applied in the
epidemiological fields of environmentally caused diseases and human
genetics. Uncertainty is handled by the Bayesian network approach. Thus
the modelling task for the learner consists of creating a Bayesian network
for the problem at hand. He / she may test hypotheses about the model, and
the system provides help. This differs from existing reasoning systems
based on Bayesian networks, i.e. in medical domains, which contain a
built-in knowledge base that may be used but not created or modified by the
learner. For supporting diagnostic reasoning, MEDICUS proposes
diagnostic hypotheses and examinations. This will be extended to support
learners' acquisition and training of diagnostic strategies.

1 Introduction

Diagnosis is a reasoning and problem solving task that can be quite difficult. This is
especially true in medical domains (Barrows & Tamblyn, 1980; Boshuizen &
Schmidt, 1992; Elstein et al., 1978; Elstein & Bordage, 1980; Patel & Groen, 1986)
where the knowledge is particularly complex, interrelated, fragile, and uncertain. Two
examples of such domains are the epidemiology of diseases caused by environmental
influences, like pollution, and of diseases caused by genetic defects. In these domains,
a clear-cut taxonomy of diseases, or syndromes, has not been developed yet. Still
these domains are getting increasingly important. This is reflected by the fact that
these fields receive increasing attention in medical science at university as well as in
further education training courses and postqualification courses for physicians.
Computer-based support of medical reasoning started more than twenty years ago.
From the beginning, the problem of uncertainty received central attention. Since there
were no efficient algorithms for processing probabilities, early systems like MYCIN
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(Shortliffe, 1976), CASNET (Weiss et al., 1978), PIP (Szolovits & Pauker, 1978;
1993), or INTERNIST (Miller et al., 1982) used heuristic approaches. This situation
changed in the 1980's, enabling the development of normative probability-based
medical expert systems (i.e., NESTOR, Cooper, 1984; MUNIN, Andreassen et al.,
1987; PATHFINDER, Heckerman, 1991). The main aim of these systems is to
provide the user with diagnostic hypotheses, given the available evidence, and to
suggest further diagnostic evidence gathering steps, for example, for differential
diagnosis. Some systems, like CASNET, also generate therapeutic recommendations.
But in spite of some capability to explain their reasoning steps, the reasoning and
knowledge structures of these systems remain largely hidden to the user.
For the purpose of medical training, the recommendation of diagnostic hypotheses
and investigations is important but not sufficient. Since hypothetical model building
and diagnostic reasoning are problem solving tasks, there is a need for students of
medicine to train these two skills (Barrows & Tamblyn, 1980):
Firstly, apart from diagnosis the learner should have an opportunity to actively
construct models of diseases, their possible causes, and the symptoms associated with
them, and to evaluate the consequences of these models. In this way the learner
acquires and uses the knowledge necessary for diagnostic reasoning.
Secondly, the learner should be given the opportunity to actively perform diagnostic
reasoning and to apply diagnostic strategies.
Currently we develop MEDICUS, an Intelligent Problem Solving Environment
(IPSE, Möbus, 1995), in collaboration with several medical institutions (Health
Authority of Oldenburg, Documentation and Information Center for Environmental
Issues, Osnabrück, Medical Institute for Environmental Hygiene, Düsseldorf, Robert-
Koch Institute, Berlin). MEDICUS differs from existing medical expert systems by
being designed to support the two activities mentioned:
• Model construction is supported by a model editor based on a simplified natural
language. After creating an initial model of the domain of interest, the learner may
further specify, evaluate, and revise the model at a qualitative and quantitative level.
• Training of diagnostic strategies will also be supported qualitatively (i.e., what
information is necessary in order to support or differentiate between what
hypotheses?) and quantitatively (i.e., how does information gathered affect my
diagnostic hypotheses? What is the most important information to acquire next?)
Though MEDICUS is developed for fields of medicine, our intention is that it will be
applicable to diagnosing and modelling problems in other domains of uncertain and
complex knowledge as well. The next section gives an overview of the design
decisions for the system. Then the implementation state is described. Conclusions
and directions of further work will be sketched in the closing section.

2 Design Decisions for MEDICUS

In order to create a system designed to support problem solving in a knowledge
domain, a set of design principles is required that is based on a theory of problem
solving and knowledge acquisition. We call our approach an Intelligent Problem
Solving Environment (IPSE, Möbus, 1995): The learner acquires knowledge by
actively testing hypotheses. This means that the learner creates solution proposals for



problems, tests hypotheses about their correctness, and the system analyzes the
proposals making use of an oracle or an expert knowledge base, and provides help and
explanations. The psychological foundation of our IPSE approach is the ISP-DL
Theory of knowledge acquisition and problem solving (Möbus, 1995) which is
influenced by theoretical positions of van Lehn (1988), Newell (1990), and Anderson
(1993), and Gollwitzer (1990). Briefly, it states that new knowledge is acquired as a
result of problem solving: applying weak heuristics in response to impasses. In
contrast, existing knowledge is optimized if applied successfully. Furthermore there
are four distinct problem solving phases: deliberating, resulting in setting a goal,
planning how to reach the goal, executing the plan, and evaluating the result. The
ISP-DL Theory leads to several design principles for IPSE's. Some of them are
(Möbus, 1995; Möbus et al., 1992):
• According to the theory the learner will look for and appreciate help at an impasse.
So the system should not interrupt the learner but offer help on demand.
• Feedback and help information should be available any time, aiming at the actual
problem solving phase of the learner.
• At an impasse, the learner should be prevented from trapping into follow-up
impasses. Thus help should refer to the learner's pre-knowledge as much as possible.
MEDICUS is designed according to these criteria. Help information is or will be
always available on demand. Planning a model is facilitated by the simplified-natural-
language model editor which allows the learner to state her or his ideas in an informal
way. The evaluation of models is supported qualitatively and quantitatively. Close
correspondence to the learner's knowledge will be achieved by giving help that
changes the learner's proposal as little as possible (minimal modifications).
Besides general design criteria for IPSE's, each domain has special features. In this
case, it is the uncertainty of knowledge, which we chose to handle by the Bayesian
network approach. A Bayesian network (e.g., Neapolitan, 1990; Pearl, 1988)
represents knowledge as a set of propositional variables and probabilistic
interrelationships between them by a directed acyclic graph. The variables are
represented by the nodes of the graph, and the relations by directed arcs. The relations
are conditional probabilities (each variable conditioned on its parents in the network).
They define a joint probability distribution that can be used to compute desired
aposteriori distributions. Figure 1 shows a simple Bayesian network for the joint
distribution p(injury, space requirement, haemodynamic irritation, vomiting,
dislocation of vessels, infection of meninges, permanent headache). The conditional
distributions needed to compute this joint distribution can be simplified by
independence assumptions. In the graph, independencies between variables are
represented by omitting arcs. For example, in Figure 1 the variables "vomiting" and
"dislocation of vessels" are independent given knowledge about "space requirement".
This means that information about "vomiting" is not relevant for the hypothesis
"dislocation of vessels" (and vice versa) if it is already known whether the patient
suffers from a space requirement process: p(dislocation of vessels | space requirement,
vomiting) = p(dislocation of vessels | space requirement).
An important reason for choosing the Bayesian network approach is that the system
is designed to support qualitative reasoning. A physician engaged in medical
diagnosis proceeds in a highly selective manner (i.e., Elstein et al., 1978). We pursue



the hypothesis that this selectivity corresponds to the kind of (in)dependencies present
in Bayesian networks. Reviews of published case studies in the domain of
environmental medicine support this hypothesis. More generally, there is empirical
evidence that qualitative reasoning by (in)dependencies as supported by Bayesian
networks (like for example “explaining away”) corresponds closely to human
reasoning patterns (Henrion, 1987; Pearl, 1993; Waldmann & Holyoak, 1992).

Fig. 1. A simple Bayesian network for a medical problem

Alternative approaches. The Dempster-Shafer Theory of evidential reasoning is an
extension of probability theory. Uncertainty is represented by belief intervals limited
by the positive belief in an event and its plausibility. This requires additional
knowledge acquisition and explanation facilities. So at the current stage we consider
the probability-based approach sufficient for our aims, which is not meant to preclude
other methods at later stages. Fuzzy-Set Theory reasons with propositions that have
vague meaning. In our application domain, there are many vaguely specified
concepts, like "severe headache" or "typical symptom" (see also the examples below).
Therefore we work on integrating fuzzy concept descriptions into the Bayesian
network approach, that is, to generate conditional distributions for fuzzy relations.

3 The Implementation State of MEDICUS

This section is organized according to the two functions of MEDICUS: supporting
the construction of explanation models, and training diagnostic reasoning.

3.1 Supporting Model Construction
Model construction is supported in three steps:



Initial Model Formulation
One of the main goals of MEDICUS is the assistance of the learner in developing a
model of perceived causes, effects, and other relationships in a domain of interest with
a formal tool, Bayesian networks. The reason to use a formal tool is to be able to
derive consequences (dependencies, independencies, aposteriori distributions) that can
be used for proposing recommendations and modifications. But at the same time it is
necessary that a mathematically untrained learner is able to state his ideas in an
informal way which he is used to. Therefore, we developed a simplified-natural-
language model editor. After stating his model in this editor, the system can generate
an initial graph automatically.
Figure 2 shows a small example with four sentences. Each sentence is placed in a
sentence field. In order to create sentences, the learner may use variable categories
(like state, event, action, object, substance), relations, modifier, and logical
junctions. After placing a variable category in a sentence field, it can be named.

Fig. 2. Four sentences created in the simplified-natural-language model editor

For the relations there is a taxonomy based on i) probabilistic concepts of causality
(Schurz, 1988; Suppes, 1970) organized according to the two dimensions "kind of
influence" (positive / negative) and "direction of influence" (forward, backward, or
undirected), and ii) has-part / is-a hierarchies. Table 1 shows the taxonomy. Relations
currently available in the model editor are marked by asterisks. They were selected
initially as a result of two sessions of discussing a topic of environmental medicine
with an expert, but the user of MEDICUS may specify additional relations.
The sentences created by the learner are checked by a definite clause grammar. Besides
syntactical correctness, semantic restrictions between variable categories and relations
are checked. (For example, a state cannot cause a substance.) The learner receives
feedback if the grammar finds errors.
The learner may ask the system to create a graph representation for the model
specified. For the sentences in Figure 2, MEDICUS proposes the graph shown in
Figure 1. The graph is an initial heuristic proposal that may have to be refined by the
learner qualitatively, getting assistance from the system (see below). The graph is
created in the following way:
• Generating nodes. Nouns, that is, variable categories named by the user, are
represented by nodes (propositional variables). A proposition is assigned to each
possible node instantiation. For example, if "injury" in Figure 2 has been categorized



as an "event" by the user, then the node "injury" is created (Figure 1) as a binary-
valued node (unless specified otherwise by the user), and the propositions "Person
experiences the event 'injury'" and "Person does not experience the event 'injury'" are
assigned to it. The propositions can be inspected by the user.
• Generating edges. The relations between nouns are represented by links as depicted
in the rightmost column of Table 1. For relations describing undirected relations (like
"corresponds to"), a dialog is called where the learner is asked to specify the direction
of influence, or to specify a third variable as the common cause or effect of the two
variables in question.
In order to facilitate understanding of the graph representation further, natural-
language expressions of the conditional distributions for each node (resp. apriori
distributions for root nodes) are generated. Furthermore, the learner may ask for an
explanation of the relationship between the sentences in the model editor and the net.
Alternatively, a net can be created directly by editing and naming nodes and edges.
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Table 1. Taxonomy of relations used in the model editor

Qualitative Model Revision
After the initial formulation of the model, it has to be analyzed and revised on a
qualitative level. In particular, it has to be verified that the dependencies and
independencies implied by the graph correspond to the assertions stated by the



modeller. For example, the graph in Figure 1 states that space requirement and
haemodynamic irritation are independent, given injury, that is, p(space requirement |
injury) = p(space requirement | injury, haemodynamic irritation). This means that
knowledge about a haemodynamic irritation is not relevant for the hypothesis "space
requirement", if it is known that an injury took place or not. Information about a
haemodynamic irritation is useless for the hypothesis "space requirement", given
knowledge about injury. In contrast, if nothing is known about injury, information
about a haemodynamic irritation is useful for the hypothesis "space requirement":
p(space requirement) ≠ p(space requirement | haemodynamic irritation). Similarly,
vomiting and dislocation of vessels are independent, given space requirement. In
contrast, dislocation of vessels and infection of meninges are dependent, given
permanent headache. For example, if it is known that a patient suffers from
permanent headache, then if new evidence arrives that weakens the hypothesis
"dislocation of vessels", the hypothesis "infection of meninges" will be strengthened,
and vice versa: Weakening one explanation for "permanent headache" strengthens the
other one, and vice versa. Formally, conditional independence is described by the d-
separation criterion (Pearl, 1988).
The knowledge of the modeller has to be acquired by the system in a way that is at
the same time comfortable to the modeller and informative for generating
independence assertions. Therefore, a second variant of knowledge acquisition (besides
the model and net editor) is needed that can be used for model construction or for
model validation, that is, for verifying or rejecting the independencies inherent in the
graph. The system will offer a diagnostic dialog that proceeds in three steps. The
current, yet to-be-improved dialog is described here:
1. For a case, the modeller specifies the initially known data and symptoms (left
window in Figure 3: for example, "injury" and "dislocation of vessels"). Next, he
specifies a diagnostic hypothesis (middle window in Figure 3, for example "space
requirement"). Thirdly, he specifies what information he would look for next, that is,
what information he considers relevant for his hypothesis (right window in Figure 3:
for example "haemodynamic irritation" and "vomiting"). Independencies are
constructed from this dialog in the following way: Information not considered
relevant to the hypothesis by the modeller, given the case data and symptoms, is
independent of the hypothesis. In Figure 3, "permanent headache" was not selected by
the user in the right window, so "permanent headache" and "space requirement" are
considered independent, given "injury" and "dislocation of vessels": p(space
requirement | injury, dislocation of vessels, permanent headache) = p(space
requirement | injury, dislocation of vessels).
2. The modeller states the hypothesis that the graph is consistent with the
information specified by her or him in the diagnostic dialog. The system analyzes
this hypothesis using the d-separation criterion. If differences are found, a graph is
constructed internally (using the algorithm of Srinivas et al., 1990) from the
dependence and independence assertions acquired in the diagnostic dialog (provided
they are consistent). This internal graph is compared to the modeller's graph. This
may lead to the result that i) graph and in-/ dependencies are consistent, or ii) edges
have to be removed from the graph in order to be consistent with the in-/
dependencies, or iii)  edges have to be added to the graph (this is the feedback for the



net in Figure 1 after the dialog in Figure 3 has taken place), or iv) edges have to be
removed from as well as added to the graph in order to be consistent with the in-/
dependencies.
3. On further request, the modeller may ask the system for modification proposals and
their explanation. For example, for the net in Figure 1 and the dialog in Figure 3,
MEDICUS recommends to add an edge from "space requirement" to "haemodynamic
irritation" because in the dialog the user considered "haemodynamic irritation"
informative for "space requirement" given "injury" and "dislocation of vessels".

Fig. 3. Diagnostic dialog for the acquisition of information about independencies

Quantitative Model Specification
After the qualitative model revision, the modeller may quantify the net with apriori
and conditional probabilities and let MEDICUS generate marginal distributions.
Additionally, the user may enter evidences and let MEDICUS generate posterior
distributions. Like for example in ERGO and HUGIN, evidence propagation is
implemented according to the Lauritzen & Spiegelhalter (1988) algorithm.

3.2 Training Diagnostic Reasoning
The second purpose of MEDICUS is to assist in training diagnostic reasoning and
strategies. Training of diagnostic strategies will also be supported qualitatively (i.e.:
What information is necessary in order to support or differentiate between what
hypotheses? How does information gathered affect my diagnostic hypotheses? What
do I have to do in order to diagnose for example "space requirement"? What is the
most important information to acquire next? When is it appropriate to consider an
environmental etiology of the patient's complaints, and when is it not?) and
quantitatively (i.e.: How much does a certain piece of evidence contribute to the
currently best hypothesis? What evidence would be necessary in order to achieve a
certain probability level for a diagnostic hypothesis?).
Currently MEDICUS is able to generate qualitative recommendations. For this
purpose, the user has to specify whether propositional variables refer to syndromes,
symptoms, external influences, or the general living and working environment. The



most probable syndromes in the light of the available evidence are presented to the
learner. For example, in Figure 1, "injury" might have been specified as available
evidence. After this evidence, the most probable syndrome hypotheses (i.e. the
syndromes with the highest a posteriori probabilities) are "space requirement" and
"infection of meninges". The system now recommends to examine those symptoms
that are yet unknown and that depend on these syndromes directly, namely,
"vomiting" and "permanent headache". These qualitative recommendations have been
successfully demonstrated with a multiply connected net containing about fifty
variables to a community of environmental medicinal professionals.

4 Conclusions and Further Work
The intelligent problem solving environment, MEDICUS is designed to support the
construction of explanatory models in complex, uncertain domains, and to support
diagnostic reasoning. Our example application domains stem from medicine. Unlike
most existing systems based on the Bayesian network approach, MEDICUS is
designed as a problem solving tool. The learner may construct explanatory models,
evaluate their consequences qualitatively and quantitatively, and revise the models,
getting support from the system. Secondly, the learner may state diagnostic
hypotheses and receive feedback about the usefulness of diagnostic investigations.
Concerning the modelling component, our near future plans are i) to develop a
component for the acquisition of conceptual domain knowledge that can be used for
generating explanations for relations between variables, and ii) to be able to acquire
distributions from verbal descriptions of relations between variables (phrases like e.g.
"sometimes brings about" in Figure 2). We are pursuing a Bayesian and a fuzzy
approach in this respect. Concerning the diagnostic support component, we plan to
implement a dialog that supports the learner's generation and revision of diagnostic
hypotheses as well as diagnostic reasoning steps, and that provides feedback and
explanations.
Concerning applications of MEDICUS, one of our cooperations is aimed at
generating realistic models with the help of case data. These models will serve for
health consulting as well as for diagnostic training. Some of the other cooperations
are aimed at applying MEDICUS to assist in planning, executing, and evaluating
environmental exposition analyses ("environmental monitoring"). MEDICUS is seen
as a promising contribution to quality ensurance and improvement in this subdomain.
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