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Abstract

This thesis deals with the problem of how to derive a simplistic model feasible for describing the

dynamics of ships for maneuvering simulations employed to study maritime traffic and to provide

ship models for simulation-based engineering testbeds. Themodel should be expressed in a

simple form with satisfactory accuracy as well as fast computation in simulations.

The problem of deriving a ship dynamic model is addressed first with the modification and

simplification of a complex vectorial representation in 6 degrees of freedom (DOF).The 6 DOF

dynamic model is simplified through several pieces of reasonable assumptions that are exampled

as ships moving in the horizontal plane in the ideal fluid, the uniform distribution of ship masses,

the port-starboard symmetry. In the process of simplification, the trade-off between the accuracy

and the possibility of estimation of the simplified model is regarded as the key criteria.

Consequently, a 3 DOF dynamic model in a simple form with four terms for capturing surge

motions and eight terms for steering motions is found, in which the reduced-term version of the

steering model expressed in five terms is further obtained under the consideration of the

improvement of the model accuracy. The simplified ship dynamic model is derived to be

applicable for different types of ships, which is different from the studied 3 DOF dynamic model

that are used individually for one specified case/ship. That means the proposed solution on

creating a 3 DOF ship dynamic model can be used for different types of ships only with minor

modifications.

Solving the problem of deriving the ship dynamic model requires the estimation of parameters

in the model through a suitable technique. With the limitation of the available equipment and the

acquired observations applicable to estimated parameters, this thesis determines to adopt the

system identification in combination with full-scale ship trail tests, e.g., standard zigzag

maneuvers, to estimate parameters in the simplified ship dynamic model.

A literature review on identification methods in maritime engineering suggests the
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commonly-used least square method, the Kalman filter method and their modified versions with

effective performance. But least square based identification methods aiming at minimizing a

squared norm is sensitive to outliers corrupted by data, and the accuracy of results and

convergence of Kalman filter method based identification methods are adversely influenced by

the values of parameters predetermined depending on experts. Comparatively, these barriers

would not happen to support vector machine (SVM) based identification methods due to it

complies with the criteria of structural risk minimization, incorporates with the kernel function,

and works on a finite set of data, etc. One deficiency of SVM based identification methods, i.e.,

the particular set of structural parameters such as the insensitivity factor, the regularization

parameter, and kernel parameters, should be remedied to well control the trade-off between the

empirical risk and the confidential interval. The artificial bee colony algorithm is applicable to

complete this task, which shows superior optimization performance over the commonly-used

cross-validation method (CV) and particle swarm optimization algorithm (PSO) with the

advantage of fewer control parameters.

Finally, the approach on modeling ships´ dynamics based on an artificial bee colony algorithm

(ABC) optimizing the least square support vector regression algorithm (LS-SVR) based

identification method is evaluated. Data extracted from a set of steady-state and zigzag maneuvers

are applied to test the effectiveness of the simplified ship dynamic model and to validate the

performance of the optimized LS-SVR in identifying the model. In the evaluations, the further

simplified model with five terms presents higher accurate than the first order Nomoto models,

which is also valid for capturing the steering dynamics of a real vessel. Through studies on

estimation methods, LS-SVR based identification method shows more robust than the least

square method to outliers. LS-SVR based identification method with the regularization

parameter optimized by ABC performs superiorly. The time complexity of the ABC-LSSVR

identification method isO(N2 + l3)with the number of samples applied for ABC optimization

(N) and the number of support vectors in LS-SVR (l), which is further demonstrated to be
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consistent with the evaluation results that the cost time increases with the increasing of the

number of samples. Consequently, the whole evaluation results show a valid model in a simple

form for describing the dynamics of different types´ ships and also validate the performance of

the proposed parameter estimation method.
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Zusammenfassung

Diese Dissertation behandelt das Problem der Ableitung von vereinfachten

Schiffsdynamikmodellen zur Verwendung inManövrier Simulationen. Diese Schiffsmodelle

sollen für simulationsbasierte Engineering-Testplattformen bereitgestellt werden um den

Seeverkehr zu untersuchen. Die abgeleitetenModelle sollen eine zufriedenstellende Genauigkeit

aufweisen und eine schnelle Berechnung in Simulationen erlauben.

Das Problem, ein dynamisches Schiffsmodell abzuleiten, wird zunächst mit der Modifikation

und Vereinfachung einer komplexen vektoriellen Darstellung in 6 Freiheitsgraden (DOF)

behandelt. Das dynamische 6-DOF-Modell wird durch einige nachvollziehbare Annahmen, zum

Beispiel das Schiffe in der Horizontalenebene sich in einem Idealfluid befinden, eine

gleichmäßige Verteilung der Schiffsmassen, die Backbord-Steuerbord-Symmetrie. Der

Kompromiss zwischen der Genauigkeit und der Möglichkeit der Schätzung des vereinfachten

Modells wird als Schlüsselkriterium angesehen. Folglich wird ein dynamisches 3-DOF-Modell in

einer einfachen Form gefunden, das verwendet wird, um Stoßbewegungen und Lenkbewegungen

gleichzeitig zu erfassen. Dieses für Schiffstypen anwendbare Modell, das auf der Grundlage der

Systemidentifikationstechnik erstellt wird, unterscheidet sich von den untersuchten dynamischen

Modellen mit 3 DOF, welche nur für ein bestimmtes Schiff verwendet werden können. Das

bedeutet, dass die in dieser Arbeit vorgeschlagene Lösung zum Erstellen eines dynamischen 3

DOF Schiffsmodells für verschiedene Schiffstypen mit wenigen Änderungen am Versuchsaufbau

nützlich ist.

Um das Problem der Ableitung des Schiffsdynamikmodells zu lösen, müssen die Parameter im

Modell durch eine geeignete Techniken geschätzt werden. Mit der Beschränkung der Ausrüstung

und den erhaltenen Beobachtungen, die auf Schätzungen der Parameter anwendbar sind,

bestimmt dieseThese, die Systemidentifikation in Kombination mit vollständigen Schiffstests zu

verwenden, z. B. Standard-Zickzackmanöver, um Parameter in dem vereinfachten
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Schiffsdynamikmodell zu schätzen.

Eine Literaturrecherche zu Identifizierungsmethoden in der Schifffahrtstechnik schlägt die

häufig verwendete Methode der kleinsten Quadrate, die Kalman-Filtermethode und ihre

modifizierten Versionen mit effektiver Leistung vor. Aber kleinste quadratische

Identifizierungsmethoden, die darauf abzielen, eine quadratische Norm zu minimieren, sind

empfindlich gegenüber durch Daten verfälschte Ausreißer, und die Genauigkeit der Ergebnisse

und die Konvergenz von Kalman-Filter basierten Identifizierungsmethoden werden durch die

Parameterwerte in Abhängigkeit von Experten negativ beeinflusst. Im Vergleich dazu würden

diese auf Support Vector Machine (SVM) basierten Identifizierungsmethoden unterstützen, da

sie den Kriterien der strukturellen Risikominimierung entsprechen, mit der Kernfunktion

inkorporiert sind und auf einem endlichen Satz vonDaten arbeiten, und so weiter. EinMangel der

SVM basierte Identifizierungsmethoden, d.h. die besondere Einstellung von Strukturparametern

wie Insensitivitätsfaktoren, Regularisierungsparameter und Kernparameter, sollten behoben

werden, um eine globale Optimierung zu gewährleisten. Der Artificial Bee Colony algorithm

(ABC) ist anwendbar, um diese Aufgabe zu erfüllen, die eine überlegene Optimierungsleistung

gegenüber der üblicherweise verwendeten Cross-Validation method (CV) und Particle Swarm

Optimization algorithm (PSO)mit der Nutzung von weniger Steuerparametern zeigt.

Schließlich wird der Ansatz zur Modellierung der Schiffsdynamik basierend auf

Identifikationsverfahren von Least Square Support Vector Regression algorithm (LS-SVR), die

mit dem ABC optimiert sind, evaluiert. Die aus einemDatensatz von stationären und

zickzackförmigenManövern extrahierten Daten werden angewendet, um dieWirksamkeit des

vereinfachten Schiffsdynamikmodells zu testen und die Leistungsfähigkeit des optimierten

LS-SVR bei der Identifizierung des Modells zu validieren. In den Auswertungen bietet das weiter

vereinfachte Modell mit fünf Bedingungen eine höhere Genauigkeit als die Nomoto-Modelle

erster Ordnung, was auch für die Erfassung der Lenkdynamik eines realen Schiffes gilt. Durch

Forschungen über Schätzmethoden wurde gezeigt das LS-SVR basierte Identifikationsverfahren
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deutlich robuster gegenüber Sonderfällen sind als die Verfahren der kleinsten Quadrate. LS-SVR

basierte Identifikationsverfahren mit dem durch den ABC optimierten

Regularisierungsparameter erbringen eine bessere Leistung. Die Zeitkomplexität des

ABC-LSSVR Identifikationsverfahrens istO(N2 + l3)mit der für die ABCOptimierung (N)

angewendeten Stichprobenzahl und der Anzahl von Support Vectors in LS-SVR (l). Es wurde

weiter gezeigt, diese sie konsistent mit den Bewertungsergebnissen ist und, dass die Kostenzeit

mit einer höheren Anzahl von Proben zunimmt. Infolgedessen zeigen die Bewertungsergebnisse

dass ein vereinfachtes gültiges Schiffsdynamikmodell für verschiedene Schiffstypen gefunden

werden kann mit der vorgeschlagenen Parameter-Schätzungsmethode.
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1
Introduction

In the past few decades, the shipping industry has gone through a series of technological
advancements and has brought in massive digitization of machinery and equipment as well. The
digital equipment used in modern ships, for instance, are Automation Identification System
(AIS), Electronic Chart Display and Information System (ECDIS), Integrated Bridge Systems,
Automatic Radar Plotting Aids, Long Range Identification and Tracking, Global Maritime
Distress and Safety System (GMDSS) and several other sophisticated electronic navigational
tools. Despite highly advanced equipment utilized in modern ships, maritime accidents related to
navigation primarily due to human error during ship navigation continue to happen. The prime
reason is that the advanced equipment systems battalized individually add a burden of work to
mariners (i.e., too much information available (Denker 2014)) even though they may make
navigation convenient and precise. Under the realization of this condition, the International
Maritime Organization (IMO) decided to include a well-defined strategy to integrate new and
existing navigational tools together effectively for enhancing the handling and safety of ships at
sea along with the protection of the marine environment. Consequently, the e-Navigation
strategy is proposed and defined as “the harmonized collection, integration, exchange, presentation
and analysis of marine information on board and ashore by electronic means to enhance berth to berth
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navigation and related services for safety and security at sea and protection of the marine
environment.” (IMO 2014).

Themajor aim of e-Navigation is to enhance navigation safety of ships while simultaneously
reducing the burden on navigational mariners. A well-coordinated and systematic system under
e-Navigation would considerably increase the efficiency of ships not only at sea but also at the
ports. Moreover, the global standardization of such a system would reduce complexity in ships´
operation and substantially improve the safety of ships at sea. Since then, several maritime
organizations both public and private along with IMO dedicate towards developing a robust
e-Navigation system within the maritime international framework.

1.1 Motivation

One issue concerning robust e-Navigation technologies is their functional safety and reliability.
As maritime transportation can be understood as a sociotechnical system, this issue ought to be
studied through simulation-based testbeds (Hahn, Gollücke, Buschmann, and Schweigert 2015).
As reported in (Hahn 2014), a modeling and simulation toolset named HAGGIS (Hybrid
Architecture for Granularly, Generic and Interoperable Simulations) is a co-simulation system for
the evaluation of e-Navigation concepts and systems by providing a maritime traffic simulator, a
n-body simulator, and services to detect rare events of failure.

Within components of HAGGIS, each one has its functionality and works interactively.
Instance for well understanding is the maritime traffic simulator (MTS) which is a flexible and
usable maritime traffic simulation for implementing, executing and observing the behavior of
multiple vessels in a realistic context (Hahn 2014). The simulated traffic information can be not
only used for statical analysis but also transformed to other simulators who require it. For every
vessel involved inMTS, its behavior comprising traffic information is animated by simultaneously
using the dynamic model, the kinematic model, and the setting of the navigation environment.
The traffic information simulated byMTS is the paramount supplement in which the dynamic
model and kinematic model play a crucial role. In particular, more attention should be paid to the
ship dynamic model, because the kinematic model is functional in combination with the outputs
of the dynamic model. Besides, another noticeable point is the requirement of dynamic models
for ships that implies every ship needs a compatible dynamic model applicable for capturing its
unique motion characteristics. For this point, it would be beneficial if one model can be
applicable for describing ships´ motions with minor modification such as changing parameters
but retaining the model structure.
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Generally, the ship is reasonably assumed as a rigid-body object so that its dynamic model is
derived based on Newton’s second law of motion (Fossen 2011). Typical and widely-used
examples are the Abkowitz model built in Taylor series expansion (Lewis 1988), Maneuvering
Modeling Group (MMG)model also called modulus model (Kobayashi, Kagemoto, and
Furukawa 1995), Fossen’s vectorial representationmodel additionally regarded as modulus model
in vector-matrix form (Fossen 2011), and response model also called Nomoto model (Åström
1980). The former three models with the ability of completely capturing ship´s dynamics are
complicated and nonlinearly coupling in the use of a number of parameters. Major modification
consuming much time and finance is required to adopt and switch one of these models among
different types of ships due to unignorable differences existing in the hull, propeller, and rudder
among various ships. Recall the above mentioned noticeable point about the requirement of
dynamic models for ships, the former three models are not desirable fit. Trough the studies on the
Nomoto model, it is reported to be applicable for control design especially the autopilot design in
maritime engineering due to its simple structure and easy comprehension (Luo and Cong 2016)
but its ability of capturing 1 DOFmotions in yaw direction is not so expected to describe ship
dynamics in particular used in ship´s motion simulation such as theMTS.Therefore, the task of
how to match the requirement for the establishment of one dynamic model for different types of
ships is deserved considerable study. This task envelops two sub-tasks, i.e., the determination of
model structure, and the estimation of parameters in the determined model.

Taking Newton´s second law of motion and relatively derived models into account, the
structure of the ship dynamic model is basically deterministic but requiring additional
modification to get an appropriate model for ships. For another task in estimating parameters
involved in the determined model, an adequate solution is required. Even though four core
methods reported in studies are extensively used for determining ship dynamic models, including
captive model test with planar motion mechanism (PMM) (Rhee, Yoon, Sung, Kim, and Kang
2000), estimation with empirical formulas (Hirano 1981), numerical calculation based on
computational fluid dynamics (CFD) (Racine and Paterson 2005), and system identification in
combination with free-running model test or full-scale trial (Luo and Zou 2009), they are still
underdeveloped due to their respective weakness such as scaling effects, demand of extreme
computation, etc. explained as follows. The captive model test with PMM is applicable to obtain
most parameters, but it has a remaining problem of scaling effects aroused by the difference of
Reynolds´ number between the real ship and the scaled model ship which makes the measured
value of parameters not wholly reliable (Yoon and Rhee 2003). The estimation with empirical
formulas is practical and straightforward. The formulas are built based on statistical analysis of a
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set of ships, so the estimation results are not precise for the latest type of ships which are not
included in the database. The rest two estimation methods are both powerful methods, but the
numerical calculation based on CFD always requires extreme computing power, and its validation
dramatically depends on the quality and amount of the experimental data. Comparatively, system
identification in combination with a free-running model test or full-scale trial avoids the scaling
effect and is easy to be undertaken, but parameter drift unpredictably existing among parameters
if there were too many parameters in a model would compromise the accuracy of identification
results. Other than scaling effects, the demand for extreme computational power and uninvolved
empirical calculation, the influence of parameter drift on estimation accuracy of ship dynamic
model is tricky to be overcome. Hence, the derived ship dynamic model should be not only in an
appropriate form but also in a parameter-reduced version for mitigating the parameter drift
influence and improving the accuracy of simulation of ship motions.

The challenges required to be overcome can be summarized as follows. The ship dynamic
model is paramount for theMTS but not available to capture dynamics of different types’ ships
with only minor modification. The estimation methods are unexpectedly associated with
weaknesses negatively influencing the accuracy and reliability of the estimated model. Therefore,
this thesis devotes to developing an appropriately simplified ship dynamic model with a small
number of terms for different types of ships to overcome the described challenges.

1.2 Objectives

After the description of the scientific antecedents and motivation, the goal of this thesis is to
overcome the addressed challenges at the same time to answer the research question:

How to derive a simplistic model for the description of dynamics of ships for maritime traffic
simulation?

The question is divided into two sub-questions answered by achieving corresponding
objectives.

Sub-question 1: How to simplify the complex dynamic model for ships?
Objective 1: Selection of an existing 6DOFmodel as the fundamental model formodel

simplification andmodification. Many forms of existing ship dynamic model serve the choice
for model simplification and modification. But each one presents its merits and demerits while
being applied. If the simplified version of the 6 DOFmodel is expressed in a simple form with low
order and satisfactory accuracy, where each term has clear physical interpretation, this kind 6
DOFmodel can be the fundamental model for model simplification and modification.
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Objective 2: Simplification of themodel dependent on trade-offs between accuracy and
complexity. From a theoretical point of view, the complexity of the selected 6 DOFmodel is
reduced by introducing a set of reasonable assumptions. Besides, numerical simulation and
analysis on the first simplified model facilitate further simplification of the model from a practical
viewpoint.

Sub-question 2: How to estimate the parameters in the simplified ship dynamic model?
Objective 3: Comparison and selection of parameter identificationmethods. A variety of

identification methods exist, including conventional and intelligent methods. In order to
determine a suitable method for special cases such as the identification of ship dynamic model,
the comparison of the methods and related analysis are carried out from a methodological point
of view. The selected identification method should be robust and intelligent enough to provide
reliable results.

Objective 4: Improvement of the parameter identificationmethod. The identification
method generally has twofold, i.e., advantages and disadvantages. The deficiency of the method is
remedied by an effective solution which has not been used in the maritime domain so that the
thesis contributes to improving the performance of the identification method.

Objective 5: Parameter estimation tests by using simulated and experimental data. The
simplified ship dynamic model and improved identification method are tested from both
theoretical and practical points of view. The way for obtaining the simplified dynamic model for
ships is verified by using data extracted from simulated maneuvers and experimental maneuvers
generated by different ships.

1.3 Main Contributions

This thesis is dedicated to developing a solution for overcoming the challenges described in the
motivation part as well as achieving the objectives addressed above with the concentration on
ship dynamic model structure and parameter estimation. Themain contribution of this thesis is
summarized as: “Development of an approach formodeling dynamics of different types´
ships by firstly using the optimized identificationmethod”. The detailed statement of the
contribution is presented as follows:

• Achieve the modeling of ship dynamics through simplifying a complicated and nonlinearly
coupling dynamic model into a reduced-termmodel with relatively low complexity and
acceptable accuracy based on pieces of reasonable assumptions and practical case studies,
which is feasible for capturing different types of ship´s dynamics.
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• Select a suitable estimation method according to the qualitative analysis of results with the
application of experimental data.

• Improve performance and accuracy of the estimation method by using an intelligent
algorithm, which is the first time to be adopted in the maritime domain.

1.4 Thesis Outline

This thesis is comprised of eight chapters where the answer to the research question is presented
through evaluation results, and the contribution is highlighted as well. After clarifying the
challenges in Chapter 1 where the research question is proposed which could be answered by
achieving the addressed objectives, the main contribution of this thesis is highlighted.

The requirements to the solution for deriving a simplistic ship dynamic model are identified in
Chapter 2 where the requirements on the ship dynamic model and parameter estimation are
presented in detail, respectively.

Chapter 3 introduces the state of the art of the ship dynamic model and system identification.
Ship dynamic models including the Abkowitz model, MMGmodel, Fossen’s vectorial
representation model are concretely presented. In system identification, some related concepts
are explained first. Then the application of system identification technique to identify ship
dynamic model is stated with the following details about support vector machines (SVMs). In the
end, two relevant parts are summarized as the foundation for the solution proposed in this thesis.

Chapter 4 discusses the modeling of ship dynamics under the consideration of reduction of the
complexity of existing 6 DOFmodels and the identifiability of the simplifiedmodel. The typical 6
DOF ship dynamic model expressed in vectorial representation is accounted as the fundamental
model for simplification. The forces and moments acting on the ship are calculated by using the
function of rudder deflection and propeller shaft speed. Consequently, a 3 DOF ship dynamic
model comprised by the decoupling surge model and steering model is obtained.

Chapter 5 pays attention to the proposed identification method, i.e., ABC-LSSVR (least square
support vector regression algorithm). The LS-SVR based identification method is first
introduced. Then samples including training and validation samples are constructed for
identification. To remedy the deficiency of LS-SVR, LS-SVR incorporated with ABC is discussed
and the proposed ABC-LSSVR regarding the identification of the simplified ship dynamic model
is demonstrated.

Following the implementation of the proposed solution in Chapter 6, the results of the
numerical simulation and experimental study are presented and analyzed in Chapter 7. Case
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studies in terms of the particular purposes are carried out to get the results. The suitable
identification method for identifying the simplified ship dynamic model, i.e., LS-SVR, is
indicated through the comparison between LS and LS-SVR. Afterward, the advantage of
LS-SVR, e.g., works with finite samples without knowing the initial values of parameters, is
beneficial to some parameter identification methods requiring initial values of parameters, e.g.,
recursive least square method (RLS), to improve identification results. The application of the
optimized LS-SVR to estimate parameters in the simplified ship dynamic model is carried out.
The identification results are analyzed in detail and motivate special considerations on further
simplification of the nonlinear steering model. Furthermore, the experimental study on the
I-Nav-II vessel verifies the special considerations.

This thesis is concluded in Chapter 8 where the future works needed to be further studied
based on current works are pointed out.
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2
Requirements of a Simplified ShipDynamic

Model

Considering the previous introduction on the motivation and the required achievement of the
objectives, this chapter defines the requirements related to the approach on developing a
simplistic dynamic model of ships, which should be fulfilled at the end. The requirements of a
simplified ship dynamic model are described in detail from two aspects concerning requirements
on the modeling of ship dynamics and the identification method.

2.1 Requirements on theModeling of Ship Dynamics

Requirements engineered in this part correspond to the first sub research question, which asks for
a ship dynamic model established in a relatively simple form. The following requirements
(expressed by R1,…, R4) are explained to fulfill the objectives derived from the first sub research
question.

• R1: Each term in the model has a manifest physical interpretation. The determination of the
external forces and moments acting on the operating ship is a much tough task after the
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expression of ship dynamic model is primarily defined based on Newton´s second law of
motion. Taylor-series expansion, modulus functions, and vectorial representation are three
general ways to completely express forces and moments induced by ship hull, propeller,
rudder, and interference. But to make the model applicable for describing the dynamics of
different types of ships, differences of the hull/propeller/rudder are ought to be presented
in the model. This requires the terms involved in the model with manifest physical
interpretation (Browning 1991). The fulfillment of this requirement fits objectives 1-2.

• R2: Themodel is expressed in a simple form with low order and a few terms. The effects of
ship hull, propeller, and rudder on ship motion expressed in vector-matrix form is
easy-understanding. The instance is the vectorial representation model containing low
order but many terms, which shows superior advantages over the classical models such as
the Abkowitz model and theMMGmodel while applied to model simulation (Fossen
2013). Dozens of coefficients are ought to be estimated by one time when applying the
vectorial representation model, which is not a trivial job. Themain reason is that the high
correlation among a number of coefficients makes the parameter drift on estimated
coefficients highly possible to occur (Luo 2016). If the model is switched to describe the
dynamics of another different type of a ship, experiments on demand of much time and
financial cost have to be done again. To ensure reliable identification of the ship dynamic
model, the vectorial representation model expressed in a simple form with a few terms
shall be considered, which is related to the achievement of objective 2.

• R3: Themodel is identifiable. Once the ship dynamic model is constructed, the parameters
involved shall be estimated correctly. This implies the requirement that the model should
be identifiable (Godfrey and DiStefano III 1985). On one hand, the parameters can be
identified, which means the number of inputs and parameters is equivalent. On the other
hand, no parameter drift effects exist. The effect of parameter drift existing in the
identification results of the model makes the estimated parameters mathematical correct
but physical incorrect. This phenomenon happens severely in the identification of a
complicated ship dynamic model containing a number of parameters due to
multicollinearity. To some degree, this requirement overlaps the second requirement and
contributes to objectives 1-2.

• R4: Themodel guarantees acceptable accuracy in describing ship dynamics. The identified
ship dynamic model shall accurately predict ship dynamics which would be used to study
properties of the ship for further intentions such as motion simulation for theMTS.This
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requires the finally obtained model guarantees accurate description of ship dynamics. One
indicator, i.e., MSE, can illustrate how close the real data and the predicted data
are (Hyndman and Koehler 2006). The smaller the value of the indicator is, the higher the
accuracy of the model is. By analyzing the value of the indicator, whether the accuracy of
the obtained model is acceptable or not can be assessed. This requirement contributes to
objective 2.

2.2 Requirements on the IdentificationMethod

After defining the structure of the ship dynamic model, parameters involved in the model are
required to be estimated by using the system identification technique which corresponds to the
second sub research question. The following present requirements (expressed by R5,…, R8) on
the identification method for providing reliably estimated parameters.

• R5: The identification method is robust enough. In the application of system identification to
identify ship dynamic model, one significant factor affecting the results is the data acquired
from experiments of the ship (Moreno-Salinas, Chaos, de la Cruz, and Aranda 2013). Due
to the existing of environmental factors (e.g., wind, currents, and waves.) and the use of
sensors (e.g., compass, inertial measurement unit, and rudder indicator.), the data are
inevitably corrupted by either the environmental disturbances or measurement noises.
The signal processing technique, f.i., filtering, has been applied to pre-process the polluted
data, but the disturbances and noises cannot be completely eliminated. Besides the
pre-processing of the polluted data, the requirement on the robustness of the identification
method shall be emphasized, which implies that the identification method shall be robust
enough to defend the negative influence caused by the unfiltered environmental
disturbances and measurements noises in the data. This requirement contributes to
objectives 3-4.

• R6: The identification method has no sensitivity to the predefined values of the parameters
which are required to be estimated. Themethod is not sensitive to the initial estimation of
the parameters of the ship dynamic model, referring to the potential research points
proposed by (Fu and Li 2013). Themain reason is that the initial estimation of parameters
is significantly dependent on the prior knowledge of the characteristics of ship dynamics,
which implies that it is extremely easy to obtain undesirable identification results even
incorrect ones if the users have few pieces of knowledge of the system. This requirement
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contributes to objective 3 and objective 5 in flexibly applying for different cases/ships to
identify the dynamic model.

• R7: The identification method guarantees the global optimal solution. The physical correct
results shall be consistent with the reality of ship dynamic characteristics. Meanwhile,
attention shall be on the mathematical correct identification results in the process of
parameter estimation of ship dynamic model. This requires the identification method with
global optimization ability (Fu and Li 2013). Parameters involved in the identification
method shall be assigned with particular settings. This requirement contributes to
objectives 4-5.

• R8: The identification method should be of low complexity. In this thesis, the finally obtained
model will be applicable to describe the dynamics of multiple vessels in simulation-based
engineering testbeds, e.g., maritime traffic simulation. The overall speed of the simulation
should be fast enough from a practical engineering application point of view. Relatively, the
simulation speed is not impacted seriously by the complexity of the dynamic model but by
the complexity of the identification method. So to ensure fast simulation, the identification
method should be of low complexity. This requirement contributes to objective 5.
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3
RelatedWork

After comprehensively identifying the requirements on deriving a simplistic dynamic model for
ships, the state-of-the-art methods on the modeling of ship dynamics and the identification
methods are worthy to be investigated to find pre-studies which are usable inspirations for this
thesis. Hence, this chapter reviews the theory related to the ship dynamic model and system
identification which are regarded as the foundations for the remainder of the thesis. Based on the
classification of ship dynamics in Section 3.1.2 and detailed introduction to ship dynamic models
in Section 3.1.3, three typical ship dynamic models containing the Abkowitz model, MMG
model and vectorial representation are depicted concretely. Afterward, some basic concepts of
system identification and its application to ship dynamics are presented in Section 3.2. The
popular extensions of SVM, known as support vector classification algorithm (SVC) including
the linear and nonlinear SVC in Section 3.2.3.1 and 3.2.3.2, are introduced respectively. Followed
by the detailed description of LS-SVR in Section 3.2.3.4, the support vector regression algorithm
(SVR) similar to SVC is presented in Section 3.2.3.3.
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3.1 Ship DynamicModel

Ship dynamic model is defined to describe the ship’s responses concerning the linear or angular
velocities to forces and moments induced by commanded rudder angle and propeller shaft speed.
Themodel used to abstractly describe ship dynamics and motions in cooperation with the
kinematic model are built relevantly based on coordinate systems. As this topic has been studied
for decades, uniform notations defined by the Society of Naval Architects andMarine Engineers
(SNAME) are commonly adopted in the dynamic models in marine domain (SNAME 1950). To
focus on the ship dynamic model, classifying ship dynamics clearly is necessary to present
comprehensive insights. Afterward, understanding of ship dynamic models, for example, the
Abkowitz model, MMGmodel, and vectorial model are easy to go.

3.1.1 General Remarks: Reference Frames andNotations

Reference Frames. To describe the motion of ships, reference frames are necessary to specify
what the motion is relative to. Several reference frames are recommended for different research
topics, e.g., the Earth Centered Inertial (ECI) frame for terrestrial navigation, Earth Centered
Earth Fixed (ECEF) frame for global guidance, navigation and control, North-East-Down (NED)
frame for flat earth navigation, body-fixed frame for describing velocities of body relative to the
inertial reference frame, and flow axes for defining motion through a fluid (Fossen 2011).

In this thesis, the NED frame and body-fixed frame are selected to describe the motion of
ships. TheNED frame is also regarded as the earth-fixed frame in the flat earth navigation, which
is defined relative to the Earth’s reference ellipsoid (WGS-84). For the earth-fixed coordinate
system, the axes x, y and z are usually defined as the x axis directs to true north, the y axis directs to
the east, and z axis directs downwards normal to earth’s surface. In the earth-fixed frame, the first
three coordinates and their time derivatives correspond to the position and translational motion
along the x-axis, y-axis, and z-axis, while the last three coordinates and their time derivatives are
used to describe the orientation and rotational motion (Fossen 2011). The body-fixed frame is a
coordinate systemmoving along with the body. The origin center is always defined to coincide
with a point midship in the water line. The axes xb, yb and zb are usually set as the xb axis is towards
the fore of ships, the yb axis directs to starboard of ships, and zb axis directs towards the bottom of
ships. Finally, the two reference frames consisted of a body-fixed frame and an earth-fixed frame
(regarded as the inertial frame for the use of Newton’s law) are shown in Figure 3.1.1.

Planar Coordinate System. For some research issues of ships, f.i., control system designs, the
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Figure 3.1.1: Illustration of reference frames.

surge, sway and yawmodes are mostly emphasized but the roll, heave and pitch modes are
ignored. The corresponding planar coordinate system presented in Figure 3.1.2 is needed to
describe the horizontal motions and obtained by removing the z axis from the earth-fixed frame
and the zb axis from the body-fixed frame.

Notations. The notations commonly-used to describe motions of ships are listed in
Table 3.1.1. More information can be found in (SNAME 1950).

Table 3.1.1: Notations from SNAME.

DOF Motions Forces Linear velocity Positions

1 surge X u x
2 sway Y v y
3 heave Z w z

Rotations Moments Angular velocity Rotation angles

4 roll K p ϕ
5 pitch M q θ
6 yaw N r ψ
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Figure 3.1.2: Description of planar motion variables. xδ is the longitudinal moment arm from
the center of rotation to the pivot point of the thruster/propulsion.

3.1.2 Classification of Ship Dynamics

The research of ship dynamics in general concerns two aspects, i.e., maneuvering (e.g., steering
and maneuverability) and seakeeping (Pérez and Fossen 2006),(Fossen 2011). Themaneuvering
motions are generated by a ship moving at a constant positive speed in calm water in the absence
of wave excitation. In the maneuvering studies, the horizontal motions (surge-sway-yaw) are
commonly described by a 3 or 4 DOFmodel constructed based on the maneuvering theory. The
focus of these studies is on the evaluation of ships’ capability relevant to the action of control
devices. The seakeeping motions refer to the motions of ships at zero or constant speed in waves,
which can be analyzed using a seakeeping theory andmodeled by a 6 DOFmodel. Themodel can
be used to evaluate ships’ performance indices related to wave excitation. The unified calling of
the combination of these two is ‘maneuvering in seaway’.

Apart from the introduced classification way of ship dynamics, another useful approach on
characterizing the dynamics of ships is to calculate the Froude number Fn=

U√
Lg in which L is the

length of the submerged portion of the hull,U is the operating speed of ships, and g is the
acceleration of gravity. Then the mode of ship dynamics can be defined according to the
calculated number (Faltinsen 2005). For Fn<0.4−0.5, the hydrostatic force of buoyancy plays a
prominent role on the operating ship, of which the condition is called displacement mode. In the
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planning mode with Fn>1.0−1.2, the hydrodynamic force dominates for carrying the weight of
the ship. The hydrodynamic and hydrostatic forces are simultaneously working in carrying the
weight of the ship in the semi-displacement mode for which 1.0−1.2<Fn<0.4− 0.5.

The overview of the classification of ship dynamics is graphically illustrated in
Figure 3.1.3 (Pérez and Fossen 2006). Recall that the goal of this thesis is to find a solution for
modeling dynamics for different types of ships, so a fact which should be noticed is that a ship
may be designed as a special mode ship, but it routinely operates in each of the three modes.
Additionally, the variations in ship performance could be observed if the mode of ship dynamics
and corresponding Froude number were varying. Hence, the emphasizes should be on the
described facts in this thesis. The effort on modeling dynamics for different types of ships should
adequately capture the variations in ship performance over the range of achievable Froude
numbers.

Figure 3.1.3: Illustration of the classification of ship dynamics (Pérez and Fossen 2006).

3.1.3 Introduction to Ship DynamicModels

Since over one century ago, Davidson and Schiff (Davidson and Schiff 1964) started working
with the mathematical modeling of ship dynamics. This model describes linear steering dynamics
especially the interactions between sway and yaw. Based on this model, Nomoto (Nomoto,
Taguchi, Honda, and Hirano 1957) derived a first or second order transfer function used for only
analyzing yawmode by eliminating the equation describing sway mode from the model proposed
by Davison and Schiff. By considering the nonlinearity of ship dynamics in the operation of large
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rudder angle, Norrbin (Norrbin 1963) adjusted the form of Nomoto’s first order transfer function
by adding a nonlinear component. Analogously, Nomoto’s second order transfer function was
also modified by adding a nonlinear component by Bech andWagner Smith (Bech and Smitt
1969), in which they additionally proposed the well-known Bech’s reverse spiral maneuver and
introduced the approach on applying such maneuver to estimate parameters in the nonlinear
component. Either Nomoto’s first or second linear transfer function or the corresponding
modified first or second order nonlinear transfer function is still recognizable today and is still
widely used for guidance and control design due to its simple and effective structure and
easy-understanding.

A contribution to the work of modeling ship dynamics by Abkowitz (Abkowitz 1964)) should
be highlighted. In his work, the forces (surge and sway) and moments (yaw) acting on a ship in 3
DOF are expressed by Taylor-series expansions at forward cruise speed and have an arbitrary
degree of precision. Themodel involves a large number of coefficients, which further leads to a
tough problem about how to estimate all these coefficients. Some works caring for this problem
will be introduced later in the section on system identification of the ship dynamic model. Later,
Son and Nomoto (Son and Nomoto 1982) expanded the application of the Abkowitz model to
more ships, e.g., the large container ship, by analyzing and accounting the roll motions. As said
previously, many coefficients are involved in the Taylor-series expansion models, and some terms
have no physical interpretation, which leads to the estimation of coefficients difficult and
furthermore makes the application of models troublesome. Therefore, simplifications to the
models are meaningful as reported in some papers (Yeo and Rhee 2006) (Wang, Zou, Yang, and
Xu 2015) (Shenoi, Krishnankutty, and Selvam 2015) (Pérez and Blanke 2002), where the
sensitivity study was commonly used to analyze how sensitive the model response to the variation
of a model coefficient is. According to the results of the sensitivity study, the model was then
simplified by omitting the coefficients with a very low sensitivity degree.

Different from the Abkowitz model, another new type model called modulus model was
developed in 1963 by Fedayevsky and Sobolev (Fedyaevsky and Sobolev 1964) who used the
quadratic modulus equations with low order to present hydrodynamic forces and moments. In
1970, Norrbin (Norrbin 1971) made somemodifications of the former modulus model in
modeling the hydrodynamic effects by using nonlinear quadratic and quartic terms for even
functions and quadratic modulus terms for odd functions. This model is a little complicated for
applications, so Blanke (Blanke 1981) simplified it by removing some unwieldy and unphysical
terms at the same time maintaining the significant parts. To comprehensively study ship
dynamics including roll motions, Christensen and Blanke (Christensen and Blanke 1986)
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developed a linear-time varying model with roll equation but without surge equation. Even
though the surge equation is ignored, the forward speed generally resulted by the surge and sway
speed is regarded as a varying parameter to be involved in sway, yaw and roll equations. Such a
linear-time varying model is used to discuss the problems such as rudder roll damping problem
and fin roll damping problem.

In the findings by Hooft (Hooft 1994), the cross-flow drag formulations were applied to
analyze the lateral forces on a ship during maneuvering through tests performed as a function of
the ship’s lateral velocity and as a function of ship’s yaw rate. The key advantage of cross-flow
models is that it is dependent on a few hydrodynamic parameters, typically the drag coefficient
for transverse flow and the hull friction coefficient (Simos, Pesce, Bernitsas, and Cohen 2002).
With the development of such an approach within years, some studies make efforts to propose
some comprehensive models, see the corresponding work found in (Beukelman and Journée
2001). Later, in the study on the maneuverability of ships, Toxopeus (Toxopeus 2011) developed
a practical method that was incorporated with viscous-flow solvers used for predicting forces and
moments on ships. This comprehensive method was investigated and indicated that it can
improve the accuracy of maneuvering predictions.

For the modeling of ship dynamics, the work of theMathematical Modeling Group makes the
prominent influence and provides the fundaments on deriving models. In the work, the effects of
hull hydrodynamic, propeller, rudder and their interactions are dealt with separately. The
recommended references are (Inoue, Hirano, and Kijima 1981) (Kijima and Nakiri
1990) (Kijima, Katsuno, Nakiri, and Furukawa 1990).

The work by Fossen, especially presented in (Fossen 2011) and (Fossen 1994), demonstrates a
comprehensive and extensive study of the latest research in navigation, guidance, control systems
for marine vehicles. The detailed information about the implementation of these techniques is
presented in a systematic way. The equations of motion are expressed in the form of
matrix-vector, since nonlinear system properties such as symmetry, skew-symmetry, and
positiveness of matrices can be exploited in the passivity or stability analysis, and such form of the
model makes it easy to simulate the model in either Matlab or C++ (Fossen 2013).

From the overview of the ship dynamic model, the works done by Nomoto, Abkowitz, MMG,
and Fossen are the basis for many developed ship dynamic models. Therefore, the detailed
presentation of these models will be given in the following.
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3.1.3.1 Rigid-body Equations ofMotion

The rigid-body dynamics are derived by applying the first and second Euler axioms. In maritime
domain, the ship is generally regarded as a rigid hull so that the motion equations are also suitable
to study ship dynamics. The 6 DOF rigid-body equations of motion obtained are given when
setting the center of gravity as (xg, yg, zg) and applying the SNAME notions (SNAME 1950).

m[u̇ − vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)] =X

m[v̇ − wp + ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp + ṙ)] =Y

m[ẇ − uq + vp − zg(p2 + q2) + xg(rp − q̇) + yg(rq + ṗ)] =Z

Ixṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz

+(pr − q̇)Ixy + m[yg(ẇ − uq + vp)− zg(v̇ − wp + ur)] =K

Iyq̇ + (Ix − Iz)rp − (ṗ + qr)Ixy + (p2 − r2)Izx

+(qp − ṙ)Iyz + m[zg(u̇ − vr + wq)− xg(ẇ − uq + vp)] =M

Izṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy

+(rq − ṗ)Izx + m[xg(v̇ − wp + ur)− yg(u̇ − vr + wq)] =N

(3.1)

where X, Y, Z, K, M andN are the external forces and moments, Ix, Iy and Iz are inertial
moments about the xg, yg and zg axes, Ixz=Izx, Iyz and Ixy are the products of inertial.

For convenience, a set of basic assumptions are usually applied to simplify the 6 DOF
equations of motion to 3 DOF because studies have indicated that the results from 3 DOF are
mostly satisfactory for their research goals. These assumptions are given:

• The heave, roll and pitch modes are neglected.

• The distribution of ship mass is symmetrical with respect to theOb−xz plane.

• Ixy = Iyz = 0.

• yg = 0.

Then, the 3 DOF equations of motion in horizontal plane yields

m
(
u̇ − vr − xgr2

)
= X

m
(
v̇ + ur + xgṙ

)
= Y

Izṙ + mxg (v̇ + ur) = N
(3.2)
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As seen, this is the primary model for studying ship dynamics in 3 DOF.The left vital work is
to define the external forces and moments acting on ships in the right-hand side terms of (3.2).
These forces and moments can be classified into three kinds, i.e., radiation-induced forces and
moments, propulsion forces and moments, and environmental forces and moments. The
environmental forces and moments are discussed separately. The following sections will present
three typical ways, i.e., Abkowitz’s Taylor series expansion, modulus functions, and vectorial
representations on describing the former two kinds of forces and moments. Focuses of this thesis
are not on modeling environmental forces and moments. Interests in this part can refer to
Chapter 8 of the handbook namedHandbook of marine craft hydrodynamics and motion
control (Fossen 2011).

3.1.3.2 AbkowitzModel

In Abkowitz model, the hydrodynamic forces and moments acting on the hull, propeller, and
rudder are regarded as the function of state variables (u, v, r) and actuator variable (δ), i.e.,
f(u, v, r, u̇, v̇, ṙ, δ), which is expanded by a 3rd-order truncated Taylor-series at the steady state
status given u=u0, v=0, and r=0. As the complexity of the 3rd-order Taylor series expansion is
very high due to its large number of terms, several pieces of good assumptions proposed by
Abkowitz are used to simplify the expansions. These assumptions are given

• A 3rd-order truncated Taylor series expansion for the steady state at u=u0 can be used to
describe mostly ship maneuvers.

• Only 1st-order acceleration terms are taken into consideration.

• The coupling between the acceleration and velocity terms is ignorable.

• Standard port/starboard symmetry simplifications except terms describing the constant force
and moment arising from single-screw propellers.
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After applying these assumptions, the force and moment terms in (3.2) can be defined as

X =X∗ + Xu̇Δu̇ + XuΔu + XuuΔu2 + XuuuΔu3 + Xvvv2 + Xrrr2

+ Xδδδ2 + Xrvrv + Xrδrδ + Xvδvδ + XuvvΔuv2 + Xurrδur2

+ XuδδΔuδ2 + XuvrΔuvr + XurδΔurδ + XuvδΔuvδ

Y =Y∗ + YuΔu + YuuΔu2 + Yrr + Yvv + Yrṙ + Yvv̇ + Yδδ + Yrrrr3

+ Yvvvv3 + Yδδδδ3 + Yrrδr2δ + Yrδδrδ2 + Yrrvr2v + Yvvrv2r

+ Yvδδvδ2 + Yvvδv2δ + Yvrδvrδ + YuvΔuv + YuuvΔu2v + YurΔur

+ YuurΔu2r + YuδΔuδ + YuuδΔu2δ

N =N∗ + NuΔu + NuuΔu2 + Nrr + Nvv + Nrṙ + Nvv̇

+ Nδδ + Nrrrr3 + Nvvvv3 + Nδδδδ3 + Nrrδr2δ + Nrδδrδ2 + Nrrvr2r

+ Nvvrv2r + Nvδδvδ2 + Nvvδv2δ + Nvrδvrδ + NuvΔuv + NuuvΔu2v

+ NurΔur + NuurΔu2r + NuδΔuδ + NuuδΔu2δ

(3.3)

where Δu=u−u0, v=Δv, r=Δr, δ=Δδ, Δu̇=u̇, v̇=Δv̇, ṙ=Δṙ; Xu̇, Yv̇, Yṙ,Nṙ, andNv̇ are partial
derivatives of hydrodynamic acceleration and angular acceleration.

In Abkowitz’s model, the forces and moments are expressed by a function of various factors
and expanded regarding the Taylor series. From a theoretical point of view, this model is relatively
complete. The ship hull, propeller, and rudder are assumed as a whole system such that the
complex interference between them doesn’t need to analyze and consider, but it is inconvenient
to make local changes of the design of the ship hull, propeller or rudder. Themodel contains
dozens of hydrodynamic coefficients, which is a huge task to estimate these coefficients.
Moreover, the physical interpretation of some coefficients is not clear.

3.1.3.3 MMGModel

MMGmodel emphasizes the physical interpretation of each hydrodynamic coefficient and
excludes some meaningless and unimportant coefficients indicated by the captive model test.
Additionally, the interference between the hull of the ship, propeller, and rudder is accounted for.
The coefficients in theMMGmodel can be estimated by the captive model test. Supposing the
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starboard/port symmetry gives the 3 DOFMMGmodel as

(m − Xu̇) u̇ − (m − Yv̇) vr − mxgr2 =XH + XP + XR

(m − Yv̇) v̇ − (m − Xu̇) ur + mxgṙ =YH + YP + YR

(Iz − Nṙ) ṙ + mxg (v̇ + ur) =NH + NP + NR

(3.4)

where XH, YH andNH donate the hull viscous forces and moment, respectively. XP, YP andNP are
propulsive (propeller, thrusters, etc.) forces and moment, respectively. XR, YR andNR present
rudder forces and moment, respectively.

For deciding the hull forces and moment, several methods can be used, e.g., the Taylor-series
expansion, the model proposed by Inoue et al. (Inoue et al. 1981), and approximate formulae
obtained by regression investigation for 15 kinds of ships and their 48 loading conditions (Kijima
2002). More detailed information can refer to the mentioned papers.

Propulsive forces and moment are modeled by

XP =(1− tP)ρn2D4
PkT

YP =0

NP =0

(3.5)

in which tP is the propeller thrust deduction coefficient, n is the propeller shaft speed,DP presents
propeller diameter, kT donates the propeller thrust coefficient which is usually calculated by the
linear regression formula or parabolic formula. The linear formula is given as

kT = α1J + α0 =
α1ua

nDP
+ α0 (3.6)

where J is the advance coefficient, α0 and α1 are constant coefficients which can be estimated by
the open-water propeller test, ua means the advance speed of the propeller.

Themodels for rudder forces and moment are governed by

XR =(1− tR)FN sin δ

YR =(1+ αH)FN cos δ

NR =(xR + αHxH)FN cos δ

(3.7)

where tR is the rudder thrust deduction coefficient, αH is the correction factor of steering induced
hull lateral force, xR is the longitudinal moment arm from the center of rudder force to the origin
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center of the body-fixed frame, xH is the longitudinal moment arm from the center of steering
induced lateral force to the origin center of the body-fixed frame, FN is the rudder normal force
which is expressed as

FN = − 6.13Λ
Λ + 2.25

· AR

L2 (u
2
R + v2R) sin αR (3.8)

where Λ is the rudder aspect ratio, AR is the rudder area, αR is the effective angle induced by the
fluid to the rudder, uR and vR are the normal and tangential velocity induced by fluid at the rudder,
respectively.

Comparing with Abkowitz’s model, one can conclude that

• Each term in theMMGmodel has its manifest physical interpretation.

• The value of each coefficient can be estimated through experiments.

• Themodel obtained for the scale-model ship can be converted effectively to match the real
corresponding ship, that means the scale effects caused by the discrepancy of Reynold
number between the scale-model ship and real ship make an ignorable influence on the
application of the obtained model for the scale-model ship to real ship.

• It is convenient to make changes on the hull, rudder or propeller because each of them and
interference between them are modeling separately.

3.1.3.4 Vectorial Representations

In this part, the ship dynamic model proposed in the form of vectorial representations is
comprehensively elaborated from the nonlinear 6 DOF vectorial representations. The kinematic
(3.9) and nonlinear 6 DOF dynamic model (3.10) of a ship can be expressed in the body-fixed
frame, respectively (Fossen 1994).

η̇ = J(η)υ (3.9)

where υ=[u, v,w, p, q, r]T is the spatial velocity state vector, η=[x, y, z, ϕ, θ, ψ]T presents the
position and orientation states, J (η)=f(ϕ, θ, ψ) is the transformation matrix between variants in
the body-fixed frame and earth-fixed frame, which yields in Euler-angle transformation form as
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follows with abridged notations including c (.)=cos (.), s (.)=sin (.), t (.)=tan (.).

J (η) =



cϕcθ (cϕsθsφ − sϕcφ) (sϕsφ + cϕcφsθ) 0 0 0
sϕcθ (cϕcφ + sφsθsϕ) (sθsϕcφ − cϕsφ) 0 0 0
−sθ cθsφ cθcφ 0 0 0
0 0 0 1 tθsφ tθcφ
0 0 0 0 cφ −sφ
0 0 0 0 sφ

cθ
cφ
cθ


A set of equations in (3.1) are converted into the form of vectorial representations by

introducing somemodifications by Fossen et al., which leads to

Mυ̇ + C (υ) υ + D (υ) υ + g (η) = τext + τ (3.10)

where the mass matrixM is the summation of the added massMA and the rigid body massMRB,
C (υ) is the Coriolis and centripetal matrix due to the rotation of body-fixed frame with respect to
the inertial frame,D (υ) is the damping matrix, g (η)manifests the effects of buoyancy’s
interaction with gravity, τ=[τX, τY, τZ, τK, τM, τN]

T denotes the actuator forces and moments
generated by a set of propellers with revolutions per second n=[n1, n2, · · · , nP1]

T and a set of
control surfaces with angles δ=[δ1, δ2, · · · , δP2]

T, τext is the external disturbances induced by
currents, wave, etc. Details aboutM,C (υ) ,D (υ) and g (η) are carefully explained in the
following.

M = MRB + MA =



m − Xu̇ −Xv̇ −Xẇ −Xṗ mzg − Xq̇ −myg − Xṙ

−Yu̇ m − Yv̇ −Yẇ −mzg − Yṗ −Yq̇ mxg − Yṙ

−Zu̇ −Zv̇ m − Zẇ myg − Zṗ −mxg − Zq̇ −Zṙ

−Ku̇ −mzg − Kv̇ myg − Kẇ Ix − Kṗ −Ixy − Kq̇ −Ixz − Kṙ

mzg − Mu̇ −Mv̇ −mxg − Mẇ −Iyx − Mṗ Iy − Mq̇ −Iyz − Mṙ

−myg − Nu̇ mxg − Nv̇ −Nẇ −Izx − Nṗ −Izy − Nq̇ Iz − Nṙ


in which

MRB =



m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −yyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz


,
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MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


,

m is the mass of the rigid body, Ix, Iy, and Iz are the inertial moments with respect to the x-axis,
y-axis, and z-axis in the body-fixed frame, Ixy=Iyx, Ixz=Izx, and Iyz=Izy are the inertial products.
Meanwhile, the inertial matrix of gravity center can be defined as

Ig =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 .

From the notations of SNAME, the hydrodynamic added mass, for instance, Y along with the
y-axis of the body-fixed frame due to an acceleration u̇ in x direction can be written as

Y = −Yu̇u̇, Yu̇ =
∂Y
∂u̇

.

The rest hydrodynamic terms inMA are expressed similarly.

C (υ) = CRB (υ) + CA (υ)

=



0 0 0
0 0 0
0 0 0

−m(ygq + zgr) m
(
ygp + w

)
− a3 m(zgp − v) + a2

m
(
xgq − w

)
+ a3 −m(zgr + xgp) m

(
zgq + u

)
− a1

m
(
xgr + v

)
− a2 m

(
ygr − u

)
+ a1 −m

(
xgp + xgq

)
m(ygq + zgr) −m

(
xgq − w

)
− a3 −m

(
xgr + v

)
+ a2

−m
(
ygp + w

)
+ a3 m(zgr + xgp) −m

(
ygr − u

)
− a1

−m(zgp − v)− a2 −m
(
zgq + u

)
+ a1 m

(
xgp + xgq

)
0 −Iyzq − Ixzp + Izr − b3 Iyzr + Ixyp − Iyq + b2

Iyzq + Ixzp − Izr + b3 0 −Ixzr − Ixyq + Ixp − b1
−Iyzr − Ixyp + Iyq − b2 Ixzr + Ixyq − Ixp + b1 0


where the ai(i = 1, 2, 3) and bj(j = 1, 2, 3) donating terms of CA (υ) can be derived by the energy
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formulation TA written as a quadratic form based on theMA.

TA =
1
2
υTMAυ, ṀA = 0

Suppose the fluid is incompressible, then the Kirchhoff’s equations for a rigid body gives

d
dt

(
∂TA

∂υ1

)
+ S (υ2)

∂TA

∂υ1
= τ1

d
dt

(
∂TA

∂υ2

)
+ S (υ2)

∂TA

∂υ2
+ S (υ1)

∂TA

∂υ1
= τ2

where τ1=[XA, YA,ZA]
T and τ2=[KA,MA,NA]

T are the added mass terms. The skew-symmetric
cross-product operations S (υ1) and S (υ2) are defined respectively as

S (υ1) = −ST (υ1) =

 0 −w v
w 0 −u
−v u 0

 , S (υ2) = −ST (υ2) =

 0 −r q
r 0 −p
−q p 0

 .

Subsequently, the expression of CA (υ) extracted from the above procedure is

CA (υ) =



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 a3 a2 0 −b3 b2
a3 0 −a1 a3 0 −b1
−a2 a1 0 −b2 b1 0


with 

a1 = Xu̇ur + Xv̇vr + Xẇwr + Xṗp + Xq̇q + Xṙr
a2 = Yu̇ur + Yv̇vr + Yẇwr + Yṗp + Yq̇q + Yṙr
a3 = Zu̇ur + Zv̇vr + Zẇwr + Zṗp + Zq̇q + Zṙr
b1 = Ku̇ur + Kv̇vr + Kẇwr + Kṗp + Kq̇q + Kṙr
b2 = Mu̇ur + Mv̇vr + Mẇwr + Mṗp + Mq̇q + Mṙr
b3 = Nu̇ur + Nv̇vr + Nẇwr + Nṗp + Nq̇q + Nṙr

.

The damping effect due to complicated hydrodynamic phenomena is the most uncertain
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component and crucial to be decided. But in general, it is always composed of the linear damping
component and nonlinear quadratic damping component such that

D (υ) = DL + DNL (υ)

with

DL = −



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


,

DNL (υ) = −



X|u|u |u| X|v|v |v| X|w|w |w| X|p|p |p| X|q|q |q| X|r|r |r|
Y|u|u |u| Y|v|v |v|+ Y|r|v |r| Y|w|w |w| Y|p|p |p| Y|q|q |q| Y|r|r |r|+ Y|v|r |v|
Z|u|u |u| Z|v|v |v| Z|w|w |w| Z|p|p |p| Z|q|q |q| Z|r|r |r|
K|u|u |u| K|v|v |v| K|w|w |w| K|p|p |p| K|q|q |q| K|r|r |r|
M|u|u |u| M|v|v |v| M|w|w |w| M|p|p |p| M|q|q |q| M|r|r |r|
N|u|u |u| N|v|v |v|+ N|r|v |r| N|w|w |w| N|p|p |p| N|q|q |q| N|r|r |r|+ N|v|rv


where some additional nonlinear coupling terms are involved on the diagonal in heave, roll, and
pitch, which is because only terms among all additional coupling terms in 6 DOF affect obviously
are retained.

The formulae of g (η), effects of buoyancy’s interaction with gravity, is given as

g (η) = −



−ρg
∫ z
0 Awp (ζ) dζ sin θ

ρg
∫ z
0 Awp (ζ) dζ cos θ sin φ

ρg
∫ z
0 Awp (ζ) dζ cos θ cos φ

ρg∇ḠMT cos θ sin φ cos φ
ρg∇ḠML sin θ cos θ cos φ

ρg∇ (−ḠML cos θ + ḠMT) sin φ sin θ


where ρ is the water density, g is the gravity acceleration, z is the depth at the lowest point of the
ship,∇ is the displaced water volume, Awp (ζ) is the waterplane area, ḠMT is the transverse
metacentric height, ḠML is the longitudinal metacentric height.
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3.1.4 Requirement Fulfillment Summary

Themotions of the surge, sway, yaw, pitch, roll, and heave can be described with the use of six
differential equations and body-fixed and earth-fixed frames once the ship is regarded as a
rigid-body object. In these differential equations, the terms with the meaning of external forces
and moments acting on ships containing radiation-induced and propulsion forces and moments
are able to be respectively defined by means of Abkowitz´s Taylor series expansion, modulus
functions, and vectorial representations. The following gives a comprehensive overview of these
three models, including two folds, i.e., merits and demerits.

• In Abkowitz´s model, the hull, propeller, and rudder of the ship are assumed as a holistic
system, for which the relatively induced forces and moments are completely expressed by
the Taylor series. But its application is restricted due to three facts. The local variation in
the design of ship hull, propeller or rudder and the analysis of their interactions are
impossible. Some coefficients have no clear physical interpretation. Too many coefficients
involved in the model make the multicollinearity highly happen, which meanwhile
challenges the estimation of coefficients. Hence, one can see that only the fourth
requirement is fulfilled.

• InMMGmodel, external forces and moments generated by ship hull, propeller and rudder are
represented separately by modulus functions but completely captured, which makes each
term have manifest physical interpretation at the same time makes changes on hull,
propeller or rudder possible. The coefficients can be estimated through a suitable method
necessarily incorporated with optimal experiments, but it is cumbersome and high
finance-consuming to estimate so many coefficients. What´s more, it is not to ensure
convenient and fast model simulations. So, this model fulfills the first and fourth
requirements and partially fulfills the third requirement.

• In the vectorial representation model, the equations of motion are completely expressed in the
form of matrix-vector where each term can be interpreted physically and adjusted
according to the property variations of hull, propeller or rudder. Applying the model for
simulation is easy to be conducted in either Matlab or C++. The irreplaceable advantage of
this model is that the nonlinear system properties such as symmetry, skew-symmetry, and
positiveness of matrices can be exploited in the passivity or stability analysis. Unavoidably,
it must stand the pressure on demand for cumbersome processes and high financial
consumption in estimating all coefficients. Therefore, it is indicated that this model fulfills
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the first and fourth requirements and partially fulfills the third requirement.

One remark can be concluded that the derived requirements on ship dynamic model are not
fully fulfilled.

3.2 System Identification

System identification is a subcategory of estimation in the system theory, which is the process of
developing a mathematical representation of a physical system from experimental data by using
statistical methods. In applications, modeling based on system identification is accomplished
through the procedure starting from generating and processing observations until strongly
validating the identified model with relatively acceptable accuracy, which is also followed to
model ship dynamics. Through the overview of the identification of ship dynamic models, the
support vector machines based identification method is highlighted due to comparatively
attractive advantages.

3.2.1 Procedure

Generally, the system identification procedure is a natural logical flow shown in
Figure 3.2.1 (Ljung 1998) where four core steps are illustrated and further depicted concretely as
follows.

3.2.1.1 TheObserved Data

The data are collected from the optimal experiment which is designed sometimes based on the
prior knowledge so that the recorded data are maximally informative. As suggested by
Ljung (Ljung 1998), the input used to generate training maneuvers to supply sufficiently
informative data for identification should satisfy the persistence of excitation condition for
guaranteeing convergence and ensuring robustness properties of identification method. Ideally,
the phase trajectories resulting from such maneuvers are ought to fill some sufficiently large
domain in the state space. For instance, the pseudo-random binary sequences (PRBS) are rich
enough and desirable choice to guarantee reliable estimation of all parameters involved in the
model (Sutulo and Soares 2014). But PRBS requires very long tests to achieve good loop filling.
What´s more, the desirable maneuvers are in fact not possible to be achieved and not simple to be
executed with the standard means of control. From the studies many researchers have done on
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Figure 3.2.1: The system identification procedure.

the identification of ship mathematical models, the standard zigzag maneuvers can be
alternatives (Yoon and Rhee 2003) (Sutulo and Soares 2014).

3.2.1.2 The Set ofModels or theModel Structure

This step is usually the most challenging part of the identification procedure. The best suitable
model needs to be selected from a set of models or model structures by specifying within these
models. Models are generally categorized into black-box models and gray-box models. The
black-box model donates the model whose parameters are basically viewed as vehicles for
adjusting the fit to the data and do not reflect physical considerations in the system (Ljung 1998).
The gray-box model refers to the model with adjustable parameters with physical
interpretation (Ljung 1998). In the maritime domain, such model sets for describing ship
dynamics can be built based on the above-introduced kinds of ship dynamic models. In other
words, the models can also be called gray-box models.
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3.2.1.3 IdentificationMethod

The identification method is responsible for searching and determining the best model within the
set. The quality of the model is decided by assessing the performance of the model on
reproducing the measured data. The determination of the identification method is dependent on
the model structure used. For a model structure, sometimes not only one method is useful.
Therefore, the identification methods used to identify ship models will be introduced in detail in
Section 3.2.2 for the selection of a method suitable for this thesis.

3.2.1.4 Model Validation

After the previous three steps, the best model with a particular structure can be obtained but not
determined yet because it remains to be tested whether it is good enough for the intended
purpose, i.e., model validation. The validation can be executed by analyzing and comparing the
predictions of the identified model and measured data that have not been used for identification.

3.2.2 Identification of the Ship DynamicModel

The application of system identification to identify the ship dynamic model can be briefly
described. The parameters of the ship dynamic model are estimated which is guided by a
hypothesized model structure and the collected observed data set. If the validation test on the
identified model is ideal, the identified dynamic model is feasible to describe and capture ship
dynamics. As the identification method for this thesis has not determined yet, the following will
present related details about the use of the identification method in the maritime domain to
decide which method is suitable for this study.

Basically, the framework of the identification of the ship dynamic model according to the
system identification procedure is illustrated in Figure 3.2.2. For the identification method, many
choices exist for performing identification based modeling of ship dynamics. Åström and
Källström (Åström and Källström 1976) estimated the parameters of the ship steering model by
applying the measurements from full-scale tests to the maximum likelihood method (ML). Using
the experimental data of the Esso Osaka tanker, Hwang (Hwang 1980) applied the Extended
Kalman Filtering algorithm (EKF) to solve the estimation of Abkowitz model parameters and
modified the model on the basis of the identification results. Themodel of the Esso Osaka tanker
was also identified using the ridge regression method by Yoon and Rhee (Yoon and Rhee 2003).
In Taylor’s work (Taylor 2000), EKF was applied to estimate coefficients of a dynamic model for
an Arleigh Burke Class Destroyer for the model-based control design. Caccia, et al. (Caccia,
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Bruzzone, and Bono 2008) used LS and data stemmed from sea trails to estimate parameters of
the proposed practical dynamic model for an autonomous catamaran prototype Charlie2005.
Additionally, the modified or improved LS is also studied to work in identifying ship dynamic
models, see (Pullard 2003).

Ship 

Ship dynamic model 

Identification method 

Input u(t) Output y(t) 

Figure 3.2.2: Basic framework of the identification of ship dynamic model.

Apart from the traditional methods, many intelligent algorithms have been developed for
identifying ship dynamic models in recent years. The genetic algorithm (GA) and global search
algorithm (GS) are utilized together by Erunsal (Erunsal 2015) to identify the model which was
further applied to design controller. Ferri, et al. (Ferri, Manzi, Fornai, Ciuchi, and Laschi 2013)
adopted the simulated annealing algorithm (SA) to identify the dynamic model of an
autonomous surface vehicle (ASV) taking into account the performance of sensors used for
measurements record. Bhattacharyya and Haddara (Bhattacharyya and Haddara 2006) employed
the neural network method (NN) to estimate the hydrodynamic derivatives embedded in the
nonlinear steering model. SVMs are firstly successively applied in 2009 by Luo and Zou (Luo and
Zou 2009) in the maritime domain to estimate hydrodynamic derivatives of the Abkowitz model
taking into account the free-running tests.

On the basis of those identification methods, some studies focus on simultaneously
cooperating with two approaches and successively applying them to identify ship dynamic
models. The examples are a recursive least square method combined with a recursive prediction
error method for identifying ship maneuvering dynamics (Nguyen 2008), an EKF with
constrained least square method used to estimate maneuvering parameters (Araki,
Sadat-Hosseini, Sanada, Tanimoto, Umeda, and Stern 2012), a nonlinear prediction error method
and a unscented Kalman filtering method for identifying dynamic models of a high-speed
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trimaran ferry (Herrero and Gonzalez 2012).
By analyzing the performance of these identification methods for estimating parameters in the

ship dynamic model, it is easy to reveal some noticeable points. The traditional identification
methods such as LS andML present some inherent drawbacks, i.e., the identification results rely
on either the mathematical model of the research object or the initial values of parameters needed
to be predefined. The intelligent algorithm-based identification methods can overcome the
drawbacks of traditional identification methods. But some methods involving GS, GA, SA, and
NN cannot always guarantee the generalization performance and optimal solution and avoid the
curse of dimensionality. Differently, SVMs based identification method can prevent these
deficiencies and guarantee satisfying performance. That is due to the irreplaceable merits of
SVMs. Firstly, SVMs can work well with finite samples. Then, it converts the complex
optimization problem into a quadratic optimization problem which theoretically ensures the
global optimum to be obtained. Thirdly, minimization of the structural risk promotes its
generalization capability, and the curse of dimensionality can be omitted due to the
computational complexity that is only related to the number of support vectors instead of the
dimension of inputs. The performance of SVM based methods for either offline or online
identification can benefit from these natural merits. Besides these attractive merits, one point of
SVM based identification method are ought to be noticed, which is the stability problem
associated with dealing with a large amount of data. The small-scale training set would result in
local optimal solutions. But the large-scale training set could increase the computation burden
due to a large size of kernel matrix. From the suggestion proposed by Suykens et al. (Suykens,
Gestel, Brabanter, Moor, and Vandwalle 2002), the length of the training set is to be less than
2000. In addition, a robust method (i.e., optimal truncated SVM) with the ability of diminishing
parameter uncertainty on demand of a low computational cost by reducing the dimensionality of
the kernel matrix can be applied to solve this stability problem. In this study, attention to applying
a small amount of training data less than 2000 to the offline identification of the simplified ship
dynamic model is paid.

One noticeable deficiency of SVM is that its identification results are sensitive to the structural
parameters in SVM such as the insensitivity factor, the regularization parameter, and kernel
parameters, which means only if these parameters in SVM are defined by particular settings the
globally optimal solutions can be guaranteed. Thus, the selection of these parameters for SVM is
one of the most important steps when using it as an identifier. To remedy this deficiency of SVM,
Frohlich et al. (Frohlich and Zell 2005) used the grid search on the log-scale of the parameter in
combination with the cross-validation technique to tune parameters in SVM. Even though this
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technique is simple, it is often time-consuming and at average accuracy (Sulaiman, Mustafa,
Shareef, and Khalid 2012). From the extensive literature reviews, many different approaches have
been proposed for tuning parameters in SVM. One widely-used technique is the swarm
intelligence, for instance, the PSO (Luo, Soares, and Zou 2016), the GA (Dioşan, Rogozan, and
Pecuchet 2012), the firefly algorithm (Xiong, Bao, and Hu 2014), and ABC (Sulaiman et al.
2012). Apparently, the design of the developed hybrid model is different regarding the various
problems needed to be solved in related domains. For the problem of parameter estimation of the
ship dynamic model, the hybrid approach of ABC with SVM has not been applied, which will be
studied and contributed to this thesis.

3.2.3 Support VectorMachines

Machine learning is always to find rules by learning from the observed data and then uses these
derived rules to make predictions. Somemachine learning algorithms are commonly dependent
on the theoretical foundation, i.e., statistics. Traditional statistics are based on the asymptotic
theory that the number of samples tends to infinity, whereas in practical problems, the number of
samples usually tends to be limited. Statistical learning theory or VC theory started by Vapnik
and Chervonenkis in the Sixties (Scholkopf and Smola 2002) provides a unified framework
specialized to solve the problem of finite samples learning.

In 1999, SVMs as one type of machine learning algorithms based on statistical learning theory
was primarily developed by Vapnik and co-workers since it was proposed (Schiilkop, Burgest, and
Vapnik 1995) (Vapnik, Golowich, and Smola 1996). Built on the principles of structural risk
minimization (SRM), SVMs can make the best compromise between the complexity of the
learned model and the capacity of the learning algorithm for the given finite samples to ensure the
best generalization performance. Different from some existing statistical algorithms involving the
definition of probability measure and a massive number of rules, etc., SVMs illustrates three
attractive points. One is that it can turn the learning task into a quadratic programming problem
which generally can obtain the global optimal solution. The second one is that it can introduce
the feature mapping function (which can also be induced by a kernel function) to cope with the
issue about nonlinear inseparable inputs by mapping these input to a higher dimensional feature
space where the best hyperplane is possibly found for these inputs. The third one is that it can
make the computational complexity ultimately depend on the dimensionality of the input space
and the complexity of the kernel function. More detailed information on SVMs can refer to the
excellent book written by Vapnik (Vapnik 2013).

SVMs have been effectively applied to solve real-world problems, e.g., text and hypertext
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categorization, classification of images, hand-written characters recognition, predictions in the
biological sciences (Burges 1998). The algorithm used for pattern recognition tasks is one
extension of the SVM, so-called support vector classification algorithm (SVC). Another
algorithm, i.e., SVR extended from SVM, is employed in regression cases.

Comprehensive tutorials on SVC in (Burges 1998) and on SVR in (Smola and Schölkopf
2004) are well reported. In this work, the SVR based identification method will be utilized for the
identification of ship dynamic models.

3.2.3.1 Linear Support Vector Classification Algorithm

The Separable Case. Suppose the given training data T = {(X1, y1) , · · · , (Xl, yl)} ∈ (χ × y)l, in
which Xi ∈ χ = Rd(i = 1, · · · , l) are patterns, and each pattern is a p-dimensional real vector,
and yi ∈ y {−1, 1} are labels, then to find a hyperplane to linearly separate all patterns for which
the label yi = 1 belongs to, and for which yi = −1 can be assigned. The SVC is to look for a
hyperplane with maximummargin. For the classification of a set of points, the bigger the margin
of the hyperplane is, the higher the confidence of the classification is.

A hyperplane for the SVC can be defined as a set of patterns X satisfy

{
X ∈ Rd : f (X) = W · X + b = 0

}
(3.11)

whereW is normal to the hyperplane, b is the intercept,W · Xmeans the dot product betweenW
and X, f (X) = W · X+ b denotes the decision function which calculates the distance of a pattern
to the hyperplane. The hyperplane defined in (3.11) is located in the middle of two other parallel
hyperplanes (H1,H2) expressed asH1 : W · X + b = 1 andH2 : W · X + b = −1.

The distance betweenH1 andH2 is calculated by 2
||W|| in which ||W|| presents the Euclidean

norm ofW. Therefore, the best maximum-margin hyperplane can be obtained by maximizing
2

||W|| concerning the constraints written in inequalities as follows

W · Xi + b ≥ 1 for yi = 1 (3.12)

W · Xi + b ≤ −1 for yi = −1 (3.13)

from where one can see that the points located on the hyperplaneH1 also satisfy the equality
relationship in (3.12), and the hyperplaneH2 matches the equality in (3.13). These constraints
prevent all training points from falling in the margin. For the sake of mathematical convenience,
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these constraints are defined by one combined inequality

yi (W · Xi + b)− 1 ≥ 0, ∀i (3.14)

Afterward, the problem of finding the maximum-margin hyperplane is converted into the
optimization problem concerning the maximization of 1

||W|| subject to constraints (3.14), for
which the objective function is presented as

max
1

||W||
, s.t., yi (W · Xi + b)− 1 ≥ 0, ∀i (3.15)

For the mathematical convenience, the objective function is modified into the following form
as

min
1
2
||W||2, s.t., yi (W · Xi + b)− 1 ≥ 0, ∀i (3.16)

Now the optimization of the objective function can be regarded as solving a convex quadratic
programming problem because in (3.16) the objective function is a quadratic function and the
constraints are linear constraints. The optimal solutions for convex quadratic programming
problems are global optimums. Such a problem can be tackled by introducing Lagrange
multipliers to form the Lagrange formulation of the problem presented as

L (W, b, α) =
1
2
||W||2 −

l∑
i=1

αi(yi (W · Xi + b)− 1) (3.17)

Let minimize L (W, b, α)with respect toW, b, and simultaneously require that the derivatives
of L (W, b, α)with respect to all αi vanish, all subject to the constraints αi ≥ 0, ∀ i. The similar
results from above procedure can also occur in the process of solving a dual problem. That means
maximization of L (W, b, α) subject to the constraints about the vanishment of the gradient of
L (W, b, α)with respect toW, b vanish, and subject to the constraints about αi ≥ 0, ∀ i (Burges
1998). W, b and α can be calculated by applying the steps for solving a dual problem:

(1) Partially derive ∂L(W,b,α)
∂W = 0 =⇒ W =

∑l
i=1 αiyiXi and

∂L(W,b,α)
∂b = 0 =⇒

∑l
i=1 αiyi = 0,

then substitute the above results into the expression of L (W, b, α) to get the form of
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L (W, b, α) only with α

L (W, b, α) =
l∑

i=1

αi −
1
2

l∑
i,j=1

αiαjyiyj(Xi · Xj) (3.18)

(2) Maximize
∑l

i=1 αi − 1
2

∑l
i,j=1 αiαjyiyj(Xi · Xj)with respect to αi subject to αi ≥ 0, ∀ i and∑l

i=1 αiyi = 0, then apply Sequential Minimal Optimization (SMO) algorithm to calculate
the α. Details concerning SMO algorithm refer to (Platt 1999).

(3) Calculate the intercept by b = −maxi:yi=−1 W·Xi+mini:yi=1W·Xi

2 . Afterward, the decision function
and the maximum-margin hyperplane are obtained by substitutingW, b into
f (X) = W · X + b and (3.11). The decision function becomes

f (X) = (
l∑

i=1

αiyiXi)
TX + b =

l∑
i=1

αiyi < Xi · X > +b (3.19)

It is worthy to note that the data on the hyperplanesH1 andH2 are called support vectors, for
which the Lagrange multipliers are greater than zero (αi ≥ 0, ∀ i). For the data outside theH1

andH2, their Lagrange multipliers are set as zero (αi = 0, ∀ i).
TheNon-Separable Case. The above algorithm is applied to separate the data into two classes,

but it is not suitable to handle the case in which there are non-separable data because of the
outliers. To deal with the non-separable case, the non-negative slack variables ξi(i = 1, · · · , l) are
added into the constraints (3.14)

yi (W · Xi + b)− 1+ ξi ≥ 0, ∀ i : ξi ≥ 0 (3.20)

The slack variables can be calculated by the hinge loss function

ξi = max (0, 1− yi (W · Xi + b)), ∀ i

from which, one can get an understanding of how every pattern locates in reference to the
hyperplane. If the function is zero, the related pattern lies on the correct side of the hyperplane. If
the function is bigger than one, the pattern lies on the incorrect side of the hyperplane.
Otherwise, the pattern lies in the margin.

With the introduction of an extra error term C
∑l

i=1 ξi, the objective function is then rewritten
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as

min
1
2
||W||2 + C

l∑
i=1

ξi, s.t., yi(W · Xi + b)− 1+ ξi ≥ 0,∀ i : ξi ≥ 0 (3.21)

where C is a user-defined parameter used to decide the penalty for the errors. The bigger the
setting of C is, the higher the penalty for errors is, in other words, the margin is smaller. The
objective function (3.21) can also be transferred into the Lagrange formulation, which is
presented as

L(W, b, α, μ) =
1
2
||W||2 + C

l∑
i=1

ξi −
l∑

i=1

αi(yi(W · Xi + b)− 1+ ξi)−
l∑

i=1

μiξi (3.22)

in which μi, ∀i are Lagrange multipliers with the lower bound μi ≥ 0, ∀i.
Applying the steps in the process of solving Lagrange formulation to the problem of (3.22)

leads to the following results.

(1) The results from partial derivatives are
∂ L(W,b,α,μ)

∂W = 0 =⇒ W =
∑l

i=1 αiyiXi
∂L(W,b,α,μ)

∂b = 0 =⇒
∑l

i=1 αiyi = 0
∂L(W,b,α,μ)

∂ξi
= 0 =⇒ C − αi − μi = 0,∀i

(2) The result got by substituting the results of (1) to (3.22) is
L (W, b, α, μ) =

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyj(Xi · Xj)which is a dual formulation.

Subsequently, the solution of a dual formulation is applied to calculate the αi, ∀i and then the
μi,∀i.
From the above results, one can see that an upper bound is added to αi(αi ≤ C), which is

derived fromC−αi−μi=0, ∀ i and μi ≥ 0. Additionally, theW obtained in the non-separable case
is nearly as same as the one in the separable case. The left task is to calculate b, which can be
solved by following the suggestions from Burges (Burges 1998) by applying patterns satisfying
0 < αi < C to equation αi (yi (W · Xi + b)− 1+ ξi) = 0with ξi = 0. This solution reveals that
the patterns used to compute b are support vectors that lie on the boundaries of the margin.
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3.2.3.2 Nonlinear Support Vector Classification Algorithm

Generally, the linear decision function of the patterns is unable to find an optimal hyperplane for
some cases where the input space is nonlinear. To handle this problem, one solution is to
introduce a mapping function calledΦ to map the patterns in input space to a high-dimensional
feature spaceHwhere a linear decision function can be found. Such a linear decision function
constructed in the feature space is given by

f (X) = W · Φ (Xi) + b (3.23)

Afterward, the objective function subject to the constraints with the transformation of patterns
from the input space to the feature space yields

min
1
2
||W||2, s.t., yi (W · Φ(Xi) + b)− 1 ≥ 0, ∀i (3.24)

This objective function is still a quadratic programming formulation. Now, it seems the mapped
patterns in feature space are linearly separable. But it is still challenging to explicitly deal withΦ.
So far, the benefit of kernel trickK(Xi,X) is applied, which is effective to calculate the dot product
of patterns in the feature space. In (Hofmann, Schölkopf, and Smola 2008)), more details about
kernel trick can be found. Therefore, the solution used previously for a quadratic programming
problem can be applied for (3.24) to get the decision function.

(1) Firstly, obtainW =
∑l

i=1 αiyiΦ(Xi).

(2) Calculate αi by maximizing
∑l

i=1 αi − 1
2

∑l
i,j=1 αiαjyiyj(Φ (Xi) · Φ (X)), subject to∑l

i=1 αiyi = 0 and αi ≥ 0.

(3) Apply support vectors in the feature space to compute b by
b = W · Φ (X)− yi =

∑l
i=1 αiyiK (Xi,X)−yi.

(4) Finally, the decision function used to classify new pattern is given as

f (X) = (
l∑

i=1

αiyiΦ (Xi))
TΦ (X) + b =

l∑
i=1

αiyiK (Xi,X) + b (3.25)

It is deserved to emphasize that only the kernel function meetingMercer’s condition is
applicable for the quadratic programming problem. That means K (Xi,X)=

∑∞
p=0 cp (Xi,X)

p with
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cp > 0 is uniformly convergent. The popularly used kernel functions satisfyingMercer’s
condition are illustrated:

(1) Polynomial: K (Xi,X) = ((Xi · X) + d)p

(2) Gaussian radial basis function: K (Xi,X) = exp(−γ||Xi − X||2)with γ > 0 or γ = 1
2σ2

(3) Linear function: K (Xi,X) = (Xi · X)

(4) Sigmoid function: K (Xi,X) = tanh (c (Xi · X) + d) , c > 0, d > 0

(5) Fourier function: K (Xi,X) = sin (N+0.5)(Xi−X)
sin (0.5(Xi−X))

3.2.3.3 Support Vector Regression Algorithm

SVR is expended from SVC by introducing the ε-insensitive loss function which guarantees the
sparsity of SVR. Here one can start from a case where a function that can fit the patterns in the
high dimensional input space is needed to be found. Analogous to the nonlinear SVC, the feature
mapping function is applied, which yields the decision function as

f (X) = W · Φ (Xi) + b with W ∈ χ, b ∈ R (3.26)

Then the ε-insensitive loss function is given

|y − f (X)|ε =

{
0, if : |y − f(X)| ≤ ε

|y − f(X)| − υ, otherwise
(3.27)

which means that only the patterns (training data) outside and on the boundary of the
ε-insensitive loss zone contribute to the determination of the decision function. These patterns
are called support vectors. One important aspect of SVR is to ensure its flatness while finding the
decision function, which can be done through minimizing ||W||2. To deal with the non-separable
case, the non-negative slack variables ξi, ξ

∗
i (i = 1, · · · , l) are applied. The optimization

formulation is established under the consideration of extra errors, which is given as

min
1
2
||W||2 + C

l∑
i=1

(ξi + ξ∗i ) s.t.,


yi − (W · Xi − b) ≤ ε + ξi
(W · Xi) + b − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0,∀i

(3.28)
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where C is the regularization parameter and always positive, which adjusts the equilibrium
between the flatness and the tolerance to deviations greater than ε. The optimization problem is
transformed into the dual problem and the related solution is given by

W =
l∑

i=1

(αi − α∗i )Φ (Xi) (3.29)

f (X) = (
l∑

i=1

(αi − α∗i )Φ (Xi))
TΦ (X) + b =

l∑
i=1

(αi − α∗i )K (Xi,X) + b (3.30)

Lastly, Figure 3.2.3 graphically illustrates framework of SVR (Smola and Schölkopf 2004).

Figure 3.2.3: Graphical illustration of SVR.

3.2.3.4 Least Square Support Vector Regression Algorithm

As one modified version of SVR, the least square support vector regression algorithm (LS-SVR)
proposed by Suykens et al. (Suykens and Vandewalle 1999) works with equality constraints
instead of inequality constraints and the quadratic deviation. Even though such changes in
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LS-SVR, it still inherits the merits of SVR and can be used for finite samples to find a function of
nonlinear system estimation. Suppose the decision function is

f (X) = W·Φ (Xi) + b with W ∈ χ, b ∈ R (3.31)

Then the optimization problem with equality constraints becomes like

min
1
2
||W||2 + C

2

l∑
i=1

e2i , s.t., yi = W · Φ(Xi) + b + ei (3.32)

where ei(i = 1, · · · , l) are regression errors. As previous process, the Lagrange formulation of the
optimization problem is given as

L (W, b, α, e) =
1
2
||W||2 + C

2

l∑
i=1

e2i −
l∑

i=1

αi(W · Φ(Xi) + b + ei − yi) (3.33)

Now the derivatives with respect toW, b, ei, and αi are computed and set to be zero,
respectively. 

∂L(W,b,α,e)
∂w = 0 =⇒ W =

∑l
i=1 αiΦ (Xi)

∂L(W,b,α,e)
∂b = 0 =⇒

∑l
i=1 αi = 0

∂L(W,b,α,e)
∂ei

= 0 =⇒ αi = Cei
∂L(W,b,α,e)

∂αi
= 0 =⇒ W · Φ (Xi) + b + ei − yi = 0

(3.34)

After straightforward computations, variablesW and ei are eliminated from (3.34) at the same
time the kernel trick is applied. Then the decision function yields

f (X) =
l∑

i=1

αiK (Xi,X) + b (3.35)

3.2.4 Requirement Fulfillment Summary

The execution of identification of ship dynamic models is trickily dependent on the procedure of
system identification technique including core four steps, i.e., acquisition of observed data,
determination of the set of model structure, the decision of identification method, and validation
of the identified model. In maritime engineering, the maneuver to supply informative data
suggests zigzag maneuver which can provide consistent excitation signals of ship motions. The
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ship dynamic model studied in this thesis is classified as the grey-box model. The final step in
validating the identified model can be directly carried out by judging the degree of agreement
between the compatible outputs of an identified model and original maneuvers. Unlike these
three steps, the selection of the identification method is conducted effectively according to the
comprehensive survey on the applications of various identification methods in the maritime
domain, which is illustrated as follows.

• Among conventional methods, examples are LS, ML, KF, and their-related modified versions,
which are not intelligent methods. LS with simple expressions is easy-understanding and
widely-used in engineering but it is sensitive to the outliers corrupted in observed data
caused by environmental disturbances and sensor noises due to its squared norm
minimization, which implies that this method can partially fulfill the seventh requirement.
ML and KF can be regarded as recursive methods on demand of parameter values
predetermined based on empiric, which indicates that these methods can partially fulfill
the fifth and seventh requirements.

• Among intelligent methods, instances are GA, GS, AS, NN, and SVM based identification
methods. GA, GS, and AS based identification methods can correctly identify ship
dynamic models if the observed data are preprocessed, but they have no ability to often
ensure the global optimum. Besides the local optimum, NN also has a problem of
dimensionality curse. So, these methods fulfill the sixth requirement and partially fulfill
the seventh requirement. SVM based identification method avoids the above
shortcomings, from which one can conclude that this method fulfills the fifth and sixth
requirements and partially fulfills the seventh requirement.

• Among hybrid methods, cases are recursive least square method combined with recursive
prediction error method, EKF with constrained least square method, nonlinear prediction
error method incorporated with unscented KFmethod. The combination of two
identification methods can improve the robustness and identification performance on
obtaining global optimal solutions but it is not intelligent. So, one can learn that these
hybrid methods fulfill the fifth and seventh requirements.

One remark can be concluded that the derived requirements on the identification method are
not fully fulfilled.
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3.3 Objective Coverage Summary

The overview of the state-of-the-art ship dynamic model and system identification is the basis for
arising a solution to the research question. To which degree the previously posed objectives are
covered is summarized.

Objective 1 (Selection of an existing 6 DOFmodel as the fundamental model for model
simplification and modification.) is covered. Three typical dynamic models including the
Abkowitz model, MMGmodel, and vectorial representation are potential selections used to
describe ship motions in 6 DOF. By comprehensively analyzing these models, in particular, the
two folds, i.e., advantages and disadvantages, the ship dynamic model expressed in the
matrix-vector form shows more attractive advantages which are illustrated as follows: The
vectorial representation can completely describe 6 DOF dynamics of the ship. Each term of the
representation has a physical interpretation. Some properties of the ship can be trivial to be
exploited through passivity or stability analysis. Themodel presented in the vector-matrix form is
easy-to-use for model simulation, which is very useful to simulate ship maneuvering performance
once obtaining the dynamic model. Thus, the dynamic model expressed in matrix-vector form
can serve as the fundamental model to provide a simplified model through reasonable model
simplification and modification.

Objective 2 (Simplification of the model dependent on trade-offs between accuracy and
complexity.) is partially covered. Even though the 6 DOF dynamic model, i.e., the vectorial
representation, can be simplified to 3 DOFmodel with acceptable precision based on a series of
reasonable assumptions, such simplification is specific to a research object but not effective for
more than one research objects at the same time. The trade-offs between accuracy and
complexity should be adopted for the simplification of a dynamic model for different types of
ships rather than for only one ship.

Objective 3 (Comparison and selection of identification methods.) is partially covered. The
study on applying two collaborative identification methods, e.g., the aforementioned
combination of recursive least square method and recursive prediction error method, and the
cooperation of EKF and LS, to identify ship dynamic model presented the comparison between
the collaborative method and single method. However, these studies are not sufficient for this
study to select a suitable identification method due to the inherent deficiencies (mentioned
previously in summary on system identification) of the method studied. Therefore, the selection
of a powerful identification method has to be done in this thesis, which can be on the basis of
comparing the performance of the intelligent method and the widely-used method on identifying
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a ship dynamic model with a simple structure.
Objective 4 (Improvement of the identification method.) is partially covered. The LS was

improved to extend LS to mitigate the negative influence caused by the noise corrupted in the
measurements. Additionally, the initial KF was modified to EKF or other modified versions so
that it is applicable for both linear systems and nonlinear systems. More similar cases can be
found in the related work, but the inherent drawback of the initial method cannot be avoided to
past to the modified version. Much differently, the SVM based identification method shows few
poornesses except the suitable settings of its structural parameters to control the trade-off
between empirical risk and confidence interval. To satisfy this requirement, methods such as
cross-validation method and particle swarm optimization algorithm (PSO) have been used to
optimize the particular settings of parameters in SVM. However, the performance of SVMwas
not entirely improved by using either the cross-validation method or PSO.This is due to that
these methods cannot always guarantee the particular settings of parameters in SVM. Hence, a
stronger global optimization algorithm is expected.

Objective 5 (Parameter estimation tests by using simulated and experimental data.) is not
covered. From the introduced studies on identifying ship dynamic models by applying system
identification technique, there is no kind of tests simultaneously adopting simulated data and
experimental data stemmed from ship maneuvers. The simulated data are always used to verify
the identification performance of the parameter estimation method by comparing the estimated
values and predetermined values of parameters. The experimental data extracted from particular
trails of real ships, e.g., Esso Osaka tanker, Arleigh Burke Class Destroyer and Charlie 2005, are
utilized to identify and acquire the dynamic model specific to a real ship, in which the dynamic
model is derived based on physical laws depending on the application purpose, and some
differences between models can be observed due to the specific characteristics of different ships.

45



4
Modeling of ShipDynamics

As elaborated in related work on ship dynamic model, each typical model, e.g., Abkowitz model,
MMGmodel, or vectorial representation model, can completely describe ship dynamics, but a
number of parameters involved in the model make challenges to its application. This is due to the
tough task of estimating the unknown parameters. To estimate all these parameters, optimal
experiments are required to be designed to acquire informative observations, which are of many
difficulties including but not limited to the weather condition, the equipment, the financial
support. Additionally, the problem of parameter identifiability is hard to be avoided due to
multicollinearity happens much frequently for the complicated model with a number of
parameters. Furthermore, the ship dynamic model studied is specific to a ship. Switching the
application of the model between different types of the ship is on demand of re-setup
experiments, which is rarely found.

The vectorial representation model has a piece of irreplaceable advantage which is that the
nonlinear system properties such as symmetry, skew-symmetry, and positiveness of matrices can
be exploited through the passivity and stability analysis. These properties are helpful for the
model user to analyze the characteristics of the ship. In addition, the model expressed in
vector-matrix form for simulation is easy to be conducted in most programming languages which
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means a lot to the application purpose of the obtained dynamic model. Therefore, in this chapter,
the vectorial representation model is selected as the fundamental form for simplification and
modification to derive a required model. The reduced-order version expressed in 3 DOF based on
the previously introduced 6 DOF version is explained in Section 4.1, and further employed to
obtain the simplified ship dynamic model containing the decoupled surge and steering models as
presented in Section 4.3 where the Nomoto models are also derived based on the reduced-order
steering model. The forces and moments acting on ships are calculated by the function of
propeller thrust and rudder angle in Section 4.2.

The basic structure of the model established based on Newton’s second laws of motion is
applicable for ships that are regarded as rigid-body objects. The determination of forces and
moments by using the function of rudder deflection and propeller shaft speed makes it easy to
undertake local changes on the model according to varying properties of different ships. The
requirements, e.g., R1-4, are reflected in the process of modeling ship dynamics in this chapter.

4.1 3 DOF Ship DynamicModel

In order to release the difficulty of the parameter identification, the complexity of the 6 DOF ship
dynamic model decreased through the simplification based on a set of reasonable assumptions as
follows: (1) surface ships are moving in a horizontal plane in the ideal fluid; (2) ships masses are
uniformly distributed; (3) the body-fixed frame coincides with the center of gravity; (4) both the
center of gravity and the center of buoyancy point vertically along the z-axis; (5) ships are the
port-starboard symmetry and (6) the horizontal dynamic motions are decomposed into speed
(surge) and steering (sway and yaw) motion (Liu, Zhang, Yu, and Yuan 2016). Therefore, the two
mainly concerned models, i.e., steering and speed models, are extracted to describe 3 DOF
horizontal motions. The former model can be used to control the yaw angle by using the rudder
angle as the control variable. The latter model is applicable to control the ship speed by varying
the propeller shaft speed. To explain the simplification, the 3 DOF dynamic model (4.2) and the
corresponding kinematic equations (4.1) governed based on the above assumptions are
introduced as follows (Fossen 1994). The resultant forward speed is calculated byU =

√
u2 + v2. ẋ

ẏ
ψ̇

 =

cos ψ − sin ψ 0
sin ψ cos ψ 0
0 0 1

 (4.1)

Mυ̇ + C (υ) υ + D (υ) υ + g (η) = τ (4.2)
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where the expression of each symbol is shown as

υ =[u, v, r]T

g(η) =[0, 0, 0]T

τ =[τX, τY, τN]
T

M =MRB + MA

=

m 0 0
0 m mxg

0 mxg Iz

+

−Xu̇ 0 0
0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ



=

m − Xu̇ 0 0
0 m − Yv̇ mxg − Yṙ

0 mxg − Nv̇ Iz − Nṙ



C(υ) =CRB(υ) + CA(υ)

=

 0 0 −m
(
xgr + v

)
0 0 mu0

m
(
xgr + v

)
−mu0 0



+

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u0

−Yv̇v − Nv̇r Xu̇u0 0



=

 0 0 Yv̇v + Yṙr − m
(
xgr + v

)
0 0 (m−Xu̇)u0

m
(
xgr + v

)
− Yv̇v − Nv̇r −(m−Xu̇)u0 0
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D(υ) =DL + DNL(υ)

=

−Xu 0 0
0 −Yv −Y
0 −Nv −Nr



+

−X|u|u |u| 0 0
0 −Y|v|v |v| − Y|r|v |r| −Y|r|r |r| − Y|v|r |v|
0 −N|v|v |v| − N|r|v |r| −N|r|r |r| − N|v|rv


Eventually, the expressions of the 3 DOFmodel for describing surge, sway, and yawmotions

are given as

τX = (m − Xu̇) u̇ + (Yv̇ − m) vr +
(
Yṙ − mxg

)
r2 − Xuu − X|u|u |u| u

τY = (m − Yv̇) v̇ +
(
mxg − Yṙ

)
ṙ + (m − Xu̇) u0r − Yvv − Y|v|v |v| v

−Y|r|v |r| v − Yrr − Y|v|r |v| r − Y|r|r |r| r
τN =

(
mxg − Nv̇

)
v̇ + (Iz − Nṙ) ṙ − (Yv̇ − m) uv −

(
Nv̇ − mxg

)
ur

− (m − Xu̇) u0v − Nvv − N|v|v |v| v − N|r|v |r| v − Nrr
−N|v|r |v| r − N|r|r |r| r

(4.3)

which will be used as the fundamental 3 DOFmodel for the following simplification to obtain
initial version of simplified dynamic model for this thesis.

4.2 Actuator Forces andMoments

The actuator forces and moments are generated by a set of thrusters with revolutions per second
n = [n1, n2, · · · , np1]

T and a set of control surfaces (or propeller blade pitch) with angles
δ = [δ1, δ2, · · · , δp2]

T. They are related to the vector τ through the mapping

τ = [τX, τY, τN]
T = Bf(vr, n, δ) (4.4)

where B is an actuator configuration matrix, f(vr, n, δ) is a function that for each velocity vr

relates the actuator set-point (n, δ) to a vector of forces. The propeller provides the thrust forces
{T}while the rudders generate lift forces {L} and drag forces {D}. Here through disregarding
the drag forces, the force vector can be described as

f(vr, n, δ) = [T, L]T
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Let the force attack points of T located at coordinate (xn, yn, zn) in the body-fixed frame, and
likewise (xδ, yδ, zδ) for the rudders. Then the actuator configuration matrix is

B =

 1 0
0 1

−yn xδ


According to references (Fossen 1994) and (Lindegaard and Fossen 2003), the thrust force

can be expressed as

T = T|n|n |n| n, T|n|n > 0

where n represents the propeller revolutions, T|n|n is a parameter decided depending on the
propeller’s diameterD and the water density ρ.

From foil theory (Newman 2018), the lift forces are modeled as

L =
ρ
2
ARCL(δ) |uR| uR

with

CL (δ) = c1δ − c2 |δ| δ

where AR is the effective rudder area, uR is the relative velocity of the fluid at the rudder surface,
CL(δ) is the non-dimensional lift coefficient. In order to simplify the expression of L, it is rewrote
as

L = k2δ

with k2 =
ρ
2AR(c1 − c2 |δ|) |uR| uR. Then k = diag

{
T|n|n, k2

}
acquired is regarded as the force

coefficient matrix. Hence, the actuator forces and moments can be described as

τ = [τX, τY, τN]
T = Bf (vr, n, δ) = Bku

=

 1 0
0 1

−yn xδ

[T|n|n 0
0 k2

][
|n| n
δ

]
=

 T|n|n |n| n
k2δ

−ynT|n|n |n| n + xδk2δ
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For some kinds of ships, the force attack point of the thruster is located along with the
longitudinal direction of the ship, which means yn=0. Then the actuator forces and moments can
be presented with the Yδ replacing k2 andNδ for xδk2.

τ =
[
T|n|n |n| n Yδδ Nδδ

]
(4.5)

4.3 Simplified Ship DynamicModel

The 3DOFmodel in conjunction with expressions of actuator forces and moments is simplified
to decoupled surge model and steering model due to the sway speed and yaw rate are usually
much smaller compared to the cruise surge speed. As the first order Nomoto models are
straightforward and simple response models describing the relationship between commanded
rudder angle and heading movement, they are derived from the simplified steering model in this
thesis for comparison studies.

4.3.1 SurgeModel

Given that the yaw rate (r) and sway velocity (v) are small enough, and their effects on the surge
motion are ignored, the speed dynamic model can be simplified to

(m − Xu̇) u̇ = Xuu + X|u|u |u| u + Xuuuu3 + T|n|n |n| n (4.6)

which is the second order modulus model with an extra third order term in the surge. The reason
for adding the third order term is that it can show the best fit to the experimental data (Skjetne,
Smogeli, and Fossen 2004). Considering the identifiability of the surge model, four inputs
(u, |u| u, u3 and |n| n) in such model are not enough to identify all five parameters
(Xu,X|u|u,Xuuu,T|n|n and Xu̇). In other words, all hydrodynamic derivatives which define ship
characteristics and its complete behaviors cannot be entirely estimated. Hence, equation (4.6) is
reorganized into

u̇ =
Xu

m − Xu̇
u +

X|u|u

m − Xu̇
|u| u + Xuuu

m − Xu̇
u3 +

T|n|n |n| n
m − Xu̇

(4.7)

4.3.2 SteeringModel

The remaining steering model 4.8 describing sway and yawmotions is obtained by decoupling the
surge equation from (4.1). Here the resultant forward speed is calculated byU =

√
u20 + r2 based
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on the constant surge speed (u0).[
m − Yv̇ mxg − Yṙ

mxg − Nv̇ Iz − Nṙ

][
v̇
ṙ

]
=

[
n11 n12
n21 n22

][
v
r

]
+

[
Yδ

Nδ

]
δ (4.8)

with

n11 =− Yv − Y|v|v |v| − Y|r|v |r|

n12 =(m − Xu̇)u0 − Yr − Y|v|r |v| − Y|r|r |r|

n21 =−(m − Xu̇)u0 − Nv − N|v|v |v| − N|r|v |r|

n22 =−Nr − N|v|r |v| − N|r|r |r|

In terms of the identifiability of the model explained in surge model subsection, (4.8) is
modified into

v̇ =
Iz − Nṙ

∇
((−Yv − Y|v|v |v| − Y|r|v |r|)v + ((m − Xu̇)u0 − Yr−

Y|v|r |v| − Y|r|r |r|)r + Yδδ)−
mxg − Yṙ

∇
((−(m − Xu̇)u0 − Nv−

N|v|v |v| − N|r|v |r|)v + (−Nr − N|v|r |v| − N|r|r |r|)r + Nδδ)

(4.9)

ṙ =
Nv̇ − mxg

∇
((−Yv − Y|v|v |v| − Y|r|v |r|)v + ((m − Xu̇)u0 − Yr−

Y|v|r |v| − Y|r|r |r|)r + Yδδ) +
m − Yv̇

∇
((−(m − Xu̇)u0 − Nv−

N|v|v |v| − N|r|v |r|)v + (−Nr − N|v|r |v| − N|r|r |r|)r + Nδδ)

(4.10)

with∇=(m − Yv̇)(Iz − Nṙ)− (mxg − Yṙ)(mxg − Nv̇).

4.3.3 NomotoModels

The first order linear Nomoto model is the most straightforward set describing the relationship
between yaw rate and rudder angle, and its nonlinear extension appeared later as well. The first
order linear Nomoto model can be derived from the linearized simplified steering model.
Removing the the sway-yaw coupling terms from (4.8) gives the linear version of the simplified
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steering model expressed as[
m − Yv̇ mxg − Yṙ

mxg − Nv̇ Iz − Nṙ

][
v̇
ṙ

]
=

[
Yv − (m − Xu̇) u0 + Yr

(m − Xu̇) u0 + Nv Nr

][
v
r

]
+

[
Yδ

Nδ

]
δ

(4.11)
Subsequently, a 1 DOFmodel so-called the second order Nomoto model is obtained by

eliminating the sway speed from (4.11). This model is widely applied to design ship autopilot
because of its compromise between simplicity and accuracy. Its time domain function is

T1T2r̈ + (T1 + T2) ṙ + r = Kδ + KT3δ (4.12)

where the parameters calculated with the use of hydrodynamic coefficients are given as

T1T2 =
(m − Yv̇) (Iz − Nṙ)− (mxg − Yṙ)(mxg − Nv̇)

YvNr + ((m − Xu̇) u0 − Yr)((m − Xu̇) u0 + Nv)

T1 + T2 =
−Yv (Iz − Nṙ)− Nr (m − Yv̇)− ((m − Xu̇) u0 + Yr)

(
mxg − Nv̇

)
YvNr + ((m − Xu̇) u0 − Yr)((m − Xu̇) u0 + Nv)

+
((m − Xu̇) u0 + Nv)

(
mxg − Yṙ

)
YvNr + ((m − Xu̇) u0 − Yr)((m − Xu̇) u0 + Nv)

T3 =

(
mxg − Nv̇

)
Yδ − (m − Yv̇)Nδ

YvNr + ((m − Xu̇) u0 − Yr)((m − Xu̇) u0 + Nv)

Equation (4.12) is further converted into the first order Nomoto model by setting the effective
time constant satisfy the relationship T=T1+T2−T3. The time domain function of the first order
linear Nomoto model is illustrated as

Tṙ + r = Kδ (4.13)

of which the transfer function can also be obtained to explain the relationship between the
heading angle and the rudder angle due to r (s)=sψ(s).

Based on the first order Nomoto model, Norrbin (Norrbin 1963) proposed the nonlinear
version to make it applicable for the cases of big rudder defections.

Tṙ + HN (r) =Kδ

HN (r) =n3r3 + n2r2 + n1r + n0

53



CHAPTER 4. MODELINGOF SHIP DYNAMICS

which results in a common expression of the first order nonlinear Nomoto model as

Tṙ + n3r3 + n1r = Kδ (4.14)

where T is the steering time constant, K is the rudder gain, n3 is the coefficient of the nonlinear
item, n1 is a coefficient determined according to ship’s stability of course, i.e., n1=1 for a
course-stable ship and n1=−1 for a course-unstable ship.
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5
ABC-LSSVR based Parameter EstimationMethod

To determine values of parameters in the ship dynamic model, several methods can be used.
Instances are towing tank experiments, captive model experiments, computational fluid
dynamics, and system identification combined with full-scale trails or free-running model tests.
Among them, the last method is a sufficient and high cost-effective selection in estimating
parameters of the ship dynamic model. When combined with full-scale trails, the scale effect due
to the difference of Reynolds number between the full-scale ship and its model can be avoided.
This reveals that the system identification technique is sufficient. When combined with
free-running model tests, the system identification technique is a cost-effective solution due to
many maneuvers can be easily generated once the first set of free-running model tests is carried
out.

Various identification methods, e.g., ML, EKF, ANN, GA, PSO, SVM, are applicable for the
parameter estimation of ship dynamic model, but the deficiencies existing in these methods
require attention. Somemethods are sensitive to the predetermined parameters, which are ML,
EKF. Some intelligent methods such as ANN, GA and PSO cannot always ensure global optimum
for the model. Comparatively, the SVM based identification method avoids these deficiencies
and can fulfill most requirements identified in the identification method. Besides, it can work
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beyond the limitations of the data acquisition of the vessel maneuvers due to it requires only a
finite set of data. In fact, the experiment of the vessel carried out to stem data is expensive and
restricted to various factors such as the weather condition, equipment, mobility of the vessel. So
usually a limited number of measurements can be obtained for the identification. What´s more,
SVM based identification method can guarantee global optimal solutions because the
optimization problem defined by it is a convex one typically quadratic programs (QP).This
property makes a positive impact on the exactness of the identification results.

It is noticeable that the coefficients of variables in the regression model are sensitive to the
structural parameters of SVM, such as the insensitivity factor, the regularization parameter, and
kernel parameters, which implies that it is of high significance to assign these structural
parameters with particular settings to guarantee good fitting of measurements. To determine
these structural parameters particularly, methods such as cross-validation method, PSO, GA have
been successfully studied by scholars. The cross-validation method is simple but time-consuming
and at average accuracy. PSO and GA present the unavoidable problem of the local optimum.
The ABC as one of the most recent nature-inspired algorithms has been proven to be a robust and
efficient algorithm for solving global optimization problems over continuous space. It is also
validated by some studies that the performance of ABC is better than or similar to PSO and GA
with the advantage of employing fewer control parameters. Therefore, the optimized SVM using
ABC is proposed in this chapter for the parameter estimation of ship dynamic model. To date, the
application of the hybrid approach of ABC and LS-SVR (which is one modified version of SVM
as introduced in related work on SVM) to estimate parameters involved in the ship dynamic
model has not been considered in the open literature.

Based on the previous introduction of LS-SVR in related work, the LS-SVR based parameter
estimation method is illustrated in Section 5.1 where the samples are additionally constructed
according to the structure of the estimation method. The optimization process of ABC to
determine a particular setting for the generalization parameter of LS-SVR is addressed in Section
5.2 in which the time complexity of the ABC-LSSVRmethod is also analyzed. The requirements,
e.g., R5-8, are reflected in the process of proposing the ABC-LSSVR based parameter
identification method in this chapter.

5.1 LS-SVR based Parameter EstimationMethod

LS-SVR based system identification generally includes parameter identification and function
estimation. Regarding parameter identification, the linear kernel function is adopted when
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identifying parameters of a linear system. For the nonlinear system, it is sufficient to use the
polynomial kernel function. In the aspect of function estimation, the estimated function is always
implicitly insinuated in the decision function which makes the explicit expression of the function
very difficult. Fortunately, the first case, i.e., parameter identification by using LS-SVR, is the issue
to be discussed.

5.1.1 Introduction to theMethod

Parameter identification of linear systems. Suppose parameters of a linear system are required to
be identified, and the formulae for the linear system is given by

f (X) = A · X (5.1)

where A is the vector of parameters. According to the decision function of (3.35), the above
formulae is transferred into

f (X) = A·X =
l∑

i=1

αiXi · X + b (5.2)

Assuming b → 0 gives the equality like(
A −

l∑
i=1

αiXi

)
· X = 0 (5.3)

If the elements in X are linearly independent, then the parameters can be estimated by

A =
l∑

i=1

αiXi (5.4)

Parameter identification of nonlinear systems. Given a formula of a nonlinear system
expressed as

f (x) = a1x2 + a2x + a3 (5.5)
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which is modified to the version of 5.6 by applying the quadratic polynomial kernel function.

f (x) =a1x2 + a2x + a3

=
l∑

i=1

αi (xix + d)2 + b

=
l∑

i=1

αixi
2x2 + 2d

l∑
i=1

αixix + d2
l∑

i=1

αi + b

(5.6)

Consequently, the parameters can be computed by

a1 =
l∑

i=1

αixi
2

a2 =2d
l∑

i=1

αixi

a3 =d2
l∑

i=1

αi + b

(5.7)

In the case of LS-SVR based parameter identification of either a linear or a nonlinear system, in
particular, the nonlinear system, polynomial kernel function shows much superiority. But it is
difficult to determine the value of d and p for the polynomial kernel function and the values of
parameters are prone to be incorrect. Therefore, in the case of a known structure of the system
which is linear with respect to the model parameters, the linear kernel function is preferable to be
used instead of the polynomial kernel function. In this thesis, the linear kernel function is used in
LS-SVR to identify parameters of ship dynamic models because the equations of ship dynamic
models are linear with respect to the parameters.

5.1.2 Construction of Samples for Identification

Inspired by (Sonnenburg andWoolsey 2013) about linearizing the drag speedmodel, one obtains
the perturbation dynamics in the initial condition of the steady surge motion corresponding to
the state and input u = u0, v = 0, r = 0, δ = 0, and n = n0. The perturbation dynamic model
of (4.7) is expressed as

Δu̇ =
Xu + 2X|u|u|u0|

m − Xu̇
Δu +

Xuuu

m − Xu̇
Δu3 +

2T|n|n|n0|
m − Xu̇

Δn (5.8)
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with Δu = u − u0, Δn = n − n0.
According to the introduction of the LS-SVR based identification method, samples are

obtained through the discretion of speed and steering models by the forward-difference
approximation of Euler’s stepping method. The discretized equations of surge mode and steering
mode are given respectively as

Δu(k + 1) =Δu(k) +
h(Xu + 2X|u|uu0)

m − Xu̇
Δu(k) +

hXuuu

m − Xu̇
Δu3(k)

+
2hT|n|n|n0|
m − Xu̇

Δn(k)
(5.9)

v(k + 1) =v(k) +
h(Iz − Nṙ)

∇
((Yv + Y|v|vv(k) + Y|r|v|r(k)|)v(k)

+ (−(m − Xu̇)u0 + Yr + Y|v|r|v(k)|+ Y|r|r|r(k)|)r(k) + Yδδ(k))

−
h(mxg − Yṙ)

∇
(((m − Xu̇)u0 + Nv + N|v|v|v(k)|+ N|r|v|r(k)|)

v(k) + (Nr + N|v|r|v(k)|+ N|r|r|r(k)|)r(k) + Nδδ(k))

(5.10)

r(k + 1) =r(k) +
h(Nv̇ − mxg)

∇
((Yv + Y|v|vv(k) + Y|r|v|r(k)|)v(k)

+ (−(m − Xu̇)u0 + Yr + Y|v|r|v(k)|+ Y|r|r|r(k)|)r(k) + Yδδ(k))

+
h(m − Yv̇)

∇
(((m − Xu̇)u0 + Nv + N|v|v|v(k)|+ N|r|v|r(k)|)

v(k) + (Nr + N|v|r|v(k)|+ N|r|r|r(k)|)r(k) + Nδδ(k))

(5.11)

where∇ = (m − Yv̇)(Iz − Nṙ)− (mxg − Yṙ)(mxg − Nv̇), h is the time interval, k + 1 and k are
two successive data. Subsequently, the input-output pairs are obtained. Inputs are expressed as

Xinp =[Δu(k),Δu3(k),Δn(k)]T3×1

Yinp = [v (k) , |v (k)| v (k) , |r (k)| v (k) , r (k) , |v (k)| r (k) , |r (k)| r (k) , δ(k)]T7×1

Zinp = [v (k) , |v (k)| v (k) , |r (k)| v (k) , r (k) , |v (k)| r (k) , |r (k)| r (k) , δ(k)]T7×1 .
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Let

A =
[
a1 a2 a3

]
1×3

B =
[
b1 b2 b3 b4 b5 b6 b7

]
1×7

C =
[
c1 c2 c3 c4 c5 c6 c7

]
1×7

a1 =1+
h(Xu + 2X|u|u |u0|)

m − Xu̇

a2 =
hXuuu

m − Xu̇

a3 =
2hT|n|n |n0|
m − Xu̇

b1 =1+
(Iz − Nṙ) Yvh + ((m − Xu̇) u0 + Nv)

(
Yṙ − mxg

)
h

∇

b2 =
(Iz − Nṙ) Y|v|vh − (mxg − Yṙ)N|v|vh

∇

b3 =
(Iz − Nṙ) Y|r|vh − (mxg − Yṙ)N|r|vh

∇

b4 =
(Iz − Nṙ) (Yr − (m − Xu̇) u0) h − (mxg − Yṙ)Nrh

∇

b5 =
(Iz − Nṙ) Y|v|rh − (mxg − Yṙ)N|v|rh

∇

b6 =
(Iz − Nṙ) Y|r|rh − (mxg − Yṙ)N|r|rh

∇

b7 =
(Iz − Nṙ) Yδh − (mxg − Yṙ)Nδh

∇

c1 =
(
Nv̇ − mxg

)
Yvh + (m − Yv̇) ((m − Xu̇) u0 + Nv) h

∇

c2 =
(
Nv̇ − mxg

)
Y|v|vh + (m − Yv̇)N|v|vh

∇

c3 =
(
Nv̇ − mxg

)
Y|r|vh + (m − Yv̇)N|r|vh

∇

c4 =1+
(m − Yv̇)Nrh −

(
Nv̇ − mxg

)
((m − Xu̇) u0 − Yr) h

∇

c5 =
(
Nv̇ − mxg

)
Y|v|rh + (m − Yv̇)N|v|rh

∇

c6 =
(
Nv̇ − mxg

)
Y|r|rh + (m − Yv̇)N|r|rh

∇
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c7 =
(
Nv̇ − mxg

)
Yδh + (m − Yv̇)Nδh

∇

then the outputs are given by Δu(k + 1) = AXinp, v(k + 1) = BYinp, r(k + 1) = CZinp.

5.2 Optimization of LS-SVRUsing ABC

After the linear kernel function in LS-SVR is decided, the performance of LS-SVR strongly
depends on the regularization parameter. Thus, the selection of the regularization parameter for
LS-SVR is one of the most important steps when using it as an identifier.

ABC proposed by Karaboga in 2005 is one of the most recent nature-inspired algorithms based
on foraging behaviors of bees, meanwhile, it has been proven to be a robust and efficient
algorithm for solving global optimization problems over continuous space (Karaboga 2005). So,
this paper uses ABC to optimize the regularization parameter of LS-SVR and then applies
LS-SVR with the optimized parameter to estimate parameters of the simplified dynamic model.

ABC consists of three groups of bees, i.e., employed bees, onlooker bees and scout bees, who
play essential roles in completing the optimization procedure of ABC.The employed bees are
responsible for exploring new food source positions in their neighborhoods, evaluating the food
quality (fitness value) of the new food sources, updating the current food sources, and sharing
this information with onlooker bees waiting in hives. Onlooker bees choose a food source for
exploration based on the information obtained from employed bees and update food sources
using the same way as employed bees. If an employed bee cannot improve its food source quality
within a predefined number of iterations (Limit), it will become a scout bee. The scout bees will
randomly find food sources within the search space. The details are explained as follows.

5.2.1 Key Stages in Artificial Bee Colony Algorithm

5.2.1.1 Initialization

The initial food sources randomly distributed within the search space are assigned to the
employed bees. Every food source is an optimal solution, which includes information about the
food position and food quality (fitness value). The food position is calculated by the following
equation

xij = xmin
j + a

(
xmax
j − xmin

j

)
, (i = 1, · · · , S, j = 1, · · · ,D) (5.12)
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where xmax
j and xmin

j are the lower and upper bounds of the jth parameter respectively which
decide the search space, a is random number in range of [0, 1], S is the number of food sources
which is usually equal to the number of the employed bees donated byNP or the onlooker bees
donated byNP, andD is the dimension conformed by the number of optimization parameter
(here is 1 due to the optimized parameter is the regularization parameter of LS-SVR).The fitness
value (fitnessi) is calculated by

fitnessi =
1

1+ Obj.f.i
(5.13)

whereObj.f.i is the objective function of the ith solution, which can be expressed by

Obj.f.i =
1
N

N∑
n=1

(yact (n)− ypre (n))
2 (5.14)

where yact are actual outputs, ypre are predicted outputs of identified models,N is the number of
samples.

5.2.1.2 The Employed Bees Stage

After initialization, employed bees start finding new food sources in their neighborhoods
according to the following equation

xnew
ij = xij + a

(
xij − xkj

)
, (i, k = 1, · · · , S, j = 1, · · · ,D) (5.15)

where xnew
ij is the jth dimension of the new food source, xkj is the jth dimension of kth employed

bee, a is a random number restricted in [−1, 1], jth and kth are randomly selected among initial
solutions and are not equal to each other. The information of the ith new food source then is
updated via (5.13) and (5.14). The selection of new food source is decided by the greedy
selection mechanism, i.e., if the fitness value of the new food source is better than the previous
one, the new food source will replace the previous one, and Limit is set to zero, otherwise, the new
food source will be ignored and Limit is added by one.
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5.2.1.3 TheOnlooker Bees Stage

The onlooker bees take food information from all employed bees. Every onlooker bee chooses a
food source with a probability related to its fitness value. The probability is calculated by

Pi =
fitnessi∑S
i=1 fitnessi

(5.16)

Obviously, the higher the fitness value the food source is, the better the food source is. In other
words, the food source with high fitness value is much possible to be selected by onlooker bees.
Then, the procedure of updating food sources used by employed bees is also applied to onlooker
bees. If the fitness value of the new food source calculated for onlooker bees is better than
employed bees, the employed bee is replaced by the onlooker bee.

5.2.1.4 The Scout Bees Stage

If an employed bee cannot improve its food source quality within a predefined number Limit, it
will become a scout bee. The scout bees will randomly find food sources within the search space
using (5.12).

5.2.2 Procedure of ABC-LSSVR for Identification

After obtaining the tuned regularization parameter of LS-SVR through ABC, LS-SVR is used to
identify the parameters of the ship dynamic model. The cooperation of these procedures is called
the ABC-LSSVRmethod which is depicted in Figure 5.2.1.

The steps of this method are described as follows:

Step1: A set of data extracted from ship maneuvers, including the surge speed, the
corresponding actual propeller shaft speed, the sway speed, the yaw rate and the related
actual rudder angle, are handled to be the input-output pairs. The data such as surge speed,
sway speed, and yaw rate are used as actual outputs to calculate the value of the objective
function which is to provide the fitness value of the food source.

Step2: Apply the above-extracted data to tune the regularization parameter in LS-SVR by using
ABC.This step is summarized as follows:

Step2.1: Determine the parameters of ABC, such as the number of food sources S, the number
of employed bees and onlooker beesNP, the maximum iteration T, and the special
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Figure 5.2.1: Graphical representation of the ABC-LSSVR.

number Limit, and finish the initialization (the first key steps in ABC).

Step2.2: Search new food sources by employed bees using (5.15), update the information on the
new food sources, and select the new solution by the greedy selection mechanism.

Step2.3: Onlooker bees get information from all employed bees and choose the food sources
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according to (5.16), and follow the same procedure as employed bees to update
information of new food sources.

Step2.4: Compare the new food source with the retained best one, judge whether the current
number of onlooker bees equals to the total number or not. If so, judge whether the
number of mining the same food source is larger than Limit or not, otherwise, increase the
number of onlooker bees and return to Step 2.3. If the number of mining the same food
source reaches Limit, memorize the best food source, otherwise, produce new food sources
and return to Step 2.3.

Step2.5: Calculate the current iteration number. If it reaches T, store the final result for the
regularization parameter, otherwise, return to Step 2.2.

Step3: Apply the above-extracted data and result of Step 2.5 to LS-SVR in combination with the
ship dynamic model, then get the identified model.

Step4: Substitute the above-extracted actual propeller shaft speed and actual rudder angle to the
identified ship dynamic models to generate some predictions such as surge speed, sway
speed and yaw rate, and then compare these predictions with the extracted outputs which
are not used for identification, respectively.

5.2.3 Complexity Analysis

In this subsection, the complexity mainly concerning the time complexity of the proposed
ABC-LSSVR identification method is discussed. The proposed method firstly optimizes the
regularization parameter of LS-SVR with the use of ABC, and then applies the optimized LS-SVR
to estimate the parameters of the ship dynamic model. So, the computational cost of the
ABC-LSSVRmethod is the summation of the time complexity of ABC and the time complexity
of LS-SVR.

The time complexity of ABC is major defined by five parts including the initialization, the
search operation of employed bees, the calculation of the probability of food sources, the search
operation of onlooker bees, and the search operation of scout bees. According to the
prementioned optimization procedure of ABC, the computational cost of these five parts are
O(SN),O(S(N+N2)),O(S),O(S(S+ (N+N2) +N)), andO(SN), respectively. Therefore, the
overall time complexity of ABC isO(SN + Tit(SN + S(S + N + N2)))where S is the number of
food sources,N is the number of samples selected for optimization,Tit is the number of iterations.
Furthermore, the generic expression of the time complexity of ABC isO(N2).
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For SVM, the time complexity depends on solving the convex quadratic programming
problem and the dual optimization, which isO(ln2sv + n3sv). Here l is the number of patterns, nsv is
the number of support vectors. Since LS-SVR is developed by Sukyens (Suykens and Vandewalle
1999) on the basis of the discussion ofHow much can the SVM formulation be simplified without
losing any of its advantages? in which the equality constraints replace the inequality constraints of
SVM, the convex quadratic programming problem of it is converted into the linear equations.
However, all patterns are treated as the support vectors in LS-SVR, which implies that l = nsv.
Therefore, the overall time complexity of LS-SVR is given asO(l3). As seen, the overall time
complexity of LS-SVRmight increase drastically with the increase of the patterns adopted for
identification. In the worst case, the pattern dataset should be not more than a couple of 10000
samples.

Consequently, one can conclude that the overall time complexity of the proposed
identification method isO(N2 + l3).
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6
Implementation of the SIMSDPrototype

The proposed simplified ship dynamic model and estimation method should be evaluated
through a complete implementation. Trough the evaluation results, the degree of requirements´
fulfillment can be investigated. In this chapter, the architecture of the developed system
identification-based modeling of ship dynamics (SIMSD) is designed in Section 6.1 and the
implementation of the prototype on the computer in MATLAB environment is introduced in
Section 6.2.

6.1 SIMSD SystemDesign

To evaluate the proposed solution in modeling ship dynamics, a software prototype so-called
SIMSD is created as shown in Figure 6.1.1 where the primary components and interactions
between them are presented. The components including observed data, ship dynamic model,
identification method, and validation are determined according to the procedure of system
identification in identify ship dynamic model. Each component is implemented by using relevant
functions and files built in MATLAB.This way leads to a modular design of the implementation
of the estimation of the ship dynamic model based on the system identification technique. It is
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additionally convenient to change every modular according to the requirement.

Figure 6.1.1: Component diagram of the SIMSD system.

6.2 Implementation

Snapshots are taken from the folder to present the files and functions that are implementing the
prototype, see Figure 6.2.1. The files and functions presented are limited to important core
functionality. Two classes of data including simulated data and experimental data are stored as the
observed data. The simulated data are generated by using a high reality model with
predetermined parameters of a full-scale ship, which is implemented directly in MATLAB.The
experimental data stored in an Excel spreadsheet file are extracted frommeasurements recorded
by sensors. The observed data are divided into two groups, i.e., training data and validation data.
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The training data are then read through the built-in function xlsread() and transferred to the
function of the ship dynamic model. Meanwhile, with the application of the function of the
identification method, the parameters involved in the model are estimated. Before determining
the values of these parameters, the validity of the identification results shall be verified through
the validation process. In this process, the inputs in the validation data, e.g., a time series of
commanded rudder angle, are delivered to the identified model to generate the relevant output
which is compared with the actual output stemmed from the validation data to get its MSE. If the
MSE is not greater than the pre-set number, the identified model is accepted, and the values of
parameters will be shown in the command window of MATLAB, otherwise, ‘failed’ will appear.
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Figure 6.2.1: Snapshots of functions and files used for SIMSD implementation.
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7
Evaluation

With the application of the previously created an implementation, the proposed solution on
optimized identification method-based modeling of ship dynamics can be evaluated in this
chapter through special case studies. Four major case studies are carried out for different
purposes which are presented in Section 7.1. The first case study on comparing the commonly
used LS with LS-SVR for identifying Nomoto models is to demonstrate that the LS-SVR based
identification method is a powerful selection. Unlike LS-SVR based identification method which
requires no initial values of model parameters and works with finite data, RLS needs to know the
initial parameter values that make a significant impact on the identification results. In case study
2, RLS benefits from LS-SVR to identify a steering model based on the initial values of
parameters obtained firstly by using LS-SVR.The effectiveness of the proposed ABC-LSSVR
method is validated through case study 3 which further leads to special considerations on further
simplification of the simplified steering dynamic model. Afterward, the further simplified
dynamic model is validated through case study 4 on the I-Nav-II vessel. In the end, the overall
results of the case studies are presented and discussed to conclude the answers to the research
question. Meanwhile, the degree of fulfillment of requirements is judged.
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7.1 Design of Case Studies

Several case studies for particular goals are carried out before the finally experimental study on
testing the simplified ship dynamic model by using the optimized LS-SVR. Cases including case
number, purpose and method applied to achieve the purpose are depicted in detail as Table 7.1.1
presented.

Table 7.1.1: Description of the case studies.

Case
study

Method Ship dynamic model Purpose

1 Compare the commonly-
used LS with LS-SVR.

The first order linear
and nonlinear Nomoto
models.

Decide a robust parame-
ter estimation method.

2 Apply LS-SVR to supplyRLS
initial parameter values with
the use of finite data.

The linear steering
model.

Present the advantages
of LS-SVR.

3 Optimize parameters in LS-
SVR by using ABC, CV, and
PSO, respectively, then com-
pare the results. Use the op-
timized LS-SVR to identify
the simplified ship dynamic
model.

The 4 DOF dynamic
model of a large
container ship with pre-
determined parameters,
and the simplified ship
dynamic model.

Verify the preferable
performance of ABC on
optimizing parameters
in LS-SVR and acquire
parameters of the sim-
plified ship dynamic
model.

4 Identify a simplified dynamic
model for a real ship, so-
called I-Nav-II vessel, by us-
ing data stemmed from full-
scale trails and the optimized
LS-SVR.

The further simplified
steering dynamic model
obtained from case
study 3.

Demonstrate the fur-
ther simplified dynamic
model is valid to de-
scribe dynamics of
different ships.

7.2 Case 1: Selection andComparison between LS and LS-SVR

LS-SVR based identification method is indicated to be a prior selection for identification based
on the qualitative analysis of identification methods in related work part on the identification of
ship dynamic models. To quantitatively present this point, one of the comparison studies among
identification methods is carried out between LS and LS-SVR.
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7.2.1 Data Processing

A standard maneuver for ship model identification is the zigzag maneuver that is also defined by
an IMO resolution A 751(18) and by given hints in IMOMSCCirc. 1053 to be executed in sea
trials for ships. Although the IMO documents mainly for-see 10◦/10◦ or 20°/20° zigzag maneuver
and for special cases known as very small zigzag maneuvers (VSZZ) such as 5°/5°, a set of a
flexible set of zigzag angles are also allowable. The data used for training and validating parameter
estimation of ship response models are obtained from the zigzag maneuvering experiments of a
small ship. Two groups of zigzag experiments containing 20°/20° zigzag for estimating parameters
and 30°/30° zigzag for validation are derived with initial states including the rudder angle of 0°,
the yaw rate of 0°/s, and sway speed of 0 m/s. In the 20°/20° zigzag test, the forward speed is 1.5
m/s, the sampling time is 82 s, the interval is 1 s, and the initial heading angle is 46.71°. In the
30°/30° zigzag test, the corresponding values are 1.7 m/s, 89 s, 1 s, and 78.28°, respectively. The
time series of the rudder angle and heading angle are shown in Figure 7.2.1.

7.2.2 Results and Analysis

The estimated maneuvering indices are shown in Table 7.2.1. The comparisons of K and T
estimated by LS and LS-SVR between the first order linear and the nonlinear Nomoto models
indicate that the two structures of the response model are coincided mathematically, which
confirms the logic sense that the two different categories of response models reflect the same
dynamics of the ship investigated.

Table 7.2.1: Identified maneuvering indices of the first order Nomoto models.

Method Linear Nonlinear

K T K T α
LS 0.1960 1.1657 0.1933 1.1275 -0.0006
LS-SVR 0.1921 1.0524 0.1919 1.0503 -0.0005

Once the model is well defined, the maneuvering prediction using the identified response
model should be carried out to verify the accuracy of estimated parameters. In Figure 7.2.2, the
prediction results of the identified first order linear Nomoto models are shown. The statistical
validation of the prediction results for the two identification methods is presented in Figure 7.2.3.
For the identified first order nonlinear Nomoto model, these results are demonstrated in
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Figure 7.2.1: Time series of the rudder and heading angles. The blue lines are the actual
rudder angle in the upper sub-figure of the 20◦/20◦ zigzag maneuver, and the heading angle
in the bottom sub-figure of the 20◦/20◦ zigzag maneuver. The red lines are the actual rudder
angle in the upper sub-figure of the 30◦/30◦ zigzag maneuver, and the heading angle in the
bottom sub-figure of the 30◦/30◦ zigzag maneuver.

Figure 7.2.4 and Figure 7.2.5, respectively.
From the prediction results, we can see that both the first order linear and nonlinear Nomoto

models can be estimated by LS and LS-SVR. Additionally, it can be found in Figure 7.2.3 that the
standard derivation of the histogram of LS-SVR is smaller than that of LS whose cross-correlation
is slightly better except for the auto-correlation. Figure 7.2.5 indicates that the standard derivation
of the histogram of LS-SVR is close to that of LS.Therefore, the performance of LS-SVR is a little
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Figure 7.2.2: Prediction results of the first order linear models identified by LS and LS-SVR,
respectively. (a) measured yaw rate and predicted yaw rate, (b) measured heading angle and
predicted heading angle, (c) residual of the yaw rate by calculating the difference between
measurements and predictions, (d) residual of the heading angle obtained by calculating the
difference between measurements and predictions.

better than LS for identifying ship response models.
For these results, several aspects can be explained as follows. LS aims at minimizing a squared

norm. This means that if an outlier is existing in the training data, the outlier can adversely affect
the identification results. In fact, the data used for identification are experimental maneuvering
data of a small ship, which are corrupted by color noises frommeasurement noises, sensor
underlying noises, and environmental disturbances. So, the outliers caused by the color noises
influence the identification results of LS. On the contrary, LS-SVR simultaneously achieves both
structural risk minimization and empirical risk minimization when estimating parameters of the
response model. This characteristic of LS-SVR sufficiently decreases its sensitivity to the outlier.

75



CHAPTER 7. EVALUATION

Figure 7.2.3: Statistical validation of the identified first order linear models. The left sub-
figure is the normalized auto-correlation, the middle one is the normalized cross-correlation,
the right one presents the residual analysis.

Therefore, for the cases studied here, LS-SVR can present better identification performance and
obtain more accurate identified parameters than LS.

7.3 Case 2: Improvement of RLSUsing LS-SVR

Since the change of current weather and ship loading conditions may cause parameter variations
of ship maneuvering models, the well-known RLS with an advantage of simple construction can
be used to complete this task. As well known, the identification results of RLS are sensitive to the
initial values of parameters (Zhang and Zou 2013). Hence, this thesis tries to conquer such
drawback of RLS by benefiting from LS-SVR which is a kind of batch identification technique
and requires no initial estimation of the parameters, to predetermine the values of parameters.

7.3.1 Data Processing

A linear steering model of a Merchant ship Mariner class presented in Appendix C is the model
needed to be identified. Meanwhile, the model with existing parameters learned from the study
in (Åström and Källström 1976) is synergistically employed to generate data used for learning
and validation of the parameter estimation. Particulars of the ship are shown in Table 7.3.1.

Two groups of zigzag maneuver including 20◦/20◦ zigzag maneuver for estimation and 10◦/10◦

zigzag maneuver for validation are simulated under the initial states involving the forward speed
of 7.7 m/s, the rudder angle of 0◦, the heading angle of 0◦, the yaw rate of 0◦/s, and the sway
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Figure 7.2.4: Prediction results of the first order nonlinear models identified by LS and LS-
SVR, respectively. (a) measured yaw rate and predicted yaw rate, (b) measured heading angle
and predicted heading angle, (c) residual of the yaw rate obtained by calculating the differ-
ence between measurements and predictions, (d) residual of the heading angle by calculating
the difference between measurements and predictions.

Table 7.3.1: Parameters of the Merchant Ship Mariner class.

Length (L,m) 161 Speed (U, m/s) 7.7

a11 -0.693 a21 -3.41
a12 -0.304 a22 -2.17
b11 0.207 b21 -1.63
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Figure 7.2.5: Statistical validation of the identified first order nonlinear models. The
left sub-figure is the normalized auto-correlation, the middle one is the normalized cross-
correlation, the right one presents the residual analysis.

speed of 0 m/s. The sampling time is 500s, and the interval is 0.5s. 1000measurement pairs of v, r,
δ, and resultant speedU are recorded for parameter estimation of the steering model. The original
simulation data are illustrated in Figure 7.3.1. The commanded rudder angles in-between 200s to
220s are corrupted by the noises of the level of 1.5% commanded rudder angle. The so-called
noised simulation data are also depicted in Figure 7.3.1.

7.3.2 Selection of Samples for LS-SVR

LS-SVR as a batch technique avoids lengthy iteration and needs no initial estimation of
parameters. However, one can see that the first and significant step in applying LS-SVR is to
choose an appropriate number of samples. The solution for such a problem is proposed by
comprehensively analyzing the convergence of LS-SVR and the accuracy of the estimated
parameters in the condition of varying number and interval of samples. The samples are selected
from the noised maneuvering data. The number of samples switches from 10 to 1000 in steps of
10. For each number of samples, the interval changes from 1 to 10.

To investigate the performance of LS-SVR, identification results shown in Figure 7.3.2 are
compared with the true values listed in Table 7.3.1. As the former 400 samples are not corrupted
by the noises, it can be observed that the selection of 200 samples without noise in all intervals
can satisfy the LS-SVR achievement of identification. But for noised data, only samples in the
interval of 3, 6, and 9 can guarantee every estimated parameter matching well with its true value.
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Figure 7.3.1: Simulation of the 20°/20° zigzag maneuver. The top sub-figure is the com-
manded rudder and the heading angles, the second one is the sway velocity, the third one is
the yaw rate, the bottom is the resultant speed.

Finally, 200 samples in the interval of 3 are sufficient to be used by LS-SVR to provide initial
values of parameters for RLS.

7.3.3 Identification Results

It is worthy to claim that more than three parameters cannot converge to true values while 1000
samples are utilized by RLS for identification. Hence, the simulation time of 20°/20° zigzag
maneuver is increased to 1000s. The final identification results of the linear steering model by
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Figure 7.3.2: Convergence of LS-SVR in the condition of varying number and interval of
samples.

using LSSVR-RLS are illustrated in Figure 7.3.3 where the results from RLS are also presented as
a comparison. Table 7.3.2 lists the estimated values and true values of the parameters. Obviously,
the fluctuation of convergence of RLS is more intense than that of LSSVR-RLS.The parameters
such as a11, b11 and b21 estimated by LSSVR-RLS, are as precise as those obtained by RLS in terms
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of the relative error between the estimated value and the true value. Besides, a21 and a22 identified
by LSSVR-RLS are more accurate than that identified by RLS, especially a22. Comparatively, the
estimated parameters of LSSVR-RLS have higher accuracy than that of RLS due to the initial
values of these parameters provided by LS-SVR are close to their true values. Additionally, this
benefit also contributes to the better convergence performance of LSSVR-RLS. Consequently, it
can be concluded that LS-SVR is beneficial to increase convergence speed and improve the
identification results of RLS. Note that even applying the noised data, LS-SVR can estimate
parameters with accuracy close to the true values, but the LSSVR-RLS cannot ensure this.

Figure 7.3.3: Identification results of RLS and LSSVR-RLS.
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Table 7.3.2: Identification results of RLS and LSSVR-RLS.

a11 a12 b11 a12 a22 b21
True value -0.693 -0.304 0.207 -3.41 -2.17 -1.63
RLS -0.9891 -0.3027 0.2036 -3.4579 -0.4267 -1.63
Relative error 0.4273 -0.0042 -0.0162 0.0140 -0.8033 0
LSSVR-RLS -0.9895 -0.3027 0.2036 -3.4538 -1.7686 -1.63
Relative error 0.4278 -0.0042 -0.0162 0.0129 -0.1850 0

Note: relative errormeans the subtraction of the estimated value and the true value of a parameter
divides the true value.

7.3.4 Validation

A 10°/10° zigzag maneuver is predicted by using the identified steering models, as shown in
Figure 7.3.4. In the process of prediction, it can be observed that the identified steering model of
RLS is not able to predict zigzag maneuver as expected. On the contrary, a similar trend of
10°/10° zigzag maneuver is obtained by using the steering model identified by LSSVR-RLS. But
the difference between the original maneuver and the predicted one becomes manifest after the
third execution of the 10◦ rudder angle. The possible aspects of this phenomenon are the relative
low identification accuracy of a11 and a22 and the negative effects of the noises corrupted in the
data on identification results. This reason also demonstrates that these two parameters are of
much importance to the prediction of the steering model. Much attention should be paid on
these two parameters to get more precise values while the identification is conducted, which
would improve the generalization performance of the identified model even though the current
identified steering model has illustrated it.

7.4 Case 3: ParameterEstimationoftheSimplified ShipDynamicModel

Using ABC-LSSVR

Themerits of LS-SVR have been demonstrated in the previous two case studies. To improve the
performance of the LS-SVR based identification method, ABC is used to optimize its
regularization parameter. Applying the optimized LS-SVR to identify the simplified ship dynamic
model is investigated in this case study, which is also to highlight the contribution of this thesis to
developing the optimized identification method based modeling of ship dynamics for different
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Figure 7.3.4: Predictions of the 10°/10° zigzag maneuver using the model identified by
LSSVR-RLS. The top sub-figure is the commanded rudder angle and the heading angle, the
second sub-figure is the sway velocity, the third one is the yaw rate, the bottom sub-figure is
the resultant speed.

types of ships.

7.4.1 Data Processing

Under a benign environment without external disturbances and measurement noises, the
numerical simulation data are the clean data with similar features as the experimental data. The
selected model of a large container ship has been well proven by (Fossen 2011) and (Son and
Nomoto 1982). The corresponding maneuvering simulation data are controllable and used as the
alternative of real experimental maneuver data. The numerical simulation is beyond many
financial and technical possibilities to do a similar simulation for potential field tests. Good
examples refer to (Rajesh and Bhattacharyya 2008), (Jian, Jiayuan, Feng, Jianchuan, Zaojian, Hao,
Tao, and Luchun 2015), and (Hou and Zou 2016).
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For parameter estimation, the data used for learning and validation are produced by a 4 DOF
dynamic model of the container ship (detailed model is expressed in Appendix D) with
predefined parameters extracted from the study in (Son and Nomoto 1982). Four groups of
maneuvers including two straight lines with varying propeller shaft speed for estimating the speed
model and 10°/10°, 20°/20° zigzag tests for the steering model identification are carried out,
respectively. The details are introduced in Table 7.4.1. The data used for regularization parameter
optimization of LS-SVR and parameters estimation of the simplified dynamic model are
presented in Figure 7.4.1.

Table 7.4.1: The scheme of ship maneuvers.

Maneuver Commanded
rudder
angle(◦)

Propeller shaft
speed(rpm)

Purpose

Straight line 0 Vary in [120, 160] Identify the surge model
Straight line 0 Vary in [100, 160] Verify the identified surge model
10◦/10◦ zigzag ±10 80 Identify the steering model
20◦/20◦ zigzag ±20 80 Verify the identified steering model

Note that these maneuvers have the same initial conditions as follows: U0 = u0 = 8m/s, v0 = 0,
r0 = 0, δ0 = 0, ψ0 = 0, n0 = 80 rpm, the sample time is 900s, and the interval is 0.5s.

7.4.2 IdentifiedModels Using ABC-LSSVR

Based on the flow of the proposed ABC-LSSVR identification method, the practical procedure
for tuning the regularization parameter in LS-SVR by ABC can be concretely depicted as follows:
(1) properties of ABC are set to be: NP = 20, S = 20,D = 1, xmin

j = 10−2, Limit = 20, T = 30;
(2) initial positions of the food sources are deployed according to (5.12); (3) employed bees start
searching new food sources through (5.15). The selected data including 1800 samples extracted
from the first straight line maneuver of the container ship and 1800 samples of the 10°/10° zigzag
maneuver are respectively applied to (5.14) to compute the fitness value via (5.13) for every food
source; (4) the best food source is determined by the greedy selection mechanism and replaces
the previously stored one. The value of the position of the best food source is the optimal
regularization parameter; (5) onlooker bees take food information from employed bees.
Equation (5.16) is used to choose food sources for every onlooker bee. The food sources of
onlooker bees are updated via (5.13) and (5.14); (6) the employed bee will be to be a scout bee if
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Figure 7.4.1: Simulated data for the optimization and the identification of simplified dy-
namic models. The top sub-figure presents the surge speed and commanded/actual propeller
shaft speed of the first straight line maneuver as described in Table 7.4.1, the middle sub-
figure donates the heading and commanded/actual rudder angles of the 10◦/10◦ zigzag ma-
neuver, the bottom sub-figure is the sway speed and yaw rate of the 10◦/10◦ zigzag maneuver.

two conditions occur. One condition is that the updated fitness value of the food source of the
onlooker bee is higher than that of the employed bee. Another condition is that the food fitness of
the employed bee is not improved; (7) the position of the food source with the highest fitness
value is defined as the optimal regularization parameter when the iteration number is
accumulated to 30.

The best regularization parameters optimized by ABC are recorded in Table 7.4.2. The
ABC-LSSVR regression results are shown in Figure 7.4.2, in which the approximations of
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LS-SVR agree well with the simulations, and the mean squared errors between prediction and
simulation results (MSE) of u(4.0346× 10−6), MSE of v(3.5005× 10−6), andMSE of
r(4.3924× 10−6) are small enough to be ignored. The optimized LS-SVR is subsequently used to
identify the simplified ship dynamic model. The identification results, namely the parameters in
A, B, andC, are given in Table 7.4.3.

Table 7.4.2: The best regularization parameter and MSE.

Best regularization value SM SS SY
4.3313× 107 8.9486× 109 19.9067

MSE SM(m2/s2) SS(m2/s2) SY(◦2/s2)
4.0346× 10−6 3.5005× 10−6 4.3924× 10−6

Note that (SM) surge model; (SS) steering model (sway motion); (SY) steering model (yawmo-
tion).

Table 7.4.3: Parameters estimated by ABC-LSSVR.

A a1 a2 a3
9942 -1.603 85.962

B b1 b2 b3 b4 b5 b6 b7
0.9743 0.0043 1.5306 -1.6533 3.5656 -140.312 -0.0278

C c1 c2 c3 c4 c5 c6 c7
-0.0092 0.0002 -0.0010 0.0223 0.0024 0.0001 0.0153

7.4.3 Validation

The second straight line and 20°/20° zigzag maneuvers are predicted by using the identified surge
and steering models, respectively. The original simulation data of these maneuvers are generated
by the 4 DOFmodel of the container ship. As presented in Figure 7.4.3, the tendency of the
predicted data is very similar to that of the original simulation. However, the obvious deviations
between the original data and predicted data are observed on the moment when the rudder
command is executed. The predicted surge speed is a little higher than the simulated surge speed,
but it can still illustrate that ABC-LSSVR performs good generalization because the small errors
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Figure 7.4.2: Regression of the ABC-LSSVR. The upper sub-figure is the surge speed of the
first straight line maneuver, the middle one is the sway speed of the 10◦/10◦ zigzag maneuver,
the lower one is the yaw rate of the 10◦/10◦ zigzag maneuver.

in surge speed predictions are not significant for practical aspects or to affect the applicability of
the ABC-LSSVRmethod. The aspects for arising the errors in predictions is that the underlying
physical characteristics of this container ship, the ignorance of the coupling effects among the
surge, steering and roll motions, and the effects of parameter drift. These aspects are highly related
to the modeling of ship dynamics. So, it is worth to be noticed that the errors existing in
predictions make few influences on the applicability and effectiveness of the proposed
ABC-LSSVRmethod to identify the simplified ship dynamic model. To improve the predictions,
modifying the simplified dynamic model is necessitated.
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Figure 7.4.3: Predictions of ship dynamics using models identified by the ABC-LSSVR. The
upper sub-figure is the surge velocity of the second straight line maneuver, the middle one
is the sway speed of the 20◦/20◦ zigzag maneuver, the bottom one is the yaw rate of the
20◦/20◦ zigzag maneuver.

7.4.4 Comparison of Three Optimized LS-SVRs

In order to thoroughly indicate the effectiveness of ABC tuning LS-SVR, the comparisons of
LS-SVR optimized by CV (CV-LSSVR), and by PSO (PSO-LSSVR) have been carried out. For
quantitatively analyzing and comparing the performance of these three parameter identification
methods, three indexes including the computational time, the best regularization parameter and
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Table 7.4.4: Comparison of the computational time, the best regularization parameter, and
MSE.

Method Computational time(s)
SM SS SY

CV 0.2318 0.2450 0.2729
PSO 0.3181 0.2659 0.2553
ABC 0.7143 0.2700 0.3285

Method Best regularization parameter
SM(×107) SS (×109) SY

CV 0.2318 0.8968 14.7966
PSO 1.7492 6.0000 19.7130
ABC 4.3313 19.9067 0.1289

Method MSE[20◦/20◦]
SM(m2/s2) SS(m2/s2) SY(◦2/s2)

CV 0.5296 1.6221 1.0096
PSO 0.4868 0.2340 0.1903
ABC 0.1289 0.3380 0.1196

Note: (SM) surgemodel; (SS) steeringmodel (swaymotion); (SY) steeringmodel (yawmotion);
(CV) CV-LSSVR; (PSO) PSO-LSSVR; (ABC) ABC-LSSVR.

MSE are recorded in Table 7.4.4. The results of these three methods in identifying the simplified
ship dynamic model can be found in Table 7.4.5, Table 7.4.6, and Table 7.4.7. The prediction
results of the second straight line and 20°/20° zigzag maneuvers are shown in Figure 7.4.4. As
seen, ABC-LSSVR, PSO-LSSVR, and CV-LSSVR can identify the simplified ship dynamic
model. However, compared with PSO-LSSVR and ABC-LSSVR, CV-LSSVR presents a relatively
poor performance on identifying high precise parameters of the model on account of the three
indexes. A similar performance on identifying the steering model of ABC-LSSVR and
PSO-LSSVR can be observed, but the errors of surge speed prediction using the surge model
identified by ABC-LSSVR are smaller than that of the model identified by PSO-LSSVR. In some
degree, this difference between PSO-LSSVR and ABC-LSSVR reveals the outperformance of
ABC-LSSVR. From the differences existing in each index, it can be concluded that the
performance of ABC-LSSVR is slightly superior to the other two methods from the scientific
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Table 7.4.5: Parameters of the surge model estimated by CV-LSSVR, PSO-LSSVR, and
ABC-LSSVR, respectively.

A(×10−5) a1 a2 a3
CV-LSSVR 99420 -1.8293 85.926
PSO-LSSVR 99340 -0.9270 84.218
ABC-LSSVR 99420 -1.8484 85.739

Table 7.4.6: Parameters of the sway model estimated by CV-LSSVR, PSO-LSSVR, and
ABC-LSSVR, respectively.

B b1 b2 b3 b4 b5 b6 b7
CV-LSSVR 0.9744 0.0045 1.4094 -1.6364 3.5224 -145.7 -0.0278
PSO-LSSVR 0.9743 0.0043 1.5306 -1.6533 3.5656 -140.3 -0.0278
ABC-LSSVR 0.9743 0.0045 1.5075 -1.6488 3.573 -142.2 -0.0278

Table 7.4.7: Parameters of the yaw model estimated by CV-LSSVR, PSO-LSSVR, and ABC-
LSSVR, respectively.

C c1 c2 c3 c4 c5 c6 c7
CV-LSSVR -0.0104 0.0002 -0.0011 0.0235 0.0024 0.0001 0.0153
PSO-LSSVR -0.0110 0.0002 -0.0035 0.0230 0.0025 0.0001 0.0152
ABC-LSSVR -0.0092 0.0002 -0.0010 0.0223 0.0024 0.0001 0.0153

research point of view.
From the numerical simulation study, the different characteristics of these optimization

methods are observed and concluded. CV as a trial and error method is a little time-consuming to
find a suitable solution for the current problem. The solution is not so optimal as the optimization
results of PSO and ABC. PSO can find the global optimum for LS-SVR, but sometimes it fails to
provide globally optimal solutions instead of locally optimal ones. Comparatively, ABC shows
relatively strong global optimization ability during the selection of regularization parameter for
LS-SVR. In summary, CV could be an option for selecting parameters of LS-SVR based on
reliable experiences, which is suitable for offline parameter identification. ABC would be better
than PSO to optimize LS-SVR, and the combination of ABC and modified LS-SVR could be a
potential application for online parameter identification in terms of computational time and finite
samples.
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Figure 7.4.4: Comparison of the three ship dynamic models identified by CV-LSSVR, PSO-
LSSVR, and ABC-LSSVR, respectively. The top sub-figure is the predictions of surge velocity,
the middle one is the predictions of sway velocity of the 20◦/20◦ zigzag maneuver, the bottom
sub-figure is the predicted yaw rate of the 20◦/20◦ zigzag maneuver.

7.4.5 Comparison of SteeringModels

Nomoto models are widely used to describe a ship’s heading reaction to the commanded rudder
order due to its simplicity and easy-understanding. The first order Nomoto models are compared
with the proposed nonlinear steering model to present the performance of the nonlinear model.
The data used previously for the identification of the nonlinear steering model are also utilized by
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ABC-LSSVR with the same property settings to identify the first order Nomoto models and
validate the identification results. The predictions of 20◦/20◦ zigzag maneuver generated by these
three identified steering models are shown in Figure 7.4.5, and the identification results of the
steering quality indices and the relatedMSE are given in Table 7.4.8. It can be observed that the
performances of the two Nomoto models are almost the same on account of MSE and the
estimated maneuvering indices. However, the nonlinear steering model underperforms these
Nomoto models in terms of MSE. From the practical engineering point of view, this difference
makes few influences on deciding which model is to describe yawmotion, but the first order
linear/nonlinear Nomoto model is suggested as the better choice for control design because of its
simple construction. This difference is probably due to the parameter drift, which is a common
issue in the statistical regression analysis, involved in the ABC-LSSVR based identification. In the
estimation of ship dynamic models, two types of parameter drift including the drift of linear
hydrodynamic coefficients and the drift of the nonlinear hydrodynamic coefficients affect, which
can be explained respectively through the analysis of dynamic cancellation and statistical
regression analysis. Measures used effectively to mitigate the influence of parameter drift on
ABC-LSSVR based identification of the nonlinear steering model are usually categorized into
three core kinds, i.e., the simplification of the model, the difference method in previously dealing
with data, and additional signals added to data. Therefore, the special considerations concerning
the further simplification of the nonlinear steering model are conducted in Section 7.4.6 to
improve the accuracy of the simplified model. This consideration contributes to the objectives of
this thesis.

Table 7.4.8: Identification results of Nomoto models.

Model K(1/s) T(s) n3(×10−11) MSE[SY(◦2/s2)]

NSM 0.1196
LNM 0.031 30.2487 0.0548
NNM 0.031 30.2487 7.0853 0.0548

Note: (NSM) nonlinear steering model; (LNM) the first order linear Nomoto model; (NNM)
the first order nonlinear Nomoto model.
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Figure 7.4.5: Predictions of 20◦/20◦ zigzag maneuver using different identified steering mod-
els.

7.4.6 Special Considerations: Further Simplification of the Nonlinear Steering
Model

To intuitively present the further simplification process, the simplified nonlinear steering model is
rewrote into the form (7.1).

v̇ = bvv + b|v|v |v| v + b|v|v |r| v + brr + b|v|r |v| r + b|r|r |r| r + bδδ

ṙ = cvv + c|v|v |v| v + c|v|v |r| v + crr + c|v|r |v| r + c|r|r |r| r + cδδ (7.1)

where

bv =
(Iz − Nṙ) Yv + ((m − Xu̇) u0 + Nv)(Yṙ − mxg)

∇

br =
(Iz − Nṙ) Y|v|v − (mxg − Yṙ)N|v|v

∇

b|v|v =
(Iz − Nṙ) Y|r|v − (mxg − Yṙ)N|r|v

∇

brv =
(Iz − Nṙ) (Yr − (m − Xu̇)u0)− (mxg − Yṙ)Nr

∇
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b|v|r =
(Iz − Nṙ) Y|v|r − (mxg − Yṙ)N|v|r

∇

b|r|r =
(Iz − Nṙ) Y|r|r − (mxg − Yṙ)N|r|r

∇

bδ =
(Iz − Nṙ) Yδ − (mxg − Yṙ)Nδ

∇

cv =
(
Nv̇ − mxg

)
Yv + (m − Yv̇)((m − Xu̇) u0 + Nv)

∇

cr =
−
(
Nv̇ − mxg

)
Y|v|v − (m − Yv̇)N|v|v

∇

c|v|v =
(
Nv̇ − mxg

)
Y|v|v + (m − Yv̇)N|v|v

∇

c|r|v =
(m − Yv̇)Nr −

(
Nv̇ − mxg

)
((m − Xu̇) u0 − Yr)

∇

c|v|r =
(
Nv̇ − mxg

)
Y|v|r + (m − Yv̇)N|v|r

∇

c|r|r =
(
Nv̇ − mxg

)
Y|r|r + (m − Yv̇)N|r|r

∇

cδ =
(
Nv̇ − mxg

)
Yδ + (m − Yv̇)Nδ

∇

and∇ = (m − Yv̇) (Iz − Nṙ)− (mxg − Yṙ)(mxg − Nv̇).
Several groups of simplification of the nonlinear steering model are carried out by picking

terms from the nonlinear steering model and then recombining them together, the corresponding
sway and yaw parameters of the reconstructed model estimated by ABC-LSSVR are listed in
Table 7.4.9 and Table 7.4.10 where theMSE of the predicted 20◦/20◦ zigzag maneuver is also
included. The identified values of linear terms such as bv, br, bδ , cv, cr and cδ are physically
consistent. TheMSE of further simplified models in the first and fourth row is not obtained, for
which the inconsistent estimated parameters should be responsible. By comparing theMESs, the
combination of the further simplified swaymodel in the sixth row of Table 7.4.9 and yawmodel in
the same row of Table 7.4.10 is indicated to be the best one describing steering dynamics. Thus,
the further simplified steering model with higher accuracy than the nonlinear one is obtained for
the container ship, which is expressed as

v̇ =− 0.0476v − 3.7649r + 0.9208 |v| r − 0.064δ

ṙ =− 0.0005v − 0.0691r − 0.0285 |v| r + 0.0029δ

The prediction results of 20◦/20◦ zigzag maneuver with the comparison of the first order Nomoto
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models are depicted in Figure 7.4.6.

Table 7.4.9: Estimated parameters of the sway model.

Model bv br b|v|v brv b|v|r b|r|r bδ MSE(m2/s2)

1 0.0264 -10.102 -0.8184 -704.84 -0.0769 NaN
2 -0.0419 -3.3219 -0.0280 -105.78 -0.0542 0.0604
3 -0.0400 -3.5520 -0.0338 -1.2368 -0.0568 0.0495
4 0.0264 -10.101 -0.8215 -704.62 -0.0770 NaN
5 -0.0481 -3.7079 -0.7618 -0.0637 0.0472
6 -0.0476 -3.7649 0.9208 -0.0637 0.0472
7 -0.0532 -3.6720 -0.0606 0.0411
8 -0.0025 -0.0183 -0.1153 0.0413
9 -3.6746 -0.0184 -0.0610 0.0462
10 -0.0094 -0.6068 -0.1179 0.0730

Table 7.4.10: Estimated parameters of the yaw model.

Model cv cr c|v|v crv c|v|r c|r|r cδ MSE(◦2/s2)

1 -0.0300 -0.0026 0.0015 0.0004 0.0300 NaN
2 -0.0007 -0.0799 0.0007 2.4079 0.0026 0.0688
3 -0.0007 -0.0738 0.0008 0.0198 0.0027 0.0646
4 -0.0016 0.1267 -0.1546 17.1446 0.0023 NaN
5 -0.0006 -0.0706 0.0280 0.0029 0.0169
6 -0.0005 -0.0691 -0.0285 0.0029 0.0162
7 -0.0004 -0.0720 0.0028 0.0684
8 -0.0436 0.6847 0.0023 0.1346
9 -0.0004 -0.4861 0.0028 0.0407
10 -0.0335 0.0069 0.0022 0.0447

7.4.7 Time Complexity Analysis

To investigate the time complexity of the proposed identification method, a series of numerical
simulations in identifying surge and steering models are carried out under the condition of the
varying number of training samples with the steps of 10. The samples used here are the same as
the ones adopted previously in this case study section. In the simulation of each group with the
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Figure 7.4.6: Predictions of 20◦/20◦ zigzag maneuver using the further simplified steering
model. The top sub-figure is the predictions of sway velocity, the bottom sub-figure is the
predicted yaw rate.

use of a specified number of samples, three indexes including the total cost time, MSE of the
identified model, and estimated parameters are analyzed. Figures 7.4.7-7.4.8 present the
comparison of the identification results of ABC-LSSVR, CV-LSSVR, and PSO-LSSVR on the
simplified surge model and further simplified steering model in terms of the consumed time,
respectively. From these figures, one can see that the cost time of the three identificationmethods
increases with the increase of the number of samples. This implies that the number of samples has
a direct effect on the time complexity of the proposed identification method, which is consistent
with the analysis of time complexity in the complexity analysis section. Compared to CV-LSSVR
and PSO-LSSVR, ABC-LSSVR takes approximately equivalent time to execute the identification.

TheMSE and the estimated parameters of the models identified by the three estimation
methods are summarized in Figures 7.4.9-7.4.13. It can be observed that the fluctuation of MSEs
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Figure 7.4.7: The time consumed by the three estimation methods on identifying the surge
model.

and estimated parameters of all identified surge models is obvious within the first 350 samples but
becomes stable soon after. Compared to CV-LSSVR and PSO-LSSVR, ABC-LSSVRmostly
provides the identified surge model with the lowest MSE. For the identification of the steering
model, the performance of PSO-LSSVR is not so desirable as that of CV-LSSVR and
ABC-LSSVR.This is due to PSO-LSSVR is prone to fall into local optima. Through the identified
steering models of CV-LSSVR and ABC-LSSVR, one can notice that MSE of the identified sway
models and the identified yawmodels have no apparent variations after the first 630 samples and
the first 230 samples. Recall that the time complexity of ABC-LSSVR increases along with the
increasing of the number of samples. Therefore, the suitable selection of samples for efficient
identification of the surge model, the sway model, and the yawmodel is 350, 630 and 230,
respectively.
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Figure 7.4.8: The time consumed by the three estimation methods on identifying the steer-
ing model. The top sub-figure presents the cost time of the sway model, the bottom sub-
figure means the cost time of the yaw model.

7.5 Case 4: ExperimentalValidationof theFurther SimplifiedDynamic

Model

The study undertook in this part are additional tests on verifying if the further simplified ship
dynamic model obtained through simulation study is also useful for describing the dynamics of a
real unmanned surface vessel, called I-Nav-II vessel. The optimized LS-SVR based on ABC in the
combination of the experimental data stemmed from a set of full-scale trails is used to identify the
model of I-Nav-II vessel.

7.5.1 Data Acquisition and Processing

The tests on the I-Nav-II vessel were carried out in relatively calm water, i.e., the East Lake of
China. The ship is presented in Figure 7.5.1, which is powered by two batteries with the
maximum voltage of 48V.The particulars of this ship are the length of 4.15m, the breath of 1.6m,
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Figure 7.4.9: The MSE of the three identified surge model.

the draught varying from 0.3 to 0.5m, and the rudder deflection set at±25◦.
The data obtained are less desirable than the ones acquired in the previous section. Two

reasons can be explained for this. Firstly, the tests were carried out in relatively calm water, but
there existing noticeable environmental disturbances induced by wind. Secondly, the
measurement devices used to record experimental data are limited. Only the position, yaw rate,
heading angle, and actual rudder angle can be measured by a global positioning system (R93T
GPS), an inertial measurement unit (Mit-G-700 IMU), a compass (HCM356B compass) and a
rudder indicator, respectively. The revolutions of the propeller are impossible to be measured.
Hence, the surge model of the I-Nav-II vessel is unable to be determined in this case study.

The available data are extracted from a set of zigzag maneuvers carried out under the condition
of a steady forward speed at around 3m/s. Themedian filter is utilized to eliminate disturbances
and noises corrupted in the measured data. After the filtering, the data is restored in the interval
of 1s. The speeds containing surge speed and sway speed are unavailable but calculated by taking
the derivatives of the measured positions. 142 samples extracted from 10◦/10◦ zigzag maneuver
are regarded as the training data to identify the simplified steering model for the I-Nav-II vessel.
The training data including yaw rate, actual rudder angle, heading angle and sway speed are
illustrated in Figure 7.5.2. The rest experimental data stemmed from 20◦/20◦ and 25◦/25◦ zigzag
maneuvers are treated as validation data to validate the identified model.
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Figure 7.4.10: The MSE of the three identified further simplified steering model.(a) the MSE
of the identified sway models. (b) the MSE of the identified yaw models.

7.5.2 Identification Results and Validation

After processing the identification procedure, the steering model of the I-Nav-II vessel is
obtained. Themodel expressed with estimated parameters is given as

v̇ = −0.5706v − 1.1529r + 1.4889 |v| r − 0.0775δ

ṙ = −0.1386v − 0.5113r − 1.4883 |v| r + 0.2839δ

Then the identified steering model is validated by comparing experimental maneuvers with
predictions of 20◦/20◦ zigzag maneuver shown in Figure 7.5.3 and 25◦/25◦ zigzag maneuver in
Figure 7.5.5, respectively. The tendency of the experimental maneuvers and predictions fits quite
well. Although errors can be observed in the predictions as shown in Figure 7.5.4 and
Figure 7.5.6, it attributes negligible errors in estimating the parameters of the steering model. The
identified steering model is still ideal to describe the steering dynamics of the I-Nav-II vessel for
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Figure 7.4.11: The estimated parameters of the three identified surge models. The top sub-
figure is the parameter a1, the middle sub-figure donates the parameter a2, the bottom sub-
figure means the parameter a3.

practical applications.

7.6 Summary ofObjective Coverage and Requirement Fulfillment

The proposed SIMSD system has been evaluated through case studies in which the required ship
dynamic models, methods, purposes and results are explained in detail. According to the
evaluation results, the sub-questions and the coverage of corresponding objectives are judged, at
the same time the fulfillment of requirements is discussed.

On Sub-Question 1: How to simplify the complex dynamicmodel for ships?
Through the overview of related work on ship dynamic model, the advantages and

disadvantages of each model have been analyzed, which are treated as the criterion for the
decision of the 6 DOF fundamental model. The vectorial representation model is selected
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Figure 7.4.12: The estimated parameters of the three identified further simplified sway mod-
els.

(objective 1). This model expressed in the vector-matrix form is easy-understanding and
applicable for the model simulation to investigate underlying characteristics of ship dynamics.
The common version of a 3 DOFmodel simplified from the 6 DOF vectorial representation
model is further simplified based on a series of reasonable assumptions. Besides, some terms with
low sensitivity to the response of the ship are also removed. The simplified model is firstly tested
on a large container ship for which the dynamics are modeled by a 4 DOFmodel with much
higher complexity than the proposed simplified model. The results reveal that the model is simple
but inaccurate to describe the dynamics of the container ship, which motivates the further
modification of the simplified model. The further simplified steering model in which each
equation is expressed with five terms is validated through studies on the container ship and the
I-Nav-II vessel (objective 2).

The validated model expressed in a relatively simple form where the equation for capturing
surge dynamics given in four terms and each equation of steering model built by five terms
satisfies the second requirement (R2: Themodel is expressed in a simple formwith low order
and a few terms.). As this model is simplified from the 3 DOF vectorial representations, each
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Figure 7.4.13: The estimated parameters of the three identified further simplified yaw mod-
els.(a) parameter cr, (b) parameter cv, (c) parameter c|v|r, (d) parameter cδ.

term in the model has a manifest physical interpretation (R1: Each term in themodel has a
manifest physical interpretation.) except for the third order term added to the surge model
under the consideration of the suggestion about improving model accuracy from (Skjetne et al.
2004). However, through comprehensively analyzing the estimated parameter of this third order
term and the prediction errors of the surge model, the third term is not so critical up to this thesis
to improve the surge model accuracy. Therefore, with the relatively high certainty limited to the
present study, the first requirement (R1: Each term in themodel has amanifest physical
interpretation.) is fulfilled. In the chapter regarding the modeling of ship dynamics, the
parameter identifiability problem is handled by moving parameters of the left hand of models to
the right hand to further merge parameters together to be one integrated parameter. After this
process, the number of parameters is equal to that of inputs. The simulation study on a container
ship indicates the effects of parameter drift existing in the identification results, which is
effectively mitigated by reducing the terms of the simplified dynamic model. The further
considerations on simplifying the steering model are not only boosting the identifiability of the
dynamic model (R3: Themodel is identifiable.) but also extenuating negative influences of
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Figure 7.5.1: The I-Nav- II vessel.

parameter drift on estimated parameters. The fourth requirement (R4: Themodel guarantees
acceptable accuracy in describing ship dynamics.) is achieved by analyzing the indicator MSE
of the predicted surge speed, the predicted sway speed, and the yaw rate respectively. For a
container ship, MSE of the predicted surge speed of a straight line maneuver is 0.1289m2/s2 which
is less than 0.5m2/s2 within the accepted range, andMSEs of the sway speed and yaw rate of a
20◦/20◦ zigzag maneuver are 0.0472m2/s2 and 0.0162◦2/s2, respectively. Besides the simulation
study on the container ship, the experimental study on the I-Nav-II vessel showsMSEs of the sway
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Figure 7.5.2: Experimental data of the 10◦/10◦ zigzag maneuver on the I-Nav-II vessel.

speed of the 20◦/20◦ and 25◦/25◦ zigzag maneuver are 0.0035m2/s2 and 0.0017m2/s2 respectively,
and the correspondingMSEs of the yaw rate are 3.6220◦2/s2 and 3.9294◦2/s2, respectively.

On Sub-Question 2: How to estimate the parameters in the simplified ship dynamic
model?

Case study 1 on comparing commonly-used LS with LS-SVR in identify response models
proves LS-SVR based identification method is a powerful selection (objective 3). LS-SVR based
identification method just works with a finite set of data, has no requirement of the initial
estimation of model parameters, and is not so sensitive to the outliers. However, one deficiency of
LS-SVR is the particular setting for its regularization parameter, which is remedied by using CV,
PSO, and ABC (objective 4). The LS-SVR with regularization parameter optimized by ABC
shows superior performance on model identification over the other two methods. The simulated
maneuvering data generated by a 4 DOFmodel with predetermined parameters in the
combination of the optimized LS-SVR are used to test the effectiveness of the simplified model to
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Figure 7.5.3: Predictions of the 20◦/20◦ zigzag maneuver.

describe the dynamics of a large container ship. Furthermore, the simplified dynamic model is
also identified by using ABC-LSSVR incorporated with experimental data extracted from the
maneuvers of the I-Nav-II vessel (objective 5).

Even though the experimental data of the I-Nav-II vessel are adopted, the developed
identification method, i.e., ABC-LSSVR, can identify the dynamic model with accepted accuracy,
which proves ABS-LSSVRmethod is robust to defend disturbance and noise effects (R5: The
identificationmethod is robust enough.). The hybrid ABC-LSSVRmethod is absorbing
advantages of LS-SVR as one of the machine learning techniques and ABC as one of the
intelligent algorithms to identify the ship dynamic model with no requirement of predetermined
parameters, from which the sixth requirement is achieved (R6: The identificationmethod has
no sensitivity to the predefined values of the parameters which are required to be
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Figure 7.5.4: Errors of the 20◦/20◦ zigzag maneuver.

estimated.). The particular requirement of LS-SVR based identification method, which is the
particular setting for the regularization parameter, is fitted by applying ABC.This process
guarantees superior identification results of ABC-LSSVR over that of the CV-LSSVR and
PSO-LSSVR. Even though ABC-LSSVR demonstrates outperformance while regarded as an
identifier, the global optimal identification results can be guaranteed with high probability.
Therefore, the seventh requirement (R7: The identificationmethod guarantees the global
optimal solution.) is fulfilled within the relatively high certainty limited to the present study.
From the results of the complexity analysis of the identification methods, we can see that the
eighth requirement (R8: The identificationmethod should be of low complexity.) is
achieved. The time complexity of ABC-LSSVR increases along with the increase of the number of
samples, but the suitable number of samples for efficient identification of the surge model, the
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Figure 7.5.5: Predictions of the 25◦/25◦ zigzag maneuver.

sway model and the yawmodel for the container ship which is 350, 630 and 230 respectively
reveals the low computational cost of the identification procedure.

In summary, the evaluation results have developed answers to the sub-questions, and the
objectives in this thesis have been achieved. With the relatively high certainty limited to the
present study, requirements are fulfilled.
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Figure 7.5.6: Errors of the 25◦/25◦ zigzag maneuver.
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8
Conclusions

Amodel with relatively low complexity and high accuracy is desirable for describing ship
dynamics, which can attenuate the difficulty of model identification and model simulation. This
thesis makes great attempts to answer the research question of How to derive a simplistic model
in describing the dynamics of ships for maritime traffic simulation. The derived objectives are
achieved throughout this thesis to answer the focused question. The requirements derived are
fulfilled in the evaluation chapter.

This chapter concludes the work and findings throughout this thesis in Section 8.1, as well as
outlines the potential future research points based on current achievements in Section 8.2.

8.1 Summary

Literature review in Chapter 2 on the state-of-the-art ship dynamic models, encompassing the
Abkowitz model, MMGmodel, Nomoto model, and Fossen´s vectorial model reveals that the
determination of the fundamental model for modification and simplification is Fossen´s vectorial
model. This is due to the effects of ship hull, rudder, propeller and their interference are
completely expressed in matrix-vector form. This form is not only intuitive for analyzing the
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properties of a ship using passivity and stability analysis but also easy for the local changes and
model simulation.

By comparing the related work with the aroused objectives, shortcomings are observed. Based
on the observed shortcomings, requirements on the modeling of ship dynamics and identification
methods are created in Chapter 3.

The 6 DOF vectorial model is simplified into a 3 DOF dynamic model by employing pieces of
reasonable assumptions. The actuator forces and moments acting on the ship in the 3 DOF
dynamic model are given by the function of propeller thrust and rudder angle. In order to reduce
the complexity of the 3 DOF dynamic model, the coupling interactions between surge motions
and steering motions are assumed to be ignorable. Consequently, the decoupled surge model and
steering model with relatively low complexity are obtained, as presented in Chapter 4.

To decide a powerful identification method for estimation of parameters in the simplified ship
dynamic model, the comparison between commonly-used LS and LS-SVR is executed on
identifying the simple Nomoto models containing the first order liner and nonlinear Nomoto
models. The results obviously demonstrate that LS-SVR outperforms LS.This is due to several
aspects. LS aiming at minimizing a squared normmakes it sensitive to the outlier, which means
that if an outlier exists in the training data, identification results of LS would be affected adversely.
On the contrary, LS-SVR simultaneously achieves both structural risk minimization and
empirical risk minimization when doing the identification. This characteristic sufficiently
decreases the sensitivity of LS-SVR to the outlier.

Apart from the above-mentioned characteristics, LS-SVR can work with a finite set of data and
require non-predefined values of parameters contained in the model. Benefiting from LS-SVR, a
solution is developed to overcome the problem of some identification methods, e.g., RLS,
requiring initial value definition for identification. To provide initial values of parameters for RLS,
200 samples in the interval of 3 are used by LS-SVR. From the results, the fluctuation of
convergence of RLS is more intense than that of the combined LS-SVR and RLSmethod.
Besides, the parameter initially estimated by LS-SVR close to the true value has high accuracy. It
is indicated that the developed solution is sufficient to improve the performance of RLS on
parameter estimation.

To guarantee the performance of LS-SVR on generating the globally optimal solution, the
tuning of the regularization parameter in LS-SVR is executed by using ABC. Comparing the
optimization performance of PSO, CV, and ABC proves that ABC can present superior
performance over the other twomethods with the advantage of fewer control parameters. CV as a
trial and error method is a little time-consuming to find a suitable value for the regularization
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parameter. The result is not so optimal as the optimization results of PSO or ABC. PSO can find
the global optimum for LS-SVR, but sometimes it falls into a local optimum. Comparatively,
ABC shows relatively stable global optimization ability during the selection of the regularization
parameter of LS-SVR. As a consequence, CV could be an option to select a regularization
parameter for LS-SVR based on reliable experiences, but ABC is a superior alternative to
optimize LS-SVR.

Predictions of the simplified ship dynamic model with estimated parameters poorly fit the
validation data, which motivates special considerations on further reducing the terms of the
simplified ship dynamic model, in particular, the steering model. By recombining terms extracted
from the simplified steering model, a series of the reconstructed models with lower complexity is
obtained. These models are identified by using the ABC-LSSVRmethod in conjunction with
simulated data of a container ship. Finally, the model generating the lowest MSE is selected as the
further simplification steering model which is extensively tested on the experimental data
stemmed from zigzag maneuvers of a small size ship. Testes on different types of ships including a
large container ship and a small vessel demonstrate that the further developed steering model is
valid to capture the steering dynamics of different types’ ships. Following the validation of the
further simplified ship dynamic model, the time complexity of ABC-LSSVR in identifying the
valid simplified model is analyzed to conclude that the cost time increases along with the increase
of the number of samples which is consistent with the analysis of the time complexity of
O(N2 + l3).

Through the evaluation results, the created requirements are fulfilled. The proposed approach
on system identification-based modeling of ship dynamics is feasible. The obtained dynamic
model is simple enough to capture the dynamics of different types’ ships.

8.2 Outlook

The derived objectives and requirements are covered through the evaluation of applying
optimized SVR to identify the simplified dynamic model for different types of ships. To enhance
more contributions based on present achievements, the forthcoming points deserved to be
studied are presented as follows.

• Even though the further simplified steering model has been validated through the simulated
data generated by a large container ship and experimental data conducted by a real vessel,
devices are needed to be mounted on the ship to collect benign experimental data used to
verify and validate the simplified surge model. Besides, full-scale trails should be carried
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out in the calm environment where the disturbances induced by the wave, current and
wind are ignorable so that the tests on the proposed identification method and simplified
ship dynamic model would be more effective.

• The combined LS-SVR and RLS has been proved effective. But it is still worthy to expand the
benefit of LS-SVR about supplying predefined values of parameters to more recursive
identification methods, e.g., EKL, ML.

• For LS-SVR based identification method, this thesis applies the linear kernel function due to
the ship dynamic model is linear with respect to the parameters, but in the future, the
performance of LS-SVR in conjunction with the other kernel functions on model
identification is worthy to be investigated.

• Applications of either offline identification or online identification exist in marine engineering.
Thus, the extensive study on performing online identification by using the modified
LS-SVR in conjunction with ABC could be contemplated, which would be no easy task.
Noticeably, real-time data acquisition and data preprocessing are certainly necessitated.
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Appendix

A.1 Least SquareMethod

Due to the simple structure and effectiveness, LS is regarded as a classic system identification
technique. LS is proposed based on the experience risk minimization. Suppose a system with
multiple-input-single-output (MISO) expressed as

Y = Xθ(X ∈ Rm, Y ∈ R) (A.1)

where X are input samples, Y are samples of output, θ donate the parameters required to be
estimated,m presents the dimension of the input samples.

The parameters can be estimated by θ̂ = X−1Y. Errors of the identified system are calculated by
ε = Y − Xθ̂. Afterward, the objective function is given as

J =
n∑

i=1

ε2i = εTε (A.2)

in which n is the number of samples.
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In order to minimize the object function, the (A.2) is partially differentiated and the
differential results are set as zero.

∂J
∂θ

∣∣∣∣
θ=θ̂

=
∂(Y − Xθ̂)T(Y − Xθ̂)

∂θ
= −2XTY + 2XTXθ̂ = 0 (A.3)

Then the LS approximation of (A.1) is obtained by solving (A.3)

θ̂ = (XTX)−1XTY (A.4)

A.2 Recursive Least SquareMethod

In this part, RLS is briefly introduced. RLS is developed for on-line parametric identification
based on an off-line method, i.e., LS. Given a system organized with a linear regression form using
a model parameter vector θ, a lagged input-output data vector X(k)=[xT(1),xT(2), · · · , xT(k)],
and an unspecified noise process v(k) as follows

y (k) = XT (k) θ + v(k) (A.5)

Then, parameters in θ are estimated by the followings
θ̂ (k) = θ̂ (k − 1) + K(k)[y (k)− xT(k)θ̂ (k − 1)]
K (k) = P(k − 1)x(k) [I + xT(k)P(k − 1)x(k)]−1

P (k) = [I − K(k)xT(k)] P(k − 1)
(A.6)

A.3 A Linear SteeringModel

Assume that the ship surge speed is constant (u0), the steering dynamics of theMerchant ship
Mariner class can be described as (Åström and Källström 1976) m′ − Y′

v̇ m′x′G − Y′
ṙ 0

m′x′G − N′
v̇ I′Z − N′

ṙ 0
0 0 1


 v̇′

ṙ′

ψ̇′

 =

Yv
′ Yr

′ − m′ 0
Nv

′ Nr
′ − m′xG

′ 0
0 1 0


v′

r′

ψ′

+

Yδ
′

Nδ
′

0

 δ′ (A.7)

wherem is the non-dimensional mass of the ship, x′G is the non-dimensional longitude coordinate
of the ship’s center of gravity, I′Z is the non-dimensional inertia moment about z-axis, v̇′ and ṙ′ are
non-dimensional small perturbations respectively, v′ is the non-dimensional sway linear velocity,
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ψ̇′ and r′ are non-dimensional yaw rate, ψ′ is the non-dimensional heading angle, δ′ is the rudder
angle, Y′

v̇, Y′
ṙ, Y′

δ , Y′
v and Y′

r are the respective hydrodynamic coefficients of the sway motion,N′
v̇,

N′
ṙ,N′

δ ,N′
v andN′

r are respective hydrodynamic coefficients of the yawmotion, and v̇′ = v̇L
U2 ,

ṙ′ = ṙL
U2 , ψ̇

′
= ψ̇L

U , v′ = vL
U , r

′ = rL
U , δ

′ = δ,U =
√

u02 + v2.
The normalized equations of motion, i.e., (A.7), are easily converted to standard state-space

notations by solving for the derivatives v̇′ and ṙ′. The state-space expression is given as v̇′

ṙ′

ψ̇′

 =

a11 a12 0
a21 a22 0
0 1 0


v′

r′

ψ′

+

b11
b21
0

 δ′ (A.8)

where the parameters are determined by the hydrodynamic coefficients, shown as

a11 =
(I′Z − N′

ṙ)Yv
′ − (m′x′G − Y′

ṙ)N′
v

(m′ − Y′
v̇(I′Z − N′

ṙ))− (m′x′G − Y′
ṙ)(m′x′G − N′

v̇)

a12 =
(I′Z − N′

ṙ)(Yr
′ − m′)− (m′x′G − Y′

ṙ)(N′
r − m′x′G)

(m′ − Y′
v̇(I′Z − N′

ṙ))− (m′x′G − Y′
ṙ)(m′x′G − N′

v̇)

a21 =
(Yr

′ − m′)N′
v − (m′x′G − N′

v̇)Y′
v

(m′ − Y′
v̇(I′Z − N′

ṙ))− (m′x′G − Y′
ṙ)(m′x′G − N′

v̇)

a22 =
(m′ − Y′

v̇)(N′
r − m′x′G)− (m′x′G − N′

v̇)(Y′
r − m′)

(m′ − Y′
v̇)(I′Z − N′

ṙ))− (m′x′G − Y′
ṙ)(m′x′G − N′

v̇)
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ṙ)Y′
δ − (m′x′G − Y′

ṙ)N′
δ
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ṙ))− (m′x′G − Y′
ṙ)(m′x′G − N′

v̇)

Rewriting the state variables of (A.8) with a dimensional format yields v̇
ṙ
ψ̇

 =

 a11vU
L + a12rU + b11δU2

L

a21v U
L2 + a22rU

L + b21δU2

L2

r

 (A.9)

Construction of Samples. The continuous (A.9) is discretized using the Euler forward method.
Its difference form can be expressed as[

v(k + 1)
r(k + 1)

]
=

[
v (k) + a11Δt

L v (k)U (k) + a12Δtr (k)U (k) + b11Δt
L δ(k)U2(k)

r (k) + a21Δt
L2 v (k)U (k) + a22Δt

L r (k)U (k) + b21Δt
L2 δ(k)U2(k)

]
(A.10)
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where k + 1 and k denote two successive sampling times, Δt is the sampling interval. Then the
input-output pairs used by LS-SVR and RLS are expressed as follows.

The inputs are Y = [v (k) , v (k)U (k) , r (k)U (k) , δ(k)U2(k)]T4×1, and
Z=[r(k), v(k)U(k), r(k)U(k), δ(k)U2(k)]T4×1. Let Bpar = [1 b1 b2 b3]1×4,

Cpar = [1 c1 c2 c3]1×4, then the outputs are v (k + 1) = BparY, and r (k + 1) = CparZ. Once
the parameters in Bpar andCpar are estimated, the parameters of the state space model (A.8) can
be achieved immediately through the following conversions.

a11 = b1L
Δt , a12 =

b2L
Δt , b11 =

b3L
Δt , a21 =

c1L2
Δt , a22 =

b2L
Δt , b21 =

c3L2
Δt

A.4 A 4DOFNonlinearModel of a Large Container Ship

The nonlinear roll-coupled 4 DOFmodel for the high-speed container ship is written as (Son and
Nomoto 1982)

(m − Xu̇) u̇ − (m − Yv̇) vr = X
(m − Yv̇) v̇ + (m − Xu̇) ur − Yṙṙ = Y(

Ix − Kṗ
)
ṗ = K − W ¯GMTϕ

(Iz − Kṙ) ṙ + Nv̇v̇ = N

(A.11)

where

X =X (u) + (1− t)T + Xvrvr + Xvvv2 + Xrrr2 + Xϕϕϕ2 + Xδ sin δ + Xext

Y =Yvv + Yrr + Yϕϕ + Ypp + Yvvvv3 + Yrrrr3 + Yvvrv2r + Yvrrvr2 + Yvvϕv2ϕ

+ Yvϕϕϕ2v + Yrrϕr2ϕ + Yδ cos δ + Yext

K =Kvv + Krr + Kϕϕ + Kpp + Kvvvv3 + Krrrr3 + Kvvrv2r + Kvrrvr2 + Kvϕϕϕ2v

+ Kvvϕv2ϕ + Krrϕr2ϕ + Yrϕϕrϕ2 + Kδ cos δ + Kext

N =Nvv + Nrr + Nϕϕ + Npp + Nvvvv3 + Nrrrr3 + Nvvrv2r + Nvrrvr2

+ Nvϕϕϕ2v + Nvvϕv2ϕ + Nrrϕr2ϕ + Nrϕϕrϕ2 + Nδ cos δ + Next

The variants are used in accordance with SNAME. u̇ and v̇ are linear accelerations in the x and y
direction, respectively, ṗ and ṙ are angular accelerations in the x and z direction, respectively, Ix
and Iz are the inertial moments about the x and z axis, respectively,m is the mass of the ship,W is
the weight of water displaced by the ship’s hull, ¯GMT is the transverse metacentric height, X(u) is
the velocity dependent damping function, t is the thrust deduction factor, T is the propeller
thrust and δ is the rudder angle , Xext, Yext, Kext andNext are forces or moments due to external
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disturbances. The left nomenclatures are hydrodynamic derivatives, see (Rajesh and
Bhattacharyya 2008) for related details. The principal particulars of the container ship are given
in Table A.4.1.

Table A.4.1: Principal particulars of the container ship.

Particulars Values

Length between perpendiculars 175m
Length over all 178m
Breadth 25.4m
Draft at the fore end 8m
Draft at the aft end 9m
Mean draft 8.5m
Displacement volume 21,222m3

Height from keel to transverse metacenter 10.39m
Height from keel to center of buoyancy 4.6145m
Block coefficient 0.559
Rudder area 33.0376m2

Aspect ratio 1.8219
Propeller diameter 6.533m
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